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ASYMPTOTICALLY SPLIT EXTENSIONS AND E-THEORY

VLADIMIR MANUILOV AND KLAUS THOMSEN

Abstract. We show that the E-theory of Connes and Higson can be formulated
in terms of C�-extensions in a way quite similar to the way in which theKK-theory
of Kasparov can. The essential di�erence is that the role played by split extensions
are taken by extensions which split asymptotically, i.e. for which the quotient map
admits right-inverses which form an asymptotic homomorphism. An extension is
called semi-invertible when it can be made asymptotically split by adding another
extension to it. Our main result establishes a bijective correspondance between
homotopy classes of asymptotic homomorphisms from SA to B
K and homotopy
classes of semi-invertible extensions of S2A by B 
K.

1. Introduction

Connes and Higson introduced in [1] a construction which produces an asymptotic
homomorphism out of an extension of C�-algebras. The Connes-Higson construction
is the backbone of E-theory and gives us a way to study C�-extensions via asymptotic
homomorphisms. Such a translation can be quite powerful within the territory of
KK-theory where the C�-extensions are semi-split, i.e. admit a completely positive
contraction as a right-inverse for the quotient map. It is namely known that the
Connes-Higson construction sets up a bijection between homotopy classes of semi-
split extensions and completely positive asymptotic homomorphisms. This bijection
is particularly useful because completely positive asymptotic homomorphisms are
easier to handle than general ones, and because the powerful homotopy invariance
results of Kasparov allows one to translate homotopy information to more algebraic
information about the C�-extensions. This well-behaved correspondance between
semi-split C�-extensions and homotopy classes of completely positive asymptotic
homomorphism was used in [5] to obtain a better understanding of the short exact
sequence of the UCT-theorem by identifying the kernel of the map fromKK(A;B) =
Ext�1(SA;B) to KL(A;B) as the group arising from the weakly quasi-diagonal
extensions of SA by B 
 K. The present paper originated in the desire to extend
the nice relation between C�-extensions and asymptotic homomorphisms beyond
the case of semi-split extensions. The key problem in this connection is (at least
for the moment) to decide if the Connes-Higson construction is injective in general.
In other words, the problem is to decide if two C�-extensions - with stable and
maybe suspended ideals - which give rise to homotopic asymptotic homomorphisms
must themselves be homotopic. From [3] we know that this is the case when both
extensions are suspensions and the result of the present paper shows that it is also
the case when both extensions are what we call semi-invertible and the quotient
C�-algebra is a double suspension. But in general we still don't know the answer.
Nonetheless, we shall show here that there is a way to faithfully represent E-theory
by use of C�-extensions which does not require in�nitely many suspensions as in [3]
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or longer decomposition series as in [2]. To describe this, let A and B be separable
C�-algebras and assume for simplicity that B is stable. We call an extension of A
by B asymptotically split when there is a family (�t)t2[1;1) of right-inverses for the
quotient map such that (�t)t2[1;1) is an asymptotic homomorphism. An extension
is then semi-invertible when it can be made asymptotically split by adding another
extension to it. We prove that

1) Every asymptotic homomorphismS2A! B is homotopic to the Connes-Higson
construction of a semi-invertible extension of SA by B.

2) Two semi-invertible extensions of S2A by B are homotopic (as semi-invertible
extensions) if and only if the Connes-Higson construction applied to them give
homotopic asymptotic homomorphisms.

These results show that the E-theory of Connes and Higson can be formulated
in terms of C�-extensions in a way quite similar to the way in which the KK-
theory of Kasparov can. The essential di�erence is that the role played by split
extensions should be taken by asymptotically split extensions. It is our hope that
this parallel between the way KK-theory and E-theory can be described in terms
of C�-extensions can be strenghtened even further. In particular it would be nice
if some of the suspensions occuring 1) and 2) could be removed and if one could
substitute homotopy with a more algebraic relation in the description of E-theory.

2. Asymptotically split extensions and Ext�1=2

In the following A and B are separable C�-algebras, B stable. Let M(B) denote
the multiplier algebra of B, Q(B) = M(B)=B the corresponding corona algebra
and qB : M(B) ! Q(B) the quotient map. We shall identify the set of extensions
of A by B with Hom(A;Q(B)). Two extensions ';  : A ! Q(B) are unitarily
equivalent when there is a unitary w 2 M(B) such that Ad qB(w) � ' =  . As
is wellknown the set of unitary equivalence classes of extensions of A by B form a
semi-group and we denote this semi-group by Ext(A;B). An extension ' : A !
Q(B) will be called asymptotically split when there is an asymptotic homomorphism
� = f�tgt2[1;1) : A ! M(B) such that qB � �t = ' for all t. We say that an
extension ' : A ! Q(B) is semi-invertible when there is an extension  such
that ' �  : A ! Q(B) is asymptotically split. Two semi-invertible extensions
are called stably equivalent when they become unitarily equivalent after addition
by asymptotically split extensions. This is an equivalence relation on the subset
of semi-invertible extensions in Hom(A;Q(B)) and the corresponding equivalence
classes form an abelian group which we denote by Ext�1=2(A;B). Ext�1=2 is a
bifunctor which is contravariant in the �rst variable, A, and covariant with respect
to quasi-unital �-homomorphisms in the second variable, B. It is easy to see that
the Connes-Higson construction, [1], annihilates asymptotically split extensions and
therefore gives rise to a group homomorphism

CH : Ext�1=2(A;B)! [[SA;B]] :

To describe our main result about this map we introduce the notion of homotopy
between semi-invertible extensions. Two semi-invertible extensions

0 // B // E1
// A // 0
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and

0 // B // E2
// A // 0

are homotopic when there is a commuting diagram

0 // B // E1
// A // 0

0 // C[0; 1]
B

��
�0

OO
�1

// E

OO

��

// A //// 0

0 // B // E2
// A // 0

of semi-invertible extensions. The �-homomorphisms �0; �1 : C[0; 1]
 B ! B are
here the surjections obtained from evalution at the endpoints of [0; 1].

The main tool in this paper is the map E introduced in [5]. We recall the construc-
tion here. Given an asymptotic homomorphism ' = f'tgt2[1;1) : A! B we choose
a discretization f'tigi2N such that limi!1 ti = 1 and limi!1 supt2[ti;ti+1] k't(a) �
'ti(a)k = 0 for all a 2 A. To de�ne from such a discretization a map � : A !
LB(l2(Z)
B) we introduce the standard matrix units eij; i; j 2Z, which act on the
Hilbert B-module l2(Z)
B in the obvious way. Then

�(a) =
X
i�1

'ti(a)eii

de�nes a map � : A ! LB(l2(Z)
 B). We identify K 
 B with the B-compact
operators in LB(l2(Z)
B) and observe that � is a �-homomorphism modulo K
B.
Furthermore, �(a) commutesmoduloK
B with the two-sided shift T =

P
j2Zej;j+1.

So we get in this way a �-homomorphism

E(') : A! Q(K
B) = LB(l2(Z)
B)=K 
B

such that

E(')(f 
 a) = f(T )�(a) ; f 2 C(T); a 2 A :

Here and in the following we denote by S the image in Q(K 
 B) = LB(l2(Z)

B)=K 
B of an element S 2 LB(l2(Z)
B).

Lemma 2.1. E(') 2 Ext�1=2(C(T)
A;K
B).

Proof. Let �E(') : C(T)
A! Q(K
B) be the extension which results when we
in the construction of E(') use

	(a) =
X
i�0

't�i+1(a)eii

instead of �. Then �E(')�E(') is unitary equivalent to an extension  : C(T)

A ! Q(K 
 B) such that  (a) = �t(a) for all t 2 [1;1), where �t : C(T)
 A !

LB(l2(Z) 
 B); t 2 [1;1), is an asymptotic homomorphism obtained by convex
interpolation of maps �n; n 2 N, with the property that

�n(f 
 a)� f(T )(
X
jij�n

'tn(a)eii +
X
i>n

'ti(a)eii +
X
i<�n

't�i+1(a)eii) 2 K 
B
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and

lim
n!1

�n(f 
 a)� f(T )(
X
jij�n

'tn(a)eii +
X
i>n

'ti(a)eii +
X
i<�n

't�i+1(a)eii) = 0 ;

f 2 C(T); a 2 A.

Let Ext�1=2(A;B)h denote the abelian group of homotopy classes of semi-invertible

extensions of A by B. Ext�1=2(A;B)h is then a quotient of Ext
�1=2(A;B). By homo-

topy invariance of the Connes-Higson construction we get a mapCH : Ext�1=2(A;B)h !
[[SA;B]]. Thanks to Lemma 2.1 we get from the above construction a well-de�ned
map

E : [[A;B]]! Ext�1=2(C(T)
A;B)h ;

cf. [5]. By pulling back along the canonical inclusion SA � C(T)
 A we can also
consider E as a map E : [[A;B]]! Ext�1=2(SA;B)h. Our main result can now be
formulated as follows.

Theorem 2.2. a) CH : Ext�1=2(SA;B)! [[S2A;B]] is surjective.

b) E : [[SA;B]]! Ext�1=2(S2A;B)h is an isomorphism.

The proof of a) does not require new constructions and follows essentially from
[5]. Indeed, observe that by Lemma 5.5 of [5] there is a commuting diagram

Ext�1=2(S2A;B)h

((

CH

QQQ
QQQ

QQQ
QQQ

[[SA;B]]

OO

E

//
� [[S3A;B]]

(2.1)

where � is the map obtained by taking the composition product with the asymp-
totic homomorphism S3A ! SA 
 K which is the suspension of the asymptotic
homomorphism obtained by applying the Connes-Higson construction to the (re-
duced) Toeplits extension tensored with A, cf. [5]. Since � is an isomorphism, it

follows that CH : Ext�1=2(S2A;B) ! [[S3A;B]] is surjective. But the inverse in
E-theory of the asymptotic homomorphism de�ning � is a genuine �-homomorphism
� : SA! S3A
M2 and the naturality of the Connes-Higson construction gives us
a commuting diagram

Ext�1=2(SA;B)

��
CH

Ext�1=2(S3A
M2; B)oo �
�

��
CH

[[S2A;B]] [[S4A
M2; B]]oo
��

We see that this proves a) of Theorem 2.2.
To complete the proof Theorem 2.2 it now su�ces to show that the CH-map of

diagram (2.1) is injective. The rest of the paper is devoted to this.
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3. Proof of b) of Theorem 2.2

Given two commuting unitaries S; T in a C�-algebra, we de�ne a projection
P (S; T ) in the 2 � 2 matrices over the C�-algebra generated by S and T in the
following way. Let s; c0; c1 : [0; 1]! R be the functions

c0(t) = j cos(�t)j1[0; 1
2
](t) ; c1(t) = j cos(�t)j1( 1

2
;1](t) ; s(t) = sin(�t) :

Set ~g = sc0; ~h = sc1 and ~f = s2. Since ~f ; ~g and ~h are continuous and 1-periodic
they give rise to continuous function, f; g; h, on T. Set

P (S; T ) =

�
f(S) g(S) + h(S)T

h(S)T � + g(S) 1 � f(S)

�
;

cf. [4]. In particular, this gives us a projection P 2 C(T2)
M2 when we apply the
recipe to the canonical generating unitaries of C(T2). Note that P is an element of
M2((SC(T))+) � M2(C(T2)). In general, P (S; T ) is in the range of idM2


� where
� : (SC(T))+ ! C�(S; T ) is the unital �-homomorphism with

�((1 � e2�ix)
 1) = 1 � S ; �((1 � e2�ix)
 e2�iy) = T � ST :

Consider also the projection

P0 =

�
0 0
0 1

�
2M2 � C(T2)
M2 :

We can then de�ne a map

BottA : Ext�1=2(C(T2)
A;B)h ! Ext�1=2(A;B)h

such that

['] 7! [(idM2

') � bA]� [(idM2


') � b0]

where bA; b0 : A!M2(C(T2))
A are the maps bA(a) = P 
 a and b0(a) = P0 
 a,
respectively. The main part of the proof will be to establish the following.

Proposition 3.1. Let i : SA ! C(T)
 A be the canonical embedding, e : C(T)

A ! A the map obtained from evaluation at 1 2 T and c : A ! C(T)
 A the
�-homomorphism which identi�es A with the constant A-valued functions over T.
Then

�BottSA �E � CH([ ]� e� � c�[ ]) = i�[ ]

in Ext�1=2(SA;B)h for every semi-invertible extension  2 Hom(C(T)
A;Q(B)).

To begin the proof of Proposition 3.1, observe that c�([ ] � e� � c�([ ])) = 0
in Ext�1=2(A;B). We can therefore add an asymptotically split extension � to
c�( � e� � c�( )) such that the resulting extension is asymptotically split. It follows
that

 0 =  � e� � c�( ) + e�(�)

is a semi-invertible extension of C(T)
A by B such that i�[ 0] = i�[ ] and c�( 0) is
an asymptotically split extension of A by B. Since CH[e�(�)] = (Se)�(CH[�]) = 0
because � is asymptotically split, it su�ces (by using  0 instead of  ) to consider a
semi-invertible extension  2 Hom(C(T)
 A;Q(B)) with the property that c�( )
asymptotically splits, and show that BottSA �E � CH[ ] = i�[ ]. So let  be such
an extension and set ' =  � i.
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Lemma 3.2. Let e2�ix denote the identity function of the circle T. There is a
unitary U 2M(M2(B)) such that�

 (e2�ixf
a)
0

�
= qM2(B)(U)

�
 (f
a)

0

�
for all f 2 C(T); a 2 A.

Proof. We use the well-known fact that a surjective �-homomorphism between sep-
arable C�-algebras admits a surjective unital extension to a �-homomorphism be-
tween the multiplier algebras. The �-homomorphism  extends to a unital �-
homomorphism  ̂ :M(C(T)
A)!M( (C(T)
A)). Then V =  ̂(e2�ix
 1A) is a
unitary inM( (C(T)
A)). (1A means here the unit inM(A) and hence e2�ix
1A is
really just the identity function of Tconsidered as a unitary multiplier of C(T)
A.)
Set D = q�1B ( (C(T)
 A)) � M(B). Since qB maps D onto  (C(T)
 A)) it ex-
tends to a surjective unital �-homomorphismcqB :M(D) !M( (C(T)
A)). Since
( V V � ) is in the connected component of 1 inM2(M( (C(T)
A))) there is a unitary
U 2M2(M(D)) such that

idM2

cqB(U) = ( V V � ) :

Note thatM(D) �M(B) since B is an essential ideal in D. We can therefore regard
U as a unitary in M2(M(B)). It is then clear that U has the stated property.

It follows from Lemma 3.2 that after adding 0 to  and ', we may assume that
there is a unitary w 2M(B) such that

qB(w) (f 
 a) =  (e2�ixf 
 a) ; f 2 C(T); a 2 A : (3.1)

Let f�tgt2[1;1) : A!M(B) be an asymptotic homomorphism such that  (1
 a) =
qB(�t(a)) for all a and t.

Lemma 3.3. Let futgt2[1;1) be a continuous approximate unit for B such that
limt!1 ut�1(a) � �1(a)ut = 0 for all a 2 A. There is then an increasing con-
tinuous function r : [1;1) ! [1;1) such that r(t) � t for all t 2 [1;1) and
limt!1 f(ur(t))�1(a)� f(ur(t))�t(a) = 0 for all a 2 A; f 2 C0(0; 1).

Proof. By the Bartle-Graves selection theorem there is a continuous function � :
A ! M(B) such that �(a) � �1(a) 2 B for all A. The same selection theorem
also provides us with an equicontinuous asymptotic homomorphism �0 = (�0t) : A!
M(B) such that limt!1 �t(a) � �0t(a) = 0 for all a 2 A. Let F1 � F2 � F3 � � � �
be a sequence of �nite subsets with dense union in A. By using that f�t(a)��(a) :
t 2 [1; n]; a 2 Fng is a compact subset of B for all n, it is then straightforward
to construct an r with r(t) � t such that limt!1 ur(t)�t(a) � ur(t)�(a) = 0 for all
a 2

S
n Fn. It follows that limt!1 ur(t)�

0
t(a) � ur(t)�(a) = 0 for all a 2

S
n Fn, and

by continuity of � and equicontinuity of f�0tg it follows that this actually holds for
all a 2 A. But then limt!1 ur(t)�t(a) � ur(t)�1(a) = 0 since �(a) � �1(a) 2 B for
all a 2 A. The fact that limt!1 f(ur(t))�t(a)� f(ur(t))�1(a) = 0 for all a 2 A; f 2
C0(0; 1), then follows from Weierstrass' theorem.

It follows from Lemma 3.3 that CH[ ] 2 [[SC(T)
 A;B]] is represented by an
asymptotic homomorphism CH( ) such that

lim
t!1

CH( )t(f 
 g 
 a)� f(ur(t))g(w)�t(a) = 0
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for all a 2 A; g 2 C(T); f 2 C0(0; 1). By choosing futg in Lemma 3.3 appropriately
we may assume that limt!1 ur(t)�t(a)� �t(a)ur(t) = 0; limt!1(1 � ur(t))(w�t(a)�
�t(a)w) = 0 for all a 2 A, and limt!1 ur(t)w � wur(t) = 0. We can therefore �nd a
discretization CH( )ti; i 2 N, of CH( ) such that

1) limi!1 �ti(a)� �ti+1(a) = 0 for all a 2 A,
2) limi!1 ur(ti) � ur(ti+1) = 0,
3) limi!1 wur(ti) � ur(ti)w = 0 ;
4) limi!1(1 � ur(ti))(w�ti(a)� �ti(a)w) = 0 for all a 2 A.

To simplify notation, set �n = �tn and un = ur(tn). Set �n = ��n when n < 0 and

�0 = �1. We �nd that E � CH[ ] 2 Ext�1=2(SC(T2) 
 A;B)h is represented by a
�-homomorphism �, where � : SC(T2)
A! LB(l2(Z)
B) is a map such that

�(f 
 g 
 h
 a) = (
X
n�0

f(un)enn)(
X
n2Z

g(w)enn)h(T )(
X
n2Z

�n(a)enn)

modulo K 
B for all f 2 C0(0; 1); g; h 2 C(T); a 2 A.
Set W =

P
n2Zwenn; U =

P
n�0 un: Then W; T and U commute modulo K 


B. De�ne � : A ! Q(K 
 B) such that �(a) =
P

n �n(a)enn. Then � is a �-

homomorphism which commutes with U and T .
Let Q 2M2(Q(B)) be the projection

Q =

�
s2(U) sc0(U) + sc1(U)W

sc1(U)W
� + sc0(U ) (c0 + c1)2(U)

�
:

Lemma 3.4. �BottSA �E �CH[ ] is represented in Ext�1=2(SA;B)h by an exten-
sion � : SA!M2(Q(B)) such that

�((1 � e2�ix)
 a) = Q
�

1�T
1�T

��
�(a)

�(a)

�
;

a 2 A.

Proof. To simplify notation, set

~U =
�

(1�e2�ix)(U)

(1�e2�ix)(U)

�
:

By de�nition BottSA �E � CH[ ] = [�+] � [��] where �� : SA ! M2(Q(B)) are
�-homomorphisms such that

�+((1� e2�ix)
 a) = P (T ;W ) ~U
�
�(a)

�(a)

�
and

��((1 � e2�ix)
 a) = P0
~U
�
�(a)

�(a)

�
:

Set
X = 1� (1 � P (T ;W ) ~U)(1� P0

~U�) :

Then [�+]� [��] = [�0] where �0 : SA!M2(Q(B)) is given by

�0((1 � e2�ix)
 a) = X
�
�(a)

�(a)

�
:

Note that X is an element in the 2 � 2 matrices over the C�-algebra generated by
1 � T; W and (1 � e2�ix)(U). In fact, if we de�ne � : S 
 C(T)
 S ! Q(B) such
that

�((1� e2�ix)
 e2�iy 
 (1� e2�iz)) = (1 � e2�ix)(U)W (1 � T );
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there is a quasi-unitary in d 2 M2(S 
 C(T) 
 S) such that idM2

�(d) = X.

(Here S is shorthand for the C�-algebra C0(0; 1). Also we remind the reader that a
quasi-unitary is an element d of a C�-algebra D such that 1 � d is unitary in D+.
Alternatively, it is a normal element with spectrum in f1� z : z 2 Tg.) Then

idM2

�
 ( � � ) : S 
 C(T)
 S 
A!M2(Q(B))

is semi-invertible, with the inverse given by the �-homomorphism which results when
one replaces U with

P
n<0 u�n in the de�nition of �. De�ne � : SA!M2(S
C(T)


S
A) such that �((1� e2�ix)
a) = d
a and note that �0 = (idM2

�
 ( � � ))��.

Let � be the automorphism of M2(S 
 C(T)
 S 
 A) which exchanges the two
suspensions. Then

�[(idM2

�
 ( � � ))] = [(idM2


�
 ( � � )) � �]

in Ext�1=2(S 
 C(T)
 S 
A;B)h. It follows that

�[�0] = [(idM2

�
 ( � � )) � � � �]

in Ext�1=2(SA;B)h. Set

Y = 1 � (1 �Q
�

1�T
1�T

�
)(1 � P0

�
1�T �

1�T �

�
) ;

and note that (idM2

�
 ( � � )) �� � � = � where � : SA!M2(Q(B)) is such that

�((1 � e2�ix)
 a) = Y
�
�(a)

�(a)

�
:

It follows that [�] = [�]� [�0], where �0((1 � e2�ix) 
 a) = (1 � T )�(a). It is easily
seen that �0 is asymptotically split. Therefore [�] = [�].

Set

X =

�
s(U) �c0(U)� c1(U)W

c0(U) + c1(U)W
� s(U)

�
:

and

Z =

�
iW+ 0
0 �iW+

�
where W+ =

P
n�0 wenn +

P
n<0 enn 2 LB(l2(Z)
B). Then Z and X are unitaries

in M2(Q(B)). Let T0 : l2(Z)
B ! l2(Z)
B be the unitary

T0 =
X

n2Znf�1g

en;n+1 + we�1;0 :

We can then de�ne an extension �1 : SA! Q(B) such that

�1((1� e2�ix)
 a) = (1� T0)�(a) :

Lemma 3.5. Let � : SA!M2(Q(B)) be the extension of Lemma 3.4. Then

AdX� � � = AdZ �
�
�1

0

�
:

Proof. Note that � and
�
�1

0

�
both extend to unital �-homomorphisms C(T)
A!

M2(Q(B)) de�ned such that they send 1 
 a to
�
�(a)

�(a)

�
, a 2 A. By considering

these extensions we see that it su�ces to show that

X�
�
�(a)

�(a)

�
X = Z

�
�(a)

�(a)

�
Z� ; (3.2)



EXTENSIONS AND E-THEORY 9

and

X�(Q
�
T
T�

�
+Q?)

�
�(a)

�(a)

�
X =

Z
�
T0

1

� � �(a)
�(a)

�
Z� =

Z(( 1 0 )
�
T0

T0
�

�
+ ( 0 1 ))

�
�(a)

�(a)

�
Z�:

(3.3)

To simplify the veri�cation, observe that W+T0 = TW+ from which it follows that

Z
�
T0

T0
�

�
Z� =

�
T
T�

�
. Since X clearly commutes with

�
T
T �

�
and Z with ( 1 0 )

we see that (3.3) will follow from (3:2) and

X�QX = ( 1 0 ) : (3.4)

Thus we need only check (3.2) and (3.4), and we leave that to the reader.

All in all we now have that �BottSA �E � CH[ ] = [�1] in Ext�1=2(SA;B)h.
De�ne � : SA! Q(B) by �((1� e2�ix)
 a) = (1�T )�(a). � is asymptotically split
and hence [�1] = [�1]� [�]. Since [�1]� [�] = [�] where � : SA! Q(B) is given by
�((1 � e2�ix)
 a) = (1 � T0T

�)�(a) and since T0T � =
P

n6=�1 enn + we�1;�1, we see

that [�1] = [']. This completes the proof of Proposition 3.1.

Corollary 3.6. CH : Ext�1=2(SA;B)h ! [[S2A;B]] is injective on i�(Ext�1=2(C(T)

A;B)h).

Proof. Let  2 Ext�1=2(C(T) 
 A;B) and assume that CH(i�[ ]) = 0. By the
naturality of the Connes-Higson construction this implies that

(Si)�(CH[ ]� (Se)� � (Sc)�(CH[ ])) = CH(i�( )) = 0

in [[SC(T
A;B]]. But the split exactness of the functor [[S�; B]] implies then that
0 = CH[ ]� (Se)� � (Sc)�(CH[ ]) = CH([ ]� e� � c�[ ]). And then i�[ ] = 0 by
Proposition 3.1.

Lemma 3.7. (Si)� : Ext�1=2(SC(T)
A;B)h ! Ext�1=2(S2A;B)h is surjective.

Proof. To prove this we shall identify S2 = C0(R2) with C0(D) where D =
R

2nf(0; y) 2 R2 : y � 0g and SC(T) with C0(R
2nf0g). It is easy to see that

there is a continuous map F : [0; 1] � R2 ! R
2 such that F (0;�) is a homeomor-

phism � = F (0;�) : R2 ! D, F (1; z) = z; z 2 R2, and F�1(K) is compact for
every compact subset K of D. It follows that f 7! f � ��1 is an endomorphism
of C0(D) which is homotopic to idC0(D). Hence if ' 2 Hom(S2A;Q(B)) is a semi-

invertible extension, ['] = [�] in Ext�1=2(S2A;B) where �(f) = '(f � ��1). De�ne
 : SC(T)! Q(B) by  (g) = '(g � ��1). Then (Si)�[ ] = ['].

Lemma 3.7 and Corollary 3.6 in combination prove that the CH-map of diagram
(2.1) is injective. This completes the proof of b) of Theorem 2.2.
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