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Abstract
We extend d'Alembert's classical functional equation by replacing the domain of
de nition R of the solutions by a metabelian group G and simultaneously replacing
the group involution by an arbitrary involution of G: We  nd all complex valued
solutions. In particular we show that the continuous solutions have the same form
as in the abelian case if G is connected.
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I. Introduction

d'Alembert's functional equations
on metabelian groups

I. Introduction

The obvious generalization of d'Alembert's classical functional equation

g(x + y) + g(x� y) = 2g(x)g(y); x; y 2 R; (1)

from the group R to an arbitrary group G is the functional equation

g(xy) + g
�
xy�1

�
= 2g(x)g(y); x; y 2 G: (2)

A further generalization that comes out naturally of the study of Wilson's functional
equation (Corovei [6]), is

g(xy) + g(yx) + g
�
xy�1

�
+ g
�
y�1x

�
= 4g(x)g(y); x; y 2 G: (3)

It is a generalization of (2), because g(xy) = g(yx) for any solution of (2) (see Lemma
V.1 below), so that any solution of (2) also is a solution of (3). We will call and (2)
and its generalization (6) for the short d'Alembert functional equation, and (3) and its
generalization (12) for the long d'Alembert functional equation.

The purpose is to study and solve these functional equations on metabelian groups,
i.e. groups G for which the commutator subgroup [G;G] is contained in the center Z(G)
of G. An abelian group is metabelian, but the converse is false which the example of
the Heisenberg group

H3 :=

8<
:

0
@
1 x z

0 1 y

0 0 1

1
A j x; y; z 2 R

9=
;

(4)

reveals. On the other hand any metabelian group is nilpotent. Corovei [8] studied
d'Alembert's and Wilson's functional equations on the so-called P3-groups. They are
also metabelian. The quaternion group f�1;�i;�j;�kg is an example of a P3-group.

Any function of the form

g(x) =
m(x) +m

�
x�1

�

2
; x 2 G; (5)

where m : G ! C
� is a homomorphism, is a solution of (2). No restrictions on the

group are needed for that statement. For abelian groups the converse is true: Any
non-zero solution of (2) has this form (Kannappan [14]). The metabelian groups are
close to being abelian, so one could hope that all solutions of d'Alembert's functional
equations on such groups had the form (5). This is indeed so for special groups (See
Corovei [4], Friis [12] and Proposition V.5 below). But solutions of (2) of a different
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I. Introduction

form occur even on the quaternion group (Corovei [4; p. 105±106]), so new phenomena
show up in the passage from abelian to metabelian groups.

Our main results are the following:

1) Theorem IV.1 below shows that the long version (3) of d'Alembert functional
equation reduces to the short one (2) when G is metabelian, generalizing [8] where
this is proved for P3-groups.

2) Consider the short d'Alembert functional equation

g(xy) + g(x�(y)) = 2g(x)g(y); x; y 2 G; (6)

where � : G ! G is an arbitrary involution of the metabelian group G. Any non-
zero solution g of (6) has either the form g = (m+m � �)=2 where m : G ! C

�

is a homomorphism, or the form

g(x) =

�
m(x) x 2 H
0 x 2 G nH

(7)

where H is a � -invariant normal subgroup of G and m : H ! C
� is a homomor-

phism such that m = m � �: This is described in Theorem V.4 that generalizes and
reformulates the results of [7] in which �(x) = x�1 for all x 2 G:

3) Any continuous solution g of (6) on a metabelian connected topological group G has
the form g = (m +m � �)=2 where m : G ! C

� is a continuous homomorphism
(Theorem V.6).

There are only few results in the literature about d'Alembert's functional equations
on non-abelian groups. Corovei [5], [6], [7] and [8] discuss them on certain nilpotent
groups. Friis [12] solves d'Alembert's and Wilson's functional equations on connected
nilpotent Lie groups and on semidirect products of two abelian groups like the group of
af ne transformations of the real line. Formally Kannappan [14] deals with d'Alembert's
functional equation (2) on non-abelian groups, but the solutions are assumed to satisfy
Kannappan's condition which in essence reduces the considerations to the abelian case,
so that the solutions are given by (5). We recall that a function f on a group G is said
to satisfy Kannappan's condition if f(xyz) = f(xzy) for all x; y; z 2 G: Daci«c [10]
solves (2) under a certain condition on the solution. However, his condition implies
Kannappan's condition (see [15]). Acz«el, Chung and Ng [1; p. 20±21] show that the
solutions of (2) on the group of unit quaternions are not all of the form (5). The group
of unit quaternions is isomorphic to the Lie group SU(2) (see section 1.9 of [3]), so
it is semisimple and hence of a quite different nature than nilpotent groups. Penney
and Rukhin [17] consider square integrable solution of (2) on a locally compact group
G: They show under certain conditions on G that the such solutions are zero, unless
G is compact.

The present paper is closely related to and inspired by the works by Corovei just
mentioned.

There are other ways of extending d'Alembert's classical functional equation (1)
from R to groups than (2) and (3). For example by the connection to the theory of
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spherical functions described in [18] and [19]. Roughly speaking that corresponds to �

being a homomorphism instead of the anti-homomorphism of the present paper.

We  nish this introduction by  xing notation that will be used throughout the paper.

Notation I.1

G denotes a group with center Z(G) and neutral element e 2 G: The com-
mutator group [G;G] is the subgroup of G generated by the commutators [x; y] =
xyx�1y�1; x; y 2 G: We let � be an involution of G; i.e. a map � : G ! G such that
�(xy) = �(y)�(x) for all x; y 2 G and �(�(x)) = x for all x 2 G: The multiplicative
group of all non-zero complex numbers is denoted by C�: For any function g : G ! C

on G we introduce the subgroup Z(g) := fu 2 G j g(xuy) = g(xyu) for all x; y 2 Gg:

II. The subgroup Z(g).

In this section G is an arbitrary group, not necessarily metabelian. The subgroup
Z(g) (de ned in Notation I.1 above) of G plays a central role in this paper. Here we
derive some of its properties.

Lemma II.1

Let G be any group and g : G ! C a function on G: Then Z(g) is a nor-
mal subgroup of G containing the center Z(G) of G: It can also be character-
ized as Z(g) = fu 2 G j g(xuy) = g(uxy) for all x; y 2 Gg: Furthermore Z(g) �
fx 2 G j g([x; y]) = g(e) for all y 2 Gg: Finally Z(g � �) = �(Z(g)) for any involution
� of G; so Z(g) is � -invariant if g = g � �:

Proof: The  rst statements are immediate. Furthermore, if u 2 Z(g) and y 2 G

then g([u; y]) = g
�
uyu�1y�1

�
= g(e): Finally, using the de nition of Z(g) we  nd that

Z(g � �) = fu 2 G j (g � �)(xuy) = (g � �)(xyu); 8 x; y 2 Gg

= fu 2 G j g(�(y)�(u)�(x)) = g(�(u)�(y)�(x)); 8 x; y 2 Gg

= fu 2 G j g(y�(u)x) = g(�(u)yx); 8 x; y 2 Gg

= fu 2 G j �(u) 2 Z(g)g = ��1(Z(g)) = �(Z(g)):

(8)

To say that Z(g) = G is another way of stating that g satis es Kannappan's
condition on G: The de nition of Z(g) expresses that when u 2 Z(g) occurs as an
argument for g then u can be moved around as though it is in the center Z(G): In
general Z(G) is a proper subset of Z(g); a trivial example of that being Z(1) = G

on a non-abelian group G:

We continue by studying Z(g) under a condition (9) on the function g that is
related to a factorization (17) in Theorem III.2.
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Proposition II.2

Let g : G ! C be a function such that g 6= 0 and

g(xu) = g(x)g(u) for all x 2 G; u 2 [G;G]: (9)

Then

(a) Z(g) = fx 2 G j g([x; y]) = 1 for all y 2 Gg:
(b) If g

�
xux�1

�
= g(u) for all x 2 G and u 2 [G;G]; and g(u) = g

�
u�1

�
for all

u 2 [G;G]; then
�
x2 j x 2 G

	
� Z(g):

(c) g(x) = 0 for all x 2 G n Z(g) if g
�
xyx�1

�
= g(y) for all x; y 2 G:

(d) If g
�
xyx�1

�
= g(y) for all x; y 2 G and simultaneously gjZ(g) is a homomorphism

of Z(g) into C� then Z(g) = fx 2 G j g(x) 6= 0g:

Proof: Putting u = e in (9) we see that g(e) = 1:

(a) If g([u; y]) = 1 for all y 2 G; then

g(xyu) = g
�
xuy

�
u; u�1y�1

��
= g(xuy)g

��
u; u�1y�1

��
= g(xuy)1 = g(xuy); (10)

so u 2 Z(g): The other inclusion is part of Lemma II.1.

(b) For any x; y 2 G we  nd from the formula [ab; z] = a[b; z]a�1[a; z] that

g
��
x2; y

��
= g

�
x[x; y]x�1[x; y]

�
= g

�
x[x; y]x�1

�
g([x; y]) = g([x; y])g([x; y])

= g
�
[x; y]�1

�
g([x; y]) = g

�
[x; y]�1[x; y]

�
= g(e) = 1;

(11)

and the statement follows from (a).

(c) Let x0 2 G n Z(g): Then also x�1

0
2 G n Z(g); because Z(g) is a group.

So by (a) there exists y0 2 G such that g
��
x�1

0
; y0

��
6= 1: Using (9) we get that

g(x0)g
��
x�1

0
; y0

��
= g

�
x0
�
x�1

0
; y0

��
= g

�
x0x

�1

0
y0x0y

�1

0

�
= g

�
y0x0y

�1

0

�
= g(x0): But

that can only hold if g(x0) = 0 because g
��
x�1

0
; y0

��
6= 1:

(d) Using  rst (c) and then the homomorphism property we  nd that
fx 2 G j g(x) 6= 0g � Z(g) � fx 2 G j g(x) 6= 0g:

III. The long d'Alembert functional equation on any group

We do not impose any conditions on the group G in this section, in which we derive
some results about the form of the solutions of the following extension of d'Alembert's
functional equation

g(xy) + g(yx) + g(x�(y)) + g(�(y)x) = 4g(x)g(y); x; y 2 G; (12)

where � : G ! G is an involution.

A typical example of the involution � is the group involution �(g) = g�1, g 2 G:

Another is the adjoint A! A� in the matrix group GL(n;C): A third one is

�

0
@
1 x z

0 1 y

0 0 1

1
A =

0
@
1 y z

0 1 x

0 0 1

1
A (13)

on the Heisenberg group H3: Representations of the Heisenberg group and of related
metabelian groups play a basic role in harmonic analysis [11].
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Lemma III.1

If g 6= 0 is a solution of (12) then g � � = g; g(e) = 1;

g
�
x2

�
+

g(x�(x)) + g(�(x)x)

2
= 2[g(x)]2 for all x 2 G; (14)

2g(x)g(u) = g(xu) + g(x�(u)) for x 2 G; u 2 Z(g); and (15)

g(xu�(u)) = g(x)g(u�(u)) for x 2 G; u 2 Z(g): (16)

Proof: We see that g�� = g when we note that the left hand side of (12) is invariant
under interchange of y and �(y): Putting x = e in (12) we see that g(e) = 1: Putting
y = x in (12) we get (14). (15) follows immediately when we put y = u 2 Z(g) in
(12) and note that �(Z(g)) = Z(g) (Lemma II.1). Finally, replacing y by y�(y) in (12)
we get g(xy�(y)) + g(y�(y)x) = 2g(x)g(y�(y)) which for y = u 2 Z(g) is the same
as (16).

Theorem III.2

Let g : G ! C be a solution of the functional equation (12).

(a) If there exists a u 2 Z(g) such that g(u)2 6= g(u�(u)) then g has the form
g = (m +m � � )=2 for some homomorphism m : G ! C

�: If G is a topological
group and g is continuous then m is also continuous.

(b) If g(u)2 = g(u�(u)) for all u 2 Z(g) then

g(xu) = g(x)g(u) for all x 2 G and u 2 Z(g): (17)

In particular gjZ(g) is a homomorphism of Z(g) into C� if g 6= 0:

Corollary III.3

Let g : G! C be a non-zero solution of the functional equation (12). If Z(g) = G,
i.e. if Kannappan's condition holds, then there exists a homomorphism m : G ! C

�

such that g = (m +m � � )=2:

Corollary III.3 is well known for the short equation (6). See for example [14],
[2] and [20].

The proof of Theorem III.2 consists of modi cations of the corresponding compu-
tations of [5]. A key observation is that the arguments of [5] for u 2 Z(G) actually
work for u in the bigger group Z(g): Another difference is the presence of the general
involution � instead of just the group inversion x ! x�1:
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III. The long d'Alembert functional equation on any group

Lemma III.4
Let g 6= 0 be a solution of (12). For  xed � 2 C and y 2 G we de ne

m(x) = m�;y(x) := g(x) + �

�
g(xy) + g(yx)

2
� g(x)g(y)

�
for x 2 G: (18)

Then g = (m+m � �)=2: In particular m 6= 0:

Proof: Using that g = g � � we  nd that

m(�(x)) = g(�(x)) + �

�
g(�(x)y) + g(y�(x))

2
� g(�(x))g(y)

�

= g(x) + �

�
g(�(y)x) + g(x�(y))

2
� g(x)g(y)

�
:

(19)

Adding this to m(x) we  nd from (12) that m(x) +m(�(x)) = 2g(x):

We will next examine whether m is a homomorphism. To do so we shall for  xed
u 2 Z(g) derive some properties of the function

s(x) = su(x) :=
g(xu) + g(ux)

2
� g(x)g(u) = g(xu)� g(x)g(u); x 2 G: (20)

Thinking of g as a cosine function, s as a sine function and m = m�;u = g + �s as an
exponential function we  nd in Lemma III.5 some of the well known addition formulas
for the trigonometric functions in a noncommutative setting.

Lemma III.5
Let g : G ! C be a solution of (12). For any u 2 Z(g); x; y 2 G and � 2 C we

have the following identities for s (de ned by (20)), g and m = g + �s :

s(xy) + s(yx)

2
= s(x)g(y) + g(x)s(y); (21)

s(x)s(y) =

�
g(xy) + g(yx)

2
� g(x)g(y)

�h
g(u)2 � g(u�(u))

i
; (22)

m(x)m(y)�
m(xy) +m(yx)

2

=

�
g(x)g(y)�

g(xy) + g(yx)

2

�n
1� �2

h
g(u)2 � g(u�(u))

io
:

(23)

Proof: Note that �(u) 2 Z(g) because u 2 Z(g) (Lemma II.1).

First some computations the result of which we shall need below. For �(x) = x�1

they can be found in [5]. More precisely, we will prove the two formulas:

g(xu)g(y) + g(yu)g(x) =
g(xyu) + g(yxu)

2
+ g(u)

�
2g(x)g(y)�

g(xy) + g(yx)

2

�
; (24)
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III. The long d'Alembert functional equation on any group

g(xu)g(yu) = g(u)
g(xyu) + g(yxu)

2
+ g(u�(u))

�
g(x)g(y)�

g(xy) + g(yx)

2

�
: (25)

(24) is proved by a computation in which we use (12), that g = g � � and (15):

4[g(xu)g(y) + g(yu)g(x)] = g(xyu) + g(x�(y)u) + g(yxu) + g(�(y)xu)

+ g(yxu) + g(y�(x)u) + g(xyu) + g(�(x)yu)

= 2g(xyu) + 2g(yxu) + g(y�(x)�(u)) + g(y�(x)u) + g(�(x)y�(u)) + g(�(x)yu)

= 2g(xyu) + 2g(yxu) + 2g(y�(x))g(u) + 2g(�(x)y)g(u)

= 2fg(xyu) + g(yxu) + g(u)[g(y�(x)) + g(�(x)y)]g

= 2fg(xyu) + g(yxu) + g(u)[4g(x)g(y)� g(yx)� g(xy)]g:

(26)

We prove (25) in a similar way using (12) and (15) plus the identity g(xu�(u)) =
g(x)g(u�(u)) that was derived as formula (16) in Lemma III.1:

4g(xu)g(yu) = g(xyuu) + g(x�(y)u�(u)) + g(yxuu) + g(�(y)xu�(u))

= g(xyuu) + g(xyu�(u))� g(xyu�(u)) + g(yxuu) + g(yxu�(u))� g(yxu�(u))

+ [g(x�(y) + g(�(y)x))]g(u�(u))

= 2g(xyu)g(u) + 2g(yxu)g(u) + [g(x�(y) + g(�(y)x))� g(xy)� g(yx)]g(u�(u))

= 2g(u)[g(xyu) + g(yxu)] + g(u�(u))[4g(x)g(y)� 2g(xy)� 2g(yx)]

= 2fg(u)[g(xyu) + g(yxu)] + g(u�(u))[2g(x)g(y)� g(xy)� g(yx)]g:

(27)

We can now prove (21).

s(xy) + s(yx)� 2s(x)g(y)� 2g(x)s(y)

= g(xyu)� g(xy)g(u) + g(yxu)� g(yx)g(u)

� 2[g(xu)� g(x)g(y)]g(y)� 2g(x)[g(yu)� g(y)g(y)]

= g(xyu) + g(yxu)� [g(xy) + g(yx)� 4g(x)g(y)]g(u)� 2[g(xu)g(y) + g(x)g(yu)]:

(28)

When we use the formula (24) on the last term of the right hand side of (28) the entire
expression vanishes, proving (21).

The formula (22) is proved by similar computations:

2s(x)s(y) = 2[g(xu)� g(x)g(u)][g(yu)� g(y)g(u)]

= 2g(xu)g(yu)� 2g(xu)g(y)g(u)� 2g(x)g(yu)g(u) + 2g(x)g(y)g(u)2

= 2g(xu)g(yu)� 2[g(xu)g(y) + g(x)g(yu)]g(u) + 2g(x)g(y)g(u)2:

(29)

Using (25) on the  rst and (24) on the second term of the right hand side of (29) the
expression reduces to (22).
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III. The long d'Alembert functional equation on any group

Finally we prove (23) by help of two identities (21) and (22) just derived:

m(x)m(y)�
m(xy) +m(yx)

2

= [g(x) + �s(x)][g(y) + �s(y)]�
1

2
[g(xy) + �s(xy) + g(yx) + �s(yx)]

= g(x)g(y)�
g(xy) + g(yx)

2
+ �

�
s(x)g(y) + g(x)s(y)�

s(xy) + s(yx)

2

�

+ �2s(x)s(y)

= g(x)g(y)�
g(xy) + g(yx)

2
+ 0

+ �2

�
g(xy) + g(yx)

2
� g(x)g(y)

�n
g(u)2 � g(u�(u))

o

=

�
g(x)g(y)�

g(xy) + g(yx)

2

�n
1� �2

h
g(u)2 � g(u�(u))

io
:

(30)

This  nishes the proof of Lemma III.5.

Proof of Theorem III.2: We use the notation from Lemma III.5.

(a) Let u 2 Z(g) be such that g(u)2 � g(u�(u)) 6= 0: Then g 6= 0: The for-
mula g = (m+m � � )=2 was derived in Lemma III.4. Choosing � 2 C such that

�2

h
g(u)2 � g(u�(u))

i
= 1 we get from (23) that

m(xy) +m(yx)

2
= m(x)m(y) for all x; y 2 G: (31)

Furthermore m 6= 0 according to Lemma III.4. We may now refer to [16] where it is
shown that any non-zero solution m of (31) is a homomorphism from G into C�: That
the continuity ofm follows from that of g = m=2+m��=2 is proved in Proposition V.7.

(b) From the identity (22) we  nd that s(x) = su(x) = 0 for all u 2 Z(G); i.e.
according to (20) that (17) holds.

IV. Reduction to the short functional equation

The following Theorem IV.1 was derived for P3-groups in [8]. A P3-group is
metabelian (Combine 3.3 and 3.1 of [9]) so the result below generalizes the one of [8].

Theorem IV.1
On a metabelian group the solutions g : G ! C of the long d'Alembert functional

equation

g(xy) + g(yx) + g
�
xy�1

�
+ g

�
y�1x

�
= 4g(x)g(y); x; y 2 G; (32)

are the same as those of the short one

g(xy) + g
�
xy�1

�
= 2g(x)g(y); 8 x; y 2 G: (33)

8



V. The short d'Alembert functional equation

Proof: We will here prove that g(xy) = g(yx) for all x; y 2 G and any solution g
of (32). This implies that any solution of (32) is a solution of (33). The other direction
is contained in Remark V.2 below. To prove that g(xy) = g(yx) we adopt the ideas of
[8; proof of Theorem 6] to the situation at hand.

The result is trivial for g = 0 so we may assume that g 6= 0: If there exists a u 2 Z(g)
such that g(u)2 6= 1 then Theorem III.2 tells us that g(x) =

�
m(x) +m

�
x�1

��
=2 where

m : G ! C
� is a homomorphism. Obviously g(xy) = g(yx) for such a g.

Left is the case of g(u)2 = 1 for all u 2 Z(g): According to Theorem III.2(b)
we have g(xu) = g(x)g(u) for x 2 G and u 2 Z(g): Using the assumption about
the group being metabelian we get that y2 2 Z(g) for all y 2 G (Proposition II.2(b)
and (a)), so that

g
�
xy2

�
= g

�
y2x

�
= g(x)g

�
y2

�
for all x; y 2 G: (34)

In particular g
�
y2

�
g
�
y�2

�
= g(e) = 1:

Replacing x  rst by xy and then by yx in (32) and subtracting the resulting identities
we  nd after rearranging terms that

4[g(xy)� g(yx)]g(y) = g
�
xy2

�
� g

�
y2x

�
+ g

�
y�1xy

�
� g

�
yxy�1

�
: (35)

Since y2 2 Z(g) the  rst two terms on the right hand side cancel one another.
Furthermore, since g

�
y2

�
g
�
y�2

�
= 1 we get

g
�
y�1xy

�
= g

�
y2

�
g
�
y�1xy

�
g
�
y�2

�
= g

�
y2y�1xyy�2

�
= g

�
yxy�1

�
; (36)

so also the last two terms cancel one another. Thus g(y)[g(xy)� g(yx)] = 0 for
all x; y 2 G: By symmetry g(x)[g(xy)� g(yx)] = 0 for all x; y 2 G: We see that
g(xy) = g(yx) at least when g(x) 6= 0 or g(y) 6= 0: In the  nal case of g(x) = g(y) = 0
we get from the identity (14) that g

�
x2

�
= g

�
y2

�
= �1: Using  rst that g(z) = g

�
z�1

�

for all z 2 G (Lemma III.1) and then (34) we get that

g(xy) = g
�
y�1x�1

�
= g

�
y2

�
g
�
y�1x�1

�
g
�
x2

�
= g

�
y2y�1x�1x2

�
= g(yx): (37)

V. The short d'Alembert functional equation

In this section we solve the short d'Alembert functional equation

g(xy) + g(x�(y)) = 2g(x)g(y); 8 x; y 2 G; (38)

on a metabelian group G for any involution � of G: In view of Theorem IV.1 we also
get the solution of the long d'Alembert functional equation (32) on such a group.

9



V. The short d'Alembert functional equation

Lemma V.1
Let G be any group. Any solution g 6= 0 of the functional equation (38) has for all

x; y 2 G the properties

g � � = g; g(e) = 1; g(xy) = g(yx); g
�
x2

�
+ g(x�(x)) = 2[g(x)]2;

g(xy�(y)) = g(x)g(y�(y)) and x�(x) 2 Z(g):
(39)

Proof: We see that g�� = g when we note that the left hand side of (38) is invariant
under interchange of y and �(y): Putting x = e in the identity (38) we see that g(e) = 1:

Comparing the left and the right hand sides of the following computation

g(xy) + g(x�(y)) = 2g(x)g(y) = 2g(y)g(x) = g(yx) + g(y�(x))

= g(yx) + (g � � )(y�(x)) = g(yx) + g(x�(y))
(40)

we see that g(xy) = g(yx): Putting y = x in (38) we get that g
�
x2

�
+ g(x�(x)) =

2[g(x)]2: Replacing y by y�(y) in (38) we get g(xy�(y)) = g(x)g(y�(y)): Using this
and that g(xy) = g(yx) repeatedly we  nd for any x; y 2 G that

g(xyu�(u)) = g(xy)g(u�(u)) = g(yx)g(u�(u)) = g(yxu�(u))g(xu�(u)y) (41)

showing that u�(u) 2 Z(g) for any u 2 G:

Remark V.2
Any solution g of the short d'Alembert functional equation (38) is also a solution

of the long one (12), because g(xy) = g(yx) for all x; y 2 G (Lemma V.1).

So far we have not used that the group G is supposed to be metabelian. That we do
now where we derive some of the properties of the solutions of the short d'Alembert
functional equation (38) on a metabelian group.

Proposition V.3

Let g : G ! C be a non-zero solution of the functional equation (38) on a metabelian
group G:

Then Z(g) is a normal, � -invariant subgroup of G such that x�
�
x�1

�
2 Z(g) and

x2 2 Z(g) for all x 2 G: Furthermore Z(g) = fx 2 G j g([x; y]) = 1 for all y 2 Gg:

If Z(g) 6= G then Z(g) = fx 2 G j g(x) 6= 0g; g is a homomorphism of Z(g) into
C
� and g

�
x�

�
x�1

��
= �1 for all x 2 G n Z(g):

Proof: Let us  rst assume that there exists a u 2 Z(g) such that g(u)2 6= g(u�(u)):
Since g is a solution of the short d'Alembert functional equation (38) it is also a
solution of the long one (Remark V.2), so we can apply Theorem III.2 to infer that
g = (M +M � � )=2 for some homomorphism M : G ! C

�: It follows that Z(g) = G:
The Proposition is trivially true in this case.

We may thus assume that g(u)2 = g(u�(u)) for all u 2 Z(g): Going back to
Theorem III.2(b) we see that in this case g(xu) = g(x)g(u) for all x 2 G and

10



V. The short d'Alembert functional equation

u 2 Z(g): We may apply Proposition II.2 because [G;G] � Z(G) � Z(g): From
(a) of the Proposition we see that Z(g) = fx 2 G j g([x; y]) = 1 for all y 2 Gg: Since
g
�
xyx�1

�
= g(y) for all x; y 2 G (Lemma V.1) we see, now from (d) of Proposition

II.2, that Z(g) = fx 2 G j g(x) 6= 0g: So x 2 G n Z(g) implies that g(x) = 0:
From the functional equation (38) we get with y = x�1 that 1 + g

�
x�
�
x�1

��
=

2g(x)g
�
x�1

�
= 0; so g

�
x�
�
x�1

��
= �1 as desired. That in turn implies that

x�
�
x�1

�
2 fy 2 G j g(y) 6= 0g = Z(g): From Lemma V.1 we get that �(x)x 2 Z(g):

Now, x2 = x�
�
x�1

�
�(x)x 2 Z(g)Z(g) = Z(g):

Theorem V.4

Let G be a metabelian group. The non-zero solutions g : G ! C of the short
d'Alembert functional equation (38) are the following:

I) g = (M +M � �)=2 for some homomorphism M : G ! C
�:

II) There exists a normal, � -invariant subgroup H of G with the property x�
�
x�1

�
2 H

for all x 2 G; and a homomorphism m : H ! C
� with the properties m = m � �

and m
�
x�
�
x�1

��
= �1 for all x 2 G n H; such that

g(x) =

�
m(x) for x 2 H
0 for x 2 G nH

(42)

Let g be a solution as described above under the present case II. Then

(a) Z(g) = G if and only if m extends to a homomorphism M : G ! C
�: If so

then g = (M +M � �)=2:

(b) If Z(g) 6= G then H = Z(g) = fx 2 G j g(x) 6= 0g:

Proof: Let g be a non-zero solution of (38). If Z(g) = G we see from Corollary
III.3 that we are in case I. So we may assume that Z(g) 6= G: Taking H := Z(g) and
m := gjZ(g) we see from Proposition V.3 that we have case II.

We shall next prove the converse, i.e. that the formulas of the cases I and II de ne
solutions of (38). If g has the form from case I then clearly g is a solution of the
functional equation (38). In case II we prove that g(xy) + g(x�(y)) � 2g(x)g(y) = 0
for all x; y 2 G by going through the 5 different possibilities for x and y:

(�) x 2 H and y 2 H: Easy computations because g = m on H:

(�) x 2 H and y 2 G n H: Here �(y) 2 G n H because H is � -invariant. Since
H is a subgroup of G we have that xy 2 G n H and x�(y) 2 G n H: Now,
g(xy) + g(x�(y)) � 2g(x)g(y) = 0 + 0 � 2g(x) � 0 = 0:

(
) x 2 G nH and y 2 H: The same arguments as in (�) work also here.

(�) x 2 G n H; y 2 G nH and xy 2 G n H: Using the assumption y�1�(y) 2 H we
get x�(y) = xyy�1�(y) 2 (G nH)H � G n H; so g(xy) + g(x�(y)) � 2g(x)g(y) =
0 + 0 � 2 � 0 � 0 = 0:

11



V. The short d'Alembert functional equation

(�) x 2 G n H; y 2 G n H and xy 2 H: Here we use the assumptions y�1� (y) 2 H
and m

�
y�1�(y)

�
= �1 as follows:

g(xy) + g(x�(y))� 2g(x)g(y) = g(xy) + g
�
xyy�1�(y)

�
� 2 � 0 � 0

= m(xy) +m
�
xyy�1�(y)

�
= m(xy) +m(xy)m

�
y�1�(y)

�

= m(xy)
�
1 +m

�
y�1�(y)

��
= m(xy)[1� 1] = 0:

(43)

To prove the statement II.a let us  rst assume that Z(g) = G: According to Corollary
III.3 there exists a homomorphism M : G ! C

� such that g = (M +M � �)=2:
Restricting to H we see that m = (M +M � �)=2 on H: The set of homomorphisms
from H into C� is linearly independent (see for example Lemma 29.41 of [13]), so
we infer that m = M on H:

Assume conversely that m extends to a homomorphism M : G ! C
�: For

x 2 H we get that (M +M � �)(x) = (m+m � �)(x) = m(x) + m(x) = 2m(x) =
2g(x): For x 2 G n H we get because x�1�(x) 2 H that (M +M � �)(x) =
M(x)

�
M

�
x�1�(x)

�
+ 1

�
= M(x)

�
m
�
x�1�(x)

�
+ 1

�
= M(x)(�1 + 1) = 0 = 2g(x):

So g(x) = (M(x) + (M � � )(x))=2 for all x 2 G: But Z(g) = G for any function g
of this form.

Finally we get to the statement II.b. From Proposition V.3 we  nd that Z(g) =
fx 2 G j g(x) 6= 0g: From (42) we see that H = fx 2 G j g(x) 6= 0g; so H = Z(g):

Proposition V.5 below shows that for 2±divisible metabelian groups the only non-
zero solutions of (2) are the ones of the form (5). The Heisenberg group H3 is an
example of such a group. The same holds according to Theorem IV.1 for the solutions
of the long functional equation (3). See [4] for a different type of criterion.

Proposition V.5

Let g : G ! C be a non-zero solution of the short d'Alembert functional equation
(38) where G is a metabelian group generated by the squares x2; x 2 G:

Then there exists a homomorphism M : G! C
� such that g = (M +M � � )=2:

Proof: From Proposition V.3 we get that x2 2 Z(g) for each x 2 G so Z(g) = G:
We then apply Corollary III.3.

A result similar to Proposition V.5 holds for continuous solutions of the functional
equation (38). An example is the Heisenberg group.

Theorem V.6
Let G be a metabelian, connected topological group. If g 6= 0 is a continuous

solution of the functional equation (38) then there exists a continuous homomorphism
m : G ! C

� such that g = (m+m � �)=2:

Proof: If Z(g) 6= G then Proposition V.3 says that Z(g) = fx 2 G j g(x) 6= 0g: This
formula shows that Z(g) is open. By its very de nition it is also closed, so Z(g) = G

12
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because G is connected. According to Corollary III.3 there then exists a homomorphism
m : G ! C

� such that g = (m+m � �)=2: The continuity of m is a consequence of
the following general Proposition V.7.

Proposition V.7 below extends Theorem 1 of [14].

Proposition V.7 Let G be a topological group. Let 
1; 
2; � � � ; 
n : G ! C
�

be different homomorphisms, and let c1; c2; � � � ; cn be non-zero complex numbers. If
g = c1
1 + c2
2 + � � �+ cn
n is continuous then each 
j , j = 1; 2; � � � ; n; is continuous.

Proof: The proof goes by induction on n; the induction hypothesis being that
the Proposition is true for sums of n or less terms. The proposition is correct for
n = 1: Consider a continuous function g of the form g = c1
1 + c2
2 + � � � +
cn
n + cn+1
n+1; where 
1; 
2; � � � ; 
n+1 : G! C

� are different homomorphisms and
where c1; c2; � � � ; cn+1 are non-zero complex numbers. It suf ces to prove that 
n+1 is
continuous, for in that case we can apply the induction hypothesis to the continuous
function g � cn+1
n+1 to get the continuity of the remaining homomorphisms. From
the homomorphism property we get for any x; y 2 G that

g(xy) = c1
1(x)
1(y) + � � �+ cn
n(x)
n(y) + cn+1
n+1(x)
n+1(y): (44)

Dividing through by 
1(y) we  nd that

g(xy)


1(y)
� g(x) = c2

�

2(y)


1(y)
� 1

�

2(x) + � � �+ cn+1

�

n+1(y)


1(y)
� 1

�

n+1(x): (45)

Since 
n+1 6= 
1 there is a y1 2 G such that 
n+1(y1)=
1(y1) 6= 1: This means that
the coef cient of the last term of (45) is different from zero at y = y1: The induction
hypothesis applied to the left hand side x ! g(xy1)=
1(y1) � g(x) of (45) at y = y1
ensures that 
n+1 is continuous as desired.
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