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Extremal K�ahler metrics and Hamiltonian

functions II

Christina W. T�nnesen-Friedman�

Abstract

We apply a previously obtained ansatz for extremal K�ahler metrics

to show that if a manifold admits a Hodge metric with constant scalar

curvature, then the total space of the projectivization of a line bundle

with �rst Chern class equal to the K�ahler class of the metric admits

a one-parameter family of extremal K�ahler metrics. This generalizes

earlier constructions.

1991 MSC: 58E11, 53C55.

1 Introduction

The notion of extremal K�ahler metrics was introduced by Calabi [2]. On a
compact complex manifold M2m, consider the functional S(
) = R

M
s2
m,

where 
 is a K�ahler form in a �xed K�ahler class [
] 2 H2(M;R), and s is the
scalar curvature of 
. K�ahler metrics corresponding to critical points of S
are called extremal K�ahler metrics. If g is a K�ahler metric, then g is extremal
if and only if grad s is a real holomorphic vector �eld. This is equivalent to
(@s)] being a holomorphic (1; 0) vector �eld (we use ] for raising indices and
[ for lowering indices).

In section 2, we review and re�ne the ansatz for extremal K�ahler metrics
obtained in [3]. Proposition 2.1, Theorem 2.4, and Proposition 2.5 in [3] give
an ansatz for extremal K�ahler metrics with torus symmetry assuming that
the K�ahler quotient metric is of a very special form, namely q = q��(dx�dx�+
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dy�dy�), where q�� is real. In this work the restriction on the K�ahler quotient
is removed.

In section 3, we solve the equations from the ansatz in a special case and
obtain the main result which states that if a manifold admits a Hodge metric
with constant scalar curvature, then the total space of the projectivization
of a line bundle with �rst Chern class equal to the K�ahler class of the metric
admits a one-parameter family of extremal K�ahler metrics. Note that this
result has constructions from [2, 3, 6, 7, 15, 17] as special cases, but it also
gives us many more new examples.

In section 4, we restrict our attention to the casem = 2. We then consider
the metrics among the solutions from above which are locally conformal to
an Einstein metric (wherever the scalar curvature does not vanish). These
metrics are Bach at, which means that they are extremal points of the
conformally invariant functional W de�ned as the (square of) the L2-norm
of the Weyl curvature. We observe that the metrics give rise to a sequence
fgtg of Bach at metrics on the trivial (product) ruled surface of any genus
such that limt!1W([gt]) = +1.

2 An ansatz for extremal K�ahler metrics

In this section, assuming the existence of a real torus acting through holo-
morphic isometries on a K�ahler manifold, we construct an ansatz for extremal
K�ahler metrics.

2.1 The moment map construction of K�ahler metrics

Following [14] we consider the situation of a real torus TN acting freely on
the K�ahler manifold M2m through holomorphic isometries.

Proposition 1 [14] Let (wij), i; j = 1; : : : ; N be a positive de�nite symmet-
ric matrix and (h��), �; � = 1; : : : ;m�N a positive de�nite hermitian matrix
of smooth functions on an open set U in Cm�N �RN with coordinates (��; zi).
Assume that the 2-form


h :=

p�1
2

h��d�
� ^ d��

2



is a K�ahler form on an open set in Cm�N with corresponding K�ahler metric
h. Let M be a TN-bundle over U with connection 1-form ! = (!1; : : : ; !N ).
Suppose that

@2h��
@zi@zj

+ 4
@2wij

@��@��
= 0; (1)

@wij

@zk
=

@wik

@zj
(2)

and assume the torus bundle has curvature

Fi =

p�1
2

@h��
@zi

d�� ^ d�� +
p�1@wij

@��
dzj ^ d�� �p�1@wij

@��
dzj ^ d��: (3)

Then
g = h+ wijdz

i dzj + wij!i!j ; (4)

where wij = (w�1)ij , is a K�ahler metric on M . Conversely, any K�ahler
metric with a torus acting freely through holomorphic isometries can locally
be constructed as above.

Proof: The proof is straightforward and we just make some remarks con-
cerning the second part of the proposition. Let M be a TN -symmetric
K�ahler manifold with metric g, K�ahler form 
, and complex structure J .
Let (X1; : : : ;XN ) be the Hamiltonian vector �elds generated by the torus
action, and let dzj = �iXj


 de�ne the Hamiltonian functions zj. Then the
metric is given as in equation (4), where h is a K�ahler metric in the quotient
space of each level set of the Hamiltonians. Note that wij = g(Xi;Xj) and
!i = wijX

[
j , so J!i = �wijdz

j and 
 = dzi^!i+
h, where 
h is the K�ahler
form of the of the K�ahler quotient. As J is integrable, the exterior derivative
d'i of the (1; 0) forms 'i = wijdz

j +
p�1!i must have no (0; 2) part. Also,

for g to be K�ahler, we need d
 = 0. These conditions are captured by equa-
tion (2) and by the equation d!i = Fi, with Fi as in (3)1. Then equation (1)

is just the integrability condition dFi = 0.

1To be absolutely precise, the pull-back of Fi with respect to the bundle projection is
given by d!i.
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2.2 Extremal K�ahler metrics

Now, let (M2m; g) be a TN -symmetric K�ahler manifold as above. We look
for the condition on the scalar curvature, s, so that the metric is extremal.
We have that @s = 1

2(ds� iJds) is given by

@s =
@s

@�
� d�

�
+
1

2

@s

@zk
(dzk � iwkl!l): (5)

Therefore we get

(@s)] =
@s

@�
� (d�

�
)] � i

2

@s

@zk
(Xk � iJXk):

We need to spell out the conditions for the vector �eld (@s)] to be holomor-
phic.

Lemma 1 There exist smooth functions Fk� of (��; zl) such that the forms
�k = Fk�d�

�+wkldz
l+i!k together with d��, � = 1; : : : ;m and k = 1; : : : ; N ,

are a local basis of holomorphic (1; 0)-forms.

Proof: We refer to [3] noting that �k is holomorphic if and only if

@Fk�

@zj
� 2

@wkj

@��
= 0; (6)

@h��
@zk

+ 2
@Fk�

@�
� = 0: (7)

The integrability condition for system (6) and (7) is satis�ed due to (1), (2)

and the fact that h is a K�ahler metric.

We are now ready to prove our ansatz. We refer to Proposition 1 for the
notation.

Theorem 1 Let M2m be a TN-symmetric compact K�ahler manifold of scalar
curvature s. The the metric is extremal if and only if

@(h�� @s

@�
� )

@zk
= 0; (8)

4



@(h�� @s

@�
� )

@�
�

= 0; (9)

4h��
@wkl

@��
@s

@�
� +

@2s

@zk@zl
= 0: (10)

Note that if h�� is real, then (8), (9) and (10) are equivalent to (13), (14),
(15), (16), (17), and (18) in Theorem 2.4 in [3].
Proof of the theorem: The (1; 0) vector �eld (@s)] is holomorphic if and
only if d��((@s)]) = 2h�� @s

@�
� , and �k((@s)

]) = 2Fk�h
�� @s

@�
� + @s

@zk
are holomor-

phic functions for all � and k.

In order to work with the above ansatz we need an expression for the
scalar curvature.

Proposition 2 [3] Let M2m be a symmetric K�ahler metric as in Proposition
1 and let u = log deth� logw. Then the scalar curvature s satis�es

�s = f4 @2u

@��@�
� +

�
wkl @u

@zk

�
@h��
@zl

gh�� + @

@zl

�
wkl @u

@zk

�
:

3 Construction of new extremal K�ahler met-

rics

In this section, we consider the case N = 1. By solving the di�erential
equations from the ansatz in a special case, we �nd new compact extremal
K�ahler metrics. The work here generalizes the work in Section 3 of [3] and
makes up for the unnecessarily complicated presentation of the hypotheses
in Theorem 3.1 in [3] (see footnote 2).

First, we give the details on the special case in which we solve the equa-
tions. Then, we apply the ansatz from the previous section.

3.1 The assumptions

Let (B; gB) be a (m�1)-dimensional compact K�ahler manifold with constant
scalar curvature sB. Assume that the K�ahler form 
B is such that the
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deRham class [
B
2�
] is contained in the image of H2(B;Z)! H2(B;R). Let

L be a holomorphic line bundle such that c1(L) = [�
B2�
]. On the total space

M of (L� 0)
�! B, we can form an S1-symmetric K�ahler metric

g = zgB + wdz2 + w�1!2

where z, being the coordinate of (a; b) � (0;1], becomes the moment map
of g with the obvious S1 action on L, w is a positive function depending only
on z, and ! is the connection one-form of the connection induced by g on
the S1-bundle

(L� 0)
(�;z)! B � (a; b):

That is,
d! = 
B:

Notice that equations (1) and (2) are satis�ed. The complex structure J on
M is given by the complex structure on B and

J! = �wdz:
The K�ahler form is given by


 = z
B + dz ^ !:
If X is the Hamiltonian vector �eld generated by the S1 action, then

dz = 
(�X; �) = (�JX)[;

w�1 = g(X;X);

and

! =
g(X; �)
g(X;X)

= wX[:

The Ricci form � is given by

� = �B � i@@ log(
zm�1

w
)

which implies that the scalar curvature s is given by

s =
sB
z
� ( z

m�1

w
)zz

zm�1
:

6



If w�1 (by which wemean 1=w) is such that w�1(a) = 0 and (w�1)0(a) = 2,
then we can add a copy of B at z = a and extend the K�ahler metric g over
the zero section of the bundle L! B. If, moreover, b <1, w�1(b) = 0 and
(w�1)0(b) = �2, then we can add another copy of B at z = b and extend g
to a K�ahler metric on the total space of the CP1-bundle P(O�L). We refer
to [9, 10] for the details.

3.2 Applying the ansatz

In this special case, the only equation remaining from the ansatz is

szz = 0:

Integrating and using the above formula for s we get the equation

zm�1

w
= P (z);

where
P (z) =

sB
(m� 1)m

zm � C1z
m+2 � C2z

m+1 � C3z �C4:

The endpoint conditions on w�1 for compacti�cation are equivalent to the
following conditions on P (z):

P (1) = P (b) = 0

P 0(1) = 2

P 0(b) = �2bm�1:
For convenience, we have assumed that a = 1. This can easily be achieved
by rescaling. These conditions determine the coe�cients of P (z). Moreover,
since w is a positive function, we need P (z) > 0 in the interval (1; b). For a
given b, the coe�cients C1; C2; C3 and C4 are given as follows:

C1 = n1
d

C2 = n2
d

C3 = �(m+ 2)C1 � (m+ 1)C2 +
sB

(m�1) � 2

C4 = �C1 �C2 � C3 +
sB

(m�1)m
;
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where

n1 = sB
(m�1)

(�1
m
b2m +mbm+1 + 2( 1

m
�m)bm +mbm�1 � 1

m
)

+ 2(b2m �mbm+1 +mbm�1 � 1)

n2 = sB
(m�1)(

2
m
(b2m+1 + 1) � (m+ 1)(bm+2 + bm�1) + (m+ 1 � 2

m
)(bm+1 + bm))

+ 2((1� b2m+1) + (m+ 1)(bm+2 � bm�1) + (m+ 2)(bm � bm+1))

and

d = b2m+2 � (m+ 1)2bm+2 + 2m(m+ 2)bm+1 � (m+ 1)2bm + 1:

3.3 Case m = 2:

When sB > 0, we have Calabi's extremal K�ahler metrics [2] on (non-trivial)
Hirzebruch surfaces. When sB < 0, we have extremal K�ahler metrics on
pseudo-Hirzebruch surfaces [17]. The case sB = 0, which appears in Hwang's
construction of extremal K�ahler metrics [7], has, to the author's knowledge,
not yet been considered explicitly for m = 2. In this case, we have

C1 =
2(b+1)

(b�1)(b2+4b+1)

C2 =
�2(b2+1)

(b�1)(b2+4b+1)

C3 =
�2b(b2+1)

(b�1)(b2+4b+1)

C4 =
2b2(b+1)

(b�1)(b2+4b+1) :

Hence

P (z) =
2

(b� 1)(b2 + 4b+ 1)
(z � 1)(b� z)((b+ 1)z2 + 2bz + b2 + b):

Thus, for any given b > 1, P (z) satis�es the boundary conditions and is
positive in the interval (1; b). The geometric picture is as follows. Let gB be
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a scalar at K�ahler metric on a compact Riemann surface (of genus one). By
rescaling we can assume that the class [
B2� ] is integral. Let L be a line bundle

on B such that c1(L) = [�
B2� ]. Any negative line bundle can be obtained
in this way. The above calculations show that the ruled surface P(O � L)
has a one-parameter family of extremal K�ahler metrics. The parameter b
determines the K�ahler class, and one can check (using the same ideas as in
[17]) that varying b and rescaling (varying a) sweeps out the whole K�ahler
cone. Thus any K�ahler class on P(O� L) has an extremal K�ahler metric.

Theorem 2 Let B be a compact Riemann surface of genus one. Let L be
a non-trivial holomorphic line bundle on B. Then any K�ahler class on the
ruled surface P(O� L) admits an extremal K�ahler metric.

3.4 Case m � 2:

We want to �nd b > 1 such that P (z) both satis�es the boundary conditions
and is positive in the interval (1; b). Given that the boundary conditions are
satis�ed, this would hold if P 00(z) < 0 on the interval.

Lemma 2 Let the coe�cients of P (z) be such that the boundary conditions
are satis�ed. There exists � > 1 such that for b 2 (1; �), P 00(z) is negative
in the interval [1; b].

Proof: We can write P 00(z) = zm�2Sm(z) where

Sm(z) = �C1(m+ 2)(m+ 1)z2 � C2m(m+ 1)z + sB:

Recall the general formula for the coe�cients C1 and C2 and consider n1; n2
and d as functions of b. First, observe that

d(1) = d0(1) = d00(1) = d000(1) = 0

and
d0000(1) > 0:

Second, observe that

n1(1) = n01(1) = n001(1) = 0
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and
n0001 (1) > 0:

Setting h = mn2 + (m+ 2)n1 we also have that

h(1) = h0(1) = h00(1) = 0

and
h000(1) > 0:

Finally, setting f = �(m+ 1)h+ sBd, we have that

f(1) = f 0(1) = f 00(1) = 0

and
f 000(1) < 0:

From the above we see that there exists a � > 1 such that if b 2 (1; �), then
d > 0, C1 > 0, h > 0, and f < 0. In this case, Sm is concave down and the
apex

z =
1

2

�mC2

(m+ 2)C1
=

1

2

�mn2
(m+ 2)n1

is less than 1
2
. Moreover,

Sm(1) = �C1(m+ 2)(m+ 1)� C2m(m+ 1) + sB =
f

d
< 0:

This tells us that there are no roots to the right of z = 1 and consequently
for b 2 (1; �), Sm(z) < 0 for z � 1. In particular, Sm and P 00(z) are negative

in the interval [1; b].

Thus we have the following result.

Theorem 3 Let B be a compact K�ahlerian manifold which admits a Hodge
metric with constant scalar curvature. Let L be a holomorphic line bundle
on B such that that �rst Chern class of L is given by (�) the K�ahler class
of the metric. Then the total space M of P(O
L)! B admits an extremal
K�ahler metric.
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Notice that a manifold satisfying the conditions in Theorem 3 must be a
projective algebraic manifold.
Proof of the theorem: If ~gB is a Hodge metric with ~sB =constant, then
[~
B] sits in the image of H2(B;Z)! H2(B;R). By setting gB = 2�~gB, we
have that

c1(L) = [�~
B] = [
�
B

2�
]:

Since P(O� L) �= P(O� L�1), we may assume that

c1(L) = [
�
B

2�
]:

Now let � be as in Lemma 2. For b 2 (1; �), z 2 (1; b), zm�1

w
= P (z), and

P (z) satisfying the boundary conditions, the metric

g = zgB + wdz2 + w�1�2

is an extremal K�ahler metric on the total space of (L�0)! B which extends

smoothly to an extremal K�ahler metric on the total space of P(O
 L).
The scalar curvature of the metric is given by

s = (m+ 1)((m+ 2)C1z +mC2):

For b 2 (1; �), where � is as in the proof of Lemma 2, we have that C1 > 0,
and, at the point z = 1, s = h

d
> 0. Thus s is positive on M .

If (B; gB) is a product of non-negative K�ahler-Einstein manifolds, then
these metrics have been constructed by Hwang [7], (generalizing Calabi's
construction [2] for B = CPm�1). See also Guan's paper [6]. If (B; gB) is
a K�ahler-Einstein manifold with sB = �2(m � 1), then the metrics were
constructed in [3]2. However, the above theorem includes many more new
examples. For instance, (B; gB) could be a product of K�ahler-Einstein man-
ifolds, not necessarily with the same sign of curvature.

Let B be a projective algebraic manifold. Assume that H2(B;R) =
H1;1(B;R). Then H2(B;Q) is dense in H1;1(B;R). The set of K�ahler classes

2In [3], at �rst glance, it does look as if we are constructing compact metrics on projec-
tive bundles over a product of negative K�ahler-Einstein metrics. However, coincidentally,
the metrics on each factor were chosen such that the product was itself a K�ahler-Einstein
manifold. It was the realization of this fact that motivated Theorem 3.
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of extremal K�ahler metrics on B is open in H1;1(B;R) [12]. Thus, if there
exists a constant scalar curvature K�ahler metric on B, then there exists an
extremal K�ahler metric on B whose K�ahler class sits in H2(B;Q). By a
suitable rescaling, we have an extremal Hodge metric. If B does not have
any non-trivial holomorphic vector �elds of gradient type, this metric has
constant scalar curvature.

Theorem 4 Let B be a compact projective algebraic manifold such that
H2(B;R) = H1;1(B;R). Assume that B has no non-trivial holomorphic
vector �elds of gradient type. If B admits a constant scalar curvature K�ahler
metric, then there exists a holomorphic line bundle L on B such that the total
space of P(O� L)! B admits an extremal K�ahler metric.

Example 1 A K�ahler surface which satis�es the conditions in the above
theorem can be obtained by blowing-up a ruled surface of genus at least two
su�ciently many times [11].

4 Bach at metrics

In this section, we restrict our attention to the case where the complex di-
mension is equal to two and discuss the metrics among the solutions from
last section which are locally conformal to an Einstein metric (apart from
where the scalar curvature vanishes).

4.1 Case m = 2 revisited

Let m = 2 and consider the extremal K�ahler metrics constructed in the
previous section. In this case, B is a compact Riemann surface of constant
scalar curvature sB. When sB 6= 0, then c1(L) =

2
sB
c1(K), where K is the

canonical bundle overB. If sB > 0, then the possible values of sB are sB = 4
k
,

where k 2 N. Then L = K
k
2 = O(�k). If sB < 0, we will, for simplicity,

assume that sB = �4
k
, k 2 N. Thus c1(L) = �k(g � 1), where g denotes the

genus of B, and L = K
�k
2 up to di�eomorphism.

If sB � 0, then for any b > 1, that is, in any K�ahler class [17], we have
an extremal K�ahler metric

g = zgB +
z

P (z)
dz2 +

P (z)

z
!2;
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where
P (z) =

sB
2
z2 � C1z

4 � C2z
3 � C3z �C4;

C1 =
sB
2
(1 � b) + 2(b+ 1)

(b� 1)(b2 + 4b+ 1)
;

C2 =
sB(b2 � 1)� 2(b2 + 1)

(b� 1)(b2 + 4b+ 1)
;

C3 = �4C1 � 3C2 + sB � 2

and
C4 = �C1 � C2 � C3 +

sB
2
:

If sB < 0, then there exists a ~b > 1 such that for any b, 1 < b < ~b, we
have an extremal K�ahler metric as above [17]. The bound ~b is the unique
solution, greater than one, of the equation

~b4 � 4(k2 + 3k + 1)~b3 + 2(3� 2k2)~b2 � 4(k2 � 3k + 1)~b+ 1 = 0:

One checks easily that ~b > 6 for any k 2 N.

4.2 Extremal K�ahler metrics which are locally confor-

mal to Einstein metrics

Let g be an extremal metric as in the above subsection. It is well known [5]
that if

s2 � 6s�s� 12jdsj2 = 0;

then the metric s�2g is an Einstein metric on M n fs = 0g. Since s =
6(2C1z + C2), this equation reduces to the equation

4C1C4 = C2C3;

which in turn becomes an equation in b:

s2B(�b4+b3+b�1)+4sB(b4�2b3+2b�1)+4(�b4+4b3+6b2+4b�1) = 0: (11)

For each solution b̂ to equation (11), we have a corresponding metric ĝ of the
type described in subsection 4.1 such that ŝ�2ĝ is Einstein where de�ned.
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4.2.1 Case sB = 0

In this case equation (11) becomes

12b2 � (b� 1)4 = 0

and b̂ = 1 +
p
3 +

p
3 +

p
12 � 5:275 solves the equation.

4.2.2 Case sB > 0, sB 6= 2

Since the left hand side of equation (11) is positive at b = 1 and the limit as
b goes to +1 is equal to �1, there exists a b̂ > 1 solving (11). Moreover,

limsB!0 b̂ = 1 +
p
3 +

p
3 +

p
12.

4.2.3 Case sB = 2

Equation (11) has no solutions greater than one.

4.2.4 Case sB < 0

Since the left hand side of equation (11) is positive at b = 1 and negative
at b = 6, there exists a b̂ solving (11) such that 1 < b̂ < 6 < ~b. Again,

limsB!0 b̂ = 1 +
p
3 +

p
3 +

p
12.

We conclude with the following proposition.

Proposition 3 Let B be a compact Riemann surface of genus g.

1. [1, 4, 8] If g = 0, then on any complex manifold of the type
M = P(O�O(k))! B, k 2 N n f2g, there exists an extremal K�ahler metric
ĝ of the type described in subsection 4.1 such that ŝ�2ĝ is an Einstein metric
on M n fs = 0g.
2. If g = 1, then on any complex manifold of the type M = P(O� L) ! B,
where L is a non-at holomorphic line bundle, there exists an extremal K�ahler
metric ĝ of the type described in subsection 4.1 such that ŝ�2ĝ is an Einstein
metric on M n fs = 0g.
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3. If g � 2, then on any complex manifold of the type M = P(O� L)! B,

where L is a holomorphic line bundle such that L
C1�= K

�k
2 , k 2 N and K is

the canonical line bundle on B, there exists an extremal K�ahler metric ĝ of
the type described in subsection 4.1 such that ŝ�2ĝ is an Einstein metric on
M n fs = 0g.

Notice that fs = 0g is a real smooth submanifold of M . Unless g = 0 and
k = 1 (and ŝ�2ĝ is the Page metric [4]) this submanifold is never the empty
set.

The fact that ĝ is extremal and locally conformally Einstein implies that
it is also strongly extremal [8, 16].

4.3 Bach at metrics

Case 1 in the above proposition is well known [1, 4, 8], and case 3 was was
considered in [3]. However, one does not have to end the story there. As is
well known [5], the above metrics ĝ have vanishing Bach tensor. This means
that they are extremal points of the functionalW([g]) :=

R
M
jjW jj2d� de�ned

over all conformal structures on M , where W denotes the Weyl curvature of
g. Since the signature of M vanishes, we see that W([g]) = 2

R
M
jjW+jj2d�,

whereW+ is the self-dual part of the Weyl curvature. If g is a K�ahler metric,
we have that 2

R
M
jjW+jj2d� = 1

12

R
M
s2d�, which, for any g as in subsection

4.1, is given by

��2deg L
�

s2B(b
2 � 1)

(b2 + 4b+ 1)
+
sB(b4 + 3b3 + 10b2 + 3b+ 1)

(b2 + 4b+ 1)2
+

8(b4 � 1)

(b� 1)2(b2 + 4b+ 1)

�
:

For sB = 0, recall that ĝ corresponds to b̂ = 1 +
p
3 +

p
3 +

p
12. It is

easy to see that

lim
deg L!�1

W([ĝ]) = lim
deg L!�1

1

12

Z
M

ŝ2d̂� = +1:

For sB 6= 0, recall that deg L = 4
sB
(1 � g) and limsB!0 b̂ = 1 +

p
3 +p

3 +
p
12. Hence,

lim
k!+1

W([ĝ]) = lim
sB!0

W([ĝ]) = +1:

15



For eachB, there are exactly two di�eomorphism classes for the manifolds
M = P(O�L)! B: the product manifold and another one. If deg L is even,

then M
C1�= B � S2. If deg L is odd, then M is in the other di�eomorphism

class (see eg. Example 4.26 in [13]). The above observations can then be
interpreted in the following way:

Proposition 4 For each compact Riemann surface B, we have a sequence,
fgtg of Bach-at metrics on the 4-manifold B � S2 such that

lim
t!1

W([gt]) = +1:

The same statement is true for the other di�eomorphism class of
P(O� L)! B.
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