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1. Introduction

One of fundamental features in the Brown-Douglas-Fillmore theory of extensions
is that the equivalence relation used to de�ne the extension groups turns out to
be homotopy invariant, see Theorem 2.14 of [BDF]. Similarly much of the power
of Kasparovs generalization of the BDF-theory, cf. [K1]-[K3], comes from the fact
that there are several equivalence relations on the fundamental objects, and that
only one of these relations is obviously homotopy invariant. The others are then
shown to be homotopy invariant, and in fact to de�ne the same relation, by means
of the Kasparov product. This variety of apparently di�erent equivalence relations
is missing in the variant of KK-theory, called E-theory, which was introduced by
Connes and Higson in [CH]. The equivalence relation employed in the general E-
theory framework has so far only been homotopy. But recently the e�orts towards
classifying certain classes of C�-algebras have met with the problem that while the
objects of E-theory, i.e. the asymptotic homomorphisms, seemmuchmore amenable
to classi�cation than the graded HilbertA�B-modules of Kasparov, the equivalence
relation - namely homotopy - is not. The most striking solution of this occurs in the
classi�cation of purely in�nite simple nuclear C�-algebras by Kirchberg and Phillips
where a major part of the proof consists of realizing E-theory, for their particular
class of C�-algebras, as asymptotic homomorphisms modulo an equivalence relation
which is (apparently) much stronger than homotopy, see [Ki], [Ph], [A]. Similar
considerations and results can be found in the work of Lin, [Li1], [Li2] and Dadarlat
and Eilers, [DE].
The project of the present work is to transfer to asymptotic homomorphism the

two most important equivalence relations which were used by Brown, Douglas, Fill-
more and Kasparov and which are not obviously homotopy invariant. To describe
what these relations become in E-theory we formulate one of our main results :

Theorem 1.1. Let A and B be separable C�-algebras, B stable, and let ' = ('t)t2[1;1);
 = ( t)t2[1;1) : SA! B be asymptotic homomorphisms. Then the following are
equivalent :

1) ['] = [ ] in [[SA;B]] (i.e. ' and  are homotopic).
2) There is a family �� : SA! B; � 2 [0; 1], of asymptotic homomorphisms such

that �0 = ';�1 =  , and the family of maps, [0; 1] 3 � 7! ��t (a); t 2 [1;1),
is equicontinuous for all a 2 SA.

3) There is an asymptotic homomorphism � = (�t)t2[1;1) : cone(A) ! B and a
norm-continuous path Ut; t 2 [1;1), of unitaries in M2(B)+ such that

lim
t!1

Ut

�
't(a)

�t(a)

�
U�t �

�
 t(a)

�t(a)

�
= 0
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for all a 2 SA.
Here the equivalence relation described in 2) is the analog of operator homotopy

while the equivalence relation described in 3) corresponds to unitary equivalence
modulo addition by degenerate elements.
By Therem 4.2 of [H-LT] it is possible to realize KK-theory by using asymptotic

homomorphisms where the individual maps are completely positive linear contrac-
tions. It is therefore interesting that we can improve condition 3) for such completely
positive asymptotic homomorphisms in the following way : For given separable C�-
algebras A and B, with B stable, there is a completely positive asymptotic homo-
morphism � = (�t)t2[1;1) : cone(A) ! B with the property that two completely
positive asymptotic homomorphisms ' = ('t)t2[1;1);  = ( t)t2[1;1) : SA! B are
homotopic (as completely positive asymptotic homomorphisms) if and only if there
is a norm-continuous path Ut; t 2 [1;1), of unitaries in M2(B)+ and a continuous
function r : [1;1)! [1;1) such that limt!1 r(t) =1, and

lim
t!1

Ut

�
't(a)

�r(t)(a)

�
U�t �

�
 t(a)

�r(t)(a)

�
= 0

for all a 2 SA.
Recently the author explained how naturally discrete asymptotic homomorphisms

�t into E-theory and KK-theory, [Th1]. For this reason we prove the analogues for
discrete asymptotic homomorphisms of the results we have just described for E-
theory and KK-theory. See Theorem 2.11 and Theorem 4.3. As an application of
the main results we are able to give a description of E-theory which shows, perhaps
surprisingly, that E-theory is a specialization of KK-theory : For separable C�-
algebras A and B there is a natural isomorphism

E(A;B) ' KK(A;Cb([1;1); B 
K)=C0([1;1); B 
K)) :
The proof of this depends in a crucial way on the use of discrete asymptotic homo-
morphisms.

Acknowledgement. Some of our results have non-empty overlap with results ob-
tained by Dadarlat and Eilers in [DE]. One of the key ideas in the proof of our
main results - the one which produces an approximate inner automorphism out of
a trivial KK-element - I learned from their work. This idea was �rst introduced by
Huaxin Lin in [Li1]. I am grateful to all three, Dadarlat, Eilers and Lin, for keeping
me informed about their work.

2. E-theory as homotopy classes of �-homomorphisms
Let X be a locally compact, �-compact Hausdor� space which is not compact.

For any C�-algebra A, let Cb(X;A) denote the C
�-algebra of bounded continuous

functions from X to A and let C0(X;A) be the ideal in Cb(X;A) consisting of the
functions vanishing at in�nity. This gives us an extension

0 // C0(X;A) // Cb(X;A) //qA
Cb(X;A)=C0(X;A) // 0 :

When ' : A ! B is a �-homomorphism we get induced �-homomorphisms ' :
Cb(X;A) ! Cb(X;B) and ' : Cb(X;A)=C0(X;A) ! Cb(X;B)=C0(X;B) in the
obvious way. In the following we will consider an extension

0 // J //j
A //p

B // 0 (2.1)
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of C�-algebras. A starting point for us here is the following observation, which may
be considered a folklore fact.

Lemma 2.1. The sequence

0 // Cb(X;J)=C0(X;J) //
j

Cb(X;A)=C0(X;A) //
p

Cb(X;B)=C0(X;B) // 0

is exact.

Given a C�-algebra D we set ID = C[0; 1] 
 D and cone(D) = ff 2 ID :
f(0) = 0g. Recall that the mapping cone of p is the C�-algebra

Cp = f(z; f) 2 Cb(X;A)=C0(X;A)� cone(Cb(X;B)=C0(X;B)) : p(z) = f(1) g :
There is a canonical imbedding Cb(X;J)=C0(X;J) � Cp given by z 7! (j(z); 0). For

any pair of C�-algebras A and B we let [A;B] denote the set of homotopy classes of
�-homomorphisms from A to B.

Proposition 2.2. Assume that the extension (2.1) splits. Let D be a separable C�-
algebra. Then the canonical imbedding Cb(X;J)=C0(X;J) � Cp induces a bijection

[D;Cb(X;J)=C0(X;J)] ' [D;Cp].

To prove this set

Tp = f(z; f) 2 Cb(X;A)=C0(X;A)� I(Cb(X;B)=C0(X;B)) : p(z) = f(1)g :
Note that Cb(X;J)=C0(X;J) � Cp � Tp. In the following we will suppress j in the

notation and consider Cb(X;J)=C0(X;J) as a C
�-subalgebra of Cb(X;A)=C0(X;A).

Lemma 2.3. Assume that the extension (2.1) splits. Let A � Tp be a separable

C�-subalgebra. There is then a �-homomorphism  : A ! Cb(X;A)=C0(X;A) such
that

i)  (a) = a for all a 2 ATCb(X;J)=C0(X;J),
ii) p �  (z; f) = f(0) for all (z; f) 2 A, and
iii)  (z; g) = z for all (z; g) 2 A with g 2 I(Cb(X;B)=C0(X;B)) a constant

Cb(X;B)=C0(X;B)-valued function.

Proof. Let � : B ! A be a �-homomorphism such that p � � = idB. By enlarging
A if necessary we may assume that (z; f) 2 A ) (�(f(0)); f(0)) 2 A. There is a
separable C�-subalgebra B � Cb(X;B)=C0(X;B) such that (z; f) 2 A; t 2 [0; 1] )
f(t) 2 B. By using the Connes-Higson construction, cf. [CH], we can then de�ne
an asymptotic homomorphism �0 = (�0t)t2[1;1) : cone(B) ! Cb(X;J)=C0(X;J)
such that limt!1 k�0t(f 
 b) � f(ut)�(b)k = 0 when f 2 C[0; 1]; f(0) = 0; b 2 B,
where fut : t 2 [1;1)g is a continuous quasi-central approximate unit for the
ideal CTCb(X;J)=C0(X;J) in C and C � Cb(X;A)=C0(X;A) is the (separable) C�-
algebra generated by �(B). Note that by construction �0 will be equicontinuous in
the sense that the following holds :

Observation 2.4. For every a 2 cone(B) and � > 0 there is a � > 0 such that
supt2[1;1) k�0t(a)� �0t(b)k < � when b 2 cone(B) and ka� bk < �.

We can assume that �0t(0) = 0. Now de�ne �t : IB ! Cb(X;A)=C0(X;A) by
�t(g) = �0t(g � g(0)) + �(g(0)). Then limt!1 k�t(h 
 b) � h(ut)�(b)k = 0 for
all h 2 C[0; 1]; b 2 B. In particular, � = (�t)t2[1;1) : IB ! Cb(X;A)=C0(X;A)
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is an asymptotic homomorphism which is equicontinuous since �0 is. Note that
p(�t(g)) = g(0); g 2 IB. As in the proof of Proposition 3.2 of [DL] we may then
de�ne '0t : A ! Cb(X;A)=C0(X;A) by '0t(z; f) = z � �(f(1)) + �t(f). As demon-
strated in [DL] this gives us an asymptotic homomorphism '0 = ('0t)t2[1;1) : A !
Cb(X;A)=C0(X;A) such that '0t(a) = a for all a 2 ATCb(X;J)=C0(X;J). Note
that '0 is equicontinuous since � is and that

p('0t(z; f)) = p(�t(f)) = f(0) (2.2)

for all (z; f) 2 A and all t. Furthermore, observe that when (z; g) 2 A and g 2
I(Cb(X;B)=C0(X;B)) is a constant function,

lim
t!1

'0t(z; g) = lim
t!1

z � �(g(1)) + �t(g) = z � �(g(1)) + �(g(1)) = z : (2.3)

Finally, set 't(z; f) = '0t(z � �(f(0)); f � f(0)) + �(f(0)). By using that (z; f) =
(z � �(f(0)); f � f(0)) + (�(f(0)); f(0)) it folllows from (2.3) that limt!1 k't(a)�
'0t(a)k = 0 for all a 2 A, and hence ' = ('t)t2[1;1) is an asymptotic homomorphism.
Since '0 is equicontinuous, so is '. In addition (2.2) implies that '0t(Cp \ A) �
Cb(X;J)=C0(X;J) and hence p('t(z; f)) = p(�(f(0))) = f(0) for all (z; f) 2 A.
And (2.3) implies that

lim
t!1

't(z; g) = lim
t!1

'0t(z � �(g(0)); 0) + �(g(0)) = z (2.4)

for all (z; g) 2 A with g constant. The reason that we have exchanged '0 with ' is
that the latter satis�es

't(z; f) = 't(z � �(f(0)); f � f(0)) + �(f(0)) (2.5)

for all (z; f) 2 A and all t. Let fd1; d2; d3; � � � g � A be a dense sequence, and let
S : Cb(X;A)=C0(X;A)! Cb(X;A) be a continuous section for the quotient map. It
has been observed by Loring in [L] that we may choose S such that kS(z)k � 2kzk for
all z 2 Cb(X;A)=C0(X;A) and such that S(Cb(X;J)=C0(X;J)) � Cb(X;J). (See
in particular the remark following Theorem 2 of [L].) Let fUig1i=1 be a locally �nite
open covering of X such that Ui is compact for all i. For each n 2 N we can �nd
mn 2 N so large that kS('t(a))(x)S('t(b))(x) � S('t(ab))(x)k � 2k't(a)'t(b) �
't(ab)k + 1

n
; kS('t(a))(x) + S('t(b))(x) � S('t(a + b))(x)k � 2k't(a) + 't(b) �

't(a+ b)k + 1
n
and kS('t(a�))(x) � S('t(a))(x)

�k � 2k't(a�)� 't(a)
�k + 1

n
for all

t 2 [1; n]; a; b 2 fd1; d2; � � � ; dng and all x =2 Smn

i=1 Ui. Finally, by using (2.5) we can
arrange that

kS('t(z; f))(x)� S('t(z � �(f(0)); f � f(0)))(x)� S(�(f(0)))(x)k � 1

n
(2.6)

for all t 2 [1; n]; (z; f) 2 fd1; d2; � � � ; dng and all x =2 Smn

i=1 Ui. We can assume that
1 < mn < mn+1 for all n. Set m0 = 1 and let gi : Ui ! [0;1) be the constant
function gi(x) = n � 1 for each i 2 fmn�1 + 1;mn�1 + 2; � � � ;mng, n = 1; 2; 3; � � � .
Let fhig be a partition of unity subordinate to fUig and de�ne g : X ! [0;1) by

g(x) =
P

i hi(x)gi(x). Set Kj =
Smj

i=1 Ui. Then

lim
j!1

sup
x=2Kj

kS('g(x)(a))(x)S('g(x)(b))(x)� S('g(x)(ab))(x)k = 0 ; (2.7)

lim
j!1

sup
x=2Kj

kS('g(x)(a))(x) + S('g(x)(a))(x)� S('g(x)(a+ b))(x)k = 0 ; (2.8)
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and

lim
j!1

sup
x=2Kj

kS('g(x)(a�))(x)� S('g(x)(a))(x)
�k = 0 (2.9)

for all a; b 2 fd1; d2; � � � g. From (2.6) we see that

lim
j!1

sup
x=2Kj

kS('g(x)(z; f))(x) �

S('g(x)(z � �(f(0)); f � f(0)))(x) � S(�(f(0)))(x)k = 0
(2.10)

for all (z; f) 2 fd1; d2; � � � g. For each d 2 A, de�ne hd 2 Cb(X;A) by hd(x) =
S('g(x)(d))(x); x 2 X, and set  (d) = qA(hd) 2 Cb(X;A)=C0(X;A). Since ' is
equicontinuous it follows that  (d) depends continuously on d. Therefore (2.7)-(2.9)
imply that  is a �-homomorphism. If a 2 ATCb(X;J)=C0(X;J) we have that
't(a) = a for all t 2 R and hence that  (a) = a. (2.4) shows that  (z; g) = z
when (z; g) 2 A and g 2 I(Cb(X;B)=C0(X;B))) is constant. To prove that also ii)
in the statement holds we use (2.10) and that S(Cb(X;J)=C0(X;J)) � Cb(X;J).
This gives us that

p( (z; f)) = p � qA(h(z;f)) = qB(p(h(z��(f(0));f�f(0))+ S(�(f(0)))))

= qB(p(S(�(f(0))))) = p(�(f(0))) = f(0)

when (z; f) 2 fd1; d2; � � � g since S � 'g(x)(Cp \ A) � Cb(X;J) for all x 2 X. ii)
follows by continuity.

Lemma 2.5. Assume that the extension (2.1) splits. Let A � Cp be a separable C�-

subalgebra. There is then a family �s : A ! Cp; s 2 [0; 1], of �-homomorphisms
such that

a) [0; 1] 3 s 7! �s(a) is continuous for all a 2 A,
b) �0(a) 2 Cb(X;J)=C0(X;J) for all a 2 A,
c) �0(a) = a for all a 2 ATCb(X;J)=C0(X;J),
d) �1 is the identity on A.

Proof. For each s 2 [0; 1] de�ne �-homomorphisms �s; �s : cone(Cb(X;B)=C0(X;B))!
I(Cb(X;B)=C0(X;B)) by �s(f)(r) = f(sr), and �s(f)(r) = f(s + (1 � s)r); r 2
[0; 1]. Note that (z; �s(f)) 2 Tp for all s 2 [0; 1] and all (z; f) 2 Cp. Let B be a sep-

arable C�-subalgebra of Tp containing (z; �s(f)) for all (z; f) 2 A and all s 2 [0; 1].

Lemma 2.3 gives us a �-homomorphism  : B ! Cb(X;A)=C0(X;A) satisfying i),
ii) and iii). Set �s(z; f) = ( (z; �s(f)); �s(f)); (z; f) 2 A. It is straightforward to
check that f�sg has the stated properties.

Proposition 2.2 follows immediately from Lemma 2.5.
In the following we letK denote the C�-algebra of compact operators on an in�nite

dimensional separable Hilbert space. For any C�-algebra B we letM(B) denote the
multiplier algebra of B.

Lemma 2.6. Let D be a separable C�-subalgebra of Cb(X;B 
 K)=C0(X;B 
 K).
There is then a stable separable C�-algebra E such that D � E � Cb(X;B 

K)=C0(X;B 
K).
Proof. The crucial point is the following
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Observation 2.7. Let f 2 Cb(X;B 
 K) be a positive element. There is then an
element z 2 Cb(X;B
K)=C0(X;B
K) such that z�z = qB
K(f) and zz�qB
K(f) =
0.

To prove this observation, let W1 � W2 � W3 � � � � be a sequence of relatively
compact open sets in X such that

S
1

n=1Wn = X. Let fUig1i=1 be a locally �nite
covering of X by relatively compact open sets. Choose 1 < m1 < m2 < m3 < � � � in
N such that Wn �

Smn

i=1 Ui. Set Vi = Ui; i = 1; 2; � � � ;m1, and Vi = UinWn; i =
mn + 1;mn + 2; � � � ;mn+1; n 2 N. Then fVig is also a locally �nite covering of X
by relatively compact open sets, and

Wn

\
Vi = ; ; i > mn ; n 2 N : (2.11)

Consider K as a C�-subalgebra of M(B 
 K) via the embedding x 7! 1B 
 x.
Standard arguments give us projections p1 � p2 � p3 � � � � in K �M(B
K) such
that

sup
x2Vj

kpjf(x) � f(x)k � 1

j
: (2.12)

Let fhig be a partition of unity subordinate to fVig and de�ne g 2 Cb(X;B 
 K)
by g(x) =

P1

i=1 hi(x)pif(x)pi. Then qB
K(g) = qB
K(f) by (2.12). Note that
pmk

g(x) = g(x); x 2 Wk, by (2.11), and that there are projections q1 � q2 � q3 � � � �
in K such that qig(x) = g(x); x 2 Vi (use that Vi � Wl for all su�ciently large
l). Choose partial isometries fvjg1j=1 2 M(B 
K) recursively such that vjv�jpmn =
0; v�jvj = qj for all j � mn; n 2 N, and v�i vj = 0 when i 6= j. De�ne h 2 Cb(X;B
K)
by h(x) =

P1

i=1

p
hi(x)vi

p
g(x). Then h�h = g and hh�g = 0. Setting z =

qB
K(h) we have established the observation. It follows that we can �nd a sequence
D � D1 � D2 � � � � of separable C�-subalgebras of Cb(X;B
K)=C0(X;B
K) and
for each n have a dense sequence fg1; g2; � � � g in the positive part of Dn and elements

fv1; v2; � � � g in Dn+1 such that v�kvk = gk and vkv�kgk = 0 for all k. Set E =
S1
n=1Dn

which is a separable C�-subalgebra of Cb(X;B 
K)=C0(X;B 
K) containing D. If
a 2 E is a positive element and � > 0 there are elements b; x 2 E; b � 0, such that
ka � bk < �; x�x = b and xx�b = 0. By Proposition 2.2 and Theorem 2.1 of [HR]
we conclude that E is stable.

When D;B are C�-algebras [D;B 
 K] is an abelian semigroup. We make now
the following assumption on D :

[D;E 
K] is a group for any separable C�-algebra E : (2.13)

Under this assumption, and when D is separable, it follows from Lemma 2.6 that
[D;Cb(X;B 
K)=C0(X;B 
K)] has the structure of an abelian group, and we can
de�ne a functor, FX, from the category of C�-algebras to the category of abelian
groups such that

FX(B) = [D;Cb(X;B 
K)=C0(X;B 
K)]
and  � : FX(A) ! FX(B) is given by  �['] = [ 
 idK � '], when  : A! B
and ' : D ! Cb(X;A
K)=C0(X;A
K) are �-homomorphisms.

Proposition 2.8. FX is a split-exact and stable functor.
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Proof. The split-exactness of FX follows by combining Proposition 2.2 with Theorem
3.8 of [R]. By use of Lemma 2.6 the stability of FX can be proved by adopting the
well-known argument for the stability of the functor [D;� 
 K]. We leave this to
the reader.

Theorem 2.9. Let D be a separable C�-algebra such that (2.13) holds. For any
C�-algebra B, [[D;B 
K]] is a group and the canonical map

[D;Cb([1;1); B 
K)=C0([1;1); B 
K)] ! [[D;B 
K]]
is an isomorphism.

Proof. For any C�-algebra A and � 2 [0; 1], let �� : IA! A be the �-homomorphism
IA 3 f 7! f(�). The map [D;Cb([1;1); B
K)=C0([1;1); B
K)] ! [[D;B
K]]
is clearly surjective so it su�ces to show that it is also injective. Thus we must show
that if � : D ! Cb([1;1); IB
K)=C0([1;1); IB
K) is a �-homomorphism, then
�0 
 idK � � and �1 
 idK � � are homotopic. Equivalently, we must show that the
functor F[1;1) is homotopy invariant. By Proposition 2.8 this follows from Theorem
3.2.2 of [H].

Corollary 2.10. Let A and B be C�-algebras with A separable. Let ' = ('t)t2[1;1);
 = ( t)t2[1;1) : SA! B
K be asymptotic homomorphisms. Then ['] = [ ] in
[[SA;B
K]] if and only if there is a family �� = (��t )t2[1;1) : SA! B
K; � 2
[0; 1], of asymptotic homomorphisms such that �0 = '; �1 =  , and

[0; 1] 3 � 7! ��t (a) ; t 2 [1;1) ;

is an equicontinuous family of maps from [0; 1] to B 
K for all a 2 SA.
Proof. As is wellknown SA satis�es (2.13) so Theorem 2.9 applies.

By choosing X = N in Proposition 2.8 we get analogues of Theorem 2.9 (and
its corollaries) for discrete asymptotic homomorphisms. To state the result in this
case we denote Cb(N; A) by

Q1

1 A and C0(N; A) by �11 A. Recall from [Th1] that
[[A;B]]N denotes the homotopy classes of discrete asymptotic homomorphisms ' =
('n)n2N : A! B.

Theorem 2.11. Let D be a separable C�-algebra such that (2.13) holds. For any
C�-algebra B, [[D;B 
K]]N is a group and the canonical map

[D;
1Y
1

B 
K=�11 B 
K] ! [[D;B 
K]]N

is an isomorphism.

3. On absorbing extensions of a suspended C�-algebra

Lemma 3.1. Let A � D and B be C�-algebras, D separable, B �-unital. Assume
that there is a sequence fmkg in M(D) such that 0 � mk � mk+1 � 1, mkD � A
and mka = amk for all k 2 N; a 2 A, and such that limk!1mka = a for all a 2 A.
Let ' : A!M(B) be a completely positive contraction. For every �nite set F � A
and every � > 0 there is a completely positive contraction  : D!M(B) such that
 (a)� '(a) 2 B for all a 2 A and k'(x)�  (x)k < � for all x 2 F .
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Proof. Let X be a compact subset of positive elements in A such that every element
f 2 F has the form f = x1 � x2 + i(x3 � x4) for some x1; x2; x3; x4 2 X, and such

that the span of X is dense in A. Let t = (8
P1

k=1 k2
�
k+1
2 )�1 and set m0 = 0 and

dk = (mk �mk�1)
1
2 ; k 2 N. By passing to a subsequence we may assume that

kd2kxk � t�2�k; k � 2; x 2 X : (3.1)

Let fbkg be a countable approximate unit inB such that limk!1 kbk'(a)� '(a)bkk =

0 for all a 2 A. Set b0 = 0 and fk = (bk � bk�1)
1
2 ; k 2 N. By passing to a subse-

quence of fbkg we can arrange that

kfl'(xd2i )fl � '(xd2i )f
2
l k � t�2�l (3.2)

when x 2 X and i � l. It follows from (3.1) and (3.2) that

kfl'(dixdi)fl � '(xd2i )f
2
l k � 2t�2�

m
2 ; x 2 X; i+ l = m � 2 : (3.3)

Set  k(d) =
P

l+i=k+1 fl'(diddi)fl; d 2 D. Let x =
Pm

k=n  k(d) and y =Pm
i;j=n fi'(djddj)fi. For d � 0 we have the estimate

k
mX
k=n

 k(d)bk4 � kxk2kb�xbk2 � kxk2kb�ybk2 � kdk4kbk2k
mX
i=n

b�f2i bk (3.4)

for all b 2 B. (3.4) shows thatP1

k=1  k(d) converges in the strict topology for all pos-
itive d 2 D, and hence in fact for all d 2 D. The resulting map,  (d) =

P1

k=1  k(d),
is then a completely positive contraction. Set 'k(a) =

P
l+i=k+1 '(ad

2
i )f

2
l ; a 2 A.

It follows from (3.3) that

k k(a) � 'k(a)k � 2kt�2�
k+1
2 (3.5)

for all k 2 N and all a 2 X. Hence
P1

k=1 'k(a)b converges for all a 2 X and all
b 2 B. In fact, it follows from (3.3) that

1X
k=1

'k(a)b = lim
m!1

mX
i;j=1

'(ad2i )f
2
j b = '(a)b

for all a 2 X; b 2 B. Note that for all a 2 X

k'(a)�  (a)k �
1X
k=1

k k(a) � 'k(a)k �
1X
k=1

2kt�2�
k+1
2 =

�

4
:

Since

lim
m!1

k'(a)�  (a)� (
mX
k=1

'k(a)�  k(a))k � lim
m!1

1X
k=m+1

k'k(a)�  k(a)k = 0

for a 2 X by (3.5), we see that '(a) �  (a) is the norm-limit of fPm
k=1 'k(a) �

 k(a)g1m=1 � B proving that '(a)�  (a) 2 B for all a 2 X, and hence in fact for
all a 2 A.

The preceding lemma is a generalization of Lemma 10 from [K2] which it reduces
to when A = D (except that no group action is considered), and the proof is an
elaboration of Kasparovs argument. The point of the version above is that it covers
the case where A is a suspended C�-algebra, i.e. A = SA1, and D is the cone of A1.
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Given a Hilbert B-module E we let LB(E) denote the C�-algebra of adjoinable
operators on E. The ideal of 'compact' operators in LB(E) is denoted by KB(E). In
the special case where E = B there are well-known identi�cations LB(B) =M(B)
and KB(B) = B which we shall use freely. Given a C�-algebra A we denote by
A+ the C�-algebra obtained by adding a unit to A. Any linear completely positive
contraction ' : A ! M(B) admits a unique linear extension '+ : A+ ! M(B)
such that '+(1) = 1. '+ is automatically a completely positive contraction, and
is automatically a �-homomorphism when ' is.

Lemma 3.2. Let A and B be separable C�-algebras with B stable. If � : cone(A)!
M(B) is an absorbing �-homomorphism then so is �jSA : SA!M(B).

Proof. It follows from Lemma 3.1 that �+j(SA)+ : (SA)+ !M(B) satis�es condi-
tion 2) of Theorem 2.1 in [Th2].

Assuming that B is stable we can choose a sequence Si; i = 1; 2; � � � , of isometries
inM(B) with orthogonal ranges such that

P1

i=1 SiS
�
i = 1, where the sum converges

in the strict topology. If � : A !M(B) is a �-homomorphism we can then form
a new �-homomorphism �1 � 01 : A!M(B) which is given by (�1 � 01)(a) =P1

i=1 S2i�(a)S
�
2i.

De�nition 3.3. A �-homomorphism � : A!M(B) is saturated when � is unitarily
equivalent to �1 � 01.

Lemma 3.4. Let A and B be separable C�-algebras with B stable. Let � : A !
M(B) be a saturated and absorbing �-homomorphism. Let X be a compact metriz-
able space with base-point x0 2 X and set C0(X) = ff 2 C(X) : f(x0) = 0g.
De�ne 1C0(X) 
 � : A !M(C0(X) 
B) by (1C0(X) 
 �(a)f)(x) = �(a)f(x); x 2
X; f 2 C0(X) 
B. Then 1C0(X) 
 � is absorbing.

Proof. By Theorem 2.1 of [Th2] it su�ces to consider a completely positive con-
traction ' : A+ ! C0(X) 
 B, �nite subsets F � A+, G � C0(X) 
 B and
� > 0, and construct L 2 M(C0(X) 
 B) such that kL�gk < �; g 2 G, and
k'(a)�L�(1C0(X)
�)+(a)Lk < � for all a 2 F . There is a �nite set x1; x2; x3; � � � ; xn
in Xnfx0g and a partition of unity fhi : i = 1; 2; � � � ; ng in C(X) such that
k'(a) � Pn

i=1 hi'(a)(xi)k < �
2
; a 2 F . Since � is saturated there is a se-

quence of isometries Ti; i 2 N, in M(B) such that T �i �
+(A+)Tj = f0g; i 6= j,

T �i �
+(a)Ti = �+(a) for all i; a and limk!1 kT �k bk = 0 for all b 2 B. Since fg(x) :

x 2 X; g 2 Gg is a compact subset of B and �+ is unitally absorbing, it follows
from Theorem 2.1 of [Th2] that we can �nd elements V1; V2; � � � ; Vn 2 M(B) such
that kV �i �+(a)Vi � '(a)(xi)k < �

2 ; a 2 F ; i = 1; 2; � � � ; n. Set Wi = TK+iVi; i =
1; 2; � � � ; n. If K is large enough we have that kW �

i �
+(a)Wi � '(a)(xi)k < �

2 ; a 2
F; W �

i �
+(A+)Wj = f0g; i 6= j, and kW �

i g(x)k < �
n
; g 2 G; x 2 X. De�ne the

desired L by (Lf)(x) =
Pn

i=1

p
hi(x)Wif(x).

In the following we will let 1m and 0m denote the unit and the zero element of
Mm(M(B)), respectively. We will identifyMm(M(B)) and M(Mm(B)).

Lemma 3.5. Let D and B be C�-algebras, B separable. Let � : D ! M(B) be a
�-homomorphism and p 2 M(B) a projection such that p�(D) � B. Assume that
F � D is a �nite set and � > 0 is such that

k�(a)p� p�(a)k < � ; a 2 F : (3.6)
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Let F1 � D and G � B be �nite sets. Let 0 � z � 1 be a strictly positive element in
(1� p)B(1� p) and let �1; �2 2 ]0; 1[ be given. There is then a continuous function
g : [0; 1]! [0; 1] such that g is zero in a neighbourhood of 0, g(t) = 1; t � �1,

sup
t2[0;1]

k[�(d); p+ g(tz)]k < 5� ; d 2 F ; (3.7)

k[�(d); p+ g(z)]k < �2 ; d 2 F1 ; (3.8)

and

kpb+ g(z)b� bk < �2 ; b 2 G : (3.9)

Proof. Let � denote the convex set of continuous functions g : [0; 1] ! [0; 1] such
that g is zero in a neighbourhood of 0 and g(t) = 1; t � �1. For each x 2 F de�ne a
multiplier ~x of cone((1�p)B(1�p)) by (~xf)(t) = (1�p)�(x)(1�p)f(t) ; t 2 [0; 1],
and de�ne ~g 2 cone((1�p)B(1�p)) by ~g(t) = g(tz). Then (~g; g(z)); g 2 �, form a
convex approximate unit in cone((1�p)B(1�p))�(1�p)B(1�p). Since �(D)p � B
we can use the argument from the proof of the existence of quasi-central approximate
units to �nd a g 2 � such that k[(~x; �(y)); (~g; p + g(z))]k < minf�; �2g; x 2 F; y 2
F1, and kpb+ g(z)b� bk < �2; b 2 G. In particular (3.8) and (3.9) hold and we have
that

sup
t2[0;1]

k[(1� p)�(x)(1� p); g(tz)]k < �; x 2 F : (3.10)

Since [�(x); g(tz)] = [(1 � p)�(x)(1 � p); g(tz)] + [(1 � p)�(x)p; g(tz)] + [p�(x)(1 �
p); g(tz)], we get (3.7) by combining (3.10) with (3.6).

Let H be an in�nite-dimensional separable C�-algebra. We can then de�ne g :
[0;1[! [0; 2] by

g(s) = supfk[a;px]k : a; x 2 B(H); kak � 1; 0 � x � 1; k[a; x]k � sg :
By the lemma on page 332 of [Ar], g is continuous at 0, i.e. lims!0 g(s) = 0. g will
feature in the next lemma.

Lemma 3.6. Let D and B be separable C�-algebras with D contractible. Let 't :
D ! D; t 2 [0; 1], be a homotopy of endomorphisms of D such that '0 = id
and '1 = 0. Let F0 � F1 � D and G1 � B be �nite subsets. Let � : D !
M(B) be a �-homomorphism and p 2 M(B) a projection such that p�(D) � B and
kp�('t(a))� �('t(a))pk < �; a 2 F0; t 2 [0; 1], for some � > 0.

For any � > 0 there is then a n 2 N, a �-homomorphism �1 : D ! M(Mn(B))
and a continuous path pt; t 2 [0; 1], of elements pt 2 M(Mn+1(B)) such that

1) 0 � pt � 1; t 2 [0; 1],

2) (p2t � pt)
�
�(a)

�1(a)

�
= 0 ; a 2 D; t 2 [0; 1],

3) pt
�
�(a)

�1(a)

�
2 Mn+1(B) ; a 2 D; t 2 [0; 1],

4) kpt
�
�(a)

�1(a)

�
�
�
�(a)

�1(a)

�
ptk � 6g(20�) + 3� ; a 2 F0; t 2 [0; 1],

5) ( p 0n ) � pt; t 2 [0; 1],

6) kp1
�
�('t(a))

�1('t(a))

�
�
�
�('t(a))

�1('t(a))

�
p1k � � ; a 2 F1; t 2 [0; 1],

7) kp1
�
b
0n

� � �
b
0n

� k < � ; b 2 G1,
8) p1 = p21; p0 = p.
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Proof. The proof is an elaboration of Voiculescus proof of Proposition 3 in [V]. Let

� > 0 be so small that 6g(4�) + 3� < �
3
; � < � and � +

p
kbk� < � for all b 2 G1.

Choose �rst a �nite �
3
-dense subset F of f't(a) : t 2 [0; 1]; a 2 F1g, and then a n so

large that t; s 2 [0; 1]; js� tj � 1=n ) k't(a)�'s(a)k < �; a 2 F . Let 0 � z � 1
be a strictly positive element in (1 � p)B(1 � p). It follows from Lemma 3.5 that
there are continuous functions gi : [0; 1] ! [0; 1]; i = 0; 1; � � � ; n � 1, which are all
zero in a neighbourhood of 0 such that gjgj�1 = gj�1; j = 1; 2; � � � ; n� 1, and such
that the elements xj = p + gj(z) and xtj = p+ gj(tz) satisfy that

kxj� � ' j

n
(a)� � � ' j

n
(a)xjk � � ; (3.11)

j = 0; 1; 2; � � � ; n� 1; a 2 F , kx0b� bk � �; b 2 G1, and

kxtj� � ' j

n
(a)� � � ' j

n
(a)xtjk < 5� ; (3.12)

j = 0; 1; 2; � � � ; n � 1; a 2 F0 ; t 2 [0; 1]. Set �1 = diag(� � ' 1
n
; � � ' 2

n
; � � � ; � � '1)

and

pt =
� p

0n�1
2t(11�p)

�
; t 2 [0;

1

2
] :

Then 1)-5) hold trivially for t 2 [0; 1
2
]. Note that xtix

t
i�1 = xti�1; i = 1; � � � ; n�1. Set

X0
t = x2t�10 ; Xj

t = x2t�1j �x2t�1j�1 ; j = 1; 2; � � � ; n�1, and Xn
t = 11�x2t�1n�1 ; t 2 [1

2; 1].

De�ne Tt 2 M(Mn+1(B)); t 2 [1
2
; 1], by

Tt =

0BBB@
p
X0
t 0 : : : 0p

X1
t 0 : : : 0

...
...

. . .
...p

Xn
t 0 : : : 0

1CCCA :

Then TtT
�
t is a projection since T �t Tt clearly is. Since T 1

2
T �1

2
= p 1

2
we can extend

pt; t 2 [0; 12], to a continuous path inM(Mn+1(B)) by setting pt = TtT
�
t ; t 2 [12; 1].

Then 1) and 2) clearly hold and 3) follows from the observation that�
�(a)

�1(a)

�
Tt � Mn+1(B) ; a 2 D; t 2 [

1

2
; 1] :

It follows from (3.11) and (3.12), by using that TtT �t is tri-diagonal as in the proof
of Proposition 3 in [V], that

k[p1;
�
�(a)

�1(a)

�
]k � 6g(4�) + 3� � �

3
; a 2 F ;

and

k[pt;
�
�(a)

�1(a)

�
]k � 6g(20�) + 3� ; a 2 F0 ; t 2 [

1

2
; 1] ;

i.e. 4) and 6) hold. 5) is trivial when t 2 [0; 12 ] and for t > 1
2 it follows from the

observation that

( p 0n )Tt = ( p 0n ) ; ( p 0n )T
�
t = ( p 0n ) :

It is straightforward to check that kp1
�
b
0n

��� b 0n

� k � kX0
1b�b+

p
X1

1

p
X0

1bk �
� +
pkbk� when b 2 G1, and 7) holds. 8) is trivial.
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Theorem 3.7. Let A and B be separable C�-algebras, B stable. There exists a
saturated and absorbing �-homomorphism � : cone(A) ! M(B) such that also
�jSA : SA!M(B) is saturated and absorbing, and a continuous path pt; t 2 [0;1),
of elements in M(B) such that

1) 0 � pt � 1; t 2 [0;1),
2) pt�(cone(A)) � B ; t 2 [0;1),
3) (p2t � pt)�(cone(A)) = f0g ; t 2 [0;1),
4) limt!1 ptb = b ; b 2 B,
5) limt!1 kpt�(a)� �(a)ptk = 0 ; a 2 cone(A),
6) p0 = 0; p2n = pn; n = 1; 2; 3; � � � .

Proof. By [Th2] and Lemma 3.2 there is an absorbing �-homomorphism SA !
M(B) which is the restriction of an absorbing �-homomorphism � : cone(A) !
M(B). Let F1 � F2 � F3 � � � � and G1 � G2 � G3 � � � � be sequences of
�nite sets with dense union in cone(A) and B, respectively. By using Lemma 3.6
we can construct a sequence 1 = n0 < n1 < n2 < � � � of natural numbers, paths
pi(t); t 2 [i; i + 1]; in Mni(M(B)); i = 0; 1; 2; � � � , and �-homomorphisms e�i :
cone(A) ! Mni�ni�1(M(B)); i = 1; 2; � � � , such that �0 = � and �i = �i�1 � e�i :
cone(A)!Mni(M(B)); i = 1; 2; � � � , satisfy
1) 0 � pi(t) � 1; t 2 [i; i+ 1]; i = 0; 1; 2; � � � ,
2) kpi(t)�i(a) � �i(a)pi(t)k � 1

i
; a 2 Fi ; t 2 [i; i+ 1]; i = 0; 1; 2; � � � ,

3) pi(t)�i(cone(A)) �Mni(B); t 2 [i; i+ 1]; i = 1; 2; � � � ,
4) kpi+1(t)

�
b
0ni�ni�1

�
�
�
b
0ni�ni�1

�
k � 1

i
when all the entries of b 2Mni�1(B)

come from Gi, t 2 [i; i+ 1]; i = 1; 2; 3; � � � ,
5) (pi(t)2 � pi(t))�i(cone(A)) = f0g ; t 2 [i; i+ 1]; i = 0; 1; 2; � � � ,
6) pi(i) = pi(i)2 =

�
pi�1(i) 0

0 0ni�ni�1

�
; i = 1; 2; 3; � � � ,

and p0 = 0. Note that we can arrange that e�i has the form e�i = �i�1 � 0 � 'i
for some �-homomorphism 'i : cone(A) ! Mni�2ni�1�1(M(B)). Now de�ne '0 :
cone(A)! LB(l2(B)) by '0(d) = diag(�(d); e�1(d); e�2(d); e�3(d); � � � ), and set

p0t =

�
pi(t)

01

�
; t 2 [i; i+ 1] ; i = 0; 1; 2; � � � :

'0 is unitarily equivalent to a �-homomorphism � : cone(A)!M(B) since l2(B) '
B as Hilbert B-modules. Note that both � and �jSA : SA!M(B) are absorbing
because � has these properties. Furthermore both � and �jSA are saturated since
each �i as well as 0 occur as direct summands in e�k for in�nitely many k's. Via the
isomorphism l2(B) ' B, p0 becomes a path pt; t 2 [0;1), in M(B) which satisfy
1)-6) in the statement of the theorem.

Corollary 3.8. Let � : SA!M(B) be an absorbing �-homomorphism. It follows
that there is a sequence fqng of projections in M(B) such that

1) qn�(SA) � B; n 2 N,
2) limn!1 qn�(a)��(a)qn = 0; a 2 SA,
3) limn!1 qnb = b; b 2 B:

Proof. By Theorem 3.7 there is an absorbing �-homomorphism � : SA ! M(B)
and a sequence fq0ng of projections in M(B) which satisfy 1)-3) relative to �. But
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� is also absorbing so there is a unitary U 2 M(B) such that U�(a)U���(a) 2 B
for all a 2 SA. Set qn = Uq0nU

�.

4. Homotopy invariance

Let A and B be separable C�-algebras, B stable. By Theorem 3.7 there is an
absorbing and saturated �-homomorphism � : cone(A) !M(B) such that �jSA :
SA!M(B) is also absorbing and saturated, and a continuous path pt; t 2 [0;1),
in M(B) such that 1)-6) of Theorem 3.7 hold. We can then de�ne a completely
positive asymptotic homomorphism � = (�t)t2[1;1) : cone(A) ! B by �t(a) =
pt�(a)pt. This asymptotic homomorphism will feature in the following theorem.

Theorem 4.1. Let A and B be separable C�-algebras, B stable. Let ' = ('t)t2[1;1);
 = ( t)t2[1;1) : SA! B be completely positive asymptotic homomorphisms. Then
the following are equivalent :

1) ['] = [ ] in [[SA;B]]cp.
2) There is a completely positive asymptotic homomorphism � = (�t)t2[1;1) :

SA! B and a strictly continuous path fUtgt2[1;1) of unitaries in M(M2(B))
such that

lim
t!1

Ut

�
't(a)

�t(a)

�
U�t �

�
 t(a)

�t(a)

�
= 0

for all a 2 SA.
3) There is a norm-continuous path fStgt2[1;1) of unitaries in M2(B)+ and an

increasing continuous function r : [1;1) ! [1;1) with limt!1 r(t) = 1
such that

lim
t!1

St

�
't(a)

�r(t)(a)

�
S�t �

�
 t(a)

�r(t)(a)

�
= 0

for all a 2 SA.
Proof. Since 3) ) 2) is trivial it su�ces to prove 1) ) 3) and 2) ) 1). First 1) )
3) : De�ne '̂;  ̂ : SA!M(C0(0;1)
B) by

('̂(a)f)(t) =

(
't(a)f(t) ; t 2 (1;1)

t'1(a)f(t); t 2 (0; 1]
; f 2 C0(1;1)
B ;

and similarly for  ̂. Let q :M(C0(0;1)
B)!M(C0(0;1)
B)=C0(0;1)
B be

the quotient map. Then q � '̂ and q �  ̂ de�ne invertible (or semi-split) extensions of
SA by C0(0;1)
B which de�ne the same element of Ext�1(SA;C0(0;1)
B) since
' and  are homotopic as completely positive asymptotic homomorphisms. Such
a homotopy gives namely rise to a diagram of semi-split extensions as in Theorem
3.3.14 of [K-JT]. Set ~� = 1C0(0;1) 
 �, cf. Lemma 3.4. Since [q � '̂] and [q �  ̂]
are equal in Ext�1(SA;C0(0;1)
B) and ~� is absorbing, it follows from Kasparovs
theory that there is a unitary U 2 M(C0(0;1)
M2(B)) such that

U
�
'̂(a)

~�(a)

�
U� �

�
 ̂(a)

~�(a)

�
2 C0(0;1) 
M2(B) (4.1)

for all a 2 SA. U de�nes a strictly continuous path, fUtgt2(0;1), of unitaries in
M(M2(B)) such that

lim
t!1

Ut

�
't(a)

�(a)

�
U�t �

�
 t(a)

�(a)

�
= 0
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for all a 2 SA. Let F1 � F2 � F3 � � � � be a sequence of �nite subsets with dense
union in SA and �x n 2 N for a while. Then Ut; t 2 (0; n], de�nes a unitary Wn in
M(C0(0; n] 
M2(B)). Consider ~� as a �-homomorphism SA ! M(C0(0; n] 
 B)
in the obvious way and observe that (4.1) implies that

Wn

�
0
~�(a)

�
W �
n � �

0
~�(a)

� 2 C0(0; n]
M2(B)

for all a 2 SA. Hence (( 0 ~� ) ; (
0
~� ) ;Wn) de�nes an element ofKK(SA;C0(0; n]
B)

in the Cuntz-Higson picture. But KK(SA;C0(0; n] 
B) = 0 because C0(0; n] 
B
is contractible. Since � = ( 0 ~� ) is absorbing it follows from the general Paschke-
Valette-Skandalis duality theorem, Theorem 3.2 of [Th2], that there is a m and a
continuous path of unitaries in

fx 2 M(C0(0; n]
M2m(B)) : [x; �m(a)] 2 C0(0; n]
M2m(B) ; a 2 SAg
connecting

�
Wn

12m�2

�
to a unitary v of the form v = 12m + z where z�m(SA) �

C0(0; n]
M2m(B). Here �m(a) = diag(�(a); �(a); � � � ; �(a)) where �(a) is repeated
m times. But ~� is saturated since � is and hence �m�1 is unitarily equivalent to
�. There is therefore an isomorphism � : M(C0(0; n] 
M2m(B)) !M(C0(0; n] 

M4(B)) such that �(C0(0; n] 
M2m(B)) = C0(0; n] 
M4(B); � � �m = �2 and
�
�
Wn

12m�2

�
=
�
Wn

12

�
. We may therefore assume that m = 2. Since z�2(SA) �

C0(0; n] 
 M4(B), the standard homotopy of unitaries connecting ( v v� ) to 18 is
contained in the C�-algebra

A = fx 2 M(C0(0; n]
M8(B)) : [x;
�
�2(a)

04

�
] 2 C0(0; n]
M8(B); a 2 SAg :

In combination with the �rst path of unitaries this gives us a path of unitaries in
A connecting Vn = diag(Wn; 12;W �

n ; 12) to 18. By composing with the restriction
map C0(0; n] 
M8(B) ! C[1; n] 
M8(B) we can consider 	 = �2 � 04 : SA !
M(C[1; n]
M8(B)). Set

D = fx 2 M(M8(C[1; n]
B)) : [x;	(a)] 2M8(C[1; n]
B) ; a 2 SAg :
Let En be the unital C�-subalgebra ofM(M8(C[1; n]
B)) generated by C[1; n]; 	(SA)
andM8(C[1; n]
B). Set � = (0��)2�04 : SA!M(M8(B)). Then En = C[1; n]

E where E is the unital C�-subalgebra of M(M8(B)) generated by 18; �(SA) and
M8(B). Note that we can consider Vn as an element of D. The unitary path we have
constructed shows that Vn is homotopic to 18 in the unitary group ofD. Conjugation
by Vn de�nes an automorphism �n of En such that �n(diag(b; ~�(a); 01; ~�(a); 04)) =
Vn diag(b; ~�(a); 01; ~�(a); 04)V �n for all b 2 C[1; n]
B; a 2 SA. The path of unitaries
connecting Vn to 18 in the unitary group of D gives us a path of automorphisms of En
connecting �n to idEn. The automorphisms in the path act trivially on C[0; 1] � En
so the path is given by a map L : [1; n] � [0; 1] ! AutE such that L(t; 0) = id
and L(t; 1) = AdSt, where St = diag(Ut; 12; U�t ; 12), for all t 2 [1; n]. L is jointly
continuous with respect to the topology of norm-convergence on elements of E and
s 7! L(t; s); t 2 [1; n], is equicontinuous in the norm-topology on AutE. In the
same way we �nd a map L0 : [1; n + 1] � [0; 1] ! AutE with the same conti-
nuity properties such that L0(t; 0) = id and L0(t; 1) = AdSt for all t 2 [1; n + 1].
We can then extend L to a map L : [1; n + 1] � [0; 1] ! AutE by setting
L(t; s) = L0(t; s) � L0(n; s)�1 � L(n; s) when t 2 [n; n + 1]. The extended map is
continuous in the same way as L. Proceding inductively in this way we obtain a
map L : [1;1) � [0; 1] ! AutE such that L(t; 0) = id and L(t; 1) = AdSt
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for all t 2 [1;1). On compact subsets of [1;1) the continuity properties remain
unchanged. Choose continuous functions fi : [1;1) ! [0; 1] ; i = 0; 1; 2; � � � , such
that

1) 0 = f0(t) � fi(t) � fi+1(t) ; t 2 [1;1) ; i 2 N,
2) for all n 2 N there is a Nn 2 N such that fi(t) = 1 for all t 2 [1; n]; i � Nn,
3) kL(t; fi(t)) � L(t; fi+1(t))k < 1

2
; t 2 [1;1) ; i 2 N .

Set �(t; i) = Log[L(t; fi�1(t))�1�L(t; fi(t))]; i = 1; 2; 3; � � � , and note that by a result
of Kadison and Ringrose, [KR], or 8.7.7 of [Pe] , �(t; i) is a derivation of E for all (t; i).
Note that k�(t; i)k is uniformly bounded in t and i. We �nd that L(t; 1) = e�(t;1) �
e�(t;2)�e�(t;3)�� � � for all t, where there on compact subsets of [1;1) only occur �nitely
many non-trivial automorphisms in the composition. For each n; i, de�ne a bounded
derivation �n;i of C[1; n] 
 E by setting �n;i(f)(t) = �(t; i)(f(t)); f 2 C[1; n] 
 E.
For a 2 SA, de�ne ~a 2 Cb[1;1)
E by ~a(t) = diag('t(a); ~�(a); 01; ~�(a); 04). De�ne
F 0n � C[1; n]
 E by F 0n = f~aj[1;n] : a 2 Fng. Let f�ng be a decreasing sequence
of positive numbers. By applying Lemma 8.6.12 of [Pe] to the �n;i we �nd elements
hn1 ; h

n
2 ; h

n
3 ; � � � in C[1; n] 
 E such that k�(t; i)(~a(t)) � p�1[hni (t); ~a(t)]k < �n; t 2

[1; n]; a 2 F 0n, for all i and such that, for each n, hnk 6= 0 for only �nitely many k's.
Choose functions fn; gn : [n� 1

2
; n+ 1

2
]! [0; 1] such that fn(n� 1

2
) = 1; gn(n+ 1

2
) = 1,

f is supported on [n � 1
2
; n] and fn(t) + gn(t) = 1; t 2 [n � 1

2
; n + 1

2
]. De�ne

hi : [1;1) ! E such that hi(t) = fn(t)hni (t) + gn(t)hn+1
i (t); t 2 [n � 1

2 ; n +
1
2 ].

It follows that k�(t; i)(~a(t)) � p�1[hi(t); ~a(t)]k < �n; t � n + 1
2
; a 2 Fn. De�ne

Wt 2 E by Wt = eih1(t)eih2(t)eih3(t) � � � for all t 2 [1;1). Again there is only �nitely
many non-trivial terms for t in a compact subset of [1;1). If the �n's are chosen
small enough this will give os a norm-continuous path fWtgt2[1;1) of unitaries in E
such that

lim
t!1

Wt

0@ 't(a)
~�(a)

01
~�(a)

04

1AW �
t �

0@  t(a)
~�(a)

01
~�(a)

04

1A = 0

for all a 2 SA. Being saturated � is unitarily equivalent to ��01���04, so there is
a unitary T 2 LB(B7; B) such that T diag(�(a); 01; �(a); 04)T � = �(a); a 2 SA. Set
W = 1�T 2 LB(B8; B�B). Then AdW (E) = E0 where E0 is the C�-subalgebra
ofM(M2(B)) generated by 12; M2(B) and

�
0
�(SA)

�
. Set Vt = WWtW

� 2 E0. Note
that there is a unique decomposition Vt = �t12 � at, where �t 2 C ; j�tj = 1, and
at 2

�
0
�(SA)

�
+M2(B). Set

Xs;t = ��1t
�
1
ps

�
Vt
�
1
ps

�
+
� 0

1�p2s

�
:

Because t 7! Vt is norm-continuous, the properties of fptg, speci�cally 1), 3), 4) and
5) of Theorem 3.7, imply that we can choose mn 2 [1;1) such that

sup
t2[1;n]

k[� 1 ps � ; Vt]k <
1

n

and

sup
t2[1;n]

(kXs;tX
�
s;t � 12k + kX�

s;tXs;t � 12k) <
1

n

for all s � mn. We can arrange that mn < mn+1 for all n 2 N. De�ne a continuous
function r : [1;1) ! [1;1) such that r(n) = mn+1 and r is linear between n and
n + 1 for all n. Then
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kXr(t);t

�
't(a)

pr(t)�(a)pr(t)

�
X�
r(t);t �

�
 t(a)

pr(t)�(a)pr(t)

�
k

� kVt
�
't(a)

pr(t)�(a)pr(t)

�
V �
t �

�
 t(a)

pr(t)�(a)pr(t)

�
k

� 2kakk[� 1 pr(t) � ; Vt]k + kVt
�
't(a)

�(a)

�
V �t �

�
 t(a)

�(a)

�
k

tends to zero as t tends to in�nity for all a 2 SA. It follows thatXr(t);t(X
�
r(t);tXr(t);t)

�
1
2

is a norm-continuous path fStgt2[1;1) of unitaries in M2(B)+ with the desired prop-
erties.
2) ) 1) : By introducing the composition product � for the homotopy classes of

completely positive asymptotic homomorphisms, 2) implies that [U ] � (['] + [�]) =
[ ] + [�], where U : B ! B is the asymptotic homomorphism Ut(b) = UtbU

�
t . It

su�ces therefore to show that [U ] = [idB] in [[B;B]]cp. This is done by connecting
Ut to 1 via the path V�UtV

�
� + (1 � V�V

�
� ), where V� is the path of isometries from

Lemma 1.3.6 of [K-JT].

Theorem 4.2. Let A and B be separable C�-algebras, B stable. Let ' = ('t)t2[1;1);
 = ( t)t2[1;1) : SA! B be asymptotic homomorphisms. Then the following are
equivalent :

1) ['] = [ ] in [[SA;B]].
2) There is an asymptotic homomorphism � = (�t)t2[1;1) : cone(A)! B and a

norm-continuous path fUtgt2[1;1) of unitaries in M2(B)+ such that

lim
t!1

Ut

�
't(a)

�t(a)

�
U�t �

�
 t(a)

�t(a)

�
= 0

for all a 2 SA.
Proof. The implication 2)) 1) is proved in the same way as the corresponding impli-
cation in the proof of Theorem 4.1. We prove 1)) 2) : By Theorem 2.9 and Lemma
2.6 there is a separable and stable C�-subalgebra D of Cb([1;1); B)=C0([1;1); B)

such that the �-homomorphisms '̂;  ̂ : SA ! Cb([1;1); B)=C0([1;1); B) de�ned
from ' and  take values in D and are homotopic in Hom(SA;D). By Theorem 4.1
there is a completely positive asymptotic homomorphism � : cone(A) ! D and a
norm-continuous path fStgt2[1;1) in M2(D)+ such that

lim
t!1

St

�
'̂(a)

�t(a)

�
S�t �

�
 ̂(a)

�t(a)

�
= 0

for all a 2 SA. Let � be a continuous right-inverse for the quotient mapCb([1;1); B)!
Cb([1;1); B)=C0([1;1); B). Lift S to a norm-continuous path W = fWtg of uni-
taries in Cb([1;1);M2(B)+) and note that if r : [1;1) ! [1;1) is a continu-
ous and su�ciently slowly increasing function with limt!1 r(t) = 1 then � =
(� � �r(t)(�)(t))t2[1;1) is an asymptotic homomorphism � : cone(A)! B such that

lim
t!1

Wr(t)(t)
�
't(a)

�t(a)

�
Wr(t)(t)

� �
�
 t(a)

�t(a)

�
= 0

for all a 2 SA. Since t 7!Wr(t)(t) is norm-continuous we are done.
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Theorem 4.3. Let A and B be separable C�-algebras, B stable. Let ' = ('n)n2N;  =
( n)n2N : SA! B be discrete asymptotic homomorphisms. Then the following are
equivalent :

1) ['] = [ ] in [[SA;B]]N.
2) There is a discrete asymptotic homomorphism � = (�n)n2N : cone(A) ! B

and a sequence fUngn2N of unitaries in M2(B)+ such that

lim
n!1

Un

�
'n(a)

�n(a)

�
U�n �

�
 n(a)

�n(a)

�
= 0

for all a 2 SA.
Proof. The implication 2) ) 1) follows as above. The proof of 1) ) 2) is the same
as the proof of the same implication in the proof of Theorem 4.2, the only di�erence
is that one works with

Q1

1 B=�11 B instead of Cb([1;1); B)=C0([1;1); B).

5. A description of E-theory in terms of KK-theory

In this section we will use the results of the previous sections to show that

E(A;B) ' KK(A;Cb([1;1); B 
K)=C0([1;1); B 
K))
when A and B are separable C�-algebras. Since the second variable of the KK-
functor in this statement is not even �-unital we must point out that we use the
following de�nition regarding the KK-theory of a non-separable C�-algebra D:

KK(A;D) = lim
T
KK(A;T ) ;

where the limit is taken over the net of separable C�-subalgebras T of D ordered by
inclusion.
It follows from Theorem 2.11 that if two discrete asymptotic homomorphisms,

' = ('n)n2N;  = ( n)n2N : SA! B, de�ne the same element in D(A;B), the two

�-homomorphisms, '̂;  ̂ : SA!Q1

1 B=�11 B, which they de�ne are homotopic.
In particular it follows that the recipe ['] 7! ['̂] de�nes a homomorphism � :
[[SA;B]]N! KK(SA;

Q1

1 B=�11 B).

Theorem 5.1. Let A and B be separable C�-algebras with B is stable. Then � :
[[SA;B]]N! KK(SA;

Q1

1 B=�11 B) is an isomorphism.

Proof. Injectivity of � : If �['] = �[ ] it follows that there is a separable C�-

subalgebra D of
Q1

1 B= �11 B such that '̂(SA) [  ̂(SA) � D and ['̂] = [ ̂] in
KK(SA;D). By Lemma 2.6 we may assume that D is stable. As pointed out
in [MT] it follows from [H-LT] and [DL] that KK(SA;D) = [[SA;D]]cp. So we
conclude from Theorem 4.1 that there is a sequence fVngn2N of unitaries inM2(D)+

and a discrete completely positive asymptotic homomorphism � : SA ! D such
that

lim
n!1

Vn

�
'̂(a)

�n(a)

�
V �n �

�
 ̂(a)

�n(a)

�
= 0

for all a 2 SA. As in the proof of 1) ) 2) in Theorem 4.2 we obtain a sequence of
unitaries fUngn2N�M2(B)

+ and a discrete asymptotic homomorphism � : SA! B
such that

lim
n!1

Un

�
'n(a)

�n(a)

�
U�n �

�
 n(a)

�n(a)

�
= 0

for all a 2 SA. Hence ['] = [ ] in [[SA;B]]N by Theorem 4.3.
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Surjectivity of � : We must show that each element of KK(SA;
Q1

1 B=�11 B) is
represented by a �-homomorphism. To this end it su�ces by Lemma 2.6 to consider a
separable stable C�-subalgebra D �Q1

1 B=�11 B and show that for any element x 2
KK(SA;D) there is a separable C�-algebra D1 such that D � D1 �

Q
1

1 B=�11 B
and such that the image of x in KK(SA;D1) is represented by a �-homomorphism.
To this end we use the Cuntz-Higson picture of KK-theory. There is then a pair
'1; '2 : SA ! M(D) of �-homomorphisms such that '1(a) � '2(a) 2 D for all
a 2 SA and such that ['1; '2] = x in KK(SA;D). By [Th2] there is an absorbing
�-homomorphism � : SA!M(D) and by adding the pair (�; �) to ('1; '2) we may
assume that '1 is absorbing. It follows from Corollary 3.9 that there is a sequence of
projections feng � M(D) such that limn!1 end = d; d 2 D, en'i(SA) � D for all n
and limn!1 en'i(z)�'i(z)en = 0 for all z 2 SA; i = 1; 2. Let � :

Q
1

1 B=�11 B !Q
1

1 B be a continuous right-inverse for the quotient map
Q
1

1 B ! Q
1

1 B= �11 B.
Let fzig and fdig be dense sequences in SA and D, respectively. Set gi = �(di). For
each n 2 N there is a Nn 2 N so large that

k�(ei'l(zj1)ei)(m) + �(ei'l(zj2)ei)(m) � �(ei'l(zj1 + zj2)ei)(m)k � 1

n
; (5.1)

k�(ei'l(zj1)ei)(m)�(ei'l(zj2)ei)(m)� �(ei'l(zj1zj2)ei)(m)k
� kei'l(zj1)ei'l(zj2)ei � ei'l(zj1zj2)eik+

1

n
;

(5.2)

k�(ei'l(zj1)ei)(m)� � �(ei'l(z
�
j1
)ei)(m)k � 1

n
; (5.3)

k�(ei'l(zj1)ei)(m)gk(m)� �('l(zj1))(m)gk(m)k
� kei'l(zj1)eidk � 'l(zj1)dkk+

1

n
;

(5.4)

k�(ei'1(zj1)ei)(m)� �(ei'2(zj1)ei)(m)� �('1(zj1)� '2(zj1))(m)k
� kei'1(zj1)ei � ei'2(zj1)ei � ('1(zj1)� '2(zj1))k+

1

n
;

(5.5)

for all i; j1; j2; k 2 f1; 2; � � � ; ng and all m � Nn, l = 1; 2. We may assume that
Nn < Nn+1 for all n. Now de�ne r : N ! N such that r(i) = 1; i � N1, r(i) =
n; i 2 fNn + 1; Nn + 2; � � � ; Nn+1g, n 2 N. It follows from (5.1)-(5.3) that �ln(z) =
�(er(n)'l(z)er(n))(n) de�nes a discrete asymptotic homomorphism f�lngn2N : SA!
B; l = 1; 2. Let �l : SA ! Q

1

1 B= �11 B be the �-homomorphism de�ned from
f�lngn2N. It follows from (5.4) that �l(z)b = 'l(z)b for all z 2 SA; b 2 D; l = 1; 2,
and from (5.5) that '1(z)� '2(z) = �1(z)� �2(z); z 2 SA. By Lemma 2.6 we can
�nd a separable stable C�-subalgebra D1 of

Q
1

1 B= �11 B such that D [ �1(SA) [
�2(SA) � D1. Then the image of x in KK(SA;D1) is represented by the pair
(�1; �2). A standard homotopy argument shows that this pair de�nes the same
element of KK(SA;D1) as the �-homomorphism V1�1(�)V �1 + V2�2 � (�)V �2 where
V1 and V2 are isometries inM(D1) such that V1V �1 + V2V

�
2 = 1 and  : SA! SA

is the automorphism (f)(t) = f(1� t); t 2 [0; 1].

By using Theorem 2.9 instead of Theorem 2.11 we may de�ne a homomorphism
	 : [[SA;B]] ! KK(SA;Cb([1;1); B)=C0([1;1); B)) in the same way as � was
de�ned above.
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Theorem 5.2. Let A and B be separable C�-algebras with B is stable. Then 	 :
[[SA;B]]! KK(SA;Cb([1;1); B)=C0([1;1); B)) is an isomorphism.

Proof. Note that

KK(SA;Cb([1;1); B)=C0([1;1); B)) = [q(SA); Cb([1;1); B)=C0([1;1); B)]

by [Cu] and that [q(SA); Cb([1;1); B)=C0([1;1); B)] = [[q(SA); B]] by Theorem
2.11 and Proposition 1.4 of [Cu]. By using Lemma 5.5 and Lemma 5.6 of [Th1] this
gives us the following commuting diagram of abelian groups

[[SA;SB]]N //

��

[[SA;SB]]N //

��

[[SA;B]] //

��

[[SA;B]]N //

��

[[SA;B]]N

��
[[q(SA); SB]]N // [[q(SA); SB]]N // [[q(SA); B]] // [[q(SA); B]]N // [[q(SA); B]]N

where the rows are exact and the vertical maps are induced by �, except the one in
the middle which is induced by 	. Hence the result follows from Theorem 5.1 and
the �ve lemma.

Corollary 5.3. Let A and B be separable C�-algebras. There is a natural isomor-
phism E(A;B) ' KK(A;Cb([1;1); B 
K)=C0([1;1); B 
K)).
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