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Introduction

In this paper we establish a connection between the Quillen K-theory of certain
local fields and the de Rham-Witt complex of their rings of integers with logarithmic
poles at the maximal ideal. The fields K we consider are complete discrete valuation
fields of characteristic zero with perfect residue field k of characteristic p > 2. When
K contains the p”th roots of unity, the relationship between K-theory and the de
Rham-Witt complex can be described by a sequence

v * 1-F * 13]
- K (K, Z/p") — W wiam ® Sz /pv (ppr) — W wia, ® Sz /po(pipr) = -+

which is exact in degrees > 1. Here A = Ok is the valuation ring and WwE‘A,M) is
the de Rham-Witt complex of A with log poles at the maximal ideal. The factor
Sz /pv (Hpe) is the symmetric algebra of > considered as a Z/p”-module located in
degree two. Using this sequence, we evaluate the K-theory with Z/p?-coefficients
of K. The result, which is valid also if K does not contain the pth roots of unity,
verifies the Lichtenbaum-Quillen conjecture for K, [21], [30]:

* Supported in part by NSF Grant and the Alfred P. Sloan Foundation.
** Supported in part by The American Institute of Mathematics.
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THEOREM A. There are natural isomorphisms for s > 1,
K2S(Ka Z/pv) HO(K M®s) @HZ(K, /'L?”(s+1))’
Kss_1(K,Z[p") = H' (K, u%?).

The Galois cohomology on the right can be effectively calculated when k is finite,
or equivalently, when K is a finite extension of Q,, [34]. For m prime to p,

Ki(K,Z/m) = K;(k, Z/m) & K;_1(k, Z/m)

by Gabber-Suslin, [36], and for % finite, the K-groups on the right are known by
Quillen, [28].

For any linear category with cofibrations and weak equivalences in sense of [40],
one has the cyclotomic trace

tr: K(C) — TC(C;p)

from K-theory to topological cyclic homology, [6]. It coincides in the case of the
exact category of finitely generated projective modules over a ring with the orig-
inal definition in [3]. The exact sequence above and theorem A are based upon
calculation of TC,(C;p,Z/p") for certain categories associated with the field K.
Let A = Ok be the valuation ring in K, and let P4 be the category of finitely
generated projective A-modules. We consider three categories with cofibrations
and weak equivalences: the category C2(P4) of bounded complexes in P4 with ho-
mology isomorphisms as weak equivalences, the subcategory with cofibrations and
weak equivalences C%(P4)? of complexes whose homology is torsion, and the cat-
egory C’fl’ (Pa) of bounded complexes in P4 with rational homology isomorphisms
as weak equivalences. One then has a cofibration sequence of K-theory spectra

K(CY(Pa)?) 55 K(CE(Pa)) & K(CE(P)) 5 SK(CHPA)),

and using Waldhausen’s approximation theorem, the terms in this sequence may be
identified with the K-theory of the exact categories Py, P4 and Pg. The associated
long-exact sequence of homotopy groups is the localization sequence of [29],

o Ki(k) S Ki(A) D Ki(K) S Ki_(k) - ..
The map 0 is a split surjection by [12]. We show in §1 below that one has a similar
cofibration sequence of topological cyclic homology spectra
TC(CY(P4)%p) = TC(CL(Pa);p) L TC(CL(P4);p) % STC(CY(Pa)%;p),

and again Waldhausen’s approximation theorem allows us to identify the first two
terms on the left with the topological cyclic homology of the exact categories Py
and P4. But the third term is different from the topological cyclic homology of
Pr. We write

TC(A|K;p) = TC(C}(Pa);p),

and we then have a map of cofibration sequences

K(k) —% S KA — S K(K)—2 s vK(k)

. L

TC(k; p) —— TC(4;p) —>TC(A\K p)—)ZTC( D).



By [16, theorem D], the first two vertical maps from the left induce isomorphism
of homotopy groups with Z/pY-coefficients in degrees > 0. It follows that the
remaining two vertical maps induce isomorphism of homotopy groups with Z/p’-
cofficients in degrees > 1,

tr: K;(K,Z/p") — TC;(A|K;p,Z/p"), i>1.
It is the right hand side we evaluate.

The spectrum TC(C; p) is defined as the homotopy fixed points of an operator
called Frobenius on another spectrum TR(C;p), so there is a natural cofibration
sequence

TC(C;p) — TR(C;p) 1-F TR(C;p) — £ TC(C; p).

The spectrum TR(C; p), in turn, is the homotopy limit of a pro-spectrum TR'(C; p),
its homotopy groups given by the Milnor sequence

0 — lim' TR, ,(C;p) — TR(C;p) — lim TR, (C;p) — O,
s+1 S
R R

and there are maps of pro-spectra
F: TR™(C;p) = TR™ '(Csp),
V: TR (C;p) — TR™(C; p).
The spectrum TR'(C;p) is the topological Hochschild homology T'(C). It has an

action by the circle group T and the higher levels in the pro-system by definition
are the fixed sets of the cyclic subgroups of T of p-power order,

TR"(C;p) = T(C)» .

The map F' is the obvious inclusion and V is the accompanying transfer. The struc-
ture map R in the pro-system is harder to define and uses the so-called cyclotomic
structure of T'(C), see §1 below.

The homotopy groups TR, (A|K;p) of this pro-spectrum with its various opera-
tors have a rich algebraic structure which we now describe. The description involves
the notion of a log differential graded ring from [19]. A log ring (R, M) is a ring R
with a pre-log structure, defined as a map of monoids

a: M — (R, ),

and a log differential graded ring (E*, M) is a differential graded ring E*, a pre-log
structure a: M — E° and a map of monoids dlog: M — (E!,+) which satisfies
dodlog = 0 and da(a) = a(a)dloga for all @ € M. There is a universal log
differential graded ring with underlying log ring (R, M): the de Rham complex
with log poles wE‘R’M).

The groups TR!(A|K;p) form a log differential graded ring whose underlying
log ring is A = Ok with the canonical pre-log structure given by the inclusion
a:M=ANK* — A.
We show that the canonical map

wian) — TRL(A|K;p)
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is an isomorphism in degrees < 2 and that the left hand side is uniquely divisible in
degrees > 2. We do not know a natural description of the higher homotopy groups,
but we do for the homotopy groups with Z/p-coefficients. The Bockstein

TR} (A|K;p,Z/p) = ,TR{(A|K;p)

is an isomorphism, and we let k be the element on the left which corresponds to
the class dlogp on the right. The abstract structure of the groups TR: (A4;p) was
determined in [22]. We use this calculation in §2 below to show

THEOREM B. There is a natural isomorphism of log differential graded rings
wia,ary ®z Sk, {x} = TRL(A|K;p, Z/p),
where dk = kdlogp.

The higher levels TR} (A|K;p) are also log differential graded rings. The under-
lying log ring is the ring of Witt vectors W,,(A) with the pre-log structure

M= A— W,(A4),

where the right hand map is the multiplicative section a,, = (a,0,...,0). The maps
R, F and V extend the restriction, Frobenius and Verschiebung of Witt vectors.
Moreover,

F: TR} (A|K;p) — TR '(A|K;p)
is a map of pro-log graded rings, which satisfies

Fdlog, a =dlog,_; a, forallae M = ANKX,
Fda, = a®"da, ,, forallac A4,

_1da,,
and V is a map of pro-graded modules over the pro-graded ring TR, (A|K : p),
V: F* TR Y(A|K;p) — TR (A|K;p).
Finally,
FdV =d,
FV =p.

The algebraic structure described here makes sense for any log ring (R, M), and we
show that there exists a universal example: the de Rham-Witt pro-complex with
log poles W. wE*R M) For log rings of characteristic p > 0, a different construction

has been given by Hyodo-Kato, [17].
We show in §3 below that the canonical map
W'WE‘A,M) — TR, (4|K;p)
is an isomorphism in degrees < 2 and that the left hand side is uniquely divisible
in degrees > 2. Suppose that u,» C K. We then have a map
Sz /pv (Hpr) = TR, (A|K; p, Z/p”)

which takes ¢ € u,» to the associated Bott element defined as the unique element
with image dlog. ( under the Bockstein

TR, (A|K;p, Z/p") = TR} (A|K;p).

The following is the main theorem of this paper.
4



THEOREM C. Suppose that p,» C K. Then the canonical map
W. w4 a1y ®2 Sz /p0 (pr) — TRL(A|K;p, Z/p")
1§ a pro-isomorphism.
It is in order to explain the structure of the groups in the theorem. We limit

ourselves to the case v = 1, and let E* stand for either side of the statement above.
The group E;, has a natural descending filtration of length n given by

Fil*E! =V°E! ,+dV°E. "L CE,, 0<s<n.
There is a natural k-vector space structure on E!, and for all 0 < s < n and all
1 >0,
dimk gI‘s E:L = €K,

the absolute ramification index of K. In particular, the domain and range of the
map in the statement are abstractly isomorphic.

The main theorem implies that for s > 0,
TCQS(A|K;p, Z/pv) — HO(K, ,U';@vs) ® HZ(K, H?v(s—l-l)),
TCss41(AK;p, Z/p") = H' (K, pp**Y),
and thus in turn theorem A.

It is also easy to see that the canonical map
K.(K,Z/p") — K&(K,Z/p")

is an isomorphism in degrees > 1. Here the right hand side is the Dwyer-Friedlander
étale K-theory of K with Z/p”-coefficients. This may be defined as the homotopy
groups with Z/p?-coefficients of the spectrum
ét o . .
L/K
where the homotopy colimit runs over the finite Galois extensions L /K contained
in an algebraic closure K /K, and where the spectrum H' (G, x, K (L)) is the group

cohomology spectrum or homotopy fixed point spectrum of G, /x acting on K(L).
There is a spectral sequence

—s ®(t/2 é v
E?, = H *(K,u5YY) = K& (K, Z/p"),

where the identification of the E2-term is a consequence of the celebrated theorem
of Suslin, [35], that
K, (R—, 7/p") = M?”(t/2) .

For K a finite extension of Q,, the p-adic homotopy type of the K é(K) was cal-
culated in [7]. Let F¥" be the homotopy fiber

FU" - Z x BU Y =4 BU.

It follows from this calculation and from the isomorphism above that
5



THEOREM D. If K is a finite extension of Q,, then after p-completion

a a—1
Z x BGL(K)" ~ Fu9 *x BFU9 ‘' x UK @l

where d = (p — 1)/|K(up) : K|, a = max{v | up» C K(pp)}, and where g € Z; is a
topological generator.

The proof of theorem C is given in §6 below. It is based on the calculation in §5
of the Tate spectra for the cyclic groups Cp,~» acting on the topological Hocschild
spectrum T'(A|K): Given a finite group G and G-spectrum X, one has the Tate
spectrum H(G, X) of [9], [10]. Its homotopy groups are approximated by a spectral
sequence

EZ, = H*(G,mX) = m,H(G, X),

which converges conditionally in the sense of [1]. In §4 below we give a slightly
different construction of this spectral sequence which is better suited for studying
multiplicative properties. The cyclotomic structure of T(A|K) gives rise a map

fK: TR”(A|K,p) - H(CP"aT(A‘K))a

and we show in §5 that this map induces an isomorphism of homotopy groups with
Z/p®-coefficients in degrees > 0. We then evaluate the Tate spectral sequence for
the right hand side.

Throughtout this paper, A will be a complete discrete valuation ring with field of
fractions K of characteristic zero and perfect residue field &k of characteristic p > 2.
All rings are assumed commutative and unital without further notice. Occasionally,
we will write 7,(—) for homotopy groups with Z/p-coefficients.

This paper has been long underway, and we would like to acknowledge the finan-
cial support and hospitality of the many institutions we have visited while working
on this project: Max Planck Institut fiir Mathematik in Bonn, The American Insti-
tute of Mathematics at Stanford, Princeton University, The University of Chicago,
Stanford University, the SFB 478 at Universitdt Miinster, and the SFB 343 at Uni-
versitat Bielefeld. It is also a pleasure to thank Mike Hopkins and Marcel Bokstedt
for valuable help and comments. Finally, we are particularly indebted to Mike
Mandell for a conversation which was instrumental in arriving at the definition of
the spectrum T'(A|K) as well as for help at various other points.

1. Topological Hochschild homology and localization

1.1. The stable homotopy category is a triangulated category and a closed
symmetric monoidal category, and the two structures are compatible. By a spec-
trum we will mean an object of this category, and by a ring spectrum we will mean
a monoid in this category. The purpose of this paragraph is to produce the follow-
ing. Let C be a linear category with cofibrations and weak equivalences. We define
a pro-spectrum TR'(C; p) together with maps of pro-spectra

F: TR"(C;p) — = TR" !(C;p): V

p: SL ATR™(C;p) — TR™(C; p).
6



The spectrum TR'(C;p) is the topological Hochschild spectrum of C. The cyclo-
tomic trace is a map of pro-spectra

tr: K(C) = TR'(C;p),

where the algebraic K-theory spectrum on the left is regarded as a constant pro-
spectrum.

Suppose that the category C has a strict symmetric monoidal structure such
that the tensor product is bi-exact. Then there is a natural product on TR'(C;p)
which makes it a commutative pro-ring spectrum. Similarly, K(C) is naturally a
commutative ring spectrum and the maps F' and tr are maps of ring-spectra.

The pro-spectrum TR'(C;p) has a preferred homotopy limit TR(C;p), and there
are preferred lifts to the homotopy limit of the maps F', V and p. Its homotopy
groups are related to those of the pro-system by the Milnor sequence

0— @117TS+1 TR'(C;p) — ms TR(C;p) — limr, TC (C;p) — 0.
R R

There is a natural cofibration sequence
TC(C;p) — TR(C; p) = TR(C; p) — B TC(C;p),

where TC(C;p) is the topological cyclic homology spectrum of C. The cyclotomic
trace has a preferred lift to a map

tr: K(C) — TC(C;p),

and in the case where C has a bi-exact strict symmetric monoidal product, the
natural product on TR'(C;p) have preferred lifts to natural products on TR(C;p)
and TC(C;p), and the maps F and tr are ring maps.

Let G be a compact Lie group. One then has the G-stable category which is a
triangulated category with a compatible closed symmetric monoidal structure. The
objects of this category are called G-spectra, and the monoids for the smash product
are called ring G-spectra. Let H C G be a closed subgroup and let Wy G = NgH/H
be the Weil group. There is a forgetful functor which to a G-spectrum X assigns
the underlying H-spectrum Uy X. We also write | X| for U3 X. It comes with a
natural map of spectra

px: G AN X|— | X].
One also has the H-fixed point functor which to a G-spectrum X assigns the Wg G-
spectrum XH. If H C K C G are two closed subgroups, there is a map of spectra

v | X5 = X1,
and if |K : H| if finite, a map in the opposite direction
i | X = [ X5

If X is a ring G-spectrum then Uy X is an ring H-spectrum and X¥ is a ring
WeaH-spectrum.

Let T be the circle group, and let C,. C T be the cyclic subgroup of order r. We
then have the canonical isomorphism of groups

pr: T = T/C, = WrC,
7



given by the rth root. It induces an isomorphism of the T/C,.-stable category and
the T-stable category which to a T/C,-spectrum Y assigns the T-spectrum p}Y.
Moreover, there is a transitive system of natural isomorphisms of spectra

or: |prY| = Y],

and the following digrams commute

TA|prY | —"— |ptY|

lepr lw

T/Coy AY| —— Y.

We define a T-spectrum T'(C) such that
TR"(C;p) = |p}u-1T(C) 7|

with the maps F' and V given by the composites

_ Con—1 Con C n_
F=gatd, opm1: [ppna D)7 = |ppaaT(C) %02

— Cpnf * n— * n—
V = ppateh o2t |ppna (€)% 2| = |ppua T(C) %

and the map p is given by

Bty et T Al (@% | = s T(E) .

n

There is a natural map
K(C) = T(C)",
and the cyclotomic trace is then the composite of this map and (,01;1,1% ,- The
pn

definition of the structure maps in the pro-system TR'(C;p) is more complicated
and uses the cyclotomic structure on T'(C) which we now explain.

There is a cofibration sequence of T-CW-complexes
E, -8 - E—XE,,

where F is a free contractible T-space, and where the left hand map collapses FE
to the non-base point of S°. It induces upon smashing with a T-spectrum T a
cofibration sequence of T-spectra

E.NT—T—ENT - XE, AT,
and hence the following basic cofibration sequence of spectra
oy (B AT)O | = [ppn T | = [ (B AT)E7" | = Slppe (B4 AT)%],

natural in T. The left hand term is written H.(Cp»,T) and called the group ho-
mology spectrum or Borel spectrum. Its homotopy groups are approximated by a
strongly convergent first quadrant homology type spectral sequence

Eg,t = Hs(va 9 7TtT) = 7Ts+tH. (va, T)
The cyclotomic structure on 7'(C) means that there is a natural map of T-spectra

T p;(E AT(C))% — T(C)



such that Uc,,r is an isomorphism of Cj:-spectra, for all s > 0. More generally,
since
P (B AT = g (g AT(C)) ),
the map r induces a map of T-spectra
Tot1t Ppo (EAT(C))% — p;,,,lT(C)CP”*l
such that Ug,.7y+1 is an isomorphism of Cy:-spectra, for all s > 0. The map
R: TR™(C;p) — TR"}(C;p)
is then defined as the composite
1Pia T(C) %1 | = [t (B AT(C))%n | 2 [o—aT(C) %2,

where the right hand map is the middle map in the cofibration sequence above. We
thus have a natural cofibration sequence of spectra

H.(Cpu1,T(C)) 2 TR™(C;p) = TR™1(C;p) 2 SH.(Cpu-1,T(C)).

When C has a bi-exact strict symmetric monoidal product, the map r is a map of
ring T-spectra, and hence R is a map of ring spectra. The cofibration sequence
above is a sequence of TR"(C; p)-module spectra and maps.

For any T-spectrum X, one has the function spectrum F(E,, X), and the pro-
jection E, — S° defines a natural map

v: X —» F(E., X).

This map induces an isomorphism of group homology spectra. One defines the
group cohomology spectrum and Tate spectrum,

H (Cpe, X) = |pva(E+,X)CP” B
H (Cpv, X) = |pp (E NF(Ey, X)),
whose homotopy groups are approximated by homology type spectral sequences
EZ, = H*(Cpe,mX) = myiH (Cpr, X),
E2, = H*(Cpo,mX) = el (Cpo, X),

both of which are conditionally convergent in the sense of [1]. The latter sequence,
called the Tate spectral sequence, will be considered in great detail in paragraph 4
below. Taking T'= F(E,X) in the basic cofibration sequence above, we get the
Tate cofibration sequence of spectra

N" R" o "
H.(Cpv, X) — H (Cpv, X) — H(Cpv, X) — TH.(Cpv, X).
Finally, when X = T'(C), the map
vi T(C)  F(Ey,T(C))

induces a map of cofibration sequences
H. (Cpv, T(C)) —X— TR (C; p) —— TRY(C; p) ——2— SH. (Cypo, T(C))
‘ JI‘ lr
NP R" o o"
H. (Cpv, T(C)) —— H (Cpo, T(C)) ——— H(Cpv, T(C)) —— EH.(Cpv, T(C)),

9




in which all maps commute with the action maps u. Moreover, if C is strict sym-
metric monoidal with bi-exact tensor product, the four spectra in the middle square
are all ring spectra and R, R*, T and I' are maps of ring spectra. In this case, the
diagram is a diagram of TR""!(C; p)-module spectra.

1.2. In order to construct the T-spectrum 7'(C) we need a model category
for the T-stable category. The model category we use is the category of symmetric
spectra of orthogonal T-spectra. We first recall the topological Hochschild space
THH(C).

A linear category C is naturally enriched over the symmetric monoidal category
of symmetric spectra. The symmetric spectrum of maps from ¢ to d, Hom.(c, d),
is the Eilenberg-MacLane spectrum for the abelian group Home/(c,d) concentrated
in degree zero. In more detail, if X is a pointed simplicial set, then

UX) = LX)/ Z(wo)

is a simplicial abelian group whose homology is the reduced singular homology of
X. Here Z(X) denotes the degree-wise free abelian group generated by X. Let
S* be the i-fold smash product of the standard simplicial circle S* = A[1]/8A[1].
Then the spaces {|Z(S*)|}i>o is a symmetric ring spectrum with the homotopy type
of an Eilenberg-MacLane spectrum for Z concentrated in degree zero, and we define

Hom,(c,d); = | Home(c,d) ® Z(S*)|.
This gives the stated enrichment.
Let I be the category with objects the finite sets
i={1,2,...,i}, i>1,

and the empty set 0, and morphisms all injective maps. It is a strict monoidal
category under concatenation of sets and maps. There is a functor V;(C; X) from
I*+1 to the category of pointed spaces which on objects is given by

Vi (C; X) (o, - - -5 k) = \/ Home (co, ¢k)ig A -+ - A Home (e, ck—1)i, A X.
€o,...,CkEOb C

It induces a functor G(C; X) from I**! to pointed spaces with
Gr(C; X) (g, - - -, i) = F(S™ A+ AS™,V(C; X) (G0, - - -+ ik))s
and we define
THH}(C) = holim G(C; S°).
e
This is naturally the the space of k-simplices in a cyclic space, and by definition
THH(C) = |[k] — THH(C)|.
It is a T-space with T-fixed set obC.

More generally, let (n) be the finite ordered set {1,2,...,n}. The product cate-
gory I(™ is a strict monoidal category under component wise concatenation of sets
and maps. Concatenation of sets and maps according to the ordering of (n) also
defines a functor

Up: I™ — T,
10



but this does not preserve the monoidal structure. We let G,(c") (C; X)) be the functor
from (I("))k"‘1 to the category of pointed spaces given by

GV (6 X) = Gr(CX) 0 (Ua)*H,
and define

THH™(C; X) = holim G{™(C; X).
(I(Wﬂ-l
Again this is the space of k-simplices in a cyclic space, and we define
THH™(C; X) = |[k] — THH!"(C; X)|.

It is a 3, X T-space, whose T-fixed set is obC A X.

There is a natural product
THH™(C; X) A THH™(D;Y) - THH™(C @ D; X AY),
which is ¥, x ¥, X T-equivariant when T acts diagonally on the left. Here the
category C ® D has as objects all pairs (c,d) with ¢ € obC and d € D, and

Homegp((c,d), (¢',d’")) = Home (¢, ¢') ® Homp(d, d').

For any category C, the nerve category N.C is the simplicial category with k-
simplicies the functor category
N;C = C¥,
where [k] is the partially ordered set {0,1,...,k} viewed as a category. An order
preserving map 6: [k] — [I] may be viewed as a functor and hence induces a functor

0*: NlC — NkC

The objects of N.C is the nerve C, N.C. Clearly, the nerve category is a functor
from categories to simplicial categories.

Suppose now that C is a category with cofibrations and weak equivalences and
define
NYCcN.C

to be the full simplicial subcategory with
obN¥C = N.wC.

There is a natural structure of simplicial category with weak equivalences on N¥C:
co N¥C and wIN*C are the simplicial subcategories which contain all objects but
where morphisms are natural transformations through cofibrations and weak equiv-
alences in C, respectively. With these definitions there is a natural isomorphism of
bi-simplicial categories with cofibrations and weak equivalences

(1.2.1) N.S5.C =2 S.N.C,
where S.C is Waldhausen’s construction, [40].

Let (n) be the finite ordered set {1,2,...,n} and let V be a finite dimentional
orthogonal T-representation. We define the (n,V)th space in the symmetric or-
thogonal T-spectrum T'(C) by

(1.2.2) T(C)nv = | THH™ (N*S™¢; SV)|.
There are two T-actions on the this space: one which comes from the topological

Hocschild space, and another induced from the T-action on SV. We give T(C),. v
11



the diagonal T-action. There are also two X,-actions: one which comes from the
Y,-action on the topological Hocschild space, and another induced from the per-

mutation of the simplicial directions in the n-simplicial category s™e , compare
[8, 6.1]. We also give T(C),,y the diagonal ¥,-action. In particular, the (0,0)th
space is the cyclic bar construction

T(C)oo = IN¥(N¥C)|.

The T-fixed sets are
(T(C)ny)" =|obN¥S™c A SV

which indeed is a model for K(C). Moreover, by a construction similar to that of
[16, §2], there are T-equivariant maps

p;(T(C)n,V)Cp - T(C)n,p;vcp ’

and one can prove that for fixed n, the object of the T-stable category defined by
the orthogonal spectrum V — T'(C),, v has a cyclotomic structure.

Suppose that C is a strict symmetric monoidal category and that the tensor
product is bi-exact. There is then an induced ¥, X ¥,-equivariant product

sme g sMe — smtme,
and hence
T(C)m,V N T(C)n,W — T(C)ern,VEBW-

This product makes T'(C) a monoid in the symmetric monoidal category of sym-
metric spectra of orthogonal T-spectra.

1.3. We need to recall some of the properties of this construction. It is con-
venient to work in a more general setting.

Let ® be a functor from a category of categories with cofibrations and weak
equivalences to the category of pointed spaces. If C. is a simplicial category with
cofibrations and weak equivalences, we define

®(C.) = |[n] — ®(Cp)|-
We shall assume that & satisfies the following axioms:

(i) the trivial category with cofibrations and weak equivalences is mapped to a
one-point space.

(ii) for any pair C and D of categories with cofibrations and weak equivalences,
the canonical map
®(C x D) = ®(C) x ®(D)
is a weak equivalence.
(iii) (realization lemma) if f.: C. — D. is a map of simplicial categories with

cofibrations and weak equivalences, and if for all n, ®(f,): ®(C,) — ®(D,) is a
weak equivalence, then

B(f.): ®(C.) — (D.)

is a weak equivalence.
12



The functors which we will consider later will in fact only depend on the un-
derlying category. But since all proofs works for the more general ®, we state the
theorems in this generality.

We next recall some generalities. Let
f,g:C. = D.

be two exact simplicial functors. An ezact simplicial homotopy from f to g is an
exact simplicial functor
h: Al]l. x C. = D.

such that ho (d! x id) = f and ho (d° x id) = g. Here A[n]. is viewed as a
discrete simplicial category with its unique structure of a simplicial category with
cofibrations and weak equivalences. An exact simplicial functor f: C. — D. is an
exact simplicial homotopy equivalence if there exists an exact simplicial functor
g: D. — C. and exact simplicial homotopies of the two composites to the respective
identity simplicial functors.

LEMMA 1.3.1. An ezact simplicial homotopy A[1]. xC. — D. induces a homotopy
A[l] x (C.) — ®(D.).

Hence ® takes exact simplicial homotopy equivalences to homotopy equivalences.

PROOF. There is a natural transformation
A[l]k X ‘I)(Ck) — ‘I)(A[l]k X Ck)

Indeed, A[1]x x®(Ck) and A[1]x xCy are coproducts in the category of spaces and the
category of categories with cofibrations and weak equivalences, respectively, indexed
by the set A[1];. The map exists by the universal property of coproducts. O

LEMMA 1.3.2. An ezact functor of categories with cofibrations and weak equiva-
lences f: C — D induces an exact simplicial functor N.f: N¥C — N¥D. A natural
transformation through weak equivalences of D between two such functors f and g
induces an exact simplicial homotopy between N.f and N.g.

PROOF. The first statement is clear. We view the partially ordered set [1] as
a category with cofibrations and weak equivalences where the non-identity map is
a weak equivalence but not a cofibration. Then the natural transformation defines
an exact functor [1] x C — D, and the required exact simplicial homotopy is given
by the composite

A[1]. x N¥C — N¥[1] x N¥C — N*([1] x C) — N“D,

where the first and the middle arrow are the canonical simplicial functors, and the
last is induced from the natural transformation. (Note that N*[n] is not a discrete
category.) O

LEMMA 1.3.3. (][40, lemma 1.4.1]) Let f,g: C — D be a pair of ezact functors of
categories with cofibrations. A natural isomorphism from f to g induces an exact
simplicial homotopy

All]. x S.C = S8.D
from S.f to S.g.
13



PROOF. We recall the proof. The natural transformation from f to g amounts
to a functor F': C x [1] — D. Recall that S,C is a sub-category of the functor
category CA™"l. The homotopy is then given by

(a: [n] = [1]) = ((A: Ar[n] = C) — (A": Ar[n] — D)),
where A’ is defined by the composition

Arfn] 2 ¢ x A1) B e 1] B D

and p: Ar[l] — [1] is given by (0 - 0) — 0, (0 - 1) — 1, and (1 — 1) — 1. The
requirement that the natural transformation be through isomorphisms is needed in
showing that the maps above are compatible with the zeroth face. O

COROLLARY 1.3.4. Let C be a category with cofibrations. Then the map induced
from the degeneracies in the nerve direction induces a weak equivalence

®(S.C) = ®(NS.C).

PROOF. For each k, the iterated degeneracy functor
s: C=NiC — Nic,
has the retraction
0*: NiC — C,
where 0: [0] — [k] is given by 6(0) = 0. Moreover, there is a natural isomorphism
id = 6*, and hence by the lemma,
S.s:8.C— SNiC=NiS.C

is an exact simplicial homotopy equivalence. The corollary follows from lemma
1.3.1 and the realization lemma. O

1.4. The proof of the additivity theorem given by McCarthy in [27] has the
advantage that it immediately generalizes to the present situation. We recall the
proof here.

Concatenation of sets and maps defines a functor
U: A XA — A,
aand there are natural transformations
pry s pry

given by the canonical inclusions. If X is a simplicial object in a category C,
the functors LI, pr; and pr, give rise to three bi-simplicial objects in C which we
denote PX, XL and XR, respectively. Moreover, the natural transformations
above induce natural bi-simplicial maps

XL <& PX S5 XR.

In general, there are no bi-simplicial sections of these functors. But for fixed m > 0,
the simplicial map
er: PXy, . — X
has a section
i Xy = PXopy
14



induced from the natural transformation [m] U [n] — [m] which collapses [n] on the
point m € [m]. Similarly, for fixed » > 0, the map eg: PX., — X, has a section
tr: X, = PX., induced from the natural transformation [m] U [n] — [n] which
collapses [m] on the point 0 € [n].

LEMMA 1.4.1. The composite simplicial maps
PX;p. 5 X ~5 PX,p.
PX., %X, 5 PX.,

are naturally simplicially homotopic to the identity.

PROOF. The proof is similar to [40, lemma 1.5.1]. The second of the composite
maps of the statement is induced from the map

[m] U [n] — [m] U [n]
which is the identity on [n] and collapses [m] on the point 0 € [n]. The homotopy
of this map to the identity is given by the natural transformation
(a: [m] = [1]) = (p5: PXmn = PXim )
induced from
(a: [m] = [1]) = (@a: [m] U [n] = [m] U [n]),
where ¢, is the identity on [n| and
. J ,if a(j) =0,
Pa(j) = : ( .)
m+1 ,ifa(j) =1

Suppose that a: [m] — [1] and 0: [m'] — [m] are maps in A, and let '’ = ao 6.
Then by definition, the diagram

commutes. This shows that the homotopy is indeed a simplicial map. O

Let f: C — D be an exact functor of categories with cofibrations and weak
equivalences. Following [27] we define the bi-simplicial category S.f|D by the pull
back diagram

S.f[D —— PS.D

I, ]

(S.C)L—— (S.D)L
Neglecting choices of quotients, an object of the category of (m,n)-simplices of
S.f|D consists of a pair of flags
Cprs oo Cry
D>+ Dy > Spr— - — Sp

in C and D, respectively, such that f(C;) = D;, 1 <i < m.
15



It follows from [40, 1.1-1.2] that S.f|D is a bi-simplicial category with cofibra-
tions and weak equivalences in a natural way, and that the functors in the diagram
above are exact. The section vz, : S,,D — (PS.D)my. induces a section

et SmC — (S.f|1D)m, .

and the homotopy of lemma 1.4.1 induces a homotopy of the composite simplicial
functor

(S.fID)m,. =5 SmC -5 (S.£|D)mm..
to the identity functor. Moreover, one easily checks that the section ¢, is exact and
that the given homotopy of ¢1, o ef, to the identity is through exact functors.

There are natural maps of pull-back diagrams of simplicial categories

(PS.D)., E 5Dl sc

)

L]

m * *

Lol

(PS.D)., = SD+—S.C

"y

which define natural simplicial exact functors
(1.4.2) (S.fID).n 2 8D % (S.£|D). -
In general, the composite map is not homotopic to the identity.

PROPOSITION 1.4.3. (McCarthy) Let f: C — D be an ezact functor of categories
with cofibrations and weak equivalences and suppose that for all n, there exists an
ezact simplicial homotopy of the composite functor (1.4.2) to the identity. Then

®(S.f): ®(5.C) — ®(S.D)

is a weak equivalence.

PROOF. There is a commutative diagram,

((5.D)R) «Z— &(S.f|D) —=— &((S.C)L)
| | |
((5.D)R) «=— &(PS.D) —= #((S.D)L),
and the horizontal maps are all weak equivalences. Let us show in detail that the
upper left hand map is a weak equivalence. By assumption, the simplicial exact
functor
er: (S.f|D).n, = S, D

is a simplicial homotopy equivalence, for all n > 0. The homotopy inverse is tg. It
follows from lemma 1.3.1 that for all n > 0,

er: ®((S.f|D).n) — ®(S.D)

is a homotopy equivalence. Since we assume that the realization lemma holds for
P, it follows that
er: ®(S.f|D) = ®((S.D)R)
16



is a weak equivalence. A similar argument shows that the remaining horizontal
arrows are weak equivalences. [l

Let A, B and C be categories with cofibrations and weak equivalences and sup-
pose that A and B are subcategories of C and that the inclusion functors are exact.
Following [40, p.335], let E(A,C,B) be the category with cofibrations and weak
equivalences given by the pull-back diagram

E(A,C,B) M AxcxB

l (d2,d1,do) l

SoC ———C xC xC.
In other words, E(A,C,B) is the category of cofibration sequences in C of the form
A—C—-»B, AcA, BeB.

The exact functors s, t and ¢ take this sequence to A, C' and B, respectively. The
extension of the additivity theorem to the present situation is due to McCarthy,
[27].

THEOREM 1.4.4. (Additivity theorem) The following equivalent assertions hold:
(1) The ezact functors s and q induce a weak equivalence

®(N"S.E(A,C,B)) = ®(N¥S.A) x ®(N“S.B).

(2) The ezxact functors s and q induce a weak equivalence

3(N¥S.E(C,C,C)) = B(N™S.C) x (NS.C).

(3) The functors t and sV q induce homotopic maps
®(N¥S.E(C,C,C)) —» ®(N¥S.0).

(4) Let F' > F — F" be a cofibration sequence of ezxact functors C — D. Then the
ezact functors F and F'V F" induce homotopic maps

d(N™S.C) — ®(NS.D).

PROOF. We refer to [40, proposition 1.3.2] for the proof that the four state-
ments are equivalent. We also employ the trick used there that the bi-simplicial cat-
egories with cofibrations and weak equivalences N* S.C and S.N?C are canonically
isomorphic. It is therefore enough to show that for any category with cofibrations
C, the functors s and ¢ induce a weak equivalence

&(S.E(C,C,C)) — B(S.C) x B(S.C).

To this end, we follow McCarthy, [27], and apply proposition 1.4.3 to the exact
functor

(dg,do): SQC —CxC.
The required homotopy of tg 0 €g to the identity is a composite of two homotopies.
In [27, 3.5.1], McCarthy gives explicite formulas for these homotopies. O
17



COROLLARY 1.4.5. Let f: C — D be an ezxact functor of categories with cofibra-
tions and weak equivalences. Then the commutative square

(NVS.C) —— B(N¥S.S.(id: C — C))

| |

®(N¥S.D) —— ®(N¥S.5.(f: C — D))

is homotopy cartesian, and there is a canonical contraction of the upper right hand
term. O

We call amap f: X — Y of T-spaces is called an F-equivalence, if for all » > 1,
the the induced map of C,-fixed points is a weak equivalence of spaces.

PROPOSITION 1.4.6. Let C be a linear category with cofibrations and weak equiva-
lences, and let T(C) be its topological Hochschild spectrum. The the for all m,n > 1
and all orhtogonal T-representations W and V', the spectrum structure maps

TC)nyv — F(S™ASYV, T(C)minwev)

are F-equivalences. In particular, the spectrum |T'(C)®r| and the pointed space
QTHH(NYS.C)®" have canonically isomorphic homotopy groups.

PROOF. We factor the map in the statement as
T(C)n,y — F(S™ T(C)mtn,v) = F(S™ F(SY, T(C)minwav))-

Since S™ is C,-fixed the map of C,-fixed sets induced from the first map may be
identified with the map

(T(Cn,y) T = X™(T(C)msn,v) "
and by definition, this is the map
THH™ (N¥S™¢; §V)Cr — am THH™ ) (Nv s, §V)or,

By the approximation lemma [2, theorem 1.6], we can replace the functor THH®) (=;-)
by the common functor THH(—; —), and the claim now follows corollary 1.4.5 of
the additivity theorem applied to the functor

®(C) = THH(C; SV)°",
compare [40, ?]. It remains to show that
(T(C)mtn,v)" = F(SY, T(C)msnwav)) "

is a weak equivalences. This follows from the proof of [16, proposition 2.4]. O

1.5. In this section, we extend Waldhausen’s fibration theorem to the present
situation. We follow the original proof in [40], where also the notion of a cylinder
functor is defined.

LEMMA 1.5.1. Suppose that C has a cylinder functor, and that wC satisfies the
cylinder axiom and the saturation axiom. Then
®(N”C) = ®(N™C)
is a weak equivalence.
18



PROOF. The proof is analogous to the proof of [40, lemma 1.6.3], but we need
the proof of Quillen’s theorem A and not just the statement. We consider the
bi-simplicial category T(C) whose category of (p, q)-simplices has objects pairs of
diagrams in C of the form

(Ag — - —= Ag,Ao = By = -~ = Bp),
and morphisms all natural transformations of such pairs of diagrams. We let
T"*(C) C T(C)

be the full subcategory with objects the pairs of diagrams with the left hand dia-
gram in @wC and the right hand diagram in wC. There are bi-simplicial functors

N?(C°P)R &1 T%v(C) £ N¥(C)L,

and applying ® in each simplicial bi-degree, we get corresponding maps of bi-
simplicial spaces. We show that both maps induce weak equivalences after realiza-
tion.

For fixed g, the simplicial functor
pr: Tf‘:’&“’ C€) — Ng) (C°P)

is a simplicial homotopy equivalence, and hence induces a homotopy equivalence
upon realization. It follows that

@(p1): (T(C)) — B(NT(C))
is a weak equivalence of spaces.
Similarly, we claim that for fixed p, the simplicial functor
p2: T, (C) — N (C)
is a simplicial homotopy equivalence. The homotopy inverse ¢ maps
(Bo— -+ — By) > (B -5 ... 2% By, By 2% By — - = B,).
Following the proof of [40, lemma 1.6.3] we also consider the simplicial functor
t: T, (C) — T, (C)
which maps
(Ag = -+ — Ay, Ag = By — ... Byp)
— (T(Aq — By) — -++ — T(Ao — By),T(A¢ — By) 2 By — --- — B,),

where T is the cylinder functor. There are exact simplicial homotopies from o o py
to t and from the identify functor to . Hence

o (p2): 2(T™™(C)) = &(N™(C))
is a weak equivalence of spaces.

Finally, consider the diagram of bi-simplicial categories

N¥(C°P)R +2— T%»(C) —2— N*(C)L



where i’ is the obvious inclusion functor. Applying ® the horizontal functors all
induce weak equivalences. The lemma follows. [l

Let C be a category with cofibrations and two categories of weak equivalences
vC and wC, and write

NYC = N?(N¥C) = N”(N?C).

This is a bi-simplicial category with cofibrations which again has two categories of
weak equivalences.

LEMMA 1.5.2. (Swallowing lemma) If vC C wC then
®((N“C)) = ®((N“C)R) = ®(N""C)

is a homotopy equivalence with a canonical homotopy inverse.

PRrROOF. We claim that for fixed m, the iterated degeneracy in the v-direction,
N¥C — N¥(N?.C),

is an exact simplicial homotopy equivalence. Given this, the lemma follows from the
lemma 1.3.1 and the realization lemma. The iterated degeneracy above is induced
from the (exact) iterated degeneracy map ¢ — NZ.C in the simplicial category
Nv?C. This map has a retraction given by the (exact) iterated face map which takes
co — -+ — Cm to cg. The other composite takes co — --- — ¢, to the appropriate
sequence of identity maps on cy. There is a natural transformation from this functor
to the identity functor, given by

Co Co B Co
[o [ oo
co fi e oo fm e

The natural transformation is through arrows in vC, and hence in wC. The claim
now follows from lemma 1.3.2. O

THEOREM 1.5.3. (Fibration theorem) LetC be a category with cofibrations equipped
and two categories of weak equivalences vC C wC, and let C* be the full subcategory
with cofibrations of C given by the objects A which satisfy that x — A is in wC.
Suppose that C has a cylinder functor, and that wC satisfies the cylinder aziom, the
saturation axiom, and the extension axiom. Then

(NVS.CY) — B(N¥S.CV)
(NVS.C) — ®(N™S.C)

is a homotopy cartesian square of pointed simplicial sets, and there is a canonical
contraction of the upper right hand term.
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PrOOF. Following the proof of [40, theorem 1.6.4], we consider the diagram

P(NVS.CY) —— B(NUPS.CW) — $(NV™S.C¥) —— ®(N™S.C")

| | | |

P(NVS.C) — ®(N*?5.C) —~— §(NU¥S.C) —— d(N¥S.C).

The horizontal maps in the middle square are weak equivalences by lemma 1.5.1
and the horizontal maps in the right hand square are weak equivalences by the
swallowing lemma. The left hand square may be rewritten as

P(NVS.CY) —— ®(NVS.S.(CY — Cv))

| J

B(NVS.C) — B(NS.S.(C* — C))

It is therefore homotopy cartesian by the corollary 1.4.5 of the additivity theorem.
Finally, since wC" has an initial object, lemma 1.3.2 gives a contracting exact
simplicial homotopy of N*“C*. Hence ®(S.N*C") = &(N¥S.C") is contractible by
lemma 1.3.1. O

1.6. Let A be an abelian category. We view A as a category with cofibrations
and weak equivalences by choosing a null-object and taking the monomorphisms
as the cofibrations and the isomorphisms as the weak equivalences. Let £ be an
additive category embedded as a full subcategory of A, and assume that for every
exact sequence in A,

0—-A—-A—A"—0,

if A" and A” are in £ then A isin £, and if A and A” are in £ then A’ isin £. We
then view £ as a subcategory with cofibrations and weak equivalences of A.

The category C?(A) of bounded complexes in A is a category with cofibrations
and weak equivalences, where the cofibrations are the degree wise monomorphisms
and the weak equivalences are the quasi-isomorphisms. We view the category C?(€)
of bounded complexes in £ as a subcategory with cofibrations and weak equivalences
of C®(A). The inclusion

£ — Cb¢&)

of £ as the subcategory of complexes concentrated in degree zero, is an exact
functor.

THEOREM 1.6.1. With £ as above, the map induced from the inclusion
B(NS.E) = ®(NVS.CP(E))

is a weak equivalence.
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PRrOOF. We follow the proof of [38, theorem 1.11.7]. Since the category C°(€)
has a cylinder functor which satisfies the cylinder axiom with respect to quasi-
isomorphisms, the fibration theorem shows that the right hand square in the dia-
gram

P(NIS.E) —— ®(NIS.CP(E)Y) —— ®(N¥S.CP(&)v)

| | |

®(NIS.E) —— ®(NIS.CY(E)) —— ®(NVS.CY(E))

is homotopy cartesian. Moreover, the composite of the maps in the lower row is
equal to the map of the statement, and the upper left hand and upper right hand
terms are contractible. Hence the theorem is equivalent to showing that the left
hand square is homotopy cartesian.

Let C® be the full subcategory of C®(€) consisting of the complexes E, with
E; =0fori > bandi < a Then C?) is the colimit of the categories C2 as a
and b tends to —oo and +oo, respectively. We consider C° as a subcategory with
cofibrations of C®(€).

We first show that there is a weak equivalence
(NIS.Cl) —» [ ®(NIS.E), E.w (B Epy,...,Ed).
a<s<b
The map is an isomorphism for b = a. If b > a, the functor
e: C. — E(C2,C,Cl. ),

which takes F, to the extension
UgaE* — E* - 0'>aE*,

is an exact equivalence of categories. The inverse, given by the total-object functor,
is also exact. Hence, the induced map

B(N'S.CY) = ®(N'S.E(CZ,Cl,Ct.y)),

is a homotopy equivalence by lemma 1.3.2. McCarthy’s additivity theorem 1.4.4
then shows that

(s,q): ®(NiS.E(CZ,CL,CL, 1)) = ®(NIS.CE) x ®(N'S.CL,,),
so in all, we have a weak equivalence
B(NIS.CL) = ®(NIS.E) x B(NUS.CE, ), B (Eq,050Ey).
It now follows by easy induction that the map in question is a weak equivalence.
Next, we claim that
(NiS.C®) » [ ®(NiS.E), E.w (By_1,Bpa,...,Ba),
a<s<b

where B; C E; are the boundaries, is a weak equivalence. Note that the exactness
of the functors F, — B; uses that the complex FE, is acyclic. If a = b—1 the functor
E, — B, 1 is an equivalence of categories with exact inverse functor. Therefore, in
this case, the claim follows from lemma 1.3.2. If b— 1 > a, we consider the functor

cor — B(Cp™y,Chv,cehv)

a 'va
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which takes the acyclic complex E, to the extension
Top—1Ey = By —» Tcp_1E,.

The functor is exact, since we only consider acyclic complexes, and it is an equiva-
lence of categories with exact inverse given by the total-object functor. Hence the
induced map

B(NIS.Ctv) & ®(NIS.E(Che,, cbv, cle—Dwy)

a 'Ya

is a homotopy equivalence by lemma 1.3.2. The additivity theorem now shows that
P(NIS.C") = ®(NIS.E) x ®(NS.CP™Y),  E.w— (Bp_1,7<p_1E.),

is a weak equivalence, and the claim follows by induction.

One of the standard corollaries of the additivity theorem shows that there is a
homotopy commutative diagram

(Nig.ctwy — [[ ®(Nis.€)

a<s<b

(Nis.ct) —= ] ®(Nis.)

a<s<b

where the horizontal maps are the equivalences established above, and where the
right hand vertical map is given by

(zs) — (Ts + T5-1)-

It follows that the diagram

B(NS.CQv) —— B(NIS.CPv)

| |

®(NiS.CY) — ®(N!S.CP)),

where the maps are induced by the canonical inclusions, is homotopy cartesian.
Indeed, the map of horizontal homotopy fibers may be identified with the map

II eemise)—» [] QeNise)
a<s<b a<s<b,5#£0
given by
(zs) = (x5 + T5-1),
and this is clearly a homotopy equivalence. Taking the homotopy colimit over a

and b, we see that the left hand square in the diagram at the beginning of the proof
is homotopy cartesian. U
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1.7. In this section we recall the equivalence criterion of Dundas-McCarthy
for topological Hochschild homology. This is based on the following

ProposITION 1.7.1. ([6, proposition 2.2.3]) The map induced from the inclusion
of the zero-skeleton

holim Q"~* THH,(5!")C) — holim Q"~* THH(S"™C)
' '

is a weak equivalences of pointed spaces. O

Given a linear category C and a finite pointed set X, one defines the endo-
morphism category Endx (C), where the objects are pairs (¢,v) with ¢ € obC and
v € Home(¢,c®Z(X)). A morphism in Endx(C) from (¢, v) to (d, w) is a morphism
f:c— din C which makes the diagram

c—3c®ZX)

-

d—3d®7Z(X)

commute. In particular, if X has one point, End x (C) is equivalent C, and if X has
two points, End x (C) is equivalent to the category of endomorphisms End(C).

PROPOSITION 1.7.2. ([6, proposition 2.3.3]) Let F': C — D be an ezact functor
of linear categories with cofibrations and weak equivalences, and suppose that for
every finite set X, the map |obN¥S.Endx(F)| is a weak equivalence. Then F
induces a weak equivalence

THH(N“S.C) = THH(N"S.D).

PROOF. The proof has two parts. We first show that it is enough to show that

F induces a weak equivalence
V(SIN¥C,i)| = [V(SIN®D, i)

for j large. We then show that this spells out to the condition listed in the state-

ment.

By the previous proposition, the canonical maps
THH(S..A) = holim Q7! THH(S?.A) <~ holim Q7 THH, (57 A)

— —
J J

are weak equivalences for any linear category A. It thus suffices to show that F'
induces a weak equivalence

THH,(SN¥C) = THHy(S'N“D),
for j large. Writing out definitions, this map is
| holim F(§%, V(SYNYC,1))| — | holim F(S*, V(S'N¥D, 1))|,

T T
and since homotopy colimits commute with realization and preserve weak equiva-
lences (of well-pointed spaces), it suffices to show that F' induces a weak equivalence

|F (S, V(SINY“C,i))| — |F(S*,V(SIN“D,i))|
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for j large and for all 2. We consider the following diagram

|F (S, V(SIN“C, i))| — |F(S', V(SIN“D, 1))|

| |

F(S*, [V(SINvC,i)|) — F(S%, [V (S/N"D, i)|).

The simplicial space V(S?N¥C, i) is (i — 1)-connected in each simplicial degree. It
is also good in the sense that the degeneracy maps are (Serre) cofibrations. But
then the vertical maps in the diagram above are weak equivalences by [26, theorem
12.3]. This finishes the first part of the proof.

For any linear category A, we have a cofibration sequence
ob A — H Hom 4(a,a); — \/ Hom 4(a, a);,
a€ob A acob A
and the right hand side by definition is V/(A, ). Here, we remember,
Hom 4 (a,a); = | Hom4(a,a) ® Z(S*)|,
and since
H Hom 4(a,a) ® Z(S*) = ob Endg: (A),
ac€ob A

the cofibration sequence above takes the form

ob A — |obEndg:(A)| - V(A,1).

In the case at hand, we get a map of cofibration sequences

|ob S N®C|—— | ob Endg: (S'N¥C)| —» |V (SIN¥C, )|

| | |

|ob SN*“D|—— | ob End g: (S'N¥D)| — |V (S N*D, )|.

The spaces in this diagram are all (j — 1)-connected. Hence for j > 1, the right
hand vertical map will be a weak equivalence if the left hand and middle vertical
maps are weak equivalences. To see that this is the case, we rewrite

Endg:(SN¥C) = N¥S/Endg: (C).
By our assumptions, the map
|obN*S.Endg:(C)| = |obN"S.Endg: (C)|

is a weak equivalence. And the addditivity theorem implies that the vertical maps
in the diagram

|obN*S.Endg:(C)] ——— |obN¥S.Endg: (D)|

Q71 ob N* S7Endg: (C)] —— Q1| obN*S’End : (D)|

are weak equivalences. Hence the lower horizontal map is a weak equivalence.

But this map is the (j — 1)st loop of the middle vertical map in the diagram of

cofibration sequences above. And since the domain and range of the latter map are
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(j — 1)-connected, it is a weak equivalence. The proof that the left hand map in
the diagram of cofibration sequences above is a weak equivalence is similar. [l

1.8. Let A be a Dedekind ring with fraction field K, and let M4 denote
the category of finitely generated A-modules. We consider two categories with
cofibrations with and weak equivalences, C2(M 4) and C¢(M 4), both of which have
the category of bounded complexes in M, with degree-wise monomorphisms as
their underlying category with cofibrations. The weak equivalences are the category
20%(M 4) of quasi-isomorphisms and the category ¢qC®(M4) of chain maps which
become quasi-isomorphisms in C®(M ), respectively. Similarly, we let C%(P4) and
C}I’ (Pa) be the category of bounded complexes of finitely generated projective A-
modules considered as a subcategory with cofibrations and weak equivalences of
C%(M4) and C(My), respectively.

THEOREM 1.8.1. The inclusion functor induces a weak equivalence
THH(NZ?S.C°(M 49)) = THH(NZ?S.C*(M 4)?).

PRrROOF. We show that the assumptions of the Dundas-McCarthy equivalence
criterion 1.7.2 are satisfied. The proof relies on Waldhausen’s approximation the-
orem, [40, theorem 1.6.7], but in a formulation due to Thomason, [38, theorem
1.9.8], which is particularly suited for the situation at hand.

If X is a finite pointed set, we let A{X} denote the ring of non-commutative
polynomials in the variables X — {z¢} with coefficients in A. The A{X} is an asso-
ciative unital A-algebra, and we let M4 x denote the category of A{X }-modules
which are finitely generated as A-modules. Then there are canonical isomorphisms
of categories

EndxC®(M4) = C°(Ma x),
EndxC°(Ma)? = C°(Ma x)?,
EndxC*(M%) = C*(MY, x),
where C®(M4 x)? C C%(M4 x) is the subcategory of chain maps whose image
under the forgetful functor
C*(Ma,x) = C*(May)

lies in C*(M 4)9, and similarly for M?% ,. We must show that the inclusion functor
induces a weak equivalence

|obN,ZS.Cb( ?4,X)| A \obN?S.Cb(MA,X)qL

and use [38, theorem 1.9.8]. The categories Cb(M‘quX) and C®(M 4, x)? are both
complicial bi-Waldhausen categories in the sense of [38, 1.2.4], which are closed
under the formation of canonical homotopy pushouts and homotopy pullbacks in
the sense of [38, 1.96]. The inclusion functor

F': Cb( ?47X) — Cb(MAyx)q

is a complicial exact functor in the sense of [38, 1.2.16]. We must verify the con-

ditions [38, 1.9.7.0-1.9.7.3]. These conditions are easily verified with the exception

of condition 1.9.7.1 which reads: for every object B of C®(M 4 x)?, there exists an

object A of C*(MY x) and a map FA = B in 20°(M 4 x)?. This follows from

the following lemma. O
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LEMMA 1.8.2. Let A be a Dedekind ring and let f: A — B be a ring homomor-
phism. Let C, be a bounded complex of left B-modules and suppose that f*C, is
a complex of finitely generated A-modules whose homology is torsion. Then there
exists a quasi-isomorphism

C. = D,

where D, is a bounded complex of left B-modules such that f*D, is a complex of
finitely generated torsion A-modules.

PRrROOF. Suppose that f*C; is a torsion module for ¢ > n. We construct a
quasi-isomorphism C, — C’, to a complex C’, with f*C! torsion for i > n —1. The
lemma then follows by simple induction.

We will show that there exists a submodule I C C,, which intersects Z,, triv-
ially and such that f*(C,/I) is torsion. The first of these properties may also be
expressed as a map of exact sequences

Zn Cn anl
Zy, Cn/I B, 1/dlI.
Given this, we define
Cn/1, for i = n,
Ci={Cpn_1/dI, fori=n—1,
C; else,

with the differential determined by the requirement that the natural projection
C. — C. be a chain map. It is clear that this chain map is then a quasi-
isomorphism.

To construct the submodule I C C),, we consider the extension
Zp — Cp = B, _1.

Since f*B,_1 is a finitely generated A-module, we can find a € A such that
af*(Bp_1) C f*Bp_1 is a free A-module. We form the pull-back extension

Zn — Cn XBp_1 f(a)Bn_l —» f(a)Bn_l.

The sequences Z,+1 — Cpy1 — B, and B, — Z, — H, show that f*Z, is
torsion; let a’ € A be an annihilator. Then f(a’) annihilates Extg(M, Z,,), for any
B-module M. In particular, the composite

Ext(£(a)Bn1, Zn) 2% Ext(f(a'a)Bu_1, Zn) “> Extp(f(a)Bn_1, Zn)

is zero. But since f*(f(a)Bn—1) is a free A-module, the right hand map is an iso-
morphism. Hence the left hand map is zero. It follows that the pull-back extension

Zn — Cp Xp,_, f(a'a)Bn_1 — f(a'a)Bn_1

is trivial. Let o be a section of the projection on the right and let I = o(f(a’a)B,—1).
By construction, f*(By,_1/I) is torsion, and hence so is f*(Cy/I). O
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PRrROPOSITION 1.8.3. Let A be a Dedekind ring. Then map induced from the
inclusion functor

THH(NZS™C?(P4)?) = THH(NZS™ Cb(M 4)?)

is a weak equivalence of pointed spaces, for alln > 1.

ProoF. Let M4 x be as in the proof of theorem 1.8.1, and let P4 x be the full
subcategory of A{X }-modules which are finitely generated projective as A-modules.
Then

EndxC?(Ma)? = C*(Ma x)9,
EndxC®(P4)? = Cb(PA,X)qa
and we thus have to show that the inclusion functor
F: Cb('PA,X)q — Cb(MA7x)q
induces a weak equivalence
|obNZS.C?(Pa,x)I| = |obN?S.C*(M 4 x)1|.

Again, we use [38, theorem 1.9.8], where the non-trivial thing to check is condition
1.9.7.1: for every object C, of C®(M 4 x)?, there exists an object P, of C®(P4 x)?
and a map

FpP, 5 C,

in 2C®(M 4, x)9. But this follows from [5, p. 363]. Indeed, let €: P, , — C, be a
resolution in the sense of loc.cit. of C, regarded as a complex of A-modules. We can
assume without loss of generality that each P; ; is a finitely A-module, and since A
is regular, we may further assume that P; ; is zero for all but finitely many (4, j).
Moreover, there exists automatically an A{X }-module structure on P, , such that
¢ is A{X}-linear. Therefore, the total complex P, = Tot(P, .) is in C®(P4 x) and

FTot(e): FP, = FTot(P,.,.) = C,
is in zC®(M 4 x). Hence P, is in C®(P4,x)? as required. O

DEFINITION 1.8.4. Let A be a discrete valuation ring with field of fractions K
and residue field k. We define ring T-spectra

=
=
3
]
=
&
S

and we write TR'(A|K;p), TR (4;p) and TR'(k;p) for the associated pro-ring
spectra.
It follows from theorem 1.6.1 that the inclusion
T(Pa) — T(C2(Pa)) = T(4)
is an F-equivalence, and hence we have an isomorphism of pro-spectra
(1.8.5) TR'(4;p) ~ TR (Pa;p).
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Here the exact category P4 is considered a category with cofibrations the admissable
monomorphisms and weak equivalences the isomorphisms. Similarly, the inclusion
functors induce F-equivalences

T(Px) = T(C2(Pr)) = T(C2(MY))-

For the right hand map this is devisage, [6]. We proved in theorem 1.8.1 and
proposition 1.8.3 above that also

T(C2MY)) = T(CL(Ma)?) = T(C2(Pa)?) = T(k)
are F-equivalences, and hence there is an isomorphism of pro-spectra
(1.8.6) TR (k; p) ~ TR (Px; p),
which is natural in A.

THEOREM 1.8.7. Let A be a discrete valuation ring with field of fractions K and
residue field k. Then there is a natural cofibration sequence of pro-spectra

TR’ (k;p) > TR’ (4;p) 2 TR (4| K;p) > S TR (ks p),

and the maps in the sequence are all TR’ (A;p)-module maps and commute with the
maps F, V and u. Moreover, their preferred homotopy limits form a cofibration
sequence of spectra.

PROOF. We have a commutative square of symmetric orthogonal T-spectra

T(CY(Pa)?) —— T(Cy(Pa)?)

| |

T(CY(Pa)) —— T(C5(Pa)),
and the fibration theorem shows that the underlying square of symmetric othogonal
spectra is homotopy cartesian. It follows that there is natural sequence of spectra
TR" (k; p) - TR"(A;p) £ TR"(A|K;p) % STR" (k; p),

compatible with R, F';, V and pu, and that this sequence is a cofibration sequence
when n = 0. It follows by an induction argument based on the fundamental cofi-
bration sequence

H. (Cpr1, T(D)) 25 TR™(D;p) =5 TR (D; p) = £H. (Cpr—1, T(D))
that the sequence above is cofibration sequence for all n > 0. O

ADDENDUM 1.8.8. Let A be a discrete valuation ring with field of fractions K
and residue field k. Then there is a natural map of cofibration sequences

K(k) ——— K(A) K(K) YK (k)

Pl e

TC(k; p) —— TC(A; p) —s TC(A|K; p) —2— S TC(k; p)

I o

and the vertical maps are all maps of ring spectra.
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2. The homotopy groups of T(A|K)

2.1. In this paragraph, we evaluate the homotopy groups modulo p of the
topological Hochschild spectrum T'(A|K) introduced in the preceeding paragraph.
We first recall the notion of differentials with logarithmic poles. The standard
reference for this material is [19].

A pre-log structure on a ring R is a map of monoids
a: M — R,

where R is considered a monoid under multiplication. By a log ring we mean a ring
with a pre-log structure. A derivation of a log ring (R, M) into an R-module F is
a pair of maps
(D,Dlog): (R,M) — E,
where D: R — E is a derivation and Dlog: M — E a map of monoids, such that
for alla € M,
a(a)Dloga = Da(a).

A log differential graded ring (E*, M) is a triple consisting of a differential graded
ring E*, a pre-log structure a: M — E°, and a derivation (D, Dlog): (E°, M) —
E! such that D is equal to the differential d: E° — E' and such that do D log = 0.

There is a universal example of a derivation of a log ring (R, M) given by the
R-module

wrm) = (Qr ® (R®z G(M)))/{da(a) — a(a) ®a | a € M),
where G(M) is the Grothendieck group of M. The structure maps are
d: R — wirM), da=da®0,
dlog: M — w(r, ), dloga=00(1®a).

The exterior algebra

w?R,M) = Ag(w(r,m))
endowed with the usual differential is the universal log differential graded ring whose
underlying log ring is (R, M).

When A is a discrete valuation ring with field of fractions K and residue field &,

we have the canonical pre-log structure given by the inclusion

a:M=ANK* — A.
The Poincaré residue homomorphism is the natural map

res: w4 pm) — A/m,  res(adlogb) = av(b) +m,

where v: K* — 7Z is the valuation.

PROPOSITION 2.1.1. There is a natural short exact sequence

0— QA/Z — wa,m) — k — 0.

PRrROOF. For a € AN K*, av(a) € m which shows that the composition of the
two maps in the statement is zero. Only the exactness in the middle needs proof.
Let 7 be a uniformizer and let adlogb be an element of w4 5r). If we write b = iy
with u € A%, then

adlogb = iadlog m + au™'du.
30



Suppose that res(adlogb) = ia+mA is trivial. Then ia € pA, and hence jar ! € A
and iadlogm = iar'dr. It follows that adlogh € Qaz- O

Let W = W (k) be the ring of Witt vectors in k, and let My = W* — W be the
trivial log-structure on W. We define

W(A,M)/(W,Mp) = (QA/W@ (A®z KX))/<da—a®a | ac AQKX>,

and an argument similar to the proof of the above proposition shows that there is
a natural exact sequence

(2.1.2) 0— QA/W — W(A,M)/(W,My) — k— 0.

LEMMA 2.1.3. Let m € A be a uniformizer with characteristic polynomial ¢(r).
Then as an A-module, w(,ar)/(w,My) 15 generated by dlog m with annihilator (¢'(m)).

PROOF. Every element of K* is of the form miu, where i € Z and u € A*.
Hence the formula
dlog(r*u) = idlogm + u~'du
shows that as an A-module w4 rr)/(w(k),Mm,) 18 generated by the element dlog.
The relation identifies

¢'(m)mdlogm = d(¢()) =0,

so the annihilator ideal is generated ¢'(m)7. O
LEMMA 2.1.4. There is a natural exact sequence
A®ww) L) = wlann = Wlamn/ w0

and the left hand group is uniquely divisible.

PrOOF. We first prove the statement for ¢ = 1. The map of short exact
sequences

0 Qasz w(a,m) k 0
0 Qa/w W(4,M)/(W,Mo) —— k —— 0

and the standard exact sequence
A®w ®QW/Z — QA/Z — QA/W — 0

yields the sequence of the statement. We show that Qu is a uniquely p-divisible
group. In effect, HH;(W) is uniquely p-divisible, for all ¢ > 0. For W is torsion free
and W/pW = k, so the coefficient long-exact sequence takes the form

.o — HH; (k) — HH;(W) & HH;(W) — HH; (k) — - --

and for a perfect field of positive characteristic, HH;(k) = 0, for ¢ > 0. See e.g. [16,
lemma 5.5]. This proves the lemma for ¢ = 1. In particular, the maximal divisible
sub-A-module of w4 ) is equal to the image of A ®w Qyw/z, and w4 nr) is the
sum of this divisible module D and the cyclic torsion A-module w4 ar)/(w,a)- It
follows that for i > 1,
UJEA,M) = Af‘le
and this in turn is the image of left hand map of the statement. O
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COROLLARY 2.1.5. The p-torsion submodule of w(a nr) is

pW(A,M) = A/pA<d logp>-

Proor. It follows from lemma 2.1.4 that

~

pY(A,M) T pW(A,M)/(W (), Mo)
is an isomorphism. By the previous lemma, if 7 be a uniformizer with minimal
polynomial ¢(w) € W (k)[x], then
W(aM) /(W (k),Mo) = A/ (¢! (m))(dlog ).

We write ¢(r) = m°% +pf(rw). Then 6() is a unit in A and p = 7°5<0(7)~1. Hence,
on the one hand

7/ (1) = ex % + prf (n) = (ex — w0 (w)0(mw) 1) weEK,
and on the other hand,

dlogp = dlog(m**0(x) ') = (ex — 7' (7)0(w) " )dlog .
The claim follows. O

Let L be a finite extension of K and let B be the integral closure of A in L.
Then the following diagram commutes

re

(2.1.6) W(A,M4)/(W,Mo) —2— A/my

Ji* J/EL/K %

re

W(B,Mp)/(W,Mo) —— B/mp,
where er,/k is the ramification index of L /K. Recall that L/K is unramified if and
only if the canonical map
B®aQaw — Qp/w

is an isomorphism.

LEMMA 2.1.7. The extension L/K is a tamely ramified if and only if the canon-
ical map

B ® 4 wia,ma)/(W,Mo) = W(B,Ms)/(W,Mo)
is an isomorphism.

PROOF. Suppose that L/K is tamely ramified. If L/K is unramified, the
lemma follows from the natural exact sequence

0= Qa/w — wia,m)/(w,mp) = A/mg — 0

and the isomorphism mentioned before the lemma. So replacing K by the maximal
subfield of L which is unramified over K, we may assume that the extension is
totally ramified. Then there exists m4 € A such that

L= K(x/¥%).
Indeed, if 74 and wp are uniformizers of A and B over W, then

_ €L/K
TA=UTg s
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where v € B* is a unit. But the sequence

r

1-Up—B* 5k —1
is split by the composition of the Teichmiiller character
Tk > WX
and the inclusion W* — B*. Therefore, replacing 74 by 7(r(u)) 74, we can
assume that the unit u lies in the subgroup UL of units in B which are congruent
to 1 mod mpg. But every element of U}B has an ey, kth root, so replacing mp by
u'/®L/X 15 we may assume that u = 1.

Let w4 and 7 be uniformizers of A and B over W such that m4 = W;L/ % and
let ¢p4(ma) be the minimal polynomial of 4. Then

¢5(mB) = da(ry’™)
is the minimal polynomial of 7p. The A-module w4 ar,)/(w,m,) is generated by
dlog w4 with annihilator (¢'y(m4)m4), and similarly, the B-module w(p ary /(w,m0)
is generated by dlogmp with annihilator (¢z(7wp)mg). But

€L/K

dlogmy = dlog(mg ') = er/gdlogmp

and

$p(ts)ms = $u(ry ™) - e/xmp’™ = er/xPa(ma)ma,

so the claim follows since ey k is a unit. It is also clear from this argument that
the map of the statement cannot be an isomorphism if the extension L/K is wildly

ramified. O

2.2. Let C be a category with cofibrations coC and weak equivalences wC.
The Waldhausen K-theory of C is the symmetric spectrum K (C) whose nth space
is

K(C)n = |NwS™c|.
Let X be an object of C. The endomorphisms of X in the category of weak equiv-
alences wC is a monoid Aut(X), the homotopy automorphisms of X. There is a
natural map in the homotopy category of symmetric spectra

(2.2.1) BAuwt(X) —» K(C),
which we now recall. The inclusion functor Aut(X) — wC induces
N. Aut(X) — N.wC,
and hence a map of symmetric spectra
(BAut(X))y — K(C).
Moreover, there is a natural sum diagram in the homotopy category
P

D2
B Aut(X) & (BAut(X)) —— §°.

1

where p; maps the extra base point to the base point of B Aut(X), ps collapses
B Aut(X) to the non base point of S°, and i, maps the non base point of S° to the
base point of B Aut(X). Finally, if o is any section of py, then i; = (id —isps)o.

Let C = C®(P4) be the category of Z-graded bounded complexes of finitely
generated projective A-modules with weak equivalences qC the chain maps f: C —
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D for which K ®4 f: K @4 C — K ®4 D is a quasi-isomorphism. Viewing A a
complex concentrated in degree zero,

Aut(A)=ANK* =M,
and 2.2.1 then induces a map
M — mBM — m K(C),
which is a group completion. Composing with the cyclotomic trace, we get
(2.2.2) dlog,,: M — m TR"(A|K;p).
This map may also be described as the composite

M+ /\Sl+1 id Ao

2% (M x 814 ASY = [obNIC| A SH — S AN (NIC)| A S
— |NY.(N2C)[C- A St A0 TR A|K; p).
The Teichmiiller character
(2.2.3) i A— m TR™(A|K;p)
is defined to be the composite
A — N (NIC) — N (NIC)| 55 [sd, NE2(N9C)|
= [sd, N(N9C)[r 22 [NFY.(N9C)|O = TR™(A|K; p)o,
n—1

where the first map takes a to A — A, and where r = p

PROPOSITION 2.2.4. da,, = a,dlog, a

PROOF. The map

(2.2.5) _pdlog,: M — m TR"(A|K;p)
is given by the composite
M, A GkHH1
ANo

M, A (M x Sty ASkF

po,0Nid

NS, (NYC)| A NS (NOC)| A S+ NS, (N9C)| A SE+

NSV (NIC)[Cr A [NEY.(NEC)[Or A S+ 00N, ey N9y (O p S+

INY.(INIC)|C A S* AN (NIC)[Cr A S Akt
A AN
TR™(A|K; p)x A TR™(A|K;p); —— " TR™(A|K; p)1-
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We wish to compare this to the map
(2.2.6) d_,: A— m TR"(A|K;p)
given by the composite

My ASH— T g1 A ML A S

SLAINZ(NIC)| A St ——— [N (NIC)| A S

J

St A g, INT(NIC) A ST =— pf, INT.(NIC) |9 A St

)\O,l l)\o,l

Sle A TRn(A‘K;p)l w4) TRn(A‘K,p)l

Comparing the two diagrams above, we see that it suffices to show that the diagram

(2.2.7) M, ASL BN MLA (M x STy —— [NZ(NC)| A INP.(N2C)|

- -

SLA M, —— S AN (NIC) —2— [N (NYC)|

is homotopy commutative. Since M is discrete, this may be checked separately
for each a € M. The composite of the upper horizontal maps and the right hand
vertical map restricted to {a} x S* traces out the loop in the realization given by
the 1-simplex

|
s

(2.2.8)

h><—::>

A A
A A
Similarly, the composite of the left hand vertical map and the lower horizontal
maps, when restricted to {a} x S, traces out the loop given by the 1-simplex

N

|
-

N
|

(2.2.9)

B~

l



Note that both loops are based at the vertex A = A. We must show that these
loops are homotopic through loops based at A = A. First, the 2-simplex

A—2s4—52 A
ll Jl ll ll
A—2s4—52 A
[ O G ¢
A——A—5A A

defines a homotopy through loops based at A — A between the loop given by
(2.2.8) and the loop given by the 1-simplex

(2.2.10) A—sAa—1s4

Second, the 2-simplex

a 1

L
Lk

defines a homotopy though loops based at A — A between the loops given by
(2.2.10) and (2.2.9). Thus (2.2.7) homotopy commutes. O

COROLLARY 2.2.11. The homotopy groups (m.T(A|K),M) form a differential
graded ring with a log structure. U

PROPOSITION 2.2.12. The sequence
0—-mT(A) - mT(AK) — mT(k) — 0

is canonically tsomorphic to the sequence of proposition 2.1.1.

PROOF. Since mT (k) = 2z vanishes the sequence is exact. The B-operator
induces a canonical homomorphism form Q4 /7 to 7 T(A), which is an isomorphism
since mT'(A) = HH;(A). The trace map

K* - mT(A|K)
is a map of abelian groups, which we extend to a map of A-modules
A®y K* —» mT(A|K)
to get a homomorphism

QA/Z (&) (A®KX) — ﬂ'lT(A‘K)
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On the first summand it is the composition of the canonical isomorphism with the
inclusion mT(A) — mT(A|K). By corollary 2.2.11 it factors to define a map

wia,M) — 7T1T(A|K)

Finally, it is clear that this map is compatible with the canonical maps above. It
is therefore an isomorphism by the five lemma. O

The homotopy groups modulo p of the topological Hochschild spectrum T'(A)
were evaluated in [22]. The statement of the result is different depending on
whether A/W is wildly or tamely ramified. In the wild case, a choice of uniformizer
m € A specifies an isomorphism of differential graded k-algebras

A/pA @y Ap{dn} @k S{ax} — 7.1 (A),

where on the left, dax = 0. (In [22], ax and d7 were denoted oy and a;, respec-
tively.) The class af is characterized by its image under the primary Bockstein.
Indeed, m2T'(A) is divisible, so the Bockstein induces an isomorphism

ﬂ: T_I'QT(A) l) p’ﬂ'lT(A).

Let ¢ (m) = ¢ + pfk (m) be the minimal polynomial of w. Then ax € TT(4) is
the unique element with

Blax) = (¢ (m)/p)dm = —(exn™ O (m) — Ol (m))dr.

The group 72T (Z, ) is uniquely divisible and 71 T'(F, ) is trivial. Hence m2T'(Z,|Q,)
is uniquely divisible. Therefore, the Bockstein induces an isomorphism
B ®T(Zp|Qp) = pmiT(Zy|Qp).
We define k € T2T(Z,|Qp) to be the class which corresponds to the generator dlogp

on the right. We now prove theorem B of the introduction:

THEOREM 2.2.13. There is a canonical isomorphism of log differential graded
k-algebras

w(a,m) ® Sk, {K} = 7T (A|K),
where dk = (dlogp)k.

PROOF. Suppose first that K/Kj is wildly ramified and consider the diagram

7oT(A) — 2 mT(A)

#T(AK) —L ,mT(AIK).
It is proved in [22] that m3(T(A),Z,) vanishes, and hence the sequence
m(T(A), Zy) — m2(T(A|K), Zp) — mT(k)

shows that so does mo(T'(A|K),Z,). Hence the horizontal maps in the diagram
above are both isomorphisms. The right hand vertical map may be identified with
the left hand map in the sequence

res

0 _>pQA/Z _>pW(A,M) — k.
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The generator dlogp of the middle term has
res(dlogp) = vk (p) = ek,

which vanishes since K/Kj is wildly ramified. The vertical maps in the diagram
therefore are isomorphism. Moreover, since ¥ + pfg (m) = 0,

B(k) =dlogp = (ex — GK(W)710'K(7T)7r)dlog7r = i*(fﬁ(ﬂK(W)flaK)).

We have here used that dlog(—z) = dlog « which follows from corollary 2.2.11 since
dlog(—1) = —d(—1) = 0. The calculation gives that

k= is(—0x (1) tak),
and since dag = 0, we find
dk = d(—i (0 (1) ak)) = ix(d(—0x (7) 'ak))
= i (0 ()20 (m)dr - ag) = dlogp - k
as stated. Since k and dlogp are in 7, T(Kp), this formula is valid for any finite
extension K /K. This proves the existence of the stated map of differential graded
k-algebras
wia ) ® Sx, {k} = T (A|K).
Assume again that K /K is wildly ramified. We claim that the transfer
't TanT (k) = F2nT(A)
is trivial in even degrees. This is true for n = 0, so in particular j'(1) = 0. Now by
Frobenius reciprocity, the composite
7. T(A) 35 7, T(k) L5 7,7(4)

is given by multiplication by j'(j.(1)) = 5'(1) and hence is zero. Since the left hand
map is surjective in even dimensions, the claim follows. It follows that we have
isomorphisms

Tyt 7_1'2nT(A) — T_K'Q*T(A|K)
in even dimensions, and four term exact sequences

Fons1 T (k)2 Tansr T(A) — Ton 1 T(A|K) 2% 7o T(k)
in odd degrees. The diagrams
7ol (A) —— 7T (A|K)
Nl((?(ﬂ)lak)" lnr
FonT(A) —— 72, T(A|K)
and
T (k)—— mT(A) —— mT(A|K) —» 7T (k)
Nl(G(W)laK)" le(ﬂ)lax)" Jn’ Nl(G(W)lax)"
Font1T(k)—— Tan+1T(A) —— Ton 1 T(A|K) — T2, T (k)

then proves the theorem in the wildly ramified case.
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Finally, suppose that K/K, is tamely ramified. Let L/K be a totally wildly
ramified extension and let B/A be the integral closure of A in L. We then have a
commutative diagram

Wigary) @ S{r} —— 7. T(A|K)

l

wZB,MB) ® S{k} — 7, T(B| L),

and the lower horizontal map is an isomorphism. It is easy to see that there exists
L/K for which the left hand vertical map is a monomorphism. For example, one
can take L = K[np]/(ny/* — mamp — ma). It follows that the upper horizontal
map is a monomorphism. A dimension counting argument then shows that it is an
isomorphism. O

LEMMA 2.2.14. The canonical maps
Qi = WE(K,KX) — wZ‘A’M) ®Q = mT(AK)®Q

are tsomorphisms.

PROOF. We first treat the left hand map. For a fraction s 'a with a € A and
s€A—p,so

d(s'a) = s 'da — s %ads
which shows that the canonical map
A®a Qa1 — Q2
and hence also
K®a(Quz®(ARzK*)) = Q20 (K @2 K*),
is an isomorphism. Similarly, the formula
d(s7'a) —sla®s ta=s(da —a®a) s 2a(ds —s®s)

shows that as submodules of the K-vector space Qg7 ® (K ®z K*),

K(da—a®a|la€e ANK*)=K(dg—q®q|qe€ K™).

Since m,T'(k) is torsion, the map T(A) — T'(A|K) is a rational equivalence. Also,
the linearization map T'(A) — HH(A) is a rational equivalence. It thus remains to
prove that the canonical map

5z — HHL(K)

is an isomorphism. This in turn follows from the Hochschild-Kostant-Rosenberg

theorem and from the fact that every field can be written as a separable algebraic

extension of the fraction field of a filtered colimit of smooth algebras over the prime

field. O
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2.3. In the remainder of this paragraph, we will examine the descent proper-
ties of the functor T'(A|K). We first show the following positive result:

THEOREM 2.3.1. If L/K is a tamely ramified Galois extension, then the canon-
ical map
T(A|K) — H (Gr/x,T(B| L))

becomes a weak equivalence upon p-completion.

PRrROOF. We first show that for all ¢ > 0, the G x-module 7;T(B| L) is iso-
morphic to B/pB. If t = 2 is even this follows from the natural isomorphism

k': B/pB = 7,T(B| L)

and does not use that L/K is tamely ramified. For ¢t = 2i + 1 odd, we have the
natural isomorphism

Kii w(ByMByWyMO)/p l) 7_1'2*+1T(B| L),

so it is enough to consider the module w(B,MB/W,Mo)/p- Asan A-module w4 a7,/ (w,Mo)
is generated by dlogm4 with annihilator (¢/,(m4)74), and since p divides the an-
nihilator ideal,

W(A,M4)/(W,Mo)/P = A/pA(dlogTa).
Since B/A is flat, lemma 2.1.7 shows that

W(B,Mg)/(W,M,)/P = B/pB(dlogma),
and as a G'1,)g-module this is B/pB.

A classical theorem of Noether states that as a G x-module B is isomorphic
to A[Gp k] if and only if L/K is tamely ramified. Hence, the spectral sequence

Eit = H_S(GL/K,’i_TtT(B| L)) = 7Tl's+tH'(GL/K,T(B| L))
collapses to an isomorphism
7T (A|K) = m.H (Gr/k,T(B|L)).

Finally, a map of spectra becomes an equivalence after p-completion if and only if
it induces isomorphism on homotopy groups with Z/pZ-coefficients. O

It is in order to examine the canonical map
Yok T(A|K) = H (Gr/x,T(B| L))
for Galois extensions L/K in general, and hence the canonical map

Yt T(AIK) — holim B (G x, T(B| L)),
L

where the homotopy limit runs over finite extensions L/K contained in an algebraic
closure K.

There are spectral sequences
Ef,t = H_S(GL/K, WtT(B‘ L)) = 7Ts+tH. (GL/Ka T(B‘ L)),

B}, = H™*(Gx,mT(As| Ks)) = more holim H (G i, T(B| L)),
L
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where in the latter the E?-term is given by the continuous cohomology of the
profinite group G with coefficients in the discrete module 7, T(A;|K;) defined by

T(A|K,) = h(%mT(B| L).

There are similar spectral sequences for the homotopy groups with Z/pZ-coefficients.
Let A C K be the valuation ring, and let B C L and A; C K be the integral clo-
sure of A in L and Kj, respectively. Then B is a G1,/g-module and A; is a discrete
Gg-module. There is a natural isomorphism

As/pAs ® S{k} = 7T (As|Ks),

where k € TT(Z,|Qp) and hence is Gg-fixed. Since the group Gk has p-cohomological
dimension 2, the spectral sequence above degenerates to a natural exact sequence

0 — H*(Gg, As/pAy) — Tai holim ' (Gr/x, T(B| L)) — H°(Gk,As/pAs) — 0
L

and a natural isomorphism

HY (G, As/pAs) = T2i1 holim H' (G1,/x, T(B| L)),
L

for all 4 > 0. We note that the canonical map
A/pA— H°(G/k,B/pB)

is injective. For A — B is injective and the cokernel is a free A-module. The same
is true with A, in place of B.

Now suppose that 77,k is an equivalence for all K and all L/K. Then vk is
also an equivalence. The commutative diagram

0 — H*(Gx, A, /pA,) — TaiholimH' (GL/x, T(B| L)) —— H(Gk, A, /pAs) = 0

T |

FoT(AIK) ~ A/pA

shows that the canonical map
A/pA — H°(Gk, A, /pA,)

is surjective and hence an isomorphism. Since this is true for any K, the horizontal
maps in the diagram

A/pA HY(Gg, As/pAs)
HO(GL/K,B/pB) —)HO(GL/K,HO(GL,AS/I)AS))
are both isomorphism, and hence
A/pA — H°(Gp)x,B/pB)

is an isomorphism. We will show in the example below that this is not the case.
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Suppose that L/K is wildly ramified, and consider the natural filtration of the
Gr/k-module B/pB by the powers of the maximal ideal mp C B. The filtration
has length egp = ep/w(x) and the product defines a natural isomorphism

(mp/m%)®" = mp /my
for ¢ > 1. When ¢ = 0 the right hand side is the residue field kg = B/mp, and we
then take this as our definition of the left hand side. The filtration gives rise to a
cohomology type spectral sequence with

Ef’t = HS_H(GL/Ka (mp/m%)®) = HSH(GL/K,B/PB)
and concentrated on the lines 0 < s < e in the right half plane.
EXAMPLE 2.3.2. Let K = Q, and L = Q,(ppn). The extension is totally rami-

fied, so kg = k4 is a trivial module, and we have a canonical isomorphism

~ —(n—1)
,up—>m3/m23, z 2P —1.

The canonical map
Gr/x — Aut(pyn)
is an isomorphism and the action on p, is induced from the natural inclusion

tp C ppn. Hence the cohomology of ,ug’s is trivial unless s = 0 (mod p—1) in which
case we have isomorphisms

Hn(GL/Kal‘?S)%Z/pza NZO,

which depend on a choice of a primitive pth root of one. Since A/pA = ks = kg,
the composition of the map in question

A/pA— H°(Gy/k,B/pB)
with the edge homomorphism
H(GL/x,B/pB) — H(GL /K, kB) = B}

is an isomorphism. So it suffices to show that for some 1 < s < e, E3:~° is non-
trivial. But if s is the largest integer which is divisible by p — 1 and less than or
equal to e — 1, then

E$™* =E] ° 2 7Z/pZ

for degree reasons.

3. The de Rham-Witt pro-complex and TR, (A|K;p)

3.1. Inthis paragraph, we evaluate the integral homotopy groups TR;(A|K;p),
for 7 < 2. We first consider Witt vectors.

Let p be a prime, let R be a ring, and let W(R) be the ring of p-typical Witt

vectors. The ghost map

w: W(R) — R™
which maps a vector (ag,a1,...) to the sequence (wp, w1, ...), where

s s—1

ws =ay +pal +---+pas,
is a ring homomorphism. It is injective if R has no p-torsion. Moreover, if R
possesses a ring endomorphism ¢ with the property that for all a € R, a? = ¢(a)
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(mod pR), then the image of the ghost map may be characterized as the set of
sequences (wg,ws, ... ) for which

ws = P(ws—1) (modulo p°R),

for all s > 1. If R = Z[X,], the ring homomorphism which maps X, to X? is such
an endomorphism. Let _: R — W/(R) be the multiplicative section a = (a,0,0,...).

LeEMMA 3.1.1. Ifp > 2 then p+ V(1) =0 and —1 = —1 modulo pW (R).

PRrROOF. By naturality, we may assume that R = Z. We have
wp+ V(L) =p(L1+p 142 1P ),
and therefore it is enough to show that the sequence
(L1+pP L 14+p7 "1 4+p7 71000

is in the image of the ghost map. This in turn follows, by what was said earlier,
from the congruences

1+pP 1= 1—}—]9’””71*1 (mod p°),

valid, when p > 2, for all s > 2 as required, but fail for p = 2 and s = 2. The
second congruence is proved in a similar manner. O

In general, z + y and z +y are not equivalent modulo pW (A). However, we have
the following

LeEMMA 3.1.2. For all z,y € R,
(z+y)’=@+y)P=2"+¢"
modulo pW (R).

PROOF. The right hand congruence is valid in any ring. To prove the left hand
congruence, we place ourselves in the universal case R = Z[z,y]. The ghost map

w: W(R) — R™
is an injection and maps the Witt vector zP + y? — (z + y)? to the tuple
(@ 49" — (@t yP, e " @y,

As an element of R this is divisible by p. We must show that the quotient is in
the image of the ghost map. By the criterion recalled above, we must show that

o=@ 4y — @+ yP)P)/p (mod p),

@+ — (@)
or equivalently, that
(z+y)P" =@ +y?)""  (mod p"t).
But this follows from
(z+y)f =2 +y” (modp)
and from the fact, valid in any commutative ring, that a = b (mod p) implies
a?" = bP" (mod p™*'). Indeed, one easily sees that a = b (mod p*) implies that

aP = bP (mod p**1), and the desired formula then follows by simple induction. [
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When A is a complete discrete valuation ring, the ring W, (A4)/p is a k-algebra
via the ring homomorphism

A W (n) R
k=W(k)/p = W(W(k)/p —= W(A)/p = Wn(A)/p.
Here A: W(k) — W(W(k)) is the universal p-typical A-operation, [13]. Here the
identification on the left holds for k perfect since then VW (k) = FVW(k), and
since one always has FV = p. Let m be a uniformizer with minimal polynomial
K + pOg ().
We introduce the modified Verschiebung
Va: Wo_1(A) = W,(4), Vi(z)=0k(x,)V(z),

which satisfies
FV,(z) = pfk(m)Pz.
PROPOSITION 3.1.3. The k-algebra W,,(A)/p is generated by the elements V% (r*)
with 0 < s <n and t > 0 subject to the relations

—sypStl_1 Csa s
CEER ) i),

V(') - Va(z!) = p*V (0(x)

Vi (e th) = veti(a™).

™

PROOF. As a k-vector space, W, (A)/p is generated by the monomials in the
variables V*(x’) with 0 < s < n and i > 0. Indeed, if a € k then
Vi(ar') = ¢~ *(a)V*(x).

Since Ok () is a unit, we may instead use the elements V?(z®) as our generators.
If s <t,

VE (@ YVEi(n?) = V(@ )VE(VE 5 () = VE(FVE(x')VE* (xf))
pStl 1 ) )
=p'Vi(0k(x) »1 ~'x'Vi*(xd))
t—s, ptl_1
= p* V(0 (m)P !

p—1
which proves the first relation. Next, lemmas 3.1.1 and 3.1.2 shows that

7K = —p- Ok (r) = —p- Ok (m) = V(1)0k (7)

— V((0x(m))P) = V(8P (7)) = V(1)0x () = Vi (1).

The second relation is an immediate consequence of the relation. It remains to prove
that there are no further relations. Since W,,(A) is torsion free, the sequences

)ﬂ.pt”’i-&-j),

0= A/p Y5 Wa(A)/p B Wo_1(A)/p— 0

are exact and show that W,(A)/p is an neg-dimensional k-vector space. The
relations of the statement implies that

gry Wa(A)/p=k(Vi(z") |0 <i<ek),

which is an ex-dimensional k-vector space. Thus there can be no further relations
among the V2 (z"). O
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3.2. A pre-log structure «: M — R on a ring R induces one on W, (R) upon
composition with the multiplicative section _,,: R — Wy (R). We write (W, (R), M)
for this log ring.

n

DEFINITION 3.2.1. A log Witt functor consists of the following data:
(i) a log ring (R, M);
(ii) a pro-log differential graded ring (E*, M) whose underlying pro-log ring is
(W.(R), M);
(iii) a map of pro-log graded rings
F:E. > E*_,,
which extends the Frobenius F': W,,(R) — W,,_1(R), and such that
Fdlog, a =dlog,_;a, foralla € M,
Fda, = a? %da, ,, forallac€ R;

(iv) a map of pro-graded modules over the pro-graded ring E¥,
V:F*E;, — E; 4,
such that F'V = p and FdV =d.

A map of log Witt functors is a map of pro-log differential graded rings which
commutes with the maps F and V.

The following relations are valid in any log Witt functor
(3.2.2) dF =pFd, Vd=pdV, V(zdy)=V(z)dV(y).
Indeed, V(zdy) = V(zFdV (y)) = V(z)dV(y), and
dF(z) = FdVF(z) = Fd(V(1)z) = FdAV(1)F(z) + FV(1)F(dx)
=d(1)F(z) + pFd(z) = pFd(z),
Vd(z) =V(1)dV(z) =d(V(1)V(z)) — dV(1)V (z)
=dV(zFV (1) — V(zd(1))) = pdV (z).
PROPOSITION 3.2.3. The forgetful functor from the category of log Witt functors
to the category of log Tings has a left adjoint,
(R,M) — W. W(R,M)

Moreover, the canonical map \: wEFWZBR) M)~ W.wE‘R M) s surjective.

PROOF. We use the Freyd adjoint functor theorem to prove the existence of
the left adjoint. Let (E*, M) be a log Witt functor whose underlying log ring is
(R, M). Then, in particular, there is a canonical map

wWiwaw) mr) = B
of pro-log differential graded rings. The image of this map, im} ., is a pro-log
differential graded ring whose underlying pro-log ring is (W.(R), M). We claim that,
in fact, imy . has a natural structure of a sub-log Witt functor of (£, M). Granting
this for the moment, we pick a representative (E*, M) for each isomorphism class
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of log Witt functors of the form im]"gy,. Each im}},_ is a quotient of w?WAR) M) SO
these representatives form a set. Hence, we may form the product

(D, M) =[] imj.,
(BAM)
and W.wik R,M) is then denined as the equalizer of all endomorphisms of (D¥*, M).
Indeed, it is easy to see that this equalizer is universal among log Witt functor with
underlying log ring (R, M), [23, p. 116]. We also note that the canonical map
Wiwar).a) — W (g u)
is surjective. Indeed, its image is a log Witt functor imf,V,‘, so there is a canonical
map W. wE‘R My imf,V,‘. The composite
W.w(g ary — imyy. — W.w(g )
is a map of log Witt functors, and since W. wz‘ R, M) is universal, this can only be
the identity map.
It remains to prove that
F(lm*E,n) C iIn*E,nflv
V(im};)n) C imj;;m+1 .
As a graded ring, imJ; ,, is generated by a € EY) and da € E,, with a € W,,(R), and
by dlog,, = € E} with z € M. Since F is multiplicative, it suffices to check that the

image of these generators under F are in imf; ,,_;. This is clear for the elements a
and dlog,, z, and since every element a € W,,(R) can be written uniquely as

n—1
_ 2 : i
a= 14 %n—i’
i=0
we see that

=J

n—2
_ , p-1 Jo.
Fda—@nild@nil—i— E A% a
i=1

which is in im’;ﬂ’nfl. Finally, the formulas

V(zdy) = V(zFdV (y)) = V(z)dV (y),

V(mdloggn) = V(deloggn+1) = V(:c)dloggmqa

shows that V(imy ,,) C imp ;. U

The filtration of a log Witt functor by the differential graded ideals
Fil B! = V*E!__+dV°E:". C E
is called the standard filtration. It satisfies
F(Fil’ E.) CFil* ' E._,,

V(Fil* EL) C Fil** EL

but in general is not multiplicative.
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LEMMA 3.2.4. For any log ring (R,M), the map induced from the restriction
maps,
Wn wER,M)/ Fil? Wn wZRvM) l} Ws wZRvM)’

is an isomorphism.

PROOF. For a fixed value of n — s, the filtration quotients
"W wig, ) = Wan (g, ary/ Fil* W (g ar)

form a log Witt functor whose underlying log ring is (R, M). We show that it has
the universal property. Let (E*, M) be a log Witt functor whose underlying log
ring is (R, M). Then there exists a map of log Witt functors

Indeed, the standard filtration is natural, so we have maps
Wowig ary/ Fil' Wowip ary — B,/ Fil° E}, — E,

where the right hand map is induced from the restriction maps in E'. We must
show that this map of log Witt functors is unique. To prove this, it will suffice to
show that the canonical map

Wiw,(r)a) ~ Wawig )

is surjective. But this follows from the commutativity of the diagram

O (my.ar) — Wn (g ar)

l

Wiw, (my,a0) — Wa@(r,a)
since the top horizontal and right hand vertical maps are surjective. O
We define a map F" 1d: W, (R) — w(lR ) by the formula

F"fld(a) = agnilfldao + afniz*ldal + - +danp_1,

where a = (ay,...,a,_1). One easily verifies that F"!d is a derivation of W,,(R)
into the W, (R)-module (F"_l)*w(lR ) and that the following relation holds:

anfl — pnlenfld‘
It follows immediately from the derivation property that the formula
a-(w ®wy) =F" Ha)w ® (F" Y(a)wy — F" 'da - wy)

defines a Wy, (R)-module structure on wZE}M) @wf r,m)- And the relation shows that
the image of the map
Wigaar) = Yiran) ® Wy WPt w0 O —dw,
is a sub-W,,(R)-module. We denote the quotient W, (R)-module by
nWn @(g,01):
47



LEMMA 3.2.5. There is a natural ezact sequence of Wy (R)-modules
n—1\%* i— d n—1\*% 1
(F™1) p"’lw(R,lM) = (F"7h W(R,M)

= Wy wZR,M) — (F"fl)*(wEE}M)/pnflwf;c}M)) — 0.
PROOF. Indeed, as an abelian group, W, wf R,M) is equal to the push out

1—1 d wi
WM T Y(RM)

S

7—1 i
Wig,my) — BWn W(g ur)

so the underlying sequence of abelian groups is exact. One readily verifies that the
various maps are W, (R)-linear. O

REMARK 3.2.6. It is easy to see that the canonical map
A wéR,M) — W1 wéR,M)
is an isomorphism for ¢ < 1. Indeed, one can construct a log Witt functor (E*, M)
such that B = w%R’M), i < 1, as follows: In degree zero, E® = W.(R), in degree one,
El = w(lR ary With the identity map as structure map, and Ei =0 for i > 1. The
differential By, — Ej, is given by the map F"~'d: Wy (R) — wig prys F: B — Ep_y

is the identity map and V: E} ;| — E! is multiplication by p. We expect that the
map is an isomorphism for all :.

PROPOSITION 3.2.7. For any log ring (R, M), there is a natural ezact sequence
of W,,(R)-modules,

W wig ar) Now, Wik ) Eow. . wipan = 0,

where N (w1 ® w2) = dV™" 1\ (w1) + VP A\ (w2).

ProOF. The defining properties of a log Witt functor shows that for all a €
Wa(R),
MF" 'da) = F" 'd)\(a).
Hence N is W,,(R)-linear. Since the image of N is equal to Fil"~* W, W%R,M)’ the
statement follows from lemma 3.2.4. O

COROLLARY 3.2.8. When (A, M) is a complete discrete valuation ring of mized
characteristic with the canonical log structure then for all m > 1 and i > 2,
W, wz A,M) is a uniquely divisible group.

PrOOF. Recall from lemma 2.1.4 that wa,M) is a divisible group for ¢ > 2. It
follows that , W, wz A,M) is divisible for ¢ > 3, and an induction argument based
on proposition 3.2.7 then shows that so is W, wa,M)' The group , W, w?AM) is a
direct sum of a uniquely divisible group and the group w(a, ) / p"_luJ( a,M)- Hence
W, w(z A, M) is a direct sum of a uniquely divisible group and a finitely generated

48



torsion W (k)-module. It is therefore enough to show that the modulo p reduction
W w(2 A,M) is trivial. Inductively, it suffices to show that the map
an_]_ . (‘D%A,M) — an?A,M)

is trivial. The map is k-linear, and the domain is generated as a k-vector space by
the elements m*dlogm, 0 < 7 < e. Now the relation

x5+ 6(x, )V (1),

valid in W,,(A), shows that V"~ (nidlogm) = V" ~1(n?)dlog,, is either trivial or
in the span of elements of the form m dlog,. But these elements have vanishing
differential. O

3.3. It follows from the results proved in [14, §1] and from proposition 2.2.4
above that TR, (A|K;p) is a log Witt functor. We consider the canonical map

W. w4 — TRL(AIK;p).

The homotopy groups of the homotopy orbit spectra,
n TR (A|K7 p) = m,H (Cp"—l ) T(A|K))7

are differential graded modules over TR} (A|K;p), and there are maps of TR} (A|K;p)-

modules
F: , TRY(A|K;p) — F*(,TR? *(A|K;p)),

V: F*(,TR} (4|K;p)) — »TRE (A|K; p),
which satisfy

FdV =d,
FV =p.
Moreover, there is a natural spectral sequence of W,,(A)-modules,
(3.3.1) B}, = Hy(Cpnr, (F" )" mT(A|K)) = # TR}, (A|K; p).

LeEmMMA 3.3.2. Let p: wZA’M) — m;T(A|K) be the canonical map. Then the map
WWan w(aar) = n TR} (A|K;p),
w Qwy = AV p(wr) + V' p(ws),

is a map of W, (A)-modules. It is an isomorphism, for i < 1, and for i = 2, there
i an exact sequence

0— (F"1)*(A/p" 1 A) = hWo wia ary = n'TR5 (A|K;p) — 0,
where the map on the left takes a to dV"~!(da).

PROOF. If a € W,,(4), w; € wa}M) and wy € wa’M), then
a-dV"lp(wr) = d(a- V" lp(w1)) —da- V" p(wr)
— AV (F Y plen)) — B da- p(wn)
=dV"ip(F*a wi) = VT p(F da - wy)),
@V () = VL ED Ya - pln)
=V 1p(F " a- wy),

which shows that the map of the statement is indeed a map of W,,(A)-modules.
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The map p is an isomorphism for ¢ < 2. So the spectral sequence gives an
isomorphism of W,,(A)-modules

to: (F"1)*A = , TRy (A|K;p)
and a natural exact sequence of W,,(A)-modules
0= (F" ) *wla ) — W TRT(A|K;p) — (F"71)*(A/p""1A) — 0.

The sequence of lemma 3.2.5 maps to the sequence above, and the map of the left
hand term is an isomorphism. It remains to show that the same holds for the map
of the right hand terms. This map is induced from the composite

A = ,Wowia ) = n TRY(A|K;p) — A/p" 1A
which in turn may be identified with the map
HO(Cpn—l 3 A) — H]_(Cpnfl ) A)

given by multiplication by the fundamental class [S'/Cn-1]. This map is an epi-
morphism with kernel p"~'A, and the lemma follows for i = 1. The statement for
1 = 2 is proved in an entirely similar manner. O

REMARK 3.3.3. For i < 1, the proof above does not use that A is a Dedekind ring
beyond the definition of T(A|K). In effect, the same proof gives an isomorphism
WWi QY = mHL (Cpn-1, T(A))
for any ring A (with the trivial pre-log structure).
LEMMA 3.3.4. For all i > 0, the Frobenius
F: TR3;,,(A|K;p) — TR3 5 (A|K;p)

s surjective.

ProoF. For i > 0, the group TR} (A|K;p) is a sum of a uniquely divisible
group and a p-torsion group of bounded height. Indeed, this is true when n = 1,
and the general case then follows by an induction argument based on the cofibration
sequence

WTR™(A|K;p) = TR"(A|K;p) = TR" }(4|K;p)
and the spectral sequence (3.3.1). Since F'V = p, the Frobenius induces a surjection
of uniquely divisible summands. It is therefore enough to prove that the statement
of the lemma holds after p-completion. To this end, we show that the canonical
map
Toip1 (H (T, T(A|K)), Zp ) = w2541 (H (Cpn, T(A|K)), Zp)
is surjective. Consider the spectral sequences
B (T) = H*(BS", m(T(A|K), Z,)) = msre(H (T, T(A|K)), Zy),

B ,(Cpn) = H™*(BCyn, m(T(A|K), Zy)) = 7ot (E (Cprn, T(A|K)), Zp).
Both of these are strongy convergent second quadrant homology type spectral se-
quences. That is, the associated filtration Fil® 7, (H (T, T'(A|K)),Z,) of the actual
homotopy groups m.(H (T,T(A|K)),Z,) is such that

gr® 7Ts+t(H. (T’ T(A|K))v Zp) = Es??t(’ﬂ‘)v
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and the canonical map

7 (H (T, T(A|K)), Zp) — l(in*/r*(H (T, T(A|K)),Z,)/ Fil* . (H (T, T(A|K)), Zy)

is an isomorphism. (The structure maps in this limit system are surjections, so the
derived limit vanishes.) Similar remarks hold for the spectral sequence E"(Cpn). It
will therefore suffice to show that

gr* maisa (L (T, T(A|K)), Z,) — 5" maisa (B (Cy, T(AIK)), Z,)
is a surjection for ¢ > 0.

On the E2-terms of the spectral sequences, the map in question corresponds to
the map on cohomology induced from the inclusion C,» — S*. It is thus surjective
for s even. Moreover, m,(T(A|K),Z,) is concentrated in odd degrees with the
exception of mo(T'(A|K),Z,), and hence, the non-zero differentials in the spectral
sequence E"(T) must originate on the line ¢ = 0. It follows that for s even and
t > 0, the map

B (T) = B o(Cpr)
is surjective for all 2 < r < oco. (Since these groups do not support non-zero
differentials, they are stable for » > s.) But in the spectral sequence E”(Cyn), only
the groups EY , with s even and ¢ > 0 can contribute to w21 (H (Cpn, T(A|K)), Zp).
This shows that the map

gr’ maiy1(H (T, T(A|K)), Zp) — gr” maiqa (H (Cpn, T(A|K)), Zp)

is indeed surjective, and hence the lemma follows. O

Since w(2 A, M) is a uniquely divisible group, the spectral sequence (3.3.1) gives an

exact sequence of W, (A)-modules
mn—1\x* n— d n—1yx* n— n
(F*1*(A/p" 1) = (F* ) (wlaan /P ) = nTRE (A|K;p, Zy) — 0,

and d is W,,(A)-linear since dF™ ! = p"» 1F" 14, If 7 is a uniformizer, then dlog =
represents a class in the cokernel. We denote this class by [dlog 7],,.

LEMMA 3.3.5. The map of W, (A)-modules

F: , TR5(A|K;p,Z,) — 1w TRy (A|K;p, Z,)

is a surjection whose kernel is generated by p™~%[dlog 7],

PROOF. The exact sequence above shows that the map of the statement is a
surjection that the kernel is a quotient of the cokernel of the following map

n—1\*/, n— n— d n—1\*/, n— n—
(FP 1) (p" 2 A/p" T A) = (F* 1) (0" *wla,an) /P wiam)

It is therefore enough to show that this cokernel is generated by p"~2[dlog 7],,. We
consider the polynomial ring P = W (k)[z] with the pre-log structure a: Ny — P
given by a(i) = z°. The map of W (k)-algebras e: P — A, e(x) = , preserves the
pre-log structure and induces a surjection wpn,) — w(a,n). It follows that the
map piw(IP,NO) —» piw(lAyM) is a surjection, for 4 > 0, and therefore, it suffices to
show that the cokernel of the map

n—1\x/ n— n— d n—1\*/ n— n—
(F*=1)(p" 2 P/p"~'P) = (F* 1) (0" *wippe)/P" " w{pn,))
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is generated as a W,,(P)-module by the canonical image of p" 2dlogz. Now as a
P-module, the quotient p"’2w(p7N0)/p"’1w(pYNo) is generated by p" 2dlogz, and
hence the W, (P)-module (F™"~1)*(p" 2wpn,)/P" 'w(pn,)) is generated by the
elements p"~2dlog z and p"~2z? dlogz, 0 < i < n— 1. But the last n—1 generators
are all in the image of the map d:

p"fzmpidlogx = p"*2*id(w”i).
Hence the cokernel of d is generated by p" 2dlogz, and the lemma follows. [l
PROPOSITION 3.3.6. The sequences
0 — WTRY (A|K;p) > TR (A|K;p) = TR (A|K;p) = 0

are ezact, for i < 1, and ezact modulo the Serre subcategory of torsion W (k)-
modules, for i = 2. Moreover, TRy (A|K;p) is uniquely divisible.

PROOF. The statement for ¢ = 0 is [16, proposition 3.3], so the statement for
i = 1 is equivalent to showing that the norm map is injective. This is clear on
maximal divisible subgroups, so it suffices to show that TR} (A|K;p) is uniquely
divisible. We show inductively that the p-adic homotopy group TR (A|K;p,Z,)
vanishes, the basic case n = 1 being established earlier. We must show that the
boundary map

Okn: TRy (A|K;p,Zp) — n TR (A|K;p, Z,)
is surjective.

We first consider the case n = 2. In the diagram of W3(A)-modules

6 )
TRL(A|K;p, Z,) —— wTR3(A|K; p, Z,)

s Js
Ok
TR (k; p)) ——— w TR} (k; p),

the lower horizontal map and the left hand vertical map are both surjections. In-
deed, for the former, this was proved in [16], and for the latter, it follows from the
fact, proved in [22], that TR} (4;p, Zy) is trivial. The upper right hand group Q is a
quotient of the W5(A)-module M = F™* (w(1A7M)/p). We claim that M is annihilated
by the ideal I = VW3(A) + pW2(A). Indeed, as an abelian group M is p-torsion
and FV = p. It follows that also @) is annihilated by I, and we can therefore view
it as a module over the quotient ring W5(A)/I. This ring is isomorphic to A/pA,
the isomorphism given by

Wa(A)/I =5 A/pA, a+1+— R(a)+pA,

and we let g: A/pA — Wy(A)/I denote the inverse. As an A/pA-module, Q
is generated by the class [dlogm]|2. The image of this class under the right hand
vertical map is a generator ¢; of the Wy(A)-module , TR3 (k; p), which is isomorphic
to k. We now pick a € TR3(A|K;p,Z,) such that §(dx 2(a)) = ¢1. The difference
B = Ok 2(a) — [dlog 7|2 is then in the kernel of the §, and we can therefore write

B = g(ar) - [dlog ],
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for some z € A/pA. We then have
9(1 +zx) - [dlog 7]z = Ok 2(),
and since (1 + zm) € (A/pA)*,
[dlog ]z = (9(1 + zm) ™) - Ok 2().
We would like to know that the map of units
Wy(A)* = (W2(4)/1)*

is a surjection. This will follow if we know that the I-adic topology on Wa2(A) is
complete and separated. But the formula

V(z)-V(y) = V(FV(z)y) = V(pzy) = pV(zy)

implies that the I-adic and p-adic topologies on W5(A) coincide, and the p-adic
topology is complete and separated. So we can find a unit u € W2(A)* such that
u+ I = g(1+ zn). Since Ok 2 is Wa(A)-linear, we have

1

[dlogn]y = u™ 0k 2(a) = k2 (u™ ),

which concludes the proof for n = 2.

We proceed by induction, and consider the diagram

Ox,m " .
TR Y(A|K;p, Z,) ——— n TR (A|K;p, Zy) —— TR (A|K;p, Z,)

| | |
n—2 Ox.n_1 n—1 N n—1
TR “(A|K;p,Z,) — 1 TRy~ (A|K;p,Z,) —— TRy ™ (A|K;p, Zy).

Inductively, the map Ok n—1 is surjective, and the left hand vertical map F is sur-
jective by the lemma. Moreover, the kernel of the middle vertical map is gen-
erated as a W, (A)-module by the class p"~?[dlogn],. It therefore suffices to
show that this class is in the image of Ok, in the top row, and this, in turn,
will follow if we show that the class [dlog7], is in the image of Ok . To see
this, we pick o € TR3(A|K;p),Z,) such that Ox n_1(F(a)) = [dlog7],—1. Then
B = Ok ,n(a) — [dlog ], is in the kernel of the middle vertical map, so we can write
B =z -p"2dlogm, for some z € W,(A). But then

(1 +p"72w)[dlog Tln = Ok n(@),
and hence
[dlog ], = (1+p" 22) 'Ok ,n(a) = Ox,n((1+p" 22) ta),

where the inverse exists since the p-adic topology on W,,(A) is complete and sepa-
rated. The proof is complete. O

ADDENDUM 3.3.7. The group TRy (A;p) is uniquely divisible for all n.

PrOOF. It suffices to show that TR (A;p,Z,) is trivial. We prove this by in-
duction, the basic case n = 1 being proved in [22]. Since TR} (A|K;p,Z,) vanishes,
we have an exact sequence

n 6" n n
TR3(A|K;p, Z,) — TR5(k; p) = TR (4;p,Z,) — 0,
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and we thus must prove that the map 6, is surjective. We consider the diagram
n On n
TRz (A|K;p, Zp) —— TR3 (k; p)
I l
_ On—1 ne
TR3 ™ (A|K;p, Z,) ——> TRy (ks p),

where the map §,_1 is surjective by induction. It was proved in [16] that the left
hand vertical map F' is a surjection whose kernel is equal to the image of the map
V™t TR3(k;p) — TR (;p).

Since the square

41
TR3(A|K; p, Z,) —— TRy(k; p)

n 6" n
TRy (A|K; p, Zp) —— TRy (k; p)

commutes and the top horizontal map is a surjection, the proof of the induction
step is complete. O

THEOREM 3.3.8. The canonical map
W.w(aar) = TR(A|K;p)

is an isomorphism, for ¢ < 2.

PROOF. The statement for 4 = 0, which has already been used, was proved in
[16, theorem F]. The proof for ¢ = 1,2 is by induction, the basic case,

wa’M) = mT(AK)
being proved earlier. In the induction step, we use the exact sequences of lemma

3.2.7 and proposition 3.3.6,

2Whn wéAyM) — W, wéAvM) —>R W1 wéAyM) —0

| | |

0 —— n TR} (A|K;p) —— TRY(A|K;p) —+ TRP (A|K;p) — 0,

where for ¢ = 2, the lower sequence is only exact modulo the Serre subcategory of
torsion W (k)-modules. When i = 1, the left hand vertical map is an isomorphism
by lemma 3.3.2, and hence the statement follows in this case. When i = 2, the left
hand vertical map is an epimorphism with torsion kernel. Since the domain and
range of the middle and right hand vertical maps are both divisible groups, the
statement follows. O

ADpDENDUM 3.3.9. The connecting homomorphism
d: TR3(A|K;p,Z/p) — » TRI(A|K; p, Z/p)

maps k to dV (1) — V(dlogp).
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PROOF. An application of lemma 3.3.10 below to the diagram obtained as the
smash product of the coefficient cofibration sequence

§° 2 50— M, 2 st
and the fundamental cofibration sequence
wTR™(A|K;p) > TR™(A|K;p) = TR (4] K;p) 5 S(,TR"(A|K;p))

shows that the connecting homomorphism of the statement is equal to the opposite
of the connecting homomorphism associated with the diagram

N R
0 — 5, TR{(A|K;p) — TR} (A|K;p) —— TRi(4|K;p) —— 0
Jf’ [ I
0 ——  TRI(A|K;p) —— TRI(A|K;p) — TRY(A|K;p) —— 0.
And by theorem 3.3.8, this diagram is canonically isomorphic to the diagram

0—— hW2w(1A’M) L) sz(lA,M) L Wlw(lAyM) 0

T
0—— nWo u-"(1‘,411\/[) L W2 w(lA,M) L> Wi w(lAyM) 0.

The Bockstein maps k to dlogp € W, w(lA M) which is the image under the restric-
tion of dlog P, € W, w(l A,M)" Using ghost coordinates, one verifies easily that

p, TV (1) =p(L+p" V(1))

and hence
pdlogp, = (1 —&—p”72V(1))71(132d10g1_72 + V(1)dlogp,)
= (1 —p” ?V(1) +...)(dp, + V(dlogp)).

Since dV (1) is p-torsion, dp, = —dV'(1), and hence

pdlogp, = V(dlogp) — dV(1).
The statement follows. O

LEMMA 3.3.10. Given a 3 x 3-diagram of cofibration sequences
f11 fi2 fis

Ey E;s Ey3 YEq
g1 gi2 913 Y911
f21 faz2 f23
Ey Ej; E33 Y E2;
g21 g22 923 Xg21
f31 f32 f33
E3; Es3 Es3;3 Y E3;
g31 932 g3z (—1) 911

b\ bl bl
B - B, ST s B, S 2
and classes e;; € mE;j such that gss(es3) = Lfi2(e12) and faz(ess) = Lgai(ear).
Then the sum fa1(e21) + giz(e12) s in the image of T E11 — Ty FE22. O
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REMARK 3.3.11. One may show that the canonical map
w.QL = TR (R;p)

is an epimorphism for any ring R (with the trivial pre-log structure). In fact, we
do not know of a ring R for which this map is not an isomorphism.

3.4. We evaluate the differential graded k-algebra W, wz‘ a,m) ® Fp. Let 7 be
a uniformizer with minimal polynomial
K 4+ plg ().
The modified Verschiebung
Vei Wno1(4) = Wa(4), Vx(z) =0k(x,)V ()

satisfies
FVz(z) = pOk (n)’z,
FdV,(z) = 0k (x)Pdz.

PROPOSITION 3.4.1. The differential graded k-algebra E* = W, wE‘A ) Bz F, is
concentrated in degrees 0 and 1 and satisfies:

(i) the k-algebra EQ is generated by the elements V2 (r') with 0 < s < n and
1 > 0 subject to the relations:

—s(p®tl s s
¢ s(pprl)ﬂ-Pt SH‘J),

V(') - Va(x!) = p*V (0(x)

V;(£6K+i) _ Vs—ﬁ-l(lpi);

™

(ii) the k-vector space E} is generated by the elements AV, (n*) and V,*(r'dlog )
with 0 < s <n and i > 0 subject to the relations that for v,(i — pex/(p — 1)) > s,
v (x') =p*(i — pex/(p — 1)) - Vi (z'dlog ),

and for vy(i — pex /(p — 1)) < s, Vi (x'dlog ) = 0;

(iii) the E2-module structure on E} is given by

t—s ps+1_ e .
pPAVE(Ox (m)? T Dgp i) ifs<t,
i j t—s pStl— t_s-, -
Vi(a')dVEi(nd) = § iVt (Ox(m)P et Dpp' tiHidlogm),
s—t pttl_ L e—t.
GV (O (m)P T Dt dlog ), if s >t
; ; pth(BK(W)ptis(ps:—lfl_l)ﬂpksi*‘jdlogﬂ') ifs<t
Vi (x')Vi(xidlogm) = et ’ —
PVEOx(m)P e TNt Ydlogn), if s >t

PROOF. As a graded k-vector space, E is generated by the monomials in the
variables V*(xt), dV*(z') and V*(z'dlog ) with 0 < s < n and i > 0. Indeed, if
a € k then

Vi(ax') = ¢~ (a)V* (")
and the operator F' applied to any of the elements above is expressible as a linear
combination of these elements. Since 6k (x) is a unit, we may instead use the
elements V#(r), dV;?(x') and V,#(r'dlog ) as our generators. Part (i) was proved
in proposition 3.1.3 above.
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Let t = vp(i —pex /(p—1)). Fort > s, p~*(i+pex (p* —1)/(p—1)) is an integer,
and iterated use of the second relation in (i) shows that

V() = g e,

The first relation in (ii) easily follows. Moreover, if ¢ < s then up to a unit,
Vi(ztdlogm) = dVi(x?),

and hence
Vi (z'dlogm) = VE~tdVE(zt) = 0.

Finally, differentiating the first relation in (i), we get

. . t—s p‘”‘ —1 t—s
AV (x') - Vi(x) + VE(x') - dVE(x) = p*dVE(B(z)P ¢ D),

and rewriting the first term on the left

t—s p‘s+l— —8, .
VHEF VS (nf)nd) = iVE(Ox (x)P T Dap' itiglog ),

the first case in (iii) follows. The remaining cases are proved similarly. It remains
to prove that (ii) give all relations in E}. From (ii) is follows that

gr® B, = k(dV3(n') | 0 <i <ex, vp(i — BE) < )@
k(VE( m'dlog ) | 0<i<ex,vp(i— peK) > s),

which implies that that E} is an nex-dimensional k-vector space. We will prove in
paragraph 6 that this is indeed the case, and hence there are no further relations. [

4. Tate cohomology and the Tate spectrum

4.1. Let k be a commutative group ring and let G be a finite group. By
compleres we mean Z-graded chain complexes of left kG-modules with differential
of degree —1. If X and Y are two complexes, the tensor product X ® Y is given by

(X@Y)n= P X,0Y; dzey) =dey+(-1)*"zady,
ptg=n
and the complex of k-homomorphism Hom(X,Y) is given by
Hom(X,Y), = [[ Hom(X,, Yaiyp);  d(f(2)) = (df)(z) + (—1)V f(da).
pEL

We recall that ZoHom(X,Y) is the set of chain maps from X to Y and that
HyHom(X,Y) is the set of chain homotopy classes of chain maps from X to Y.
The adjunction and twist isomorphisms are

¢: Hom(X ®Y, Z) — Hom(X,Hom(Y, 2));  ¢(f)(z)(y) = f(z®y),
XY 5Y®X, ~zey) =(-1)"¥yeq.

The mapping cone Cy of a chain map f: X — Y is the complex with

(Cf)n =Y, ® Xn_1, d(yv 33) = (y - f($)a —d:l?),
and the cokernel of the inclusion i: Y — Cfy is the suspension XX,

(EX)TL = An-1, dsx (x) = —dx(x).



Let 0: Cy — XX be the canonical projection. Then the category of complexes
and chain homotopy classes of chain maps is a triangulated category with the
distinguished triangles

x Ly 4o bex.
We recall that if X Jy v % Z is a short exact sequence of complexes then the
projection p: Cy — Z, p(y, ') = g(y), is a quasi-isomorphism and the composite

H,Z & H,Cp 2 H,SX = Hy_1 X

coincides with the connecting homomorphism. The triangulation is compatible with
the closed structure in the sense that

Y2(X®Y)=2XQY
and that if W is a complex and X Ly L zMheXisa triangle, then so are

Xow S vew L zew L vsxow

1® 1® eo(1®h
f g (1®h)

WX —WY —WeZ XWX,

where e: W ® XX — LW ® X is the canonical map, e(w ® z) = (—1)*l(w ® ).
Given f: X — Y and a complex W, we define an isomorphism

(4'1‘1) p: W®Cf l>CW®f7 p(w®(y,x')) = (w®y,(_1)|w\w®x/)‘
Let Ng € kG be the norm element defined as the sum of all the elements of G.
For every left kG-module M, mulplication by Ng defines a map
Ng: Mg — M€,

where Mg = k ®g M and MY = Hom(k, M )% are the coinvariants and invariants
of M, respectively. We note that for left kG-modules M and N,

(M®N)G =c"M Qrg N,
where c* M denotes the right kG-module with m - g = g~'m.

We define the Tate cohomology of G with coefficients in the left G-module M
as follows. Let € : P — k be a resolution of k by finitely generated projective left
kG-modules and let P be the mapping cone of e.

DEFINITION 4.1.2. H*(G; M) = H_,((P ® Hom(P, M))%).

The triangle
(4.1.3) PSkELSPSyp
and the quasi-isomorphism
P Rg M < (P® M)g > (P® M)% 5 (P ®Hom(P, M))®

identifies
N Hi{(G: M ifi>1
UGN S
H_; 1(GiM) ifi<-1

and gives the exact sequence

0 — H™Y(G; M) — Ho(G; M) 25 HO(G; M) — H(G; M) — 0.
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In particular, the above definition agrees with the original one in terms of complete
resolutions. More explicitly, suppose that e: P>kisa complete resolution and
let P and P~ be the complexes whose non-zero terms are P; = Pi, if ¢+ > 0, and
P = P, if i < 0, respectively. Then e: P — k is a resolution of k by finitely
generated projective modules and there is a canonical triangle

P~ PP 2P .
LEMMA 4.1.4. Each of the canonical maps
Hom(P,M)¢ — (P ® Hom(P, M))¢ — (P ® Hom(P, M))%

are quasi-isomorphisms.

PROOF. The triangle (4.1.3) identifies the mapping cones of the maps of the
statement with the complexes (SP ® Hom(P, M))¢ and (£P ® Hom(P, M))%, re-
spectively. Both are total complexes of double complexes. The filtration after the
first tensor factor define spectral sequences which converge strongly to the homology
of the total complexes. The F!-terms are

B!, = Hyr 1((Pe ® Hom(P, M))%) = H*"""1(G; P, ® M),
E}, = H, (P ® Hom(P_,, M))).

The first E' vanishes because Ps; ® M is weakly projective, and the second because
Hom(P_,, M) is flat and P is acyclic. O

The cup product on group cohomology may be extended to a product
(4.1.5) H*(G; M) ® H*(G; M') — H*(G; M @ M")

in following way. The tensor product P ® P is a projective resolution of k ® k, so
we can choose a lifting P —+ P ® P of the canoncal isomorphism k& — k ® k. We
also choose a chain map P® P — P which extends k ® k — k. The product (4.1.5)
is then the map on homology induced from

(P ® Hom(P, M))¢ @ (P ® Hom(P, M"))¢ — (P ® P ® Hom(P @ P,M @ M"))¢
— (P ®@ Hom(P, M ® M"))%,
where the first map is the canonical map and the second is induced from the chosen
quasi-isomorphisms. Since any two choices of liftings are chain homotopic, the

product is well defined and makes H *(G; k) a graded commutative associated ring
and H*(G; M) a graded module over this ring.

4.2. Let C be a cyclic group of order r and let g € C be a generator. We let
e: W — k be the standard resolution which in degree s > 0 is a free kC-module on
a single generator x; with differential

Nz, 1, s even,
drs =
(9—1zs—1, sodd,

and with augmentation €(zo) = 1. Then W is the complex which in degree s > 0
is a free kC-module on the generator y; = (0,z5—1) and in degree s = 0 is a trivial
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kEC-module on the generator e = (1,0). The differential is
(g Dye_s, s even,
dys =< —Ny,_1, s > 1 odd.
—e s=1

The dual of z, is the element =¥ € Hom(Wj, k) given by z%(g‘zs) = d; 0. We note
that g -z} = (g'z,)* and that the map (g*)*: W} — W} maps z* — g ‘z*. Thus

Nx* s odd.

-1 Dz*

— )T § even
div: — (g ) s+1 )
s+1»

LEMMA 4.2.1. Suppose that the order of C is odd and congruent to zero in k.
Then as a graded ring

H*(C;k) = Ap{u} ® Sp{t,t 1}

where t and u are the classes of e ® Nz5 and e ® Nx7, respectively. Moreover, the
classes ut~! and t—! are represented by the elements —Ny; ® Nz} and Ny, @ Nz},
respectively.

PROOF. We first evaluate the homology of the complex
(W ® Hom(W, k))¢ = (W ® DW)C.

This is the total complex of a double complex, and the filtration after the first tensor
factor gives rise to a spectral sequence which converges strongly to the homology
of the total complex. We have

E;, = Hy (W, ® DW)° = Hyo(Hom(W, W,)©),

which vanishes unless one of s and ¢ are zero. Hence Eit = EJ3 and it is easy to
see that if either s or t is zero, this is a free k-module of rank one generated by the
classes of e@ Nz*, and Ny, ® Nz, respectively. Note that these elements are also
cycles in the total complex.

To evaluate the multiplicative structure, we choose liftings
UVW-WeWw

BWQW - W
of the canonical maps k — k ® k and k ® k — k, respectively:
Z 9Py ® gz, m and n odd

o ( sy ) _ s<p<g<s
mn\g Tm+n) = *Tm @ g* Mz, m odd, n even
G°Tm R g°zn, m even
and
Z 9*Ymin m and n odd
» q ) p<s<g<p
P n (G Ym @ 9lyn) = Op.g+19°Ymin m odd, n even
5p7quym+n m even,

where in the first line the sum ranges over the g° between gP and g?~!, both
included, in the cyclic ordering of C specified by the generator g. The sum is zero
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if and only if p = g. The map ¥ induces a product map on the dual DW given by
the composite

¥*: DW @ DW % D(W @ W) 2% DW,

or
_ Z g °zy,., mandn odd
" Cpox —g %\ _ p<s<g<p
lIj'm,n(g T, Qg :L'n) - 5p,q+lgipx;kn+n m odd, n even
6pngfpw;‘n+n m even.
We find that
r(r—1) .
(c@Nzl)-(e@Nay)={ 3 &N mandnodd
e® Nz . else
and
r(r—1) .
(Nym ® Nz3) - (Nya ® Nag) = { 3 Nmin @ Naj m and n odd

NYmin @ Nz else.
Moreover, the product
(e® Nz3) - (Ny2 ® Naj) = Ny, @ Nx5

is homologous to e ® Nz{j, which represents the multiplicative unit in the cohomol-
ogy ring. Indeed,

d(A(N)(y1 ® 25) + A(N)(y2 @ 21)) = —e ® Nag + Nys @ Nas.
Hence Ny, ® Nz} represents the class t~1. Finally, for any element o € kC,
(1® a)A(N) = (a®1)A(N),
where @ = ¢(«) is the antipode. Therefore, if a € kC is such that (9 —1)a =r— N,
eg. a=1+2g+---+rg" ! then
d((a @ DA(N)(y2 @ 5))
=—((g-1)@1)(a®@ 1)A(N)(y1 ® zp)
—(1®(@-1))1ea)A(N)(y2 @)
= Ny1 ® Nzg + Ny ® Naj — rA(N)(y1 ® 5 + y2 ® 1),

and hence the element Ny; ® Nz} represents the class —ut~! in the cohomology
ring. O

When k is a perfect field of odd characteristic p and Cy,» a cyclic group of order
p", we get
H*(Cprs k) = Ar{u} ® Si{t,t '},
with the classes u = u,, and ¢ defined as above. In the Bockstein spectral sequence
the first non-zero differential is
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4.3. The stable category of G-spectra is a closed triangulated category. We
fix some conventions, compatible with the ones from section 4.1. As a model for
the G-stable category we use G-CW-spectra.

The cone of a spectrum X is the smash product
CX =[0,1] A X,

where we use 1 as the base point of the interval. If X is a CW-spectrum, we give
CX the product CW-structure, where [0, 1] is a a CW-complex as usual with the
1-cell oriented from 0 to 1. The mapping cone of a map of CW-spectra f: X — Y
is the pushout

X— oy

Jbo J/iz
cx —Cf

with the CW-structure determined from that on Y and CX. Collapsing the image
of i3 to the base point defines the map

9:Cy - S'ANX = XX,
where S* = [0,1]/8]0, 1] with the induced CW-structure. The distiguished triangles
are then the sequences of the form

xLy 2o Sex
With these definitions, the cellular chain functor throws the distinguished triangles

of CW-spectra on the distinguished triangles of chain complexes defined in 4.1.
Moreover, the isomorphism

W ACX 225 O(W A X)

induces an isomorphism

p: WA Cf = CW/\f,
which again is carried to the corresponding isomorphism of chain complexes by the
cellular chain functor.

For spectra X and Y, we have the external product

(431) A: 7TSX ® ﬂ'tY — 7Ts+t(X A Y)
and define the map
(4.3.2) Vi w44 F(X,Y) —» Hom(m_ X, mY)

as the adjoint of the composite
TeptF(X,Y) @ m_ X D m(F(X,Y) A X) <5 mY.

Let X be a CW-spectrum with an increasing filtration { X} by sub-CW-spectra.
Then the exact couple

Ds—l,t—l—l —1> Ds,t i> Es,t ﬁ) Ds—l,t
with
Do y(X) = mess X,
(4.3.3) ) = Tage
Es,t(X) = 7rs+t(Xs/Xs—1)
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gives rise to a spectral sequence whose abutment is the homotopy groups of X.
The spectral sequence converges conditionally in the sense of [1] if |J Xs = X and
holim X, ~ .

—

We next recall products following [24]. By a pairing from two exact couples
(D, E) and (D', E') to a third exact couple (D", E") one understands the following
structure: pairings

(4.3.4) Dt ® Dy — Dy pinr
E;: ® E;',t' - E.;I+s’,t+t’
which satisfies the following conditions
(i) for all y € D, and y' € Dy, 4,
3"wy) =iW)i'W), iy =i"w) =vi'(W);
(ii) for all y € D5y, ¢ € Es, y' € D, and 2’ € EY, 4,
0"(j(y)e') = (-)¥yd' ('),  9"(25'(y")) = B(=)y;

(iii) for all # € Es4, y € Ds—n—1,04n, ¢ € Ey o and y' € D, oy with
d(z) =i"(y) and 9'(z') =" (y’), there exists y" € DY, ,, ,, .4, such that

"(y") = k(za'), (") = i)+ (-1)" i)
We recall from [24] that such a pairing leads to pairings of the associated spectral
sequences, that is, pairings
Es,® EI:’,t' — E”:+s’,t+t’7
for all » > 1, which satisfies the Leibnitz rule
d"(za') = d"zz’ + (—1)1*lzd 2.
Here and above |z| denotes the total degree of z.

We return to the spectral sequence associated with a CW-spectrum filtered by
sub-CW-spectra. If X and X' are two CW-spectra with such filtrations, we give
the smash product X A X' the usual product filtration

(XAX)= |J X.nXL.
sts'=n
with filtration quotients
(XAXN)p/(XAX" )1 = \/ X /X 1 AN Xg/Xg_1.
s+s'=n
The external product (4.3.1) and the inclusions
X ANXL = (XAX)srsr
Xo/Xs1 A X;'/X;'—l = (XA XI)S+S’/(X A X,)erS’fl
then gives rise to pairings
Ds,t(X) ® DS’,t’ (Xl) — Ds+s',t+t’(X A Xl)v
Est(X)® Eg 1 (X') = Esps 110 (X AN X').
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Indeed, it is straightforward to verify that the requirements listed above are satisfied
such that one has an external paring of spectral sequences. For example to check
condition (iii), we note that by assumption the elements z and z’ are represented
by maps

z: (D,0D) = (X4, Xs_n_1), x':(D,0D") — (XL, XL _,._1),

where D and D’ are disks of dimension s + ¢t and s’ + ¢/, respectively. Then y" is
the homotopy class of the composition

ODXDUDXOD = Xg n 1 AXLUXeXx Xty 1 = (XAX)srs—n_1.

A filtration preserving product map X A X — X gives rise to an internal product
in the spectral sequence and all differentials will act as derivations for this product.
If the product on X is associative, commutative or unital, the same holds for the
internal product in the spectral sequence. Here commutativity in the spectral
sequence is up to the usual sign.

4.4. Let G be a finite group and let E be a free contractible G-CW-complex
with finitely many cells in each dimension. We define E to be the mapping cone of
the projection pr: E; — S° which collapses E to the non-base point of S°. Thus
we have the distinguished triangle

E, %355 ESsE,.

We let P and P be the cellular complexes of F and E with coefficients in a com-
mutative ground ring k. We recall that taking cellular chains of the triangle above
gives the distinguished triangle

P4k P EP
in the category of chain complexes.
The Tate spectrum of a G-spectrum 7' was defined in section 1.1 to be
H(G;T) = (E A F(E4,T))C.
Given two G-spectra T' and T" indexed on U, we define a pairing
(4.4.1) H(G;T) NH(G; T') — H(G; T AT)

as follows. Choose a cellular G-homotopy equivalence £, — E A E and a cellular
G-homotopy equivalence £ A E — E which extends the canonical isomorphism
SO A 8% — 89 Any two equivalences are G-homotopic. The pairing is then given
by

(ENF(EL,T)) N(EANF(E,T))¢ - (ENEANF(ELNEL, TNT'))¢
— (EAF(Ey, T AT'))C,

where the first map is the canonical map and the second is induced from the chosen
G-equivalences. If T' is a G-ring spectrum, the composition of the external product
with the map of Tate spectra induced from the product map on 7', makes H(G’; T)
a ring spectrum. Moreover, this is a homotopy associative, homotopy commutative
or unital ring spectrum if 7" is G-homotopy associative, G-homotopy commutative
or unital, respectively.
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The CW-filtrations of E and E gives rise to a double filtration of the Tate
spectrum. Define
X,,=E.NF(E/E_,_;,T)

)

Y,s=E,/E._1 N\F(E/E_,_1,T)

Zns=E.NF(E_,/E 4 1,T)

Wr,s = ET/E~7‘71 A F(Efs/Efsfla T)
Given a G-spectrum X, we let I'X — X be a functorial G-CW-substitute for X.
In order to turn the filtration above into a filtration by G-CW-subspectra, we let

X, =holimI'X,s ,,
—

where the homotopy colimit runs over all 0 < r’ < r and s’ < s < 0. There are
canonical weak equivalences X'T,s = X, and X'T,s is a sub-G-CW-spectrum of the
G-CW-spectrum X = X 00,0- The fixed set of X is equivalent to the Tate spectrum.
We then let

Y'T’S = XT‘vs/XTfl,s
ZTvS = XT,S/XT,sfl
WT,S = Xr,s/Xr—l,s U Xr,s—l

and define

X, = U X,,CcX.

r+s<n
The exact couple 4.3.3 associated with the filtration {X,} defines a spectral se-
quence that approximates the homotopy groups of the Tate spectrum.

LEMMA 4.4.2. There is a canonical isomorphism of complexes

E!, = (P ® Hom(P, n,T))%

*,t =

and hence E2 , = H*(G;mT).

PRroOF. The inclusions X'T,S — Xr+s induces an isomorphism

\/ V_Vr,s l> Xn/anl

r+s=n
and the boundary map
Xo/Xn 123X 1 = 2(Xn 1/Xn 2)
maps the summand V_[/',q,s to the summands EV_VT,LS and EV_VT,S,l by the maps
0 Wre = XY,y = EW, .y,
O Wy =57, 15— SW,_16
respectively. We identify
(4.4.3) TrtottWys = (P, @ Hom(P_, m,T))¢

in the following way. For any pair of G-spectra X and Y, we have the canonical
map
T (X AY)®) = (1 (X AY))E,
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and this is an isomorphism if, say, X is a wedge of free G-cells. The isomorphism
(4.4.3) is then the composite the inverse of this map, when X = E,./F, ; and
Y = F(E_s/E_s_1,T), and of the map of G-fixed sets induced from the composite

7rr+s+t(Er/Er71 A F(Efs/EfsflaT)) <L WT(E’I‘/E’I'fl) ® 7rs+tF(E7s/Efsfla T)

heY H(E,/Ey_1) ® Hom(n_y(E_s/E_s_1), mT)

L&Y g (E,/E. 1) ® Hom(H_,(E_,/E_,_1),m.T).
Here h is the Hurewitz homomorphism.

Finally, one can show that under the identification 4.4.3, m,(9') and m.(0")
correspond to the differentials in the algebraic double complex. O

The pairing (4.4.1) induces a pairing X (T) A X(T") — X(T AT"), and since the
equivalences By — E, A E, and E A E — E were chosen cellular, this pairing
preserves the filtration by the subspectra {X,}. Accordingly, the product maps
(4.3.5) give rise to a pairing of spectral sequences.

PROPOSITION 4.4.4. Let T and T' be two G-spectra indexed on U. Then the
pairing of Tate spectra (4.4.1) induces a pairing of the associated spectral sequences.
On E*-terms, this pairing corresponds to the pairing on Tate cohomology

H*(G;mT) @ H*(G;mT') — H*(G;me (T AT"))

under the isomorphism of lemma 4.4.2. In particular, if T is a G-homotopy asso-
ciative G-ring spectrum, then E*> = H*(G;m,T) as a bi-graded ring.

PROOF. The equivalences Ey — E. A E. and E A E — E induces chain
maps P -+ P® P and P ® P — P which lifts the canonical maps k — k ® k and
k®k — k, respectively. Now suppose T and T" are two G-spectra indexed on I/ and
consider the spectral sequences corresponding to the filtrations {(X (T) A X(T"))n}
and {X(T'AT'),}. An argument analogous to the proof of the preceeding lemma
identifies the E'-terms of the associated spectral sequences with the complexes

(P ® Hom(P,7,T) ® P ® Hom(P, 7,1"))¢

and

(P ® Hom(P,m.(T AT")),
respectively. We claim that under these identifications, the pairing

X(T)ANX(T") = X(TAT")
corresponds to the composition

(P ® Hom(P,,T)¢ ® P ® Hom(P, r,1"))¢
— (P® P®Hom(P ® P,m,T ® 7, T"))¢ — (P ® Hom(P,7.(T ® T")))¢,

where the first map is canonical map of chain complexes (which imiolve~s sign
changes) and the second map is induced from the maps P - P® P and PQ P — P

and from the exterior product (4.3.1). This is straightforward to check. Similarly,
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under the isomorphism of lemma 4.4.2 and the analogous isomorphism above, the
pairing (4.3.5) corresponds to the canonical map (no sign changes)

(15 ® Hom(P, TF*T))G ® (15 ® Hom(P, TF*TI))G
— (P ® Hom(P, 7, T) ® P ® Hom(P,r,T"))®.
But this was our definition of the paring in Tate cohomology, see (4.1.5). O

Finally, we show that the spectral sequence considered here is canonically iso-
mophic to the spectral sequence obtained from Greenlees’ ‘filtration’ of E. In the
G-stable category we have the Spanier-Whitehead duals E, = D(E_T), r <0,
which gives an upside-down sequence of maps which we splice together with the
skeleton filtration together by means of the canonical maps

E = D(E,) — D(S°) ~ 8° = E
to obtain the Z-graded ‘filtration’ of E,
(4.4.5) v By_q — ESES+1 — ...
This gives rise to a complete resolution e: P — k as follows. As a complex

(2P), = Hy(E, UCE,_;)
with differential
Hy(Ey UCE,_1) = Hy(SEs_1) <~ Hy_1(Ey_1) = Hy_1(Es_1 UCE,_5),
and the structure map e: P kis given by the composite
By = Hy(By U CEy) — Hi(SEo) < Ho(Ey) = k.

The map of triangles

P——k P P
R
P——y2p-——2p—— %P

defines a quasi-isomorphism of the mapping cones of the two middle vertical maps.

In the definitions of the spectra X, , and X,,, we may allow r to vary over all
integers. Then let
X, =holimX,,, X, = U X

b TYS,
r+s=n

where the limit is over all ¥ < r and s’ < s < 0, and where r is allowed to take
negative values. For non-negative values of r, the natural inclusion X, , = X;,S is
a weak equivalence. We have maps of filtrations

{Xn}nel - {Xr,z}nez A {X;',O}Tezv
where the filtration on the right is Greenlees’ filtration. The proof of lemma 4.4.2
extends verbatim to show that the induced maps of El-terms of the associated
spectral sequences are
(P ® Hom(P, M))¢ — (£P ® Hom(P, M))% < (ZP ® Hom(k, M))®.
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Both maps are quasi-isomorphisms by an argument similar to the proof of lemma
4.1.4. Hence the maps of spectral sequences in question are isomorphisms from
E? on. So the spectral sequence considered here is canonically isomorphic to the
spectral sequence obtained from Greenlees’ filtration, [9], [10].

4.5. Let again C be a cyclic group of order r and let g be a generator. As
our model for F, we choose
E=5(C®),
where the generator g acts on C by multiplication by e . We give E the usual
C-CW-structure with one free cell in each dimension. The skeleta are
B {S((Cd) n=2d-1odd
" 18(C4 x(C-1) n=2d even,

27 /T

(4.5.1)

where in the latter case, we identify the join with its image under the canonical
homeomorphism S(C™) * S(C) = S(C™ & C). The attaching maps
an,: D" xC — E,
are defined in even dimensions by the composite
D¥ x C 5 D(C%) x ¢ 5 §(C%) x (C- 1),
where £ maps (z,9°) — (¢° - 2,9°) and = is the canonical projection. We define
a1(z,9°) = g° - em @t/

and let aagy1 be the composite
D* x D' x ¢ 5 D(C%) x D! x ¢ 2224 D(C?) x S(C) = §(C%) * S(C).

We give D(C?) the complex orientation and D! = D(R) = [—1,1] the standard
orientation from —1 to 1. We may then identify the cellular complex of E with the
standard complex W by the isomorphism

(4.5.2) W = C.(E)

which maps the generator x,, € W,, to the image of the fundamental class under
the composite

H,(D",8" 1) X% H,(D" x C,S" ' x C) 2% H,(E,, Ep_1).
Here tp: D™ — D™ x C maps z — (z,1).

The C-CW-structure on E induces one on E and the isomorphism (4.5.2) induces
an isomorphism of chain complexes

(4.5.3) W = C.(E).
We define a homeomorphism

(4.5.4) E & s
by the map

CS(C>®); US® — D(C>®)/8(C>)
which sends ¢ A z — tz. Note that under this homeomorphism, the orientation of
the cells in E corresponds to the complex orientation of S€~ . In particular, the
composite
Hy(8C) < Hy(Ey) 25 Hy(Ea, By) < Wy
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maps the fundamental class [SC] to the class Nys.

We consider the B-operator. Let T be the space S(C) of complex numbers of
length one considered as a Lie group and identify C' C T with the subgroup of rth
roots of unity. Our model for EC is then also a model for ET, and moreover, the
action

p:TxE— E

is C-cellular, when we give T the C-CW-structure of S(C) = E;. The induced
action on E, we remember, is given by the composite

~ C ~
T+ /\E:T+/\Cpr i)C"jr_*_/\pr i)cpr:Ea

where pr: E, — S° is the projection. The cellular complex of T is a differential
graded Hopf algebra A = ZC ® A{B}. The differential maps B to (9 —1) -1, B is
primitive, the coproduct on g € C' is ¢ ® g, and the antipode is ¢(B) = —B. The
maps induced from actions

(4.5.5) AW =W, AW =W,
are given by
B Ts41 S even B 0 s even
*Tg = “Ys —
0 sodd "7 yer1 sodd

For any T-space X, let |X| denote the underlying non-equivariant space. The
C-CW-filtration of T and double filtration of (E A F(E,,T))C gives rise a triple
filtration of the smash product. If we turn these into single filtrations, as we did
earlier, then the action is a filtration preserving map

|T|4 Ai*(EAF(EL,T)) — i*(EAF(E,,T)),

which is T-equivariant because T is commutative. In particular, it restricts to
a filtration preserving map of C-fixed sets, and this in turn induces a filtration
preserving map

T/Cy Ni*(EL AT)C — i*(E; AT)C.
We evaluate the map of the spectral sequences associated with these filtrations.
Under the canonical identifications, the map of E!-terms induced from the action,
is then given by

Ao ® (W @ Hom(W, 7, T))¢ — (W @ Hom(W, =, T)),
where Ac = A{B} and 7T is a trivial A-module. When T is a T-ring spectrum,
the class B ® Nzj is an infinite cycle in the spectral sequence on the left. Hence
the spectral sequence on the right becomes a spectral sequence of Ag-algebras. The

class B € Hy(T, ) is the Hurewicz image of o € 7y (T ), and exterior multiplication
by o composed with the action

T, AH(C,T) — H(C, T)
induces the differential d: =,H(C, T) — m, 1 H(C,T).
PROPOSITION 4.5.6. Let T' be a T-ring spectrum. Then the spectral sequence

E? = H*(C;7.T) = = H(C; T)
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is a spectral sequence of Ac-algebras. If a € TI'*H(C; T) is represented by an infinite
cycle z € Esl,t such that B - z € E517t s non-zero, then B - z is an infinite cycle and

represents the class of Ba € m,H(C;T). O

Let k be a perfect field of characteristic p > 0 and let T'(k) be the topological
Hochschild spectrum of k. Then

T T(k) = Ax{e} ® Sk{c},
where the classes € € T T(k) and o € 7T(k) are characterized by Be = 1 and
de = 0. Here, we remember, 7, = m.(—;Z/pZ).
COROLLARY 4.5.7. The image of the classes € and o under the map induced from
I:T(k) - H(CP;T(k))
are represented by the infinite cycles ut '®1 € E12,0 andt™'®1 € E2210, respectively.

PROOF. Recall from section 1.1 that I' is defined as the composite

T(K) < pi, (B AT) = o, (B A F(E, 7).

Both maps are T-equivariant, so I' commutes with the B-operator. It of course also
commutes with the Bockstein operator. Now

B-(—Ny1 ® Nzj) = —N(B-y1) @ Nzj + Ny1 @ N(B - z§) = Ny, ® Nzg,
so by the proposition, d(ut~!) = ¢t~!. Since also B(ut ') = 1, we are done. O

PROPOSITION 4.5.8. Let T be a T-spectrum and suppose the order of C is divis-
ible by p. Then the d*-differential in the Tate spectral sequence

E*(C,T) = H*(C;F,) @ 7, (T, Z/p) = m.(H(C, T),Z/p)
s given by
E(y®71) =7t ®dr.

Here t is the generator of H?(C, F,) from lemma 4.2.1, and d: m.(T,Z/p) —
m«t+1(T,Z/p) is the B-operator.

PRrROOF. We consider the T-Tate spectrum
B(T,T) = (B AF(E:, T))",
where again E = S(C>). There is a spectral sequence
E*(T,T) = ${t*'} ® m.(T, Z/p) = m.(A(T, T), Z/p),

where t has bi-degree (—2,0), and it was proved in [14, lemma 1.4.2] that the d*-
differential in this spectral sequence is given the formula of the statement. There
is a natural map of spectral sequences

E*(T,T) — E*(C,T),

which on E%-terms is given by the obvious inclusion. Now every C-spectrum T is a
module C-spectrum over the sphere C-spectrum S¢, and it will therefore be enough
to know that the class u; ® 1 is a d-cycle in the spectral sequence E*(C,S¢). But
71(Sc, Z/p) vanishes for p odd, and hence d?(u; ® 1) is zero for degree reasons. [
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5. The Tate spectral sequence for T(A|K)

5.1. Let L be a finite and totally ramified extension K, and let B be the
integral closure of A in L. Then B is a complete discrete valuation ring with
fraction field L and residue field k. Let mx and 7w be uniformizers of A and B,
respectively. Then the minimal polynomial of 7wy over K has the form

br/(mr) =77 + 7rOrx(7L),

where 01,k (z) is a polynomial over A of degree < ey, x and 61,/ (0) € A*. More-
over, the canonical map

Alrp)/ (L k) — B
is an isomorphism. When K = K|, is the fraction field of W (k), we will always use
Tk, = p and write write 0L (7 ) instead of 0k, (7L).

LeEMmMA 5.1.1. Suppose that u, C K. Then a choice of uniformizer tx € A and
of a generator { € p, determines a unique polynomial ux(x) € Alz] of degree < ex

such that

u(ﬂ'K)p71 = QK(ﬂ'K).

Moreover in w(a, )y,

dlog¢ = —ﬂ';(/(p*l)u(ﬂK)_ldlogp.

PRrROOF. Let f,g € Z,[z] be the power series given by
f(z) = pz + 2,
o(z) = (1+2)P — 1.
Then there exists a unique power series () € Z,[z] such that
F(p(@)) = ¢(9(2)),
o(z) =z mod (z?),

see e.g. [31, §3, proposition 5]. If ( € u, is a generator then ¢(¢ —1) € Ais a
(p — 1)st root of

—p = Ok ()
and we then define ug (z) to be the unique polynomial of degree < ex such that
p(¢—1) = m/ P Duye (mge)
To prove the second statement, note that
de(¢ = 1) = (¢ — 1)dlog (¢ — 1)
= ﬂ;(/(pfl)ux(ﬂ'x)_l - (p—1)"dlog(—p)
= —W;/(pfl)uK(ﬂ'K)_ldlogp.

Here we have used that dlog(—p) = dlogp and that the common class is p-torsion.
It thus suffices to show that

dp(¢ —1) = dlog .
By naturality, we may suppose that

K =Qy(up) = Qp((_p)l/(p_l))a



where as a uniformizer, we may take mxg = ¢ —1. In this case, w4, ar) is annihilated
by ﬂf{l, and since

dp(¢ —1) = ¢'(¢ — 1)¢dlog ¢,
it will suffice to show that

mod (2P~ 1),

/ =

or equivalently,
o(z) =log(1+ z) mod (zP).
But this follows from the uniqueness of ¢(z) and from the calculation

log(1+ g(z)) = log((1 + z)?) = plog(1 + z) = f(log(1 + z)),
which takes place in Z,[z]/(zP). O

ADDENDUM 5.1.2. Let L/K be a finite and totally ramified extension. Then the
inclusion of valuation rings, i: A — B, maps

i(uk(mK)) = (_GL/K(WL))ieK/(pil)uL(ﬂ'L).

PROOF. Since i(¢(¢ — 1)) = ¢(¢ — 1), the definition of ux(mx) and ur(7r)
gives

_ er/(p—-1) 1

iy (S Py (i) 1) = 7 ug ()L

On the other hand,

i (5 P D uge () 7YY = (O () “ra g Yo B0 (uge (i) Y,

and the stated formula now follows since e xex = er and since WZL/ P=1) is a

non-zero-divisor in B. O

5.2. We recall the Cartier operator. If k is a ring, if R is a k-algebra, and if
k — k' is a ring homomorphism, the base change of R along k — k' is the tensor
product R’ = k' ®; R viewed as a k’-algebra by multiplication in the first tensor
factor. In this situation, the canonical map

(5.2.1) R ®r Qg — Qi
is an isomorphism, [25, p. 198].

If k£ is a ring of characteristic p > 0, we consider the base change of R along
the Frobenius ¢: k — k. This is again a k-algebra, which we denote R(Y). The
canonical map

W:R—RY, W()=1®a,
is a p-linear ring homomorphism. The relative Frobenius of R is the k-algebra
homomorphism
Frk: RY - R, Fr/i(z ® a) = za®.
The absolute Frobenius on R, given by Fg(a) = a?, now factors as the composite

R, g IR p

If we write R = k[z]/(f5(za)), then R® = klza]/(f$" (za)), where £ (za) is
the Frobenius twist

£59(2a) = erlzal (F5(2a)),



the map W is induced from ¢[zs], and the relative Frobenius from the k-algebra
map which sends z, to zB.

In general, the de Rham complex QF /k is a graded R-algebra with a k-linear
derivation. But when k is of characteristic p > 0, we may view Q7F, /K @83 differential

graded RW-algebra via the relative Frobenius F R/k* RM — R, and hence, the
cohomology ring H*(Q7}, /k) is naturally an R(")-algebra. Let

Cr': Qg = WHH (QR )
be the map of graded R-algebras given by
Cp'(a) =a?, Cgr'(da) = a? 'da + d(R).

This map is well-defined since

Ppp b)?
a? 1da+ b 1db — (a+ b) 'd(a+b) = d(* il Chl)) ):
p

The map Cgl adjoins to a map of graded R()-algebras
R(l) ®R E/k%H*(QR/k)

which composed with the inverse of the canonical isomorphism (5.2.1) yields the
(relative) inverse Cartier operator

Cl;/lk: Qg = H (Qgp)-

In degree zero, C’lg/lk is induced by the relative Frobenius Fr/;, and in degree one
has

Cp/r(Wi(da)) = a*~'da + d(R).

The map C’l;/lk is an isomorphism if R/k is smooth. Indeed, since the statement
is étale local, we may assume that R = k[z1,...,z,] is a polynomial algebra, and
it is easy in this case to evaluate both sides, compare [20, 7.2]. The inverse of

Cg/lk is called the (relative) Cartier operator and denoted Cg/;. It satisfies that
for u € R*,
C’R/k(ufldu) = W, (u tdu).
Indeed,
Cryx(u™"du) = Cr/x(u™PuP ™" du) = Cr/x(u"P)Cr/p(uP " du)
= W(u "YW, (du) = Wi (u 'du).

LEMMA 5.2.2. Suppose 8(z) € k[z]* and write §'(z)/0(z) = ap+arz+az*+. ...
Then api—1 = ab ;.

PROOF. We may assume that 6(z) is a polynomial with 6(0) € k. The algebra
R = k[z][0(x)"] is smooth over k and in Qp/y,
Cr/x(0(z)"'d0(z)) = W (6(z) "db(z)).

Hence the images of the two differentials in Q[,]/, also agree. This is the statement
of the lemma. O
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5.3. Let mx € A be a uniformizer. Then as a differential graded k-algebra
T T(AK) = S{k, 7k }/(73E) @ A{dlog 7k},
where
drg = mgdlogmk
dk = kdlogp = (exdlogrx — dlog Ok (7K )).-
We now suppose that p, C K and choose a generator ¢ € pu,. Let ug(x) be the
polynomial given by lemma 5.1.1, and define ax € 7T (A4|K) by

g = ’U,K(ﬂ'K)_lh‘,.

Then
T T(AK) = S{ak,mxk}/(735) @ A{dlog 7k },
and
dﬂ'K =7rKd10g7rK
dOéK = eKaKdlogﬂK.
Indeed,
dlakg) = qu(ﬂK)*ldloguK(ﬂK) -K+ uK(7rK)*1 - kdlogp
= —agdloguk(nk) + ax(exdlogmk — (p — 1)dloguk (7))
=exaxdlognk.

The Bockstein homomorphism
,61 : ﬁ'QT(A|K) — 7T1T(A|K),

we remember, is injective, so we can define the Bott element b € T,T(A|K) by the
requirement that 31 (b) = dlog(, where ¢ € p, is the chosen generator. Then

(5.3.1) b= /P Doy,
Indeed, by lemma 5.1.1,

B1(b) = dlog¢ = —W;K/(pfl)uK(ﬁK)_ldlogp = ﬁl(—ﬂle{K/(pfl)aK).

Let L/K be a finite and totally ramified extension, and let i: A — B be the
inclusion of valuation rings. Then the map

(5.3.2) ix: T (A|K) — 7T (B|L)
is given by
is(mx) = —0p/x (mp) P,

ix(dlogmg) = e kdlogmg — dlog Ok (7L),
in(ak) = (=0p/x (1)) /P Vay.

Indeed, the first two equalities follows immediately from the definition of 0,/ (7L ),
and the last equality follows form addendum 5.1.2.
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5.4. Suppose that v,(ex) > 0 such that we may identify
Ju: T (A) — 7. T(AK)
with the canonical map
Qa2 ®z Sr,{k} = wa,m) ®z Sk, {k},

where the class k is determined by the requirement that the integral Bockstein
takes the value
_eKﬂ'(;{K_l _ OIK(TFK)

Pk (k)  Ok(7K)
Since the differential d(6k (7x)k) must vanish, we see that in 7. T(4),

Ok (mR) o
dk = k- ( 9K(7FK)d K)»

which in general is different from xdlog p.

B(k) = dlogp = ( )drmk .

The linearization map
L: 7, T(A) - 7. HH(A)
may be identified with the canonical map
Qa/z ®z Sp,{k} = Qa/z @7 Tr, {k}.

To see this, we recall the calculation of 7, HH(A) from [11]. Here, HH,(A/W) is
calculated as the homology of the differential graded W-algebra

C.(A/W) = A®w Aw{drk} ®w Cwick}

with the differential given by b(vs(ck)) = vs—1(ck)Pk (7x)drk and b(drg) = 0.
Hence for vy(ex) > 0,

7. HH(A) = A/pA® Mdrg } ® T'{ck },
and the Bockstein 3: 7. HH(A) — HH,_1(A/W) maps

Ber) = U e — (K1 4 O3

This shows that

KR = —HK(’TTK)_ICK.

We proceed to evaluate the map induced from the reduction
px: T T(A) —» 7. T(A/pA),
or equivalently, to evaluate the class p, (k). The equivalence
T(k) AN N¥(I,) = T(A/pA)
gives rise to a canonical isomorphism of graded m, T (k)-algebras
7. T (k) ® 7, HH(A/pA) = 7, T(A/pA)
whose composition with the linearization map
L: 7, T(A/pA) - m, HH(A/pA)

is equal to the map induced from the augmentation 7, T(k) — k.

For any HIF,-module spectrum X, we have a canonical isomorphism

T X ® Me} = T X,
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where € € ;1 HF, is the unique class with 3(e) = 1. We thus have a sum diagram
X R x T x
where  is the integral Bockstein. The section s is given by multiplication by €, and
r is the induced retraction of the inclusion ¢. This applies in particular to T'(A/pA)
and HH(A/pA).
It follows that we have a canonical isomorphism
7. T (k) ® m, HH(A/pA) ® A{e} — 7. T(A/pA),
and that under this isomorphism
P(k)=2z101+1QyYyR1-1®2Q¢,

where z, y and z are the images of k under the composites

7. T(A) = 7. T(k) = 7T (k),

7T (A) 5 7, HH(A) 2 7, HH(A/pA) 5 =, HH(A/pA),

7.T(A) L w1, T(A) 25 7, T(A/pA) L n, HH(A/pA),

respectively. By what was said above, we have
y = —0k(rx) ek,
_ BKW;{Kil 0}{(7rK)
Pk (nk)  Ok(mK)

and we shall need to know that z = o. This is equivalent to the statement that in
the spectral sequence used in [22],

E? = m.T(A, Tor’ (A/pA, A/pA)) = m.T(4, A/pA),
1

)dTl'K,

z =

the element o — Ok (Tx) ‘ck is a cycle.

LEMMA 5.4.1. The reduction T.T(A) — 7.T (k) maps k to o.

Proor. It follows from addendum 3.3.9 that the top horizontal map in the
diagram

7_1'2T(A) i} T_F1T(A)hc

Lo,

7T (k) o T (k)ne,

maps & to dV(1) — V(dlogp). This class, in turn, is mapped to dV (1) by the
reduction, and it thus remains to show that Jx(c) = dV(1). To this end, we
consider the diagram

4

71T (k) — O RoT(k)he

P
d (-1) d
72T (k) N 11T (k)nc,

which commutes up to a sign. An argument similar to the proof of addendum 3.3.9
shows that 0x(e) = —V(1). But o = de, and hence 9(0) = dV (1). O
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The differential structure on 7,T(A/pA) is given by
de = o,

€K
deg = —mgE™ Ydrk - o,
p

and by the rule d(v;(ckx)) = vs—1(ck)dek . It follows that the image of the element
t0k (rx )k under the map of spectral sequences
pu: E*(Cpny A) = E*(Cpn, A/pA)
is homologous to the element —tck. Indeed,
p*(teK(ﬂ'K)K) +tcx = toK(Tl'K)O' + t@lK(ﬂ'K)dﬂ'K €= d2(0K(7rK)e).

PROPOSITION 5.4.2. Suppose that vp(ex) > n. Then the image of W_KZK/”"
under the map
1—‘A/pA: ﬁ*T(A/pA) — 7_r=|=]HI(C’p"7 T(A/pA))

is represented in the spectral sequence E*(Cpn, A/pA) by the cycle —tck.

PROOF. We have a natural decomposition

\ T(4/pA,s) = T(A/pA),

s>0

and the class I‘A/pA(ﬂ'K) %/P" Jies in the summand H(Cpn, T(A/pA, ex)). Tt was
proved in [15] that there is a cofibration sequence

(5.4.3) T(k) ASL 25 T(k) A SY/Coy 5 T(A/pA,ex) 2 ST (k) A SE.
The homotopy groups modolu p are given by
T (T(k) A SY) = T T(k) @ k(n, d(mg)),
Tu(T(k) A SY/Cey) = 7T (k) @ k(nl, n55 Hdng),
7o (T(A/pA,er) = 7T (k) @ k(nS¥ tdng, ck),
with the maps induced from the cofibration sequence being the obvious ones except

that 9, (cx) = d(75X). To see this, recall that cx € Ho(NY (I, ex), Z/pZ) is the
unique class whose integral Bockstein is (ex /p)mSX 'drg. But the diagram

0 —— Z{d(n3F ) —— Z(nSF dng) —— Zfex Z{nSE rdmg) —— 0
lp lp lp
0 —— Z{d(n3F ) —— Z(nSE dng) —— Zfex Z(nSE rdmg) —— 0
shows that the connecting homomorphism
8: Hy(N¥ (I, ex), Z/pZ) — H1(S},Z/pZ)
maps the element whose integral Bockstein is (ex/p)mS¥ ~'dng to d(n5¥). The
differential on cx vanishes since v,(ex) > 1. The map ¢ induces a weak equivalence
E(Cyr, T(K) A 8*/Coy) 5 E(Cp, T(A/pA, exc)),
and it is easy to see that i, (FA/pA(wK x/P")) is represented in the spectral se-
quence
= Mun, e} ® S{t*1,0} @ k(reX , 185 tdng) = 7, H(Cpn, T(k) A S*/Cey)
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by the cycle 73%. Let
X=>Y—=>7Z-%X

denote the cofibration sequence obtained by smashing (5.4.3) by the Moore spec-
trum M,. We consider the 3 x 3-diagram of cofibration sequences

f11 f12 f1s

¥y —— F1(S3,Y) Y -y
g11 g12 913 2911
f21 3 faz fos
»-27 — Fs1(8%,2) z 71z
g21 g22 923 3g21
R fa1 3 fs2 fas
yolX —— Fq1(S3,%X) X X
931 932 933 (—1) 3gs1
w1y Yf11 Far (Si, EY) S f12 Sy Yf13 Y,

where the horizontal boundary maps f;3 are given by the differential d. We now
apply lemma 3.3.10 with

e33 = mr € m(XX),
ez = mg € mo(Fs1(S2,Y)),
e21 = cx € mo(X722)
and get that foi(ckx) + gi2(77¥) is the in image of
graf11: mo(272Y) = mwo(Fs1 (83, Z))-
The domain of this map is a one-dimensional k-vector space generated by the class

o = fi13(€), so the map is zero. The proposition follows. O

COROLLARY 5.4.4. Suppose that vy(ex) > n. Then the image of*n'_K‘:LK/pn under
the map
Ta: 7T (A) = 7H(Cpn, T(A))

is represented in the spectral sequence E*(Cpn, A) by the cycle t0k (7 ) k.

PROOF. We have already seen that the map
pei B2 _(Cpn, A) = ES_ (Cpn, A/pA)

takes t0k (Tx )k to —tckx. Moreover, this map is a monomorphism for —2 < s <0
and E3(Cpn, A/pA) = E*®(Cypn,A/pA). Hence, fA(ﬂ'_KflK/”n) cannot be repre-
sented by an element of E§7_S(Cpn,A) with —1 < s < 0 but must be represented
by the element t0k (7 ) as stated. O

5.5. The Tate spectral sequence
E?(Cpn, K) = H™*(Cp, (¢")* T T(A|K)) = 7, H(Cpn, T(A|K)),

is a spectral sequence of bi-graded k-algebras, when the abutment is given the
canonical k-algebra structure. Since k is perfect, we have

E*(Cpn, K) = Mun, dlog i} ® S{mx, k, t*1}/(w55),
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where the canonical generators u, and ¢ were defined earlier. Suppose that u, C K.
We choose a generator ¢ € u, and let ux () be the polynomial from lemma 5.1.1.
It is convenient to consider the algebra generators

ag = ug{_n)(m{)*lﬁ,

TK = ug{_n)(ﬂ'K)p t,

where, we remember, u(*)(z) denotes the s-fold Frobenius twist of u(z). We note

the relations
(—n)

Tkag =0  (Tk)tk,
Tr o = tKP.
The E%-term then takes the form
E*(Cpn, K) = Muy,,dlog g} @ S{mk, ax, 7'}/ (7%).
For integers a,r,d with 0 < r < ex and d > 0, define
{a,r,d}k = (pa—d)ex/(p — 1) + .

Then {a,e/x7,d}1 = er/k{a,r,d}k and the map induced from the inclusion,

in: B2(Cpn, K) — E*(Cpn, L)

is given by
i (rhemicat) = (=0 (wp)) " tomd e rfn 7t X o
GIL (71'[,)7!'[,
«(d1 = — ————)dl .
ix(dlogmk) = (er/x 0r/x(m1) og L,

We also write 7, =t and ag, = k.

THEOREM 5.5.1. Suppose either pu, C K or K = Ky. Then the non-zero differ-
entials in the spectral sequence
Ez(Cpan) = A{unvdIOgﬂ-K} ® S{TrKvaKvTIﬁél}/(ﬂ-;{K)
= 7, H(Cpn, T(A|K))

are given by

d2(&jfl) a_r d\ __ A Ljflfl dl a_r d
» (tpmrayx) =X (Tgkag) » T dlog g - TR TR Qs
+1 n+1
o(Rl T -1y 4 r —1
T ) = - (rra) T

where in the first line v = vp({a,r,d}k). The units A = Ag(a,r,d) and p = pn, are
given by A = p~*{a,r,dhcu® D (me )Ny and = wC D (mc, i, where
K, denotes the class wg{(TKaK)m with p° = meg +q and 0 < q < ek, and where

u_nand Ay are units of F,, independent of K.

The proof of theorem 5.5.1 occupies the rest of this paragraph. It will be nec-
essary to know to the structure of the E"-terms, given the differential structure of
theorem 5.5.1.
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LEMMA 5.5.2. Suppose p, C K or K = Ky, and assume that theorem 5.5.1 is
true for K when n =m. Let E? = E9(Cpm, K). Then for 0 < s < m,

s—1
AR a_nr v+l
B = @) Mum} © k(i riaddlogmic | vp{a,, dhc = v,d < Pogd —1)
v=1
& A{upm,dlogmg} ® k<7’j"{7r§{a§{ | vp{a,r,d}k > s),
m—1
s a __r v+l
E*® = @ AMuy} ® k(ririakdlogmi|vp{a,r,d}x = v, d < pp_l L_1)
v=1
& AMdlogmk} ® k(rgpniak |vp{a,r,d}x > m,d < p:Jffl —1),

where 0 <r <eg,d €Ny and a € Z, and {a,r,d}x = (pa —d)ex/(p — 1)+ r.

PROOF. The class A = A(a,7,d) is a unit in the E2*"" =1/(=1)_term of the
spectral sequence, and it can therefore be ignored when evaluating the spectral
sequence. Assuming the result for s and that s +1 < n, theorem 5.5.1 implies that

pst2_1 pStl_a

Ez( p—1 ):E2( p—1 )+1

’

and inductively, E2(%) is given by the statement of the lemma. Indeed, this is
clear in the basic case s = 0. The differential ¢ —1)/(»—1) only affects the last
summand on the right hand side of the statement and does not involve the tensor
factor A{un,}. If we rewrite

A{dlogmk} ® k(r&ﬂ}{a?{ |vp{a,r,d}k > s) =

k(tenyay |vp{a,rd} = s) ®
s+1_1

k('rf{ﬂ';(oz%dlog x| vp{a,r,d}k =s,d > pp_l -1
k<’7’1a(ﬂ';(0él[i(d10g7r[(‘ vp{a,r,d}xk =s,d < % 1) o
k(Tf‘(ﬂ%a‘}H vp{a,r,d}k > s+ 1),

the differential ¢2(®°" —1)/(=1) clearly leaves the last two summands invariant. We
claim that this differentials maps the first summand isomorphically only the second
summand. Indeed,

s+1_ s s_
(ricax) 77T ric = (rca) 5

and v, {p**1,0,0}x > s.
Assuming that theorem 5.5.1 holds for K with n = m, we have

pM—1 Pm+1_1

Ez( p—1 )+1 — Ez( p—1 )_1,

and the common value has already been determined. The differential

+1 m+1
2 pMmT—1 _1 P -1 _
=) U = P " (TKQK) P71 TK
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vanishes on all but the last summand, which we rewrite

A{Um} by k<7—g{7TTKa§( | Up{aa T, d}K Z TTL> =
pm+171
p—1

k{rgniad |vp{a,r,d}x > m, d > “ e

k(um g o% |vp{a,r,d}x > m) @

mt1_
k(rgryak |vp{a,r,d}x >m, d < 2 P L_1).

The differential ¢2®™" ~1)/(P=1=1 maps the second summand isomorphically onto
the first summand and leaves the last summand unchanged. O

PROPOSITION 5.5.3. Suppose that theorem 5.5.1 is valid for n < m, for K = K
and for all K with vy(ex) > m. Then the theorem holds for n < m, for all K.

PROOF. The proof is by induction on m. We fix a field K with v,(ex) < m
and assume, inductively, that theorem 5.5.1 is true for K when n < m. Making use
the map

F: H(Cpm, T(A|K)) — H(Cpm-1,T(A|K))

the only undetermined differentials are the d??(r&nha%) where vy{a,r,d}x >
m—1and g > (p™—1)/(p—1). Moreover, E2P"~1)/(P=1)(C,, K) is given by (the
proof of) lemma 5.5.2.

Let L/K be a totally ramified extension,

L =Krp]/(n"* + 700k (7L)),
and recall that the map induced from the inclusion,

Tyt E? (Cpm+1 , K) — E2q(Cpm+1 , L),

is given by
'L.* (Tg(ﬂ'rKadK) = (QL/K(ﬂ-L))—{a,T,d}KTZﬂ_zL/KTaL,
0" )T
OL/k(mL)

Suppose that v,(er) > m. Then by assumption, the differentials in E* (Cpm, L) are
given by theorem 5.5.1, and we may thus calculate

mo_q mo_q
P _— )

P (i) = VT (=0p () @ em T o),

where v,{a,r,d}x > m — 1. The formula {a, e /x7,d}L = er/k{a,r,d}k and our
assumption that vy,(er/x) > 1 implies that vy{a,er/k,d}r > m. It follows that
mim 7/ %" ad is an infinite cycle in E2(P"~1/(P=1)(Cym, L), and hence

d2(p:’n+11)(l*(7'la(ﬂ';{adK)) — dz(P;n,_ll)

((—0p)x (wp)) ~lomdde)  pop 25" of
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The differential on the right vanishes if v,{a,r,d}x > m—1. Ifvy{a,r,d}x = m—1,
we write —{a,r,d}x = p™ *l. Then

1 p

AT (=Onxc(my))~ o) = 205

(=00 @)

m— m—1 m m—1 1 m—1
=1 (0 ) T (=00 )Y (7)) ) (7))
m—1
NN e A A=
=1 (BT " e P dlogmy,

m—1 m—1
92/1{ )(”IZ )
1 ™1

m_1 PM=1
=1 (=0p g (rp))tomdie 2™ "y 2T (dlog ),

where the last identification follows from lemma 5.2.2. It follows that

m_q m—=1_4

m_y BTTI-1
U (i (rg o)) = i (0~ {a,m dbg #7 vy T dlogmg - Tmhcok)
=i\ (TKkaK) BT “Lrkdlogmk - T}'(ﬂrKaf{),

where A = Ak(a,r,d) as defined in the statement of theorem 5.5.1. The domain
and range of the map

p

iv: B2 1) (Cpm, K) = B2C51) (Cym, L)

are given by lemma 5.5.2. We claim that the extension L/K can be chosen such
that this map is injective. Indeed, if we let 0k (z) = = + 1 then

is(dlog k) = —;fldlogwb

and hence, up to a unit,

m—1
. dy _ eL/KTtp d
(T gAY ) = TLT] ajdlogmr.

In order that i, be injective, we therefore need that ey, g7 +p™ ! <er. Sincer <
ex — 1 and er, = ey gex this is equivalent to the requirement that ey x > pmL.
We also need vp(eL) > m, so if we let 0,k (z) =+ 1 and ey x = p™*!, theorem
5.5.1 will be valid for L by assumption and i, injective. It follows that

p™_1 p™Mm—1_
2= )(TKWKO‘K) A (Trag) Pt HKdlogﬂK-Tf{ﬂ';(Og{

as desired. A similar argument shows that d??(r&n%-a%) = 0 when (p™ —1)/(p —
1) < g < (p™*1—1)/(p—1), and finally, the differential on w,, follows by comparison
with the spectral sequence for K = K. O

5.6. We are reduced to proving theorem 5.5.1 for K = Ky and for K D p,
with v,(ex) > n. We begin by constructing a number of infinite cycles. Recall the
map of ring spectra

T(A|K)®m* — H(Cpn, T(A|K)).

LEMMA 5.6.1. For all K, the element dlogmk € E2(Cpn,K) is an infinite cycle
and represents the homotopy class T’k (dlog TK,)-
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PRrROOF. We consider the diagram

T(A|K)Cnt «—"—— T(A|K)C

~ h

H(Cpe, T(A|K)) < H (Cyr, T(A]K)) —— T(A|K).
The modulo p homotopy groups of the lower middle term are approximated by the
spectral sequence

E*(Cpn, K) = Mun,dlogmr} ® S{mk,t,k} — TH (Cpn, T(A|K)),

and the lower left hand horizontal map induces the obvious embedding on E?-terms.
The lower right hand horizontal map is given by the edge homomorphism of this
spectral sequence. The maps R and F™ take the class dlog MK,y € o (A|K)C»
to the classes dlog g, € moT(A|K)%"=* and dlog gk € moT(A|K), respectively.
It follows that dlogmx € E?(Cpn, K) survives the spectral sequence and represents
the homotopy class I'g (dlog 7k, ;) € moH' (Cpr, T(A|K)). O

PROPOSITION 5.6.2. Suppose that p, C K and let n < vy(ex). Then the ele-

ments 7r’;: and Tgag of Ez(Cpn, K) are infinite cycles which represent the homo-
topy classes 'k (mg ) and 'k (W_KZK/p"), respectively.

PRrROOF. We use the diagram

T(A|K)Com— P T(A)Con o T(A/pA)Crm—

b e
I Jx I Pr,
H(Cpr, T(A|K)) ¢ H(Cpr, T(A)) —— H(Cpn, T(A/pA)),
and the explicit calculation in section 5.4 below of the right hand map, to show

that the images of the homotopy classes W_KH,W_KZ/T’" € moT(A|K)C»"~" under the

left hand vertical map are represented in the spectral sequence by the elements 7ern
and T a, respectively. In particular, these elements are infinite cycles. O

We shall see later that the proposition 5.6.2 is true, more generally, for n <
vp(ex).
COROLLARY 5.6.3. The element tk? = T ol € E?(Cpn, K) is an infinite cycle

and represents the image of the canonical generator vy € 71'2(1,_1)(50) under the unit
map n: S° — H(Cpn, T(A|K)).

PROOF. Suppose that u, C K,let ¢ € u, be a generator and let b € 7_r2T(A|.K')CP"*1
be the corresponding Bott element. Since Aut(p,) has order p — 1, the prod-
uct P71 € frg(p,l)T(A|K)cv"*1 is independent of the choice of generator and is
equal to the image of the canonical generator vy € Tap—1)(S %) under the unit map
n: % — T(A|K)CP"*1. We show that bP~! is represented in the spectral sequence

Ez(Cpn,K) = A{un,dlognK} [ S{ﬂ'K,TK,aK}/(ﬂ';{K)

= 7,1 (Cpn, T(A|K))
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by the element 7k af, = txP. The Bott element is given by

b=—7

exc/0=1) g

Indeed, this formula is valid in 7,T(A|K) by (5.3.1). If v,(ex) > n, we may write
this as

b= —(nkl )ex/P" (g,
and hence

Bt = () ol
The desired formula then follows from the multiplicative extension

()P = Tican

of proposition 5.6.2. Since ok = tP is in the image from E*(Cpn, T(W|Ky)),
the formula is valid for all K. [l

PROPOSITION 5.6.4. Theorem 5.5.1 holds for n = 1.

PROOF. The d2-differentials, given by Connes’ operator, are generated from
d27TK = tlegﬂ'K "TK,
d’k = tdlogp - k.
When K = K, we have
ES(CPa KO) = A{ula legp} ® S{tilv K’p}a

and for degree reasons, the first possible differential is

d2p+1u1 = _tp+lﬁp_
Comparing with E*(S, K;), we see that d2P1t is trivial, and hence so is d2P*1(¢P).
Thus

APt Pyy) = py - tKP.

If this differential was trivial, txP would survive the spectral sequence and represent
the homotopy class vy - 1. But H(Cp,T(W|Kjy)) is a module spectrum over the
generalized Eilenberg-MacLane spectrum 7' (W) and is therefore itself a generalized
Eilenberg-MacLane spectrum. So multiplication by v; on 7H(Cp, T(W|Kj)) is

identically zero, and therefore, the differential on u; must be non-zero, i.e. p1 € Fy.
The spectral sequence collapses.

If u, C K and vy(ex) > 1, we get
ES(CIHK) :A{uladlogﬂ-K}®S{7TPK70‘K7TI:‘{:1}/(7T;{)'

Since t € E*(C,, Ky) is an infinite cycle, then so is its image ug) (nh) 11 €

E?(Cp, K). And since also 7% is an infinite cycle, and since ug(z) € k[z] is a
unit, it follows that 7x is an infinite cycle. Now by proposition 5.6.2, Tk ak is an
infinite cycle, and hence so is ax. Therefore the remaining non-zero differentials
are generated from the differential on u;. Again the spectral sequence collapses.

We have proved theorem 5.5.1 for n = 1, for K = Ko and for all K with
vp(ex) > 1. By proposition 5.5.3 it is therefore valid for n = 1, for all K. O
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THEOREM 5.6.5. For all K, and for ¢ > 0, the map
Dx: mT(AK) = 7 H(C,, T(A|K))

is an isomorphism.

PROOF. Since both the domain and range of fK satisfies tame descent, it is
enough to prove the statement when p, C K. If y, C K and vp(ex) > 0 or if
K= KOv

Eoo(Cpa K) = A{dlog ﬂ-K} ® S{ﬂ-pKv OK, TI:{‘:I}/(W;{’ al}’{),
and moreover, proposition 5.6.2 shows that there is a multiplicative extension
(k)P = TreaK

in passing from E*°(Cp, K) to the actual homotopy groups. Therefore, as a k-
algebra

. H(Cp, T(A|K)) = MLk (dlog 7x)} © S{Lk (7xc), Fic' /(D () %),
where Tx is a homotopy class lifting the element 7x of the spectral sequence. It
follows that #,7'(A|K) and the non-negatively graded part of 7, FH(C,, T(A|K)) are
abstractly isomorphic k-algebras, and that the map I'k is an isomorphism for ¢ = 0
and i = 1. To show that I'x is an isomorphism, for i > 0, it will therefore suffice
to show that

fKO: 7_1'2T(W|K0) l) ﬁzH(Cp, T(W|K0))
is an isomorphism. To this end, we consider the diagram

_ 8 _
T T(W|Ky) ————— 1 T(W|Ky)

T

_ 5 Br  _ o

7o H(Cp, T(W|Ko)) —— 71 H(Cy, T(W|Ko)),
where the upper horizontal map and right hand vertical maps are isomorphisms.
Since all groups in the diagram are one-dimensional k-vector spaces, the left hand

vertical map and lower horizontal map must also be isomorphisms. This shows that
(5.6.5) is an isomorphism if p, C K and vp(ex) > 0 or if K = K.

If u, C K and vy(ex) =0,
E>®(C,, K) = AMdlog i} ® k{tpnyay |vp{a,r,d}x > 1, d < p),

where 0 < r < eg, d € Ny and a € Z. Again, the domain and range of I'x
are abstractly isomorphic k-vector spaces. We choose an extension L/K such that
vp(er) > 0 and such that

iv: 7 T(A|K) — 7,T(B|L)

is a monomorphism. The diagram

7 T(A|K)——"— 7, T(B|L)

o
7, 0(C,, T(A| K)) —— 7,H(C,, T(B|L))
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shows that for i > 0, I'kisa monomorphism and hence an isomorphism. O

Given theorem 5.6.5, a theorem of Tsalidis, [39], shows that the following more
general statement holds.

ADDENDUM 5.6.6. For all K, for all n > 1, and for all i > 0, the map

~

Dg: T (AK)% " = 7, H(Cpn, T(AIK)),

is an tsomorphism. U

5.7. We now prove theorem 5.5.1 for K = K;. This may be derived from the
spectral sequence for 7, H(Cpn,T(W)), which is known from [4]. We give, however,
a more direct and simpler proof.

LEMMA 5.7.1. The element (tk)?" € E?(Cypn, Ky) is an infinite cycle and repre-
sents the homotopy class V (1).

PROOF. Let K/Ky be an extension and recall that in W,(A) one has the
relation

mr, = O (7, )V (1)
By proposition 5.6.2 we may choose the extension such that Txax € E? (Cpn, K)
is an infinite cycle representing the class 'k (Trex /P"). Recall that in

E*(Cpn, K) = Mu,} ® S{t*'} ® (¢")* 7. T(A|K)

we have

TKOK = 91(,;")(71'1{)7?,%
and hence ; . .

(TKCXK)p = 01{(7('% )(tlﬁ:)p .

The left hand side represents 'k (W_KZK ), and on the right hand, W’I’: is an infinite
cycle representing I'x (7K, ). Since Ok (z) is a unit, it follows that also (tk)P" is an

infinite cycle which represents V(1) as claimed. O

THEOREM 5.7.2. In the spectral sequence
E*(Cpn, Ko) = Mun,dlogp} @ ${t*', k} = 7.H(Cpr, T(W|Ky)),
the differentials are multiplicatively generated from

v—1
p¥+l_1 pv”l-1

dz( p—1 )tfpv_l = )\v . (tn)”vdlogp * Uy Pt y 1 <v< n,

n_1

ntl_y n L
d2(p p=1 )_l(uﬂt_p ) = Mn - "}1}’71 )

where A, and p, are units of Fp, and from the fact that tkP and dlogp are infinite

cycles. Moreover, the cycles (tn)psﬂdlogp, 1 < s < n, represents the homotopy
classes dV™2(1).

PROOF. The proof, of course, is by induction on n starting from the case n =1
which was proved in proposition 5.6.4. So assume the statement for n — 1. We
first show that the classes dV™*(1), 1 < s < n, are represented by the elements

(tn)ps+1dlog p. For s < n —1 this follows inductively from the formula
FAV™#(1) = dV"175(1)
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and from the fact that for degree reasons, (tn)PHldlog p is an infinite cycle. When
s =n — 1, one uses that in an%WM),

dV (1) = V(dlog,_, p) = V(1)dlog, p,
which by lemma 5.7.1 is represented by (tk)?"dlog p.

The maps F and V between E*(Cpn,Kp) and E*(Cpnfl,KO) give the stated

differential on ¢ P for i < n— 2 and show that wu,, is at least a d2(®"~1)/(®—1_cycle.
By lemma 5.5.2,

n—2 v

p" -1

2(55) U 7 o v,(2) = v — o v}j
(5.7.3) B U@IA{ n} ® k(t'dlogp | up(3) 1) @ ${v}/ (0 )

& A{una legp} ® S{tipn72a Ul}'

We show that the elements t®x®dlogp are infinite cycles. Since they are in the
image of the
E*(S',Kq) = E*(Cpn, Ko)
is suffices to show that they are infinite cycles in
E*(SY, Ky) = S{t*1} @ 7. T(W|Ko).

The reduction 7. T(W|Ky) — T.T(W|Kp) is an epimorphism in odd degrees, so
the elements t®kdlog p lift to the integral spectral sequence

E2 (S, Ko) = S{tP™} @ m, T (W |Ko) = m (T, T(W|Ko)).

Since m, T(W|K)j) is rational in even degrees the non-zero differentials in this spec-
tral sequence must all originate on the base line. Hence the elements t*x°d log p are
infinite cycles as stated. It follows, in addition, that the elements in the top sum-
mands in (5.7.3) are d"-cycles as long as d"u,, = 0, and moreover, these elements
cannot be hit by a differential for degree reasons. Hence the differentials on u,, and
t?" " leaves the top summands of (5.7.3) invariant.

The first possible differential is

n—2
—1
p p

pil)(t*P"fz) = A1 (t6)?" dlogp-v, 7t

d*
where A\, € F,. We treat the cases n = 2 and n > 2 separately. If n = 2, a k-

basis of ﬁlﬂ(sz ,T(W|Kp)) is given by the classes dlog, p and dV'(1). These classes

are represented by dlogp and (tn)pzdlog p, respectively and the cycle (tk)Pdlogp,
therefore, must be hit by a differential. This can only happen if the stated differ-
ential on ¢~! is non-zero, i.e. A; € F, is a unit. When n > 2 we consider the class

dV?(1) which in the spectral sequence is represented by (tﬁ)pn_ld log p. Inductively,
n—2 ~

multiplication by v{¥" 1/®~1) annihilates T H(Cpn—2, T(W|Kp)), and hence also

the class dV2(1). The cycle (tx)?" dlogp - vipnd_l)/(p_l) therefore must be hit

by a differential, and this can only happen if the differential on 7" 7 s non-zero,
ie. if A,—1 € I, is a unit.

For degree reasons the next possible differential is

prtl g, o "1
AP ) untP") = -0y
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and it will thus suffice to show that multiplication by vgp "1/ g jdentically

zero on 7, T(W|Ky)®»"~*. To this end, we use that the map
Ty : T (W|Ko) >t — TH (Cpn1, T(W|Ky))

is an isomorphism, for ¢ > 0. The target of this map is given by the spectral
sequence

E2(Cp"—17K0) = A{uﬂfladIng} ® S{tv’i} = T_I'*H' (Cp"—lvT(W‘KO))'

The E2-term of this spectral sequence is equal to the left half plane of the spectral
sequence E? (Cpn-1, Ky), and the differentials are obtained from the differentials of
the latter sequence. These differentials are known inductively. In particular,

p"—1
p—1

n_
T (Uno1RP") = finet - 0y

d*

It follows that multiplication by v"" /®~Y) on &, H' (Cpn 1, T(W|Kp)) is identi-
cally zero, and hence the stated differential on u, is non-zero, i.e. u, € I, is a
unit. The spectral sequence now collapses for degree reasons. O

5.8. It remains to prove that theorem 5.5.1 holds when p, C K and n <
vp(eK). In this case, 5.6.2 and 5.6.3 show that Tk ax and TKoz% are infinite cycles.
Hence if d"ak is non-trivial then so is d"(a%;) contradicting that d” is a deriva-
tion. Thus ax and 7k are infinite cycles, and theorem 5.5.1 then amounts to the
statement that the differentials in E*(Cpn, K) are multiplicatively generated from

v+1_ v v+l _ v
25T 1)(7rf,’{) = Ay - (tr) 71 1_lt‘dlogm( -k, 0<wv<n,

and from the differential on u,,.

LEMMA 5.8.1. Suppose that p, C K. If in addition uy(0) is non-zero, then
theorem 5.5.1 holds for K and n < vp(ek).

v—1
PROOF. Since 7x is an infinite cycle, so is 77, , for all v > 1. Now

1
)

v

= i () T = () e

v
and since 7% is an infinite cycle and d" a derivation, we get

@)yr( p"
sV i) g oy ().
ug (T )
The assumption that u'y (0) is non-zero implies that the first factor on the left is
a unit in E"(Cpn, K). We may therefore calculate the differential on wf{v from the

known differential on . We see that d” (% ) vanishes for r < 2(p"+t!—1)/(p—1).
When r = 2(p**1 - 1)/(p — 1),

v—1 pUtl_1

d"(tP" ) ==X, - (tk) 7T 't-dlogp

log mx,

dlog g,



which shows that
v pvtl_1

d'(7%) = Ay - (tk) 7T ‘tdlogmy - 7k

as desired. O

We now place ourselves in the universal situation and consider the ring spectrum
T(W|Ko) A N (Ils),
where I1, is the pointed monoid {0, 1,7, 72,...}. We have
T(T(W|Kop) AN NV (Il)) = A{dlogp,dr} ® S{k,7}.
Given K and a choice of uniformizer 7k, we get a map of ring spectra
pr: T(W|Ky) A N (Il) — T(A|K),
which on modulo p homotopy groups is given by
pr«(T) = Tk,
pr«(dm) = mrdlog Tk,
Pr«(K) = K,
U (TR )TK
ug (TK)
PROPOSITION 5.8.2. In the spectral sequence
Ez(Cpn, Ko, m) = AMuy,dlogp,dr} ® S{til, K, T}
= 7, H(Cpn, T(W|Ko) A N (),

the non-zero differentials are generated multiplicatively from

pr«(dlogp) = (ex + )dlog k.

pvtl

_ N v+l v
T () = A, - (tk) T M 0<v<n,

Pu+1 v—1

2( ) p”+17171 v—1
VT (P ) ==X, - (tk) T tdlogp-tP T, 1<wv<m,

pn+1_1

P ) = g - (t6) T

with tk?, dlogp, 7" and 7°" ~ldr being infinite cycles.

PrROOF. We choose an extension K/K, with u, C K and vy(ex) > n, and
such that u/,(0) is non-zero. Lemma 5.8.1 then shows that for 0 < v < n,

dz(%)(wﬁ’:) =X (tn)%fltdlogﬂ'x -wﬁ’:.
There is an S'-equivariant decomposition
NY(Ils) = \/ N (I, 5),

5>0

and the spectral sequence decomposes accordingly,
E"(Cpr, Ko, ) = @) E"(Cpn, Ko, m, 5).

5>0

Here, E"(Cypn, Ko, m,0) = E"(Cpn, Ky), and for s > 1,
E?(Cpn, Ko, ,8) = E*(Cpn, Ko) @ k(n®, 7" Ldr)

= Aun,dlogp} @ S{t*1, k} ® k(x®, n* Ldnr).
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In particular, for all K with v,(ex) > v,

PKx: E2(Cpn,K0,7r,p”) — E2(Cpn,K)
is a monomorphism. It follows by induction on r that

pix: E"(Cpn, Ko, m,p") = E"(Cpn, K)

is a monomorphism and that the differentials on the p-powers of ¢ and on 7?" are
as stated. O

COROLLARY 5.8.3. Theorem 5.5.1 holds when p, C K and n < vp(ek).

PROOF. This follows immediately from proposition and from the fact that the

spectral sequence E* (Cpn, K) is a module spectral sequence over E*(Cpn, Ky, ).
O

6. The pro-system TR, (A|K;p,Z/p")
6.1. In this paragraph, we prove the main theorem of this work. Suppose
that K contains the pth roots of unity. Then the canonical map
YX*°Bu,+ — K(K),
and the fact that for p odd, the Bockstein
T2(2% Bupy) = (3% Bpys) = pip
is an isomorphism, gives rise to a map
Hp — Kz(K) = 7_['2K(K)

Composing with the cyclotomic trace, we get a map of u, to TRy(A|K;p). In all,
we have a canonical map

Ww. W(A,M) ® SIF,, (,up) — T_R'*(A‘K;p).

This is a map of Witt functors with a pre-log structure where on the left hand side,
the maps R, F' and V' act as the identity on Sg (u,), and the differential on Sg, (1)
is trivial.

We consider the composite map
Wi wia ) © Sk, (1p) = TR (A|K;p) = 7. H(Cpn, T(A]K)).

The left hand map is an isomorphism in degrees 0 and 1 by theorem 3.3.8, and
the right hand map is an isomorphism in all non-negative degrees by addendum
5.6.6. The range of the composite map is given by the spectral sequence Ex (Cpn, K)
whose structure was determined in the previous paragraph. The result is that

n—1

EOO(Cpn,K) = @k<ufl7'%7r;{a§{dlog7rk-| vp{a,rd}g = v, d < prtio1 1>

p—1
1),

v=1

&) k<7'}(7r;{a§((dlog7r;()5 ‘vp{a,r, d}k >n,d< p"+_1

p

where a € Z, d € Ny, € € {0,1}, and 0 < r < ek, and where

{a,rd}x = (pa—dex/(p — 1) + 1.



The basis for E>(Cpn, K) as a k-vector space exhibited here will be called the
standard basis.

LEMMA 6.1.1. An element of the standard basis of E“(Cpn,K) represents a
homotopy class in the image of the composite

Wn "‘)ZA,M) ® Sk, (1p) = T_R:L(A\K;p) - 7_T*H(Cp"vT(A‘K—))
if and only if {a,r,d}x > 0.

PROOF. The map of the statement is an isomorphism in degrees 0 and 1, and
indeed, here {a,r,d}x is automatically non-negative since a = d. We must thus
show that for all ¢ > 0 and € = 0, 1, the map

@Eso,oe—s(cp"7K) - @E‘SOEQ-FC—S(CI)"’K)

s<0 s<0
induced by multiplication by the gth power of the Bott element is a surjection onto
the stated subspace. If we write ¢ = ¢1(p — 1) + go with 0 < gp < p— 1, then in the
spectral sequence

q __ q1,_qoex/(P—1) qip+qo
b = 1wy oy ,

and the statement now follows easily from lemma 5.6.2 by passing to an extension
L/K for which n < vy(er k) and

iv: B(Cy, K) —+ B*(Cyr, L)
a monomorphism. If, for example, a homotopy class is represented in the spectral
sequence by the element Tf’{ﬂ';{a?{ then the product of that homotopy class and
the gth power of the Bott element is represented by the element T?(Iﬂ';{’a% with

{da',7",d'}k ={a,r,d}k and &' —a' = d — a + q. (The product, of course, may be
zero.) O

THEOREM 6.1.2. Suppose that K contains the pth roots of unity. Then the
canonical map
W.w(a a1y ® Sk, (11p) = TR, (A|K;p)

18 a pro-isomorphism.

PROOF. Let E’ denote the pro-system on either side of the map in the state-
ment. The standard filtration, given by

Fil° EX = VSE* | +dV°E"

n—1»

is a descending filtration with s > 0. The filtration has length n in level n, i.e.
Fil” E* is trivial. The map of the statement clearly preserves the filtration. We
show that for all ¢ > 0, there exists N > 1 such that foralln > 1and 0 < s <n—N,
the canonical map

gr* (Wo wia i) ® Sk, (1p)): — gr* TRy (A|K;p)

is an isomorphism when 0 < s < n—N. Since the structure maps in the pro-systems
preserve the standard filtration, the theorem follows.

We have already proved that the map of the statement is an isomorphism in
degrees 0 and 1. Hence, it suffices to show that for all ¢ > 0, there exists N > 1
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such that for alln > 1,0 < s <n— N and € = 0, 1, multiplication by gth power of
the Bott element induces an isomorphism

gr TR, (A|K;p) = gr® TRy, (A|K;p).
We claim that any N > 1 with (pg + l)ex/(p — 1) < pV will do.

For surjectivity we use the above lemma. Since d > 0 and ¢ = a + d, we have
a > —q, and hence
{a,r,d}x = (pa —d)ex/(p — 1) +7 = aex —qex/(p— 1)
> —pgex/(p— 1) +r > —pgex/(p — 1) > —p".
Therefore, if vo{a,r,d} x > N we have {a,r,d}x > 0. It follows that multiplication
by the gth power of the Bott element induces a surjection of all summands in

E*®(Cpn, K) except for the summands with v < N. But these summands all
represent homotopy classes of filtration greater than or equal to n — V.

To prove injectivity, we first note that for an element of the standard basis of
E*®(Cpn, K) in total degree 2q + €, the requirement that

pv+1 -1

-1
p—1

0<d<

is equivalent to the requirement that

pgex pgex p'tt -1
— <da,r.d < ——— 4 eg—.

We show that v,{a,r,d}x =v > N and {a,r,d}k < ex(p*™ —1)/(p — 1) implies
that

v+1
PgeK pr -1
d}g < — .
{G’?r? }K p_1+eK p_].
Note that
1 perl _ 1
p*ex/(p—1) —ex———— =ex/(p—1) <p",
so it suffices to know that
bgex
— <p’ - —-1).
p_1°P ex/(p—1)

But this is our assumption on N. This shows that the map induced by multiplica-
tion by the gth power of the Bott element induces a monomorphism of all summands
in E%°(Cpn, K) except for the summands with v < N. The theorem follows. O

COROLLARY 6.1.3. The group TRq;(A|K;p) is uniquely divisible, for i > 0.

PROOF. The theorem determines the Bockstein structure on TR.(A|K;p). For
all Bocksteins vanish on Wwpy ;) and

5’1)(61) = Ci_ldIOgC

where v = v,(7). By theorem 3.3.8, TR2(A|K;p) is uniquely divisible, so every
element of 72 TR(A|K;p) is mapped non-trivially by some Bockstein. But then so
is every element of TRy, (A|K;p), ¢ > 0. O
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ADDENDUM 6.1.4. Suppose that K contains the p’th roots of unity. Then the
map
W.wia ) © Sz/p(ppe) — TRL(A|K;p, Z/p")

18 a pro-isomorphism.

PRrROOF. The proof is by induction on v. Assuming the statement for v — 1, we
show that the Bockstein homomomorphisms

Bo-1: TR (AIK;p, Z/p"™") = TR; 1 (A|K;p,Z/p)

are (Mittag-Leffler) zero, for all ¢ > 0. The induction step follows readily. Suppose
first that ¢ = 2s + 1 is odd. Inductively, we have pro-isomorphisms

W w(lAvM) ® 'u'?”s*1 l> TR.23+1(A|K;p, Z/pv_l)-

The Bockstein is a derivation, and it vanishes on W.wz‘ A,M)" Since the product of
odd dimensional classes is zero, the Bockstein vanishes for ¢ odd. When ¢ = 2s
even, we consider the commutative diagram

W.(A) ® pyi’ s ——— TR;(A|K;p, Z/p*~")

Ja 5

W. wha gy ® s "~ == TR;(A|K; p, Z/p).

The left hand vertical map is given by
(zRG® - ®¢)=z-dlogll®(®- -,

and since (; € pyo—1 has a pth root, dlog(; is divisible by p. It follows that the
left hand vertical map is zero, and hence so is the Bockstein homomorphism on the
right. O

The last result implies the following algebraic result. It would be desirable to
also have an algebraic proof of this fact.

COROLLARY 6.1.5. If upe C K then the map
W.(A) ® ppe = po W. w(lA,M)v
which takes © @ ¢ to xzdlog, (, is a pro-isomorphism. O
THEOREM 6.1.6. There are natural isomorphisms
TCoy(A|K;p) = HY(K, pu$*) ® H? (K, u$ ™),
TCs11(A|K;p) = H' (K, uy¢*Y),
valid for s > 0.

PROOF. Since the extension K (u,)/K is tamely ramified, we may assume that
tp C K. Indeed, it follows from theorem 2.3.1 that the canonical map

TC.(A|K;p) = (TC.(A(pp) | K (1p); p)) G 1)/ K)

is an isomorphism, and the analogous statement holds for H*(K,u$®). When
tp C K, theorem 6.1.2 shows that the canonical map

~

TCi(A|K;p) ® pg® — TCiya4(A|K;p)
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is an isomorphism, for all s,z > 0. It will therefore suffice to prove the statement
in degrees 0 and 1.

In degree one, the cyclotomic trace induces an isomorphism
K*/K*? = K:1(K,Z/p) — TC1(A|K;p,Z/p),

and by Kummer theory, the left hand side is H*(K,pu,). In degree zero, we use
that theorem 1.8.7 gives an exact sequence

0 — TCo(4;p,Z/p) — TCo(A|K;p, Z/p) — TC_1(k;p, Z/p) — 0.

In this sequence, the left hand term is naturally isomorphic to Z/p, and the left
hand map has a natural retraction given by

TCo(A|K;p,Z/p) = TRo(A|K;p, Z/p)" = Z/p.
It remains to show that the right hand term in the sequence is naturally isomorphic
to H*(K,pp). We recall from [82, p. 186] that there is a natural short exact
sequence

0 — H?(k,pp) — H*(K,pp) — H'(k,F,) — 0.
Moreover, since k is perfect, the left hand term vanishes. The normal basis theorem,

Hi(k,G,) vanishes for i > 0, and hence the cohomology sequence associated with
the sequence

0=, = G, “0—71>Ga—>0
gives a natural isomorphism
k, = H'(k,Fp).
Since k is perfect, the restriction W (k) — k induces a natural isomorphism
TC_1(k;p, Z/p) = W(k)r/pW (k)F — ky
which proves the claim. O

REMARK 6.1.7. When p, C K, we can also give the following non-canonical
description of the groups TC,(A|K;p,Z/p). Let ¢ € pu, be a generator, let b be the
corresponding Bott element, and let m € A be a uniformizer. Then for s > 0,

TCos(A|K;p, Z/p) = Fp(b®) @ ki (O(dlogm - b7)),
TCos11(A|K;p,Z/p) = Fy(dlogm - b°) @ ky,(8(b°Th)) @ kX,

where K, is the cokernel of 1 — ¢: k — k and eg is the ramification index. The
summand k°¥ in the second line is in the kernel of

1-F: TR2s+1(A|K;p7 Z/p) — TR2s+1(A|K;pa Z/p)a

with the inclusion

EK—l
n: kK = @ k — TRos11(A|K;p, Z/p)
i=0
given by
s pvtl_ . .
mi(a) = > " T Duge(x) PV (') b + Y FY(aue(m) Pd(x)) - b
v>0 v>0

The sum on the right is finite and the sum on the left converges.
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We shall need a special case of the Thomason-Godement construction of the
hyper cohomology spectrum associated with a presheaf of spectra on a site, [8, §3].
Suppose that F is a functor which to every finite subextension L/K in an algebraic
closure K /K assigns a spectrum F(L). For the purpose of this paper, we shall
write

(6.1.8) F®(K) = holimH (G /x, F(L)).
L/K
There is a natural strongly convergent spectral sequence

(6.1.9) B2, = H™*(K, iy mF(L)) = 7, P4 (K),
L/K

which is obtained by passing to the limit from the spectral sequences for the group
cohomology spectra

E?, = H *(Gp/k,mF (L)) = mep ' (G k., F(L)).
Indeed, filtered colimits are exact so we get a spectral sequence with abutment
lim 7, H (GL/x, F(L)) = m F(K),
L/K
and the identification of the E2-term follows from the isomorphism
lig H* (G k., 7 F(L)) = lim H* (G, (limm F(N))¥%)
L/K L/K N/L

= H*(K, lim 7. F(N)).
N/K

This isomorphism, which can be found in [33, §2 proposition 8], is a special case of
the general fact that on a site with enough points, the Godement construction of a
presheaf calculates the sheaf cohomology of the associated sheaf.

THEOREM 6.1.10. The canonical map
Vi Ko(K,Z/p") — KK, Z/p")

is an tsomorphism in degrees > 1.

PROOF. It suffices to consider the case v = 1. In the diagram

K(K) —X— K%(K)

Jtr Jtr
TC(AK) — TC(A|K; p),

the left hand vertical map induces an isomorphism on homotopy groups with Z/p-
coefficients in degrees > 1. We use theorem 6.1.6 to prove that the right hand
vertical map induces an isomorphism on homotopy groups with Z/p-coefficients
and that the lower horizontal map induces an isomorphism on homotopy groups
with Z/p-coefficients in degrees > 0. This proves the theorem.

We first prove the statement for the map induced from the cyclotomic trace

K®(K) — TC*(A|K;p).
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The spectral sequence (6.1.9) for K-theory with Z/p-coefficients takes the form
B}, = H™*(K,uf"?) = K, (K, Z/p).

Indeed, this follows from the simple fact that K-theory commutes with filtered
colimits and from the celebrated theorem of Suslin [35] that

Ki(K,Z[p) = p /).

Similarly, it follows immediately from theorem 6.1.6 that also the spectral sequence
(6.1.9) for topological cyclic takes the form

EZ, = H*(K, 2"/?) = TC¢ ,(A|K;p, Z/p).
Finally, it is clear that the cyclotomic trace induces an isomorphism of E2-terms.
It remains to show that the map
vk : TCi(A|K;p,Z/p) — TCE(A|K;p,Z/p)

is an isomorphism for ¢ > 0. The domain and range of v are abstractly isomorphic
in this range, so we just need to show that vk is an isomorphism for 7 > 0. By the-
orem 2.3.1 we may assume that p, C K and that the residue field & is algebraically
closed. When p,, C K, we have a commutative square

®id .
TCi(A|K;p, Z/p) ® u§* 7= TCH (A|K;p, Z/p) @ p®*

: :

®id &
Tci+25(A|K;pa Z/p) ’YK—> TCi—ti-Zs(A|K;pa Z/p)a

and the vertical maps are isomorphism for 7,s > 0. Hence, it suffices to show that
vk is an isomorphism in degrees 0 and 1. And when k is algebraically closed,
the term H?(K, Kp) in degree zero vanishes. Thus the edge homomorphism of the
spectral sequence (6.1.9),

exc: TC{'(A|K;p, Z/p) — H° (K, m/?),
is an isomorphism in degree zero, and since the composite
TCo(A|K;p,Z/p) = TCF (A|K;p, Z/p) ~*+ H'(K,Z/pZ)

is an isomorphism, then so is yx. In degree one, we use the spectral sequence
(6.1.9) for topological cyclic homology with Q,,/Z,-coefficients. As a G x-module

liﬂ TC1(B| Ly p, Qp/Zp) +— @KI(I”QP/ZP) = K1(K,Qy/Zp) = pp,
L/K L/K

and the composite
TC(A|K;p,Qp/Zp) = TCY(AIK;p, Qp /Zy) 5 HO (K, o)

is an isomorphism. It follows that vk is an isomorphism in degree one. U
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6.2. It has long been known that for K-theory with Z/p-coeflicients, Galois
descent and Bott periodicity are equivalent, [37]. Thus in view of theorem 6.1.2 it
seems reasonable to expect that the canonical map

TR(A|K;p) - TR®(A|K;p))
induces an isomorphism of homotopy groups with Z/p-coefficients in degrees > 0.
We discuss how this may occur.
Suppose that p, C K. There is a natural exact sequence of pro-W.(A)-modules
0= W.(A)® tp = W.wig ary = W.wlg

and the right map is surjective for the étale topology on Spec K. A choice of
primitive pth root of unity identifies the left hand term with W.(A4)/p. The Galois
group G /k acts on W.w(g ) and on TR, (B| L;p). In other words, we have étale

pro-sheaves W. w* and TR, on Spec K. In analog with (6.1.9), we have a spectral
sequence

B, = Hegry (K, lim TR;(B| L; p)) = T4+ (holim(TR")*(A|K; p)),
L/K n

where the E%-term is given by the continuous cohomology in the sense of Jannsen,
[18]. By theorem 6.1.2, we can replace the pro-system 7R by the pro-system
W.w* ® Sg, (up). Here py, is a trivial G g-module, since p, C K. We expect that
. W. w! i=0

H (K, W.w')= T(AM) ’

cont( ’ ) {0, i>0.

Indeed, if this was true, the short exact sequence of étale pro-sheaves on Spec K,

0= W.(-)@up, = W.w' BW.w' =0,

shows that
W (A)/p, i=0,
Héont(Kv W(_)/p) = WW%AYMA)/]?, 1=1,
0, 1> 2,

which implies descent in non-negative degrees for TR(A|K; p).

The expected values of the cohomology groups above might appear somewhat
surprising since the canonical map

(6.2.1) Wa(A)/p — H°(K, Wn(=)/p)

is not an isomorphism for any n. It is injective, but has a big cokernel, even for
n = 1. However, this can be understood as follows. The sequence the pro-sheaves

0= W.(=)/p == W.(=)/p = Wa(=)/p =0
yields a long-exact sequence
0 W(A)/p ~= W(A)/p ~ H(K, Wa(-)/p)
= Walaan /o~ Wolyan /o~ H (K, Wa(=)/p) = 0,

which identifies the cokernel of (6.2.1) with the kernel of the map V™ in the lower
line. This map is zero for n large and its image is a finite dimensional k-vector
space for all n. This explains the large cokernels in (6.2.1).
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