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HOMOTOPY INVARIANCE FOR BIFUNCTORS DEFINED FROM
ASYMPTOTIC HOMOMORPHISMS

KLAUS THOMSEN

1. INTRODUCTION

One of fundamental features in the Brown-Douglas-Fillmore theory of extensions
is that the equivalence relation used to define the extension groups turns out to
be homotopy invariant, see Theorem 2.14 of [BDF]. Similarly much of the power
of Kasparovs generalization of the BDF-theory, cf. [K1]-[K3], comes from the fact
that there are several equivalence relations on the fundamental objects, and that
only one of these relations is obviously homotopy invariant. The others are then
shown to be homotopy invariant, and in fact to define the same relation, by means
of the Kasparov product. This variety of apparently different equivalence relations
is missing in the variant of K K-theory, called E-theory, which was introduced by
Connes and Higson in [CH]. The equivalence relation employed in the general F-
theory framework has so far only been homotopy. But recently the efforts towards
classifying certain classes of ('*-algebras have met with the problem that while the
objects of K-theory, i.e. the asymptotic homomorphisms, seem much more amenable
to classification than the graded Hilbert A— B-modules of Kasparov, the equivalence
relation - namely homotopy - is not. The most striking solution of this occurs in the
classification of purely infinite simple nuclear C'*-algebras by Kirchberg and Phillips
where a major part of the proof consists of realizing E-theory, for their particular
class of C*-algebras, as asymptotic homomorphisms modulo an equivalence relation
which is (apparently) much stronger than homotopy, see [Ki], [Ph], [A]. Similar
considerations and results can be found in the work of Lin, [Lil], [Li2] and Dadarlat
and Eilers, [DE].

The project of the present work is to transfer to asymptotic homomorphism the
two most important equivalence relations which were used by Brown, Douglas, Fill-
more and Kasparov and which are not obviously homotopy invariant. To describe
what these relations become in E-theory we formulate one of our main results :

Theorem 1.1. Let A and B be separable C*-algebras, B stable, and let o = (¢1)ief1,00)s
Y = (Vi)tenoey © SA = B be asymplotic homomorphisms. Then the following are
equivalent :

1) [¢] = [¥] in [[SA, B]] (i.e. ¢ and ¢ are homotopic).

2) There is a family @ : SA — B, X € [0, 1], of asymptotic homomorphisms such
that ®° = o, ®' = <), and the family of maps, [0,1] > A = ®}a), t € [1,0),
is equicontinuous for all a € SA.

3) There is an asymptotic homomorphism = (fi:)tef1,00) : cone(A) — B and a
norm-continuous path Uy, t € [1,00), of unitaries in My(B)" such that

. we(a) * Pt (a) _
}Lf?on< m(a))Ut - < m<a>> =0

Version: June 4, 1999.
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for alla € SA.

Here the equivalence relation described in 2) is the analog of operator homotopy
while the equivalence relation described in 3) corresponds to unitary equivalence
modulo addition by degenerate elements.

By Therem 4.2 of [H-LT] it is possible to realize K K-theory by using asymptotic
homomorphisms where the individual maps are completely positive linear contrac-
tions. It is therefore interesting that we can improve condition 3) for such completely
positive asymptotic homomorphisms in the following way : For given separable C*-
algebras A and B, with B stable, there is a completely positive asymptotic homo-
morphism A = (A)iei,0) : cone(A) — B with the property that two completely
positive asymptotic homomorphisms ¢ = (@¢)tef1,00), ¥ = (Ve)ien,0) : SA — B are
homotopic (as completely positive asymptotic homomorphisms) if and only if there
is a norm-continuous path Uy, ¢ € [1,00), of unitaries in My(B)" and a continuous
function r : [1,00) — [1, 00) such that lim;—.. 7(t) = oo, and

. wi(a) * Yi(a) —
}i{& Ut < Ar(t) (a’) > Ut B < Ar(t) (a’) > - 0
for all a € SA.

Recently the author explained how naturally discrete asymptotic homomorphisms
fit into £-theory and K K-theory, [Thl]. For this reason we prove the analogues for
discrete asymptotic homomorphisms of the results we have just described for FE-
theory and K K-theory. See Theorem 2.11 and Theorem 4.3. As an application of
the main results we are able to give a description of E-theory which shows, perhaps
surprisingly, that FE-theory is a specialization of K K-theory : For separable C*-
algebras A and B there is a natural isomorphism

E(A,B) ~ KK(A,Cy([l,00), B@K)/Co([L,00), B&K)) .

The proof of this depends in a crucial way on the use of discrete asymptotic homo-
morphisms.

Acknowledgement. Some of our results have non-empty overlap with results ob-
tained by Dadarlat and Eilers in [DE]. One of the key ideas in the proof of our
main results - the one which produces an approximate inner automorphism out of
a trivial K K-element - I learned from their work. This idea was first introduced by
Huaxin Lin in [Lil]. T am grateful to all three, Dadarlat, Eilers and Lin, for keeping
me informed about their work.

2. E-THEORY AS HOMOTOPY CLASSES OF *-HOMOMORPHISMS

Let X be a locally compact, o-compact Hausdorff space which is not compact.
For any C*-algebra A, let C}(X, A) denote the C*-algebra of bounded continuous
functions from X to A and let Cy(X, A) be the ideal in C( X, A) consisting of the

functions vanishing at infinity. This gives us an extension

0 —— Co(X, A) —— Cy(X, A) 2= Cy(X, A)/Co(X, A) —0 .

When ¢ : A — B is a *-homomorphism we get induced #-homomorphisms @
Cy(X,A) = Co(X, B) and ¢ Cp(X, A)/Co(X,A) — Cy(X, B)/Co(X, B) in the
obvious way. In the following we will consider an extension

J P
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of C*-algebras. A starting point for us here is the following observation, which may
be considered a folklore fact.

Lemma 2.1. The sequence

0 —— Co(X, )/ Col X, J) —= Co(X, )/ Co( X, A) —2= C4(X, B)/Col X, B) —— 0

18 exact.

Given a C*-algebra D we set ID = C[0,1] @ D and cone(D) = {f € ID
f(0) = 0}. Recall that the mapping cone of p is the C'*-algebra

Cp = {(z,f) € C(X, A)[Co(X, A) @ cone(Cy(X, B)[Co(X, B)) = p(z) = f(1) }.

There is a canonical imbedding Cy(X, J)/Co(X, J) C €, given by z = (j(z),0). For
any pair of C*-algebras A and B we let [A, B] denote the set of homotopy classes of
*-homomorphisms from A to B.

Proposition 2.2. Assume that the extension (2.1) splits. Let D be a separable C*-
algebra. Then the canonical imbedding Cyp( X, J)/Co(X,J) C C, induces a bijection
[D,Cy(X,J)/Co(X, )] = [D,C,].

To prove this set
T, = {(z f) € (X, A)/Co(X, A) & I(Cy(X, B)[Co(X, B)) = p(z) = f(1)} .

(X
Note that Cy(X, .J)/Co(X,J) € €, C T,. In the following we will suppress j in the
notation and consider Cy( X, .J)/Cy (X J) as a C*-subalgebra of C}( X, A)/Co(X, A).

Lemma 2.3. Assume that the extension (2.1) splits. Let A C T}, be a separable
C*-subalgebra. There is then a *-homomorphism ¢ : A — Cy(X, A)/Co(X, A) such
that

1) Y(a) = a foralae ANCYX,J)/Co(X,J),
ii) poi(z, f) = f(0) forall (=, f) € A, and
i) ¥(z,9) = z for all (z,9) € A with g € I(Cy(X,B)/Co(X,B)) a constant

Cb(X B)/Co(X, B)-valued function.

Proof. Let 0 : B — A be a *-homomorphism such that po o = idg. By enlarging
A if necessary we may assume that (z, f) € A = (a(f(0)), f(0)) € A. Thereis a
separable C*-subalgebra B C C}(X, B)/Co(X, B) such that (z, f) € A, t € [0,1] =
f(t) € B. By using the Connes-Higson construction, c¢f. [CH], we can then define
an asymptotic homomorphism p' = (pj)ieq,o0) @ cone(B) — Cy(X,J)/Co(X, )
such that limyeo ||pi(f @ b) — f(u)a(b)|| = 0 when f € C[0,1], f(0) =0, b € B,
where {u; : t € [l,00)} is a continuous quasi-central approximate unit for the
ideal C(Cy(X,J)/Co(X,J) in C and C C Cy(X, A)/Co(X, A) is the (separable) C*-
algebra generated by o(B). Note that by construction p’ will be equicontinuous in
the sense that the following holds :

Observation 2.4. For every a € cone(B) and ¢ > 0 there is a § > 0 such that
SUDse1,00) llP2(@) — pi(D)]] < € when b € cone(B) and |a — b < 4.

We can assume that pi(0) = 0. Now define p; : IB — Cy(X,A)/Co(X,A) b

pi(9) = pilg —9(0)) +a(g(0)). Then limyseo [|pe(h @ b) — h(us)a(b)]| = 0 for
all h € C[0,1], b € B. In particular, p = (p)eei,0) @ IB — Cy(X, A)/Co(X, A)
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is an asymptotic homomorphism which is equicontinuous since p’ is. Note that
p(pi(g)) = ¢(0), g € IB. As in the proof of Proposition 3.2 of [DL] we may then
define ¢} : A — Cyo(X, A)/Co(X, A) by @i(z, f) = z — a(f(1)) + p+(f). As demon-
strated in [DL] this gives us an asymptotic homomorphism ¢' = (¢})tepr 00y : A =
Cy(X, A)/Co(X, A) such that ¢i(a) = a for all « € A Cp(X,J)/Co(X,J). Note

that ¢’ is equicontinuous since p is and that

plei(z. f)) = plpd £)) = F(0) (2.2)

for all (z,f) € A and all t. Furthermore, observe that when (z,9) € A and g €
I{(Cy(X, B)/Co(X, B)) is a constant function,

lim iz, g) = lim = — a(g(1)) + pilg) = =z —alg(l)) + alg(l)) == . (23)

Finally, set (=, f) = ¢4(= — a(f(0)). f — F(0)) + o(/(0)). By using that (=, f) =
(=~ o F(0)). f — F(0)) + (a(F(0)), £(0)) it Folllows from (2.3) that lime . [lps(a) —
@i(a)|]] = 0foralla € A, and hence p = (@¢)ie[1,00) Is an asymptotic homomorphism.
Since ¢ is equicontinuous, so is ¢. In addition (2.2) implies that ¢,(C, N A) C
C(X, 1)/ Co(X, ) and hence p(u(= 1) = pla(f(0))) = f(0) for all (-, ) € A
And (2.3) implies that

lim i(2.9) = Jim @iz — a(9(0)). 0) + o((0)) = = (2.4)

for all (z,g) € A with g constant. The reason that we have exchanged ¢’ with ¢ is
that the latter satisfies

pi(z, f) = iz = a(f(0)), f = F(0)) + 2(f(0)) (2.5)
for all (z,f) € A and all t. Let {di,ds,ds,---} C A be a dense sequence, and let
S Cy(X, A)/Co(X, A) = Cy(X, A) be a continuous section for the quotient map. It
has been observed by Loring in [L] that we may choose S such that ||S(z)|| < 2| z]| for
all z € Cy(X, A)/Co(X, A) and such that S(Cy(X,J)/Co(X,J)) C Cp(X,J). (See
in particular the remark following Theorem 2 of [L].) Let {U;}2, be a locally finite
open covering of X such that U; is compact for all ;. For each n € N we can find
my, € N so large that ||S(¢i(a))(z)S(@:(b))(x) — Spi(ab))(x)]| < 2|pi(a)ei(b) —
pi(ab)ll + . 1S(pi(a))(@) + S(ee(b))(x) = S(er(a + b)) (@) < 2llpila) + wilb) —
pila+0)|| + 5 and ||S(pi(a*))(x) — S(ei(a))(2)]| < 2llei(a”) — @i(a) + 5 for all

€ [L,n], a,be {dy,dy,--- ,d,} and all = ¢ [J2* U;. Finally, by using (2.5) we can
arrange that

15(pi(z, M) = Spil(z = a(f(0)), f = [(0)))(2) = S(a(f(0) ()] < % (2.6)

for all t € [1,n], (2, f) € {d1,dz,--+ ,d,} and all = ¢ |J" U;. We can assume that
I < my < myqq for all n. Set mg = 1 and let ¢; : U; — [0,00) be the constant

function g;(z) =n — 1 for each ¢ € {m,—1 + 1,mp_1 +2,--- ;my}, n=1,2,3,---
Let {h;} be a partition of unity subordinate to {U;} and define g : X — [0,00) by

g(x) = Y hi(x)gi(x). Set K; = |J, Ui, Then
lim sup |[S(@g(z)(a)) ()5 (g (b)) () = S(#g@)(ab))(z)] = 0, (2.7)

Jj—roo x¢ X

m sup |[S(@y()(a))(@) + 5@y (@) (@) = Spy@la+ b)) (@) =0,  (2.8)

J—roo z¢ K,
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and

lim sup [[S (2, (0)(a"))(2) = Sy (a))(2)]| = 0 (2.9

for all a,b € {dy,ds,---}. From (2.6) we see that

lim sup [|S(2y00 (= /))(x) =
S (2.10)

@) (z = alf(0), f = J(0)(z) = S(a(f(0) ()] = 0

for all (z,f) € {di1,dz,---}. For each d € A, define hy € Cy(X, A) by hy(z) =
Sy (d)(z), z € X, and set ¥(d) = qa(hg) € Cy(X,A)/Co(X,A). Since ¢ is
equicontinuous it follows that ¢(d) depends continuously on d. Therefore (2.7)-(2.9)
imply that ¢ is a *-homomorphism. If « € A" Cy(X,.J)/Co(X,J) we have that
@i(a) = a for all t € R and hence that (a) = a. (2.4) shows that ¢(z,9) = =z
when (z,9) € Aand g € [(Cy(X, B)/Co(X, B))) is constant. To prove that also ii)
in the statement holds we use (2.10) and that S(Cy(X,.J)/Co(X,J)) C Cp(X,J).
This gives us that

when (2, f) € {di,ds,--} since S o @y (C, N A) C Cy(X,J) for all z € X. ii)
follows by continuity. O

Lemma 2.5. Assume that the extension (2.1) splits. Let A C C, be a separable C*-
subalgebra. There is then a family &5 : A — Cp, s € [0,1], of *-homomorphisms
such that

a) [0 1] 3 s+ ®,(a) is continuous for all a € A,
b) ®o(a) € Cy(X,J)/Co(X,J) for all a € A,

c) ®ola) = a foralla e ANCy(X,J)/Co(X, J),
d) @, is the identity on A.

Proof. For each s € [0, 1] define ¥-homomorphisms 0, n, : COHG(Cb(X B)/Co(X,B)) —

HCAX, B)/Co( X, B)) by 6,(/)(r) = flsr), and (D) = f(s + (1 — shr), €
[0, 1]. Note that (z,n:(f)) € T, for all s € [0,1] and all (z, f) € C,. Let B be a sep-
arable C*-subalgebra of T}, containing (z,7,(f)) for all (z, f) € A and all s € [0,1].
Lemma 2.3 gives us a >|<—lrlz)momorphism Y B — Cy(X, A)/Co(X, A) satisfying i),
ii) and iii). Set ®4(z, f) = (L(z,ns(f)),0s(f)), (2, f) € A. It is straightforward to
check that {®,} has the stated properties. O

Proposition 2.2 follows immediately from Lemma 2.5.

In the following we let K denote the C*-algebra of compact operators on an infinite
dimensional separable Hilbert space. For any C*-algebra B we let M(B) denote the
multiplier algebra of B.

Lemma 2.6. Let D be a separable C*-subalgebra of Cy(X, B @ K)/Co(X, B @ K).
There is then a stable separable C*-algebra FE such that D C E C Cy(X,B ®
K)/Co(X,B@K).

Proof. The crucial point is the following
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Observation 2.7. Let f € Cy(X, B @ K) be a positive element. There is then an
element z € Cy( X, BoK)/Co(X, B&K) such that z*z = gpgr(f) and zz*¢pex(f) =
0.

To prove this observation, let W; C Wy, C W3 C --- be a sequence of relatively
compact open sets in X such that | J_, W, = X. Let {U;}32, be a locally finite
covering of X by relatively compact open sets. Choose 1 < my < mg < ms3 < --- in
N such that W, C Ui Ui Set Vi = Ui = 1,2,-+- ,my, and V; = U\W,, i =
my, + 1,m, + 2, ,mu11, n € N. Then {V;} is also a locally finite covering of X
by relatively compact open sets, and

W.(\Vi=0, i>m,, neN, (2.11)

Consider K as a C*-subalgebra of M(B ®@ K) via the embedding © — 1p @ x.
Standard arguments give us projections p; < py <p3 <--- in K C M(B®K) such
that

sup i ) — Sl < (212)

xevj J
Let {h;} be a partition of unity subordinate to {V;} and define g € C,(X, B @ K)
by g(x) = 272, hi(x)pif(x)p;. Then gpex(g) = gpex(f) by (2.12). Note that
Pmpg(x) = g(x), © € W, by (2.11), and that there are projections ¢; < ¢z < ¢3 < ---
in K such that ¢g(z) = g(x), = € V; (use that V; C W, for all sufficiently large
[). Choose partial isometries {v;}32, € M(B @ K) recursively such that vvip,, =
0, viv; = g;forall j <my,,n € N, and viv; = 0 when i # j. Define h € Cy(X, BOK)
by h(z) = > 2, Vhi(x)vin/g(x). Then h*h = g and hh*g = 0. Setting z =
gBox(h) we have established the observation. It follows that we can find a sequence
D C Dy C Dy C--- of separable C*-subalgebras of Cy(X, B&K)/Co(X, B&K) and
for each n have a dense sequence {g1, g2, - - - } in the positive part of D, and elements
{vi,v9,- -} in D,y such that vivy = g and vgvjgr = 0 for all k. Set £ =J°_, D,
which is a separable C*-subalgebra of Cy,(X, B @ K)/Co(X, B® K) containing D. If
a € F is a positive element and € > 0 there are elements b,x € £, b > 0, such that
la —b|| <€, a*x =band xa*b = 0. By Proposition 2.2 and Theorem 2.1 of [HR]
we conclude that E is stable.

O
When D, B are C*-algebras [D, B @ K] is an abelian semigroup. We make now

the following assumption on D :
[D, E @ K] is a group for any separable C'*-algebra F . (2.13)

Under this assumption, and when D is separable, it follows from Lemma 2.6 that
[D,Cy(X, B®@K)/Co(X, B@ K)] has the structure of an abelian group, and we can
define a functor, Fx, from the category of C*-algebras to the category of abelian
groups such that

Fx(B) = [D,Cy(X,B@K)/Co(X,B @ K)]
and . : Fx(A) = Fx(B) is given by ¢¥.[¢] = [ @idc o], when ¢ @ A — B
and ¢ : D — Cp(X, A @ K)/Co(X,A® K) are *-homomorphisms.

Proposition 2.8. Fy is a split-exact and stable functor.
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Proof. The split-exactness of F'x follows by combining Proposition 2.2 with Theorem
3.8 of [R]. By use of Lemma 2.6 the stability of Fx can be proved by adopting the
well-known argument for the stability of the functor [D, — @ K]. We leave this to
the reader. O

Theorem 2.9. Let D be a separable C*-algebra such that (2.13) holds. For any
C*-algebra B, [[D, B @ K]] is a group and the canonical map

[D,Cy([1,00), B&K)/Co([1,0), B&K)] — [[D,B®K]]
is an isomorphism.

Proof. For any C*-algebra Aand A € [0,1], let 7, : IA — A be the *-homomorphism
145 [+ [(N). The map [D, Cy([1, %), BK)/Col[1, 00), BoK)] = [[D, BoK]
is clearly surjective so it suffices to show that it is also injective. Thus we must show
that if @ : D — Cy([1,00), IB&K)/Co([1,00), [B&K) is a *-homomorphism, then
o ® 1dg 0 @ and 7; @ idx o ¢ are homotopic. Equivalently, we must show that the
functor Fjy o) is homotopy invariant. By Proposition 2.8 this follows from Theorem

3.2.2 of [HJ. O

Corollary 2.10. Let A and B be C*-algebras with A separable. Let ¢ = (@1)se[t,00)s
Y = (Vi)ien,oo) + SA = BRK be asymptotic homomorphisms. Then [¢] = [¢] in
[[SA, B&K]] if and only if there is a family ®* = (9} )iep00) : SA— BOK, X €
[0,1], of asymptotic homomorphisms such that ®° = p, ®' =, and

[0,1] > XA = ®)(a), t€[l,00),
is an equicontinuous family of maps from [0,1] to B® K for all a € SA.
Proof. As is wellknown SA satisfies (2.13) so Theorem 2.9 applies. O

By choosing X = N in Proposition 2.8 we get analogues of Theorem 2.9 (and
its corollaries) for discrete asymptotic homomorphisms. To state the result in this
case we denote Cy(N, A) by [[]” 4 and Cy(N, A) by &°A. Recall from [Thl] that
[[A, B]]n denotes the homotopy classes of discrete asymptotic homomorphisms ¢ =
(pn)nen : A — B.

Theorem 2.11. Let D be a separable C*-algebra such that (2.13) holds. For any
C*-algebra B, [[D, B @ K]]y is a group and the canonical map

D, [[Bo K/ &y BaK] = [[D,Be K]y
1
is an isomorphism.

3. ON ABSORBING EXTENSIONS OF A SUSPENDED (C*-ALGEBRA

Lemma 3.1. Let A C D and B be C*-algebras, D separable, B o-unital. Assume
that there is a sequence {my} in M(D) such that 0 < myp < myp; <1, mpD C A
and mpa = amy, for all k € N, a € A, and such that limy_,.. mpa = a for all a € A.
Let o © A — M(B) be a completely positive contraction. For every finite set FF C A
and every € > 0 there is a completely positive contraction ¢ : D — M(B) such that

Y(a) —pla) € B foralla € A and ||e(x) — ()] < € for all x € F.
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Proof. Let X be a compact subset of positive elements in A such that every element

f € F has the form f = 21 — a3 + i(x3 — 24) for some w1, 29, 23,24 € X, and such
. . [oe) _k j—

that the span of X is dense in A. Let t = (8,7 k2 _ﬂ) and set mg = 0 and

dp = (mg — my— 1) k € N. By passing to a subsequence we may assume that

|d?z|| < te27% k>2, 2 X . (3.1)

Let {by.} be a countable approximate unit in B such that limg oo ||brp(@) — @(a)bg]]
0 for all @ € A. Set by = 0 and fr = (by — by 1) k € N. By passing to a subse-

quence of {by} we can arrange that

[ fup(ed?) fi — @(ad?)ff]] < te2™! (3.2)
when © € X and ¢ </[. It follows from (3.1) and (3.2) that
| fro(dixdy) fi — w(zd?)f2]] < U227, ze€X,i+l=m>2. (3.3)
Set ¥u(d) = > picpp fiwldidds)fi, d € D. Let z = Yo p(d) and y =
Yooy fip(didd;) fi. For d > 0 we have the estimate
HZW (d)p)l* < [l lo7b]l* < [|=]*[[6"ybl1* < fid]I*[1b]* sz*beH (3.4)

forall b € B. (3.4) shows that >~ ¥x(d) converges in the strict topology for all pos-
itive d € D, and hence in fact for all d € D. The resulting map, ¢ (d) = >_,—, ¥(d),
is then a completely positive contraction. Set @r(a) = >, plad?)ff , a € A.
It follows from (3.3) that

lvn(a) — eula)]] < 2kte2™ % (3.5)

for all k € N and all @ € X. Hence > ;~, pxr(a)b converges for all ¢ € X and all
b € B. In fact, it follows from (3.3) that

> prla)h = lim > pladi) b = ¢(a)b
k=1 7,j=1

for all a € X, b € B. Note that for all « € X

lo(a) = v (a)] <ZHW Rl <22kt62 =<
Since
Tim Jle(a) = v(a) = (Y ela) =vr(a)]l < lim Y flgn(a) = du(a)] =0
k=1 k=m+1

for a € X by (3.5), we see that p(a) — t(a) is the norm-limit of {>°"  ¢i(a) —
Yir(a)}oo_, € B proving that ¢(a) — ¢ (a) € B for all @ € X, and hence in fact for
all a € A

U

The preceding lemma is a generalization of Lemma 10 from [K2] which it reduces
to when A = D (except that no group action is considered), and the proof is an
elaboration of Kasparovs argument. The point of the version above is that it covers
the case where A is a suspended C*-algebra, i.e. A = 5SA;, and D is the cone of Aj.
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Given a Hilbert B-module £ we let Lp(FE) denote the C*-algebra of adjoinable
operators on E. The ideal of 'compact’ operators in Lg(F) is denoted by Kp(FE). In
the special case where E = B there are well-known identifications Lz(B) = M(B)
and Kp(B) = B which we shall use freely. Given a C*-algebra A we denote by
At the C*-algebra obtained by adding a unit to A. Any linear completely positive
contraction ¢ : A — M(B) admits a unique linear extension p* : AT — M(B)
such that p*(1) = 1. ¢t is automatically a completely positive contraction, and
is automatically a *-homomorphism when ¢ is.

Lemma 3.2. Let A and B be separable C*-algebras with B stable. Ifm : cone(A) —
M(B) is an absorbing *-homomorphism then so is w|sa : SA — M(B).

Proof. It follows from Lemma 3.1 that 7% |g4)+ : (54)" — M(B) satisfies condi-
tion 2) of Theorem 2.1 in [Th2]. O

Assuming that B is stable we can choose a sequence S;, 1 = 1,2, -- -, of isometries
in M(B) with orthogonal ranges such that 3.~ 5;57 = 1, where the sum converges
in the strict topology. If 7 : A — M(B) is a *-homomorphism we can then form
a new *-homomorphism 7> @ 0> : A — M(B) which is given by (7°° & 0%)(a) =
D icy Sum(a)Sy;.

Definition 3.3. A x-homomorphism 7 : A — M(B) is saturated when 7 is unitarily
equivalent to 7> @& 0.

Lemma 3.4. Let A and B be separable C*-algebras with B stable. Let m : A —
M(B) be a saturated and absorbing *-homomorphism. Let X be a compact metriz-
able space with base-point o € X and set Co(X) = {f € C(X) : f(xo) = 0}.
Define loyxy@m @+ A= M(Co(X) @ B) by (leyx) @ m(a)f)(x) = n(a)f(z), z €
X, [ €Cy(X)®@B. Then 1y x) @ 7 is absorbing.

Proof. By Theorem 2.1 of [Th2] it suffices to consider a completely positive con-
traction ¢ : AT — Co(X) @ B, finite subsets ' C At G C (Co(X) @ B and
e > 0, and construct L € M(Co(X) @ B) such that |[L*¢|| < ¢, ¢ € G, and
le(a)—L*(1eyxy@m)T(a)L]] < eforalla € F. Thereis a finite set x1, x2, x5, -+ ,,
in X\{xo} and a partition of unity {h; : ¢ = 1,2,--- n} in C(X) such that
lp(a) — >0 hip(a)(x )H < 5, a € F. Since 7 is saturated there is a se-
quence of isometrles T:y 1 € N, in M(B) such that T*zT(AN)T;, = {0}, ¢ # j,
Tt (a)T; = 7 (a) for all 7,a and limy_,. ||T70] = 0 for all b € B Smce {g(:z;)

v € X, g € G} is a compact subset of B and 77 is unitally absorbing, it follows
from Theorem 2.1 of [Th2] that we can find elements Vi, V5, --- ,V, € M(B) such
that H‘/Z»*ﬂ'—l—(a)‘/i — pla)(z)|| < §, ac F,1=1,2,--- n Set W; = TB_HVZ, 1=
1,2, ,n. If K is large enough we have that ||Wrnt(a)W; — @(a)(z:)| <5, a €
F W* "’(A"') {0} 7§j, and \Wrg ( )H < s, 9€G, xeX. Deﬁne the

desired L by (Lf) = > Vhilo)Wif(z O

In the followmg we will let 1,, and 0,, denote the unit and the zero element of

M, (M(B)), respectively. We will identify M,,,(M(B)) and M(M,,(B)).

Lemma 3.5. Let D and B be C*-algebras, B separable. Let m : D — M(B) be a
«-homomorphism and p € M(B) a projection such that pr(D) C B. Assume that
F C D is a finite set and § > 0 is such that

|m(a)p — pr(a)]| <6 , a€F . (3.6)
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Let F1 C D and G C B be finite sets. Let 0 < z <1 be a strictly positive element in
(1 =p)B(1 —p) and let €, €3 € ]0,1[ be given. There is then a continuous function
g :10,1] = [0,1] such that g is zero in a neighbourhood of 0, g(t) =1, t > €,

sup |[[w(d),p+g(t2)]| < 56, del, (3.7)
tefo,1]
[[7(d),p+ gl < e, deFi, (3.8)
and
Ipb+g(2)b— 0| < e, beC. (3.9)

Proof. Let A denote the convex set of continuous functions ¢ : [0,1] — [0, 1] such
that g is zero in a neighbourhood of 0 and ¢(t) = 1, t > €. For each @ € F define a
multiplier & of cone((1—p)B(1—p)) by (Zf)(t) = (1—p)m(x)(1—p)f(t), t € [0,1],
and define g € cone((1—p)B(1—p)) by g(t) = g(tz). Then (g, g(2)), g € A, form a
convex approximate unit in cone((1—p)B(1—p))&(1—p)B(1—p). Sincen(D)p C B
we can use the argument from the proof of the existence of quasi-central approximate
units to find a g € A such that ||[(&,7(y)), (g, p + g(z)]| < min{d, ez}, x € F, y €
Fi,and ||pb+ g(2)b—b|| < €2, b € G. In particular (3.8) and (3.9) hold and we have
that

sup (1= (a1 = phatizll < 6 0€ P (3.10)
Since [r(x), g(tz)] = [(1 = p)m(x)(1 — p), g(t2)] + [(1 — p)m(2)p, g(t2)] + [pr(x)(1 -
p),g(tz)], we get (3.7) by combining (3.10) with (3.6). O

Let ‘H be an infinite-dimensional separable ('*-algebra. We can then define ¢ :
[0, 00— [0, 2] by

g(s) = sup{|lla, V2]l = @,z € B(H), [l <1, 0<a <1, |[[a,2]]] < s} .

By the lemma on page 332 of [Ar], ¢ is continuous at 0, i.e. lims0¢9(s) = 0. g will
feature in the next lemma.

Lemma 3.6. Let D and B be separable C*-algebras with D contractible. Let ¢y :
D — D, t € [0,1], be a homotopy of endomorphisms of D such that @5 = id
and o1 = 0. Let Fo C Fy C D and G; C B be finite subsets. Let m : D —
M(B) be a ¥-homomorphism and p € M(B) a projection such that pr(D) C B and
pm(erl@) — w(@i(a))p] < 5, a € Fo, 1€ [0,1], for some & > 0,

For any € > 0 there is then a n € N, a *-homomorphism m : D — M(M,(B))
and a continuous path p;, t € [0,1], of elements py € M(M,11(B)) such that

1) ngtglv te[ovl];
2) (ph=p) (" ) = 0. @D tel0],

6) | <w<wt<a>> m(@ﬁ(ﬂ))) 3 <7r<wt<a>> m(%(a))> pll<e, acFi, telol],
T e (Po,) — (Mo, )l <e, beG,
8) p1 = pi, po=p.
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Proof. The proof is an elaboration of Voiculescus proof of Proposition 3 in [V]. Let
d > 0 be so small that 6¢(4d) + 36 < T d <k and &+ /|[b]|d < € for all b € Gy.
Choose first a finite £-dense subset I of {¢:(a):t € [0,1], a € F1}, and then a n so
large that t,s € [0,1], [s —¢]| < 1/n = |leia) —ps(a)|]| <d, a € F. Let 0 < 2 <1
be a strictly positive element in (1 — p)B(1 — p). It follows from Lemma 3.5 that
there are continuous functions ¢; : [0,1] — [0,1], ¢ = 0,1,--- ,n — 1, which are all
zero in a neighbourhood of 0 such that ¢;¢9;1 = ¢;—1, j =1,2,--- ,n — 1, and such
that the elements z; = p + g;(2) and x} = p + g;(12) satisfy that

fejmopu(@) — o pu(ael < 5, (3.11)
J=0,1,2,--- n—1, a € F, ||lxeb—b|| <4, b€ Gy, and
|zim o pila) —mopi(a)zl|| < bk, (3.12)
J=0,1,2,--- n—1, a € Fy, t €[0,1]. Set m; = diag(mr o1, m0 2, -+, T 0 1)
and
p 1
py = < Op_1 2t(11—p)> , t e [0,5] .
Then 1)-5) hold trivially for ¢ € [0, 1]. Note that afzl_, = z!_,, i =1,--- ,n—1. Set
X0 =27 X) = x?t_l—xft__ll, j=1,2,---,n—1l,and X =1, —22" !, t € [%,1].
Define Ty € M(M,41(B)), t € [3,1], by
X0 0 ... 0
Xt 0 ... 0
T, = . ' .o .
VXF 0 ... 0

Then TiTY is a projection since TyT; clearly is. Since T%Tl* = p1 We can extend
2

pe, t €0, 3], to a continuous path in M(M,41(B)) by setting p, = T,17, t € [3,1].
Then 1) and 2) clearly hold and 3) follows from the observation that

1
<”(“) 7r1(a)>Tt C Muypi(B) , a€D, t€[§71]‘

It follows from (3.11) and (3.12), by using that 73T} is tri-diagonal as in the proof
of Proposition 3 in [V], that

ma 6
e (7)) < 69(48) +36 < 2 a e

and

Ta 1
H[Pta( ()m(a)>]H < 69(20k) +3k, a€ Fy, t € [5,1] )

i.e. 4) and 6) hold. 5) is trivial when ¢ € [0,1] and for ¢ > 1 it follows from the

observation that
(pon)Tt = (pon) ) (pon)Tt* = (pon) .

It is straightforward to check that |[p; (4, ) — ("0, ) || < |IXP0—b+ /X1 /XP|| <
d + 1/]|b||6 when b € Gy, and 7) holds. 8) is trivial. O
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Theorem 3.7. Let A and B be separable C*-algebras, B stable. There exists a
saturated and absorbing x-homomorphism © : cone(A) — M(B) such that also
T|sa : SA — M(B) is saturated and absorbing, and a continuous path p;, t € [0,00),
of elements in M(B) such that

[

1) ngtglv E[O OO);

2) pm(cone(A)) C B, te€]0, )

3) (57— pom(cone(A)) = {0}, ¢ € [0,00),

4) limiseopib = b, bEB,

5) limise |[per(a )—W(a)ptH = 0, a € cone(A),
6) pO:Ovpi:pnvn 1727 T,

Proof. By [Th2] and Lemma 3.2 there is an absorbing *-homomorphism SA —
M(B) which is the restriction of an absorbing #-homomorphism © : cone(A) —
M(B). Let Fi C Fy, C F3 C --- and G; C Gy C G3 C --- be sequences of
finite sets with dense union in cone(A) and B, respectively. By using Lemma 3.6
we can construct a sequence 1 = ng < ny < ny < --- of natural numbers, paths
pi(t), t € [i,i+ 1], in M,,(M(B)), « = 0,1,2,---, and *-homomorphisms ;
cone(A) — Mn,—n, (M(B)), 1 =1,2,---, such that 1o = 0O and m;, = 1.1 B 71
cone(A) = M, (M(B)), i =1,2,---, satisfy

)OS ()<1 tE[ll—|—1] Z:071727"'7

2) |Ipi(t)mi(a) — mila)pi(t)l| < § a€ by, tefiitl], i=01,2"--,
) bi ( )WZ(COHG(A)) < an(B)7 le [Zvl + 1]7 1= 1727' )
) ||pisa(t) <b Oni—n,_, > — <b Oni—n,_, > | < % when all the entries of b € M,,,_ (B)
come from G, t € [i,0+ 1], 1 =1,2,3,---,

5) (pl(t)z —pl(t))ﬂ'Z(COHG(A)) = {0} ’ le [Zvl + 1]7 1= 07 1727 )

6) pili) = plif = (7500, 5 ), =128,
and pg = 0. Note that we can arrange that 7; has the form m; = m,_1 ® 0D ¢,

for some *-homomorphism ¢; : cone(A) — M,,_o,._,—1(M(B)). Now define ¢’ :
COHG(A) - ’CB(ZQ(B)) by @l(d) = dlag(®(d)7 7:rvl(d)v ﬁ(d)v %(d)v T )7 and set

¢ is unitarily equivalent to a *-homomorphism 7 : cone(A) — M(B) since [3(B) ~
B as Hilbert B-modules. Note that both 7 and 7|s4 : SA — M(B) are absorbing

because © has these properties. Furthermore both 7 and 7|s4 are saturated since

4

each 7; as well as 0 occur as direct summands in 7 for infinitely many k’s. Via the
isomorphism ly(B) ~ B, p’ becomes a path p;, t € [0,00), in M(B) which satisfy
1)-6) in the statement of the theorem. O

Corollary 3.8. Let © : SA — M(B) be an absorbing *-homomorphism. It follows
that there is a sequence {q,} of projections in M(B) such that

1) ¢.0(SA)C B, n €N,

2) im0 ¢,O(a) — O(a)g, = 0, a € SA,

3) limyeo gnb =0, b€ B.

Proof. By Theorem 3.7 there is an absorbing #-homomorphism 7 : SA — M(B)
and a sequence {¢/} of projections in M(B) which satisfy 1)-3) relative to 7. But
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O is also absorbing so there is a unitary U € M(B) such that Un(a)U* — O(a) € B
for all @ € SA. Set g, = Uq,U*. 0

4. HOMOTOPY INVARIANCE

Let A and B be separable C*-algebras, B stable. By Theorem 3.7 there is an
absorbing and saturated *-homomorphism 7 : cone(A) — M(B) such that m|s4 :
SA — M(B) is also absorbing and saturated, and a continuous path p;, ¢ € [0, o),
in M(B) such that 1)-6) of Theorem 3.7 hold. We can then define a completely
positive asymptotic homomorphism A = (A)ep,0) @ cone(A) — B by A(a) =
pem(a)p:. This asymptotic homomorphism will feature in the following theorem.

Theorem 4.1. Let A and B be separable C*-algebras, B stable. Let ¢ = (©¢)tef1,00)5
Y = (Vi)ieft,0) @ SA — B be complelely positive asymptotic homomorphisms. Then
the following are equivalent :
1) o] = [¢] i [[SA, Blep.
2) There is a completely positive asymptotic homomorphism p = (fit)tef1 o0)
SA = B and a strictly continuous path {Uy}ien ooy of unitaries in M(My(B))

such that
. @i(a) * Yi(a) —
Jim U (0 U7 = (M) =0

for alla € SA.

3) There is a norm-continuous path {Si}ien o) of unitaries in My(B)T and an
increasing continuous function r : [1,00) — [l,00) with limy. r(t) = oo
such that

: ei(a) * Yi(a) _
fim 5, < w(a)) 5 - < w(a)) =0
for alla € SA.
Proof. Since 3) = 2) is trivial it suffices to prove 1) = 3) and 2) = 1). First 1) =

N

3) : Define ¢, ¢ : SA — M(Cy(0,00) @ B) by

i 2 e e (o)
(Gla)f)i1) = {wl(a)f(t)v o reaees,

and similarly for 1. Let ¢ : M(Cp(0,00) @ B) = M(Cy(0,00) @ B)/Cy(0,00) @ B be
the quotient map. Then go ¢ and go ;/A; define invertible (or semi-split) extensions of
S A by Cy(0,00)®@ B which define the same element of Ext™ (S A, Cy(0, 00) @ B) since
@ and 1 are homotopic as completely positive asymptotic homomorphisms. Such
a homotopy gives namely rise to a diagram of semi-split extensions as in Theorem
3.3.14 of [K-JT]. Set @ = l¢y(0,00) @ 7, cf. Lemma 3.4. Since [g o ¢] and [go ]
are equal in Ext™!(SA, C5(0,00) @ B) and 7 is absorbing, it follows from Kasparovs

theory that there is a unitary U € M(Cy(0,00) @ My(B)) such that
U )= (P9 ) € Col0,00) @ Ma(B) (4.1)

for all @ € SA. U defines a strictly continuous path, {U;}¢e(0,00), Of unitaries in
M(M3(B)) such that

hm Ut <@t(a) 7r(a)> Ut* - <¢t(a) 7r(a)> = 0

t—00
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for all @ € SA. Let Fy C Iy, C F5 C -+ be a sequence of finite subsets with dense
union in SA and fix n € N for a while. Then Uy, t € (0,n], defines a unitary W, in
M(Co(0,n] @ My(B)). Consider 7 as a *-homomorphism SA — M(Cy(0,n] @ B)
in the obvious way and observe that (4.1) implies that

I/I/n<07~r(a)>1/1/72K - <07~r(a)> - CO(O,TL]@MQ(B)
foralla € SA. Hence ((°),(°-),W,) defines an element of K K (S A, Co(0,n]@ B)

in the Cuntz-Higson picture. B171rt KK(SA,Co(0,n] @ B) = 0 because Cy(0,n] @ B
is contractible. Since p = (°.) is absorbing it follows from the general Paschke-
Valette-Skandalis duality theorem, Theorem 3.2 of [Th2], that there is a m and a

continuous path of unitaries in
{r € M(Co(0,n] @ Mo (B)) : [z,p™(a)] € Co(0,n] @ Myp(B), a € SA}

connecting (W" 12m_2> to a unitary v of the form v = 1y, + z where zu™(SA) C
Co(0,n] @ My, (B). Here ™ (a) = diag(u(a), u(a), -+, pu(a)) where p(a) is repeated
m times. But 7 is saturated since 7 is and hence p™~! is unitarily equivalent to
. There is therefore an isomorphism y : M(Cy(0,n] @ Mz, (B)) = M(Co(0,n] @
My(B)) such that x(Co(0,n] @ My, (B)) = Co(0,n] @ My(B), x opu™ = p? and
X (W" o) = (" 1 ). We may therefore assume that m = 2. Since zu?(SA) C
Co(0,n] @ M4(B), the standard homotopy of unitaries connecting (¥ ) to lg is
contained in the C*-algebra

A= {z € M(Co(0,n] © Ms(B)) : [z, <Mz<a> 04)] € Co(0,n] @ Ms(B), a € SAY} .

In combination with the first path of unitaries this gives us a path of unitaries in
A connecting V,, = diag(W,,, 15, W}, 15) to 1s. By composing with the restriction
map Co(0,n] @ Mg(B) — C[l,n] @ Mg(B) we can consider ¥ = p? 04 : SA —
M(C[1,n] @ Ms(B)). Set

D = {z e M(Ms(C[l,n]®@ B)) : [x,¥(a)] € Ms(C[l,n]®@ B), a € SA} .

Let F,, be the unital C*-subalgebra of M(Ms(C[1,n]® B)) generated by C'[1,n], U(SA)
and Mg(C[1,n]@B). Set ® = (0&7)*@®04 : SA — M(Mg(B)). Then E,, = C[1,n]@
E where E is the unital C*-subalgebra of M(Ms(B)) generated by ls, ®(SA) and
Ms(B). Note that we can consider V,, as an element of D. The unitary path we have
constructed shows that V), is homotopic to 1g in the unitary group of D. Conjugation
by V, defines an automorphism e, of K, such that o,(diag(b, 7(a),01,7(a),04)) =
V, diag(b, T(a), 01, 7(a),04)V  for all b € C[1,n]@ B, a € SA. The path of unitaries
connecting V,, to 1g in the unitary group of D gives us a path of automorphisms of F,
connecting «, to idg,. The automorphisms in the path act trivially on C'[0,1] C F,
so the path is given by a map L : [1,n] x [0,1] — Aut £ such that L(¢,0) = id
and L(t,1) = AdS;, where S; = diag(Uy, 12, U7, 13), for all ¢ € [1,n]. L is jointly
continuous with respect to the topology of norm-convergence on elements of £ and
s — L(t,s), t € [l,n], is equicontinuous in the norm-topology on Aut E. In the

same way we find a map Lo : [l,n + 1] x [0,1] — Aut £ with the same conti-
nuity properties such that Lo(¢,0) = id and Lo(¢,1) = Ad S, for all ¢t € [1,n + 1].
We can then extend L to a map L : [l,n+ 1] x [0,1] — AutE by setting

L(t,s) = Lo(t,s) o Lo(n,s)™" o L(n,s) when t € [n,n + 1]. The extended map is
continuous in the same way as L. Proceding inductively in this way we obtain a

map L : [l,00) x [0,1] — Aut F such that L(¢,0) = id and L(t,1) = Ad S,



HOMOTOPY INVARIANCE 15

for all t € [1,00). On compact subsets of [1,00) the continuity properties remain
unchanged. Choose continuous functions f; : [1,00) — [0,1] , ¢ =0,1,2,---, such
that

1) 0= fo(t) < fi(t) < fina(t) , t€[l,00), i €N,

2) for all n € N there is a N,, € N such that f;(¢t) =1 for all t € [1,n], i > N,

3) HL(tva(t)) - L(tvfi-l-l(t))H < % , t € [1700) ’ 1 €N
Set §(t,1) = Log[L(t, fi—1(¢)) "t o L(¢, fi(¢))], i = 1,2,3,-- -, and note that by a result
of Kadison and Ringrose, [KR], or 8.7.7 of [Pe] , 6(¢,) is a derivation of E for all (¢, 7).
Note that ||6(¢,7)]| is uniformly bounded in ¢ and i. We find that L(¢,1) = *®Yo
D oedt¥o. .. for all ¢, where there on compact subsets of [1, c0) only occur finitely
many non-trivial automorphisms in the composition. For each n, 1, define a bounded
derivation §,; of C[l,n] @ E by setting 6,,(f)(t) = o(t,0)(f(¢)), f € Cll,n]® E.
For a € SA, define a € Cy[1,00) @ E by a(t) = diag(p+(a), 7(a),01,7(a),04). Define
F!' C Cll,n]®@ E by F! = {alp : a € F,.}. Let {¢,} be a decreasing sequence
of positive numbers. By applying Lemma 8.6.12 of [Pe] to the 4,,; we find elements
Ry R RS-+ in C[1,n] @ E such that ||§(¢,7)(a(t)) — V—1[R"t),a(t)]|| < €, t €
[1,n], « € F/, for all ¢ and such that, for each n, A} # 0 for only finitely many k’s.
Choose functions ", ¢" : [n—5,n+3] — [0,1] such that f*(n—1) =1, ¢"(n+3) =1,
[ is supported on [n — 1,n] and f*(t) + ¢"(t) = 1, t € [n — £,n 4+ 3]. Define
hi : [1,00) — E such that hy(t) = fr(t)h2(t) + g"(H)RIT'(t), t € [n — Tn+ 3]
It follows that [|6(¢,¢)(a(t)) — v/—=1[hi(t),a(t)]]| < €., t > n+ L, a € F,. Define
W, € E by W, = etiWeth2(Weihat) ... for all ¢ € [1,00). Again there is only finitely
many non-trivial terms for ¢ in a compact subset of [1,00). If the ¢,’s are chosen
small enough this will give os a norm-continuous path {W,}c[1,00) of unitaries in £
such that

lim W, 0, w; — 0 — 0
i—o0 7(a) . #(a) .

for all @ € SA. Being saturated 7 is unitarily equivalent to 7 &0y &7 E 04, so there is
a unitary T' € Lp(B7, B) such that T diag(m(a), 0y, 7(a),04)T* = 7(a), a € SA. Set
W=1a4T € Lp(B®, B& B). Then AdW(E) = Eg where Ej is the C*-subalgebra
of M(M3(B)) generated by 1, My(B) and (0 =(S4) ) Set V, = WW,W* € E,. Note
that there is a unique decomposition V; = A1y — ay, where A, € C, |N] = 1, and

a; € <07r(SA)> + MQ(B) Set

Xog = M) V() + (P )

Because t — V; is norm-continuous, the properties of {p;}, specifically 1), 3), 4) and
5) of Theorem 3.7, imply that we can choose m,, € [1,00) such that

1

sup I[(",.) 5 VAl < =

te[l,n] n
and |
sup (|| Xs X5, = 1af| + X5 Xoe = Lf)) < —

te[l,n]
for all s > m,,. We can arrange that m, < m,y; for all n € N. Define a continuous
function r : [1,00) — [1,00) such that r(n) = m,11 and r is linear between n and

n + 1 for all n. Then
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wt(a) * Yi(a)
HXr(t),t < Pr(e)T(@)pr(t) > Xr(t),t - < pr(t)w(a)pr(t)> H
wt(a) * Yi(a)
<[Vi < pr(t)ﬂ(a)pr(t)> [ < pr(t)ﬂ(a)pr(t)> I
<2l o) VI IV () = (M)

tends to zero as t tends to infinity for all a € SA. It follows that X,,(t)7t(X:(t)7tX,,(t)¢)_%
is a norm-continuous path {S¢}ief1 00y of unitaries in My(B)* with the desired prop-
erties.

2) = 1) : By introducing the composition product e for the homotopy classes of
completely positive asymptotic homomorphisms, 2) implies that [U] e ([¢] + [¢]) =
[¢] + [¢], where U : B — B is the asymptotic homomorphism U (b) = UbU;. It
suffices therefore to show that [U] = [idg] in [[B, B]]e- This is done by connecting
U; to 1 via the path VAUV 4 (1 — VAVY), where V) is the path of isometries from
Lemma 1.3.6 of [K-JT].

]

Theorem 4.2. Let A and B be separable C*-algebras, B stable. Let © = (©¢)ie[1,00)5
Y = (Vi)tenoey @ SA = B be asymplotic homomorphisms. Then the following are
equivalent :
1) o] = [¥] in [[SA, B]].
2) There is an asymptotic homomorphism v = (V)iep 00y : cone(A) — B and a
norm-continuous path {Us}cp1 o0y of unitaries in My(B)* such that

. @i(a) * Yi(a) —
llm Ut < l/t((l)) Ut - < l/t((l)) — 0

t—00

for alla € SA.

Proof. The implication 2) = 1) is proved in the same way as the corresponding impli-
cation in the proof of Theorem 4.1. We prove 1) = 2) : By Theorem 2.9 and Lemma
2.6 there is a separable and stable C*-subalgebra D of C}([1,00), B)/Cy([1,0), B)
such that the *-homomorphisms ¢, b SA = Ci([1,00), B)/Co([1,0), B) defined
from ¢ and ¢ take values in D and are homotopic in Hom(S A, D). By Theorem 4.1
there is a completely positive asymptotic homomorphism g : cone(A) — D and a
norm-continuous path {Si}sefi,c0) in Mz(D)* such that

: ¢(a) = _ [ d(a) _

Hm S < m<a>> S < m(a)) =0
forall a € SA. Let y be a continuous right-inverse for the quotient map C([1, 00), B) —
Cy([1,00), B)/Co([1,0), B). Lift S to a norm-continuous path W = {W;} of uni-
taries in C3([1,00), Ma(B)*) and note that if r : [1,00) — [l,00) is a continu-
ous and sufficiently slowly increasing function with lim; .. r(f) = oo then v =
(X © ttr@y(*)(1))1e[1,00) 18 an asymptotic homomorphism v : cone(A) — B such that
lim Wr(t)(t) <<Pt(a) yt(a)> Wr(t)(t)* . <¢t(a) yt(a)> =0

t—00

for all « € SA. Since { W,,(t)(t) is norm-continuous we are done. O
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Theorem 4.3. Let A and B be separable C*-algebras, B stable. Let o = (©n)nen, ¥ =
(Vn)nen @ SA — B be discrete asymptotic homomorphisms. Then the following are
equivalent :
1) o] =[¢] in [[SA, Bl
2) There is a discrete asymptotic homomorphism v = (v )peny : cone(A) — B
and a sequence {Uy, }nen of unitaries in Mx(B)t such that

: @n(a) * d}"(a) —
lim U, < yn(a)> U, < yn(a)> =0

n—0oo

for alla € SA.

Proof. The implication 2) = 1) follows as above. The proof of 1) = 2) is the same
as the proof of the same implication in the proof of Theorem 4.2, the only difference

is that one works with [[}" B/ @7 B instead of Cy([1,00), B)/Co([1,0), B).
U

5. A DESCRIPTION OF F/-THEORY IN TERMS OF K K-THEORY

In this section we will use the results of the previous sections to show that
BAB) ~ KK(A,Cy([1,00), B & K)/Col[l, ), B & K))

when A and B are separable C*-algebras. Since the second variable of the K K-
functor in this statement is not even o-unital we must point out that we use the
following definition regarding the K K-theory of a non-separable C*-algebra D:

KK(A.D) = limKK(A,T),

where the limit is taken over the net of separable C*-subalgebras T of D ordered by
inclusion.

It follows from Theorem 2.11 that if two discrete asymptotic homomorphisms,
© = (@n)nen, ¥ = (Vp)nen : SA — B, define the same element in D(A, B), the two
*-homomorphisms, ¢, ;/A) . SA— [I B/ @7° B, which they define are homotopic.
In particular it follows that the recipe [¢] +— [p] defines a homomorphism & :
[[SA, Blly = KK(SA, I B/ &7 B).

Theorem 5.1. Let A and B be separable C*-algebras with B is stable. Then ® :
[SA, Blly = KK(SA T[] B/ @ B) is an isomorphism.

Proof. Injectivity of ® : If ®[p] = &[] it follows that there is a separable C*-
subalgebra D of [[[” B/ &{° B such that ¢(SA) U »(SA) C D and [§] = [¢] in
KK(SA,D). By Lemma 2.6 we may assume that D is stable. As pointed out
in [MT] it follows from [H-LT] and [DL] that KK (SA,D) = [[SA, D]]ep. So we
conclude from Theorem 4.1 that there is a sequence {V,, },ex of unitaries in My(D)*
and a discrete completely positive asymptotic homomorphism g : SA — D such

that A
lim v, (49, Vi = (Y9 ,,) =0
n—00 " pn(a) n tin (a)

for all @ € SA. As in the proof of 1) = 2) in Theorem 4.2 we obtain a sequence of
unitaries {U, }hen € M2(B)* and a discrete asymptotic homomorphism v : SA — B

such that
. en(a) * Yn(a) _
Y U, (7 00) U = (7 ) = 0
for all @ € SA. Hence [¢] = [¢] in [[S A, B]]y by Theorem 4.3.
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Surjectivity of ® : We must show that each element of KK (SA,[[” B/ &7° B) is
represented by a *-homomorphism. To this end it suffices by Lemma 2.6 to consider a
separable stable C*-subalgebra D C [[;” B/®:° B and show that for any element = €
KK(SA, D) there is a separable C*-algebra D; such that D C D; C[[[° B/ &7 B
and such that the image of # in K K'(S A, Dy) is represented by a *-homomorphism.
To this end we use the Cuntz-Higson picture of K K-theory. There is then a pair
01,02+ SA = M(D) of x-homomorphisms such that ¢1(a) — p2(a) € D for all
a € SA and such that [p1,p2] = 2 in KK(SA, D). By [Th2] there is an absorbing
«-homomorphism 7 : SA — M(D) and by adding the pair (7, 7) to (¢1, p2) we may
assume that ¢ is absorbing. It follows from Corollary 3.9 that there is a sequence of
projections {e,} € M(D) such that lim, . €,d =d, d € D, e,0;(SA) C D for all n
and lim, o €,0:(2) —@i(2)e, = Oforall z € SA, i =1,2. Let x: [[["B/&7° B —
[I° B be a continuous right-inverse for the quotient map [[;” B — [[° B/ & B.
Let {z;} and {d;} be dense sequences in SA and D, respectively. Set ¢; = y(d;). For
each n € N there is a N,, € N so large that

X (espr(zj )ei)(m) + x(ewpi(zg,)e)(m) — x(eipi(z), + 25 )e)(m)]| < % . (5.1
[x(eipi(zy, )ed)(m)x(eipi(z), e ) (m) — x(eipi(z), 2, ) e ) (m) |

1 (5.2)
< ez, )espi( 2, Jei — expi(24, 25, )ed]| + —

[x(eipi(zj)ei)(m)™ — x(espi(2], Jer)(m)]| < % : (5.3)
Ix(epr( 25 )ei) (m)gr(m) — x(ilz,)) (m)gr(m)]]
1 (5.4)
< lewpr(zg,Jeidi — palzj )il + — .
[x(eip1(zj)ei)(m) — x(eipa(zy )er) (m) — x(@i(z),) — w2(25))(m)]|
(5.5)

1
< lewpr (25, )ei — eipalzj, )er — (p1(25,) — w2z )|l + g

for all ¢, 71,72,k € {1,2,--- ;n} and all m > N,, [ = 1,2. We may assume that
N, < Ny for all n. Now define r : N — N such that r(i) = 1, ¢ < Ny, (1) =
n, 1 €{N,+1,N, +2,--+  N,i1}, n € N. Tt follows from (5.1)-(5.3) that o (z) =
X(€r(m)Pi1(2)€r(n))(n) defines a discrete asymptotic homomorphism {a/, },eny : SA —
B, | =1,2. Let a; : SA — [[{" B/ ®° B be the *-homomorphism defined from
{a! }oen. Tt follows from (5.4) that ay(2)b = py(2)b for all z € SA, be D, [ = 1,2,
and from (5.5) that ¢1(2) — p2(2) = a1(2) — az2(z), z € SA. By Lemma 2.6 we can
find a separable stable C*-subalgebra D; of [[[” B/ &{° B such that D U a;(SA)U
az(SA) € Dy. Then the image of x in KK(SA, Dy) is represented by the pair
(a1, 2). A standard homotopy argument shows that this pair defines the same
element of K K(SA, Dy) as the x-homomorphism Viay(-)V* + Vaag o y(-)V5" where
Vi and V; are isometries in M(Dy) such that ViV + VW,V = 1 and v: 5S4 — SA
is the automorphism ~(f)(t) = f(1 —¢), t € [0,1]. O

By using Theorem 2.9 instead of Theorem 2.11 we may define a homomorphism
U [[SA,B]] = KK(SA,Cy([1,00), B)/Co([1,0), B)) in the same way as ¢ was
defined above.
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Theorem 5.2. Let A and B be separable C*-algebras with B is stable. Then WU :
[[SA, B]] = KK(SA,Cy([1,00), B)/Co([1,00), B)) is an isomorphism.

Proof. Note that
[([((SAv Cb([lv OO)? B)/CO([lv OO), B)) = [Q(SA)v Cb([lv OO)? B)/CO([lv OO)? B)]

by [Cu] and that [¢(SA), Cy([1,00), B)/Co([1,0), B)] = [[¢(SA), B]] by Theorem
2.11 and Proposition 1.4 of [Cu]. By using Lemma 5.5 and Lemma 5.6 of [Th1] this
gives us the following commuting diagram of abelian groups

1S4, S B)ly ——— [[S4, S B]ly ——— [[SA, B]] ——— [[SA, Bl}y —— [[SA, B}

i i i v i

(5 A), 5Bl —— [la(5A), SBlln — [[¢(54), B]] —— [[¢(5°A), B]n — [[¢(5A), Bl]w

where the rows are exact and the vertical maps are induced by ®, except the one in
the middle which is induced by W. Hence the result follows from Theorem 5.1 and
the five lemma. O

Corollary 5.3. Let A and B be separable C*-algebras. There is a natural isomor-
phism E(A,B) ~ KK(A,Cy([1,00), B®@ K)/Co([1,00), B® K)).
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