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Introduction

In this paper we establish a connection between the Quillen K-theory of certain
local �elds and the de Rham-Witt complex of their rings of integers with logarithmic
poles at the maximal ideal. The �eldsK we consider are complete discrete valuation
�elds of characteristic zero with perfect residue �eld k of characteristic p > 2. When
K contains the pvth roots of unity, the relationship between K-theory and the de
Rham-Witt complex can be described by a sequence

� � � ! K�(K;Z=p
v )!W !�(A;M) 
 SZ=pv(�pv)

1�F
���!W !�(A;M) 
 SZ=pv(�pv )

@
�! � � �

which is exact in degrees � 1. Here A = OK is the valuation ring and W !�(A;M) is

the de Rham-Witt complex of A with log poles at the maximal ideal. The factor
SZ=pv(�pv) is the symmetric algebra of �pv considered as a Z=pv -module located in
degree two. Using this sequence, we evaluate the K-theory with Z=pv -coeÆcients
of K. The result, which is valid also if K does not contain the pvth roots of unity,
veri�es the Lichtenbaum-Quillen conjecture for K, [21], [30]:

� Supported in part by NSF Grant and the Alfred P. Sloan Foundation.
�� Supported in part by The American Institute of Mathematics.
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Theorem A. There are natural isomorphisms for s � 1,

K2s(K;Z=p
v ) = H0(K;�
spv )�H2(K;�


(s+1)
pv );

K2s�1(K;Z=p
v ) = H1(K;�
spv ):

The Galois cohomology on the right can be e�ectively calculated when k is �nite,
or equivalently, when K is a �nite extension of Q p , [34]. For m prime to p,

Ki(K;Z=m) = Ki(k;Z=m) �Ki�1(k;Z=m)

by Gabber-Suslin, [36], and for k �nite, the K-groups on the right are known by
Quillen, [28].

For any linear category with co�brations and weak equivalences in sense of [40],
one has the cyclotomic trace

tr : K(C)! TC(C; p)

from K-theory to topological cyclic homology, [6]. It coincides in the case of the
exact category of �nitely generated projective modules over a ring with the orig-
inal de�nition in [3]. The exact sequence above and theorem A are based upon
calculation of TC�(C; p;Z=p

v ) for certain categories associated with the �eld K.
Let A = OK be the valuation ring in K, and let PA be the category of �nitely
generated projective A-modules. We consider three categories with co�brations
and weak equivalences: the category Cb

z(PA) of bounded complexes in PA with ho-
mology isomorphisms as weak equivalences, the subcategory with co�brations and
weak equivalences Cb

z(PA)
q of complexes whose homology is torsion, and the cat-

egory Cb
q(PA) of bounded complexes in PA with rational homology isomorphisms

as weak equivalences. One then has a co�bration sequence of K-theory spectra

K(Cb
z(PA)

q)
i!
�! K(Cb

z(PA))
j
�! K(Cb

q(PA))
@
�! �K(Cb

z(PA)
q);

and using Waldhausen's approximation theorem, the terms in this sequence may be
identi�ed with theK-theory of the exact categories Pk, PA and PK . The associated
long-exact sequence of homotopy groups is the localization sequence of [29],

� � � ! Ki(k)
i!
�! Ki(A)

j�
�! Ki(K)

@
�! Ki�1(k)! : : :

The map @ is a split surjection by [12]. We show in x1 below that one has a similar
co�bration sequence of topological cyclic homology spectra

TC(Cb
z(PA)

q; p)
i!
�! TC(Cb

z(PA); p)
j
�! TC(Cb

q(PA); p)
@
�! �TC(Cb

z(PA)
q; p);

and again Waldhausen's approximation theorem allows us to identify the �rst two
terms on the left with the topological cyclic homology of the exact categories Pk
and PA. But the third term is di�erent from the topological cyclic homology of
PK . We write

TC(AjK; p) = TC(Cb
q(PA); p);

and we then have a map of co�bration sequences

K(k)
i! //

tr

��

K(A)
j� //

tr

��

K(K)
@ //

tr

��

�K(k)

tr

��

TC(k; p)
i! // TC(A; p)

j� // TC(AjK; p)
@ // �TC(k; p):

2



By [16, theorem D], the �rst two vertical maps from the left induce isomorphism
of homotopy groups with Z=pv -coeÆcients in degrees � 0. It follows that the
remaining two vertical maps induce isomorphism of homotopy groups with Z=pv -
coÆcients in degrees � 1,

tr : Ki(K;Z=p
v )
�
�! TCi(AjK; p;Z=pv ); i � 1:

It is the right hand side we evaluate.

The spectrum TC(C; p) is de�ned as the homotopy �xed points of an operator
called Frobenius on another spectrum TR(C; p), so there is a natural co�bration
sequence

TC(C; p)! TR(C; p)
1�F
���! TR(C; p)! �TC(C; p):

The spectrum TR(C; p), in turn, is the homotopy limit of a pro-spectrum TR�(C; p),
its homotopy groups given by the Milnor sequence

0! lim �
R

1 TR�

s+1(C; p)! TRs(C; p)! lim �
R

TR�

s(C; p)! 0;

and there are maps of pro-spectra

F : TRn(C; p)! TRn�1(C; p);

V : TRn�1(C; p)! TRn(C; p):

The spectrum TR1(C; p) is the topological Hochschild homology T (C). It has an
action by the circle group T and the higher levels in the pro-system by de�nition
are the �xed sets of the cyclic subgroups of T of p-power order,

TRn(C; p) = T (C)Cpn�1 :

The map F is the obvious inclusion and V is the accompanying transfer. The struc-
ture map R in the pro-system is harder to de�ne and uses the so-called cyclotomic
structure of T (C), see x1 below.

The homotopy groups TR�

�(AjK; p) of this pro-spectrum with its various opera-
tors have a rich algebraic structure which we now describe. The description involves
the notion of a log di�erential graded ring from [19]. A log ring (R;M) is a ring R
with a pre-log structure, de�ned as a map of monoids

� : M ! (R; � );

and a log di�erential graded ring (E�;M) is a di�erential graded ring E�, a pre-log
structure � : M ! E0 and a map of monoids d log : M ! (E1;+) which satis�es
d Æ d log = 0 and d�(a) = �(a)d log a for all a 2 M . There is a universal log
di�erential graded ring with underlying log ring (R;M): the de Rham complex
with log poles !�(R;M).

The groups TR1
�(AjK; p) form a log di�erential graded ring whose underlying

log ring is A = OK with the canonical pre-log structure given by the inclusion

� : M = A \K� ! A:

We show that the canonical map

!�(A;M) ! TR1
�(AjK; p)
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is an isomorphism in degrees � 2 and that the left hand side is uniquely divisible in
degrees � 2. We do not know a natural description of the higher homotopy groups,
but we do for the homotopy groups with Z=p-coeÆcients. The Bockstein

TR1
2(AjK; p;Z=p)

�
�! pTR

1
1(AjK; p)

is an isomorphism, and we let � be the element on the left which corresponds to
the class d log p on the right. The abstract structure of the groups TR1

�(A; p) was
determined in [22]. We use this calculation in x2 below to show

Theorem B. There is a natural isomorphism of log di�erential graded rings

!�(A;M) 
Z SFpf�g
�
�! TR1

�(AjK; p;Z=p);

where d� = �d log p.

The higher levels TRn
� (AjK; p) are also log di�erential graded rings. The under-

lying log ring is the ring of Witt vectors Wn(A) with the pre-log structure

M
�
�! A!Wn(A);

where the right hand map is the multiplicative section an = (a; 0; : : : ; 0). The maps
R, F and V extend the restriction, Frobenius and Verschiebung of Witt vectors.
Moreover,

F : TRn
� (AjK; p)! TRn�1

� (AjK; p)

is a map of pro-log graded rings, which satis�es

Fd logn a = d logn�1 a; for all a 2M = A \K�,

Fdan = ap�1n�1dan�1; for all a 2 A,

and V is a map of pro-graded modules over the pro-graded ring TR�

�(AjK : p),

V : F �TRn�1
� (AjK; p)! TRn

� (AjK; p):

Finally,
FdV = d;

FV = p:

The algebraic structure described here makes sense for any log ring (R;M), and we
show that there exists a universal example: the de Rham-Witt pro-complex with
log poles W

�
!�(R;M). For log rings of characteristic p > 0, a di�erent construction

has been given by Hyodo-Kato, [17].

We show in x3 below that the canonical map

W
�
!�(A;M) ! TR�

�(AjK; p)

is an isomorphism in degrees � 2 and that the left hand side is uniquely divisible
in degrees � 2. Suppose that �pv � K. We then have a map

SZ=pv(�pv)! TR�

�(AjK; p;Z=pv )

which takes � 2 �pv to the associated Bott element de�ned as the unique element
with image d log

�

� under the Bockstein

TR�

2(AjK; p;Z=pv )
�
�! pvTR

�

1(AjK; p):

The following is the main theorem of this paper.
4



Theorem C. Suppose that �pv � K. Then the canonical map

W
�
!�(A;M) 
Z SZ=pv(�pv )

�
�! TR�

�(AjK; p;Z=pv )

is a pro-isomorphism.

It is in order to explain the structure of the groups in the theorem. We limit
ourselves to the case v = 1, and let E�

�

stand for either side of the statement above.
The group Ei

n has a natural descending �ltration of length n given by

FilsEi
n = V sEi

n�s + dV sEi�1
n�s � Ei

n; 0 � s < n:

There is a natural k-vector space structure on Ei
n, and for all 0 � s < n and all

i � 0,

dimk gr
sEi

n = eK ;

the absolute rami�cation index of K. In particular, the domain and range of the
map in the statement are abstractly isomorphic.

The main theorem implies that for s � 0,

TC2s(AjK; p;Z=pv ) = H0(K;�
spv )�H2(K;�

(s+1)
pv );

TC2s+1(AjK; p;Z=pv ) = H1(K;�

(s+1)
pv );

and thus in turn theorem A.

It is also easy to see that the canonical map

K�(K;Z=p
v )! K�et

� (K;Z=p
v )

is an isomorphism in degrees � 1. Here the right hand side is the Dwyer-Friedlander
�etale K-theory of K with Z=pv -coeÆcients. This may be de�ned as the homotopy
groups with Z=pv -coeÆcients of the spectrum

K�et(K) = holim
�!
L=K

H �(GL=K ;K(L));

where the homotopy colimit runs over the �nite Galois extensions L=K contained
in an algebraic closure �K=K, and where the spectrum H �(GL=K ;K(L)) is the group
cohomology spectrum or homotopy �xed point spectrum of GL=K acting on K(L).
There is a spectral sequence

E2
s;t = H�s(K;�


(t=2)
pv )) K�et

s+t(K;Z=p
v );

where the identi�cation of the E2-term is a consequence of the celebrated theorem
of Suslin, [35], that

Kt( �K;Z=pv ) = �

(t=2)
pv :

For K a �nite extension of Q p , the p-adic homotopy type of the K�et(K) was cal-
culated in [7]. Let F	r be the homotopy �ber

F	r ! Z �BU
	r�1
���! BU:

It follows from this calculation and from the isomorphism above that
5



Theorem D. If K is a �nite extension of Q p , then after p-completion

Z �BGL(K)+ ' F	gp
a�1d

�BF	gp
a�1d

� U jK : Qp j;

where d = (p� 1)=jK(�p) : Kj, a = maxfv j �pv � K(�p)g, and where g 2 Z�p is a
topological generator.

The proof of theorem C is given in x6 below. It is based on the calculation in x5
of the Tate spectra for the cyclic groups Cpn acting on the topological Hocschild
spectrum T (AjK): Given a �nite group G and G-spectrum X, one has the Tate

spectrum Ĥ (G;X) of [9], [10]. Its homotopy groups are approximated by a spectral
sequence

E2
s;t = Ĥ�s(G; �tX)) �s+tĤ (G;X);

which converges conditionally in the sense of [1]. In x4 below we give a slightly
di�erent construction of this spectral sequence which is better suited for studying
multiplicative properties. The cyclotomic structure of T (AjK) gives rise a map

�̂K : TRn(AjK; p)! Ĥ (Cpn ; T (AjK));

and we show in x5 that this map induces an isomorphism of homotopy groups with
Z=pv -coeÆcients in degrees � 0. We then evaluate the Tate spectral sequence for
the right hand side.

Throughtout this paper, A will be a complete discrete valuation ring with �eld of
fractions K of characteristic zero and perfect residue �eld k of characteristic p > 2.
All rings are assumed commutative and unital without further notice. Occasionally,
we will write ���(�) for homotopy groups with Z=p-coeÆcients.

This paper has been long underway, and we would like to acknowledge the �nan-
cial support and hospitality of the many institutions we have visited while working
on this project: Max Planck Institut f�ur Mathematik in Bonn, The American Insti-
tute of Mathematics at Stanford, Princeton University, The University of Chicago,
Stanford University, the SFB 478 at Universit�at M�unster, and the SFB 343 at Uni-
versit�at Bielefeld. It is also a pleasure to thank Mike Hopkins and Marcel B�okstedt
for valuable help and comments. Finally, we are particularly indebted to Mike
Mandell for a conversation which was instrumental in arriving at the de�nition of
the spectrum T (AjK) as well as for help at various other points.

1. Topological Hochschild homology and localization

1.1. The stable homotopy category is a triangulated category and a closed
symmetric monoidal category, and the two structures are compatible. By a spec-
trum we will mean an object of this category, and by a ring spectrum we will mean
a monoid in this category. The purpose of this paragraph is to produce the follow-
ing. Let C be a linear category with co�brations and weak equivalences. We de�ne
a pro-spectrum TR�(C; p) together with maps of pro-spectra

F : TRn(C; p)
//
TRn�1(C; p) : Voo

� : S1
+ ^ TR

n(C; p)! TRn(C; p):
6



The spectrum TR1(C; p) is the topological Hochschild spectrum of C. The cyclo-
tomic trace is a map of pro-spectra

tr : K(C)! TR�(C; p);

where the algebraic K-theory spectrum on the left is regarded as a constant pro-
spectrum.

Suppose that the category C has a strict symmetric monoidal structure such
that the tensor product is bi-exact. Then there is a natural product on TR�(C; p)
which makes it a commutative pro-ring spectrum. Similarly, K(C) is naturally a
commutative ring spectrum and the maps F and tr are maps of ring-spectra.

The pro-spectrum TR�(C; p) has a preferred homotopy limit TR(C; p), and there
are preferred lifts to the homotopy limit of the maps F , V and �. Its homotopy
groups are related to those of the pro-system by the Milnor sequence

0! lim �
R

1�s+1TR
�(C; p)! �sTR(C; p)! lim �

R

�sTC
�(C; p)! 0:

There is a natural co�bration sequence

TC(C; p)! TR(C; p)
R�F
���! TR(C; p)! �TC(C; p);

where TC(C; p) is the topological cyclic homology spectrum of C. The cyclotomic
trace has a preferred lift to a map

tr : K(C)! TC(C; p);

and in the case where C has a bi-exact strict symmetric monoidal product, the
natural product on TR�(C; p) have preferred lifts to natural products on TR(C; p)
and TC(C; p), and the maps F and tr are ring maps.

Let G be a compact Lie group. One then has the G-stable category which is a
triangulated category with a compatible closed symmetric monoidal structure. The
objects of this category are calledG-spectra, and the monoids for the smash product
are called ringG-spectra. LetH � G be a closed subgroup and letWHG = NGH=H
be the Weil group. There is a forgetful functor which to a G-spectrum X assigns
the underlying H-spectrum UHX. We also write jXj for Uf1gX. It comes with a
natural map of spectra

�X : G+ ^ jXj ! jXj:

One also has the H-�xed point functor which to a G-spectrum X assigns theWHG-
spectrum XH . If H � K � G are two closed subgroups, there is a map of spectra

�KH : jXK j ! jXH j;

and if jK : Hj if �nite, a map in the opposite direction

�KH : jXH j ! jXK j:

If X is a ring G-spectrum then UHX is an ring H-spectrum and XH is a ring
WGH-spectrum.

Let T be the circle group, and let Cr � T be the cyclic subgroup of order r. We
then have the canonical isomorphism of groups

�r : T
�
�! T=Cr =WTCr

7



given by the rth root. It induces an isomorphism of the T=Cr -stable category and
the T-stable category which to a T=Cr -spectrum Y assigns the T-spectrum ��rY .
Moreover, there is a transitive system of natural isomorphisms of spectra

'r : j�
�
rY j

�
�! jY j;

and the following digrams commute

T ^ j��rY j
�

//

�^'r

��

j��rY j

'r

��

T=Cr+ ^ jY j
�

// jY j:

We de�ne a T-spectrum T (C) such that

TRn(C; p) = j��pn�1T (C)
Cpn�1 j

with the maps F and V given by the composites

F = '�1pn�2�
Cpn�1

Cpn�2
'pn�1 : j��pn�1T (C)

Cpn�1 j ! j��pn�2T (C)
Cpn�2 j

V = '�1pn�1�
Cpn�1

Cpn�2
'pn�2 : j��pn�2T (C)

Cpn�2 j ! j��pn�1T (C)
Cpn�1 j

and the map � is given by

� = �
��
pn�1T (C)

C
pn�1 : T+ ^ j�

�
pn�1T (C)

Cpn�1 j ! j��pn�1T (C)
Cpn�1 j:

There is a natural map

K(C)! T (C)T;

and the cyclotomic trace is then the composite of this map and '�1pn�1�
T
Cpn�1

. The

de�nition of the structure maps in the pro-system TR�(C; p) is more complicated
and uses the cyclotomic structure on T (C) which we now explain.

There is a co�bration sequence of T-CW-complexes

E+ ! S0 ! ~E ! �E+;

where E is a free contractible T-space, and where the left hand map collapses E
to the non-base point of S0. It induces upon smashing with a T-spectrum T a
co�bration sequence of T-spectra

E+ ^ T ! T ! ~E ^ T ! �E+ ^ T;

and hence the following basic co�bration sequence of spectra

j�pv (E+ ^ T )
Cpv j ! j�pvT

Cpv j ! j�pv ( ~E ^ T )
Cpv j ! �j�pv (E+ ^ T )

Cpv j;

natural in T . The left hand term is written H
�
(Cpv ; T ) and called the group ho-

mology spectrum or Borel spectrum. Its homotopy groups are approximated by a
strongly convergent �rst quadrant homology type spectral sequence

E2
s;t = Hs(Cpv ; �tT )) �s+tH �

(Cpv ; T ):

The cyclotomic structure on T (C) means that there is a natural map of T-spectra

r : ��p( ~E ^ T (C))
Cp ! T (C)

8



such that UCps r is an isomorphism of Cps-spectra, for all s � 0. More generally,
since

��pv ( ~E ^ T (C))
Cpv = ��pv�1(��p( ~E ^ T (C))

Cp)Cpv�1 ;

the map r induces a map of T-spectra

rv+1 : �
�
pv (

~E ^ T (C))Cpv ! ��pv�1T (C)
Cpv�1

such that UCps rv+1 is an isomorphism of Cps-spectra, for all s � 0. The map

R : TRn(C; p)! TRn�1(C; p)

is then de�ned as the composite

j��pn�1T (C)
Cpn�1 j ! j��pn�1( ~E ^ T (C))

Cpn�1 j
rn�!
�
j��pn�2T (C)

Cpn�2 j;

where the right hand map is the middle map in the co�bration sequence above. We
thus have a natural co�bration sequence of spectra

H
�
(Cpn�1 ; T (C))

N
�! TRn(C; p)

R
�! TRn�1(C; p)

@
�! �H

�
(Cpn�1 ; T (C)):

When C has a bi-exact strict symmetric monoidal product, the map r is a map of
ring T-spectra, and hence R is a map of ring spectra. The co�bration sequence
above is a sequence of TRn(C; p)-module spectra and maps.

For any T-spectrum X, one has the function spectrum F (E+; X), and the pro-
jection E+ ! S0 de�nes a natural map


 : X ! F (E+; X):

This map induces an isomorphism of group homology spectra. One de�nes the
group cohomology spectrum and Tate spectrum,

H �(Cpv ; X) = j�pvF (E+; X)Cpv j;

Ĥ (Cpv ; X) = j�pv ( ~E ^ F (E+; X))Cpv j;

whose homotopy groups are approximated by homology type spectral sequences

E2
s;t = H�s(Cpv ; �tX)) �s+tH

�(Cpv ; X);

Ê2
s;t = Ĥ�s(Cpv ; �tX)) �s+tĤ (Cpv ; X);

both of which are conditionally convergent in the sense of [1]. The latter sequence,
called the Tate spectral sequence, will be considered in great detail in paragraph 4
below. Taking T = F (E+; X) in the basic co�bration sequence above, we get the
Tate co�bration sequence of spectra

H
�
(Cpv ; X)

Nh

��! H �(Cpv ; X)
Rh

��! Ĥ (Cpv ; X)
@h

�! �H
�
(Cpv ; X):

Finally, when X = T (C), the map


 : T (C)! F (E+; T (C))

induces a map of co�bration sequences

H
�
(Cpv ; T (C))

N // TRv+1(C; p)
R //

�

��

TRv(C; p)
@ //

�̂
��

�H
�
(Cpv ; T (C))

H
�
(Cpv ; T (C))

Nh
// H �(Cpv ; T (C))

Rh // Ĥ (Cpv ; T (C))
@h // �H

�
(Cpv ; T (C));

9



in which all maps commute with the action maps �. Moreover, if C is strict sym-
metric monoidal with bi-exact tensor product, the four spectra in the middle square
are all ring spectra and R, Rh, � and �̂ are maps of ring spectra. In this case, the
diagram is a diagram of TRv+1(C; p)-module spectra.

1.2. In order to construct the T-spectrum T (C) we need a model category
for the T-stable category. The model category we use is the category of symmetric
spectra of orthogonal T-spectra. We �rst recall the topological Hochschild space
THH(C).

A linear category C is naturally enriched over the symmetric monoidal category
of symmetric spectra. The symmetric spectrum of maps from c to d, HomC(c; d),
is the Eilenberg-MacLane spectrum for the abelian group HomC(c; d) concentrated
in degree zero. In more detail, if X is a pointed simplicial set, then

Z(X) = ZhXi=Zhx0i

is a simplicial abelian group whose homology is the reduced singular homology of
X. Here ZhXi denotes the degree-wise free abelian group generated by X. Let
Si be the i-fold smash product of the standard simplicial circle S1 = �[1]=@�[1].
Then the spaces fjZ(Si)jgi�0 is a symmetric ring spectrum with the homotopy type
of an Eilenberg-MacLane spectrum for Z concentrated in degree zero, and we de�ne

HomC(c; d)i = jHomC(c; d)
 Z(Si)j:

This gives the stated enrichment.

Let I be the category with objects the �nite sets

i = f1; 2; : : : ; ig; i � 1;

and the empty set 0, and morphisms all injective maps. It is a strict monoidal
category under concatenation of sets and maps. There is a functor Vk(C;X) from
Ik+1 to the category of pointed spaces which on objects is given by

Vk(C;X)(i0; : : : ; ik) =
_

c0;:::;ck2ob C

HomC(c0; ck)i0 ^ � � � ^HomC(ck; ck�1)ik ^X:

It induces a functor Gk(C;X) from Ik+1 to pointed spaces with

Gk(C;X)(i0; : : : ; ik) = F (Si0 ^ � � � ^ Sik ; V (C;X)(i0; : : : ; ik));

and we de�ne

THHk(C) = holim
�!
Ik+1

Gk(C;S
0):

This is naturally the the space of k-simplices in a cyclic space, and by de�nition

THH(C) = j[k] 7! THHk(C)j:

It is a T-space with T-�xed set ob C.

More generally, let (n) be the �nite ordered set f1; 2; : : : ; ng. The product cate-
gory I(n) is a strict monoidal category under component wise concatenation of sets
and maps. Concatenation of sets and maps according to the ordering of (n) also
de�nes a functor

tn : I
(n) ! I;
10



but this does not preserve the monoidal structure. We let G
(n)
k (C;X) be the functor

from (I(n))k+1 to the category of pointed spaces given by

G
(n)
k (C;X) = Gk(C;X) Æ (tn)

k+1;

and de�ne
THH

(n)
k (C;X) = holim

�!
(I(n))k+1

G
(n)
k (C;X):

Again this is the space of k-simplices in a cyclic space, and we de�ne

THH(n)(C;X) = j[k] 7! THH
(n)
k (C;X)j:

It is a �n � T-space, whose T-�xed set is ob C ^X.

There is a natural product

THH(m)(C;X) ^THH(n)(D;Y )! THH(m+n)(C 
 D;X ^ Y );

which is �m � �n � T-equivariant when T acts diagonally on the left. Here the
category C 
 D has as objects all pairs (c; d) with c 2 ob C and d 2 D, and

HomC
D((c; d); (c
0; d0)) = HomC(c; c

0)
HomD(d; d
0):

For any category C, the nerve category N
�
C is the simplicial category with k-

simplicies the functor category
NkC = C

[k];

where [k] is the partially ordered set f0; 1; : : : ; kg viewed as a category. An order
preserving map � : [k]! [l] may be viewed as a functor and hence induces a functor

�� : NlC ! NkC:

The objects of N
�
C is the nerve C, N

�
C. Clearly, the nerve category is a functor

from categories to simplicial categories.

Suppose now that C is a category with co�brations and weak equivalences and
de�ne

Nw
�

C � N
�
C

to be the full simplicial subcategory with

obNw
�

C = N
�
wC:

There is a natural structure of simplicial category with weak equivalences on Nw
�

C:
coNw

�

C and wNw
�

C are the simplicial subcategories which contain all objects but
where morphisms are natural transformations through co�brations and weak equiv-
alences in C, respectively. With these de�nitions there is a natural isomorphism of
bi-simplicial categories with co�brations and weak equivalences

N
�
S

�
C �= S

�
N

�
C;(1.2.1)

where S
�
C is Waldhausen's construction, [40].

Let (n) be the �nite ordered set f1; 2; : : : ; ng and let V be a �nite dimentional
orthogonal T-representation. We de�ne the (n; V )th space in the symmetric or-
thogonal T-spectrum T (C) by

T (C)n;V = jTHH(n)(Nw
�

S(n)C;SV )j:(1.2.2)

There are two T-actions on the this space: one which comes from the topological
Hocschild space, and another induced from the T-action on SV . We give T (C)n;V

11



the diagonal T-action. There are also two �n-actions: one which comes from the
�n-action on the topological Hocschild space, and another induced from the per-

mutation of the simplicial directions in the n-simplicial category S
(n)
�

C, compare
[8, 6.1]. We also give T (C)n;V the diagonal �n-action. In particular, the (0; 0)th
space is the cyclic bar construction

T (C)0;0 = jN
cy(Nw

�

C)j:

The T-�xed sets are

(T (C)n;V )
T = j obNw

�

S
(n)
�

C ^ SV
T

; j

which indeed is a model for K(C). Moreover, by a construction similar to that of
[16, x2], there are T-equivariant maps

��p(T (C)n;V )
Cp ! T (C)n;��pV Cp ;

and one can prove that for �xed n, the object of the T-stable category de�ned by
the orthogonal spectrum V 7! T (C)n;V has a cyclotomic structure.

Suppose that C is a strict symmetric monoidal category and that the tensor
product is bi-exact. There is then an induced �m � �n-equivariant product

S
(m)
�

C 
 S
(n)
�

C ! S
(m+n)
�

C;

and hence

T (C)m;V ^ T (C)n;W ! T (C)m+n;V�W :

This product makes T (C) a monoid in the symmetric monoidal category of sym-
metric spectra of orthogonal T-spectra.

1.3. We need to recall some of the properties of this construction. It is con-
venient to work in a more general setting.

Let � be a functor from a category of categories with co�brations and weak
equivalences to the category of pointed spaces. If C

�
is a simplicial category with

co�brations and weak equivalences, we de�ne

�(C
�
) = j[n] 7! �(Cn)j:

We shall assume that � satis�es the following axioms:

(i) the trivial category with co�brations and weak equivalences is mapped to a
one-point space.

(ii) for any pair C and D of categories with co�brations and weak equivalences,
the canonical map

�(C � D)
�
�! �(C)� �(D)

is a weak equivalence.

(iii) (realization lemma) if f
�
: C

�
! D

�
is a map of simplicial categories with

co�brations and weak equivalences, and if for all n, �(fn) : �(Cn) ! �(Dn) is a
weak equivalence, then

�(f
�
) : �(C

�
)! �(D

�
)

is a weak equivalence.
12



The functors which we will consider later will in fact only depend on the un-
derlying category. But since all proofs works for the more general �, we state the
theorems in this generality.

We next recall some generalities. Let

f; g : C
�
! D

�

be two exact simplicial functors. An exact simplicial homotopy from f to g is an
exact simplicial functor

h : �[1]
�
� C

�
! D

�

such that h Æ (d1 � id) = f and h Æ (d0 � id) = g. Here �[n]
�
is viewed as a

discrete simplicial category with its unique structure of a simplicial category with
co�brations and weak equivalences. An exact simplicial functor f : C

�
! D

�
is an

exact simplicial homotopy equivalence if there exists an exact simplicial functor
g : D

�
! C

�
and exact simplicial homotopies of the two composites to the respective

identity simplicial functors.

Lemma 1.3.1. An exact simplicial homotopy �[1]
�
�C

�
! D

�
induces a homotopy

�[1]� �(C
�
)! �(D

�
):

Hence � takes exact simplicial homotopy equivalences to homotopy equivalences.

Proof. There is a natural transformation

�[1]k � �(Ck)! �(�[1]k � Ck):

Indeed, �[1]k��(Ck) and �[1]k�Ck are coproducts in the category of spaces and the
category of categories with co�brations and weak equivalences, respectively, indexed
by the set �[1]k. The map exists by the universal property of coproducts.

Lemma 1.3.2. An exact functor of categories with co�brations and weak equiva-
lences f : C ! D induces an exact simplicial functor N

�
f : Nw

�

C ! Nw
�

D. A natural
transformation through weak equivalences of D between two such functors f and g
induces an exact simplicial homotopy between N

�
f and N

�
g.

Proof. The �rst statement is clear. We view the partially ordered set [1] as
a category with co�brations and weak equivalences where the non-identity map is
a weak equivalence but not a co�bration. Then the natural transformation de�nes
an exact functor [1]� C ! D, and the required exact simplicial homotopy is given
by the composite

�[1]
�
�Nw

�

C ! Nw
�

[1]�Nw
�

C ! Nw
�

([1]� C)! Nw
�

D;

where the �rst and the middle arrow are the canonical simplicial functors, and the
last is induced from the natural transformation. (Note that Nw

�

[n] is not a discrete
category.)

Lemma 1.3.3. ([40, lemma 1.4.1]) Let f; g : C ! D be a pair of exact functors of
categories with co�brations. A natural isomorphism from f to g induces an exact
simplicial homotopy

�[1]
�
� S

�
C ! S

�
D

from S
�
f to S

�
g.

13



Proof. We recall the proof. The natural transformation from f to g amounts
to a functor F : C � [1] ! D. Recall that SnC is a sub-category of the functor
category CAr[n]. The homotopy is then given by

(a : [n]! [1]) 7! ((A : Ar[n]! C) 7! (A0 : Ar[n]! D));

where A0 is de�ned by the composition

Ar[n]
(A;a�)
����! C �Ar[1]

id�p
���! C � [1]

F
�! D

and p : Ar[1] ! [1] is given by (0 ! 0) 7! 0, (0 ! 1) 7! 1, and (1 ! 1) 7! 1. The
requirement that the natural transformation be through isomorphisms is needed in
showing that the maps above are compatible with the zeroth face.

Corollary 1.3.4. Let C be a category with co�brations. Then the map induced
from the degeneracies in the nerve direction induces a weak equivalence

�(S
�
C)

�
�! �(Ni

�

S
�
C):

Proof. For each k, the iterated degeneracy functor

s : C = Ni
0C ! Ni

kC;

has the retraction

�� : Ni
kC ! C;

where � : [0] ! [k] is given by �(0) = 0. Moreover, there is a natural isomorphism

id
�
�! ��, and hence by the lemma,

S
�
s : S

�
C ! S

�
Ni
kC = Ni

kS�
C

is an exact simplicial homotopy equivalence. The corollary follows from lemma
1.3.1 and the realization lemma.

1.4. The proof of the additivity theorem given by McCarthy in [27] has the
advantage that it immediately generalizes to the present situation. We recall the
proof here.

Concatenation of sets and maps de�nes a functor

t : ���!�;

aand there are natural transformations

pr1
�L �� t

�R�! pr2

given by the canonical inclusions. If X is a simplicial object in a category C,
the functors t, pr1 and pr2 give rise to three bi-simplicial objects in C which we
denote PX, XL and XR, respectively. Moreover, the natural transformations
above induce natural bi-simplicial maps

XL
�L �� PX

�R�! XR:

In general, there are no bi-simplicial sections of these functors. But for �xed m � 0,
the simplicial map

�L : PXm;� ! Xm

has a section

�L : Xm ! PXm;�

14



induced from the natural transformation [m]t [n]! [m] which collapses [n] on the
point m 2 [m]. Similarly, for �xed n � 0, the map �R : PX�;n ! Xn has a section
�R : Xn ! PX

�;n induced from the natural transformation [m] t [n] ! [n] which
collapses [m] on the point 0 2 [n].

Lemma 1.4.1. The composite simplicial maps

PXm;�
�L�! Xm

�L�! PXm;�

PX
�;n

�R�! Xn
�R�! PX

�;n

are naturally simplicially homotopic to the identity.

Proof. The proof is similar to [40, lemma 1.5.1]. The second of the composite
maps of the statement is induced from the map

[m] t [n]! [m] t [n]

which is the identity on [n] and collapses [m] on the point 0 2 [n]. The homotopy
of this map to the identity is given by the natural transformation

(a : [m]! [1]) 7! ('�a : PXm;n ! PXm;n)

induced from

(a : [m]! [1]) 7! ('a : [m] t [n]! [m] t [n]);

where 'a is the identity on [n] and

'a(j) =

(
j , if a(j) = 0,

m+ 1 , if a(j) = 1.

Suppose that a : [m] ! [1] and � : [m0] ! [m] are maps in �, and let a0 = a Æ �.
Then by de�nition, the diagram

[m0] t [n]
'a0 //

�tid

��

[m0] t [n]

�tid

��

[m] t [n]
'a // [m] t [n]

commutes. This shows that the homotopy is indeed a simplicial map.

Let f : C ! D be an exact functor of categories with co�brations and weak
equivalences. Following [27] we de�ne the bi-simplicial category S

�
f jD by the pull

back diagram

S
�
f jD //

�L

��

PS
�
D

�L

��

(S
�
C)L

S�f // (S
�
D)L

Neglecting choices of quotients, an object of the category of (m;n)-simplices of
S

�
f jD consists of a pair of 
ags

C1� � � �� Cm

D1� � � �� Dm� S0� � � �� Sn

in C and D, respectively, such that f(Ci) = Di, 1 � i � m.
15



It follows from [40, 1.1-1.2] that S
�
f jD is a bi-simplicial category with co�bra-

tions and weak equivalences in a natural way, and that the functors in the diagram
above are exact. The section �L : SmD ! (PS

�
D)m;� induces a section

�L : SmC ! (S
�
f jD)m;�;

and the homotopy of lemma 1.4.1 induces a homotopy of the composite simplicial
functor

(S
�
f jD)m;�

�L�! SmC
�L�! (S

�
f jD)m;�

to the identity functor. Moreover, one easily checks that the section �L is exact and
that the given homotopy of �L Æ �L to the identity is through exact functors.

There are natural maps of pull-back diagrams of simplicial categories

(PS
�
D)

�;n
�L //

�R

��

S
�
D

��

S
�
C

��

f
oo

SmD //

�R

��

�

��

�

��

oo

(PS
�
D)

�;n
�L // S

�
D S

�
C

f
oo

which de�ne natural simplicial exact functors

(S
�
f jD)

�;n
�R�! SnD

�R�! (S
�
f jD)

�;n:(1.4.2)

In general, the composite map is not homotopic to the identity.

Proposition 1.4.3. (McCarthy) Let f : C ! D be an exact functor of categories
with co�brations and weak equivalences and suppose that for all n, there exists an
exact simplicial homotopy of the composite functor (1.4.2) to the identity. Then

�(S
�
f) : �(S

�
C)! �(S

�
D)

is a weak equivalence.

Proof. There is a commutative diagram,

�((S
�
D)R) �(S

�
f jD)

�R
�

oo
�L
�

//

f

��

�((S
�
C)L)

f

��

�((S
�
D)R) �(PS

�
D)

�R
�

oo
�L
�

// �((S
�
D)L);

and the horizontal maps are all weak equivalences. Let us show in detail that the
upper left hand map is a weak equivalence. By assumption, the simplicial exact
functor

�R : (S�
f jD)

�;n ! SnD

is a simplicial homotopy equivalence, for all n � 0. The homotopy inverse is �R. It
follows from lemma 1.3.1 that for all n � 0,

�R : �((S�
f jD)

�;n)
�
�! �(SnD)

is a homotopy equivalence. Since we assume that the realization lemma holds for
�, it follows that

�R : �(S�
f jD)

�
�! �((S

�
D)R)
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is a weak equivalence. A similar argument shows that the remaining horizontal
arrows are weak equivalences.

Let A, B and C be categories with co�brations and weak equivalences and sup-
pose that A and B are subcategories of C and that the inclusion functors are exact.
Following [40, p.335], let E(A; C;B) be the category with co�brations and weak
equivalences given by the pull-back diagram

E(A; C;B)
(s;t;q)

//

��

A� C � B

��

S2C
(d2;d1;d0)

// C � C � C:

In other words, E(A; C;B) is the category of co�bration sequences in C of the form

A� C � B; A 2 A; B 2 B:

The exact functors s, t and q take this sequence to A, C and B, respectively. The
extension of the additivity theorem to the present situation is due to McCarthy,
[27].

Theorem 1.4.4. (Additivity theorem) The following equivalent assertions hold:

(1) The exact functors s and q induce a weak equivalence

�(Nw
�

S
�
E(A; C;B))

�
�! �(Nw

�

S
�
A)� �(Nw

�

S
�
B):

(2) The exact functors s and q induce a weak equivalence

�(Nw
�

S
�
E(C; C; C))

�
�! �(Nw

�

S
�
C)� �(Nw

�

S
�
C):

(3) The functors t and s _ q induce homotopic maps

�(Nw
�

S
�
E(C; C; C))! �(Nw

�

S
�
C):

(4) Let F 0� F � F 00 be a co�bration sequence of exact functors C ! D. Then the
exact functors F and F 0 _ F 00 induce homotopic maps

�(Nw
�

S
�
C)! �(Nw

�

S
�
D):

Proof. We refer to [40, proposition 1.3.2] for the proof that the four state-
ments are equivalent. We also employ the trick used there that the bi-simplicial cat-
egories with co�brations and weak equivalences Nw

�

S
�
C and S

�
Nw

�

C are canonically
isomorphic. It is therefore enough to show that for any category with co�brations
C, the functors s and q induce a weak equivalence

�(S
�
E(C; C; C))! �(S

�
C)� �(S

�
C):

To this end, we follow McCarthy, [27], and apply proposition 1.4.3 to the exact
functor

(d2; d0) : S2C ! C � C:

The required homotopy of �R Æ �R to the identity is a composite of two homotopies.
In [27, 3.5.1], McCarthy gives explicite formulas for these homotopies.
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Corollary 1.4.5. Let f : C ! D be an exact functor of categories with co�bra-
tions and weak equivalences. Then the commutative square

�(Nw
�

S
�
C) //

��

�(Nw
�

S
�
S

�
(id: C ! C))

��

�(Nw
�

S
�
D) // �(Nw

�

S
�
S

�
(f : C ! D))

is homotopy cartesian, and there is a canonical contraction of the upper right hand
term.

We call a map f : X ! Y of T-spaces is called an F-equivalence, if for all r � 1,
the the induced map of Cr-�xed points is a weak equivalence of spaces.

Proposition 1.4.6. Let C be a linear category with co�brations and weak equiva-
lences, and let T (C) be its topological Hochschild spectrum. The the for all m;n � 1
and all orhtogonal T-representations W and V , the spectrum structure maps

T (C)n;V
�
�! F (Sm ^ SW ; T (C)m+n;W�V )

are F-equivalences. In particular, the spectrum jT (C)Cr j and the pointed space

THH(Nw

�

S
�
C)Cr have canonically isomorphic homotopy groups.

Proof. We factor the map in the statement as

T (C)n;V ! F (Sm; T (C)m+n;V )! F (Sm; F (SW ; T (C)m+n;W�V )):

Since Sm is Cr-�xed the map of Cr-�xed sets induced from the �rst map may be
identi�ed with the map

(T (C)n;V )
Cr ! 
m(T (C)m+n;V )

Cr ;

and by de�nition, this is the map

THH(n)(Nw
�

S
(n)
�

C;SV )Cr ! 
mTHH(m+n)(Nw
�

S
(m+n)
�

C;SV )Cr :

By the approximation lemma [2, theorem 1.6], we can replace the functor THH(k)(�;�)
by the common functor THH(�;�), and the claim now follows corollary 1.4.5 of
the additivity theorem applied to the functor

�(C) = THH(C;SV )Cr ;

compare [40, ?]. It remains to show that

(T (C)m+n;V )
Cr ! F (SW ; T (C)m+n;W�V ))

Cr

is a weak equivalences. This follows from the proof of [16, proposition 2.4].

1.5. In this section, we extend Waldhausen's �bration theorem to the present
situation. We follow the original proof in [40], where also the notion of a cylinder
functor is de�ned.

Lemma 1.5.1. Suppose that C has a cylinder functor, and that wC satis�es the
cylinder axiom and the saturation axiom. Then

�(N �w
�

C)
�
�! �(Nw

�

C)

is a weak equivalence.
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Proof. The proof is analogous to the proof of [40, lemma 1.6.3], but we need
the proof of Quillen's theorem A and not just the statement. We consider the
bi-simplicial category T(C) whose category of (p; q)-simplices has objects pairs of
diagrams in C of the form

(Aq ! � � � ! A0; A0 ! B0 ! � � � ! Bp);

and morphisms all natural transformations of such pairs of diagrams. We let

T �w;w(C) � T(C)

be the full subcategory with objects the pairs of diagrams with the left hand dia-
gram in �wC and the right hand diagram in wC. There are bi-simplicial functors

N �w(Cop)R
p1
 �� T �w;w(C)

p2
�! Nw(C)L;

and applying � in each simplicial bi-degree, we get corresponding maps of bi-
simplicial spaces. We show that both maps induce weak equivalences after realiza-
tion.

For �xed q, the simplicial functor

p1 : T
�w;w
�;q (C)! N �w

q (C
op)

is a simplicial homotopy equivalence, and hence induces a homotopy equivalence
upon realization. It follows that

�(p1) : �(T(C))
�
�! �(N �w

�

(Cop))

is a weak equivalence of spaces.

Similarly, we claim that for �xed p, the simplicial functor

p2 : T
�w;w
p;� (C)! Nw

p (C)

is a simplicial homotopy equivalence. The homotopy inverse � maps

(B0 ! � � � ! Bp) 7! (B0
id
�! : : :

id
�! B0; B0

id
�! B0 ! � � � ! Bp):

Following the proof of [40, lemma 1.6.3] we also consider the simplicial functor

t : T �w;w
p;� (C)! T �w;w

p;� (C)

which maps

(Aq ! � � � ! A0; A0 ! B0 ! : : : Bp)

7! (T (Aq ! B0)! � � � ! T (A0 ! B0); T (A0 ! B0)
p
�! B0 ! � � � ! Bp);

where T is the cylinder functor. There are exact simplicial homotopies from � Æ p2
to t and from the identify functor to t. Hence

�(p2) : �(T
�w;w(C))

�
�! �(Nw(C))

is a weak equivalence of spaces.

Finally, consider the diagram of bi-simplicial categories

N �w(Cop)R

i

��

T �w;w(C)
p1oo

p2 //

i0

��

Nw(C)L

i

��

Nw(Cop)R Tw;w(C)
p1oo

p2 // Nw(C)L;
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where i0 is the obvious inclusion functor. Applying � the horizontal functors all
induce weak equivalences. The lemma follows.

Let C be a category with co�brations and two categories of weak equivalences
vC and wC, and write

Nv;wC = Nv
�

(Nw
�

C) �= Nw
�

(Nv
�

C):

This is a bi-simplicial category with co�brations which again has two categories of
weak equivalences.

Lemma 1.5.2. (Swallowing lemma) If vC � wC then

�((NwC)) = �((NwC)R)
�
�! �(Nv;wC)

is a homotopy equivalence with a canonical homotopy inverse.

Proof. We claim that for �xed m, the iterated degeneracy in the v-direction,

Nw
�

C ! Nw
�

(Nv
mC);

is an exact simplicial homotopy equivalence. Given this, the lemma follows from the
lemma 1.3.1 and the realization lemma. The iterated degeneracy above is induced
from the (exact) iterated degeneracy map C ! Nv

mC in the simplicial category
Nv

�

C. This map has a retraction given by the (exact) iterated face map which takes
c0 ! � � � ! cm to c0. The other composite takes c0 ! � � � ! cm to the appropriate
sequence of identity maps on c0. There is a natural transformation from this functor
to the identity functor, given by

c0

id

��

c0

f1

��

: : : c0

fmÆ���Æf1

��
c0

f1 // c1
f2 // : : : fm // cm:

The natural transformation is through arrows in vC, and hence in wC. The claim
now follows from lemma 1.3.2.

Theorem 1.5.3. (Fibration theorem) Let C be a category with co�brations equipped
and two categories of weak equivalences vC � wC, and let Cw be the full subcategory
with co�brations of C given by the objects A which satisfy that � ! A is in wC.
Suppose that C has a cylinder functor, and that wC satis�es the cylinder axiom, the
saturation axiom, and the extension axiom. Then

�(Nv
�

S
�
Cw) //

��

�(Nw
�

S
�
Cw)

��

�(Nv
�

S
�
C) // �(Nw

�

S
�
C)

is a homotopy cartesian square of pointed simplicial sets, and there is a canonical
contraction of the upper right hand term.
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Proof. Following the proof of [40, theorem 1.6.4], we consider the diagram

�(NvS
�
Cw) //

��

�(Nv; �wS
�
Cw)

� //

��

�(Nv;wS
�
Cw)

� //

��

�(NwS
�
Cw)

��

�(NvS
�
C) // �(Nv; �wS

�
C)

� // �(Nv;wS
�
C)

� // �(NwS
�
C):

The horizontal maps in the middle square are weak equivalences by lemma 1.5.1
and the horizontal maps in the right hand square are weak equivalences by the
swallowing lemma. The left hand square may be rewritten as

�(NvS
�
Cw) //

��

�(NvS
�
S

�
(Cw ! Cw))

��

�(NvS
�
C) // �(NvS

�
S

�
(Cw ! C))

It is therefore homotopy cartesian by the corollary 1.4.5 of the additivity theorem.
Finally, since wCw has an initial object, lemma 1.3.2 gives a contracting exact
simplicial homotopy of Nw

�

Cw. Hence �(S
�
Nw

�

Cw) �= �(Nw
�

S
�
Cw) is contractible by

lemma 1.3.1.

1.6. Let A be an abelian category. We view A as a category with co�brations
and weak equivalences by choosing a null-object and taking the monomorphisms
as the co�brations and the isomorphisms as the weak equivalences. Let E be an
additive category embedded as a full subcategory of A, and assume that for every
exact sequence in A,

0! A0 ! A! A00 ! 0;

if A0 and A00 are in E then A is in E , and if A and A00 are in E then A0 is in E . We
then view E as a subcategory with co�brations and weak equivalences of A.

The category Cb(A) of bounded complexes in A is a category with co�brations
and weak equivalences, where the co�brations are the degree wise monomorphisms
and the weak equivalences are the quasi-isomorphisms. We view the category Cb(E)
of bounded complexes in E as a subcategory with co�brations and weak equivalences
of Cb(A). The inclusion

E ! Cb(E)

of E as the subcategory of complexes concentrated in degree zero, is an exact
functor.

Theorem 1.6.1. With E as above, the map induced from the inclusion

�(Ni
�

S
�
E)

�
�! �(Nw

�

S
�
Cb(E))

is a weak equivalence.
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Proof. We follow the proof of [38, theorem 1.11.7]. Since the category Cb(E)
has a cylinder functor which satis�es the cylinder axiom with respect to quasi-
isomorphisms, the �bration theorem shows that the right hand square in the dia-
gram

�(Ni
�

S
�
E i) //

��

�(Ni
�

S
�
Cb(E)w) //

��

�(Nw
�

S
�
Cb(E)w)

��

�(Ni
�

S
�
E) // �(Ni

�

S
�
Cb(E)) // �(Nw

�

S
�
Cb(E))

is homotopy cartesian. Moreover, the composite of the maps in the lower row is
equal to the map of the statement, and the upper left hand and upper right hand
terms are contractible. Hence the theorem is equivalent to showing that the left
hand square is homotopy cartesian.

Let Cba be the full subcategory of Cb(E) consisting of the complexes E� with
Ei = 0 for i > b and i < a. Then Cb(E) is the colimit of the categories Cba as a
and b tends to �1 and +1, respectively. We consider Cba as a subcategory with
co�brations of Cb(E).

We �rst show that there is a weak equivalence

�(Ni
�

S
�
Cba)!

Y
a�s�b

�(Ni
�

S
�
E); E� 7! (Eb; Eb�1; : : : ; Ea):

The map is an isomorphism for b = a. If b > a, the functor

e : Cba ! E(Caa ; C
b
a; C

b
a+1);

which takes E� to the extension

��aE�� E� � �>aE�;

is an exact equivalence of categories. The inverse, given by the total-object functor,
is also exact. Hence, the induced map

�(Ni
�

S
�
Cba)

�
�! �(Ni

�

S
�
E(Caa ; C

b
a; C

b
a+1));

is a homotopy equivalence by lemma 1.3.2. McCarthy's additivity theorem 1.4.4
then shows that

(s; q) : �(Ni
�

S
�
E(Caa ; C

b
a; C

b
a+1))

�
�! �(Ni

�

S
�
Caa)� �(Ni

�

S
�
Cba+1);

so in all, we have a weak equivalence

�(Ni
�

S
�
Cba)

�
�! �(Ni

�

S
�
E)� �(Ni

�

S
�
Cba+1); E� 7! (Ea; �>aE�):

It now follows by easy induction that the map in question is a weak equivalence.

Next, we claim that

�(Ni
�

S
�
Cbwa )!

Y
a�s<b

�(Ni
�

S
�
E); E� 7! (Bb�1; Bb�2; : : : ; Ba);

where Bi � Ei are the boundaries, is a weak equivalence. Note that the exactness
of the functors E� 7! Bi uses that the complex E� is acyclic. If a = b�1 the functor
E� 7! Bb�1 is an equivalence of categories with exact inverse functor. Therefore, in
this case, the claim follows from lemma 1.3.2. If b� 1 > a, we consider the functor

Cbwa ! E(Cbwb�1; C
bw
a ; C(b�1)wa )
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which takes the acyclic complex E� to the extension

��b�1E�� E� � �<b�1E�:

The functor is exact, since we only consider acyclic complexes, and it is an equiva-
lence of categories with exact inverse given by the total-object functor. Hence the
induced map

�(Ni
�

S
�
Cbwa )

�
�! �(Ni

�

S
�
E(Cbwb�1; C

bw
a ; C(b�1)wa ))

is a homotopy equivalence by lemma 1.3.2. The additivity theorem now shows that

�(Ni
�

S
�
Cbwa )

�
�! �(Ni

�

S
�
E)� �(Ni

�

S
�
Cb�1a ); E� 7! (Bb�1; �<b�1E�);

is a weak equivalence, and the claim follows by induction.

One of the standard corollaries of the additivity theorem shows that there is a
homotopy commutative diagram

�(Ni
�

S
�
Cbwa )

� //

��

Y
a�s<b

�(Ni
�

S
�
E)

��

�(Ni
�

S
�
Cba)

� //
Y

a�s�b

�(Ni
�

S
�
E)

where the horizontal maps are the equivalences established above, and where the
right hand vertical map is given by

(xs) 7! (xs + xs�1):

It follows that the diagram

�(Ni
�

S
�
C0w0 ) //

��

�(Ni
�

S
�
Cbwa )

��

�(Ni
�

S
�
C00)

// �(Ni
�

S
�
Cba));

where the maps are induced by the canonical inclusions, is homotopy cartesian.
Indeed, the map of horizontal homotopy �bers may be identi�ed with the mapY

a�s<b


�(Ni
�

S
�
E)!

Y
a�s�b;s6=0


�(Ni
�

S
�
E)

given by

(xs) 7! (xs + xs�1);

and this is clearly a homotopy equivalence. Taking the homotopy colimit over a
and b, we see that the left hand square in the diagram at the beginning of the proof
is homotopy cartesian.
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1.7. In this section we recall the equivalence criterion of Dundas-McCarthy
for topological Hochschild homology. This is based on the following

Proposition 1.7.1. ([6, proposition 2.2.3]) The map induced from the inclusion
of the zero-skeleton

holim
�!
n


n�k THH0(S
(n)
�

C)! holim
�!
n


n�k THH(S
(n)
�

C)

is a weak equivalences of pointed spaces.

Given a linear category C and a �nite pointed set X, one de�nes the endo-
morphism category EndX(C), where the objects are pairs (c; v) with c 2 ob C and
v 2 HomC(c; c
Z(X)). A morphism in EndX(C) from (c; v) to (d; w) is a morphism
f : c! d in C which makes the diagram

c
v //

f

��

c
 Z(X)

f
id

��

d
w // d
 Z(X)

commute. In particular, if X has one point, EndX(C) is equivalent C, and if X has
two points, EndX(C) is equivalent to the category of endomorphisms End(C).

Proposition 1.7.2. ([6, proposition 2.3.3]) Let F : C ! D be an exact functor
of linear categories with co�brations and weak equivalences, and suppose that for
every �nite set X, the map j obNw

�

S
�
EndX(F )j is a weak equivalence. Then F

induces a weak equivalence

THH(Nw
�

S
�
C)
�
�! THH(Nw

�

S
�
D):

Proof. The proof has two parts. We �rst show that it is enough to show that
F induces a weak equivalence

jV (Sj
�

Nw
�

C; i)j
�
�! jV (Sj

�

Nw
�

D; i)j

for j large. We then show that this spells out to the condition listed in the state-
ment.

By the previous proposition, the canonical maps

THH(S
�
A)

�
�! holim

�!
j


j�1THH(Sj
�

A)
�
 � holim

�!
j


j�1THH0(S
j
�

A)

are weak equivalences for any linear category A. It thus suÆces to show that F
induces a weak equivalence

THH0(S
j
�

Nw
�

C)
�
�! THH0(S

j
�

Nw
�

D);

for j large. Writing out de�nitions, this map is

j holim
�!
I

F (Si; V (Sj
�

Nw
�

C; i))j ! j holim
�!
I

F (Si; V (Sj
�

Nw
�

D; i))j;

and since homotopy colimits commute with realization and preserve weak equiva-
lences (of well-pointed spaces), it suÆces to show that F induces a weak equivalence

jF (Si; V (Sj
�

Nw
�

C; i))j ! jF (Si; V (Sj
�

Nw
�

D; i))j
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for j large and for all i. We consider the following diagram

jF (Si; V (Sj
�

Nw
�

C; i))j //

��

jF (Si; V (Sj
�

Nw
�

D; i))j

��

F (Si; jV (Sj
�

Nw
�

C; i)j) // F (Si; jV (Sj
�

Nw
�

D; i)j):

The simplicial space V (Sj
�

Nw
�

C; i) is (i� 1)-connected in each simplicial degree. It
is also good in the sense that the degeneracy maps are (Serre) co�brations. But
then the vertical maps in the diagram above are weak equivalences by [26, theorem
12.3]. This �nishes the �rst part of the proof.

For any linear category A, we have a co�bration sequence

obA�
a

a2obA

HomA(a; a)i �
_

a2obA

HomA(a; a)i;

and the right hand side by de�nition is V (A; i). Here, we remember,

HomA(a; a)i = jHomA(a; a)
 Z(Si)j;

and since a
a2obA

HomA(a; a)
 Z(Si) = obEndSi(A);

the co�bration sequence above takes the form

obA� j obEndSi(A)j� V (A; i):

In the case at hand, we get a map of co�bration sequences

j obSj
�

Nw
�

Cj // //

��

j obEndSi(S
j
�

Nw
�

C)j // //

��

jV (Sj
�

Nw
�

C; i)j

��

j obSj
�

Nw
�

Dj // // j obEndSi(S
j
�

Nw
�

D)j // // jV (Sj
�

Nw
�

D; i)j:

The spaces in this diagram are all (j � 1)-connected. Hence for j > 1, the right
hand vertical map will be a weak equivalence if the left hand and middle vertical
maps are weak equivalences. To see that this is the case, we rewrite

EndSi(S
j
�

Nw
�

C) �= Nw
�

Sj
�

EndSi(C):

By our assumptions, the map

j obNw
�

S
�
EndSi(C)j

�
�! j obNw

�

S
�
EndSi(C)j

is a weak equivalence. And the addditivity theorem implies that the vertical maps
in the diagram

j obNw
�

S
�
EndSi(C)j

� //

�

��

j obNw
�

S
�
EndSi(D)j

�

��


j�1j obNw
�

Sj
�

EndSi(C)j
// 
j�1j obNw

�

Sj
�

EndSi(D)j

are weak equivalences. Hence the lower horizontal map is a weak equivalence.
But this map is the (j � 1)st loop of the middle vertical map in the diagram of
co�bration sequences above. And since the domain and range of the latter map are
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(j � 1)-connected, it is a weak equivalence. The proof that the left hand map in
the diagram of co�bration sequences above is a weak equivalence is similar.

1.8. Let A be a Dedekind ring with fraction �eld K, and let MA denote
the category of �nitely generated A-modules. We consider two categories with
co�brations with and weak equivalences, Cb

z(MA) and C
b
q(MA), both of which have

the category of bounded complexes in MA with degree-wise monomorphisms as
their underlying category with co�brations. The weak equivalences are the category
zCb(MA) of quasi-isomorphisms and the category qCb(MA) of chain maps which
become quasi-isomorphisms in Cb(MK), respectively. Similarly, we let C

b
z(PA) and

Cb
q(PA) be the category of bounded complexes of �nitely generated projective A-

modules considered as a subcategory with co�brations and weak equivalences of
Cb
z(MA) and Cb

q(MA), respectively.

Theorem 1.8.1. The inclusion functor induces a weak equivalence

THH(Nz
�

S
�
Cb(MA

q))
�
�! THH(Nz

�

S
�
Cb(MA)

q):

Proof. We show that the assumptions of the Dundas-McCarthy equivalence
criterion 1.7.2 are satis�ed. The proof relies on Waldhausen's approximation the-
orem, [40, theorem 1.6.7], but in a formulation due to Thomason, [38, theorem
1.9.8], which is particularly suited for the situation at hand.

If X is a �nite pointed set, we let AfXg denote the ring of non-commutative
polynomials in the variables X�fx0g with coeÆcients in A. The AfXg is an asso-
ciative unital A-algebra, and we let MA;X denote the category of AfXg-modules
which are �nitely generated as A-modules. Then there are canonical isomorphisms
of categories

EndXC
b(MA) �= Cb(MA;X);

EndXC
b(MA)

q �= Cb(MA;X)
q;

EndXC
b(Mq

A)
�= Cb(Mq

A;X);

where Cb(MA;X)
q � Cb(MA;X) is the subcategory of chain maps whose image

under the forgetful functor

Cb(MA;X)! Cb(MA)

lies in Cb(MA)
q, and similarly forMq

A;X . We must show that the inclusion functor
induces a weak equivalence

j obNz
�

S
�
Cb(Mq

A;X)j
�
�! j obNz

�

S
�
Cb(MA;X)

qj;

and use [38, theorem 1.9.8]. The categories Cb(Mq
A;X) and Cb(MA;X)

q are both

complicial bi-Waldhausen categories in the sense of [38, 1.2.4], which are closed
under the formation of canonical homotopy pushouts and homotopy pullbacks in
the sense of [38, 1.96]. The inclusion functor

F : Cb(Mq
A;X)! Cb(MA;X)

q

is a complicial exact functor in the sense of [38, 1.2.16]. We must verify the con-
ditions [38, 1.9.7.0{1.9.7.3]. These conditions are easily veri�ed with the exception
of condition 1.9.7.1 which reads: for every object B of Cb(MA;X)

q, there exists an

object A of Cb(Mq
A;X) and a map FA

�
�! B in zCb(MA;X)

q. This follows from
the following lemma.
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Lemma 1.8.2. Let A be a Dedekind ring and let f : A! B be a ring homomor-
phism. Let C� be a bounded complex of left B-modules and suppose that f�C� is
a complex of �nitely generated A-modules whose homology is torsion. Then there
exists a quasi-isomorphism

C�
�
�! D�

where D� is a bounded complex of left B-modules such that f�D� is a complex of
�nitely generated torsion A-modules.

Proof. Suppose that f�Ci is a torsion module for i > n. We construct a
quasi-isomorphism C�

�
�! C 0� to a complex C

0
� with f

�C 0i torsion for i > n� 1. The
lemma then follows by simple induction.

We will show that there exists a submodule I � Cn which intersects Zn triv-
ially and such that f�(Cn=I) is torsion. The �rst of these properties may also be
expressed as a map of exact sequences

Zn // // Cn // //

����

Bn�1

����

Zn // // Cn=I // // Bn�1=dI:

Given this, we de�ne

C 0i =

8><
>:
Cn=I; for i = n,

Cn�1=dI; for i = n� 1,

Ci; else,

with the di�erential determined by the requirement that the natural projection
C� ! C 0� be a chain map. It is clear that this chain map is then a quasi-
isomorphism.

To construct the submodule I � Cn, we consider the extension

Zn� Cn � Bn�1:

Since f�Bn�1 is a �nitely generated A-module, we can �nd a 2 A such that
af�(Bn�1) � f�Bn�1 is a free A-module. We form the pull-back extension

Zn� Cn �Bn�1
f(a)Bn�1 � f(a)Bn�1:

The sequences Zn+1 � Cn+1 � Bn and Bn � Zn � Hn show that f�Zn is
torsion; let a0 2 A be an annihilator. Then f(a0) annihilates ExtB(M;Zn), for any
B-module M . In particular, the composite

ExtB(f(a)Bn�1; Zn)
f(a0)
���! Ext(f(a0a)Bn�1; Zn)

��
�! ExtB(f(a)Bn�1; Zn)

is zero. But since f�(f(a)Bn�1) is a free A-module, the right hand map is an iso-
morphism. Hence the left hand map is zero. It follows that the pull-back extension

Zn� Cn �Bn�1
f(a0a)Bn�1 � f(a0a)Bn�1

is trivial. Let � be a section of the projection on the right and let I = �(f(a0a)Bn�1).
By construction, f�(Bn�1=I) is torsion, and hence so is f�(Cn=I).
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Proposition 1.8.3. Let A be a Dedekind ring. Then map induced from the
inclusion functor

THH(Nz
�

S
(n)
�

Cb(PA)
q)
�
�! THH(Nz

�

S
(n)
�

Cb(MA)
q)

is a weak equivalence of pointed spaces, for all n � 1.

Proof. LetMA;X be as in the proof of theorem 1.8.1, and let PA;X be the full
subcategory of AfXg-modules which are �nitely generated projective as A-modules.
Then

EndXC
b(MA)

q �= Cb(MA;X)
q;

EndXC
b(PA)

q �= Cb(PA;X)
q;

and we thus have to show that the inclusion functor

F : Cb(PA;X)
q ! Cb(MA;X)

q

induces a weak equivalence

j obNz
�

S
�
Cb(PA;X)

qj
�
�! j obNz

�

S
�
Cb(MA;X)

qj:

Again, we use [38, theorem 1.9.8], where the non-trivial thing to check is condition
1.9.7.1: for every object C� of C

b(MA;X)
q, there exists an object P� of C

b(PA;X)
q

and a map

FP�
�
�! C�

in zCb(MA;X)
q. But this follows from [5, p. 363]. Indeed, let � : P�;� ! C� be a

resolution in the sense of loc.cit. of C� regarded as a complex of A-modules. We can
assume without loss of generality that each Pi;j is a �nitely A-module, and since A
is regular, we may further assume that Pi;j is zero for all but �nitely many (i; j).
Moreover, there exists automatically an AfXg-module structure on P�;� such that
� is AfXg-linear. Therefore, the total complex P� = Tot(P�;�) is in Cb(PA;X) and

F Tot(�) : FP� = F Tot(P�;�)
�
�! C�

is in zCb(MA;X). Hence P� is in Cb(PA;X)
q as required.

Definition 1.8.4. Let A be a discrete valuation ring with �eld of fractions K
and residue �eld k. We de�ne ring T-spectra

T (AjK) = T (Cb
q(PA));

T (A) = T (Cb
z(PA));

T (k) = T (Cb
z(PA)

q)

and we write TR�(AjK; p), TR�(A; p) and TR�(k; p) for the associated pro-ring
spectra.

It follows from theorem 1.6.1 that the inclusion

T (PA)! T (Cb
z(PA)) = T (A)

is an F-equivalence, and hence we have an isomorphism of pro-spectra

TR�(A; p) ' TR�(PA; p):(1.8.5)
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Here the exact category PA is considered a category with co�brations the admissable
monomorphisms and weak equivalences the isomorphisms. Similarly, the inclusion
functors induce F-equivalences

T (Pk)! T (Cb
z(Pk))! T (Cb

z(M
q
A)):

For the right hand map this is devisage, [6]. We proved in theorem 1.8.1 and
proposition 1.8.3 above that also

T (Cb
z(M

q
A))! T (Cb

z(MA)
q) T (Cb

z(PA)
q) = T (k)

are F-equivalences, and hence there is an isomorphism of pro-spectra

TR�(k; p) ' TR�(Pk; p);(1.8.6)

which is natural in A.

Theorem 1.8.7. Let A be a discrete valuation ring with �eld of fractions K and
residue �eld k. Then there is a natural co�bration sequence of pro-spectra

TR�(k; p)
i!
�! TR�(A; p)

j�
�! TR�(AjK; p)

@
�! �TR�(k; p);

and the maps in the sequence are all TR�(A; p)-module maps and commute with the
maps F , V and �. Moreover, their preferred homotopy limits form a co�bration
sequence of spectra.

Proof. We have a commutative square of symmetric orthogonal T-spectra

T (Cb
z(PA)

q) //

��

T (Cb
q(PA)

q)

��

T (Cb
z(PA))

// T (Cb
q(PA));

and the �bration theorem shows that the underlying square of symmetric othogonal
spectra is homotopy cartesian. It follows that there is natural sequence of spectra

TRn(k; p)
i!
�! TRn(A; p)

j�
�! TRn(AjK; p)

@
�! �TRn(k; p);

compatible with R, F , V and �, and that this sequence is a co�bration sequence
when n = 0. It follows by an induction argument based on the fundamental co�-
bration sequence

H
�
(Cpn�1 ; T (D))

N
�! TRn(D; p)

R
�! TRn�1(D; p)! �H

�
(Cpn�1 ; T (D))

that the sequence above is co�bration sequence for all n � 0.

Addendum 1.8.8. Let A be a discrete valuation ring with �eld of fractions K
and residue �eld k. Then there is a natural map of co�bration sequences

K(k)
i! //

tr

��

K(A)
j� //

tr

��

K(K)
@ //

tr

��

�K(k)

tr

��

TC(k; p)
i! // TC(A; p)

j� // TC(AjK; p)
@ // �TC(k; p)

and the vertical maps are all maps of ring spectra.
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2. The homotopy groups of T (AjK)

2.1. In this paragraph, we evaluate the homotopy groups modulo p of the
topological Hochschild spectrum T (AjK) introduced in the preceeding paragraph.
We �rst recall the notion of di�erentials with logarithmic poles. The standard
reference for this material is [19].

A pre-log structure on a ring R is a map of monoids

� : M ! R;

where R is considered a monoid under multiplication. By a log ring we mean a ring
with a pre-log structure. A derivation of a log ring (R;M) into an R-module E is
a pair of maps

(D;D log) : (R;M)! E;

where D : R ! E is a derivation and D log : M ! E a map of monoids, such that
for all a 2M ,

�(a)D log a = D�(a):

A log di�erential graded ring (E�;M) is a triple consisting of a di�erential graded
ring E�, a pre-log structure � : M ! E0, and a derivation (D;D log) : (E0;M) !
E1 such that D is equal to the di�erential d : E0 ! E1 and such that dÆD log = 0.

There is a universal example of a derivation of a log ring (R;M) given by the
R-module

!(R;M) =
�

R � (R
ZG(M))

�Æ

d�(a)� �(a)
 a

�� a 2M�;
where G(M) is the Grothendieck group of M . The structure maps are

d : R! !(R;M); da = da� 0;

d log : M ! !(R;M); d log a = 0� (1
 a):

The exterior algebra
!�(R;M) = ��R(!(R;M))

endowed with the usual di�erential is the universal log di�erential graded ring whose
underlying log ring is (R;M).

When A is a discrete valuation ring with �eld of fractions K and residue �eld k,
we have the canonical pre-log structure given by the inclusion

� : M = A \K� ! A:

The Poincar�e residue homomorphism is the natural map

res : !(A;M) ! A=m; res(ad log b) = av(b) +m;

where v : K� ! Z is the valuation.

Proposition 2.1.1. There is a natural short exact sequence

0! 
A=Z! !(A;M) ! k ! 0:

Proof. For a 2 A \K�, av(a) 2 m which shows that the composition of the
two maps in the statement is zero. Only the exactness in the middle needs proof.
Let � be a uniformizer and let ad log b be an element of !(A;M). If we write b = �iu
with u 2 A�, then

ad log b = iad log � + au�1du:
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Suppose that res(ad log b) = ia+mA is trivial. Then ia 2 pA, and hence ia��1 2 A
and iad log � = ia��1d�. It follows that ad log b 2 
A=Z.

Let W =W (k) be the ring of Witt vectors in k, and let M0 =W� !W be the
trivial log-structure on W . We de�ne

!(A;M)=(W;M0) =
�

A=W � (A
ZK

�)
�Æ


da� a
 a
�� a 2 A \K��;

and an argument similar to the proof of the above proposition shows that there is
a natural exact sequence

0! 
A=W ! !(A;M)=(W;M0) ! k ! 0:(2.1.2)

Lemma 2.1.3. Let � 2 A be a uniformizer with characteristic polynomial �(�).
Then as an A-module, !(A;M)=(W;M0) is generated by d log � with annihilator (�0(�)�).

Proof. Every element of K� is of the form �iu, where i 2 Z and u 2 A�.
Hence the formula

d log(�iu) = id log � + u�1du

shows that as an A-module !(A;M)=(W (k);M0) is generated by the element d log �.
The relation identi�es

�0(�)�d log� = d(�(�)) = 0;

so the annihilator ideal is generated �0(�)�.

Lemma 2.1.4. There is a natural exact sequence

A
W (k) 

i
W (k) ! !i(A;M) ! !i(A;M)=(W (k);M0)

! 0;

and the left hand group is uniquely divisible.

Proof. We �rst prove the statement for i = 1. The map of short exact
sequences

0 // 
A=Z //

��

!(A;M) //

��

k // 0

0 // 
A=W // !(A;M)=(W;M0) // k // 0

and the standard exact sequence

A
W 

W=Z! 
A=Z! 
A=W ! 0

yields the sequence of the statement. We show that 
W is a uniquely p-divisible
group. In e�ect, HHi(W ) is uniquely p-divisible, for all i > 0. For W is torsion free
and W=pW = k, so the coeÆcient long-exact sequence takes the form

� � � ! HHi+1(k)! HHi(W )
p
�! HHi(W )! HHi(k)! � � �

and for a perfect �eld of positive characteristic, HHi(k) = 0, for i > 0. See e.g. [16,
lemma 5.5]. This proves the lemma for i = 1. In particular, the maximal divisible
sub-A-module of !(A;M) is equal to the image of A 
W 
W=Z, and !(A;M) is the
sum of this divisible module D and the cyclic torsion A-module !(A;M)=(W;M0). It
follows that for i > 1,

!i(A;M) = �iAD;

and this in turn is the image of left hand map of the statement.
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Corollary 2.1.5. The p-torsion submodule of !(A;M) is

p!(A;M) = A=pAhd log pi:

Proof. It follows from lemma 2.1.4 that

p!(A;M)
�
�! p!(A;M)=(W (k);M0)

is an isomorphism. By the previous lemma, if � be a uniformizer with minimal
polynomial �(�) 2W (k)[�], then

!(A;M)=(W (k);M0) = A=(��0(�))hd log�i:

We write �(�) = �eK +p�(�). Then �(�) is a unit in A and p = �eK�(�)�1. Hence,
on the one hand

��0(�) = eK�
eK + p��0(�) = (eK � ��0(�)�(�)�1)�eK ;

and on the other hand,

d log p = d log(�eK�(�)�1) = (eK � ��0(�)�(�)�1)d log �:

The claim follows.

Let L be a �nite extension of K and let B be the integral closure of A in L.
Then the following diagram commutes

!(A;MA)=(W;M0)
resA //

i�

��

A=mA

eL=K �i

��
!(B;MB)=(W;M0)

resB // B=mB ;

(2.1.6)

where eL=K is the rami�cation index of L=K. Recall that L=K is unrami�ed if and
only if the canonical map

B 
A 
A=W ! 
B=W

is an isomorphism.

Lemma 2.1.7. The extension L=K is a tamely rami�ed if and only if the canon-
ical map

B 
A !(A;MA)=(W;M0) ! !(B;MB)=(W;M0)

is an isomorphism.

Proof. Suppose that L=K is tamely rami�ed. If L=K is unrami�ed, the
lemma follows from the natural exact sequence

0! 
A=W ! !(A;M)=(W;M0) ! A=mA ! 0

and the isomorphism mentioned before the lemma. So replacing K by the maximal
sub�eld of L which is unrami�ed over K, we may assume that the extension is
totally rami�ed. Then there exists �A 2 A such that

L = K(�
1=eL=K
A ):

Indeed, if �A and �B are uniformizers of A and B over W , then

�A = u�
eL=K
B ;
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where u 2 B� is a unit. But the sequence

1! U1
B ! B�

r
�! k� ! 1

is split by the composition of the Teichm�uller character

� : k� !W�

and the inclusion W� ! B�. Therefore, replacing �A by �(r(u))�1�A, we can
assume that the unit u lies in the subgroup U1

B of units in B which are congruent
to 1 mod mB . But every element of U1

B has an eL=Kth root, so replacing �B by

u1=eL=K�B we may assume that u = 1.

Let �A and �B be uniformizers of A and B over W such that �A = �
eL=K
B , and

let �A(�A) be the minimal polynomial of �A. Then

�B(�B) = �A(�
eL=K
B )

is the minimal polynomial of �B . The A-module !(A;MA)=(W;M0) is generated by
d log �A with annihilator (�0A(�A)�A), and similarly, the B-module !(B;MB=(W;M0)

is generated by d log �B with annihilator (�0B(�B)�B). But

d log �A = d log(�
eL=K
B ) = eL=Kd log �B

and
�0B(�B)�B = �0A(�

eL=K
B ) � eL=K�

eL=K
B = eL=K�

0
A(�A)�A;

so the claim follows since eL=K is a unit. It is also clear from this argument that
the map of the statement cannot be an isomorphism if the extension L=K is wildly
rami�ed.

2.2. Let C be a category with co�brations co C and weak equivalences wC.
The Waldhausen K-theory of C is the symmetric spectrum K(C) whose nth space
is

K(C)n = jN�
wS

(n)
�

Cj:

Let X be an object of C. The endomorphisms of X in the category of weak equiv-
alences wC is a monoid Aut(X), the homotopy automorphisms of X. There is a
natural map in the homotopy category of symmetric spectra

BAut(X)! K(C);(2.2.1)

which we now recall. The inclusion functor Aut(X)! wC induces

N
�
Aut(X)! N

�
wC;

and hence a map of symmetric spectra

(BAut(X))+ ! K(C):

Moreover, there is a natural sum diagram in the homotopy category

BAut(X)
i1

// (BAut(X))+
p1oo

p2 //
S0:

i2
oo

where p1 maps the extra base point to the base point of BAut(X), p2 collapses
BAut(X) to the non base point of S0, and i2 maps the non base point of S0 to the
base point of BAut(X). Finally, if � is any section of p1, then i1 = (id�i2p2)�.

Let C = Cb(PA) be the category of Z-graded bounded complexes of �nitely
generated projective A-modules with weak equivalences qC the chain maps f : C !
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D for which K 
A f : K 
A C ! K 
A D is a quasi-isomorphism. Viewing A a
complex concentrated in degree zero,

Aut(A) = A \K� =M;

and 2.2.1 then induces a map

M ! �1BM ! �1K(C);

which is a group completion. Composing with the cyclotomic trace, we get

d logn : M ! �1TR
n(AjK; p):(2.2.2)

This map may also be described as the composite

M+ ^ S
l+1 id^�
���! (M � S1)+ ^ S

l ! j obNq
�

Cj ^ Sl ! Sl ^ jN cy
^;�(N

q
�

C)j ^ Sl

! jN cy
^;�(N

q
�

C)jCr ^ Sl
�l;0
��! TRn(AjK; p)l:

The Teichm�uller character

n : A! �0TR
n(AjK; p)(2.2.3)

is de�ned to be the composite

A! N cy
^;0(N

q
0C)! jN

cy
^;�(N

q
�

C)j
�r��! j sdrN

cy
^;�(N

q
�

C)Cr j
�=
�! j sdrN

cy
^;�(N

q
�

C)jCr
Dr��! jN cy

^;�(N
q
�

C)jCr = TRn(AjK; p)0;

where the �rst map takes a to A
a
�! A, and where r = pn�1.

Proposition 2.2.4. dan = and logn a.

Proof. The map

nd logn : M ! �1TR
n(AjK; p)(2.2.5)

is given by the composite

M+ ^ S
k+l+1

�^�

��

M+ ^ (M � S1)+ ^ S
k+l

��

jN cy
^;�(N

q
�

C)j ^ jN cy
^;�(N

q
�

C)j ^ Sk+l
�0;0^id

//

��

jN cy
^;�(N

q
�

C)j ^ Sk+l

��

jN cy
^;�(N

q
�

C)jCr ^ jN cy
^;�(N

q
�

C)jCr ^ Sk+l
�0;0^id

//

��

jN cy
^;�(N

q
�

C)jCr ^ Sk+l

�k+l

��

jN cy
^;�(N

q
�

C)jCr ^ Sk ^ jN cy
^;�(N

q
�

C)jCr ^ Sl

�k^�l

��

TRn(AjK; p)k ^ TR
n(AjK; p)l

�k;l
// TRn(AjK; p)k+l:
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We wish to compare this to the map

d n : A! �1TR
n(AjK; p)(2.2.6)

given by the composite

M+ ^ S
l+1 id^� // S1

+ ^M+ ^ S
l

��

S1
+ ^ jN

cy
^;�(N

q
�

C)j ^ Sl
! //

��

jN cy
^;�(N

q
�

C)j ^ Sl

��

S1
+ ^ �

�
Cr
jN cy
^;�(N

q
�

C)jCr ^ Sl
! //

�0;l

��

��Cr jN
cy
^;�(N

q
�

C)jCr ^ Sl

�0;l

��

S1
+ ^TR

n(AjK; p)l
! // TRn(AjK; p)l:

Comparing the two diagrams above, we see that it suÆces to show that the diagram

M+ ^ S
1
+

�^id //

tw

��

M+ ^ (M � S1)+ // jN cy
^;�(N

q
�

C)j ^ jN cy
^;�(N

q
�

C)j

�0;0

��

S1
+ ^M+

// S1
+ ^ jN

cy
^;�(N

q
�

C)j
! // jN cy

^;�(N
q
�

C)j

(2.2.7)

is homotopy commutative. Since M is discrete, this may be checked separately
for each a 2 M . The composite of the upper horizontal maps and the right hand
vertical map restricted to fag � S1 traces out the loop in the realization given by
the 1-simplex

A
a //

a

��

A
1 //

a

��

A

a

��

A
a // A

1 // A:

(2.2.8)

Similarly, the composite of the left hand vertical map and the lower horizontal
maps, when restricted to fag � S1, traces out the loop given by the 1-simplex

A
1 //

1

��

A
a //

1

��

A

1

��

A
1 // A

a // A:

(2.2.9)
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Note that both loops are based at the vertex A
a
�! A. We must show that these

loops are homotopic through loops based at A
a
�! A. First, the 2-simplex

A
a //

1

��

A
1 //

1

��

A
1 //

1

��

A

1

��

A
a //

a

��

A
1 //

1

��

A
1 //

a

��

A

a

��

A
1 // A

a // A
1 // A

de�nes a homotopy through loops based at A
a
�! A between the loop given by

(2.2.8) and the loop given by the 1-simplex

A
a //

a

��

A
1 //

1

��

A

a

��

A
1 // A

a // A:

(2.2.10)

Second, the 2-simplex

A
1 //

1

��

A
1 //

1

��

A
a //

a

��

A

1

��

A
1 //

1

��

A
a //

1

��

A
1 //

1

��

A

1

��

A
1 // A

a // A
1 // A

de�nes a homotopy though loops based at A
a
�! A between the loops given by

(2.2.10) and (2.2.9). Thus (2.2.7) homotopy commutes.

Corollary 2.2.11. The homotopy groups (��T (AjK);M) form a di�erential
graded ring with a log structure.

Proposition 2.2.12. The sequence

0! �1T (A)! �1T (AjK)! �0T (k)! 0

is canonically isomorphic to the sequence of proposition 2.1.1.

Proof. Since �1T (k) = 
k=Z vanishes the sequence is exact. The B-operator
induces a canonical homomorphism form 
A=Z to �1T (A), which is an isomorphism
since �1T (A) = HH1(A). The trace map

K� ! �1T (AjK)

is a map of abelian groups, which we extend to a map of A-modules

A
ZK
� ! �1T (AjK)

to get a homomorphism


A=Z� (A
K�)! �1T (AjK):
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On the �rst summand it is the composition of the canonical isomorphism with the
inclusion �1T (A)! �1T (AjK). By corollary 2.2.11 it factors to de�ne a map

!(A;M) ! �1T (AjK):

Finally, it is clear that this map is compatible with the canonical maps above. It
is therefore an isomorphism by the �ve lemma.

The homotopy groups modulo p of the topological Hochschild spectrum T (A)
were evaluated in [22]. The statement of the result is di�erent depending on
whether A=W is wildly or tamely rami�ed. In the wild case, a choice of uniformizer
� 2 A speci�es an isomorphism of di�erential graded k-algebras

A=pA
k �kfd�g 
k SfaKg
�
�! ���T (A);

where on the left, daK = 0. (In [22], aK and d� were denoted �2 and �1, respec-
tively.) The class aK is characterized by its image under the primary Bockstein.
Indeed, �2T (A) is divisible, so the Bockstein induces an isomorphism

� : ��2T (A)
�
�! p�1T (A):

Let �K(�) = �eK + p�K(�) be the minimal polynomial of �. Then aK 2 ��2T (A) is
the unique element with

�(aK) = (�0K(�)=p)d� = �(eK�
�1�K(�)� �0K(�))d�:

The group �2T (Zp) is uniquely divisible and �1T (Fp) is trivial. Hence �2T (Zp jQ p)
is uniquely divisible. Therefore, the Bockstein induces an isomorphism

� : ��2T (Zp jQ p)
�
�! p�1T (Zp jQ p):

We de�ne � 2 ��2T (Zp jQ p) to be the class which corresponds to the generator d log p
on the right. We now prove theorem B of the introduction:

Theorem 2.2.13. There is a canonical isomorphism of log di�erential graded
k-algebras

!�(A;M) 
 SFpf�g
�
�! ���T (AjK);

where d� = (d log p)�.

Proof. Suppose �rst that K=K0 is wildly rami�ed and consider the diagram

��2T (A)
�

//

i�

��

p�1T (A)

i�

��

��2T (AjK)
�

//
p�1T (AjK):

It is proved in [22] that �2(T (A);Zp) vanishes, and hence the sequence

�2(T (A);Zp)! �2(T (AjK);Zp)! �1T (k)

shows that so does �2(T (AjK);Zp). Hence the horizontal maps in the diagram
above are both isomorphisms. The right hand vertical map may be identi�ed with
the left hand map in the sequence

0! p
A=Z! p!(A;M)
res
��! k:
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The generator d log p of the middle term has

res(d log p) = vK(p) = eK ;

which vanishes since K=K0 is wildly rami�ed. The vertical maps in the diagram
therefore are isomorphism. Moreover, since �eK + p�K(�) = 0,

�(�) = d log p = (eK � �K(�)
�1�0K(�)�)d log� = i�(��(�K(�)

�1aK)):

We have here used that d log(�x) = d log x which follows from corollary 2.2.11 since
d log(�1) = �d(�1) = 0. The calculation gives that

� = i�(��K(�)
�1aK);

and since daK = 0, we �nd

d� = d(�i�(�K(�)
�1aK)) = i�(d(��K(�)

�1aK))

= i�(�K(�)
�2�0K(�)d� � aK) = d log p � �

as stated. Since � and d log p are in ���T (K0), this formula is valid for any �nite
extension K=K0. This proves the existence of the stated map of di�erential graded
k-algebras

!�(A;M) 
 SFpf�g ! ���T (AjK):

Assume again that K=K0 is wildly rami�ed. We claim that the transfer

j! : ��2nT (k)! ��2nT (A)

is trivial in even degrees. This is true for n = 0, so in particular j!(1) = 0. Now by
Frobenius reciprocity, the composite

���T (A)
j�
�! ���T (k)

j!

�! ���T (A)

is given by multiplication by j!(j�(1)) = j!(1) and hence is zero. Since the left hand
map is surjective in even dimensions, the claim follows. It follows that we have
isomorphisms

i� : ��2nT (A)
�
�! ��2�T (AjK)

in even dimensions, and four term exact sequences

��2n+1T (k) //
j!

// ��2n+1T (A)
i� // ��2n+1T (AjK)

@ // // ��2nT (k)

in odd degrees. The diagrams

��0T (A)
� //

(�(�)�1aK)n�

��

��0T (AjK)

�r

��

��2nT (A)
� // ��2nT (AjK)

and

��1T (k) // //

(�(�)�1aK)n�

��

��1T (A) //

(�(�)�1aK)n�

��

��1T (AjK) // //

�r

��

��0T (k)

(�(�)�1aK)n�

��

��2n+1T (k) // // ��2n+1T (A) // ��2n+1T (AjK) // // ��2nT (k)

then proves the theorem in the wildly rami�ed case.
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Finally, suppose that K=K0 is tamely rami�ed. Let L=K be a totally wildly
rami�ed extension and let B=A be the integral closure of A in L. We then have a
commutative diagram

!�(A;MA)

 Sf�g //

��

���T (AjK)

��

!�(B;MB)

 Sf�g � // ���T (BjL);

and the lower horizontal map is an isomorphism. It is easy to see that there exists
L=K for which the left hand vertical map is a monomorphism. For example, one
can take L = K[�B ]=(�

eB=A
B � �A�B � �A). It follows that the upper horizontal

map is a monomorphism. A dimension counting argument then shows that it is an
isomorphism.

Lemma 2.2.14. The canonical maps


�K = !�(K;K�)
�
 � !�(A;M) 
 Q

�
�! ��T (AjK)
 Q

are isomorphisms.

Proof. We �rst treat the left hand map. For a fraction s�1a with a 2 A and
s 2 A� p, so

d(s�1a) = s�1da� s�2ads

which shows that the canonical map

A
A 
A=Z
�
�! 
K=Z;

and hence also

K 
A (
AZ� (A
ZK
�))

�
�! 
K=Z� (K 
ZK

�);

is an isomorphism. Similarly, the formula

d(s�1a)� s�1a
 s�1a = s�1(da� a
 a)� s�2a(ds� s
 s)

shows that as submodules of the K-vector space 
K=Z� (K 
ZK
�),

Khda� a
 a j a 2 A \K�i = Khdq � q 
 q j q 2 K�i:

Since ��T (k) is torsion, the map T (A) ! T (AjK) is a rational equivalence. Also,
the linearization map T (A)! HH(A) is a rational equivalence. It thus remains to
prove that the canonical map


�K=Z! HH�(K)

is an isomorphism. This in turn follows from the Hochschild-Kostant-Rosenberg
theorem and from the fact that every �eld can be written as a separable algebraic
extension of the fraction �eld of a �ltered colimit of smooth algebras over the prime
�eld.
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2.3. In the remainder of this paragraph, we will examine the descent proper-
ties of the functor T (AjK). We �rst show the following positive result:

Theorem 2.3.1. If L=K is a tamely rami�ed Galois extension, then the canon-
ical map

T (AjK)! H �(GL=K ; T (BjL))

becomes a weak equivalence upon p-completion.

Proof. We �rst show that for all t � 0, the GL=K-module ��tT (BjL) is iso-
morphic to B=pB. If t = 2i is even this follows from the natural isomorphism

�i : B=pB
�
�! ��tT (BjL)

and does not use that L=K is tamely rami�ed. For t = 2i + 1 odd, we have the
natural isomorphism

�i : !(B;MB ;W;M0)=p
�
�! ��2�+1T (BjL);

so it is enough to consider the module !(B;MB=W;M0)=p. As an A-module !(A;MA)=(W;M0)

is generated by d log �A with annihilator (�0A(�A)�A), and since p divides the an-
nihilator ideal,

!(A;MA)=(W;M0)=p = A=pAhd log�Ai:

Since B=A is 
at, lemma 2.1.7 shows that

!(B;MB)=(W;M0)=p = B=pBhd log �Ai;

and as a GL=K-module this is B=pB.

A classical theorem of Noether states that as a GL=K-module B is isomorphic
to A[GL=K ] if and only if L=K is tamely rami�ed. Hence, the spectral sequence

E2
s;t = H�s(GL=K ; ��tT (BjL))) ��s+tH

�(GL=K ; T (BjL))

collapses to an isomorphism

���T (AjK)
�
�! ���H

�(GL=K ; T (BjL)):

Finally, a map of spectra becomes an equivalence after p-completion if and only if
it induces isomorphism on homotopy groups with Z=pZ-coeÆcients.

It is in order to examine the canonical map


L=K : T (AjK)! H �(GL=K ; T (BjL))

for Galois extensions L=K in general, and hence the canonical map


K : T (AjK)! holim
�!
L

H �(GL=K ; T (BjL));

where the homotopy limit runs over �nite extensions L=K contained in an algebraic
closure Ks.

There are spectral sequences

E2
s;t = H�s(GL=K ; �tT (BjL))) �s+tH

�(GL=K ; T (BjL));

E2
s;t = H�s(GK ; �tT (AsjKs))) �s+t holim

�!
L

H �(GL=K ; T (BjL));
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where in the latter the E2-term is given by the continuous cohomology of the
pro�nite group GK with coeÆcients in the discrete module �tT (AsjKs) de�ned by

T (AsjKs) = holim
�!
L

T (BjL):

There are similar spectral sequences for the homotopy groups with Z=pZ-coeÆcients.
Let A � K be the valuation ring, and let B � L and As � Ks be the integral clo-
sure of A in L and Ks, respectively. Then B is a GL=K-module and As is a discrete
GK-module. There is a natural isomorphism

As=pAs 
 Sf�g
�
�! ���T (AsjKs);

where � 2 ��2T (Zp jQ p) and hence isGK-�xed. Since the groupGK has p-cohomological
dimension 2, the spectral sequence above degenerates to a natural exact sequence

0! H2(GK ; As=pAs)! ��2i holim
�!
L

H �(GL=K ; T (BjL))! H0(GK ; As=pAs)! 0

and a natural isomorphism

H1(GK ; As=pAs)
�
�! ��2i+1 holim

�!
L

H �(GL=K ; T (BjL));

for all i � 0. We note that the canonical map

A=pA! H0(GL=K ; B=pB)

is injective. For A! B is injective and the cokernel is a free A-module. The same
is true with As in place of B.

Now suppose that 
L=K is an equivalence for all K and all L=K. Then 
K is
also an equivalence. The commutative diagram

0! H2(GK ; As=pAs) // ��2iholim
�!

H �(GL=K ; T (BjL)) // H0(GK ; As=pAs)! 0

��2iT (AjK)


K �

OO

� // A=pA

OO

shows that the canonical map

A=pA! H0(GK ; As=pAs)

is surjective and hence an isomorphism. Since this is true for any K, the horizontal
maps in the diagram

A=pA //

��

H0(GK ; As=pAs)

�

��

H0(GL=K ; B=pB) // H0(GL=K ; H
0(GL; As=pAs))

are both isomorphism, and hence

A=pA! H0(GL=K ; B=pB)

is an isomorphism. We will show in the example below that this is not the case.
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Suppose that L=K is wildly rami�ed, and consider the natural �ltration of the
GL=K-module B=pB by the powers of the maximal ideal mB � B. The �ltration
has length eB = eB=W (k) and the product de�nes a natural isomorphism

(mB=m
2
B)

i ��! m

i
B=m

i+1
B ;

for i � 1. When i = 0 the right hand side is the residue �eld kB = B=mB , and we
then take this as our de�nition of the left hand side. The �ltration gives rise to a
cohomology type spectral sequence with

Es;t
1 = Hs+t(GL=K ; (mB=m

2
B)

s)) Hs+t(GL=K ; B=pB)

and concentrated on the lines 0 � s < e in the right half plane.

Example 2.3.2. Let K = Q p and L = Q p(�pn). The extension is totally rami-
�ed, so kB = kA is a trivial module, and we have a canonical isomorphism

�p
�
�! mB=m

2
B ; z 7! zp

�(n�1)

� 1:

The canonical map

GL=K
�
�! Aut(�pn)

is an isomorphism and the action on �p is induced from the natural inclusion
�p � �pn . Hence the cohomology of �


s
p is trivial unless s � 0 (mod p�1) in which

case we have isomorphisms

Hn(GL=K ; �

s
p ) �= Z=pZ; n � 0;

which depend on a choice of a primitive pth root of one. Since A=pA = kA = kB ,
the composition of the map in question

A=pA! H0(GL=K ; B=pB)

with the edge homomorphism

H0(GL=K ; B=pB)! H0(GL=K ; kB) = E0;0
1

is an isomorphism. So it suÆces to show that for some 1 � s < e, Es;�s
1 is non-

trivial. But if s is the largest integer which is divisible by p � 1 and less than or
equal to e� 1, then

Es;�s
1 = Es;�s

1
�= Z=pZ

for degree reasons.

3. The de Rham-Witt pro-complex and TR�

�(AjK; p)

3.1. In this paragraph, we evaluate the integral homotopy groups TR�

i(AjK; p),
for i � 2. We �rst consider Witt vectors.

Let p be a prime, let R be a ring, and let W (R) be the ring of p-typical Witt
vectors. The ghost map

w : W (R)! RN0

which maps a vector (a0; a1; : : : ) to the sequence (w0; w1; : : : ), where

ws = ap
s

0 + pap
s�1

1 + � � �+ psas;

is a ring homomorphism. It is injective if R has no p-torsion. Moreover, if R
possesses a ring endomorphism � with the property that for all a 2 R, ap � �(a)
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(mod pR), then the image of the ghost map may be characterized as the set of
sequences (w0; w1; : : : ) for which

ws � �(ws�1) (modulo psR);

for all s � 1. If R = Z[X� ], the ring homomorphism which maps X� to Xp
� is such

an endomorphism. Let : R!W (R) be the multiplicative section a = (a; 0; 0; : : : ).

Lemma 3.1.1. If p > 2 then p+ V (1) � 0 and �1 � �1 modulo pW (R).

Proof. By naturality, we may assume that R = Z. We have

w(p+ V (1)) = p(1; 1 + pp�1; 1 + pp
2�1; 1 + pp

3�1; : : : );

and therefore it is enough to show that the sequence

(1; 1 + pp�1; 1 + pp
2�1; 1 + pp

3�1; : : : )

is in the image of the ghost map. This in turn follows, by what was said earlier,
from the congruences

1 + pp
s�1 � 1 + pp

s�1�1 (mod ps);

valid, when p > 2, for all s � 2 as required, but fail for p = 2 and s = 2. The
second congruence is proved in a similar manner.

In general, x+ y and x+y are not equivalent modulo pW (A). However, we have
the following

Lemma 3.1.2. For all x; y 2 R,

(x+ y)p � (x+ y)p � xp + yp

modulo pW (R).

Proof. The right hand congruence is valid in any ring. To prove the left hand
congruence, we place ourselves in the universal case R = Z[x; y]. The ghost map

w : W (R)! RN0

is an injection and maps the Witt vector xp + yp � (x+ y)p to the tuple

(xp + yp � (x+ y)p; : : : ; xp
n+1

+ yp
n+1

� (x+ y)p
n+1

; : : : ):

As an element of RN0 this is divisible by p. We must show that the quotient is in
the image of the ghost map. By the criterion recalled above, we must show that

(xp
n+1

+ yp
n+1

� (x+ y)p
n+1

)=p � (xp
n+1

+ yp
n+1

� (xp + yp)p
n

)=p (mod pn);

or equivalently, that

(x+ y)p
n+1

� (xp + yp)p
n

(mod pn+1):

But this follows from

(x+ y)p � xp + yp (mod p)

and from the fact, valid in any commutative ring, that a � b (mod p) implies
ap

n

� bp
n

(mod pn+1). Indeed, one easily sees that a � b (mod pk) implies that
ap � bp (mod pk+1), and the desired formula then follows by simple induction.
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When A is a complete discrete valuation ring, the ring Wn(A)=p is a k-algebra
via the ring homomorphism

k =W (k)=p
�
�!W (W (k))=p

W (�)
���!W (A)=p

R
�!Wn(A)=p:

Here �: W (k) ! W (W (k)) is the universal p-typical �-operation, [13]. Here the
identi�cation on the left holds for k perfect since then VW (k) = FVW (k), and
since one always has FV = p. Let � be a uniformizer with minimal polynomial

�eK + p�K(�):

We introduce the modi�ed Verschiebung

V� : Wn�1(A)!Wn(A); V�(x) = �K(�n)V (x);

which satis�es

FV�(x) = p�K(�)
px:

Proposition 3.1.3. The k-algebra Wn(A)=p is generated by the elements V s
� (�

i)
with 0 � s < n and i � 0 subject to the relations

V s
� (�

i) � V t
�(�

j) = psV t
�(�(�)

pt�s( p
s+1

�1
p�1 �1)�p

t�si+j);

V s
� (�

eK+i) = V s+1
� (�pi):

Proof. As a k-vector space, Wn(A)=p is generated by the monomials in the
variables V s(�i) with 0 � s < n and i � 0. Indeed, if a 2 k then

V s(a�i) = '�s(a)V s(�i):

Since �K(�) is a unit, we may instead use the elements V s
� (�

i) as our generators.
If s � t,

V s
� (�

i)V t
�(�

j) = V s
� (�

i)V s
� (V

t�s
� (�j)) = V s

� (F
sV s

� (�
i)V t�s

� (�j))

= psV s
� (�K(�)

ps+1
�1

p�1 �1�iV t�s
� (�j))

= psV t
�(�K(�)

pt�s( p
s+1

�1
p�1 �1)�p

t�si+j);

which proves the �rst relation. Next, lemmas 3.1.1 and 3.1.2 shows that

�eK = �p � �K(�) � �p � �K(�) � V (1)�K(�)

= V ((�K(�))
p) � V (�

(1)
K (�p)) = V (1)�K(�) = V�(1):

The second relation is an immediate consequence of the relation. It remains to prove
that there are no further relations. Since Wn(A) is torsion free, the sequences

0! A=p
V n�1

���!Wn(A)=p
R
�!Wn�1(A)=p! 0

are exact and show that Wn(A)=p is an neK-dimensional k-vector space. The
relations of the statement implies that

grsV Wn(A)=p = k


V s
� (�

i)
�� 0 � i < eK

�
;

which is an eK-dimensional k-vector space. Thus there can be no further relations
among the V s

� (�
i).
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3.2. A pre-log structure � : M ! R on a ring R induces one on Wn(R) upon
composition with the multiplicative section n : R!Wn(R). We write (Wn(R);M)
for this log ring.

Definition 3.2.1. A log Witt functor consists of the following data:

(i) a log ring (R;M);

(ii) a pro-log di�erential graded ring (E�
�

;M) whose underlying pro-log ring is
(W

�
(R);M);

(iii) a map of pro-log graded rings

F : E�n ! E�n�1;

which extends the Frobenius F : Wn(R)!Wn�1(R), and such that

Fd logn a = d logn�1 a; for all a 2M ,

Fdan = ap�1n�1dan�1; for all a 2 R;

(iv) a map of pro-graded modules over the pro-graded ring E�
�

,

V : F �E�n ! E�n+1;

such that FV = p and FdV = d.

A map of log Witt functors is a map of pro-log di�erential graded rings which
commutes with the maps F and V .

The following relations are valid in any log Witt functor

dF = pFd; V d = pdV; V (xdy) = V (x)dV (y):(3.2.2)

Indeed, V (xdy) = V (xFdV (y)) = V (x)dV (y), and

dF (x) = FdV F (x) = Fd(V (1)x) = FdV (1)F (x) + FV (1)F (dx)

= d(1)F (x) + pFd(x) = pFd(x);

V d(x) = V (1)dV (x) = d(V (1)V (x))� dV (1)V (x)

= dV (xFV (1)� V (xd(1))) = pdV (x):

Proposition 3.2.3. The forgetful functor from the category of log Witt functors
to the category of log rings has a left adjoint,

(R;M) 7!W
�
!�(R;M)

Moreover, the canonical map � : !�(W�(R);M) !W
�
!�(R;M) is surjective.

Proof. We use the Freyd adjoint functor theorem to prove the existence of
the left adjoint. Let (E�

�

;M) be a log Witt functor whose underlying log ring is
(R;M). Then, in particular, there is a canonical map

!�(W�(R);M) ! E�
�

of pro-log di�erential graded rings. The image of this map, im�E;�, is a pro-log
di�erential graded ring whose underlying pro-log ring is (W

�
(R);M). We claim that,

in fact, im�E;� has a natural structure of a sub-log Witt functor of (E�
�

;M). Granting
this for the moment, we pick a representative (E�

�

;M) for each isomorphism class
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of log Witt functors of the form im�E;�. Each im�E;� is a quotient of !�(W�(R);M), so

these representatives form a set. Hence, we may form the product

(D�
�

;M) =
Y

(E��;M)

im�E;�;

and W
�
!�(R;M) is then denined as the equalizer of all endomorphisms of (D�

�

;M).

Indeed, it is easy to see that this equalizer is universal among log Witt functor with
underlying log ring (R;M), [23, p. 116]. We also note that the canonical map

!�(W�(R);M) !W
�
!�(R;M)

is surjective. Indeed, its image is a log Witt functor im�W;�, so there is a canonical
map W

�
!�(R;M) ! im�W;�. The composite

W
�
!�(R;M) ! im�W;� !W

�
!�(R;M)

is a map of log Witt functors, and since W
�
!�(R;M) is universal, this can only be

the identity map.

It remains to prove that

F (im�E;n) � im�E;n�1;

V (im�E;n) � im�E;n+1 :

As a graded ring, im�E;n is generated by a 2 E0
n and da 2 E1

n with a 2Wn(R), and

by d logn x 2 E
1
n with x 2M . Since F is multiplicative, it suÆces to check that the

image of these generators under F are in im�E;n�1. This is clear for the elements a
and d logn x, and since every element a 2Wn(R) can be written uniquely as

a =
n�1X
i=0

V iain�i;

we see that

Fda = a0
p�1
n�1

da0n�1 +
n�2X
j=1

dV jaj
n�1�j

;

which is in im�E;n�1. Finally, the formulas

V (xdy) = V (xFdV (y)) = V (x)dV (y);

V (xd log y
n
) = V (xFd log y

n+1
) = V (x)d log y

n+1
;

shows that V (im�E;n) � im�E;n+1.

The �ltration of a log Witt functor by the di�erential graded ideals

FilsEi
n = V sEi

n�s + dV sEi�1
n�s � Ei

n

is called the standard �ltration. It satis�es

F (FilsEi
n) � Fils�1Ei

n�1;

V (FilsEi
n) � Fils+1Ei

n+1;

but in general is not multiplicative.
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Lemma 3.2.4. For any log ring (R;M), the map induced from the restriction
maps,

Wn !
i
(R;M)=Fil

sWn !
i
(R;M)

�
�!Ws !

i
(R;M);

is an isomorphism.

Proof. For a �xed value of n� s, the �ltration quotients

0Ws !
i
(R;M) =Wn !

i
(R;M)=Fil

sWn !
i
(R;M)

form a log Witt functor whose underlying log ring is (R;M). We show that it has
the universal property. Let (E�

�

;M) be a log Witt functor whose underlying log
ring is (R;M). Then there exists a map of log Witt functors

0W
�
!�(R;M) ! E�

�

:

Indeed, the standard �ltration is natural, so we have maps

Wn !
i
(R;M)=Fil

sWn !
i
(R;M) ! Ei

n=Fil
sEi

n ! Ei
s;

where the right hand map is induced from the restriction maps in E�
�

. We must
show that this map of log Witt functors is unique. To prove this, it will suÆce to
show that the canonical map

!i(Ws(R);M) !
0Wn !

i
(R;M)

is surjective. But this follows from the commutativity of the diagram

!i(Wn(R);M)
// //

����

Wn !
i
(R;M)

����

!i(Ws(R);M)
// 0Ws !

i
(R;M)

since the top horizontal and right hand vertical maps are surjective.

We de�ne a map Fn�1d : Wn(R)! !1
(R;M) by the formula

Fn�1d(a) = ap
n�1�1

0 da0 + ap
n�2�1

1 da1 + � � �+ dan�1;

where a = (a0; : : : ; an�1). One easily veri�es that Fn�1d is a derivation of Wn(R)
into the Wn(R)-module (F

n�1)�!1
(R;M) and that the following relation holds:

dFn�1 = pn�1Fn�1d:

It follows immediately from the derivation property that the formula

a � (!1 � !2) = Fn�1(a)!1 � (Fn�1(a)!2 � Fn�1da � !1)

de�nes aWn(R)-module structure on !
i�1
(R;M)�!

i
(R;M). And the relation shows that

the image of the map

!i�1(R;M) ! !i�1(R;M) � !i(R;M); ! 7! pn�1! ��d!;

is a sub-Wn(R)-module. We denote the quotient Wn(R)-module by

hWn !
i
(R;M):
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Lemma 3.2.5. There is a natural exact sequence of Wn(R)-modules

(Fn�1)�pn�1!i�1(R;M)

d
�! (Fn�1)�!i(R;M)

! hWn !
i
(R;M) ! (Fn�1)�(!i�1(R;M)=p

n�1!i�1(R;M))! 0:

Proof. Indeed, as an abelian group, hWn !
i
(R;M) is equal to the push out

!i�1(R;M)
d //

pn�1

��

!i(R;M)

��

!i�1(R;M)
// hWn !

i
(R;M)

so the underlying sequence of abelian groups is exact. One readily veri�es that the
various maps are Wn(R)-linear.

Remark 3.2.6. It is easy to see that the canonical map

� : !i(R;M) !W1 !
i
(R;M)

is an isomorphism for i � 1. Indeed, one can construct a log Witt functor (E�
�

;M)
such that Ei

1 = !i(R;M), i � 1, as follows: In degree zero, E0
�

=W
�
(R), in degree one,

E1
�

= !1
(R;M) with the identity map as structure map, and Ei

�

= 0 for i > 1. The

di�erentialE0
n ! E1

n is given by the map F
n�1d : Wn(R)! !1

(R;M), F : E1
n ! E1

n�1

is the identity map and V : E1
n�1 ! E1

n is multiplication by p. We expect that the
map is an isomorphism for all i.

Proposition 3.2.7. For any log ring (R;M), there is a natural exact sequence
of Wn(R)-modules,

hWn !
i
(R;M)

N
�!Wn !

i
(R;M)

R
�!Wn�1 !

i
(R;M) ! 0;

where N(!1 � !2) = dV n�1�(!1) + V n�1�(!2).

Proof. The de�ning properties of a log Witt functor shows that for all a 2
Wn(R),

�(Fn�1da) = Fn�1d�(a):

Hence N is Wn(R)-linear. Since the image of N is equal to Filn�1Wn !
i
(R;M), the

statement follows from lemma 3.2.4.

Corollary 3.2.8. When (A;M) is a complete discrete valuation ring of mixed
characteristic with the canonical log structure then for all n � 1 and i � 2,
Wn !

i
(A;M) is a uniquely divisible group.

Proof. Recall from lemma 2.1.4 that !i(A;M) is a divisible group for i � 2. It

follows that hWn !
i
(A;M) is divisible for i � 3, and an induction argument based

on proposition 3.2.7 then shows that so is Wn !
i
(A;M). The group hWn !

2
(A;M) is a

direct sum of a uniquely divisible group and the group !(A;M)=p
n�1!(A;M). Hence

Wn !
2
(A;M) is a direct sum of a uniquely divisible group and a �nitely generated
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torsion W (k)-module. It is therefore enough to show that the modulo p reduction
�Wn !

2
(A;M) is trivial. Inductively, it suÆces to show that the map

dVn�1 : �!
1
(A;M) !

�Wn!
2
(A;M)

is trivial. The map is k-linear, and the domain is generated as a k-vector space by
the elements �id log �, 0 � i < e. Now the relation

�en + �(�n)V (1);

valid in �Wn(A), shows that V
n�1(�id log �) = V n�1(�i)d log �n is either trivial or

in the span of elements of the form �jnd log �n. But these elements have vanishing
di�erential.

3.3. It follows from the results proved in [14, x1] and from proposition 2.2.4
above that TR�

�(AjK; p) is a log Witt functor. We consider the canonical map

W
�
!�(A;M) ! TR�

�(AjK; p):

The homotopy groups of the homotopy orbit spectra,

hTR
n
� (AjK; p) = ��H �

(Cpn�1 ; T (AjK));

are di�erential graded modules over TRn
� (AjK; p), and there are maps of TRn

� (AjK; p)-
modules

F : hTR
n
� (AjK; p)! F �(hTR

n�1
� (AjK; p));

V : F �(hTR
n�1
� (AjK; p))! hTR

n
� (AjK; p);

which satisfy
FdV = d;

FV = p:

Moreover, there is a natural spectral sequence of Wn(A)-modules,

E2
s;t = Hs(Cpn�1 ; (Fn�1)� �tT (AjK))) hTR

n
s+t(AjK; p):(3.3.1)

Lemma 3.3.2. Let � : !i(A;M) ! �iT (AjK) be the canonical map. Then the map

hWn !
i
(A;M) ! hTR

n
i (AjK; p);

!1 � !2 7! dV n�1�(!1) + V n�1�(!2);

is a map of Wn(A)-modules. It is an isomorphism, for i � 1, and for i = 2, there
is an exact sequence

0! (Fn�1)�(A=pn�1A)! hWn !
2
(A;M) ! hTR

n
2 (AjK; p)! 0;

where the map on the left takes a to dV n�1(da).

Proof. If a 2Wn(A), !1 2 !
i�1
(A;M) and !2 2 !

i
(A;M), then

a � dV n�1�(!1) = d(a � V n�1�(!1))� da � V n�1�(!1)

= dV n�1(Fn�1a � �(!1))� Fn�1da � �(!1))

= dV n�1�(Fn�1a � !1)� V n�1�(Fn�1da � !1));

a � V n�1�(!2) = V n�1(Fn�1a � �(!2))

= V n�1�(Fn�1a � !2);

which shows that the map of the statement is indeed a map of Wn(A)-modules.
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The map � is an isomorphism for i � 2. So the spectral sequence gives an
isomorphism of Wn(A)-modules

�0 : (F
n�1)�A

�
�! hTR

n
0 (AjK; p)

and a natural exact sequence of Wn(A)-modules

0! (Fn�1)�!1
(A;M)

�1�! hTR
n
1 (AjK; p)! (Fn�1)�(A=pn�1A)! 0:

The sequence of lemma 3.2.5 maps to the sequence above, and the map of the left
hand term is an isomorphism. It remains to show that the same holds for the map
of the right hand terms. This map is induced from the composite

A! hWn !
1
(A;M) ! hTR

n
1 (AjK; p)! A=pn�1A

which in turn may be identi�ed with the map

H0(Cpn�1 ; A)! H1(Cpn�1 ; A)

given by multiplication by the fundamental class [S1=Cpn�1 ]. This map is an epi-
morphism with kernel pn�1A, and the lemma follows for i = 1. The statement for
i = 2 is proved in an entirely similar manner.

Remark 3.3.3. For i � 1, the proof above does not use that A is a Dedekind ring
beyond the de�nition of T (AjK). In e�ect, the same proof gives an isomorphism

hWn

1
A
�
�! �1H �

(Cpn�1 ; T (A))

for any ring A (with the trivial pre-log structure).

Lemma 3.3.4. For all i � 0, the Frobenius

F : TRn
2i+1(AjK; p)! TRn�1

2i+1(AjK; p)

is surjective.

Proof. For i > 0, the group TRn
i (AjK; p) is a sum of a uniquely divisible

group and a p-torsion group of bounded height. Indeed, this is true when n = 1,
and the general case then follows by an induction argument based on the co�bration
sequence

hTR
n(AjK; p)

N
�! TRn(AjK; p)

R
�! TRn�1(AjK; p)

and the spectral sequence (3.3.1). Since FV = p, the Frobenius induces a surjection
of uniquely divisible summands. It is therefore enough to prove that the statement
of the lemma holds after p-completion. To this end, we show that the canonical
map

�2i+1(H
�(T; T (AjK));Zp)! �2i+1(H

�(Cpn ; T (AjK));Zp)

is surjective. Consider the spectral sequences

E2
s;t(T) = H�s(BS1; �t(T (AjK);Zp))) �s+t(H

�(T; T (AjK));Zp);

E2
s;t(Cpn) = H�s(BCpn ; �t(T (AjK);Zp))) �s+t(H

�(Cpn ; T (AjK));Zp):

Both of these are strongy convergent second quadrant homology type spectral se-
quences. That is, the associated �ltration Fils ��(H

�(T; T (AjK));Zp) of the actual
homotopy groups ��(H

�(T; T (AjK));Zp) is such that

grs �s+t(H
�(T; T (AjK));Zp) = E1s;t(T);

50



and the canonical map

��(H
�(T; T (AjK));Zp)

�
�! lim �

s

��(H
�(T; T (AjK));Zp)=Fil

s ��(H
�(T; T (AjK));Zp)

is an isomorphism. (The structure maps in this limit system are surjections, so the
derived limit vanishes.) Similar remarks hold for the spectral sequence Er(Cpn). It
will therefore suÆce to show that

gr� �2i+1(H
�(T; T (AjK));Zp)! gr� �2i+1(H

�(Cpn ; T (AjK));Zp)

is a surjection for i � 0.

On the E2-terms of the spectral sequences, the map in question corresponds to
the map on cohomology induced from the inclusion Cpn ! S1. It is thus surjective
for s even. Moreover, ��(T (AjK);Zp) is concentrated in odd degrees with the
exception of �0(T (AjK);Zp), and hence, the non-zero di�erentials in the spectral
sequence Er(T) must originate on the line t = 0. It follows that for s even and
t > 0, the map

Er
s;t(T) ! Er

s;t(Cpn)

is surjective for all 2 � r � 1. (Since these groups do not support non-zero
di�erentials, they are stable for r > s.) But in the spectral sequence Er(Cpn), only
the groups Er

s;t with s even and t > 0 can contribute to �2i+1(H
�(Cpn ; T (AjK));Zp).

This shows that the map

gr� �2i+1(H
�(T; T (AjK));Zp)! gr� �2i+1(H

�(Cpn ; T (AjK));Zp)

is indeed surjective, and hence the lemma follows.

Since !2
(A;M) is a uniquely divisible group, the spectral sequence (3.3.1) gives an

exact sequence of Wn(A)-modules

(Fn�1)�(A=pn�1)
d
�! (Fn�1)�(!1

(A;M)=p
n�1)! hTR

n
2 (AjK; p;Zp)! 0;

and d isWn(A)-linear since dF
n�1 = pn�1Fn�1d. If � is a uniformizer, then d log �

represents a class in the cokernel. We denote this class by [d log �]n.

Lemma 3.3.5. The map of Wn(A)-modules

F : hTR
n
2 (AjK; p;Zp)! hTR

n�1
2 (AjK; p;Zp)

is a surjection whose kernel is generated by pn�2[d log �]n.

Proof. The exact sequence above shows that the map of the statement is a
surjection that the kernel is a quotient of the cokernel of the following map

(Fn�1)�(pn�2A=pn�1A)
d
�! (Fn�1)�(pn�2!1

(A;M)=p
n�1!1

(A;M)):

It is therefore enough to show that this cokernel is generated by pn�2[d log �]n. We
consider the polynomial ring P = W (k)[x] with the pre-log structure � : N 0 ! P
given by �(i) = xi. The map of W (k)-algebras � : P ! A, �(x) = �, preserves the
pre-log structure and induces a surjection !(P;N0 ) � !(A;M). It follows that the

map pi!1
(P;N0 )

� pi!1
(A;M) is a surjection, for i � 0, and therefore, it suÆces to

show that the cokernel of the map

(Fn�1)�(pn�2P=pn�1P )
d
�! (Fn�1)�(pn�2!1

(P;N0 )
=pn�1!1

(P;N0 )
)
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is generated as a Wn(P )-module by the canonical image of pn�2d log x. Now as a
P -module, the quotient pn�2!(P;N0 )=p

n�1!(P;N0 ) is generated by pn�2d log x, and

hence the Wn(P )-module (Fn�1)�(pn�2!(P;N0 )=p
n�1!(P;N0 )) is generated by the

elements pn�2d log x and pn�2xp
i

d log x, 0 � i < n�1. But the last n�1 generators
are all in the image of the map d:

pn�2xp
i

d log x = pn�2�id(xp
i

):

Hence the cokernel of d is generated by pn�2d log x, and the lemma follows.

Proposition 3.3.6. The sequences

0! hTR
n
i (AjK; p)

N
�! TRn

i (AjK; p)
R
�! TRn�1

i (AjK; p)! 0

are exact, for i � 1, and exact modulo the Serre subcategory of torsion W (k)-
modules, for i = 2. Moreover, TRn

2 (AjK; p) is uniquely divisible.

Proof. The statement for i = 0 is [16, proposition 3.3], so the statement for
i = 1 is equivalent to showing that the norm map is injective. This is clear on
maximal divisible subgroups, so it suÆces to show that TRn

2 (AjK; p) is uniquely
divisible. We show inductively that the p-adic homotopy group TRn

2 (AjK; p;Zp)
vanishes, the basic case n = 1 being established earlier. We must show that the
boundary map

@K;n : TR
n�1
3 (AjK; p;Zp)! hTR

n
2 (AjK; p;Zp)

is surjective.

We �rst consider the case n = 2. In the diagram of W2(A)-modules

TR1
3(AjK; p;Zp)

@K;2
//

Æ
����

hTR
2
2(AjK; p;Zp)

Æ

��

TR1
2(k; p)

@k // //
hTR

2
1(k; p);

the lower horizontal map and the left hand vertical map are both surjections. In-
deed, for the former, this was proved in [16], and for the latter, it follows from the
fact, proved in [22], that TR1

2(A; p;Zp) is trivial. The upper right hand group Q is a
quotient of theW2(A)-moduleM = F �(!1

(A;M)=p). We claim thatM is annihilated

by the ideal I = VW2(A) + pW2(A). Indeed, as an abelian group M is p-torsion
and FV = p. It follows that also Q is annihilated by I, and we can therefore view
it as a module over the quotient ring W2(A)=I. This ring is isomorphic to A=pA,
the isomorphism given by

W2(A)=I
�
�! A=pA; a+ I 7! R(a) + pA;

and we let g : A=pA ! W2(A)=I denote the inverse. As an A=pA-module, Q
is generated by the class [d log �]2. The image of this class under the right hand
vertical map is a generator �1 of theW2(A)-module hTR

2
1(k; p), which is isomorphic

to k. We now pick � 2 TR1
3(AjK; p;Zp) such that Æ(@K;2(�)) = �1. The di�erence

� = @K;2(�)� [d log �]2 is then in the kernel of the Æ, and we can therefore write

� = g(x�) � [d log �]2;
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for some x 2 A=pA. We then have

g(1 + x�) � [d log �]2 = @K;2(�);

and since (1 + x�) 2 (A=pA)�,

[d log �]2 = (g(1 + x�)�1) � @K;2(�):

We would like to know that the map of units

W2(A)
� ! (W2(A)=I)

�

is a surjection. This will follow if we know that the I-adic topology on W2(A) is
complete and separated. But the formula

V (x) � V (y) = V (FV (x)y) = V (pxy) = pV (xy)

implies that the I-adic and p-adic topologies on W2(A) coincide, and the p-adic
topology is complete and separated. So we can �nd a unit u 2 W2(A)

� such that
u+ I = g(1 + x�). Since @K;2 is W2(A)-linear, we have

[d log �]2 = u�1@K;2(�) = @K;2(u
�1�);

which concludes the proof for n = 2.

We proceed by induction, and consider the diagram

TRn�1
3 (AjK; p;Zp)

@K;n
//

F
����

hTR
n
2 (AjK; p;Zp)

N //

F

��

TRn
2 (AjK; p;Zp)

F

��

TRn�2
3 (AjK; p;Zp)

@K;n�1
// //
hTR

n�1
2 (AjK; p;Zp)

N // TRn�1
2 (AjK; p;Zp):

Inductively, the map @K;n�1 is surjective, and the left hand vertical map F is sur-
jective by the lemma. Moreover, the kernel of the middle vertical map is gen-
erated as a Wn(A)-module by the class pn�2[d log �]n. It therefore suÆces to
show that this class is in the image of @K;n in the top row, and this, in turn,
will follow if we show that the class [d log �]n is in the image of @K;n. To see
this, we pick � 2 TRn

3 (AjK; p);Zp) such that @K;n�1(F (�)) = [d log �]n�1. Then
� = @K;n(�)� [d log�]n is in the kernel of the middle vertical map, so we can write
� = x � pn�2d log �, for some x 2Wn(A). But then

(1 + pn�2x)[d log �]n = @K;n(�);

and hence

[d log �]n = (1 + pn�2x)�1@K;n(�) = @K;n((1 + pn�2x)�1�);

where the inverse exists since the p-adic topology on Wn(A) is complete and sepa-
rated. The proof is complete.

Addendum 3.3.7. The group TRn
2 (A; p) is uniquely divisible for all n.

Proof. It suÆces to show that TRn
2 (A; p;Zp) is trivial. We prove this by in-

duction, the basic case n = 1 being proved in [22]. Since TRn
2 (AjK; p;Zp) vanishes,

we have an exact sequence

TRn
3 (AjK; p;Zp)

Æn�! TRn
2 (k; p)! TRn

2 (A; p;Zp)! 0;
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and we thus must prove that the map Æn is surjective. We consider the diagram

TRn
3 (AjK; p;Zp)

Æn //

F

��

TRn
2 (k; p)

F
����

TRn�1
3 (AjK; p;Zp)

Æn�1
// // TRn�1

2 (k; p);

where the map Æn�1 is surjective by induction. It was proved in [16] that the left
hand vertical map F is a surjection whose kernel is equal to the image of the map

V n�1 : TR1
2(k; p)! TRn

2 (k; p):

Since the square

TR1
2(AjK; p;Zp)

Æ1 // //

V n�1

��

TR1
2(k; p)

V n�1

��

TRn
2 (AjK; p;Zp)

Æn // TRn
2 (k; p)

commutes and the top horizontal map is a surjection, the proof of the induction
step is complete.

Theorem 3.3.8. The canonical map

W
�
!i(A;M) ! TR�

i(AjK; p)

is an isomorphism, for i � 2.

Proof. The statement for i = 0, which has already been used, was proved in
[16, theorem F]. The proof for i = 1; 2 is by induction, the basic case,

!i(A;M)
�
�! �iT (AjK)

being proved earlier. In the induction step, we use the exact sequences of lemma
3.2.7 and proposition 3.3.6,

hWn !
i
(A;M)

//

��

Wn !
i
(A;M)

R //

��

Wn�1 !
i
(A;M)

//

�

��

0

0 //
hTR

n
i (AjK; p)

N // TRn
i (AjK; p)

R // TRn�1
i (AjK; p) // 0;

where for i = 2, the lower sequence is only exact modulo the Serre subcategory of
torsion W (k)-modules. When i = 1, the left hand vertical map is an isomorphism
by lemma 3.3.2, and hence the statement follows in this case. When i = 2, the left
hand vertical map is an epimorphism with torsion kernel. Since the domain and
range of the middle and right hand vertical maps are both divisible groups, the
statement follows.

Addendum 3.3.9. The connecting homomorphism

@ : TR1
2(AjK; p;Z=p) ! hTR

2
1(AjK; p;Z=p)

maps � to dV (1)� V (d log p).
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Proof. An application of lemma 3.3.10 below to the diagram obtained as the
smash product of the coeÆcient co�bration sequence

S0 p
�! S0 !Mp

@
�! S1

and the fundamental co�bration sequence

hTR
n(AjK; p)

N
�! TRn(AjK; p)

R
�! TRn�1(AjK; p)

@
�! �(hTR

n(AjK; p))

shows that the connecting homomorphism of the statement is equal to the opposite
of the connecting homomorphism associated with the diagram

0 //
hTR

2
1(AjK; p)

N //

p

��

TR2
1(AjK; p)

R //

p

��

TR1
1(AjK; p) //

p

��

0

0 //
hTR

2
1(AjK; p)

N // TR2
1(AjK; p)

R // TR1
1(AjK; p) // 0:

And by theorem 3.3.8, this diagram is canonically isomorphic to the diagram

0 // hW2!
1
(A;M)

N //

p

��

W2!
1
(A;M)

R //

p

��

W1!
1
(A;M)

//

p

��

0

0 // hW2 !
1
(A;M)

N // W2 !
1
(A;M)

R // W1 !
1
(A;M)

// 0:

The Bockstein maps � to d log p 2W1 !
1
(A;M), which is the image under the restric-

tion of d log p
2
2W2 !

1
(A;M). Using ghost coordinates, one veri�es easily that

p
2
+ V (1) = p(1 + pp

p�2

V (1));

and hence

pd log p
2
= (1 + pp�2V (1))�1(p

2
d log p

2
+ V (1)d log p

2
)

= (1� pp�2V (1) + : : : )(dp
2
+ V (d log p)):

Since dV (1) is p-torsion, dp
2
= �dV (1), and hence

pd log p
2
= V (d log p)� dV (1):

The statement follows.

Lemma 3.3.10. Given a 3� 3-diagram of co�bration sequences

E11
f11 //

g11

��

E12
f12 //

g12

��

E13
f13 //

g13

��

�E11

�g11

��

E21
f21 //

g21

��

E22
f22 //

g22

��

E23
f23 //

g23

��

�E21

�g21

��

E31
f31 //

g31

��

E32
f32 //

g32

��

E33
f33 //

g33

��

(�1)

�E31

�g11

��

�E11
�f11 // �E12

�f12 // �E13
�f13 // �2E11

and classes eij 2 ��Eij such that g33(e33) = �f12(e12) and f33(e33) = �g21(e21).
Then the sum f21(e21) + g12(e12) is in the image of ��E11 ! ��E22.
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Remark 3.3.11. One may show that the canonical map

W
�

1
R
�
�! TR�

1(R; p)

is an epimorphism for any ring R (with the trivial pre-log structure). In fact, we
do not know of a ring R for which this map is not an isomorphism.

3.4. We evaluate the di�erential graded k-algebra Wn !
�
(A;M) 
 Fp . Let � be

a uniformizer with minimal polynomial

�eK + p�K(�):

The modi�ed Verschiebung

V� : Wn�1(A)!Wn(A); V�(x) = �K(�n)V (x)

satis�es
FV�(x) = p�K(�)

px;

FdV�(x) = �K(�)
pdx:

Proposition 3.4.1. The di�erential graded k-algebra E� =Wn !
�
(A;M) 
Z Fp is

concentrated in degrees 0 and 1 and satis�es:

(i) the k-algebra E0
n is generated by the elements V s

� (�
i) with 0 � s < n and

i � 0 subject to the relations:

V s
� (�

i) � V t
�(�

j) = psV t
�(�(�)

pt�s( p
s+1

�1
p�1 �1)�p

t�si+j);

V s
� (�

eK+i) = V s+1
� (�pi);

(ii) the k-vector space E1
n is generated by the elements dV s

� (�
i) and V s

� (�
id log �)

with 0 � s < n and i � 0 subject to the relations that for vp(i� peK=(p� 1)) � s,

dV s
� (�

i) = p�s(i� peK=(p� 1)) � V s
� (�

id log �);

and for vp(i� peK=(p� 1)) < s, V s
� (�

id log �) = 0;

(iii) the E0
n-module structure on E1

n is given by

V s
� (�

i)dV t
�(�

j) =

8>><
>>:
psdV t

�(�K(�)
pt�s( p

s+1
�1

p�1 �1)�p
t�si+j) if s � t,

�iV t
�(�K(�)

pt�s( p
s+1

�1
p�1 �1)�p

t�si+jd log �);

jV s(�K(�)
ps�t( p

t+1
�1

p�1 �1)�i+p
s�tjd log �); if s � t,

V s
� (�

i)V t
�(�

jd log �) =

8<
:p

sV t
�(�K(�)

pt�s( p
s+1

�1
p�1 �1)�p

t�si+jd log �); if s � t,

ptV s
� (�K(�)

ps�t( p
t+1

�1
p�1 �1)�i+p

s�tjd log �); if s � t.

Proof. As a graded k-vector space, E�n is generated by the monomials in the
variables V s(�i), dV s(�i) and V s(�id log �) with 0 � s < n and i � 0. Indeed, if
a 2 k then

V s(a�i) = '�s(a)V s(�i)

and the operator F applied to any of the elements above is expressible as a linear
combination of these elements. Since �K(�) is a unit, we may instead use the
elements V s

� (�
i), dV s

� (�
i) and V s

� (�
id log �) as our generators. Part (i) was proved

in proposition 3.1.3 above.
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Let t = vp(i�peK=(p�1)). For t � s, p�s(i+peK(p
s�1)=(p�1)) is an integer,

and iterated use of the second relation in (i) shows that

V s
� (�

i) = �p
�s(i+peK

ps�1
p�1 ):

The �rst relation in (ii) easily follows. Moreover, if t < s then up to a unit,

V t
�(�

id log �) = dV t
�(�

i);

and hence

V s
� (�

id log �) = V s�t
� dV t

�(�
i) = 0:

Finally, di�erentiating the �rst relation in (i), we get

dV s
� (�

i) � V t
�(�) + V s

� (�
i) � dV t

�(�) = psdV t
�(�(�)

pt�s( p
s+1

�1
p�1 �1)�p

t�si+j);

and rewriting the �rst term on the left

V t
�(F

tdV s
� (�

i)�j) = iV t
�(�K(�)

pt�s( p
s+1

�1
p�1 �1)�p

t�si+jd log �);

the �rst case in (iii) follows. The remaining cases are proved similarly. It remains
to prove that (ii) give all relations in E1

n. From (ii) is follows that

grsE1
n = k



dV s

� (�
i)
�� 0 � i < eK ; vp(i�

peK
p�1 ) � s

�
�

k


V s
� (�

id log �)
�� 0 � i < eK ; vp(i�

peK
p�1 ) > s

�
;

which implies that that E1
n is an neK-dimensional k-vector space. We will prove in

paragraph 6 that this is indeed the case, and hence there are no further relations.

4. Tate cohomology and the Tate spectrum

4.1. Let k be a commutative group ring and let G be a �nite group. By
complexes we mean Z-graded chain complexes of left kG-modules with di�erential
of degree �1. If X and Y are two complexes, the tensor product X 
Y is given by

(X 
 Y )n =
M

p+q=n

Xp 
 Yq; d(x
 y) = dx
 y + (�1)jxjx
 dy;

and the complex of k-homomorphism Hom(X;Y ) is given by

Hom(X;Y )n =
Y
p2Z

Hom(Xp; Yn+p); d(f(x)) = (df)(x) + (�1)jf jf(dx):

We recall that Z0Hom(X;Y ) is the set of chain maps from X to Y and that
H0Hom(X;Y ) is the set of chain homotopy classes of chain maps from X to Y .
The adjunction and twist isomorphisms are

� : Hom(X 
 Y; Z)! Hom(X;Hom(Y; Z)); �(f)(x)(y) = f(x
 y);


 : X 
 Y ! Y 
X; 
(x
 y) = (�1)jxjjyjy 
 x:

The mapping cone Cf of a chain map f : X ! Y is the complex with

(Cf )n = Yn �Xn�1; d(y; x) = (y � f(x);�dx);

and the cokernel of the inclusion i : Y ! Cf is the suspension �X,

(�X)n = Xn�1; d�X(x) = �dX(x):
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Let @ : Cf ! �X be the canonical projection. Then the category of complexes
and chain homotopy classes of chain maps is a triangulated category with the
distinguished triangles

X
f
�! Y

i
�! Cf

@
�! �X:

We recall that if X
f
�! Y

g
�! Z is a short exact sequence of complexes then the

projection p : Cf ! Z, p(y; x0) = g(y), is a quasi-isomorphism and the composite

HnZ
p�
 ��
�

HnCf
@��! Hn�X = Hn�1X

coincides with the connecting homomorphism. The triangulation is compatible with
the closed structure in the sense that

�(X 
 Y ) = �X 
 Y

and that if W is a complex and X
f
�! Y

g
�! Z

h
�! �X is a triangle, then so are

X 
W
f
1
��! Y 
W

g
1
��! Z 
W

h
1
��! �X 
W

W 
X
1
f
��!W 
 Y

1
g
��!W 
 Z

eÆ(1
h)
�����! �W 
X;

where e : W 
 �X ! �W 
X is the canonical map, e(w 
 x) = (�1)jwj(w 
 x).
Given f : X ! Y and a complex W , we de�ne an isomorphism

� : W 
 Cf
�
�! CW
f ; �(w 
 (y; x0)) = (w 
 y; (�1)jwjw 
 x0):(4.1.1)

Let NG 2 kG be the norm element de�ned as the sum of all the elements of G.
For every left kG-module M , mulplication by NG de�nes a map

NG : MG !MG;

where MG = k 
G M and MG = Hom(k;M)G are the coinvariants and invariants
of M , respectively. We note that for left kG-modules M and N ,

(M 
N)G = c�M 
kG N;

where c�M denotes the right kG-module with m � g = g�1m.

We de�ne the Tate cohomology of G with coeÆcients in the left G-module M
as follows. Let � : P ! k be a resolution of k by �nitely generated projective left
kG-modules and let ~P be the mapping cone of �.

Definition 4.1.2. Ĥ�(G;M) = H��(( ~P 
Hom(P;M))G).

The triangle

P
�
�! k

i
�! ~P

@
�! �P(4.1.3)

and the quasi-isomorphism

c�P 
G M
�
 � (P 
M)G

N
�! (P 
M)G

�
�! (P 
Hom(P;M))G

identi�es

Ĥi(G;M) �=

(
Hi(G;M) if i � 1

H�i�1(G;M) if i � �1

and gives the exact sequence

0! Ĥ�1(G;M)! H0(G;M)
N
�! H0(G;M)! Ĥ0(G;M)! 0:
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In particular, the above de�nition agrees with the original one in terms of complete
resolutions. More explicitly, suppose that � : P̂ ! k is a complete resolution and
let P and P� be the complexes whose non-zero terms are Pi = P̂i, if i � 0, and
P�i = P̂i, if i < 0, respectively. Then � : P ! k is a resolution of k by �nitely
generated projective modules and there is a canonical triangle

P� ! P̂ ! P ! �P�:

Lemma 4.1.4. Each of the canonical maps

Hom(P̂ ;M)G ! ( ~P 
Hom(P̂ ;M))G ! ( ~P 
Hom(P;M))G

are quasi-isomorphisms.

Proof. The triangle (4.1.3) identi�es the mapping cones of the maps of the

statement with the complexes (�P 
Hom(P̂ ;M))G and (� ~P 
Hom(P;M))G, re-
spectively. Both are total complexes of double complexes. The �ltration after the
�rst tensor factor de�ne spectral sequences which converge strongly to the homology
of the total complexes. The E1-terms are

E1
s;t = Hs+t�1((Ps 
Hom(P̂ ;M))G) �= Ĥ�s�t�1(G;Ps 
M);

E1
s;t = Hs+t(( ~P 
Hom(P�s;M))G):

The �rst E1 vanishes because Ps
M is weakly projective, and the second because
Hom(P�s;M) is 
at and ~P is acyclic.

The cup product on group cohomology may be extended to a product

Ĥ�(G;M)
 Ĥ�(G;M 0)! Ĥ�(G;M 
M 0)(4.1.5)

in following way. The tensor product P 
 P is a projective resolution of k 
 k, so
we can choose a lifting P ! P 
 P of the canoncal isomorphism k ! k 
 k. We
also choose a chain map ~P 
 ~P ! ~P which extends k
k ! k. The product (4.1.5)
is then the map on homology induced from

( ~P 
Hom(P;M))G 
 ( ~P 
Hom(P;M 0))G ! ( ~P 
 ~P 
Hom(P 
 P;M 
M 0))G

! ( ~P 
Hom(P;M 
M 0))G;

where the �rst map is the canonical map and the second is induced from the chosen
quasi-isomorphisms. Since any two choices of liftings are chain homotopic, the
product is well de�ned and makes Ĥ�(G; k) a graded commutative associated ring

and Ĥ�(G;M) a graded module over this ring.

4.2. Let C be a cyclic group of order r and let g 2 C be a generator. We let
� : W ! k be the standard resolution which in degree s � 0 is a free kC-module on
a single generator xs with di�erential

dxs =

(
Nxs�1; s even,

(g � 1)xs�1; s odd,

and with augmentation �(x0) = 1. Then ~W is the complex which in degree s > 0
is a free kC-module on the generator ys = (0; xs�1) and in degree s = 0 is a trivial
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kC-module on the generator e = (1; 0). The di�erential is

dys =

8><
>:
�(g � 1)ys�1; s even,

�Nys�1; s > 1 odd.

�e s = 1

The dual of xs is the element x
�
s 2 Hom(Ws; k) given by x�s(g

ixs) = Æi;0. We note
that gi � x�n = (gixn)

� and that the map (gi)� : W �s !W �s maps x�s 7! g�ix�s. Thus

dx�s =

(
(g�1 � 1)x�s+1; s even,

Nx�s+1; s odd.

Lemma 4.2.1. Suppose that the order of C is odd and congruent to zero in k.
Then as a graded ring

Ĥ�(C; k) = �kfug 
 Skft; t
�1g

where t and u are the classes of e
Nx�2 and e
Nx�1, respectively. Moreover, the
classes ut�1 and t�1 are represented by the elements �Ny1
Nx�0 and Ny2
Nx�0,
respectively.

Proof. We �rst evaluate the homology of the complex

( ~W 
Hom(W;k))C = ( ~W 
DW )C :

This is the total complex of a double complex, and the �ltration after the �rst tensor
factor gives rise to a spectral sequence which converges strongly to the homology
of the total complex. We have

E1
s;t = Hs+t( ~Ws 
DW )C

�
�! Hs+t(Hom(W; ~Ws)

C);

which vanishes unless one of s and t are zero. Hence E2
s;t = E1s;t and it is easy to

see that if either s or t is zero, this is a free k-module of rank one generated by the
classes of e
Nx��t and Nys
Nx�0, respectively. Note that these elements are also
cycles in the total complex.

To evaluate the multiplicative structure, we choose liftings

	: W !W 
W

�: ~W 
 ~W ! ~W

of the canonical maps k ! k 
 k and k 
 k ! k, respectively:

	m;n(g
sxm+n) =

8>>><
>>>:

X
s�p<q<s

gpxm 
 gqxn m and n odd

gsxm 
 gs+1xn m odd, n even

gsxm 
 gsxn m even

and

�m;n(g
pym 
 gqyn) =

8>>><
>>>:

X
p�s<q<p

gsym+n m and n odd

Æp;q+1g
pym+n m odd, n even

Æp;qg
pym+n m even;

where in the �rst line the sum ranges over the gs between gp and gq�1, both
included, in the cyclic ordering of C speci�ed by the generator g. The sum is zero
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if and only if p = q. The map 	 induces a product map on the dual DW given by
the composite

	� : DW 
DW
�
�! D(W 
W )

D	
��! DW;

or

	�m;n(g
�px�m 
 g�qx�n) =

8>>><
>>>:
�

X
p�s<q<p

g�sx�m+n m and n odd

Æp;q+1g
�px�m+n m odd, n even

Æp;qg
�px�m+n m even:

We �nd that

(e
Nx�m) � (e
Nx�n) =

8<
:�

r(r � 1)

2
e
Nx�m+n m and n odd

e
Nx�m+n else

and

(Nym 
Nx�0) � (Nyn 
Nx�0) =

8<
:
r(r � 1)

2
Nym+n 
Nx�0 m and n odd

Nym+n 
Nx�0 else:

Moreover, the product

(e
Nx�2) � (Ny2 
Nx�0) = Ny2 
Nx�2

is homologous to e
Nx�0, which represents the multiplicative unit in the cohomol-
ogy ring. Indeed,

d(�(N)(y1 
 x�0) + �(N)(y2 
 x�1)) = �e
Nx�0 +Ny2 
Nx�2:

Hence Ny2 
Nx�0 represents the class t
�1. Finally, for any element � 2 kC,

(1
 �)�(N) = (��
 1)�(N);

where �� = c(�) is the antipode. Therefore, if � 2 kC is such that (g�1)� = r�N ,
e.g. � = 1 + 2g + � � �+ rgr�1, then

d((�
 1)�(N)(y2 
 x�0))

= �((g � 1)
 1)(�
 1)�(N)(y1 
 x�0)

� (1
 (�g � 1))(1
 ��)�(N)(y2 
 x�1)

= Ny1 
Nx�0 +Ny2 
Nx�1 � r�(N)(y1 
 x�0 + y2 
 x�1);

and hence the element Ny1 
 Nx�0 represents the class �ut�1 in the cohomology
ring.

When k is a perfect �eld of odd characteristic p and Cpn a cyclic group of order
pn, we get

Ĥ�(Cpn ; k) = �kfug 
 Skft; t
�1g;

with the classes u = un and t de�ned as above. In the Bockstein spectral sequence
the �rst non-zero di�erential is

�nun = 1:
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4.3. The stable category of G-spectra is a closed triangulated category. We
�x some conventions, compatible with the ones from section 4.1. As a model for
the G-stable category we use G-CW-spectra.

The cone of a spectrum X is the smash product

CX = [0; 1] ^X;

where we use 1 as the base point of the interval. If X is a CW-spectrum, we give
CX the product CW-structure, where [0; 1] is a a CW-complex as usual with the
1-cell oriented from 0 to 1. The mapping cone of a map of CW -spectra f : X ! Y
is the pushout

X
f

//

�0

��

Y

i2
��

CX // Cf

with the CW-structure determined from that on Y and CX. Collapsing the image
of i2 to the base point de�nes the map

@ : Cf ! S1 ^X = �X;

where S1 = [0; 1]=@[0; 1] with the induced CW-structure. The distiguished triangles
are then the sequences of the form

X
f
�! Y

i2�! Cf
@
�! �X:

With these de�nitions, the cellular chain functor throws the distinguished triangles
of CW-spectra on the distinguished triangles of chain complexes de�ned in 4.1.
Moreover, the isomorphism

W ^ CX

^1
��! C(W ^X)

induces an isomorphism
� : W ^ Cf

�
�! CW^f ;

which again is carried to the corresponding isomorphism of chain complexes by the
cellular chain functor.

For spectra X and Y , we have the external product

^ : �sX 
 �tY ! �s+t(X ^ Y )(4.3.1)

and de�ne the map

_ : �s+tF (X;Y )! Hom(��sX;�tY )(4.3.2)

as the adjoint of the composite

�s+tF (X;Y )
 ��sX
^
�! �t(F (X;Y ) ^X)

ev
�! �tY:

Let X be a CW-spectrum with an increasing �ltration fXsg by sub-CW-spectra.
Then the exact couple

Ds�1;t+1
i
�! Ds;t

j
�! Es;t

@
�! Ds�1;t

with

Ds;t(X) = �s+tXs

Es;t(X) = �s+t(Xs=Xs�1)
(4.3.3)
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gives rise to a spectral sequence whose abutment is the homotopy groups of X.
The spectral sequence converges conditionally in the sense of [1] if

S
Xs = X and

holim
 �

Xs ' �.

We next recall products following [24]. By a pairing from two exact couples
(D;E) and (D0; E0) to a third exact couple (D00; E00) one understands the following
structure: pairings

Ds;t 
D0s0;t0 ! D00s+s0;t+t0

Es;t 
 E0s0;t0 ! E00s+s0;t+t0
(4.3.4)

which satis�es the following conditions

(i) for all y 2 Ds;t and y0 2 D0s0;t0 ,

j00(yy0) = j(y)j0(y0); i(y)y0 = i00(yy0) = yi0(y0);

(ii) for all y 2 Ds;t, x 2 Es;t, y
0 2 D0s0;t0 and x0 2 E0s0;t0 ,

@00(j(y)x0) = (�)jyjy@0(x0); @00(xj0(y0)) = @(x)y0;

(iii) for all x 2 Es;t, y 2 Ds�n�1;t+n, x
0 2 E0s0;t0 and y0 2 D0s0�n�1;t0+1 with

@(x) = in(y) and @0(x0) = in(y0), there exists y00 2 D00s+s0�n�1;t+t0+n such that

in(y00) = k(xx0); j(y00) = j(y)x0 + (�1)s+txj(y0):

We recall from [24] that such a pairing leads to pairings of the associated spectral
sequences, that is, pairings

Er
s;t 
 E0rs0;t0 ! E00rs+s0;t+t0 ;

for all r � 1, which satis�es the Leibnitz rule

dr(xx0) = drxx0 + (�1)jxjxdrx0:

Here and above jxj denotes the total degree of x.

We return to the spectral sequence associated with a CW-spectrum �ltered by
sub-CW-spectra. If X and X 0 are two CW-spectra with such �ltrations, we give
the smash product X ^X 0 the usual product �ltration

(X ^X 0)n =
[

s+s0=n

Xs ^X
0
s0 :

with �ltration quotients

(X ^X 0)n=(X ^X
0)n�1 =

_
s+s0=n

Xs=Xs�1 ^Xs0=Xs0�1:

The external product (4.3.1) and the inclusions

Xs ^X
0
s0 ! (X ^X 0)s+s0

Xs=Xs�1 ^X
0
s0=X

0
s0�1 ! (X ^X 0)s+s0=(X ^X

0)s+s0�1

then gives rise to pairings

Ds;t(X)
Ds0;t0(X
0)! Ds+s0;t+t0(X ^X

0);

Es;t(X)
 Es0;t0(X
0)! Es+s0;t+t0(X ^X

0):
(4.3.5)
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Indeed, it is straightforward to verify that the requirements listed above are satis�ed
such that one has an external paring of spectral sequences. For example to check
condition (iii), we note that by assumption the elements x and x0 are represented
by maps

x : (D; @D)! (Xs; Xs�n�1); x0 : (D0; @D0)! (X 0s0 ; X
0
s0�n�1);

where D and D0 are disks of dimension s + t and s0 + t0, respectively. Then y00 is
the homotopy class of the composition

@D �D [D � @D ! Xs�n�1 ^X
0
s0 [Xs �X 0s0�n�1 ! (X ^X 0)s+s0�n�1:

A �ltration preserving product map X ^X ! X gives rise to an internal product
in the spectral sequence and all di�erentials will act as derivations for this product.
If the product on X is associative, commutative or unital, the same holds for the
internal product in the spectral sequence. Here commutativity in the spectral
sequence is up to the usual sign.

4.4. Let G be a �nite group and let E be a free contractible G-CW-complex
with �nitely many cells in each dimension. We de�ne ~E to be the mapping cone of
the projection pr : E+ ! S0 which collapses E to the non-base point of S0. Thus
we have the distinguished triangle

E+
pr
�! S0 ! ~E

@
�! �E+:

We let P and ~P be the cellular complexes of E and ~E with coeÆcients in a com-
mutative ground ring k. We recall that taking cellular chains of the triangle above
gives the distinguished triangle

P
pr
���! k ! ~P ! �P

in the category of chain complexes.

The Tate spectrum of a G-spectrum T was de�ned in section 1.1 to be

Ĥ (G;T ) = ( ~E ^ F (E+; T ))
G:

Given two G-spectra T and T 0 indexed on U , we de�ne a pairing

Ĥ (G;T ) ^ Ĥ (G;T 0)! Ĥ (G;T ^ T 0)(4.4.1)

as follows. Choose a cellular G-homotopy equivalence E+ ! E+^E+ and a cellular

G-homotopy equivalence ~E ^ ~E ! ~E which extends the canonical isomorphism
S0 ^ S0 ! S0. Any two equivalences are G-homotopic. The pairing is then given
by

( ~E ^ F (E+; T ))
G ^ ( ~E ^ F (E+; T ))

G ! ( ~E ^ ~E ^ F (E+ ^ E+; T ^ T
0))G

! ( ~E ^ F (E+; T ^ T
0))G;

where the �rst map is the canonical map and the second is induced from the chosen
G-equivalences. If T is a G-ring spectrum, the composition of the external product
with the map of Tate spectra induced from the product map on T , makes Ĥ (G;T )
a ring spectrum. Moreover, this is a homotopy associative, homotopy commutative
or unital ring spectrum if T is G-homotopy associative, G-homotopy commutative
or unital, respectively.
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The CW-�ltrations of E and ~E gives rise to a double �ltration of the Tate
spectrum. De�ne

Xr;s = ~Er ^ F (E=E�s�1; T )

Yr;s = ~Er= ~Er�1 ^ F (E=E�s�1; T )

Zr;s = ~Er ^ F (E�s=E�s�1; T )

Wr;s = ~Er= ~Er�1 ^ F (E�s=E�s�1; T )

Given a G-spectrum X, we let �X
�
�! X be a functorial G-CW-substitute for X.

In order to turn the �ltration above into a �ltration by G-CW-subspectra, we let

�Xr;s = holim
�!

�Xr0;s0 ;

where the homotopy colimit runs over all 0 � r0 � r and s0 � s � 0. There are
canonical weak equivalences �Xr;s

�
�! Xr;s and �Xr;s is a sub-G-CW-spectrum of the

G-CW-spectrum �X = �X1;0. The �xed set of �X is equivalent to the Tate spectrum.
We then let

�Yr;s = �Xr;s= �Xr�1;s

�Zr;s = �Xr;s= �Xr;s�1

�Wr;s = �Xr;s= �Xr�1;s [ �Xr;s�1

and de�ne
�Xn =

[
r+s�n

�Xr;s � �X:

The exact couple 4.3.3 associated with the �ltration f �Xng de�nes a spectral se-
quence that approximates the homotopy groups of the Tate spectrum.

Lemma 4.4.2. There is a canonical isomorphism of complexes

E1
�;t
�= ( ~P 
Hom(P; �tT ))

G

and hence E2
s;t
�= Ĥs(G;�tT ).

Proof. The inclusions �Xr;s ! �Xr+s induces an isomorphism_
r+s=n

�Wr;s
�
�! �Xn= �Xn�1

and the boundary map

�Xn= �Xn�1 ! � �Xn�1 ! �( �Xn�1= �Xn�2)

maps the summand �Wr;s to the summands � �Wr�1;s and � �Wr;s�1 by the maps

@0 : �Wr;s ! ��Yr;s�1 ! � �Wr;s�1;

@00 : �Wr;s ! � �Zr�1;s ! � �Wr�1;s

respectively. We identify

�r+s+t �Wr;s
�= ( ~Pr 
Hom(P�s; �tT ))

G(4.4.3)

in the following way. For any pair of G-spectra X and Y , we have the canonical
map

��((X ^ Y )
G)! (��(X ^ Y ))

G;
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and this is an isomorphism if, say, X is a wedge of free G-cells. The isomorphism
(4.4.3) is then the composite the inverse of this map, when X = ~Er= ~Er�1 and
Y = F (E�s=E�s�1; T ), and of the map of G-�xed sets induced from the composite

�r+s+t( ~Er= ~Er�1 ^ F (E�s=E�s�1; T ))
^
 � �r( ~Er= ~Er�1)
 �s+tF (E�s=E�s�1; T )

h
_
���! Hr( ~Er= ~Er�1)
Hom(��s(E�s=E�s�1); �tT )

1
h�
 ���� Hr( ~Er= ~Er�1)
Hom(H�s(E�s=E�s�1); �tT ):

Here h is the Hurewitz homomorphism.

Finally, one can show that under the identi�cation 4.4.3, ��(@
0) and ��(@

00)
correspond to the di�erentials in the algebraic double complex.

The pairing (4.4.1) induces a pairing �X(T )^ �X(T 0)! �X(T ^ T 0), and since the

equivalences E+ ! E+ ^ E+ and ~E ^ ~E ! ~E were chosen cellular, this pairing
preserves the �ltration by the subspectra f �Xng. Accordingly, the product maps
(4.3.5) give rise to a pairing of spectral sequences.

Proposition 4.4.4. Let T and T 0 be two G-spectra indexed on U . Then the
pairing of Tate spectra (4.4.1) induces a pairing of the associated spectral sequences.
On E2-terms, this pairing corresponds to the pairing on Tate cohomology

H�(G;��T )
H�(G;��T
0)! H�(G;��(T ^ T

0))

under the isomorphism of lemma 4.4.2. In particular, if T is a G-homotopy asso-
ciative G-ring spectrum, then E2 �= Ĥ�(G;��T ) as a bi-graded ring.

Proof. The equivalences E+ ! E+ ^ E+ and ~E ^ ~E ! ~E induces chain
maps P ! P 
 P and ~P 
 ~P ! ~P which lifts the canonical maps k ! k 
 k and
k
k ! k, respectively. Now suppose T and T 0 are two G-spectra indexed on U and
consider the spectral sequences corresponding to the �ltrations f( �X(T )^ �X(T 0))ng
and f �X(T ^ T 0)ng. An argument analogous to the proof of the preceeding lemma
identi�es the E1-terms of the associated spectral sequences with the complexes

( ~P 
Hom(P; ��T )
 ~P 
Hom(P; ��T
0))G

and

( ~P 
Hom(P; ��(T ^ T
0)))G;

respectively. We claim that under these identi�cations, the pairing

�X(T ) ^ �X(T 0)! �X(T ^ T 0)

corresponds to the composition

( ~P 
Hom(P; ��T )
G 
 ~P 
Hom(P; ��T

0))G

! ( ~P 
 ~P 
Hom(P 
 P; ��T 
 ��T
0))G ! ( ~P 
Hom(P; ��(T 
 T 0)))G;

where the �rst map is canonical map of chain complexes (which involves sign

changes) and the second map is induced from the maps P ! P 
P and ~P 
 ~P ! ~P
and from the exterior product (4.3.1). This is straightforward to check. Similarly,
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under the isomorphism of lemma 4.4.2 and the analogous isomorphism above, the
pairing (4.3.5) corresponds to the canonical map (no sign changes)

( ~P 
Hom(P; ��T ))
G 
 ( ~P 
Hom(P; ��T

0))G

! ( ~P 
Hom(P; ��T )
 ~P 
Hom(P; ��T
0))G:

But this was our de�nition of the paring in Tate cohomology, see (4.1.5).

Finally, we show that the spectral sequence considered here is canonically iso-
mophic to the spectral sequence obtained from Greenlees' `�ltration' of ~E. In the
G-stable category we have the Spanier-Whitehead duals ~Er = D( ~E�r), r < 0,
which gives an upside-down sequence of maps which we splice together with the
skeleton �ltration together by means of the canonical maps

~E�1 = D( ~E1)! D(S0) ' S0 = ~E0

to obtain the Z-graded `�ltration' of ~E,

� � � ! ~Es�1 ! ~Es
~Es+1 ! : : :(4.4.5)

This gives rise to a complete resolution � : P̂ ! k as follows. As a complex

(�P̂ )s = Hs( ~Es [ C ~Es�1)

with di�erential

Hs( ~Es [ C ~Es�1)! Hs(� ~Es�1)
�
 � Hs�1( ~Es�1)! Hs�1(Es�1 [ C ~Es�2);

and the structure map � : P̂ ! k is given by the composite

P̂0 = H1( ~E1 [ C ~E0)! H1(�E0)
�
 � H0(E0) = k:

The map of triangles

P
� // k

�

��

// ~P

��

// �P

P // �P� // �P̂ // �P

de�nes a quasi-isomorphism of the mapping cones of the two middle vertical maps.

In the de�nitions of the spectra �Xr;s and �Xn, we may allow r to vary over all
integers. Then let

�X 0r;s = holim
�!

Xr;s; �X 0n =
[

r+s=n

�X 0r;s;

where the limit is over all r0 � r and s0 � s � 0, and where r is allowed to take
negative values. For non-negative values of r, the natural inclusion �Xr;s

�
�! �X 0r;s is

a weak equivalence. We have maps of �ltrations

f �Xngn2Z! f �X
0
ngn2Z f �X

0
r;0gr2Z;

where the �ltration on the right is Greenlees' �ltration. The proof of lemma 4.4.2
extends verbatim to show that the induced maps of E1-terms of the associated
spectral sequences are

( ~P 
Hom(P;M))G ! (�P̂ 
 Hom(P;M))G  (�P̂ 
Hom(k;M))G:
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Both maps are quasi-isomorphisms by an argument similar to the proof of lemma
4.1.4. Hence the maps of spectral sequences in question are isomorphisms from
E2 on. So the spectral sequence considered here is canonically isomorphic to the
spectral sequence obtained from Greenlees' �ltration, [9], [10].

4.5. Let again C be a cyclic group of order r and let g be a generator. As
our model for E, we choose

E = S(C1);

where the generator g acts on C by multiplication by e2�i=r. We give E the usual
C-CW-structure with one free cell in each dimension. The skeleta are

En =

(
S(C d) n = 2d� 1 odd

S(C d) � (C � 1) n = 2d even;
(4.5.1)

where in the latter case, we identify the join with its image under the canonical
homeomorphism S(C n) � S(C ) �= S(C n � C ). The attaching maps

�n : D
n � C ! En

are de�ned in even dimensions by the composite

D2d � C
�
�! D(C d)� C

�
�! S(C d) � (C � 1);

where � maps (z; gs) 7! (gs � z; gs) and � is the canonical projection. We de�ne

�1(x; g
s) = gs � e�i(x+1)=r

and let �2d+1 be the composite

D2d �D1 � C
�
�! D(C d)�D1 � C

1��1���! D(C d)� S(C )
�
�! S(C d) � S(C ):

We give D(C d) the complex orientation and D1 = D(R ) = [�1; 1] the standard
orientation from �1 to 1. We may then identify the cellular complex of E with the
standard complex W by the isomorphism

W
�
�! C�(E)(4.5.2)

which maps the generator xn 2 Wn to the image of the fundamental class under
the composite

Hn(D
n; Sn�1)

�0�! Hn(D
n � C; Sn�1 � C)

�n��! Hn(En; En�1):

Here �0 : D
n ! Dn � C maps z ! (z; 1).

The C-CW-structure on E induces one on ~E and the isomorphism (4.5.2) induces
an isomorphism of chain complexes

~W
�
�! C�( ~E):(4.5.3)

We de�ne a homeomorphism

~E
�
�! SC

1

(4.5.4)

by the map
CS(C1)+ [ S

0 ! D(C1)=S(C1)

which sends t ^ z 7! tz. Note that under this homeomorphism, the orientation of
the cells in ~E corresponds to the complex orientation of SC

1

. In particular, the
composite

H2(S
C )

�
 � H2( ~E2)

pr
���! H2( ~E2; ~E1)

�
 � ~W2
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maps the fundamental class [SC ] to the class Ny2.

We consider the B-operator. Let T be the space S(C ) of complex numbers of
length one considered as a Lie group and identify C � T with the subgroup of rth
roots of unity. Our model for EC is then also a model for ET, and moreover, the
action

� : T � E ! E

is C-cellular, when we give T the C-CW-structure of S(C ) = E1. The induced

action on ~E, we remember, is given by the composite

T+ ^ ~E = T+ ^ Cpr
�
�! CT+^pr

C�
��! Cpr = ~E;

where pr : E+ ! S0 is the projection. The cellular complex of T is a di�erential
graded Hopf algebra � = ZC 
 �fBg. The di�erential maps B to (g � 1) � 1, B is
primitive, the coproduct on g 2 C is g 
 g, and the antipode is c(B) = �B. The
maps induced from actions

�
W !W; �
 ~W ! ~W;(4.5.5)

are given by

B � xs =

(
xs+1 s even

0 s odd
B � ys =

(
0 s even

�ys+1 s odd

For any T-space X, let jXj denote the underlying non-equivariant space. The

C-CW-�ltration of T and double �ltration of ( ~E ^ F (E+; T ))
C gives rise a triple

�ltration of the smash product. If we turn these into single �ltrations, as we did
earlier, then the action is a �ltration preserving map

jTj+ ^ i
�( ~E ^ F (E+; T ))! i�( ~E ^ F (E+; T ));

which is T-equivariant because T is commutative. In particular, it restricts to
a �ltration preserving map of C-�xed sets, and this in turn induces a �ltration
preserving map

T=C+ ^ i
�(E+ ^ T )

C ! i�(E+ ^ T )
C :

We evaluate the map of the spectral sequences associated with these �ltrations.
Under the canonical identi�cations, the map of E1-terms induced from the action,
is then given by

�C 
 ( ~W 
Hom(W;��T ))
C ! ( ~W 
Hom(W;��T ))

C ;

where �C = �fBg and ��T is a trivial �-module. When T is a T-ring spectrum,
the class B 
 Nx�0 is an in�nite cycle in the spectral sequence on the left. Hence
the spectral sequence on the right becomes a spectral sequence of �C -algebras. The
class B 2 H1(T+) is the Hurewicz image of � 2 �

S
1 (T+), and exterior multiplication

by � composed with the action

T+ ^ Ĥ (C; T )! Ĥ (C; T )

induces the di�erential d : ��Ĥ (C; T )! ��+1Ĥ (C; T ).

Proposition 4.5.6. Let T be a T-ring spectrum. Then the spectral sequence

E2 = Ĥ�(C;��T )) ��Ĥ (C;T )
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is a spectral sequence of �C-algebras. If a 2 ��Ĥ (C;T ) is represented by an in�nite
cycle z 2 E1

s;t such that B � z 2 E1
s;t is non-zero, then B � z is an in�nite cycle and

represents the class of Ba 2 ��Ĥ (C;T ).

Let k be a perfect �eld of characteristic p > 0 and let T (k) be the topological
Hochschild spectrum of k. Then

���T (k) = �kf�g 
 Skf�g;

where the classes � 2 ��1T (k) and � 2 ��2T (k) are characterized by �� = 1 and
d� = �. Here, we remember, ��� = ��(�;Z=pZ).

Corollary 4.5.7. The image of the classes � and � under the map induced from

�̂ : T (k)! Ĥ (Cp;T (k))

are represented by the in�nite cycles ut�1
1 2 E2
1;0 and t

�1
1 2 E2
2;0, respectively.

Proof. Recall from section 1.1 that �̂ is de�ned as the composite

T (k)
r
 �
�

��Cp(
~E ^ T )Cp ! ��Cp(

~E ^ F (E+; T ))
Cp :

Both maps are T-equivariant, so �̂ commutes with the B-operator. It of course also
commutes with the Bockstein operator. Now

B � (�Ny1 
Nx�0) = �N(B � y1)
Nx�0 +Ny1 
N(B � x�0) = Ny2 
Nx�0;

so by the proposition, d(ut�1) = t�1. Since also �(ut�1) = 1, we are done.

Proposition 4.5.8. Let T be a T-spectrum and suppose the order of C is divis-
ible by p. Then the d2-di�erential in the Tate spectral sequence

Ê2(C; T ) = Ĥ�(C; Fp)
 ��(T;Z=p) ) ��(Ĥ (C; T );Z=p)

is given by

d2(
 
 �) = 
t
 d�:

Here t is the generator of Ĥ2(C; Fp) from lemma 4.2.1, and d : ��(T;Z=p) !
��+1(T;Z=p) is the B-operator.

Proof. We consider the T-Tate spectrum

Ĥ (T; T ) = ( ~E ^ F (E+; T ))
T;

where again E = S(C1). There is a spectral sequence

Ê2(T; T ) = Sft�1g 
 ��(T;Z=p) ) ��(Ĥ (T; T );Z=p);

where t has bi-degree (�2; 0), and it was proved in [14, lemma 1.4.2] that the d2-
di�erential in this spectral sequence is given the formula of the statement. There
is a natural map of spectral sequences

Ê�(T; T ) ! Ê�(C; T );

which on E2-terms is given by the obvious inclusion. Now every C-spectrum T is a
module C-spectrum over the sphere C-spectrum SC , and it will therefore be enough
to know that the class u1 
 1 is a d2-cycle in the spectral sequence E�(C; SC). But
�1(SC ;Z=p) vanishes for p odd, and hence d2(u1
 1) is zero for degree reasons.
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5. The Tate spectral sequence for T (AjK)

5.1. Let L be a �nite and totally rami�ed extension K, and let B be the
integral closure of A in L. Then B is a complete discrete valuation ring with
fraction �eld L and residue �eld k. Let �K and �L be uniformizers of A and B,
respectively. Then the minimal polynomial of �L over K has the form

�L=K(�L) = �
eL=K
L + �K�L=K(�L);

where �L=K(x) is a polynomial over A of degree < eL=K and �L=K(0) 2 A
�. More-

over, the canonical map

A[�L]=(�L(�L=K))
�
�! B

is an isomorphism. When K = K0 is the fraction �eld of W (k), we will always use
�K0

= p and write write �L(�L) instead of �L=K0
(�L).

Lemma 5.1.1. Suppose that �p � K. Then a choice of uniformizer �K 2 A and
of a generator � 2 �p determines a unique polynomial uK(x) 2 A[x] of degree < eK
such that

u(�K)
p�1 = �K(�K):

Moreover in !(A;M),

d log � = ��
e=(p�1)
K u(�K)

�1d log p:

Proof. Let f; g 2 Zp [[x]] be the power series given by

f(x) = px+ xp;

g(x) = (1 + x)p � 1:

Then there exists a unique power series '(x) 2 Zp [[x]] such that

f('(x)) = '(g(x));

'(x) � x mod (x2);

see e.g. [31, x3, proposition 5]. If � 2 �p is a generator then '(� � 1) 2 A is a
(p� 1)st root of

�p = �eK�K(�K)
�1;

and we then de�ne uK(x) to be the unique polynomial of degree < eK such that

'(� � 1) = �e=(p�1)uK(�K)
�1:

To prove the second statement, note that

d'(� � 1) = '(� � 1)d log'(� � 1)

= �
e=(p�1)
K uK(�K)

�1 � (p� 1)�1d log(�p)

= ��
e=(p�1)
K uK(�K)

�1d log p:

Here we have used that d log(�p) = d log p and that the common class is p-torsion.
It thus suÆces to show that

d'(� � 1) = d log �:

By naturality, we may suppose that

K = Q p(�p) = Q p((�p)
1=(p�1));
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where as a uniformizer, we may take �K = ��1. In this case, !(A;M) is annihilated

by �p�1K , and since

d'(� � 1) = '0(� � 1)�d log �;

it will suÆce to show that

'0(x) �
1

1 + x
mod (xp�1);

or equivalently,

'(x) � log(1 + x) mod (xp):

But this follows from the uniqueness of '(x) and from the calculation

log(1 + g(x)) = log((1 + x)p) = p log(1 + x) = f(log(1 + x));

which takes place in Zp [x]=(x
p).

Addendum 5.1.2. Let L=K be a �nite and totally rami�ed extension. Then the
inclusion of valuation rings, i : A! B, maps

i(uK(�K)) = (��L=K(�L))
�eK=(p�1)uL(�L):

Proof. Since i('(� � 1)) = '(� � 1), the de�nition of uK(�K) and uL(�L)
gives

i�(�
eK=(p�1)
K uK(�K)

�1) = �
eL=(p�1)
L uL(�L)

�1:

On the other hand,

i�(�
eK=(p�1)
K uK(�K)

�1) = (��L=K(�L)
�1�

eL=K
L )eK=(p�1)i�(uK(�K)

�1);

and the stated formula now follows since eL=KeK = eL and since �
eL=(p�1)
L is a

non-zero-divisor in B.

5.2. We recall the Cartier operator. If k is a ring, if R is a k-algebra, and if
k ! k0 is a ring homomorphism, the base change of R along k ! k0 is the tensor
product R0 = k0 
k R viewed as a k0-algebra by multiplication in the �rst tensor
factor. In this situation, the canonical map

R0 
R 
�R=k
�
�! 
�R0=k0(5.2.1)

is an isomorphism, [25, p. 198].

If k is a ring of characteristic p > 0, we consider the base change of R along
the Frobenius ' : k ! k. This is again a k-algebra, which we denote R(1). The
canonical map

W : R! R(1); W (a) = 1
 a;

is a '-linear ring homomorphism. The relative Frobenius of R is the k-algebra
homomorphism

FR=k : R
(1) ! R; FR=k(x
 a) = xap:

The absolute Frobenius on R, given by FR(a) = ap, now factors as the composite

R
W
�! R(1) FR=k

���! R:

If we write R = k[x�]=(f�(x�)), then R(1) = k[x�]=(f
(1)
� (x�)), where f

(1)
� (x�) is

the Frobenius twist

f
(1)
� (x�) = 'k[x�](f�(x�));
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the map W is induced from 'k[x�], and the relative Frobenius from the k-algebra
map which sends x� to xp�.

In general, the de Rham complex 
�R=k is a graded R-algebra with a k-linear

derivation. But when k is of characteristic p > 0, we may view 
�R=k as a di�erential

graded R(1)-algebra via the relative Frobenius FR=k : R
(1) ! R, and hence, the

cohomology ring H�(
�R=k) is naturally an R(1)-algebra. Let

C�1R : 
�R=k !W �H�(
�R=k)

be the map of graded R-algebras given by

C�1R (a) = ap; C�1R (da) = ap�1da+ d(R):

This map is well-de�ned since

ap�1da+ bp�1db� (a+ b)p�1d(a+ b) = d
�ap + bp � (a+ b)p

p

�
:

The map C�1R adjoins to a map of graded R(1)-algebras

R(1) 
R 
�R=k ! H�(
R=k)

which composed with the inverse of the canonical isomorphism (5.2.1) yields the
(relative) inverse Cartier operator

C�1R=k : 

�
R(1)=k ! H�(
�R=k):

In degree zero, C�1R=k is induced by the relative Frobenius FR=k, and in degree one

has

C�1R=k(W�(da)) = ap�1da+ d(R):

The map C�1R=k is an isomorphism if R=k is smooth. Indeed, since the statement

is �etale local, we may assume that R = k[x1; : : : ; xn] is a polynomial algebra, and
it is easy in this case to evaluate both sides, compare [20, 7.2]. The inverse of
C�1R=k is called the (relative) Cartier operator and denoted CR=k. It satis�es that

for u 2 R�,

CR=k(u
�1du) =W�(u

�1du):

Indeed,

CR=k(u
�1du) = CR=k(u

�pup�1du) = CR=k(u
�p)CR=k(u

p�1du)

=W (u�1)W�(du) =W�(u
�1du):

Lemma 5.2.2. Suppose �(x) 2 k[[x]]� and write �0(x)=�(x) = a0+a1x+a2x
2+: : : .

Then api�1 = api�1.

Proof. We may assume that �(x) is a polynomial with �(0) 2 k�. The algebra
R = k[x][�(x)�1] is smooth over k and in 
R=k,

CR=k(�(x)
�1d�(x)) =W�(�(x)

�1d�(x)):

Hence the images of the two di�erentials in 
k[[x]]=k also agree. This is the statement
of the lemma.
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5.3. Let �K 2 A be a uniformizer. Then as a di�erential graded k-algebra

���T (AjK) �= Sf�; �Kg=(�
eK
K )
 �fd log �Kg;

where
d�K = �Kd log �K

d� = �d log p = (eKd log �K � d log �K(�K)):

We now suppose that �p � K and choose a generator � 2 �p. Let uK(x) be the
polynomial given by lemma 5.1.1, and de�ne �K 2 ��2T (AjK) by

�K = uK(�K)
�1�:

Then

���T (AjK) = Sf�K ; �Kg=(�
eK
K )
 �fd log �Kg;

and
d�K = �Kd log �K

d�K = eK�Kd log �K :

Indeed,

d(�K) = �uK(�K)
�1d log uK(�K) � �+ uK(�K)

�1 � �d log p

= ��Kd log uK(�K) + �K(eKd log �K � (p� 1)d log uK(�K))

= eK�Kd log �K :

The Bockstein homomorphism

�1 : ��2T (AjK)! �1T (AjK);

we remember, is injective, so we can de�ne the Bott element b 2 ��2T (AjK) by the
requirement that �1(b) = d log �, where � 2 �p is the chosen generator. Then

b = ��
eK=(p�1)
K �K :(5.3.1)

Indeed, by lemma 5.1.1,

�1(b) = d log � = ��
eK=(p�1)
K uK(�K)

�1d log p = �1(��
eK=(p�1)
K �K):

Let L=K be a �nite and totally rami�ed extension, and let i : A ! B be the
inclusion of valuation rings. Then the map

i� : ���T (AjK)! ���T (BjL)(5.3.2)

is given by

i�(�K) = ��L=K(�L)
�1�

eL=K
L ;

i�(d log �K) = eL=Kd log �K � d log �L=K(�L);

i�(�K) = (��L=K(�L))
eK=(p�1)�L:

Indeed, the �rst two equalities follows immediately from the de�nition of �L=K(�L),
and the last equality follows form addendum 5.1.2.
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5.4. Suppose that vp(eK) > 0 such that we may identify

j� : ���T (A)! ���T (AjK)

with the canonical map


A=Z
Z SFpf�g ! !(A;M) 
Z SFpf�g;

where the class � is determined by the requirement that the integral Bockstein
takes the value

�(�) = d log p = (�
eK�

eK�1
K

p�K(�K)
�
�0K(�K)

�K(�K)
)d�K :

Since the di�erential d(�K(�K)�) must vanish, we see that in ���T (A),

d� = � � (�
�0K(�K)

�K(�K)
d�K);

which in general is di�erent from �d log p.

The linearization map

L : ���T (A)! ���HH(A)

may be identi�ed with the canonical map


A=Z
Z SFpf�g ! 
A=Z
Z �Fpf�g:

To see this, we recall the calculation of ���HH(A) from [11]. Here, HH�(A=W ) is
calculated as the homology of the di�erential graded W -algebra

C�(A=W ) = A
W �W fd�Kg 
W �W fcKg

with the di�erential given by b(
s(cK)) = 
s�1(cK)�
0
K(�K)d�K and b(d�K) = 0.

Hence for vp(eK) > 0,

���HH(A) = A=pA
 �fd�Kg 
 �fcKg;

and the Bockstein � : ���HH(A)! HH��1(A=W ) maps

�(cK) =
�0K(�K)

p
d�K = (

eK
p
�eK�1K + �0K(�K))d�K :

This shows that
� = ��K(�K)

�1cK :

We proceed to evaluate the map induced from the reduction

�� : ���T (A)! ���T (A=pA);

or equivalently, to evaluate the class ��(�). The equivalence

T (k) ^N cy(�e)
�
�! T (A=pA)

gives rise to a canonical isomorphism of graded ��T (k)-algebras

��T (k)
 ��HH(A=pA)
�
�! ��T (A=pA)

whose composition with the linearization map

L : ��T (A=pA)! ��HH(A=pA)

is equal to the map induced from the augmentation ��T (k)! k.

For any HFp -module spectrum X, we have a canonical isomorphism

��X 
 �f�g
�
�! ���X;
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where � 2 ��1HFp is the unique class with �(�) = 1. We thus have a sum diagram

��X
i // ���X

�
//

r
yy

���1X

s
xx

where � is the integral Bockstein. The section s is given by multiplication by �, and
r is the induced retraction of the inclusion i. This applies in particular to T (A=pA)
and HH(A=pA).

It follows that we have a canonical isomorphism

��T (k)
 ��HH(A=pA)
 �f�g
�
�! ���T (A=pA);

and that under this isomorphism

��(�) = x
 1
 1 + 1
 y 
 1� 1
 z 
 �;

where x, y and z are the images of � under the composites

���T (A)! ���T (k)
r
�! ��T (k);

���T (A)
L
�! ���HH(A)

��
�! ���HH(A=pA)

r
�! ��HH(A=pA);

���T (A)
�
�! ��T (A)

��
�! ��T (A=pA)

L
�! ��HH(A=pA);

respectively. By what was said above, we have

y = ��K(�K)
�1cK ;

z = �(
eK�

eK�1
K

p�K(�K)
+
�0K(�K)

�K(�K)
)d�K ;

and we shall need to know that x = �. This is equivalent to the statement that in
the spectral sequence used in [22],

E2 = ��T (A;Tor
A
� (A=pA;A=pA))) ��T (A;A=pA);

the element � � �K(�K)
�1cK is a cycle.

Lemma 5.4.1. The reduction ���T (A)! ���T (k) maps � to �.

Proof. It follows from addendum 3.3.9 that the top horizontal map in the
diagram

��2T (A)
@A //

��

��1T (A)hCp

��

��2T (k)
@k // ��1T (k)hCp

maps � to dV (1) � V (d log p). This class, in turn, is mapped to dV (1) by the
reduction, and it thus remains to show that @k(�) = dV (1). To this end, we
consider the diagram

��1T (k)
@k //

d

��

(�1)

��0T (k)hCp

d

��

��2T (k)
@k // ��1T (k)hCp ;

which commutes up to a sign. An argument similar to the proof of addendum 3.3.9
shows that @k(�) = �V (1). But � = d�, and hence @k(�) = dV (1).
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The di�erential structure on ���T (A=pA) is given by

d� = �;

dcK =
eK
p
�eK�1K d�K � �;

and by the rule d(
s(cK)) = 
s�1(cK)dcK . It follows that the image of the element
t�K(�K)� under the map of spectral sequences

�� : Ê
�(Cpn ; A)! Ê�(Cpn ; A=pA)

is homologous to the element �tcK . Indeed,

��(t�K(�K)�) + tcK = t�K(�K)� + t�0K(�K)d�K � � = d2(�K(�K)�):

Proposition 5.4.2. Suppose that vp(eK) > n. Then the image of �K
eK=p

n

n
under the map

�̂A=pA : ���T (A=pA)! ���Ĥ (Cpn ; T (A=pA))

is represented in the spectral sequence Ê�(Cpn ; A=pA) by the cycle �tcK .

Proof. We have a natural decomposition_
s�0

T (A=pA; s)
�
�! T (A=pA);

and the class �̂A=pA(�K)
eK=p

n

n lies in the summand Ĥ (Cpn ; T (A=pA; eK)). It was
proved in [15] that there is a co�bration sequence

T (k) ^ S1
+

pr
�! T (k) ^ S1=Ce+

i
�! T (A=pA; eK)

@
�! �T (k) ^ S1

+:(5.4.3)

The homotopy groups modolu p are given by

���(T (k) ^ S
1
+) = ���T (k)
 kh�eK ; d(�

eK
K )i;

���(T (k) ^ S
1=Ce+) = ���T (k)
 kh�eK ; �

eK�1
K d�Ki;

���(T (A=pA; eK) = ���T (k)
 kh�eK�1K d�K ; cKi;

with the maps induced from the co�bration sequence being the obvious ones except
that @�(cK) = d(�eKK ). To see this, recall that cK 2 ~H2(N

cy(�eK ; eK);Z=pZ) is the

unique class whose integral Bockstein is (eK=p)�
eK�1
K d�K . But the diagram

0 // Zhd(�eKK )i //

p

��

Zh�eK�1K d�Ki //

p

��

Z=eKZh�eK�1K d�Ki //

p

��

0

0 // Zhd(�eKK )i // Zh�eK�1K d�Ki // Z=eKZh�eK�1K d�Ki // 0

shows that the connecting homomorphism

@ : ~H2(N
cy(�eK ; eK);Z=pZ) !

~H1(S
1
+;Z=pZ)

maps the element whose integral Bockstein is (eK=p)�
eK�1
K d�K to d(�eKK ). The

di�erential on cK vanishes since vp(eK) > 1. The map i induces a weak equivalence

Ĥ (Cpn ; T (k) ^ S
1=Ce+)

�
�! Ĥ (Cpn ; T (A=pA; eK));

and it is easy to see that i�1� (�̂A=pA(�K
eK=p

n

n
)) is represented in the spectral se-

quence

E2 = �fun; �g 
 Sft�1; �g 
 kh�eKK ; �eK�1K d�Ki ) ���Ĥ (Cpn ; T (k) ^ S
1=Ce+)
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by the cycle �eKK . Let

X ! Y ! Z ! �X

denote the co�bration sequence obtained by smashing (5.4.3) by the Moore spec-
trum Mp. We consider the 3� 3-diagram of co�bration sequences

��2Y
f11 //

g11

��

FS1(S3
+; Y )

f12 //

g12

��

Y
f13 //

g13

��

��1Y

�g11

��

��2Z
f21 //

g21

��

FS1(S3
+; Z)

f22 //

g22

��

Z
f23 //

g23

��

��1Z

�g21

��

��1X
f31 //

g31

��

FS1(S3
+;�X)

f32 //

g32

��

�X
f33 //

g33

��

(�1)

X

�g31

��

��1Y
�f11 // FS1(S3

+;�Y )
�f12 // �Y

�f13 // Y;

where the horizontal boundary maps fi3 are given by the di�erential d. We now
apply lemma 3.3.10 with

e33 = �eKK 2 �1(�X);

e12 = �eKK 2 �0(FS1(S3
+; Y ));

e21 = cK 2 �0(�
�2Z)

and get that f21(cK) + g12(�
eK
K ) is the in image of

g12f11 : �0(�
�2Y )! �0(FS1(S3

+; Z)):

The domain of this map is a one-dimensional k-vector space generated by the class
� = f13(�), so the map is zero. The proposition follows.

Corollary 5.4.4. Suppose that vp(eK) > n. Then the image of �K
eK=p

n

n
under

the map

�̂A : ���T (A)! ���Ĥ (Cpn ; T (A))

is represented in the spectral sequence Ê�(Cpn ; A) by the cycle t�K(�K)�.

Proof. We have already seen that the map

�� : Ê
3
s;�s(Cpn ; A)! Ê3

s;�s(Cpn ; A=pA)

takes t�K(�K)� to �tcK . Moreover, this map is a monomorphism for �2 � s � 0

and Ê3(Cpn ; A=pA) = E1(Cpn ; A=pA). Hence, �̂A(�K
eK=p

n

n
) cannot be repre-

sented by an element of Ê3
s;�s(Cpn ; A) with �1 � s � 0 but must be represented

by the element t�K(�K)� as stated.

5.5. The Tate spectral sequence

Ê2(Cpn ;K) = Ĥ�s(Cpn ; ('
n)���tT (AjK))) ���Ĥ (Cpn ; T (AjK));

is a spectral sequence of bi-graded k-algebras, when the abutment is given the
canonical k-algebra structure. Since k is perfect, we have

Ê2(Cpn ;K) = �fun; d log �Kg 
 Sf�K ; �; t
�1g=(�eKK );
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where the canonical generators un and t were de�ned earlier. Suppose that �p � K.
We choose a generator � 2 �p and let uK(x) be the polynomial from lemma 5.1.1.
It is convenient to consider the algebra generators

�K = u
(�n)
K (�K)

�1�;

�K = u
(�n)
K (�K)

p t;

where, we remember, u(s)(x) denotes the s-fold Frobenius twist of u(x). We note
the relations

�K�K = �
(�n)
K (�K)t�;

�K�
p
K = t�p:

The E2-term then takes the form

Ê2(Cpn ;K) = �fun; d log �Kg 
 Sf�K ; �K ; �
�1
K g=(�

eK ):

For integers a; r; d with 0 � r < eK and d � 0, de�ne

fa; r; dgK = (pa� d)eK=(p� 1) + r:

Then fa; eL=Kr; dgL = eL=Kfa; r; dgK and the map induced from the inclusion,

i� : Ê
2(Cpn ;K)! Ê2(Cpn ; L)

is given by

i�(�
a
K�

r
K�

d
K) = (��L=K(�L))

�fa;r;dgK �aL�
eL=Kr

L �dK ;

i�(d log �K) = (eL=K �
�0L=K(�L)�L

�L=K(�L)
)d log �L:

We also write �K0
= t and �K0

= �.

Theorem 5.5.1. Suppose either �p � K or K = K0. Then the non-zero di�er-
entials in the spectral sequence

Ê2(Cpn ;K) = �fun; d log �Kg 
 Sf�K ; �K ; �
�1
K g=(�

eK
K )

) ���Ĥ (Cpn ; T (AjK))

are given by

d2(
pv+1

�1
p�1 )(�aK�

r
K�

d
K) = � � (�K�K)

pv+1
�1

p�1 �1�K d log �K � �
a
K�

r
K�

d
K ;

d2(
pn+1

�1
p�1 )�1(un) = � � (�K�K)

pn+1
�1

p�1 �1�K ;

where in the �rst line v = vp(fa; r; dgK). The units � = �K(a; r; d) and � = �n are

given by � = p�vfa; r; dgKu
(v+1)(�Kv+1

)�1�v and � = u(n+1)(�Kn+1
)�n, where

�Ks
denotes the class �qK(�K�K)

m with ps = meK + q and 0 � q < eK , and where
�n and �v are units of Fp , independent of K.

The proof of theorem 5.5.1 occupies the rest of this paragraph. It will be nec-
essary to know to the structure of the Er-terms, given the di�erential structure of
theorem 5.5.1.
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Lemma 5.5.2. Suppose �p � K or K = K0, and assume that theorem 5.5.1 is
true for K when n = m. Let Eq = Eq(Cpm ;K). Then for 0 � s < m,

E2( p
s+1

�1
p�1 ) =

s�1M
v=1

�fumg 
 k


�aK�

r
K�

d
Kd log �K

�� vpfa; r; dgK= v; d < pv+1�1
p�1 � 1

�
� �fum; d log �Kg 
 k



�aK�

r
K�

d
K

�� vpfa; r; dgK� s
�
;

E1 =
m�1M
v=1

�fumg 
 kh�aK�
r
K�

d
Kd log �K j vpfa; r; dgK = v; d < pv+1�1

p�1 � 1i

� �fd log �Kg 
 kh�aK�
r
K�

d
K j vpfa; r; dgK � m; d < pm+1�1

p�1 � 1i;

where 0 � r < eK , d 2 N 0 and a 2 Z, and fa; r; dgK = (pa� d)eK=(p� 1) + r.

Proof. The class � = �(a; r; d) is a unit in the E2(pv+1�1)=(p�1)-term of the
spectral sequence, and it can therefore be ignored when evaluating the spectral
sequence. Assuming the result for s and that s+1 < n, theorem 5.5.1 implies that

E2( p
s+2

�1
p�1 ) = E2( p

s+1
�1

p�1 )+1;

and inductively, E2( p
s
�1

p�1 ) is given by the statement of the lemma. Indeed, this is

clear in the basic case s = 0. The di�erential d2(p
s+1�1)=(p�1) only a�ects the last

summand on the right hand side of the statement and does not involve the tensor
factor �fumg. If we rewrite

�fd log �Kg 
 kh�aK�
r
K�

d
K j vpfa; r; dgK � si =

kh�aK�
r
K�

d
K j vpfa; r; dg = si �

kh�aK�
r
K�

d
Kd log �K j vpfa; r; dgK = s; d � ps+1�1

p�1 � 1i �

kh�aK�
r
K�

d
Kd log �K j vpfa; r; dgK = s; d < ps+1�1

p�1 � 1i �

kh�aK�
r
K�

d
K j vpfa; r; dgK � s+ 1i;

the di�erential d2(p
s+1�1)=(p�1) clearly leaves the last two summands invariant. We

claim that this di�erentials maps the �rst summand isomorphically only the second
summand. Indeed,

(�K�K)
ps+1

�1
p�1 �1�K = �p

s+1

K (�K�
p
K)

ps�1
p�1

and vpfp
s+1; 0; 0gK > s.

Assuming that theorem 5.5.1 holds for K with n = m, we have

E2( p
m
�1

p�1 )+1 = E2( p
m+1

�1
p�1 )�1;

and the common value has already been determined. The di�erential

d2(
pm+1

�1
p�1 )�1um = �m � (�K�K)

pm+1
�1

p�1 �1�K
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vanishes on all but the last summand, which we rewrite

�fumg 
 kh�aK�
r
K�

d
K j vpfa; r; dgK � mi =

kh�aK�
r
K�

d
K j vpfa; r; dgK � m; d � pm+1�1

p�1 � 1i �

khum�
a
K�

r
K�

d
K j vpfa; r; dgK � mi �

kh�aK�
r
K�

d
K j vpfa; r; dgK � m; d < pm+1�1

p�1 � 1i:

The di�erential d2(p
m+1�1)=(p�1)�1 maps the second summand isomorphically onto

the �rst summand and leaves the last summand unchanged.

Proposition 5.5.3. Suppose that theorem 5.5.1 is valid for n � m, for K = K0

and for all K with vp(eK) > m. Then the theorem holds for n � m, for all K.

Proof. The proof is by induction on m. We �x a �eld K with vp(eK) � m
and assume, inductively, that theorem 5.5.1 is true for K when n < m. Making use
the map

F : Ĥ (Cpm ; T (AjK))! Ĥ (Cpm�1 ; T (AjK))

the only undetermined di�erentials are the d2q(�aK�
r
K�

d
K) where vpfa; r; dgK �

m�1 and q � (pm�1)=(p�1). Moreover, E2(pm�1)=(p�1)(Cpm ;K) is given by (the
proof of) lemma 5.5.2.

Let L=K be a totally rami�ed extension,

L = K[�L]=(�
eL=K
L + �L�L=K(�L));

and recall that the map induced from the inclusion,

i� : E
2q(Cpm+1 ;K)! E2q(Cpm+1 ; L);

is given by

i�(�
a
K�

r
K�

d
K) = (�L=K(�L))

�fa;r;dgK �aL�
eL=Kr

L �L;

i�(d log �K) = (eL=K �
�0L=K(�L)�L

�L=K(�L)
)d log �L:

Suppose that vp(eL) > m. Then by assumption, the di�erentials in Ê�(Cpm ; L) are
given by theorem 5.5.1, and we may thus calculate

d2(
pm�1
p�1 )(i�(�

a
K�

r
K�

d
K)) = d2(

pm�1
p�1 )((��L=K(�L))

�fa;r;dgK � �aL�
eL=Kr

L �dL);

where vpfa; r; dgK � m� 1. The formula fa; eL=Kr; dgL = eL=Kfa; r; dgK and our
assumption that vp(eL=K) � 1 implies that vpfa; eL=K ; dgL � m. It follows that

�aL�
eL=Kr

L �dL is an in�nite cycle in E2(pm�1)=(p�1)(Cpm ; L), and hence

d2(
pm�1
p�1 )(i�(�

a
K�

r
K�

d
K)) = d2(

pm�1
p�1 )((��L=K(�L))

�fa;r;dgK ) � �aL�
eL=Kr

L �dL:
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The di�erential on the right vanishes if vpfa; r; dgK > m�1. If vpfa; r; dgK = m�1,
we write �fa; r; dgK = pm�1l. Then

d2(
pm�1
p�1 )((��L=K(�L))

�fa;r;dgK ) = d2(
pm�1
p�1 )((��

(m�1)
L=K (�p

m�1

L ))l)

= l � (�
(m�1)
L=K (�p

m�1

L ))l�1 � (�(�
(m�1)
L=K )0(�p

m�1

L )) � d2(
pm�1
p�1 )(�p

m�1

L )

= �l � (�
(m�1)
L=K (�p

m�1

L ))l �
(�

(m�1)
L=K )0(�p

m�1

L )�p
m�1

L

�
(m�1)
L=K (�p

m�1

L )
� tp

m�1

v
pm�1

�1
p�1

1 d log �L

= �l � (��L=K(�L))
�fa;r;dgK � tp

m�1

v
pm�1
p�1

1 � i�(d log �K);

where the last identi�cation follows from lemma 5.2.2. It follows that

d2(
pm�1
p�1 )(i�(�

a
K�

r
K�

d
K)) = i�(p

�(m�1)fa; r; dgK � t
pm�1

v
pm�1

�1
p�1

1 d log �K � �
a
K�

r
K�

d
K)

= i�(� � (�K�K)
pm�1
p�1 �1�Kd log �K � �

a
K�

r
K�

d
K);

where � = �K(a; r; d) as de�ned in the statement of theorem 5.5.1. The domain
and range of the map

i� : E
2( p

m
�1

p�1 )(Cpm ;K)! E2( p
m
�1

p�1 )(Cpm ; L)

are given by lemma 5.5.2. We claim that the extension L=K can be chosen such
that this map is injective. Indeed, if we let �L=K(x) = x+ 1 then

i�(d log �K) = �
�p

m�1

L

�p
m�1

L + 1
d log �L;

and hence, up to a unit,

i�(�
a
K�

r
K�

d
K) = �aL�

eL=Kr+p
m�1

L �dLd log �L:

In order that i� be injective, we therefore need that eL=Kr+ pm�1 < eL. Since r �

eK � 1 and eL = eL=KeK this is equivalent to the requirement that eL=K � pm�1.

We also need vp(eL) > m, so if we let �L=K(x) = x+ 1 and eL=K = pm+1, theorem
5.5.1 will be valid for L by assumption and i� injective. It follows that

d2(
pm�1
p�1 )(�aK�

r
K�

d
K) = � � (�K�K)

pm�1
p�1 �1�Kd log �K � �

a
K�

r
K�

d
K

as desired. A similar argument shows that d2q(�aK�
r
K�

d
K) = 0 when (pm � 1)=(p�

1) < q < (pm+1�1)=(p�1), and �nally, the di�erential on um follows by comparison
with the spectral sequence for K = K0.

5.6. We are reduced to proving theorem 5.5.1 for K = K0 and for K � �p
with vp(eK) > n. We begin by constructing a number of in�nite cycles. Recall the
map of ring spectra

�̂K : T (AjK)Cpn�1 ! Ĥ (Cpn ; T (AjK)):

Lemma 5.6.1. For all K, the element d log �K 2 Ê
2(Cpn ;K) is an in�nite cycle

and represents the homotopy class �̂K(d log �Kn
).
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Proof. We consider the diagram

T (AjK)Cpn�1

�̂K
��

T (AjK)Cpn
Roo

�K

��

Fn

''OOOOOOOOOOOO

Ĥ (Cpn ; T (AjK)) H �(Cpn ; T (AjK))
Rhoo // T (AjK):

The modulo p homotopy groups of the lower middle term are approximated by the
spectral sequence

E2(Cpn ;K) = �fun; d log �Kg 
 Sf�K ; t; �g ! ���H
�(Cpn ; T (AjK));

and the lower left hand horizontal map induces the obvious embedding on E2-terms.
The lower right hand horizontal map is given by the edge homomorphism of this
spectral sequence. The maps R and Fn take the class d log �Kn+1

2 �0T (AjK)Cpn

to the classes d log �Kn
2 �0T (AjK)Cpn�1 and d log �K 2 �0T (AjK), respectively.

It follows that d log �K 2 E
2(Cpn ;K) survives the spectral sequence and represents

the homotopy class �K(d log �Kn+1
) 2 �0H

�(Cpn ; T (AjK)).

Proposition 5.6.2. Suppose that �p � K and let n < vp(eK). Then the ele-

ments �p
n

K and �K�K of Ê2(Cpn ;K) are in�nite cycles which represent the homo-

topy classes �̂K(�Kn
) and �̂K(�K

eK=p
n

n
), respectively.

Proof. We use the diagram

T (AjK)Cpn�1

�̂K
��

T (A)Cpn�1

�̂A
��

j�oo
pr
� // T (A=pA)Cpn�1

�̂ �A

��

Ĥ (Cpn ; T (AjK)) Ĥ (Cpn ; T (A))
j�oo

pr
� // Ĥ (Cpn ; T (A=pA));

and the explicit calculation in section 5.4 below of the right hand map, to show
that the images of the homotopy classes �Kn

; �K
e=pn

n
2 �0T (AjK)Cpn�1 under the

left hand vertical map are represented in the spectral sequence by the elements �p
n

K

and �K�K , respectively. In particular, these elements are in�nite cycles.

We shall see later that the proposition 5.6.2 is true, more generally, for n �
vp(eK).

Corollary 5.6.3. The element t�p = �K�
p
K 2 Ê2(Cpn ;K) is an in�nite cycle

and represents the image of the canonical generator v1 2 �2(p�1)(S
0) under the unit

map � : S0 ! Ĥ (Cpn ; T (AjK)).

Proof. Suppose that �p � K, let � 2 �p be a generator and let b 2 ��2T (AjK)Cpn�1

be the corresponding Bott element. Since Aut(�p) has order p � 1, the prod-

uct bp�1 2 ��2(p�1)T (AjK)Cpn�1 is independent of the choice of generator and is

equal to the image of the canonical generator v1 2 ��2(p�1)(S
0) under the unit map

� : S0 ! T (AjK)Cpn�1 . We show that bp�1 is represented in the spectral sequence

E2(Cpn ;K) = �fun; d log �Kg 
 Sf�K ; �K ; �Kg=(�
eK
K )

) ���H
�(Cpn ; T (AjK))
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by the element �K�
p
K = t�p. The Bott element is given by

b = ��
eK=(p�1)
K �K :

Indeed, this formula is valid in ��2T (AjK) by (5.3.1). If vp(eK) > n, we may write
this as

b = �(�p
n

K )eK=p
n(p�1)�K ;

and hence

bp�1 = (�p
n

K )eK=p
n

�p�1K :

The desired formula then follows from the multiplicative extension

(�p
n

K )eK=p
n

= �K�K

of proposition 5.6.2. Since �K�
p
K = t�p is in the image from Ê�(Cpn ; T (W jK0)),

the formula is valid for all K.

Proposition 5.6.4. Theorem 5.5.1 holds for n = 1.

Proof. The d2-di�erentials, given by Connes' operator, are generated from

d2�K = td log �K � �K ;

d2� = td log p � �:

When K = K0, we have

Ê3(Cp;K0) = �fu1; d log pg 
 Sft�1; �pg;

and for degree reasons, the �rst possible di�erential is

d2p+1u1 = �1 � t
p+1�p:

Comparing with Ê�(S1;K0), we see that d
2p+1t is trivial, and hence so is d2p+1(tp).

Thus

d2p+1(t�pu1) = �1 � t�
p:

If this di�erential was trivial, t�p would survive the spectral sequence and represent
the homotopy class v1 � 1. But Ĥ (Cp; T (W jK0)) is a module spectrum over the
generalized Eilenberg-MacLane spectrum T (W ) and is therefore itself a generalized

Eilenberg-MacLane spectrum. So multiplication by v1 on ���Ĥ (Cp; T (W jK0)) is
identically zero, and therefore, the di�erential on u1 must be non-zero, i.e. �1 2 F�p .
The spectral sequence collapses.

If �p � K and vp(eK) > 1, we get

Ê3(Cp;K) = �fu1; d log �Kg 
 Sf�pK ; �K ; �
�1
K g=(�

e
K):

Since t 2 Ê2(Cp;K0) is an in�nite cycle, then so is its image u
(1)
K (�pK)

�1�K 2

Ê2(Cp;K). And since also �pK is an in�nite cycle, and since uK(x) 2 k[[x]] is a
unit, it follows that �K is an in�nite cycle. Now by proposition 5.6.2, �K�K is an
in�nite cycle, and hence so is �K . Therefore the remaining non-zero di�erentials
are generated from the di�erential on u1. Again the spectral sequence collapses.

We have proved theorem 5.5.1 for n = 1, for K = K0 and for all K with
vp(eK) � 1. By proposition 5.5.3 it is therefore valid for n = 1, for all K.
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Theorem 5.6.5. For all K, and for i � 0, the map

�̂K : ��iT (AjK)
�
�! ��iĤ (Cp; T (AjK))

is an isomorphism.

Proof. Since both the domain and range of �̂K satis�es tame descent, it is
enough to prove the statement when �p � K. If �p � K and vp(eK) > 0 or if
K = K0,

E1(Cp;K) = �fd log �Kg 
 Sf�pK ; �K ; �
�1
K g=(�

e
K ; �

p
K);

and moreover, proposition 5.6.2 shows that there is a multiplicative extension

(�pK)
e=p = �K�K

in passing from E1(Cp;K) to the actual homotopy groups. Therefore, as a k-
algebra

���Ĥ (Cp; T (AjK)) = �f�̂K(d log �K)g 
 Sf�̂K(�K); ~�
�1
K g=(�̂K(�K)

eK );

where ~�K is a homotopy class lifting the element �K of the spectral sequence. It
follows that ���T (AjK) and the non-negatively graded part of ���Ĥ (Cp; T (AjK)) are

abstractly isomorphic k-algebras, and that the map �̂K is an isomorphism for i = 0
and i = 1. To show that �̂K is an isomorphism, for i � 0, it will therefore suÆce
to show that

�̂K0
: ��2T (W jK0)

�
�! ��2Ĥ (Cp; T (W jK0))

is an isomorphism. To this end, we consider the diagram

��2T (W jK0)
�1

�
//

�̂K0

��

��1T (W jK0)

�̂K0
�

��

��2Ĥ (Cp; T (W jK0))
�1 // ��1Ĥ (Cp; T (W jK0));

where the upper horizontal map and right hand vertical maps are isomorphisms.
Since all groups in the diagram are one-dimensional k-vector spaces, the left hand
vertical map and lower horizontal map must also be isomorphisms. This shows that
(5.6.5) is an isomorphism if �p � K and vp(eK) > 0 or if K = K0.

If �p � K and vp(eK) = 0,

E1(Cp;K) = �fd log �Kg 
 kh�aK�
r
K�

d
K j vpfa; r; dgK � 1; d < pi;

where 0 � r < eK , d 2 N 0 and a 2 Z. Again, the domain and range of �̂K
are abstractly isomorphic k-vector spaces. We choose an extension L=K such that
vp(eL) > 0 and such that

i� : ���T (AjK)! ���T (BjL)

is a monomorphism. The diagram

��iT (AjK) //
i� //

�̂K
��

���T (BjL)

�̂L�

��

���Ĥ (Cp; T (AjK))
i� // ���Ĥ (Cp; T (BjL))
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shows that for i � 0, �̂K is a monomorphism and hence an isomorphism.

Given theorem 5.6.5, a theorem of Tsalidis, [39], shows that the following more
general statement holds.

Addendum 5.6.6. For all K, for all n � 1, and for all i � 0, the map

�̂K : ��iT (AjK)Cpn�1 �
�! ��iĤ (Cpn ; T (AjK));

is an isomorphism.

5.7. We now prove theorem 5.5.1 for K = K0. This may be derived from the
spectral sequence for ���Ĥ (Cpn ; T (W )), which is known from [4]. We give, however,
a more direct and simpler proof.

Lemma 5.7.1. The element (t�)p
n

2 Ê2(Cpn ;K0) is an in�nite cycle and repre-
sents the homotopy class V (1).

Proof. Let K=K0 be an extension and recall that in �Wn(A) one has the
relation

�K
eK
n

= �K(�Kn
)V (1):

By proposition 5.6.2 we may choose the extension such that �K�K 2 Ê2(Cpn ;K)

is an in�nite cycle representing the class �̂K(�K
eK=p

n

n
). Recall that in

Ê2(Cpn ;K) = �fung 
 Sft�1g 
 ('n)����T (AjK)

we have
�K�K = �

(�n)
K (�K)t�

and hence
(�K�K)

pn = �K(�
pn

K )(t�)p
n

:

The left hand side represents �̂K(�K
eK
n
), and on the right hand, �p

n

K is an in�nite

cycle representing �̂K(�Kn
). Since �K(x) is a unit, it follows that also (t�)

pn is an
in�nite cycle which represents V (1) as claimed.

Theorem 5.7.2. In the spectral sequence

Ê2(Cpn ;K0) = �fun; d log pg 
 Sft�1; �g ) ���Ĥ (Cpn ; T (W jK0));

the di�erentials are multiplicatively generated from

d2(
pv+1

�1
p�1 )t�p

v�1

= �v � (t�)
pvd log p � v

pv�1
�1

p�1

1 ; 1 � v < n;

d2(
pn+1

�1
p�1 )�1(unt

�pn) = �n � v
pn�1
p�1

1 ;

where �v and �n are units of Fp , and from the fact that t�p and d log p are in�nite

cycles. Moreover, the cycles (t�)p
s+1

d log p, 1 � s < n, represents the homotopy
classes dV n�s(1).

Proof. The proof, of course, is by induction on n starting from the case n = 1
which was proved in proposition 5.6.4. So assume the statement for n � 1. We
�rst show that the classes dV n�s(1), 1 � s < n, are represented by the elements

(t�)p
s+1

d log p. For s < n� 1 this follows inductively from the formula

FdV n�s(1) = dV n�1�s(1)
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and from the fact that for degree reasons, (t�)p
s+1

d log p is an in�nite cycle. When
s = n� 1, one uses that in �Wn!

1
(W;M),

dV (1) = V (d logn�1 p) = V (1)d logn p;

which by lemma 5.7.1 is represented by (t�)p
n

d log p.

The maps F and V between Ê�(Cpn ;K0) and Ê�(Cpn�1 ;K0) give the stated

di�erential on t�p
i

for i < n� 2 and show that un is at least a d2(p
n�1)=(p�1)-cycle.

By lemma 5.5.2,

E2( p
n
�1

p�1 ) =
n�2M
v=1

�fung 
 k


tid log p

�� vp(i) = v � 1
�

 Sfv1g=(v

pv�1
p�1

1 )

� �fun; d log pg 
 Sft�p
n�2

; v1g:

(5.7.3)

We show that the elements ta�bd log p are in�nite cycles. Since they are in the
image of the

E2(S1;K0)! E2(Cpn ;K0)

is suÆces to show that they are in�nite cycles in

E2(S1;K0) = Sft�1g 
 ���T (W jK0):

The reduction ��T (W jK0) ! ���T (W jK0) is an epimorphism in odd degrees, so
the elements ta�bd log p lift to the integral spectral sequence

E 2(S1;K0) = Sftpm1g 
 ��T (W jK0)) ��Ĥ (T; T (W jK0)):

Since ��T (W jK0) is rational in even degrees the non-zero di�erentials in this spec-
tral sequence must all originate on the base line. Hence the elements ta�bd log p are
in�nite cycles as stated. It follows, in addition, that the elements in the top sum-
mands in (5.7.3) are dr-cycles as long as drun = 0, and moreover, these elements
cannot be hit by a di�erential for degree reasons. Hence the di�erentials on un and

tp
n�2

leaves the top summands of (5.7.3) invariant.

The �rst possible di�erential is

d2(
pn�1
p�1 )(t�p

n�2

) = �n�1 � (t�)
pn�1

d log p � v
pn�2

�1
p�1

1 ;

where �n�1 2 Fp . We treat the cases n = 2 and n > 2 separately. If n = 2, a k-

basis of ��1Ĥ (Cp2 ; T (W jK0)) is given by the classes d log2 p and dV (1). These classes

are represented by d log p and (t�)p
2

d log p, respectively and the cycle (t�)pd log p,
therefore, must be hit by a di�erential. This can only happen if the stated di�er-
ential on t�1 is non-zero, i.e. �1 2 Fp is a unit. When n > 2 we consider the class

dV 2(1) which in the spectral sequence is represented by (t�)p
n�1

d log p. Inductively,

multiplication by v
(pn�2�1)=(p�1)
1 annihilates ���Ĥ (Cpn�2 ; T (W jK0)), and hence also

the class dV 2(1). The cycle (t�)p
n�1

d log p � v
(pn�2�1)=(p�1)
1 therefore must be hit

by a di�erential, and this can only happen if the di�erential on t�p
n�2

is non-zero,
i.e. if �n�1 2 Fp is a unit.

For degree reasons the next possible di�erential is

d2(
pn+1

�1
p�1 )�1(unt

�pn) = �n � v
pn�1
p�1

1
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and it will thus suÆce to show that multiplication by v
(pn�1)=(p�1)
1 is identically

zero on ���T (W jK0)
Cpn�1 . To this end, we use that the map

�K : ��iT (W jK0)
Cpn�1 ! ��iH

�(Cpn�1 ; T (W jK0))

is an isomorphism, for i � 0. The target of this map is given by the spectral
sequence

E2(Cpn�1 ;K0) = �fun�1; d log pg 
 Sft; �g ) ���H
�(Cpn�1 ; T (W jK0)):

The E2-term of this spectral sequence is equal to the left half plane of the spectral
sequence Ê2(Cpn�1 ;K0), and the di�erentials are obtained from the di�erentials of
the latter sequence. These di�erentials are known inductively. In particular,

d2(
pn�1
p�1 )(un�1�

pn) = �n�1 � v
pn�1
p�1

1 :

It follows that multiplication by v
(pn�1)=(p�1)
1 on ���H

�(Cpn�1 ; T (W jK0)) is identi-
cally zero, and hence the stated di�erential on un is non-zero, i.e. �n 2 Fp is a
unit. The spectral sequence now collapses for degree reasons.

5.8. It remains to prove that theorem 5.5.1 holds when �p � K and n <
vp(eK). In this case, 5.6.2 and 5.6.3 show that �K�K and �K�

p
K are in�nite cycles.

Hence if dr�K is non-trivial then so is dr(�pK) contradicting that dr is a deriva-
tion. Thus �K and �K are in�nite cycles, and theorem 5.5.1 then amounts to the
statement that the di�erentials in Ê�(Cpn ;K) are multiplicatively generated from

d2(
pv+1

�1
p�1 )(�p

v

K ) = �v � (t�)
pv+1

�1
p�1 �1t d log �K � �

pv

K ; 0 � v < n;

and from the di�erential on un.

Lemma 5.8.1. Suppose that �p � K. If in addition u0K(0) is non-zero, then
theorem 5.5.1 holds for K and n < vp(eK).

Proof. Since �K is an in�nite cycle, so is �p
v�1

K , for all v � 1. Now

�p
v�1

K = (u
(1)
K (�pK)

�1t)p
v�1

= u
(v)
K (�p

v

K )�1tp
v�1

;

and since �p
v�1

K is an in�nite cycle and dr a derivation, we get

(u
(v)
K )0(�p

v

K )

u
(v)
K (�p

v

K )
dr(�p

v

K ) = dr(tp
v�1

):

The assumption that u0K(0) is non-zero implies that the �rst factor on the left is

a unit in Er(Cpn ;K). We may therefore calculate the di�erential on �p
v

K from the

known di�erential on tp
v�1

. We see that dr(�p
v

K ) vanishes for r < 2(pv+1�1)=(p�1).
When r = 2(pv+1 � 1)=(p� 1),

dr(tp
v�1

) = ��v � (t�)
pv+1

�1
p�1 �1t � d log p

= ��v � (t�)
pv+1

�1
p�1 �1t �

(�
(v)
K )0(�p

v

K )�p
v

K

�
(v)
K (�p

v

K )
d log �K ;

= �v � (t�)
pv+1

�1
p�1 �1t �

(u
(v)
K )0(�p

v

K )�p
v

K

u
(v)
K (�p

v

K )
d log �K ;
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which shows that

dr(�p
v

K ) = �v � (t�)
pv+1

�1
p�1 �1td log �K � �

pv

K

as desired.

We now place ourselves in the universal situation and consider the ring spectrum

T (W jK0) ^N
cy(�1);

where �1 is the pointed monoid f0; 1; �; �2; : : : g. We have

���(T (W jK0) ^N
cy(�1)) = �fd log p; d�g 
 Sf�; �g:

Given K and a choice of uniformizer �K , we get a map of ring spectra

�K : T (W jK0) ^N
cy(�1)! T (AjK);

which on modulo p homotopy groups is given by

�K�(�) = �K ;

�K�(d�) = �Kd log �K ;

�K�(�) = �;

�K�(d log p) = (eK +
u0K(�K)�K
uK(�K)

)d log �K :

Proposition 5.8.2. In the spectral sequence

Ê2(Cpn ;K0; �) = �fun; d log p; d�g 
 Sft�1; �; �g

) ���Ĥ (Cpn ; T (W jK0) ^N
cy(�1));

the non-zero di�erentials are generated multiplicatively from

d2(
pv+1

�1
p�1 )(�p

v

) = �v � (t�)
pv+1

�1
p�1 �1t � �p

v�1d�; 0 � v < n;

d2(
pv+1

�1
p�1 )(tp

v�1

) = ��v � (t�)
pv+1

�1
p�1 �1td log p � tp

v�1

; 1 � v < n;

d2(
pn+1

�1
p�1 )�1(un) = �n � (t�)

pn+1
�1

p�1 �1t

with t�p, d log p, �p
n

and �p
n�1d� being in�nite cycles.

Proof. We choose an extension K=K0 with �p � K and vp(eK) > n, and
such that u0K(0) is non-zero. Lemma 5.8.1 then shows that for 0 � v < n,

d2(
pv+1

�1
p�1 )(�p

v

K ) = �v � (t�)
pv+1

�1
p�1 �1td log �K � �

pv

K :

There is an S1-equivariant decomposition

N cy(�1) �=
_
s�0

N cy(�1; s);

and the spectral sequence decomposes accordingly,

Er(Cpn ;K0; �) =
M
s�0

Er(Cpn ;K0; �; s):

Here, Er(Cpn ;K0; �; 0) = Er(Cpn ;K0), and for s � 1,

Ê2(Cpn ;K0; �; s) = Ê2(Cpn ;K0)
 kh�s; �s�1d�i

= �fun; d log pg 
 Sft�1; �g 
 kh�s; �s�1d�i:
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In particular, for all K with vp(eK) � v,

�K� : Ê
2(Cpn ;K0; �; p

v)! Ê2(Cpn ;K)

is a monomorphism. It follows by induction on r that

�K� : E
r(Cpn ;K0; �; p

v)! Er(Cpn ;K)

is a monomorphism and that the di�erentials on the p-powers of t and on �p
v

are
as stated.

Corollary 5.8.3. Theorem 5.5.1 holds when �p � K and n < vp(eK).

Proof. This follows immediately from proposition and from the fact that the
spectral sequence Ê�(Cpn ;K) is a module spectral sequence over Ê�(Cpn ;K0; �).

6. The pro-system TR�

�(AjK; p;Z=pv )

6.1. In this paragraph, we prove the main theorem of this work. Suppose
that K contains the pth roots of unity. Then the canonical map

�1B�p+ ! K(K);

and the fact that for p odd, the Bockstein

��2(�
1B�p+)

�
�! �1(�

1B�p+) = �p

is an isomorphism, gives rise to a map

�p ! �K2(K) = ��2K(K):

Composing with the cyclotomic trace, we get a map of �p to �TR
�

2(AjK; p). In all,
we have a canonical map

W
�
!(A;M) 
 SFp (�p)!

�TR
�

�(AjK; p):

This is a map of Witt functors with a pre-log structure where on the left hand side,
the maps R, F and V act as the identity on SFp(�p), and the di�erential on SFp(�p)
is trivial.

We consider the composite map

Wn !
�
(A;M) 
 SFp (�p)!

�TR
n
� (AjK; p)! ���Ĥ (Cpn ; T (AjK)):

The left hand map is an isomorphism in degrees 0 and 1 by theorem 3.3.8, and
the right hand map is an isomorphism in all non-negative degrees by addendum
5.6.6. The range of the composite map is given by the spectral sequence Ê�(Cpn ;K)
whose structure was determined in the previous paragraph. The result is that

Ê1(Cpn ;K) =
n�1M
v=1

k


u�n�

a
K�

r
K�

d
Kd log �K

�� vpfa; r; dgK = v; d < pv+1�1
p�1 � 1

�
� k



�aK�

r
K�

d
K(d log�K)

�
�� vpfa; r; dgK � n; d < pn+1�1

p�1 � 1
�
;

where a 2 Z, d 2 N 0 , � 2 f0; 1g, and 0 � r < eK , and where

fa; r; dgK = (pa� d)eK=(p� 1) + r:
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The basis for Ê1(Cpn ;K) as a k-vector space exhibited here will be called the
standard basis.

Lemma 6.1.1. An element of the standard basis of Ê1(Cpn ;K) represents a
homotopy class in the image of the composite

Wn !
�
(A;M) 
 SFp (�p)!

�TR
n
� (AjK; p)! ���Ĥ (Cpn ; T (AjK))

if and only if fa; r; dgK � 0.

Proof. The map of the statement is an isomorphism in degrees 0 and 1, and
indeed, here fa; r; dgK is automatically non-negative since a = d. We must thus
show that for all q � 0 and � = 0; 1, the mapM

s�0

Ê1s;��s(Cpn ;K)!
M
s�0

Ê1s;2q+��s(Cpn ;K)

induced by multiplication by the qth power of the Bott element is a surjection onto
the stated subspace. If we write q = q1(p� 1)+ q0 with 0 � q0 < p� 1, then in the
spectral sequence

bq = �� q1K �
q0eK=(p�1)
K �q1p+q0K ;

and the statement now follows easily from lemma 5.6.2 by passing to an extension
L=K for which n � vp(eL=K) and

i� : E
1(Cpn ;K)! E1(Cpn ; L)

a monomorphism. If, for example, a homotopy class is represented in the spectral
sequence by the element �aK�

r
K�

d
K then the product of that homotopy class and

the qth power of the Bott element is represented by the element �a
0

K �r
0

K�
d0

K with
fa0; r0; d0gK = fa; r; dgK and d0 � a0 = d� a+ q. (The product, of course, may be
zero.)

Theorem 6.1.2. Suppose that K contains the pth roots of unity. Then the
canonical map

W
�
!�(A;M) 
 SFp(�p)

�
�! �TR

�

�(AjK; p)

is a pro-isomorphism.

Proof. Let E�
�

denote the pro-system on either side of the map in the state-
ment. The standard �ltration, given by

FilsE�n = V sE�n�1 + dV sE�n�1;

is a descending �ltration with s � 0. The �ltration has length n in level n, i.e.
FilnE�n is trivial. The map of the statement clearly preserves the �ltration. We
show that for all q � 0, there existsN � 1 such that for all n � 1 and 0 � s < n�N ,
the canonical map

grs(Wn !
�
(A;M) 
 SFp(�p))i ! grs �TR

n
i (AjK; p)

is an isomorphism when 0 � s < n�N . Since the structure maps in the pro-systems
preserve the standard �ltration, the theorem follows.

We have already proved that the map of the statement is an isomorphism in
degrees 0 and 1. Hence, it suÆces to show that for all q � 0, there exists N � 1
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such that for all n � 1, 0 � s < n�N and � = 0; 1, multiplication by qth power of
the Bott element induces an isomorphism

grs �TR
n
� (AjK; p)

�
�! grs �TR

n
2q+�(AjK; p):

We claim that any N � 1 with (pq + 1)eK=(p� 1) < pN will do.

For surjectivity we use the above lemma. Since d � 0 and q = a + d, we have
a � �q, and hence

fa; r; dgK = (pa� d)eK=(p� 1) + r = aeK � qeK=(p� 1)

� �pqeK=(p� 1) + r � �pqeK=(p� 1) > �pN :

Therefore, if vpfa; r; dgK � N we have fa; r; dgK � 0. It follows that multiplication
by the qth power of the Bott element induces a surjection of all summands in
E1(Cpn ;K) except for the summands with v < N . But these summands all
represent homotopy classes of �ltration greater than or equal to n�N .

To prove injectivity, we �rst note that for an element of the standard basis of
Ê1(Cpn ;K) in total degree 2q + �, the requirement that

0 � d <
pv+1 � 1

p� 1
� 1

is equivalent to the requirement that

�
pqeK
p� 1

� fa; r; dgK < �
pqeK
p� 1

+ eK
pv+1 � 1

p� 1
:

We show that vpfa; r; dgK = v � N and fa; r; dgK < eK(p
v+1 � 1)=(p� 1) implies

that

fa; r; dgK < �
pqeK
p� 1

+ eK
pv+1 � 1

p� 1
:

Note that

pv+1eK=(p� 1)� eK
pv+1 � 1

p� 1
= eK=(p� 1) < pv;

so it suÆces to know that
pqeK
p� 1

< pv � eK=(p� 1):

But this is our assumption on N . This shows that the map induced by multiplica-
tion by the qth power of the Bott element induces a monomorphism of all summands
in Ê1(Cpn ;K) except for the summands with v < N . The theorem follows.

Corollary 6.1.3. The group TR2i(AjK; p) is uniquely divisible, for i > 0.

Proof. The theorem determines the Bockstein structure on �TR�(AjK; p). For
all Bocksteins vanish on W!�(A;M) and

�v(�
i) = �i�1d log �

where v = vp(i). By theorem 3.3.8, TR2(AjK; p) is uniquely divisible, so every
element of ��2TR(AjK; p) is mapped non-trivially by some Bockstein. But then so
is every element of �TR2i(AjK; p), i > 0.
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Addendum 6.1.4. Suppose that K contains the pvth roots of unity. Then the
map

W
�
!�(A;M) 
 SZ=pv(�pv )

�
�! TR�

�(AjK; p;Z=pv )

is a pro-isomorphism.

Proof. The proof is by induction on v. Assuming the statement for v� 1, we
show that the Bockstein homomomorphisms

�v�1 : TR
�

i(AjK; p;Z=pv�1)! TR�

i�1(AjK; p;Z=p)

are (Mittag-Le�er) zero, for all i � 0. The induction step follows readily. Suppose
�rst that i = 2s+ 1 is odd. Inductively, we have pro-isomorphisms

W
�
!1
(A;M) 
 �
spv�1

�
�! TR�

2s+1(AjK; p;Z=pv�1):

The Bockstein is a derivation, and it vanishes on W
�
!�(A;M). Since the product of

odd dimensional classes is zero, the Bockstein vanishes for i odd. When i = 2s
even, we consider the commutative diagram

W
�
(A)
 �
spv�1

� //

@

��

TR�

i(AjK; p;Z=pv�1)

�v�1

��

W
�
!1
(A;M) 
 �


(s�1)
p

� // TR�

i(AjK; p;Z=p):

The left hand vertical map is given by

@(x
 �1 
 � � � 
 �s) = x � d log �1 
 �2 
 � � � 
 �s;

and since �1 2 �pv�1 has a pth root, d log �1 is divisible by p. It follows that the
left hand vertical map is zero, and hence so is the Bockstein homomorphism on the
right.

The last result implies the following algebraic result. It would be desirable to
also have an algebraic proof of this fact.

Corollary 6.1.5. If �pv � K then the map

W
�
(A)
 �pv

�
�! pvW�

!1
(A;M);

which takes x
 � to xd log
�

�, is a pro-isomorphism.

Theorem 6.1.6. There are natural isomorphisms

�TC2s(AjK; p) = H0(K;�
sp )�H2(K;�
(s+1)
p );

�TC2s+1(AjK; p) = H1(K;�
(s+1)
p );

valid for s � 0.

Proof. Since the extension K(�p)=K is tamely rami�ed, we may assume that
�p � K. Indeed, it follows from theorem 2.3.1 that the canonical map

�TC�(AjK; p)
�
�! ( �TC�(A(�p)jK(�p); p))

Gal(K(�p)=K)

is an isomorphism, and the analogous statement holds for H�(K;�
sp ). When
�p � K, theorem 6.1.2 shows that the canonical map

�TCi(AjK; p)
 �
sp
�
�! �TCi+2s(AjK; p)
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is an isomorphism, for all s; i � 0. It will therefore suÆce to prove the statement
in degrees 0 and 1.

In degree one, the cyclotomic trace induces an isomorphism

K�=K�p = K1(K;Z=p)
�
�! TC1(AjK; p;Z=p);

and by Kummer theory, the left hand side is H1(K;�p). In degree zero, we use
that theorem 1.8.7 gives an exact sequence

0! TC0(A; p;Z=p) ! TC0(AjK; p;Z=p) ! TC�1(k; p;Z=p) ! 0:

In this sequence, the left hand term is naturally isomorphic to Z=p, and the left
hand map has a natural retraction given by

TC0(AjK; p;Z=p) ! TR0(AjK; p;Z=p)F = Z=p:

It remains to show that the right hand term in the sequence is naturally isomorphic
to H2(K;�p). We recall from [32, p. 186] that there is a natural short exact
sequence

0! H2(k; �p)! H2(K;�p)! H1(k; Fp)! 0:

Moreover, since k is perfect, the left hand term vanishes. The normal basis theorem,
Hi(k; G a) vanishes for i > 0, and hence the cohomology sequence associated with
the sequence

0! Fp ! G a
'�1
���! G a ! 0

gives a natural isomorphism

k'
�
�! H1(k; Fp):

Since k is perfect, the restriction W (k)! k induces a natural isomorphism

TC�1(k; p;Z=p) =W (k)F =pW (k)F
�
�! k'

which proves the claim.

Remark 6.1.7. When �p � K, we can also give the following non-canonical
description of the groups TC�(AjK; p;Z=p). Let � 2 �p be a generator, let b be the
corresponding Bott element, and let � 2 A be a uniformizer. Then for s � 0,

TC2s(AjK; p;Z=p) = Fphb
si � k'h@(d log � � b

s)i;

TC2s+1(AjK; p;Z=p) = Fphd log � � b
si � k'h@(b

s+1)i � keK ;

where k' is the cokernel of 1 � ' : k ! k and eK is the rami�cation index. The
summand keK in the second line is in the kernel of

1� F : TR2s+1(AjK; p;Z=p) ! TR2s+1(AjK; p;Z=p);

with the inclusion

� : keK =

eK�1M
i=0

k ! TR2s+1(AjK; p;Z=p)

given by

�i(a) =
X
v�0

ap
�v( p

v+1
�1

p�1 )uK(�)
�pdV v

� (�
i) � bs +

X
v>0

F v(auK(�)
�pd(�i)) � bs:

The sum on the right is �nite and the sum on the left converges.
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We shall need a special case of the Thomason-Godement construction of the
hyper cohomology spectrum associated with a presheaf of spectra on a site, [8, x3].
Suppose that F is a functor which to every �nite subextension L=K in an algebraic
closure �K=K assigns a spectrum F (L). For the purpose of this paper, we shall
write

F�et(K) = holim
�!
L=K

H �(GL=K ; F (L)):(6.1.8)

There is a natural strongly convergent spectral sequence

E2
s;t = H�s(K; lim�!

L=K

�tF (L))) �s+tF
�et(K);(6.1.9)

which is obtained by passing to the limit from the spectral sequences for the group
cohomology spectra

E2
s;t = H�s(GL=K ; �tF (L))) �s+tH

�(GL=K ; F (L)):

Indeed, �ltered colimits are exact so we get a spectral sequence with abutment

lim�!
L=K

��H
�(GL=K ; F (L))

�
�! ��F

�et(K);

and the identi�cation of the E2-term follows from the isomorphism

lim�!
L=K

H�(GL=K ; ��F (L))
�
�! lim�!

L=K

H�(GL=K ; ( lim�!
N=L

��F (N))GL)

= H�(K; lim�!
N=K

��F (N)):

This isomorphism, which can be found in [33, x2 proposition 8], is a special case of
the general fact that on a site with enough points, the Godement construction of a
presheaf calculates the sheaf cohomology of the associated sheaf.

Theorem 6.1.10. The canonical map


K : K�(K;Z=p
v )! K�et

� (K;Z=p
v )

is an isomorphism in degrees � 1.

Proof. It suÆces to consider the case v = 1. In the diagram

K(K)

K //

tr

��

K�et(K)

tr

��

TC(AjK)

K // TC�et(AjK; p);//

the left hand vertical map induces an isomorphism on homotopy groups with Z=p-
coeÆcients in degrees � 1. We use theorem 6.1.6 to prove that the right hand
vertical map induces an isomorphism on homotopy groups with Z=p-coeÆcients
and that the lower horizontal map induces an isomorphism on homotopy groups
with Z=p-coeÆcients in degrees � 0. This proves the theorem.

We �rst prove the statement for the map induced from the cyclotomic trace

K�et(K)! TC�et(AjK; p):
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The spectral sequence (6.1.9) for K-theory with Z=p-coeÆcients takes the form

E2
s;t = H�s(K;�
(t=2)p )) K�et

s+t(K;Z=p):

Indeed, this follows from the simple fact that K-theory commutes with �ltered
colimits and from the celebrated theorem of Suslin [35] that

Kt( �K;Z=p) = �
(t=2)p :

Similarly, it follows immediately from theorem 6.1.6 that also the spectral sequence
(6.1.9) for topological cyclic takes the form

E2
s;t = H�s(K;�
(t=2)p )) TC�et

s+t(AjK; p;Z=p):

Finally, it is clear that the cyclotomic trace induces an isomorphism of E2-terms.

It remains to show that the map


K : TCi(AjK; p;Z=p) ! TC�et
i (AjK; p;Z=p)

is an isomorphism for i � 0. The domain and range of 
K are abstractly isomorphic
in this range, so we just need to show that 
K is an isomorphism for i � 0. By the-
orem 2.3.1 we may assume that �p � K and that the residue �eld k is algebraically
closed. When �p � K, we have a commutative square

TCi(AjK; p;Z=p) 
 �
sp

K
id//

�

��

TC�et
i (AjK; p;Z=p) 
 �
sp

�

��

TCi+2s(AjK; p;Z=p)

K
id // TC�et

i+2s(AjK; p;Z=p);

and the vertical maps are isomorphism for i; s � 0. Hence, it suÆces to show that

K is an isomorphism in degrees 0 and 1. And when k is algebraically closed,
the term H2(K;�p) in degree zero vanishes. Thus the edge homomorphism of the
spectral sequence (6.1.9),

�K : TC�et
i (AjK; p;Z=p) ! H0(K;�i=2p );

is an isomorphism in degree zero, and since the composite

TC0(AjK; p;Z=p)

K
��! TC�et

0 (AjK; p;Z=p)
�K��! H0(K;Z=pZ)

is an isomorphism, then so is 
K . In degree one, we use the spectral sequence
(6.1.9) for topological cyclic homology with Q p=Zp -coeÆcients. As a GK-module

lim�!
L=K

TC1(BjL; p; Q p=Zp)
�
 � lim�!

L=K

K1(L; Q p=Zp)
�
�! K1( �K; Q p=Zp) = �p1 ;

and the composite

TC1(AjK; p; Q p=Zp)

K
��! TC�et

1 (AjK; p; Q p=Zp)
�K��! H0(K;�p1)

is an isomorphism. It follows that 
K is an isomorphism in degree one.
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6.2. It has long been known that for K-theory with Z=p-coeÆcients, Galois
descent and Bott periodicity are equivalent, [37]. Thus in view of theorem 6.1.2 it
seems reasonable to expect that the canonical map

TR(AjK; p)! TR�et(AjK; p))

induces an isomorphism of homotopy groups with Z=p-coeÆcients in degrees � 0.
We discuss how this may occur.

Suppose that �p � K. There is a natural exact sequence of pro-W
�
(A)-modules

0!W
�
(A)
 �p !W

�
!1
(A;M)

p
�!W

�
!1
(A;M);

and the right map is surjective for the �etale topology on SpecK. A choice of
primitive pth root of unity identi�es the left hand term with W

�
(A)=p. The Galois

group GL=K acts on W
�
!�(B;M) and on TR�

�(BjL; p). In other words, we have �etale

pro-sheaves W
�
!� and �T R

�

� on SpecK. In analog with (6.1.9), we have a spectral
sequence

E2
s;t = H�scont(K; lim�!

L=K

�TR
�

t(BjL; p))) ��s+t(holim
 �
n

(TRn)�et(AjK; p));

where the E2-term is given by the continuous cohomology in the sense of Jannsen,
[18]. By theorem 6.1.2, we can replace the pro-system �T R

�

by the pro-system
W

�
!� 
 SFp (�p). Here �p is a trivial GL=K-module, since �p � K. We expect that

Hi
cont(K;W�

!1) =

(
W

�
!1
(A;M); i = 0;

0; i > 0:

Indeed, if this was true, the short exact sequence of �etale pro-sheaves on SpecK,

0!W
�
(�)
 �p !W

�
!1 p
�!W

�
!1 ! 0;

shows that

Hi
cont(K;W�

(�)=p) =

8><
>:
W (A)=p; i = 0;

W !1
(A;MA)

=p; i = 1;

0; i � 2;

which implies descent in non-negative degrees for TR(AjK; p).

The expected values of the cohomology groups above might appear somewhat
surprising since the canonical map

Wn(A)=p! H0(K;Wn(�)=p)(6.2.1)

is not an isomorphism for any n. It is injective, but has a big cokernel, even for
n = 1. However, this can be understood as follows. The sequence the pro-sheaves

0!W
�
(�)=p

V n

��!W
�
(�)=p!Wn(�)=p! 0

yields a long-exact sequence

0!W (A)=p
V n

��!W (A)=p! H0(K;Wn(�)=p)

!W !1
(A;M)=p

V n

��!W!1
(A;M)=p! H1(K;Wn(�)=p)! 0;

which identi�es the cokernel of (6.2.1) with the kernel of the map V n in the lower
line. This map is zero for n large and its image is a �nite dimensional k-vector
space for all n. This explains the large cokernels in (6.2.1).
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