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1. Introduction

Let L be the canonical line bundle over CP1 . The Thom spectrum CP1
�1 =

Th(�L) and its associated in�nite loop space 
1(CP1
�1) (that is, the 0'th space of

the associated 
-spectrum), has appeared in various geometric contexts in topol-
ogy. For example it plays a central role in connection with the trace invariant
determination of Waldhausen's A(X), and conjecturally it is the group completion
of the classifying space of the stable mapping class group, cf. [19], [21].

The classifying space 
1(�CP1
�1) appears as the �ber of the dimension shifting

transfer map, so


1(�CP1
�1 ) �! Q(S1 ^ CP1

+ )
trf
�! Q(0)(S

0)

is a homotopy �bration. The main point of this paper is to compare this �bration
at a given prime p to the homotopy �bration

U(p)

(1� g)
�! U(p)

�
�! JU(p) �Z(p);

where  g : BU ! BU is the usual Adams operation.
The complex re
ection map R : S1 ^ CP1

+ ! U extends via Bott periodicity
to a map Q(R) from Q(S1 ^ CP1

+ ) to U . The unit of the ring spectrum J(p) with


1(J(p)) = JU(p) �Z(p) gives a map eJ from Q(0)(S
0) to JU(p), which induces

Adams' complex e-invariant on homotopy.
One might suspect that the diagram

Q(S1 ^ CP1
+ )

Q(R)
����! U(p)??ytrf ??y�

Q(0)(S
0)

eJ����! JU(p)

was homotopy commutative. However, in [16], Klein and Rognes point out that
the above diagram cannot possible be commutative. In this paper, we show �rstly
that there are in fact in�nite loop maps l and ~l making the diagram


1(�CP1
�1) ����! Q(S1 ^ CP1

+ )
trf

����! Q(0)(S
0)??y~l ??yl ??yeJ

U(p)

(1� g)
�����! U(p)

�
����! JU(p)

(1.1)
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2 IB MADSEN AND CHRISTIAN SCHLICHTKRULL

homotopy commutative, and secondly that the vertical maps have compatible split-
tings when localizing at an odd prime p, although not in the category of in�nite
loop maps. Moreover, both ~l and l are rational homotopy equivalences. This gives

Theorem 1.1. For odd primes p there exists a decomposition


1(�CP1
�1)(p) ' U(p) �X(p);

with ��(X(p)) 
Q= 0.

In sections 2{5 below we survey work primarily due to J.C. Becker and R.E.
Schultz, M.C. Crabb and K. Knapp, but in a form that is convenient for our appli-
cations in Section 6 and 7. We have strived to make these sections self contained
and accessable to the inexperienced reader.

Many results in this paper are formulated in the stable homotopy category of
spectra, and the actual choice of a point set level category is not important; for
example the one in [3] will do. The paper is divided in the following sections.
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2. Equivariant transfer maps

In this section G will be a compact Lie group. A based G-space is a based space
with a (left) G-action that �xes the base-point, and a G-representation will mean
a �nite dimensional real G-representation with a G-invariant inner metric. The
one-point compacti�cation of a G-representation V is a based G-space denoted SV .

To a based G-space X, there is an associated G-equivariant in�nite loop space

QG(X) = colimMap(SV ; SV ^X);

where Map(�;�) means based maps, and the limit is over a complete set of G-
representation V . When G is the trivial group we just write Q(X); this is the usual
non-equivariant in�nite loop-space associated with X.

Let Ad(G) denote the adjoint representation of G, i.e. the representation on the
tangentspace T1G induced from conjugation.

Theorem 2.1 ([5],[18]). Let X be a based G-CW complex such that the action is
free away from the base-point. Then the natural transfer map

trfG : Q(SAd(G) ^GX)
�
! QG(X)G;

is a homotopy equivalence.
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In our application in Section 5 of this result we shall need the construction of
trfG, so we start by recalling it (in a slightly special case). Let K and M be (left)
smooth G-manifolds without boundary. We assume that K is compact, and that
we are given an equivariant embedding

i : K !M:

The normal bundle N (i) = i�T (M )=T (K) embeds as an invariant tubular neigh-
borhood of i(K):

j : N (i)!M;

and we can choose j so that the tangent map induces the identity on quotient
bundles:

T (N(i))jK
T (K)

T (j)
����! T (M)ji(K)

T (i(K))x??�= x??�=
N (i) N (i);

where on the left we identify K with the zero section in N (i). The diagram ensures
that the isotopy class of j is uniquely determined by the embedding i, cf. [11, 6.2.6].

LetM c be the one-point compacti�cation ofM , let Th(N (i)) be the Thom-space
of N (i), and let

t :M c ! Th(N (i))(2.1)

be the Pontrjagin-Thom map.
Suppose that K is a compact free G-manifold, and let B = K=G. The projection

p : K ! B is a smooth �ber-bundle, and we have an exact sequence of G-vector-
bundles

0! T v(K)! T (K)! p�T (B) ! 0;

where T v(M ) is the vector bundle of tangents along the �bers. The di�erential of
the action map g 7! gx gives for each x 2 K an isomorphism Ad(G) �= T vx (K), and
thus a trivialization Ad(G)K �= T v(K). (Throughout the paper we write VX for
the product bundle X � V ! X of a G-space X and a representation V ).

For suitably V there is an embedding

i0 = (p; q) : K ! B � V;(2.2)

where p is the projection. The di�erential embeds each �ber of T v(K) in V , and
de�nes an embedding of bundles T v(K) ! VK , whose quotient VK=T v(K) is the
normal bundle along the �bers. The inclusion

VK ! i�0T (B � V ) = p�T (B) � VK ; v 7! (0; v);

passes to quotients and de�nes an isomorphism VK=T
v(K) �= N (i0), and the in-

variant metric on V induces a canonical isomorphism

T v(K) �N (i0) �= VK :

We want a trivial normal bundle, and replace i0 with the embedding

i : K
i0�! VB

j0�! VB � T
v(K)=G;(2.3)

where T v(K)=G is the quotient bundle over B, and j0 is the inclusion in the zero
section of T v(K)=G. Then we get a canonical isomorphism

N (i) �= T v(K)� N (i0) �= VK ;(2.4)
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and the G-equivariant Pontrjagin-Thom map

t : (K+ ^G S
Ad (G)) ^ SV ! K+ ^ S

V ;

with trivial action on K+ ^G S
Ad(G). By adjunction we get

t̂ : K+ ^G S
Ad (G) !Map(SV ;K+ ^ S

V )G ! QG(K+)
G;(2.5)

and the equivalence trfG of Theorem 2.1 is the unique extension to an in�nite loop
map, using the in�nite loop space structure of QG(K+)G.

The homotopy class of t̂, and hence that of trfG, is independent of the choice of
i0. Indeed, the composition of i0 with the inclusion V ! V �W does not a�ect t̂.
Thus two embeddings may be assumed related by an isotopy of the form

h : K � I ! B � I � V; ht(x) = (p(x); t; qt(x)):

Using h as the input for the construction of t̂ in (2.5) (with K replaced by K � I)
gives the required homotopy.

Remark 2.2. The above construction generalizes to the case of a smooth manifold
with boundary M , and gives an equivalence

trfG : Q(SAd (G) ^GM=@M )
�
! QG(M=@M )G:

We need a few naturality properties of trfG, which we now discuss. Let H � G
be a closed subgroup. Then there is a homotopy commutative diagram

Q(SAd (G) ^GK+)
trfGH����! Q(SAd (H) ^H K+)??ytrfG ??ytrfH

QG(K+)G ����! QH (K+)H :

(2.6)

The lower horizontal map is the inclusion of the G �xed points of QG(K+) into
its H �xed points composed with the obvious homotopy equivalence QG(K+)H '

QH(K+)H . The upper horizontal map trfGH is similar to the construction above:
One considers the bundle p : K=H ! K=G, and replaces i in (2.3) by the embedding

i : K=H ! (K �G Ad(G)) � VK=G:

Its normal bundle is (K �H Ad(H))�VK=H , and the Pontrjagin map induces trfGH ,
cf. [22].

The transfer trfG is also natural in the variable K in the sense that given a
G-map f : K ! L, the diagram

Q(SAd (G) ^G K+)
f�

����! Q(SAd(G) ^G L+)??ytrfG ??ytrfG
QH(K+)G

f�
����! QG(L+)G

(2.7)

is homotopy commutative. Taken together, (2.6) and (2.7) shows that trfG is a
natural transformation from the category C with objects consisting of pairs (K;G),
and morphisms (f; i) : (K;G) ! (L;H) given by a closed inclusion i : H ! G
together with a smooth H-map f : K ! L.

Our application of the equivariant transfer will be for G = S1, where Ad(G) = R
with trivial G-action. The standard action of S1 on S2n+1 gives an equivalence

trfS
1

n : Q(S1 ^ CPn+ )
'
�! QS1(S2n+1)S

1

:
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These transfers are compatible for varying n by (2.7), and one gets a map

trfS
1

: Q(S1 ^ CP1
+ )! QS1 (ES1+)

S1

;(2.8)

whose restriction to Q(S1^CPn+ ) is homotopic to trfS
1

n . In fact, the homotopy class

of trfS
1

is uniquely determined by Anderson's criteria for the vanishing of derived
limits, see [6]

3. Thom spectra and equivariant function spaces

In this section and the next, we restrict attention to the circle group S1, al-
though things work similarly for any compact Lie group G that admits free G-
representations. Let L denote the tautological line bundle over CP1 , and Ln its
restriction to CPn ; it is a subbundle of the product bundle CPn�Cn+1 , and we let
L?n denote its orthogonal complement. The restriction of L?n to CPn�1 is L?n�1�C ,
and we have induced maps of Thom spaces

� : S2 ^Th(L?n�1)! Th(L?n ):(3.1)

This de�nes the connective (i.e. (�1)-connected) spectrum Th(C � L) with 2n'th
space Th(L?n ); �0(Th(C � L)) =Z.

The connective Thom spectra Th(C k � kL) for k � 1 are de�ned similarly, and
we let Th(kL) = �1(Th(kL)) for k � 0.

For a spectrum E, we let 
1(E) = colim
n(En). In using this de�nition we
implicitely assume that the structure maps S1 ^En ! En+1 are co�brations; this
will always be the case for the spectra we consider. The following is a well-known
consequence of Theorem 2.1.

Proposition 3.1. There are in�nite loop space equivalences

Map(SC
k

; QS1(ES1+))
S1

' 
1�Th(�kL)

for k � 0.

Proof. For notational convenience we consider only the case k = 1; the proof for
k > 1 is completely analogous. We have

Map(SC; QS1(ES1+))
S1

= colimMap(SC; QS1(S(C n )+))
S1

and


1�Th(�L) = colim
2n(S1 ^Th(L?n�1)):

Let p : S(C n ) ! CPn�1 be the projection. Pulling back the isomorphism
Ln�1 � L

?
n�1
�= Cn

CPn�1 along p, we get

p�(L?n�1)� CS(Cn ) �= jC
n jS(Cn);

where j � j denotes trivial S1-action. In Map(SC; QS1(S(C n )+)) the action on SC is
non-trivial, so we cannot use Theorem 2.1 directly. Instead, we get a sequence of
equivalences:
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Map(SC; QS1(S(C n )+))
S1

= colimMap(SC ^ SV ; S(Cn )+ ^ S
V )S

1

�
! colimMap(SC ^ SjC

nj ^ SV ; S(Cn )+ ^ S
jCn j ^ SV )S

1

' colimMap(SC ^ SjC
n j ^ SV ; SC ^Th(p�(L?n�1)) ^ S

V )S
1

�
 colimMap(SjC

nj ^ SV ;Th(p�(L?n�1)) ^ S
V )S

1

' 
2n(QS1(Th(p�(L?n�1)))
S1

)

trfS
1

 � 
2n(Q(S1 ^Th(L?n�1)));

where we in the last equivalence have used Theorem 2.1 on the free based S1-space
p�(L?n�1), cf. Remark 2.2. The above equivalences are natural with respect to
inclusions S(C n )! S(C n+1), and since

S1 ^Th(L?n�1)! Q(S1 ^Th(L?n�1))

becomes highly connected with increasing n, we obtain the required equivalence of
colimits.

Given a based S1-space Y , let gMap(SC
n

; Y ) = Map((SC
n

; S0); (Y; �)), where
S0 � SC

n

denotes the �xedpoint set. This is an S1-subspace of Map(SC
n

; Y ).
De�ne

QfS1(Y ) = colimMap(SC
n

; Y ^ SC
n

)

and eQfS1(Y ) = colim gMap(SC
n

; Y ^ SC
n

);

where the superscript f indicates that the colimit is over the free representations Cn

only. Notice that eQfS1(Y )! QfS1(Y )! QS1(Y ) are non-equivariant equivalences.

Lemma 3.2. There are S1-equivariant homotopy equivalences

(i): QfS1(ES1+ ^ Y )
�
! QS1(ES1+ ^ Y )

(ii): eQfS1(ES1+ ^ Y )
�
! QfS1(ES1+ ^ Y )

(iii): eQfS1(ES
1
+ ^ Y )

�
! eQfS1(Y )

Proof. (i) follows from the equivariant suspension theorem [15, II.2.10], and (ii)
follows from the equivariant �bration sequence obtained by applying Map(�; ES1+^

Y ) to the co�bration sequence S0 ! SC
n

! SC
n

=S0.
The map in (iii) is induced from the projection ES1+ ^ Y ! Y ; we denote it

by �. In order to prove that it is an equivalence, we exhibit an explicit homotopy
inverse. For �xed n let


n : gMap(SC
n

; Y ^ SC
n

)! gMap(SC
n

; S(Cn )+ ^ Y ^ S
C
n

)

be given by


n(f)(v) =

(
(v=jvj; f(v)); for v 6= 0;1

�; for v = 0;1;
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This is continuous since f(0) = f(1) =1. Given m and n, the diagramgMap(SC
n

; Y ^ SC
n

)

n

����! gMap(SC
n

; S(Cn )+ ^ Y ^ SC
n

)??y ??ygMap(SC
n+m

; Y ^ SC
n+m

)

n+m
����! gMap(SC

n+m
; S(C n+m )+ ^ Y ^ S

C
n+m

)

is homotopy commutative via the homotopy

ht(f)(v; w) = ((v; tw)=j(v; tw)j; f(v); w):

Thus the maps 
n de�nes a unique homotopy class


 : eQfS1(Y )! eQfS1(ES
1
+ ^ Y )

S1

:(3.2)

It is clear that � � 
 = id. In order to examine 
 � � we let

� : eQfS1 (ES
1
+ ^ Y )!

eQfS1(ES
1
+ ^ES

1
+ ^ Y )

be the direct limit of the maps

� : gMap(SC
n

; ES1+ ^ Y ^ S
C
n

)! gMap(SC
n

; S(C n)+ ^ES
1
+ ^ Y ^ S

C
n

);

given by

�(f)(v) =

(
(v=jvj; f(v)); for v 6= 0;1

�; for v = 0;1:

The two projections p1; p2 : ES1 � ES1 ! ES1 are S1-equivariantly homotopic,
and thus 
 � � = p1� � � � p2� � � = id.

The case k � 0 of the next Theorem is due to Becker and Schultz, [10].

Theorem 3.3. For k 2Z,

colim gMap(SC
n

; SC
n+k

)S
1

' 
1�Th(kL):

Furthermore, for k < 0, gMap(SC
n

; SC
n+k

)S
1

= Map(SC
n

; SC
n+k

)S
1

.

Proof. The case k � 0 follows by letting Y = SC
k

in Lemma 3.2, and applying

Theorem 2.1 to the free S1-space ES1+ ^ S
C
k

. For k < 0, Proposition 3.1 reduces
us to proving that

colim gMap(SC
n�k

; SC
n

)S
1

' Map(SC
�k

; QS1(ES1+))
S1

:

Letting Y = S0 in Lemma 3.2 and applying Map(SC
�k

;�)S
1

gives the result. In
order to prove the second statement, it su�ces to show that any S1-equivariant map

SC
n

! SC
n+k

sends the �xedpoint set S0 to the basepoint when k < 0. This follows
from a standard argument using the mapping degree in S1-equivariant K-theory,
cf. [15, II,5].

4. The Becker-Schultz equivalence FS
1
' Q(S1 ^ CP1

+ )

We continue to consider free S1-representations Cn . Since S(Cm�Cn ) �= S(Cm )�
S(C n), we may form the colimit

F S
1

= colimMap(S(C n ); S(Cn ))S
1

;

upon taking joins with the identity.
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Theorem 4.1. There is a homotopy equivalence

� : FS
1

! QS1 (ES1+)
S1

:

This is really a theorem of Becker and Schultz, since upon using Theorem 2.1
it becomes the statement from [10]. We shall follow [24] in deducing Theorem 4.1
from the results in Section 3.

In order to de�ne � it is convenient to introduce auxiliary spaces and maps as
follows. From Section 3 we have the space

QfS1(S
0)S

1

= colimMap(SC
n

; SC
n

)S
1

;

with the colimit running over free representations. The �xed set of SC
n

is S0, and

we have the subspaces FS
1

(1)(1) and FS
1

(0)(1) of maps with f jS0 = id and f jS0 = �,

respectively. (Thus FS
1

(0)(1) = eQfS1(S0)).

Following [24], let

d : FS
1

(1)(1)� FS
1

(1)(1)! FS
1

(0)(1);

be the di�erence map given by

d(f; g)(t; x) =

(
f(1 � 2t; x); for 0 � t � 1=2;

g(2t� 1; x); for 1=2 � t � 1;
(4.1)

where we identify SC
n

with the unreduced suspension �S(C n ) = S0 � S(C n ), and
we use (1; �) 2 S0 � S(C n) as base point. Taking g = id we get homotopy inverse
maps

FS
1

(1)(1)
d(�;id)
�����! FS

1

(0)(1)
d(�;id)
�����! FS

1

(1)(1);

so FS
1

(1)(1) ' FS
1

(0)(1).

Proof of Theorem 4.1. The map � is the composite of three maps

� : FS
1 �1�! FS

1

(1)
�2�! FS

1

(0)(1)
�3�! QS1(ES1+)

S1

:

Here �1 maps f : S(C n ) ! S(C n) to its unreduced suspention, �2 = d(�; id), and

�3 is the map 
 from (3.2) (with Y = S0) followed by the inclusion eQfS1(ES
1
+)
S1 �
!

QS1(ES1+)
S1
. Each of these maps are homotopy equivalences. For �3 this was

proved in Lemma 3.2, and for �2 this follows from the above discussion. For �1 one

can use that the space Map(1)(S
C
n

; SC
n

)S
1
is equivalent to the space of bounded

self maps of S(C n ) � R and that this space in turn is homotopy equivalent to

Map(S(C n); S(C n ))S
1

. Alternatively, see Corollary 1.7 of [24].

The projection ES1 ! � induces a map

QS1(ES1+)
S1

! QS1(S0)S
1

;(4.2)

which is split injective in the homotopy category according to the tom-Dieck split-
ting ([15], Theorem II.7.7):

QS1(S0)S
1

' Q(S0)�
Y
n�0

0
QS1(ES1+)

S1

;
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where �0 is the weak product, and (4.2) corresponds to the inclusion of the com-

ponent indexed by n = 0. Let [1] 2 QS1(S0)S
1
be the identity, and let

� : QS1(S0)S
1

! QS1(S0)S
1

; x 7! [1]� x:(4.3)

Then, by the de�nition of �, we have

Corollary 4.2. The diagram

F S
1 �

����! QS1(ES1+)
S1??y ??y

QS1(S0)S
1 �
����! QS1 (S0)S

1

is homotopy commutative. The horizontal maps are homotopy equivalences, and
the vertical maps are split up to homotopy.

We next consider the multiplicative properties of �. The product on FS
1
is by

join of maps. To de�ne a product on QS1(ES1+)
S1
, let p : ES1 � ES1 ! ES1 be

an S1-equivariant homotopy inverse to the diagonal inclusion. Then

� : QS1 (ES1+)
S1

� QS1(ES1+)
S1 ^
! QS1�S1(ES1+ ^ES

1
+)
S1�S1

p�
! QS1(ES1+)

S1
(4.4)

de�nes the required product; it is is homotopy associative and commutative, and
the map in (4.2) is multiplicative (as well as additive).

Proposition 4.3. The map � : FS
1

! QS1(ES1+)
S1

is quadratic in the sense that

�(x � y) � �(x) + �(y) � �(�(x); �(y))

as maps FS
1

� FS
1

! QS1(ES1+)
S1

.

Proof. Apply Corollary 4.2.

We also have a product

�� : Q(S1 ^ CP1
+ )� Q(S1 ^ CP1

+ )
^
! Q(S1 ^ CP1

+ ^ S
1 ^ CP1

+ )

trf
! Q(S1 ^ CP1

+ );
(4.5)

where trf is the transfer associated with the diagonal inclusion � : S1 ! S1 � S1

(or, more precisely, trf is obtained by functoriality from the morphism

(proj;�) : (S(V ) � S(V ); S1 � S1)! (S(V ); S1)

in the category C introduced i Section 2).

Lemma 4.4. The products � and �� correspond under the transfer equivalence

trfS
1

: Q(S1 ^ CP1
+ )

�
! QS1(ES1+)

S1

:

Proof. The smash product in (4.4) corresponds to the smash product in (4.5) since
transfer maps are compatible with products, cf. [22, Note 1.14] . The second map
in (4.4) corresponds to trf in (4.5) by naturality (2.6).
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The diagram

FS
1 ��
����! Q(S1 ^ CP1

+ )


 ??ytrfS1
FS

1 �
����! QS1(ES1+)

S1

de�nes the homotopy equivalence from [10]. We note that the analogue of Propo-
sition 4.3 is satis�ed for (��; ��).

For applications in Section 5, we need an explicit expression for �. As above we
identify SC

n

with the unreduced suspension S0 � S(C n ) with basepoint (1; �). As
target we identify SC

n

with the quotient D(C n )=S(C n). For de�niteness, we choose
speci�c homeomorphisms

S0 � S(C n)! D(C n)=S(C n ); (t; x) 7! tx(4.6)

D(C n)=S(C n )! SC
n

; v 7! v=(1� jvj):(4.7)

For f : S(C n )! S(C n) in FS
1

,

�(f) : S0 � S(C n)! S(C n )+ ^ (D(C
n )=S(C n))

is (up to homotopy) given by

�(f)(t; x) = (x; tx+ (1� t)f(x)):(4.8)

Indeed, if f; g : S(C n )! S(C n ), then

d(�1(f); �1(g)) : S
0 � S(C n)! D(C n)=S(C n )

is given by

(t; x) 7!

(
(1� 2t)f(x); for 0 � t � 1=2

(2t� 1)g(x); for 1=2 � t � 1;

and this is clearly homotopic to the map

(t; x) 7! tg(x) + (1� t)f(x):

This gives (4.8) when g = id.

5. The complex reflection map

Given z 2 S1 and a complex line L � Cn+1 , let R(z; L) be the unitary transfor-
mation of Cn+1 that multiplies by z on L and �xes the orthogonal complement L?

pointwise. Since R(1; L) = id, one obtains a map

R : S1 ^ CPn+ ! U (n+ 1):

Explicitely, if hv; wi
C
=
P
vi �wi denotes the usual Hermitian product on Cn+1

and we think of CPn as S(C n+1 )=S1, then

R(z; [y])(x) = x+ (z � 1)hx; yi
C
� y; x 2 Cn+1 :(5.1)

Passing to colimits gives

R : S1 ^ CP1
+ ! colimU (n) = U;
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and we have a commutative diagram

S1 ^ CP1
+ ����! U??yproj ??ydet

S1 S1:

It follows that the adjoint bR : CP1
+ ! 
(U )

maps CP1 to the 1-component 
(1)(U ). Let

B : BU �Z! 
(U )

be the Bott periodicity map, and B(1) the restriction to the 1-component.

Proposition 5.1. The composite

B�1(1) �
bR : CP1 ! BU � f1g

classi�es the canonical line bundle L over CP1 .

Proof. We consider the inclusions

U (2n)

U (n)� U (n)
!

U (2(n+ 1))

U (n+ 1)� U (n+ 1)
; A 7! I1 �A� I1;

with union

BU =
[
n

U (2n)

U (n) � U (n)
:

We also have inclusions

in : CP
n �=

U (1 + n)

U (1)� U (n)
!

U (2n)

U (n)� U (n)
; A 7! In�1 �A;

and these de�ne the map i : CP1 ! BU , that classi�es the canonical line bundle
L over CP1 (or L � 1, if we think of BU as BU � f0g). We need an explicit
construction of the Bott map

B(0) : BU ! 
(SU ) ' 
(0)(U );

and follow H. Cartan and J. Moore, [12]: Given n � 1, let �n 2 
(�n)(U (2n)) be
the loop

�n(�) = (exp(�i2��) � In)� In:

Then B(0) is the colimit over n of the adjoints of

(I=@I) ^
U (2n)

U (n) � U (n)
! SU (2n); (�; A) 7! �n(�) �A � �n(��) �A

�1:

The statement in the proposition is equivalent to the commutativity (in the homo-
topy category) of the diagrams

CPn
i

����!
U (2n)

U (n) � U (n)

B(0)
����! 
(0)(U (2n))


 ??y+1

CPn
bR

����! 
(1)(U (n+ 1))

(i)
����! 
(1)(U (2n))

(5.2)
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for all n. Here the component-shift +1 can be realized by taking pointwise mul-
tiplication in U (2n) with any �xed loop in 
(1)(U (2n)). Given A 2 U (1 + n), we
have

B(0)(i[A])(�) = In�1 � (�n(�) �A � �n(��) �A
�1);

where �n 2 
(�1)(U (1 + n)) is the loop

�n(�) = (exp(�i2��) � I1) � In:

On the other hand, if v denotes the �rst column in A, then

R(exp(i2��); [v]) = A � �n(��) �A
�1;

and the commutativity of (5.2) follows.

Let JS
1
: U ! FS

1
be the map that restricts a unitary transformation to the

unit sphere.

Proposition 5.2. The restriction of the transfer trfS
1

to S1 ^ CP1
+ :

S1 ^ CP1
+ �! Q(S1 ^ CP1

+ )
trfS

1

����! QS1(ES1+)
S1

;

is homotopic to the composition

S1 ^ CP1
+

R
�! U

JS
1

�! FS
1 �
�! QS1(ES1+)

S1

:

In preparation of the proof we have the following remark on the Pontrjagin-Thom
map considered in Section 2.

Remark 5.3. With notation of Section 2, let i : K ! M be a smooth G-invariant
embedding of a closed G-manifold K. A continuous map t : M c ! Th(N (i)) is
homotopic to the Pontrjagin-Thom map provided that

(i): The restriction of t to i(K) is inverse to i, and t preserves the complements:

t(M c � i(K)) � Th(N (i)) �K:

(ii): t is smooth in a neighborhood of i(K), and the di�erential induces an
isomorphismon quotient bundles, which is �berwise di�eotopic to the identity:

T (M)ji(K)
T (i(K))

T (t)
����! T (N(i))jK

T (K)x??�= x??�=
N (i) N (i):

For notational convenience, write V = Cn+1 and P (V ) = S(V )=S1. The �ber
bundle p : S(V )! P (V ), induces an exact sequence

0! T vS(V )! TS(V )! p�TP (V )! 0

as in Section 2. We may consider V as the real vectorspace R2(n+1) equipped with
the complex structure J : V ! V ,

J(x1; y1; : : : ; xn+1; yn+1) = (�y1; x1; : : : ;�yn+1; xn+1):

We have
TS(V ) = f(x; v) 2 S(V )� V jhx; vi = 0g

with subbundle

T vS(V ) = f(x; t �J(x)) 2 S(V )� V j t 2 Rg:
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With this notation we get the trivialization

Ad(S1)P (V ) ! T vS(V )=S1; ([x]; t � J) 7! [x; t � J(x)];(5.3)

where t 2 R and (by abuse of notation), J= exp(i�=2) is a basis for Ad(S1) � C .

Proof of Proposition 5.2. With V = Cn+1 as above, let f be the restriction of

� � JS
1

�R to S1 ^ P (V )+,

f : S1 ^ P (V )+ !Map�(S
V ; S(V )+ ^ S

V )S
1

:

Using the expression (4.8) for �, f becomes a pointed map with adjoint

f̂ : S1 ^P (V )+ ^ (S
0 � S(V ))! S(V )+ ^ (D(V )=S(V ))

given by

f̂ (z; [y]; t; x) = (x; x+ (1 � t)(z � 1)hx; yi
C
� y):(5.4)

On the other hand, in constructing the transfer, we may use the obvious embed-
ding

i : S(V )! P (V ) � V ! (T vS(V )=S1)� VP (V );

and apply the Pontrjagin-Thom construction to get

t : ((T vS(V )=S1)� VP (V ))
c ! Th(N (i)):

We identify S1 and SAd(S
1) by stereographic projection from the unit in S1, and

use (5.3) and the homeomorphisms in (4.6), to give an explicit identi�cation of the

domain of f̂ with the domain of t. Similarly, the trivialization in (2.4) identi�es the

target of f̂ with Th(N (i)). With these identi�cations, the embedding i corresponds
to

~{ : S(V )! S1 ^ P (V )+ ^ (S
0 � S(V )); x 7! (�1; [x]; 1=2; x);

and the zero section of N (i) becomes

~s : S(V )! S(V )+ ^ (D(V )=S(V )); x 7! (x; 0):

We prove that f � t by checking that f satis�es the conditions in Remark 5.3.
The �rst condition, the pull-back diagram

S(V )
~{

����! S1 ^P (V )+ ^ (S0 � S(V ))


 ??yf̂
S(V )

~s
����! S(V )+ ^ (D(V )=S(V ));

follows from (5.4). For x 2 S(V ), we have the monomorphism

V ! Tf�1gS
1 � T[x]P (V )� Tf1=2gI � TxS(V )

given by

v 7! (hv;J(x)i � J; 0 ; hv; xi ; v� (hv;J(x)i � J(x)+ hv; xi � x));

where we take J as a basis for Tf�1gS
1. This gives a trivialization VS(V ) �= N (~{);

compatible with the trivialization of N (i) from (2.4). We now have a diagram

N (~{)
T (f)
����! N (~s)x??�= ??y�=

VS(V ) ����! VS(V );
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and using the relationship between the Hermitian product h ; i
C
and the real inner

product h ; i:

hv; wi
C
= hv; wi+ hv;J(w)i � J; v; w 2 V;

we see that the lower map is given by

(x; v) 7! (x; v + hv; xi � x� (1=2)hv;J(x)i � J(x)):

This is �berwise di�eotopic to the identity via the di�eotopy

ht(x; v) = (x; v + t(hv; xi � x� (1=2)hv;J(x)i � J(x))):

This veri�es the second condition in Remark 5.3.

6. Diagram 1.1

LetK denote the complex periodic K-theory spectrum, and write eK(E) = [E;K]

for a spectrum E. For a based space X, we have eK(X) = eK(�1(X)). Recall, that
L denotes the tautological line bundle over CP1 , and Ln the restriction to CPn .

The standard Thom classes �L?n 2
eK(Th(L?n )), cf. [7], are compatible under the

maps in (3.1) and Bott periodicity, so de�ne

�C�L 2 eK(Th(C � L)) = lim eK(Th(L?n ));

and K(CP1) �= eK(Th(C � L)) by � 7! � � �C�L.
The inclusion of a �ber into L?n induce a map from S2n to Th(L?n ) and in turn

a map from the sphere spectrum S

i : S !Th(C � L):(6.1)

The element �C�L is an orientation class in the sense that i�(�C�L) 2 eK(S) =Z
is the multiplicative unit. Any other orientation class has the form (1 + �0) � �C�L
with �0 2 eK(CP1) = xZ[[x]], x = L � C .

The co�ber of the map i in (6.1) is the spectrum Th(C ) = �1(S2 ^ CP1
+ ), cf.

[17], [23], and we now compare the co�ber sequence

S
i
�!Th(C � L)

!
�!Th(C )

@
�! �S(6.2)

to the standard p-local co�ber sequence from K-theory

J(p)
D
�! K(p)

1�	g
���! K(p) �! �J(p):(6.3)

Here g is a �xed natural number which de�nes a generator of the units (Z=p2)�

when p is odd, and g = 3 when p = 2. The operation 	g in (6.3) is the Adams
operation  g on the 0'th space of K and equal to (1=gn) g on the 2n'th space
K(p)2n = BU(p)�Z(p). The spectrum J(p) has the structure of a ring spectrum; let
eJ : S ! J(p) be its unit. Then D � eJ = eK is the unit of K, and eJ is the unique
lift of eK .

Consider now the following diagram in which �0 2 eK(p)(CP
1) is given, and

� 2 K(p)(CP
1) is to be determined:

S
i

����! Th(C � L)
!

����! Th(C )
@

����! �S??yeJ ??y(1+�0)��C�L

??y���C ??y�eJ
J(p)

D
����! K(p)

1�	g
����! K(p)

�
����! �J(p):

(6.4)
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Since (1 + �0) � �C�L is an orientation class, the left hand square homotopy
commutes, and since ��1(K(p)) = 0, there is a unique element � 2 K(p)(CP

1 )
making the ladder commutative.

Lemma 6.1. Write �0 = x�1, �1 2 K(CP1 ). The class � 2 K(p)(CP
1 ) in (6.4)

is given by

� = �
Lg�2 + 2Lg�3 + � � �+ (g � 1)

Lg�1 + Lg�2 + � � �+ 1
� (�1 � g 

g(�1)):

The proof of Lemma 6.1 is based upon the exponential homomorphism

�g : K(X) ! 1 + eK(p)(X) � K(p)(X);

cf. [1]. On an n-dimensional complex vector bundle

�g(E) � �E = (1=gn) �  g(�E);

and for a line bundle L,

�g(L) = (1=g) � (1 + L+ � � �+ Lg�1):(6.5)

Proof of Lemma 6.1. The map ! in (6.3) induces a K(p)(CP
1 )-linear homomor-

phism

!� : eK(p)(Th(C )) ! eK(p)(Th(C � L));

with
!�(�C) = !�(�L�(C�L)) = ��1(L) � �C�L:

Here ��1(L) denotes the K-theoretic Euler class of L. On a line bundle, ��1(L) =
1� L, so

!�(� � �C) = ��x � �C�L:(6.6)

On the other hand, an easy calculation using (6.5) shows that

(1� 	g)((1 + x�1) � �C�L)

= (1 + x�1 � �
g(�L) � g(1 + x�1)) � �C�L

= (L � 1)

�
Lg�2 + 2Lg�3 + � � �+ (g � 1)

Lg�1 + Lg�2 + � � �+ 1
+ �1 � g 

g(�1)

�
� �C�L:

Comparing with (6.6) gives the expression for �.

If we in Lemma 6.1 let �0 = L � C , then � becomes the class

� =
(g � 1)Lg�1 + (g � 2)Lg�2 + � � �+ L

Lg�1 + Lg�2 + � � �+ 1
:(6.7)

This element has an alternative description as follows. Let

~� = �g � 1 : eK(X)! eK(p)(X);

and de�ne the operation 
2(~�) by commutativity of the diagrameK(X)
��C����! eK(S2 ^X)??y
2(~�)

??y~�eK(p)(X)
��C����! eK(p)(S

2 ^X):

(The isomorphism ��C is the Bott periodicity operator that de�nes the structure
maps in the spectrum K).
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Proposition 6.2. The � corresponding to �0 = L � C in Lemma 6.1 is � =

2(~�)(L).

Proof. Let H be the canonical line bundle over CP 1 = S2, so that �C = H � C .
Since �g is exponential,

~�(L � �C) = �g(HL � L) � 1 =
�g(HL) � �g(L)

�g(L)
:

Now Hi � C = i(H � C ) = i�C, so

�g(HL) = (1=g)((HL)g�1 + � � �+HL + 1)

= �g(L) + (1=g)�C((g � 1)Lg�1 + � � �+ L);

and thus

~�(L � �C) =
(g � 1)Lg�1 + (g � 2)Lg�2 + � � �+ L

Lg�1 + Lg�2 + � � �+ 1
� �C:

The result follows by comparison with (6.7).

The spectra in (6.2) are all connective, whereas the spectra in (6.3) are periodic
and thus has non-zero homotopy groups in negative dimensions. Let ku = K[0;1)
denote the (�1)-connected cover of K, and bu = K[2;1) its 1-connected cover.
Let also ju(p) = J(p)[0;1). The diagram (6.4) then lifts to the p-local diagram of
connective spectra.

S(p)
i

����! Th(C � L)(p)
!

����! Th(C )(p)
@

����! �S(p)??yeJ ??yL��C�L ??y
2(~�)(L)��C

??y�eJ
ju(p)

D
����! ku (p)

1�	g
����! bu (p)

�
����! �ju(p):

(6.8)

On the 0'th level of the associated 
 spectra, eJ is split surjective by the a�rmed
Adams conjecture. This is far from being the case for the two middle arrows.
In fact they are not even rational equivalences. We shall remedy this fact by
rechoosing the middle maps. This requires that one decomposes K(p) into its so
called Adams components, cf. [4], [8]. There are idempotent operations Ei on
K(p)(X) for i 2Z=(p� 1), so

K(p)(X) =

p�2M
i=0

K
[i]
(p)(X);

with K [i]
(p)(X) = EiK(p)(X). The coe�cient groups are

eK [i]
(p)(S

2n) =

(
Z(p) for n � i mod (p� 1);

0 otherwise;
(6.9)

and one has the isomorphisms:

(i): 1�  g : K [i]
(p)(X)

�
�! K

[i]
(p)(X); if i 6� 0 mod (p� 1);

(ii): ~� : K [0]
(p)(X)

�
�! K

[0]
(p)(X); for X connected:

(The action of 1� g on eK(S2n) is by multiplicationwith 1�gn, so (i) is immediate.
(ii) is more complicated and involves Bernoulli numbers, see [1] or [8]). Since 1�	g
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is an equivalence of K [i] when i 6� 0 mod (p� 1), (6.3) implies the co�bration
sequence

J(p)
D[0]

��! K
[0]
(p)

1�	g
���! K

[0]
(p)

�[0]

��! �J(p);

and �[0] �E0 = �.
We now modify the middle arrows in (6.8) on the non-zero Adams components.

Let l 2 eK(p)(Th(C )) =
L eK [i]

(p)(Th(C )) have components

l[i] =

(
~�[0] �E0(L � �C) for i = 0;

(1 �	g) �Ei(L � �C) for i 6= 0:
(6.10)

Then l is represented by the map

S2 ^ CP1
+

L��C�! BU(p) �Z(p)
h
�! BU(p) �Z(p);(6.11)

where h acts by ~� on the 0'th Adams component, and by 1 �  g on the other.
Notice that h induces a homotopy equivalence on BU(p) � f0g.

Similarly, let ~l 2 eK(p)(Th(C � L)) =
L eK [i]

(p)(Th(C � L)) have components

~l[i] =

(
E0(L � �C�L) for i = 0;

!�Ei(L � �C) for i 6= 0:
(6.12)

On the spectrum level we pass to connective covers and get maps

l :Th(C ) ! bu (p); ~l :Th(C � L)! ku(p):

Theorem 6.3. There is a commutative diagram of spectrum co�bration sequences

S
i

����! Th(C � L)
!

����! Th(C )
@

����! �S??yeJ ??y~l ??yl ??y�eJ
ju(p)

D
����! ku (p)

1�	g
����! bu(p)

�
����! �ju(p);

(6.13)

and the vertical maps are rational equivalences.

Proof. The commutativity follows from the above remarks and Proposition 6.2.
Furthermore, the outer arrows are clearly rational equivalences, and it su�ces to
check that the same holds for l. The double desuspension

��2(l) : �1(CP1
+ )! ku (p);

is the unique extension of the space map

CP1
+

L
�! BU(p) �Z(p)


2(h)
�! BU(p) �Z(p):

Since 
2(h) is an H-map and a homotopy equivalence, a straightforward homology
calculation implies that ��2(l) is a rational equivalence. (It also follows from the
splitting considered in the next section).
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7. The splitting theorem

The co�bration sequence (6.2) gives upon passage to in�nite loop spaces a ho-
motopy �bration sequence


1(�Th(�L))
!
�! Q(S1 ^ CP1

+ )
@
�! Q(S0):(7.1)

Proposition 7.1 ([17]). The map @ in (7.1) is homotopic to the composition

trf : Q(S1 ^ CP1
+ )

trfS
1

�! QS1(ES1+)
S1 inc
�! QS1(ES1+) ' Q(S

0);

with trfS
1

from Theorem 2.1.

Proof. This follows from Proposition 3.1 by applying Map(�; QS1(ES1+))
S1

to the

equivariant co�bration sequence S1+ ! S0 ! SC, and using that

Map(S1+; QS1(ES1+))
S1 �= Map(S0; QS1(ES1+)) ' Q(S

0):

(In fact, one can derive the entire co�bration sequence (6.2) this way).

Recall that 
1(��1ku (p)) ' U(p) and 
1(��1bu (p)) ' U(p), and that the usual

complex image of J space is JU(p) �Z(p) = 
1(ju(p)). Then applying 
1 � ��1

to (6.13) we get following diagram of in�nite loop spaces.


1(�Th(�L))
!

����! Q(S1 ^ CP1
+ )

trf
����! Q(S0)??y~l ??yl ??ye

U(p)

(1� g)
�����! U(p)

�
����! JU(p) �Z(p):

(7.2)

It follows from Proposition 5.1, that l is the in�nite loop map extension of

S1 ^ CP1
+

R
�! U �! U(p)


(h)
�! U(p);(7.3)

with h de�ned in (6.11). Let s be the composite

s : U
JS

1

�! FS
1 ��
�! Q(S1 ^ CP1

+ );(7.4)

with JS
1
the obvious inclusion that restricts a unitary transformation to the unit

sphere, and �� the equivalence of Theorem 4.1.

Theorem 7.2. The composition l � s : U(p) ! U(p) is a homotopy equivalence.

The next three lemmas provide the proof.

Lemma 7.3. The maps

[BU;BU ]!Hom(H�(BU;Q);H�(BU;Q))

[U;U ]!Hom(H�(U;Q);H�(U;Q))

are injections. The same hold for the localized spaces BU(p) and U(p).

Proof. The groups

[BU;BU ] �= limK(BU (n))

[U;U ] �= limK�1(U (n))

are torsion free (see e.g. [7, p.112, p.116]), and since the Chern character is ra-
tionally an isomorphism, elements of [BU;BU ] and [U;U ] are determined by their
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action on rational cohomology. Dually, such elements are then also determined by
their action on rational homology.

Given a map f : X ! E with E an in�nite loop space, we write Q(f) : Q(X) !
E for the in�nite loop map that restricts to f on X.

Lemma 7.4 ([13]). For any map f : S1 ^ CP1
+ ! U , the composite map

� : F S
1 �
�! Q(S1 ^ CP1

+ )
Q(f)
�! U

is an H-map, and similarly if U is replaced by U(p).

Proof. Recall from Proposition 4.3 and the paragraphs following it that Q(S1 ^
CP1

+ ) has a product �� over which �� becomes quadratic. Since Q(f) is additive,

�(x � y) � �(x) + �(y) �Q(f) � ��(��(x); ��(y)):

In order to see that the term Q(f)� ��(�(x); �(y)) vanish, we use the factorization
of �� from (4.5), �� = trf �^. By de�nition, trf �Q(f) is an in�nite loop map, and it
su�ces to prove that the restriction to S2 ^ CP1

+ ^ CP
1
+ is null homotopic, which

is the case since K1(CP1
+ ^ CP

1
+ ) = 0.

Lemma 7.5. Let f : U ! U be an H-map. Then the composite map

� : U
s
�! Q(S1 ^ CP1

+ )
Q(f�R)
�����! U

is homotopic to f , and similarly in the p-local situation.

Proof. According to Lemma 7.3, it su�ces to prove that � and f induce the same
map in rational homology. It is well known that H�(U;Q) is an exterior algebra
generated by the image of

R� : H�(S
1 ^ CP1

+ ;Q)! H�(U;Q);

cf. [25]. Lemma 7.4, implies that f� and �� are algebra homomorphisms, so it
su�ces to prove that the restrictions f � R and � � R are homotopic. This is a
consequence of Proposition 5.2: The diagram

S1 ^ CP1
+ S1 ^ CP1

+??yR ??yinc
U

s
����! Q(S1 ^ CP1

+ )

is homotopy commutative.

Proof of Proposition 7.2. Since 
(h) is an H-map and a homotopy equivalence,
the statement in the proposition is a direct consequence of Lemma 7.5.

The next result is a well-known reformulation of the main result of [2], given the
a�rmed Adams conjecture.

Proposition 7.6. The map eJ : Q(0)(S
0)(p) ! JU(p) is split surjective provided p

is odd.

Proof. The a�rmed Adams conjecture is the statement that the sequence

BU(p)
1� g

�! BU(p) �! BSF(p)
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is null homotopic, see e.g. [9]. This implies the homotopy commutative diagram

U(p)
�

����! JU(p)
D

����! BU(p)
1� g

����! BU(p)


 ??y�1

??y�0





U(p) ����! SF(p) ����! SF(p)=U(p) ����! BU(p):

(7.5)

We compose �1 with the map � : SF ! Q(0)(S
0) from (4.3) to get

� = � � �1 : JU(p) ! Q(0)(S
0)(p):(7.6)

The composite eJ � � is a homotopy equivalence, see e.g. [14], [20].

Lemma 7.7. With s and � being the maps de�ned in (7.4) and (7.6) respectively,
the diagram

U(p)
�

����! JU(p)??ys ??y�
Q(S1 ^ CP1

+ )(p)
trf

����! Q(0)(S
0)(p)

is homotopy commutative.

Proof. Consider the homotopy commutative diagram

U
JS

1

����! FS
1 ��
����! Q(S1 ^ CP1

+ )


 ??y ??ytrf
U

J
����! SF

�
����! Q(0)(S

0);

where the square follows from Corollary 4.2 upon composing with the inclusion

QS1(S0)S
1
! Q(S0).

Theorem 7.8. For odd primes p, the map

~l : 
1�Th(�L)(p) ! U(p)

from (7.2) is split surjective up to homotopy.

Proof. From Lemma 7.7 we get the diagram

U(p)

(1� g)
�����! U(p) ����! JU(p)??y~l ??ys ??y�


1�Th(�L)(p) ����! Q(S1 ^ CP1
+ )(p)

trf
����! Q(0)(S

0)(p)

(7.7)

In view of Theorem 7.2 and Proposition 7.6, this splits diagram (7.2), and in

particular ~l � ~s is an equivalence.
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