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KK-EQUIVALENCE AND CONTINUOUS BUNDLES OF

C�-ALGEBRAS

KLAUS THOMSEN

1. Introduction

Through the work directed at classi�ying C�-algebras it has become apparent
that the KK-theory of Kasparov, including the E-theory of Connes and Higson,
o�ers much more than a convenient setup for dealing with topological K-theory. Al-
though KK-theory was �rst invented and developed, from the late seventies through
the eighties, as a tool to attach topological questions (the Novikov conjecture) and
calculate the K-theory of group C�-algebras (the Baum-Connes conjecture), it has
found some of its most profound applications in the classi�cation program of the
nineties. And although it is clear that KK-theory as a carrier of information about
the structure of C�-algebras can not in general stand alone when we seek to classify
C�-algebras up to isomorphism, it must necessarily play a major role in such e�orts.
As a consequence of this understanding it has become important to decide in which
way the structures of two C�-algebras are related when they are KK-equivalent
and/or equivalent in E-theory. Dadarlat has obtained one answer to this question in
[D]: Two separable C�-algebras are equivalent in E-theory if and only if their stable
suspensions are shape equivalent. The purpose of the present paper is to use recent
results of the author on KK-theory and E-theory to give an alternative answer, and
this time for KK-theory.
First of all we must decide what it means for a C�-algebra to be KK-contractible,

i.e. KK-equivalent to 0. We do this �rst for E-theory in Section 2 and then modify
the approach to handle KK-theory in Section 3. The central notion in the description
of which C�-algebras are KK-contractible is called semi-contractibility. A C�-algebra
is semi-contractible when the identity map of the algebra can be connected to 0 by a
continuous path of completely positive contractions such that the maps in the path
are almost multiplicative up to an arbitrary small toleration on any given �nite
subset. It turns out that a separable and stable C�-algebra A is KK-contractible if
and only it is the quotient of a semi-contractible C�-algebra by a semi-contractible
ideal. In order to identify semi-contractible C�-algebras in later parts of the paper
we give a description of them involving generalized inductive limits in Section 4. The
notion of a generalized inductive system of C�-algebras was introduced by Blackadar
and Kirchberg in [BK] and the notion is a cornerstone in the approach here. The idea
behind such systems comes clearly from the approximate intertwining of Elliott,[E],
but it is also inspired by the E-theory of Connes and Higson, and it is only natural
that we can use it in Section 5 to transfer KK-theory information, incoded in two
completely positive asymptotic homomorphisms, into an isomorphism between two
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C�-algebras which are closely related to the two given KK-equivalent separable C�-
algebras, A and B. The result is that we obtain a continuous bundle of C�-algebras
which connects SA
 K to SB 
K and has several quite special properties. 1

In the last section we glue the bundle from Section 5 together with other bundles,
notably a bundle considered by Elliott, Natsume and Nest in [ENN], to obtain our
main result which is that two separable C�-algebras A and B are KK-equivalent if
and only if there is a separable continuous bundle of C�-algebras over [0; 1] which
is piecewise trivial with no more than six points of non-triviality such that the
kernel of each �ber map is KK-contractible. The bundle can be chosen such that
all the �ber maps admit completely positive sections and it follows therefore that
all the �ber algebras are KK-equivalent to the bundle C�-algebra. As an immediate
corollary we get that A and B are KK-equivalent if and only if there is a separable
C�-algebra D and two surjective �-homomorphisms ' : D ! A and  : D ! B,
both of which admit a completely positive section and have KK-contractible kernels.
Any KK-equivalence between separable C�-algebras can therefore be realized by the
Kasparov product of a surjective �-homomorphism with the inverse of a surjective
�-homomorphism.

2. Locally contractible C�-algebras and triviality in E-theory

De�nition 2.1. A C�-algebra D is called locally contractible when the following
holds : For every �nite set F � D and every � > 0 there is a pointwise norm
continuous family of homogeneous maps, Æs : D ! D; s 2 [0; 1], such that Æ0 =
0; Æ1 = idD, kÆs(a

�) � Æs(a)
�k < �; kÆs(a) + Æs(b) � Æs(a + b)k < �; kÆs(a)Æs(b) �

Æs(ab)k < � and kÆs(a)k < kak+ � for all s 2 [0; 1] and all a; b 2 F .

Recall from [MT] that an extension of C�-algebras

0 // J // E
p // A // 0

is asymptotically split when there is an asymptotic homomorphism �t : A! E; t 2
[1;1), such that pÆ�t = idA for all t. If one can choose � = f�tgt2[1;1) to be a com-
pletely positive asymptotic homomorphism, we say that the extension is completely
positive asymptotically split.

Theorem 2.2. Let A be a separable C�-algebra. Then the following conditions are
equivalent :

a) A is contractible in E-theory (i.e. [[SA
K; SA
 K]] = 0).
b) The canonical extension

0 // S2A
 K // cone(SA
 K) // SA
K // 0

is asymptotically split.
c) SA
K is locally contractible.
d) There is an extension

0 // J // E // A
 K // 0 (2.1)

of separable C�-algebras where J is locally contractible and E is contractible.
e) There is an extension (??) of separable C�-algebras where J and E are locally

contractible.

1I have chosen to follow the lead from [KW] and use the word 'bundle' instead of '�eld'.



KK-EQUIVALENCE 3

For the proof of this we need to go from information about discrete asymptotic
homomorphisms to information about genuine asymptotic homomorphisms. Let A
and B be arbitrary separable C�-algebras. As in [Th1] we denote by [[A;B]]N the
homotopy classes of discrete asymptotic homomorphisms from A to B. The shift
�, given by �(')n = 'n+1, de�nes an automorphism of the group [[SA; SB]]N. Let
[[SA; SB]]�

N
denote the �xed point group of �. By Lemma 5.6 of [Th1] there is a

short exact sequence

0 // [[SA; SB]]0 // [[SA; SB]] // [[SA; SB]]�
N

// 0: (2.2)

Here [[SA; SB]]0 is the subgroup of [[SA; SB]] consisting of the elements which can
be represented by an asymptotic homomorphism ' = f'tg which is sequentially
trivial in the sense that the sequence '1; '2; '3; � � � converges pointwise to zero, i.e.
limn!1 'n(x) = 0 for all x 2 SA. The surjective map [[SA; SB]] ! [[SA; SB]]�

N
is

obtained by restricting the parameters of the asymptotic homomorphisms from R

to N .
Besides the extension (2.1) from [Th1] we need the observation that the compo-

sition product of two elements from [[�;�]]0 is always zero :

Lemma 2.3. Let  = f gt2R : B ! C and ' = f'tgt2R : A! B be asymptotic ho-
momorphisms which are sequentially trivial, i.e. satisfy that limn!1  n(b) = 0; b 2
B, and limn!1 'n(a) = 0; a 2 A. It follows that [ ] � ['] = 0 in [[A;C]].

Proof. Choose equicontinuous sequentially trivial asymptotic homomorphisms  0 :
B ! C and '0 : A ! B such that limt!1 k t(b) �  0t(b)k = 0; b 2 B, and
limt!1 k't(a) � '0t(a)k = 0; a 2 A. Let D be a countable dense subset of A.
By de�nition of � there is a parametrization r : [1;1)! [1;1) such that [ ]� ['] is
represented by any equicontinuous asymptotic homomorphism � which satis�es that
limt!1 �t(a)� 

0
s(t) Æ'

0
t(a) = 0; a 2 D, for some parametrization s � r. We leave the

reader to construct a parametrization s � r with the property that s(t) 2 N for all t
outside a neighbourhood of N � [1;1) and such that limt!1  0s(t) Æ'

0
t(a) = 0 for all

a 2 D. By equicontinuity of � this implies that limt!1 �t(a) = 0 for all a 2 A.

We can now give the proof of Theorem 2.2.

Proof. a) ) b) : Set B = A 
 K. Since [idSB] = 0 in [[SB; SB]], it follows from
Theorem 1.1 of [Th2] that there is an asymptotic homomorphism � = f�tgt2[1;1) :
cone(B)! SB and a norm continuous path, Ut; t 2 [1;1), of unitaries inM2(SB)

+

such that

lim
t!1

�
b
�t(b)

�
� Ut

�
0
�t(b)

�
U�
t = 0

for all b 2 SB. Let V1; V2 be isometries in the multiplier algebra M(SB) of SB
such that V1V

�
1 + V2V

�
2 = 1 and consider a strictly continuous path Ws; s 2 [0; 1],

of isometries in M(SB) such that W0 = 1 and W1 = V1. Let Tt be the image
of Ut under the isomorphism M2(M(SB)) ! M(SB) obtained from V1; V2. Let
 s : cone(B) ! cone(B); s 2 [0; 1], be the canonical trivialization of cone(B), i.e.
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 s(f)(t) = f(st). De�ne Æts : SB ! SB; s 2 [0; 4], by

Æts(a) =

8>>><
>>>:

WsaW
�
s ; s 2 [0; 1]

V1aV
�
1 + V2�t( s�1(a))V

�
2 ; s 2 [1; 2]

(3� s)[V1aV
�
1 + V2�t(a)V

�
2 ] + (s� 2)TtV2�t(a)V

�
2 T

�
t ; s 2 [2; 3]

TtV2�t( 4�s(a))V
�
2 T

�
t ; s 2 [3; 4]

De�ne �t : SB ! cone(SB) by �t(x)(s) = Æt4�4s(x).
b) ) c) : Let � = f�tgt2[1;1) : SA 
 K ! cone(SA 
 K) be an asymptotic

homomorphism such that �t(x)(1) = x for all t and all x. Fix a t � 1. If a
�nite subset F � SA 
 K and � > 0 are given, de�ne Æs : SA 
 K ! SA 
 K
by Æs(x) = �t(x)(s). If t is large enough fÆsgs2[0;1] will meet the requirements of
De�nition 2.1.
c) ) d) : The canonical extension

0 // SA
K // cone(A
K) // A
 K // 0

has the stated properties.
d) ) e): This is trivial.
e) ) a) : Thanks to excision in E-theory it suÆces to show that a separable

locally contractible C�-algebra D is contractible in E-theory. We �rst show that
SD 
 K is locally contractible when D is. Let F1 � F2 � F3 � � � � be �nite
subsets with dense union in D. Since D is locally contractible we can construct
homogeneous maps Æn : D ! cone(D) such that Æn(d)(1) = d for all n 2 N ; d 2 D,
and kÆn(a)Æn(b)� Æn(ab)k � 1

n
; kÆn(a�)� Æn(a)�k � 1

n
; kÆn(a+ b)� Æn(a)� Æn(b)k �

1
n
; kÆn(a) � Æn(b)k � ka � bk + 1

n
for all a; b 2 Fn. The sequence fÆng de�nes

a �-homomorphism � : D !
Q

n cone(D)= �n cone(D) in the obvious way. By
the Bartle-Graves selection theorem there is a continuous and homogeneous lift
 : D !

Q
n cone(D) of �. Set  n(d) =  (d)(n). Then f ng : D ! cone(D) is an

equicontinuous family of maps forming a discrete asymptotic homomorphism such
that limn!1 k n(d)(1) � dk = 0 for all d 2 D. The tensor product construction
from [CH] gives us now an equicontinuous discrete asymptotic homomorphism  0 :
D 
 SK ! cone(D) 
 SK such that limn!1 k 

0
n(d 
 x) �  n(d) 
 xk = 0 for

d 2 D; x 2 SK. In particular it follows that limn!1(ev1 
 idSK) Æ  
0(z) = z when

ev1 : cone(D)! D denotes evaluation at 1. It follows then readily that SD 
 K '

D 
 SK is locally contractible. Write SD 
 K =
S
n Fn where F1 � F2 � F3 � � � �

are �nite subsets. Since SD
K is locally contractible we can construct a pointwise
norm continuous path Æs; s 2 [1;1), of homogeneous maps Æs : SD 
K ! SD
K
such that Æn = idSD
K and Æn+ 1

2
= 0 for all n 2 N , and kÆs(a

�) � Æs(a)
�k <

1
n
; kÆs(a) + Æs(b) � Æs(a + b)k < 1

n
; kÆs(a)Æs(b) � Æs(ab)k <

1
n
; kÆs(a) � Æs(b)k <

ka� bk + 1
n
; s 2 [n; n + 1]; a; b 2 Fn. There is then an asymptotic homomorphism

Æ = fÆsgs2[1;1) : SD 
 K ! SD 
 K such that lims!1 kÆs(a) � Æs(a)k = 0 for all

a 2 SD
K. In particular, [ÆjN] = [idSD
K] in [[SD
K; SD
K]]�
N
. It follows then

from (2.1) that [Æ]� [idSD
K] 2 [[SD
K; SD
K]]0. Since limn!1 Æn+ 1
2
(a) = 0 for

all a 2 SD 
 K we have also that [ÆjN] = 0 in [[SD 
 K; SD 
 K]]�
N
. Consequently

[idSD
K] 2 [[SD
K; SD
K]]0 by (2.1) and hence [idSD
K] = [idSD
K]�[idSD
K] = 0
by Lemma 2.3.
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It follows from Theorem 2.2 that the class of separable E-contractible C�-algebras
is the least class of separable C�-algebras which contains the locally contractible C�-
algebras and is closed under stabilization and under the formation of quotients A=I
where both A and the ideal I are in the class.

3. Semi-contractible C�-algebras and triviality in KK-theory

De�nition 3.1. A C�-algebraD is called semi-contractible when the following holds:
For every �nite set F � D and every � > 0 there is a pointwise norm continu-
ous family of completely positive contractions, Æs : D ! D; s 2 [0; 1], such that
Æ0 = 0; Æ1 = idD and kÆs(a)Æs(b)� Æs(ab)k < � for all s 2 [0; 1] and all a; b 2 F .

The results of [Th1] which were used in the last section all have analogues for
completely positive asymptotic homomorphisms which were also presented in [Th1].
It is therefore easy to use the same arguments to prove the following result.

Theorem 3.2. Let A be a separable C�-algebra. Then the following conditions are
equivalent :

a) A is contractible in KK-theory (i.e. KK(A;A) = 0).
b) The canonical extension

0 // S2A
K // cone(SA
K) // SA
 K // 0

is completely positive asymptotically split.
c) SA
K is semi-contractible.
d) There is a semi-split extension

0 // J // E // A
 K // 0 (3.1)

of separable C�-algebras where J is semi-contractible and E is contractible.
e) There is a semi-split extension (??) of separable C�-algebras where J and E

are semi-contractible.

It follows from Theorem 3.2 that the class of separable KK-contractible C�-
algebras is the least class of separable C�-algebras which contains the semi-contractible
C�-algebras and is closed under stabilization and under the formation of quotients
A=I when both A and the ideal I are in the class, and there is a completely positive
section for the quotient map A! A=I.
Clearly,

fcontractible C�-algebrasg � fsemi-contractible C�-algebrasg

� flocally contractible C�-algebrasg:

The following examples show that both inclusions are strict, also when we restrict
attention to separable C�-algebras that are stable suspensions.

Example 3.3. We give here an example of a class of separable C�-algebras E which
are KK-contractible, and whose stable suspension SE 
 K are not contractible. 2

Let B be a unital separable in�nite dimensional simple C�-algebra which is KK-
equivalent to an abelian C�-algebra A. The KK-equivalence is represented by a

2I am grateful to Mikael R�rdam for pointing examples of this kind out to me.



6 KLAUS THOMSEN

semi-split extension of SA by B 
K as an element of Ext�1(SA;B). By stabilizing
and suspending the extension becomes

0 // SB 
K // SE 
 K // S2A
 K // 0:

The algebra E is KK-contractible. This is because the connecting maps of the six-
term exact sequence arising by applying the functor KK(SE;�) to the extension is
given by taking the Kasparov product with the KK-equivalence which the extension
represents and hence are isomorphisms. Another way to see this is to use the UCT-
theorem of Rosenberg and Schochet,[RS]. However, SE 
 K is not contractible
because the properties of B ensure that Hom(SB;K) = 0 so that also Hom(SB 

K; S2A
K) = 0. Consequently, any �-endomorphism of SE
Kmust leave SB
K �
SE 
 K globally invariant. So when SB 
 K is not contractible (as can easily be
arranged by requiring K�(B) 6= 0), SE 
 K will not be contractible.

Example 3.4. In [S] Skandalis gave an example of a separable C�-algebra A which
is trivial in E-theory, but not in KK-theory. Hence by Theorem 3.2 and Theorem
2.2 SA
K is locally contractible, but not semi-contractible.

4. The structure of semi-contractible C�-algebras

To construct and study semi-contractible C�-algebras we need the notion of a
generalized inductive system of C�-algebras and the inductive limit of a such a
system. This was de�ned by Blackadar and Kirchberg in [BK] and we shall use their
terminology and results. Given a contractible C�-algebra D, a trivialization of D
will be a pointwise norm continuous path,  s; s 2 [0; 1], of endomorphisms of D such
that  0 = 0 and  1 = idD.

De�nition 4.1. A separable C�-algebraB is called approximately contractible when
there is a sequence

B1

'1 // B2

'2 // B3

'3 // � � � (4.1)

of contractible C�-algebras Bn with trivializations  ns ; s 2 [0; 1], and completely
positive contractions 'n : Bn ! Bn+1; pn : Bn+1 ! Bn, such that

1) for k 2 N , a; b 2 Bk and � > 0, there is a N 2 N such that

k'm;n( 
n
s Æ 'n;k(a))'m;n( 

n
s Æ 'n;k(b))� 'm;n( 

n
s ('n;k(a)'n;k(b)))k < �

for all s 2 [0; 1] and all N � n � m,
2) pk+1 Æ 'k+1 Æ 'k = 'k for all k,

and B ' lim�!(Bn; 'n;k).

Here 'n;k is the composite map 'n�1 Æ 'n�1 Æ � � � Æ 'k : Bk ! Bn when n > k.
(Observe that we use an index convention which the is the reversed of the one used
in [BK].) Note that condition 1) of De�nition 4.1 ensures that the sequence (4.1) is a
generalized inductive system in the sense of Blackadar and Kirchberg, cf. De�nition
2.1.1 of [BK].

Proposition 4.2. Let D be a separable C�-algebra. The following conditions are
equivalent :

a) D semi-contractible.



KK-EQUIVALENCE 7

b) D ' lim�!(cone(D); 'n;k), where 'n : cone(D) ! cone(D) is a sequence of

completely positive contractions such that 1) of De�nition 4.1 holds relative
to the canonical trivialization of cone(D), and there are completely positive
contractions pk : cone(D)! cone(D) such that 2) of De�nition 4.1 holds.

c) D is approximately contractible.

Proof. a) ) b) : Let  s; s 2 [0; 1], be the canonical trivialization of cone(D). Let
F1 � F2 � F3 � � � � be a sequence of �nite sets with dense union in cone(D).
Since D is semi-contractible we can construct, recursively, a sequence Æn of paths
Æns : D ! D; s 2 [0; 1], of completely positive contractions such that kÆns (a)Æ

n
s (b) �

Æns (ab)k <
1
n
for all s 2 [0; 1] and all a; b 2 fÆjs(Fn) : s 2 [0; 1]; j < ng. De�ne

�n : D ! cone(D) by �n(d)(s) = Æns (d); s 2 [0; 1], and � : cone(D) ! D by
�(f) = f(1). Set 'n = �n+1 Æ � and note that the diagram

D

�1

��

D

�2

��

D

�3

��

� � �

cone(D)
'1

//

�
88qqqqqqqqqqq

cone(D)
'2

//

�
88qqqqqqqqqqq

cone(D)
'3

//

�
::uuuuuuuuu
� � �

commutes. Since 'n;k = �n Æ �; n > k, it follows easily that (cone(D); 'n;k) satis�es
1) of De�nition 4.1 and the above diagram shows that D ' lim�!(cone(D); 'n;k), cf.

[BK]. De�ne pk : cone(B) ! cone(B) by pk(g)(s) = Æks (g(1)). Then the pk's are
completely positive contractions such that 2) of De�nition 4.1 holds.
b) ) c) : This is trivial.
c)) a) : Let D ' lim�!(Bn; 'n;k) where the Bn's are contractible C

�-algebras with

trivializations  ns ; s 2 [0; 1], and completely positive contractions pk : Bk+1 ! Bk

such that 1) and 2) of De�nition 4.1 hold. Set pn;m = pn Æ pn�1 Æ � � � Æ pm�1 and let
q :
Q

iBi !
Q

iBi= �i Bi be the quotient map. Let x = (x1; x2; x3; � � � ) 2
Q

iBi

be an element such that q(x) 2 lim�!(Bn; 'n;k). We assert that limm!1 pn;m(xm)

exists in Bn. By an obvious �
2
-argument we may assume that q(x) = '1;l(y)

for some y 2 Bl; l > n. In this case we see from 2) of De�nition 4.1 that
limm!1 pn;m(xm) = pn;l+1 Æ'l(y). It follows that there is a completely positive con-
traction pn : lim�!(Bn; 'n;k)! Bn such that pnÆ'1;l(y) = pn;l+1Æ'l(y); y 2 Bl; l > n.
For l < n we �nd that

pn Æ '1;l(x) = lim
m!1

pn;m Æ 'm;l(x) = 'n;l(x); (4.2)

x 2 Bl. It follows that limn!1 '1;n Æ pn(x) = x for all x 2 lim�!(Bn; 'n;k). Fur-

thermore, it follows from (4.2), the density of
S
l '1;l(Bl) in lim�!(Bn; 'n;k) and 1) of

De�nition 4.1 that when F is a �nite subset of lim�!(Bn; 'n;k) and � > 0, then there is

a n so large that Æns = '1;nÆ 
n
s Æpn; s 2 [0; 1], is a pointwise norm continuous path of

completely positive contractions on lim�!(Bn; 'n;k) such that Æn0 = 0; kÆn1 (a)� ak < �

and kÆns (ab) � Æns (a)Æ
n
s (b)k < � for all a; b 2 F . It follows that lim�!(Bn; 'n;k) is

semi-contractible.
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5. Generalized inductive limits and continuous bundles

Let A1; A2; A3; � � � be a sequence of C�-algebras. For each n let 'nt : An !
An+1; t 2 [0; 1], be a pointwise norm continuous path of completely positive contrac-
tions. For n < m, set 'm;nt = 'm�1t Æ 'm�2t Æ � � � Æ 'nt : An ! Am. Assume that the
following holds :

For k 2 N , a; b 2 Ak and � > 0, there is a M 2 N such that

sup
t2[0;1]

k'n;mt ('m;kt (a)'m;kt (b))� 'n;kt (a)'n;kt (b)k < �

for all M � m < n.

(5.1)

For any C�-algebra A, set IA = C[0; 1]
 A. Given the above, de�ne 'm;n : IAn !
IAm by

'm;n(f)(t) = 'm;nt (f(t)) :

Then (IAn; 'n;m) is a generalized inductive system of C�-algebras in the sense of [BK]
and we can consider the corresponding inductive limit C�-algebras lim�!(IAn; 'm;n).

Lemma 5.1. 1) For each t 2 [0; 1] there is a surjective �-homomorphism

�t : lim�!(IAn; 'm;n)! lim�!(An; '
m;n
t ) :

2) ker �t = lim�!(ItAn; 'm;n), where ItAn = ff 2 IAn : f(t) = 0g.

3) For every x 2 lim�!(IAn; 'm;n), kxk = supt2[0;1] k�t(x)k.

4) lim�!(IAn; 'm;n) is a C[0; 1]-module such that �t(fx) = f(t)�t(x), f 2 C[0; 1]; x 2

lim�!(IAn; 'm;n).

Proof. 1) Let et : IAn ! An denote evaluation at t 2 [0; 1]. Then etÆ'm;n = 'm;nt Æet
and we get a �-homomorphism �t : lim�!(IAn; 'm;n) ! lim�!(An; '

m;n
t ) by 2.3 of [BK].

�t is surjective since each et is.
2) Clearly, lim�!(ItAn; 'm;n) � ker �t. Let x 2 ker �t; � > 0. There is a k 2 N

and an element f 2 IAk such that kx � '1;k(f)k < �. Then k�t('1;k(f))k < �

which implies that there is a m � k such that k'm;k(f)(t)k = k'm;kt (f(t))k < �.
There is therefore an element g 2 ItAm such that kg�'m;k(f)k < �. It follows that
'1;m(g) 2 lim�!(ItAn; 'm;n) and kx� '1;m(g)k < 2�.

3) It suÆces to show that �t(x) = 0 8t 2 [0; 1] ) x = 0. So let f 2 IAn and
assume that k�t('1;n(f))k < � for all t 2 [0; 1]. For a �xed t 2 [0; 1] there is then a
k > n and an open neighbourhood Ut of t such that k'k;ns (f(s))k < � for all s 2 Ut.
Since 'm;ks is a contraction we �nd that k'm;ns (f(s))k < � for all s 2 Ut and all
m � k. By compactness of [0; 1] we can then �nd a N 2 N such that k'm;n(f)k < �
for all m � N , proving that k'1;n(f)k < �.
4) follows immediately from the observation that 'm;n(fa) = f'm;n(a); a 2

IAn; f 2 C[0; 1]; m � n.

It follows from Lemma 5.1 that lim�!(IAn; 'm;n) is a bundle of C
�-algebra over [0; 1]

in the sense of [KW]. The bundle is always upper semi-continuous, but to obtain a
continuous bundle we need to add an additional assumption :



KK-EQUIVALENCE 9

For n 2 N ; a 2 An and � > 0, there is a m > n such that

k'm;nt (a)k � � < k'k;nt (a)k

for all k � m and all t 2 [0; 1].

(5.2)

Lemma 5.2. Assume that (5.2) holds. Then (lim�!(IAn; 'm;n); [0; 1]; �) is a contin-
uous bundle of C�-algebras.

Proof. By Lemma 5.1 it only remains to establish the continuity of t 7! k�t(x)k
for an arbitrary element x 2 lim�!(IAn; 'm;n). Let � > 0. There is a n 2 N and an

element g 2 IAn such that kx � '1;n(g)k < �. Then k�t('1;n(g))k = k'1;n
t (g(t))k

for all t 2 [0; 1]. Since fk'k;nt (a)kgk>n decreases towards k'1;n
t (a)k for all a 2 An

and since fg(t) : t 2 [0; 1]g is a compact subset of An, it follows from (5.2) that
there is a m > n such that jk'1;n

t (g(t))k � k'm;nt (g(t))kj < � for all t 2 [0; 1]. Then
jk�t(x)k� k'

m;n
t (g(t))kj < 2� for all t and t 7! k'm;nt (g(t))k is continuous, so we are

done.

De�nition 5.3. Two continuous bundles of C�-algebras, (A; X; �) and (A0; Y; �0),
are weakly isomorphic when there is a homeomorphism � : Y ! X and a �-
isomorphism ' : A ! A0 such that '(fa) = f Æ �'(a); f 2 C(X); a 2 A. When
X = Y and � can be taken to be the identity map we say that the bundles are
isomorphic.

Let (A; [0; 1]; �) be a continuous bundle of C�-algebras. When U � [0; 1] is a
relatively open subset we set

AU = C0(U)A = fx 2 A : �t(x) = 0; t =2 Ug;

which is a closed twosided ideal in A. When X = U\F where U and F are relatively
open and closed in [0; 1], respectively, we set AX = AU=AU\F c. For each t 2 X the
map �t : A ! At induces a surjective �-homomorphism AX ! At which we again
denote by �t. In this way (AX ; X; �) becomes a continous bundle of C�-algebras
over X. Up to isomorphism this construction does not depend on the way X is
realized as the intersection of a closed and an open subset of [0; 1].

De�nition 5.4. Let (A; [0; 1]; �) be a continuous bundle of C�-algebras. A point
� 2 [0; 1] is called a point of triviality for the bundle when there is an open neighbor-
hood U of � in [0; 1] such that (AU ; U; �) is a trivial bundle. A point � 2]0; 1[ is called
a point of right-sided (resp. left-sided) non-triviality when there is an � > 0 such
that (A]���;�]; ]� � �; �]; �) and (A]�;�+�[; ]�; � + �[; �) (resp. (A]���;�[; ]� � �; �[; �)
and (A[�;�+�[; [�; � + �[; �)) are trivial bundles. A point of non-triviality is a point
which is either a right-sided or a left-sided point of non-triviality. 3

De�nition 5.5. A continuous bundle of C�-algebras, (A; [0; 1]; �), is called piece-
wise trivial when there is a �nite set of points x1 < x2 < � � � < xk in ]0; 1[ each of
which is a point of non-triviality, while all points of [0; 1]nfx1; x2; � � � ; xkg are points
of triviality for the bundle.

3I apologize for the fact that with this terminology an interior point of triviality is also a point
of non-triviality, and that a point of non-triviality may in fact be a point of triviality. Note that
we need not consider points of two-sided non-triviality.
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De�nition 5.6. An extension of C�-algebras

0 // J // E
p // A // 0

is discrete asymptotically semi-split when there is a discrete completely positive
asymptotic homomorphism �n : A ! E; n 2 N , such that limn!1 p Æ �n(a) = a for
all a 2 A. A bundle of C�-algebras (A; [0; 1]; �) is called discretely asymptotically
semi-split (resp. semi-split) when

0 // ker �t // A
�t // At

// 0 (5.3)

is discrete asymptotically semi-split (resp. semi-split) for all t 2 [0; 1].

Note that it follows from Theorem 6 of [A] that an extension (and hence also a
bundle of C�-algebras) which is discrete asymptotically semi-split is also semi-split.
Now we strengthen the assumptions on the given sequence 'nt in order to use

Lemma 5.2 to produce continuous bundles which are piecewise trivial and discrete
asymptotically semi-split, and at the same time arrange that the kernels of the �ber
maps are all semi-contractible. For m > n and t = (t1; t2; t3; � � � ) 2 [0; 1]1, set

'm;nt = 'm�1tm�1
Æ 'm�2tm�2

Æ � � � Æ 'ntn :

We can then consider the following properties of which the two �rst are stronger
than (5.1) and (5.2), respectively.

For k 2 N , a; b 2 Ak and � > 0, there is a M 2 N such that

sup
t2[0;1]1

k'n;mt ('m;kt (a)'m;kt (b))� 'n;kt (a)'n;kt (b)k < �

for all M � m < n.

(5.4)

For n 2 N ; a 2 An and � > 0, there is a m > n such that

k'm;nt (a)k � � < k'k;nt (a)k

for all k � m and all t 2 [0; 1]1.

(5.5)

There are completely positive contractions pk : Ak+1 ! Ak such that

pk+1 Æ '
k+1
s Æ 'kt = 'kt

for all s; t 2 [0; 1]; s � t, and all k.

(5.6)

Proposition 5.7. Assume that (5.4), (5.5) and (5.6) hold and let (A; [0; 1]; �) be
the continuous bundle from Lemma 5.2. There is then a piecewise trivial and discrete
asymptotically semi-split continuous bundle (A0; [0; 1]; �0) with only one point of non-
triviality (a right-sided non-triviality) such that �0(A) ' �00(A

0); �1(A) ' �01(A
0),

and such that ker �t is semi-contractible for all t 2 [0; 1].

Proof. For each n 2 N let hn : [0; 1]! [0; 1] be the function

hn(t) =

8><
>:

0; t 2 [0; 1
2
]

2nt� n; t 2 [1
2
; 1
2
+ 1

2n
]

1; t 2 [1
2
+ 1

2n
; 1]
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Set  nt = 'nhn(t). It follows from (5.4) and (5.5) that the sequence  nt also satis�es

(5.4) and (5.5), and in particular also (5.1) and (5.2). Thus (lim�!(IAn;  m;n); [0; 1]; �)
is a continuous bundle of C�-algebras by Lemma 5.2. In order not to confuse it with
the original bundle we denote it by (A0; [0; 1]; �0). It follows from 2) of Lemma 5.1
that ker �0t is the inductive limit of the sequence

ItA1

 1 // ItA2

 2 // ItA3

 3 // � � �

By using that hn+1 � hn, it follows from (5.6) that the completely positive contrac-
tions ~pk : ItAk+1 ! ItAk given by ~pk(g)(s) = pk(g(s)) satisfy that ~pk+1 Æ k+1 Æ k =
 k. Hence the above sequence satis�es condition 2) of De�nition 4.1. To see that
also condition 1) of De�nition 4.1 holds, observe that we can de�ne a trivializa-
tion f �g of ItAn of the form  �(f)(s) = f(H�(s)), where the H�'s are appro-
priately chosen functions H� : [0; 1] ! [0; 1]. Therefore condition 1) of De�ni-
tion 4.1 follows from (5.4). Consequently ker �0t is approximately contractible, and
hence semi-contractible by Proposition 4.2. Since hn(0) = 0; hn(1) = 1 for all n,
it is clear that �0(A) ' �00(A

0); �1(A) ' �01(A
0). To prove triviality over [0; 1

2
]

and ]1
2
; 1] note �rst that C0(]

1
2
; 1])A = lim�!(C0(]

1
2
; 1]; An);  

m;n). It follows that

A[0; 1
2
] = A=A] 1

2
;1] ' lim�!(C([0; 1

2
]; An);  

m;n) and since  m;nt = 'm;n0 ; t 2 [0; 1
2
]; we

�nd that A[0; 1
2
] ' C([0; 1

2
]; D) where D = lim�!(An; '

m;n
0 ), also as C[0; 1

2
]-modules. To

prove triviality over ]1
2
; 1], consider a n 2 N and an element a 2 C0(]

1
2
; 1]; An). It is

then clear that there is an m � n such that

sup
t2] 1

2
;1]

k k;mt Æ  m;nt (a(t))� 'k;m1 Æ  m;nt (a(t))k < �

and

sup
t2] 1

2
;1]

k k;mt Æ 'm;n1 (a(t))� 'k;m1 Æ 'm;n1 (a(t))k < �

for all k � m. It follows that the identity maps on C0(]
1
2
; 1]; An) serves to give

us an approximate intertwining in the sense of [BK],2.3, and hence we see that
A] 1

2
;1] ' C0(]

1
2
; 1]; B), also as C0(]

1
2
; 1])-modules, where B = lim�!(An; '

m;n
1 ).

It remains to prove that the extensions (5.3) are all discrete asymptotically semi-
split. Fix a t 2 [0; 1]. By (5.6) there is a sequence of completely positive contractions
pk : Ak+1 ! Ak such that pk+1 Æ  

k+1
t Æ  kt =  kt for all k. As observed in the proof

of Proposition 4.2 this gives us a sequence of completely positive contractions pn :
At = lim�!(An;  

m;n
t )! An such that pn Æ 

1;l
t =  n;lt when n > l. Let cn : An ! IAn

be the embedding which identi�es an element of An with the corresponding constant
An-valued function on [0; 1] and de�ne �n : At !A by �n(x) =  1;nÆcn Æpn(x). To
see that f�ng is a discrete asymptotic homomorphism, let x; y 2 Al. For any � > 0

there is then a m > l so large that k 1;l
t (x) 1;l

t (y) �  1;m
t ( m;lt (x) m;lt (x))k < �.

Set x0 =  m;lt (x); y0 =  m;lt (y). For n > m we have that

k�n( 
1;l
t (x))�n( 

1;l
t (y))� �n( 

1;l
t (x) 1;l

t (y))k

� lim sup
k!1

sup
s2[0;1]

k k;ns Æ  n;mt (x0) k;ns Æ  n;mt (y0)�  k;ns Æ  n;mt (x0y0)k+ �

� lim sup
k!1

sup
t2[0;1]1

k'k;nt ('n;mt (x0))'k;nt ('n;mt (y0))� 'k;mt (x0y0)k+ �:
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It follows from (5.4) that the last expression is � 2� if just n is large enough and

hence f�ng is a discrete asymptotic homomorphism. Since �t Æ �n Æ  
1;l
t (x) =

 1;n
t Æ n;lt (x) =  1;l

t (x) for x 2 Al; l < n, we see that limn!1 �t Æ�n(z) = z for all
z 2 At. This shows that (5.3) is discrete asymptotically semi-split.

Observe that if all the An's are separable and/or nuclear C�-algebras it follows
that the continuous bundles obtained here, in Lemma 5.2 and in Proposition 5.7,
are separable and/or nuclear (in the sense that the bundle C�-algebra is separable
and/or nuclear.) For the nuclearity part of this assertion, use Proposition 5.1.3 of
[BK].

6. From KK-equivalence to continuous bundles

In this section we consider two separable C�-algebras A and B. For simplicitiy
of notation we assume �rst that both are stable. Recall from Theorem 4.1 of [Th2]
that there is a completely positive asymptotic homomorphism �A : cone(A) ! SA
with the property that when  ; ' : SA ! SA are completely positive asymptotic
homomorphisms such that ['] = [ ] in [[SA; SA]]cp, then there is a norm continuous
path Ut; t 2 [1;1), of unitaries in (SA)+ and an increasing continuous function
r : [1;1)! [1;1) such that

lim
t!1

�
 t(a)

�A
r(t)

(a)

�
�
�
't(a)

�A
r(t)

(a)

�
= 0

for all a 2 SA.

Lemma 6.1. 1) limt!1 k�
A
t (a)k = kak for all cone(A).

2) Every element of [[SA;B]]cp is represented by a completely positive asymptotic
homomorphism ' = ('t)t2[1;1) : SA! B with the property that limt!1 k't(a)k =
kak for all a 2 SA.

Proof. We prove 1) and 2) in one stroke. Let � : cone(A) ! B be the completely
positive asymptotic homomorphism which features in Theorem 4.1 of [Th2]. Since
[' � �] = ['] in [[SA;B]]cp it suÆces to show that limt!1 k�t(a)k = kak for all
a 2 cone(A). (With B = SA this will prove 1).) � has the form �t(a) = pt�(a)pt,
where � : cone(A) ! M(B) is an absorbing �-homomorphism and (pt)t2[1;1) is
a norm continuous path of positive elements in M(B) with properties described in
Theorem 3.7 of [Th2]. Since � is absorbing and there is an injective �-homomorphism
cone(A)!M(B) (because B is stable) it follows that � is injective. Let a 2 cone(A)
and � > 0. There is then an element b 2 B; kbk � 1, such that kak � � < k�(a)bk.
Since limt!1 ptb = b and limt!1 pt�(a) � �(a)pt = 0 it follows that k�t(a)k �
kpt�(a)ptbk > kak � � for all large t.

Remark 6.2. It follows from Lemma 6.1 and [L] that for any pair of separable C�-
algebras it holds that the stable suspension of any one of them is a deformation of
the stable suspension of the other.

A map � : D ! C is said to be Æ-multiplicative on a subset F � D when
k�(a)�(b)� �(ab)k < Æ for all a; b 2 F .

Lemma 6.3. Let ' : SA ! SB and  : SB ! SA be completely positive as-
ymptotic homomorphisms such that [ ] � ['] = [idSA] in [[SA; SA]]cp. It follows
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that there is a continuous function r : [1;1) ! [1;1) with the following property:
When F � SA and G � cone(A) are compact subsets, Æ > 0 and t0 2 [1;1),
there is a t1 � t0, and for each s � r(t1) a unitary Ts 2 M2(SA)

+ and a com-
pletely positive contraction �s : cone(A) ! SA such that �s is Æ-multiplicative on
G, k�s(a)k � kak � Æ; a 2 G, and

kTs
�
 sÆ't1 (a)

�s(a)

�
T �s � ( a �s(a) ) k < Æ

for all a 2 F .

Proof. By de�nition of the composition product there is a continuous function r :
[1;1) ! [1;1) such that [ ] � ['] is represented by f r0(t) Æ 'tgt2[1;1) for any
continuous function r0 : [1;1) ! [1;1) such that r0 � r. We may assume that
r is convex. We claim that r then has the stated property, and we prove it by
contradiction. So assume F;G; Æ and t0 2 [1;1) is a quadruple for which the stated
property fails. There is then a sequence t0 < t1 < t2 < t3 < � � � in [1;1) such that
limi!1 ti =1 and for each i a si � r(ti) with the property that

sup
a2F

kT
�
 siÆ'ti(a)

�(a)

�
T � � ( a �(a) ) k � Æ (6.1)

for every unitary T 2 M2(SA)
+ and every completely positive contraction � :

cone(A)! SA which is Æ-multiplicative onG and satis�es that k�(a)k � kak�Æ; a 2
G. For s 2 [ti; ti+1], write s = �ti+1 + (1 � �)ti, where � 2 [0; 1], and set
�s =  �si+1+(1��)si Æ'�ti+1+(1��)ti . Since �si+1+(1��)si � �r(ti+1)+(1��)r(ti) �
r(�ti+1+(1��)ti) it follows that � = (�s)s2[t1;1) is a completely positive asymptotic
homomorphism. In fact �t =  v(t)Æ't; t � t1, where v : [t1;1)! [s1;1) is a contin-
uous function such that v(t) � r(t); t � t1, and hence [�] = [ ] � ['] in [[SA; SA]]cp.
By Theorem 4.1 of [Th2] there is a completely positive asymptotic homomorphism
� = (�t)t2[1;1) : cone(A)! SA and a path of unitaries (Tt) 2M2(SA)

+ such that

lim
t!1

Tt

�
�t(a)

�t(a)

�
T �t � (

a
�t(a) ) = 0

for all a 2 SA. By 1) of Lemma 6.1, � can be chosen such that limt!1 k�t(a)k = kak
for all a 2 cone(A). In particular, it follows that for i large enough, �ti is Æ-
multiplicative on G, k�ti(a)k � kak � Æ; a 2 G, and

sup
a2F

kTti

�
 siÆ'ti (a)

�ti(a)

�
T �ti �

� a
�ti(a)

�
k < Æ;

contradicting (6.1).

Now assume that A and B are KK-equivalent. This means that there are com-
pletely positive asymptotic homomorphisms ' = f'tg : SA ! SB and  = f tg :
SB ! SA such that ['] � [ ] = [idSB] in [[SB; SB]]cp and [ ] � ['] = [idSA] in
[[SA; SA]]cp. By 2) of Lemma 6.1 we may assume that limt!1 k't(a)k = kak; a 2
SA, and limt!1 k t(b)k = kbk; b 2 SB. Choose a continuous function r : [1;1)!
[1;1) having the property described in Lemma 6.3 and a continuous function
s : [1;1) ! [1;1) with the same property relative to ( ; ') instead of (';  ). To
proceed we need to introduce some notation and terminology. Set D = A� B. We
will consider SA; SB; cone(A) and cone(B) as C�-subalgebras of cone(D). Observe
that cone(A); cone(B); SA; SB and cone(D) are stable since A and B are. When E
is any of these stable C�-algebras we choose isometries, V1; V2, in M(E) such that
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V1V
�
1 +V2V

�
2 = 1. For e1; e2 2 E we can then de�ne e1�e2 = V1e1V

�
1 +V2e2V

�
2 2 E. A

completely positive contraction SA�cone(D)! SB�cone(D) is said to be of '-type
when it has the form (a; d) 7! (V ('t(a)��(d))V

�; a�d) for some t 2 [1;1), some
unitary V 2 (SB)+ and some completely positive contraction � : cone(D) ! SB.
Similarly, we de�ne a completely positive contraction SB�cone(D)! SA�cone(D)
to be of  -type when it has the form (b; d) 7! (W ( s(b)� �(d))W

�; b� d) for some
s 2 [1;1), some unitary W 2 (SA)+ and some completely positive contraction
� : cone(D) ! SA. A map � : SA � cone(D) ! SA � cone(D) is called an al-
most identity map when it has the form �(a; d) = (a � �(a; d); �(a; d) � d) where
� : SA � cone(D) ! cone(D) and � : cone(A) � cone(D) ! SA are completely
positive contractions. For each s 2 [0; 1], let hs : [0; 1] ! [0; 1] be the contin-
uous function such that hs(t) = t; t 2 [0; s], and hs(t) = s; t 2 [s; 1]. De�ne
 Ds : cone(D) ! cone(D) by  Ds (f)(t) = f(hs(t)). Note that with a natural choice
of isometries V1; V2 to de�ne � we have that  Dt (a � d) =  Dt (a) �  Dt (d). Given
an almost identity map � as above we can use f Ds gs2[0;1] and f 

A
s gs2[0;1] to de�ne

maps �(s); s 2 [0; 1]; by

�(s)(a; d) = (a� �( As (a);  
D
s (d));  

D
s (�(a;  

D
s (d)))�  Ds (d)) :

Given C�-algebras X; Y and Z and compact subsets F � X; G � Y; H � Z, a
diagram of the form

(X;F )

'

��

 // (Y;G)

�

||xxxxxxxxxxxxxxxxxx

(Z;H)

'&%$ !"#�

will mean that � > 0, that ';  and � are completely positive contractions such that
 and ' are �-multiplicative on F , � is �-multiplicative on G, '(F ) [ �(G) � H,
 (F ) � G, and k'(x)� � Æ  (x)k < �; x 2 F .
Let q1 : SA� cone(D)! SA; q1 : SB� cone(D)! SB be the projections to the

�rst coordinate and q2 : SA� cone(D)! cone(D); q2 : SB � cone(D)! cone(D)
the projections to the second.

Lemma 6.4. Let �1 > �2 > �3 > � � � be a sequence in ]0; 1[ and let F 0
1 � F 0

2 � F 0
3 �

� � � ; G0
1 � G0

2 � G0
3 � � � � be compact subsets of SA� cone(D) and SB � cone(D),

respectively. There is then an in�nite diagram
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(SA� cone(D); F1)

76540123�1�1

��

�1 // (SB � cone(D); G1)

�1

��

	1

xxqqqqqqqqqqqqqqqqqqqqqqq

(SA� cone(D); F2)

76540123�2
�2 //

�2

��

(SB � cone(D); G2)

76540123�1

�2

��

	2

xxqqqqqqqqqqqqqqqqqqqqqqq

(SA� cone(D); F3)

76540123�3�3

��

�3 // (SB � cone(D); G3)

�3

��

	3

xxqqqqqqqqqqqqqqqqqqqqqqqqqq

76540123�2

...
...

76540123�3
where the �i's are of '-type, the 	i's of  -type, the �i's and �i's are almost identity
maps and

F 0
n [

[
j<n

[
(t1;��� ;tn�j)2[0;1]n�j

�(t1)n�1 Æ �
(t2)
n�2 Æ � � � Æ �

(tn�j)
j (F 0

n) � Fn;

G0
n [

[
j<n

[
(t1;��� ;tn�j)2[0;1]n�j

�
(t1)
n�1 Æ �

(t2)
n�2 Æ � � � Æ �

(tn�j )
j (G0

n) � Gn

for all n. Furthermore, we arrange that �sn and �sn are �n-multiplicative on Fn and
Gn, respectively, and

kq1 Æ �
(s)
n (x)k � k�(s)n (x)k � �n; x 2 Fn;

kq1 Æ �
(s)
n (x)k � k�(s)n (x)k � �n; x 2 Gn;

for all n and all s 2 [0; 1].

Proof. To simply notation, set

G0
n = G0

n [
[
j<n

[
(t1;��� ;tn�j)2[0;1]n�j

�
(t1)
n�1 Æ �

(t2)
n�2 Æ � � � Æ �

(tn�j )
j (G0

n)

and
F 0
n = F 0

n [
[
j<n

[
(t1;��� ;tn�j)2[0;1]n�j

�
(t1)
n�1 Æ �

(t2)
n�2 Æ � � � Æ �

(tn�j )
j (F 0

n)

We proceed by induction. So assume that we have constructed everything up to n,
i.e. that we have a �nite diagram as above ending with

(SA� cone(D); Fn)
�n // (SB � cone(D); Gn)

Here �n is of '-type, i.e. is given by (a; d) 7! (V ('k(a)� �(d))V �; a� d) for some
k 2 [1;1), some unitary V 2 (SB)+ and some completely positive contraction
� : cone(D)! SB. In addition we shall assume that
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A) � is �n
2
-multiplicative on  Dt (q2(Fn)); t 2 [0; 1],

B) for all y � r(k) there is a unitary Ty 2 (SA)+ and a completely positive
contraction Æ : cone(D) ! SA which is �n

2
-multiplicative on f Dt (a � d) :

(a; d) 2 Fng[q2(Fn)[ 
D
t (q2(Gn)); t 2 [0; 1], and satis�es that kÆ( Dt (a�d))k �

k Dt (d)k � �n; (a; d) 2 Fn; t 2 [0; 1], and kTy( y Æ 'k(a) � Æ(a � d))T �y � a �
Æ(a� d)k < �n

2
for all (a; d) 2 Fn.

This is allright if we make sure that �n+1 satis�es the corresponding n+ 1-conditions,
and we will. Choose y � r(k) so large that there is a unitary W 2 (SA)+ such that

kW y('k(a))�  y(�(d)))W
� �  y(V ('k(a)� �(d))V �))k <

�n
2

(6.2)

for all (a; d) 2 Fn. This is possible because V 2 (SB)+ and  is an asymptotic
homomorphism. By B) there is a unitary U 2 (SA)+ and a completely positive
contraction � : cone(D) ! SA which is �n

2
-multiplicative on f Dt (a � d) : (a; d) 2

Fng[ q2(Fn)[ 
D
t (q2(Gn)); t 2 [0; 1], and satis�es that k�( Dt (a� d))k � k Dt (d)k�

�n; (a; d) 2 Fn; t 2 [0; 1], and kU( y Æ 'k(a)� �(a� d))U� � a� �(a� d)k < �n
2
for

all (a; d) 2 Fn. Set

X =
[
j<n

[
(t1;��� ;tn�j)2[0;1]n�j

�
(t1)
n�1 Æ �

(t2)
n�2 Æ � � � Æ �

(tn�j )
j (F 0

n+1) ;

and

X 0 = fq1 Æ �n(a;  
D
t (d))� a�  Dt (d) : (a; d) 2 X; t 2 [0; 1]g:

ThenX andX 0 are both compact subsets of SA�cone(D) and cone(D), respectively.
By Lemma 6.3 we can arrange, by increasing y further, that

C) For all z � s(y) there is a unitary Tz 2 (SB)+ and a completely positive
contraction Æ0 : cone(D) ! SB which is �n+1

2
-multiplicative on  Dt (fb � d :

(b; d) 2 Gng[fq1 Æ�n(a; d)�a�d : (a; d) 2 Fng[ q2(Gn)[X
0[ q2(F

0
n+1)); t 2

[0; 1], and satis�es that kÆ0( Dt (b� d))k � k Dt (d)k � �n+1, for (b; d) 2 Gn; t 2
[0; 1], and

kTz('z Æ  y(b)� Æ0(b� d))T �z � b� Æ0(b� d)k <
�n
2

for all (b; d) 2 Gn.

In addition we can arrange that  y is
�n
2
-multiplicative on q1(Gn)[�( 

D
t (q2(Fn))); t 2

[0; 1]. Observe that there is a unitary T 2 (SA)+ such that

kT ( y Æ 'k(a)�  y Æ �(d)� �(a� d))T � � a�  y Æ �(d)� �(a� d)k <
�n
2

(6.3)

for all (a; d) 2 Fn. De�ne 	n : SB � cone(D)! SA� cone(D) by

	n(b; d) = (T (W � y(b)W � �(d))T �; b� d) ;

and �n : SA� cone(D)! SA� cone(D) by

�n(a; d) = (a�  y Æ �(d)� �(a� d); V ('k(a)� �(d))V � � a� d) :

Then 	n is of  -type and �n is an almost identity map. It is straightforward to see
that 	n and �n are �n-multiplicative on Gn and Fn, respectively, so (6.3) and (6.2)
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give us the diagram

(SA� cone(B); Fn)

�n

��

�n // (SB � cone(A); Gn)

	n

xxpppppppppppppppppppppppp

(SA� cone(B); Fn+1)

76540123�n

where Fn+1 = 	n(Gn)[�n(Fn)[
S
t2[0;1] �

(t)
n (X)[F 0

n+1. To check that the additional

requirements on �n, concerning �
(s)
n ; s 2 [0; 1], are also satis�ed, observe �rst of all

that F 0
n+1 � Fn+1. Combine the fact that  y is

�n
2
-multipliciative on �( Bt (q2(Fn)))

with A) to see that (a; d) 7!  y Æ �( 
D
t (d)) is �n-multiplicative on Fn for all t.

It follows from A) that (a; d) 7! V ('k(a) � �( Dt (d)))V
� is �n-multiplicative on

Fn for all t, and one of the requirements on � was that (a; d) 7! �( Dt (a � d))
is �n-multiplicative on Fn for all t. By putting all of this together we see that

�
(s)
n is �n-multiplicative on Fn for all s 2 [0; 1]. Another requirement on � was

that k�( Dt (a � d))k � k Dt (d)k � �n for all t and all (a; d) 2 Fn. It follows that

kq1 Æ �
(s)
n (x)k � k�(s)n (x)k � �n for all x 2 Fn and all s 2 [0; 1]. We claim that

A') � is �n-multiplicative on  
D
t (q2(Gn)); t 2 [0; 1],

B') for all z � s(y) there is a unitary Tz 2 (SB)+ and a completely positive
contraction Æ0 : cone(D) ! SB which is �n+1

2
-multiplicative on f Dt (b � d) :

(b; d) 2 Gng [ q2(Gn) [  
D
t (q2(Fn+1)); t 2 [0; 1]; and satis�es that kÆ0( Dt (b �

d))k � k Dt (d)k � �n+1; (b; d) 2 Gn, and

kTz('z Æ  y(b)� Æ0(b� d))T �z � b� Æ0(b� d)k <
�n+1
2

for all (b; d) 2 Gn.

A') was one of the requirements on �. To see that B') holds, observe that q2(	n(Gn)) =
fb � d : (b; d) 2 Gng, that q2(�n(Fn)) = fq1 Æ �n(a; d)� a � d : (a; d) 2 Fng and

that q2(�
(t)
n (X)) �  Dt (X

0). Therefore B') follows from C).
Now we can exchange the role of ' and  and construct in the same way a diagram

76540123�n

(SB � cone(D); Gn)

�n

��

	n

wwoooooooooooooooooooooooo

(SA� cone(D); Fn+1)
�n+1 // (SB � cone(D); Gn+1)

where G0
n+1 � Gn+1. Furthermore by using Lemma 6.3 as it was used to obtain C)

above we can arrange that �n+1 satis�es the n+ 1-version of B). The n+ 1-version
of A) follow from the constructions by use of B'). In this way we obtain the desired
diagram by induction.

Let F 0
1 � F 0

2 � F 0
3 � � � � and G0

1 � G0
2 � G0

3 � � � � be sequences of �nite sets
with dense union in SA� cone(D) and SB � cone(D), respectively. By combining
Lemma 6.4 with 2.4 of [BK] we get sequences of almost identity maps, 'n : SA �
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cone(D) ! SA � cone(D) and  n : SB � cone(D) ! SB � cone(D), such that
lim�!(SA� cone(D); 'm;n) ' lim�!(SB � cone(D);  m;n) and

I) '
(t)
n is 2�n-multiplicative on Fn, t 2 [0; 1],

II) kq1 Æ '
(t)
n (x)k � k'

(t)
n (x)k � 2�n; x 2 Fn; t 2 [0; 1],

where
Fn = F 0

n [
[
j<n

[
(t1;��� ;tn�j)2[0;1]n�j

'
(t1)
n�1 Æ '

(t2)
n�2 Æ � � � Æ '

(tn�j )
j (F 0

n):

We arrange also that ( n; Gn) satisfy the analogues of I) and II). In order to make

connection with the last section, set 'nt = '
(t)
n . We check that (5.4) holds : Let

a; b 2 SA � cone(D); k 2 N and � > 0 be given. It follows from the density ofS
m F

0
m in SA� cone(D) that there is a M 2 N and elements x; y 2 F 0

M such that

jk'(�(x)�(y))� '(�(x))'(�(y))k � k'(�(a)�(b))� '(�(a))'(�(b))kj <
�

2
(6.4)

for all linear contractions '; � : SA � cone(D) ! SA� cone(D). By increasing M
we may assume M > k and that 2�M+1 < �

2
. It follows from I) that

k'n;mt ('m;kt (x)'m;kt (y))� 'n;mt ('m;kt (x))'n;mt ('m;kt (y))k �
nX

j=m

2�j <
�

2
(6.5)

for all n > m �M and all t 2 [0; 1]1. By combining (6.4) and (6.5) we get (5.4).
To prove that (5.5) holds observe that by the nature of an almost identity map

and II) we have that k'n+1;nt (x)k � k'm;nt (x)k � k'n+1;nt (x)k � 2�n for all x 2 Fn,
all t 2 [0; 1]1 and all m > n. So if a 2 SA � cone(D); n 2 N and � > 0 are given
we choose a m > n and an element x 2 F 0

m such that 2�m < �
3
and ka� xk < �

3
. It

follows then that

k'k;nt (a)k � k'k;nt (x)k �
�

3
� k'm+1;n

t (x)k �
2�

3
> k'm+1;n

t (a)k � �

for all t 2 [0; 1]1 and all k > m. Finally, we must consider (5.6). It is apparent
from the de�nition of an almost identity map that there is a completely positive
contraction p : SA� cone(D)! SA� cone(D) with the property that pÆ'nt (a; d) =
(a;  Dt (d)); t 2 [0; 1]; (a; d) 2 SA� cone(D). Since  Ds Æ  

D
t =  Dt ; s � t, it follows

from the form of 'nt , that p Æ'
n+1
s Æ'nt = 'nt for s � t. We can therefore use p as pk

for all k in (5.6).
Having established both (5.4), (5.5) and (5.6), Proposition 5.7 gives us a contin-

uous bundle of C�-algebras, (A; [0; 1]; �), which is discrete asymptotically semi-split
and piecewise trivial with only one point of non-triviality such that ker �t is semi-
contractible for all t 2 [0; 1] and such that the �bers at 0 and 1 are lim�!(SA �

cone(D); '
(0)
m;n) and lim�!(SA � cone(D); 'm;n), respectively. Note that lim�!(SA �

cone(D); '
(0)
n;m) ' SA since SA is stable and '

(0)
n has the form '

(0)
n (a; d) = (V aV �; 0)

for the same isometry V 2 M(SA). Therefore, when we apply the same procedure
to SB � cone(D), we get all together the following result.

Theorem 6.5. Let A and B be KK-equivalent separable C�-algebras. It follows that
there are separable continuous bundles of C�-algebras, (A; [0; 1]; �) and (A0; [0; 1]; �0),
which are discrete asymptotically semi-split and piecewise trivial with only one point
of non-triviality such that ker �t and ker �0t are semi-contractible for all t 2 [0; 1],
�0(A) ' SA
K; �00(A

0) ' SB 
K and �1(A) ' �01(A
0).
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7. Concatenation of bundles

De�nition 7.1. Let A be a C�-algebra. A �nite semi-split decomposition series for
A consists of a series of ideals

A = In � In�1 � In�2 � � � � � I1 � I0 = f0g

such that the corresponding extensions 0 ! In�1 ! In ! In=In�1 ! 0 are semi-
split for n = 2; 3; � � � ; n. n is called the length of the decomposition series and the
C�-algebras Ii=Ii�1; i = 1; 2; � � � ; n, will be called the succesive quotients of the
decomposition series. When n = 2 we say that A is a semi-split extension of I2=I1
by I1.

Lemma 7.2. Let

0 // J // E
p // A // 0

be a semi-split extension and J = Jn � Jn�1 � Jn�2 � � � � � J1 � J0 = f0g,
A = Am � Am�1 � Am�2 � � � � � A1 � A0 = f0g �nite semi-split decomposition
series for J and A, respectively. Set Jn+i = p�1(Ai); i = 1; 2; � � � ; m. Then

E = Jm+n � Jm+n�1 � � � � � J1 � J0 = f0g

is a semi-split decomposition series for E such that Jk=Jk�1 ' Ak�n=Ak�n�1 for
k > n.

Proof. Left to the reader.

Lemma 7.3. Let (A; [0; 1]; �) and (A0; [0; 1]; �0) be piecewise trivial and semi-split
continuous bundles such that A1 ' A0

0. There is then a piecewise trivial and semi-
split continuous bundle (B; [0; 1]; �00) with the following properties.

1) (B[0; 1
2
]; [0;

1
2
]; �00) and (B[ 1

2
;1]; [

1
2
; 1]; �00) are weakly isomorphic to (A; [0; 1]; �) and

(A0; [0; 1]; �0), respectively,
2) for t 2 [0; 1

2
] there a s 2 [0; 1] and a semi-split extension

0 // ker �00 // ker �00t // ker �s // 0;

and for t 2 [1
2
; 1] there is a s 2 [0; 1] and a semi-split extension

0 // ker �1 // ker �00t // ker �0s // 0:

Proof. Let � : A1 ! A0
0 be a �-isomorphism. The C�-algebra B = f(a1; a2) 2

A � A0 : � Æ �1(a1) = �00(a2)g is the bundle C�-algebra for a bundle with the
described properties. In particular, the part about the extensions being semi-split
follows from the triviality of the bundles in a neighbourhood of the endpoints.

Theorem 7.4. Let A and B be KK-equivalent separable C�-algebras. It follows
that there is a separable continuous bundle of C�-algebras, (A; [0; 1]; �), which is
semi-split and piecewise trivial with no more than 2 points of non-triviality such
that �0(A) ' SA 
 K; �1(A) ' SB 
 K, and ker �t is a semi-split extension of
semi-contractible C�-algebras for all t 2 [0; 1].

Proof. Concatenate the two bundles from Theorem 6.5 by using Lemma 6.8 and
apply Lemma 6.7.
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De�nition 7.5. A separable C�-algebra D is called crossed-contractible when there
is a C�-dynamical system (A;R; �) with A contractible such that D ' A�� R.

It follows from [FS] that a crossed-contractible C�-algebra is KK-contractible. It
is easy to see that a crossed-contractible C�-algebra need not be locally contractible.

Theorem 7.6. (Rie�el [R], Elliott, Natsume, Nest [ENN]) Let A be a separable C�-
algebra. There is then a separable semi-split and piecewise trivial continuous bundle
of C�-algebras, (A; [0; 1]; �), with no more than one point of non-triviality such that
�0(A) ' A
K; �1(A) ' S2A, and ker �t is crossed-contractible for all t 2 [0; 1].

Proof. For � 2 [0; 1], de�ne an action �� : R ! AutC0(R) 
 A by ��s (f)(t) =
f(t � (1 � �)s). For � 2 [1; 2], set ��s = id for all s. De�ne an action � : R !
Aut[C[0; 2]
C0(R)
A] by �s(g)(�) = ��s (g(�)); � 2 [0; 2]. It follows from [R] that
[C[0; 2]
C0(R)
A]�� R is the bundle C�-algebra for a bundle over [0; 2] such that
ker �t is crossed-contractible for all t 2 [0; 2]. It is well-known that the �ber over 0
is A
 K and the �ber over 2 is S2A. As pointed out in [ENN] the bundle is trivial
over [0; 1[ and it is clearly trivial over [1; 2]. The fact that the bundle is semi-split
follows from the Choi-E�ros lifting theorem, [CE], by observing that the bundle in
the general case is obtained from the nuclear bundle which results from the special
case where A = C by tensoring with A.

By concatenation the bundle from Theorem 6.11 with the bundles from Theorem
6.9, applied to SA and SB, we get the following result.

Theorem 7.7. Let A and B be separable and stable KK-equivalent C�-algebras.
There is then a separable continuous bundle of C�-algebras, (A; [0; 1]; �), which is
semi-split and piecewise trivial with no more than four points of non-triviality, and
for each t 2 [0; 1] there is a �nite semi-split decomposition series for ker �t of length
four whose succesive quotients are either semi-contractible or crossed-contractible.

As a �nal step we can also remove the stabilizations by introducing a little longer
decompostion series and slightly more general succesive quotients. When � : A! B
is a �-homomorphism between separable C�-algebras which is an isomorphism in
KK, the mapping cone f(a; f) 2 A � cone(B) : f(1) = �(a)g is KK-contractible.
For our purposes here we need only consider the very special case where B = A
K
and the �-homomorphism is the canonical stabilizing �-homomorphism s : A !
A
K. Since s is injective we can consider A as a C�-subalgebra of A
K and the
mapping cone can be described as

CA = ff 2 cone(A
K) : f(1) 2 Ag :

Set A = ff 2 C([0; 1]; A 
 K) : f(t) 2 A; t � 1
2
g and let �t be evaluation at

t 2 [0; 1]. Then (A; [0; 1]; �) is a semi-split and piecewise trivial continuous bundle
of C�-algebras connecting A 
 K to A. For each t 2 [0; 1], ker �t is a semi-split
extension, either of a contractible C�-algebra by a contractible C�-algebra, or of CA
by a contractible C�-algebra.

Theorem 7.8. Let A and B be separable C�-algebras. Then A and B are KK-
equivalent if and only if there is a separable semi-split and piecewise trivial con-
tinuous bundle of C�-algebras, (A; [0; 1]; �), with no more than six points of non-
triviality, such that �0(A) ' A; �1(A) ' B, and for each t 2 [0; 1] there is a �nite
semi-split decomposition series for ker �t of length eight whose succesive quotients
are either semi-contractible, crossed-contractible or isomorphic to CA or CB.
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Proof. Concatenate the bundles just described, one for A and one for B, with the
bundle from Theorem 6.12. Apply Lemma 6.7 and Lemma 6.8 to prove the 'only if'
part. For the 'if' part observe that since the bundle is semi-split the extensions 5.3 are
semi-split. Furthermore, ker �t is contractible in KK-theory since its decomposition
series is semi-split and the succesive quotients are all KK-contractible; the semi-
contractible quotients by Theorem 3.2. Since KK-theory is half-exact with respect
to semi-split extensions by [?], [CS], it follows that �t is a KK-equivalence and that
At is KK-equivalent to A for all t.

Corollary 7.9. Let A and B be separable C�-algebras. Then A and B are KK-
equivalent if and only if there is a separable C�-algebra D and surjective semi-split
�-homomorphisms ' : D ! A and  : D ! B such that ker' and ker are
KK-contractible.
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