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ON ABSORBING EXTENSIONS
KLAUS THOMSEN

ABSTRACT. Building on the work of Kasparov we show that there always exists a
trivial absorbing extension of A by B ® K, provided only that A and B are sepa-
rable. If A is unital there is a unital trivial extension which is unitally absorbing.

1. INTRODUCTION

Absorbing trivial extensions play an important role in the theory of extensions
of C*-algebras, cf. 15.12 in [BI]. Recently the interest in such extensions has been
renewed because of the way K K-theory comes into the classification program. In this
connection, as well as in the proper theory of C*-extensions, it is slightly disturbing
that the existence of an absorbing trivial extension has only been established in the
case where at least one of the C*-algebras involved is nuclear, c¢f. Theorem 5 of
[K]. The purpose of the present note is to show that such extensions always exist
when both C*-algebras are separable. The argument for this is a modification of
Kasparovs approach from [K]. The absorbing trivial extensions were constructed,
in [K] as well as before Kasparovs work, by taking the infinite direct sum of the
same copy of a faithful unital representation of the separable C*-algebra A (for the
moment assumed to be unital) which plays the role of the quotient in the extensions.
The resulting representation 7 : A — B(H) was then composed with the natural
imbedding B(H) C M(B®K), where BQK is the stable C*-algebra which features as
the ideal in the extensions. So in practice this means that the absorbing extension
was constructed by taking a weak* dense sequence of states of A, repeating all
states in the sequence infinitely often, and then adding the corresponding GNS-
representations. This procedure has nothing to do with the C*-algebra B, and it is
a highly non-trivial task to show that it often results in an absorbing extension when
prolonged to a map A — M(B ®@ K), cf. [K]. The observation we offer here is that
if one instead takes a sequence s, : A —+ B ® K of completely positive contractions
which is dense for the topology of pointwise norm-convergence among all completely
positive contractions (such a sequence exists when both A and B are separable),
repeats each s, infinitely often and add up the unital representations

™+ A=>MB@K), neN,
coming from the Kasparov-Stinespring decompositions
sn(t) = Wim (W,

the resulting representation A — M(B @ K) will be an unitally absorbing trivial
extension. The general trivial absorbing extensions can then be obtained (for a
not neccesarily unital C*-algebra A) by taking an unitally absorbing representation

m: AT — M(B @ K) and restricting it to A.
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In order to illustrate how the absorbing *-homomorphisms constructed here can
be used to extend known results we prove a general version of the Paschke-Valette-
Skandalis duality which realizes the group KK (A, B) as the Kj-group of a C*-
algebra D, build out of A and B by using an absorbing *-homomorphism 7 : A —
M(B), f. [P], [V], [$], [1].

2. ABSORBING *-HOMOMORPHISMS
Given Hilbert B-modules F and F', we let Lg(FE, F') denote the Banach space

of adjoinable operators from E to F. The ideal of ‘compact’ operators from £ to
F'is denoted by Kp(F,F). When E = F we write Lp(F) and Kp(F) instead
of Lp(F,FE) and Kg(FE, F), respectively. In the special case where F = B there
are well-known identifications Lg(B) = M(B) = the multiplier algebra of B, and
K5(B) = B which we shall use freely.

Theorem 2.1. Let A and B be separable C*-algebras with A unital and B stable.
Let m: A — M(B) be a unital *-homomorphism. Then the following conditions are
equivalent :

1) For any completely positive contraction ¢ : A — B there is a sequence
{W,} C M(B) such that
la) lim, oo ||@(a) — Win(a)W,]| = 0 for alla € A,
Ib) limy, oo ||WD]| = 0 for allb € B.
for alla € A.

2) For any completely positive unital map ¢ : A — M(B) there is a sequence
{V.} of isometries in M(B) such that
2a) Vim(a)V, — pla) € B, neN,ae A,
2b) lim,se [|[Viim(a)V, — @(a)|]| = 0, a € A.

3) For any unital *-homomorphism ¢ : A — M(B) there is a sequence {U,} of
unitaries U, € Lg(B & B, B) such that

(a 0 y
3a) Un< E)) c,o(a))U” — m(a) € B, neN, a€A,

3b) Timyo. ||U, (”E)“) @P@) U — 7(@)] = 0, acA.

4) For any unital *-homomorphism ¢ : A — M(B) there is a sequence {U,} of
unitaries U, € Lg(B & B, B) such that

) m(a) 0 . B
i 0, (7§ 0 YUz = w@ll = 0. ae

Proof. 1) = 2) : Let F' C A be a finite set containing 1 and ¢ > 0. Let p : A —
M(B) be a completely positive unital map. It suffices to find an element V' € M(B)
such that

Vir(a)V — ¢(a) € B (2.1)
for all « € A and
|V *m(x)V — o(x)| < 3¢ (2.2)
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for all z € F'. If namely € is small enough this will imply that W = V[V*V]_% is an
isometry close to V' such that V—W € B, and we can then work with W instead of V.
We repeat Kasparovs arguments : Let X be a compact subset of A containing F' and
with dense span in A. By Lemma 10 of [K] there is a sequence ¢, : A = B, k € N,
of completely positive contractions such that ¢(a) = >~ ¥x(a) converges in the
strict topology, ¢(a) — ¢¥(a) € B forall a € A, and [|¢(x) —¢(2)|| < efor all x € X.
Let {b;} be a countable approximate unit for B. It follows from 1) that we can find
a sequence {m;} C B such that

1) [ihi(z) —mim(z)my|| < 27", x € X, i €N,

2) |lmim(x)my]| < 2779, z € X, i, €N, i #£ 7,

3) Do lmrbg|| < oo for all k € N.

The argument from the proof of Theorem 5 in [K] shows that Y .~ m, converges in
the strict topology to an element V' € M(B) satisfying (2.1) and (2.2).

2) = 3) : The following argument is a reading of p. 338-339 of [A] which merely
substitutes the Hilbert spaces with Hilbert B-modules. We include it for the conve-
nience of the reader. Let ¢ : A — M(B) be a unital *-homomorphism. Let FF C A
be a finite set and let € > 0. All we need to do is to find a unitary U € Lg(B& B, B)
such that

Ur@de)a)U* — m(a) € B, a€ A,
and

[U(x & o) (e)U" = n(o)l| e, aeh.
Let 51,92, -+ be a sequence of isometries in M(B) such that S*S; = 0, ¢ # j,
and Y 2, S:SF = 1 in the strict topology. Define ¢’ : A — M(B) such that

Fla) = Y Sipla)s;

It is then easy to show that

Ul @pUn = ¢ (2.3)
for some unitary U € Lp(B & B, B). By assumption there is a sequence {V,} of
isometries in M(B) such that lim, . ||¢'(¢) — V*1(a)V,]| = 0 for all « € A and

'(a) = Vrr(a)V, € B for all a,n. By using the identity
(Vag'(a) = m(a)Va)"(Vae'(a) = m(a)V,) =
(Vim(aa)V, = ¢'(a%a)) + ('(a7) = Vim(a")Vo)e'(a) + ' (a")(¢'(a) = Vim(a)Va)

we see that
Iim V' (a) = (V]| = 0 (2.4
and
Vig'le) = m(@)Vi € B
for all k,a. Set P, = V,V*. Then
lim |[Pym(a) — m(a)P|| = 0 (2.5)

n—0oo

and

Per(a) —m(a)Py € B
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forall kya. Set m,(-) = (1—F,)w(-)(1—=P,). Define unitaries U,, : B&(1-P,)B — B
by
Ulz,y) = Vaat+y.

Let @y : B&(1—-P,)B— Band Q2 : B& (1 —P,)B — (1 — P,)B be the two
natural projections. Then w(a)U, = 7w(a)V,Q1+ 7(a)Q2 while U,[¢'(a) E mo(a)] =
Ve (a)Q1 + mn(a)Q2, and hence

(@)U, — Ul¢'(a) @ ma(a)]

= (m(a)V, = Vap'(a))@Q1 + Pum(a)(l — )@ (2.6)

€ Kg(B&(1—-P,)B,B)

for all a,n. By combining (2.4) and (2.5) we see that
lim [|7(a)U, — Unlg'(a) & m(a)]] = 0

n—0oo

for all @ € A. By using this in connection with (2.3) we see that there is a sequence

of unitaries, T,, € Lg(B & (1 — P,)B & B, B), such that
lim [|7(a)T, — T,[¢'(a) @ 7ala) & e(a)]] = 0

n— 0o
and
Ta)Ty — Tile(a) & mala) & p(a)] € Kp(Be& (1— P)B & B, B)

for all a, k. It follows that

m(a) = Tu(Us @ 1)(7(a) & ¢(a))(Un & 1)1 € B
for all @,n, m, and that

(o) — Tl B 1)(r(e) & () (Un & DTS < <
for all x € F, if just n and m are chosen large enough. Thus we can use U =
T.(U: & 1) for such n,m.

3) = 4) is trivial.

4) = 1) : Let ¢ : A — B be a completely positive contraction. Let F' C A and
G C B be finite sets and € > 0. Since A and B are separable it suffices to find
an element L € M(B) such that ||¢(a) — L*w(a)l]] < €, a € F, and ||Lb]| < €
for all b € B. By Kasparovs Stinespring theorem, Theorem 3 of [K], there is a
unital *-homomorphism y : A — M(B) and an element W € M(B) such that
o(-) = Wex(-)W. Let S;, 1 =1,2,3,---, be the sequence of isometries from above

and set x*(a) = > 2, Six(a)S;. It follows from 4) that there is a sequence {U, }
of unitaries in Lg(B & B, B) such that

: m(a) 0 . B
lim ||U, ( 0 X°°(a)> Ur — 7ma)]] = 0,a€A.

n—0oo

Define T; : B— B & B by T;b = (0,5;b). Then

and
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for all @ and ¢. Choose n so large that

m(a) 0 y €
U, < —— a4 F.
(Y ) = @ < i e

Then

lola) — WISUzm(@UTIV] <, acF
for all ¢. Since lim;,, ||T7z|| = 0 for all € B & B, we can choose ¢ so large that
|\W*TxUxb|| < eforallbe G. Set L =U,T;W. O

Definition 2.2. Let A and B be separable C*-algebras with A unital and B sta-
ble. A unital *-homomorphism 7 : A — M(B) which satisfies the four equivalent
conditions in Theorem 2.1 is called unitally absorbing (for (A, B)).

The following lemma is surely known, but it is so crucial for us here that we
include a proof.

Lemma 2.3. Let A and B be separable C*-algebras. There is then a countable set
X of completely positive contractions A — B such that for any completely positive
contraction 1 : A — B, any finite set F' C A and any € > 0 there ts an element
[ € X such that

() = HNI < e, felF.

Proof. Let {ai,as,as, -} be a dense sequence in the unit ball of A and set F, =
span{ay,ag, -+ ,a,}. Let w be a faithful state of A and let (m,, H,) be the GNS-
representation coming from w. We can then consider A as a subspace of H,. The
orthogonal projection P, : H, — F, gives us then by restriction a continuous
idempotent map P, : A — F,. Let 1 < m; < my < mz < --- be a sequence of
numbers such that || P,|| < m, for all n. We can then define a metric d on the space
B(A, B) of continuous linear maps L : A — B by

0 2_2'
d(Ly, Ly) = ; miHLl(ai) — La(as)| -
Choose a linear basis {1, x2,- -+ , ¥y, } for F,,. For each no-tuple b = (by,bs,--- ,b,,) €

B™ there is a linear map Ly : F,, — B such that Ly(x;) = b, i =1,2,--- ,n. By
using that B" is separable this construction gives us a countable set M of linear
maps F, — B which is dense in the strong topology of B(F,,, B). Let now 0 < e < 1
and a finite set D C F), be given. Let u € B(F,, B) be a contraction. There is a
finite subset G of F,, such that every x € F,, with ||z]| < 1—¢is a convex combination
of elements from G. Choose [ € M such that

lu(z) — U(2)]] < €, 2z€ DUG . (2.7)
Then [|u(z) — I(z)|| < ¢ for all € F,, with ||z]] <1 — ¢, and hence ||{|| < <. Let

1—¢
q be a positive rational number in ]2=2¢, 1=¢[. Then ¢/ € Q;.M is a contraction and

T4e ? 14e
we find that
[1(z) = ql()|| <|lu(z) = )| + |li(z) = ql(z)]
< e+ |1 = qllllsup{JsI| s = € D}
2¢ + 2¢2

ﬁsup{ﬂzﬂ cz€ D} 4+ ¢
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for all z € D. It follows that we can find a countable set ), C Qi M of linear
contractions which is strongly dense among all contractions in B(F,,, B). Set
Y = |J{loP, s 1€V}
n=1

Let y¢: A — B be a linear contraction and let ¢ > 0. Choose n so large that
2 ispy1 270 < 5. From what we have just proved there is an element [ € }), such
that |u(a;) — l(a))|| < &, 1 =1,2,-++ ,n. Then lo P, € Y and

27

27" ¢ 27"

d e
wiok) < YL Y T n)
=1 12>n+1
€ 27
< §—|— Z mi(l—l_mi) < €
12>n+1

It follows that ) is a countable set in B(A, B) with the property that for any linear
contraction g : A — B and any e¢ > 0 there is an element [ € Y such that

d(p,l) < e. For each [ € Y choose a completely positive contraction I’ : A — B such
that

d(l,I'y <2inf{d(l,L) : L € B(A, B)is a completely positive contraction } .

Then )" = {lI' : [ € Y} is a countable set of completely positive contractions
in B(A, B) with the property that for any completely positive linear contraction
i A— Band any € > 0 there is an element [ € )’ such that d(u,[) < e.

]

Theorem 2.4. Let A and B be separable C*-algebras. Assume that B is stable and
A unital. Then there exists an unitally absorbing *-homomorphism 7 : A — M(B)
for (A, B).

Proof. By Lemma 2.3 there is a dense sequence {s, } in the set of completely positive
contractions from A to B. We may assume that each s, is repeated infinitely often
in this sequence. By Kasparovs Stinespring Theorem, Theorem 3 of [K], there are
elements V;, € M(B) and unital #-homomorphisms 7, : A — M(B) such that

Sn() = Vn*ﬂ-n()vn

for all n. Note that |[V,]|? = [V VL] = |[sa(1)|| < 1 for all n. Define a unital
«-homomorphism 7., : A — Lp(l2(B)) by

Woo(a)(617627b37--.) = (Wl(a)bl,ﬁz(a)b%7'r3(a)b37...)_
Define L, € Lp(B,l3(B)) by
L,b = (0,0,--+,0,V,b6,0,0,--) ,

where the non-trivial entry occurs at the n’th coordinate. Since we repeated the
s,’s infinitely often there is, for each n, a sequence k; < ky < k3 < --- in N such
that

spla) = Ly meo(a)Ly, (2.8)
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forall a € A, 1 € N, and
lim 50 =0, b€ (). (2.9

By Lemma 1.3.2 of [K-JT] there is an isomorphism S : [3(B) — B of Hilbert B-
modules. Set T,, = SL, € M(B) and 7(-) = Sm(-)5*. We assert that 7 satisfies
condition 1) of Theorem 2.1, and to prove it we let ¢ : A — B be a completely
positive contraction. In order to construct a sequence {W,} in M(B) such that
la) and 1b) of Theorem 2.1 hold it suffices, because A and B are separable, to pick
€ > 0 and finite subsets F; C A and F, C B and find an element W € M(B) such
that ||¢(a) — W*n(a)W|| < €, a € Fy, and ||W7*b|| < ¢, b € F,. Choose first an
n € N such that ||¢(a) — su(a)|] <€, a € Fy. If we then choose k1 < kg < ks < ---
such that (2.8) and (2.9) hold we have that T} 7 (a)Ty, = sy(a) for all a € Fy and
| T30 < efor all b € Fy, provided only that  is large enough. We can then set
W =T, for such an . O

We now turn to the case of a not neccesarily unital C*-algebra A and the general
notion of absorbing #-homomorphisms. Given a (C*-algebra A we denote in the
following by A%t the C*-algebra obtained by adding a unit to A. Let B be another
C*-algebra. Any linear completely positive contraction ¢ : A — M(B) admits
a unique linear extension ¢ : At — M(B) such that o™ (1) = 1. ¢T is
automatically a completely positive contraction, cf. e.g. Lemma 3.2.8 of [K-JT], and
is automatically a *-homomorphism when ¢ is. The following theorem is therefore
an immediate consequence of Theorem 2.1.

Theorem 2.5. Let A and B be separable C*-algebras with B stable. Let m: A —
M(B) be a x-homomorphism. Then the following conditions are equivalent :

1) 7t At — M(B) is unitally absorbing for (AT, B).

2) For any completely positive contraction ¢ : A — M(B) there is a sequence
{V.} of isometries in M(B) such that
2a) Vin(a)V, — pla) € B, neN,ae A,
2b) limyseo ||Vim(a)V, — @(a)]| = 0, a € A.

3) For any x-homomorphism ¢ : A — M(B) there is a sequence {U,} of unitaries
U, € Lg(B & B, B) such that

(a 0 y
3a) Un< E)) c,o(a))U” — m(a) € B, neN, a€A,

3b) Timye. |1, (”E)“) 90?@)) U — 7(@)] = 0, acA.

4) For any *-homomorphism ¢ : A — M(B) there is a sequence {U,} of unitaries
U, € Lg(B & B, B) such that

: m(a) 0 . B
nh_}rgoHUn< 0 c,o(a)) U — m(a))]l =0, acA.
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Definition 2.6. Let A and B be separable C*-algebras with B stable. A x-homomorphism
m: A — M(B)is absorbing (for (A, B)) when it satisfies the four equivalent condi-
tions of Theorem 2.5.

Theorem 2.7. Let A and B be separable C*-algebras with B stable. There exists
an absorbing *x-homomorphism m: A — M(B) for (A, B).

Proof. Combine Theorem 2.5 and Theorem 2.4 . O

An absorbing #-homomorphism is clearly unique in the following sense : Given two
absorbing *-homomorphisms my,m : A — M(B) there is a sequence {U,} C M(B)
of unitaries such that

Umi(a)U; — m(a) € B, a€ A, neN,

n
and

lim U,mi(a)U; — m(a) = 0, a€ A.

n
n—0oo

3. DUALITY IN K K-THEORY

Throughout this section A and B will be separable C*-algebras and B will be
stable. A s-homomorphism 7 : A — M(B) is of infinite multiplicity when 7 is
unitarily equivalent to 7°°, where 7 : A — M(B) is the *-homomorphism given

by
T(a) = Y Sim(a)ST .
=1

for some sequence S;, ¢ € N, of isometries in M(B) such that S’S; =0, ¢ # j, and
Y0 S:SF =1 in the strict topology.

Lemma 3.1. Let m: A — M(B) be a *-homomorphism of infinite multiplicity and
set

E = {meM(B) : mrn(a)=mn(a)n Yae A} .
Then K.(E)={0}.
Proof. Since 7 has infinite multiplicity,

E =~ {me Lo(l(B)) : mp(a) = playm Va € A}
where 11 : A — Lp(ly(B)) is given by

(a)(by, b, bs,--+) = (m(a)by,m(a)by, m(a)bs,---) .

The usual proof that K.(Lp(l2(B))) = 0 works to show that K.(F) = 0, cf. e.g.
Proposition 12.2.1 of [BI]. O
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Given an absorbing *-homomorphism 7 : A — M(B) we set
Cr = {zeM(B) : zr(a)—m(a)r € B, a € A}
and
Ay = {z e M(B) : zn(A) C B} .
Then A, is a closed twosided ideal in C and we set
D, = C,/A, .

The quotient map C, — D, will be denoted by ¢. If 7 : A — M(B) is another
absorbing #-homomorphism there is a unitary w € M(B) such that Adw o 7(a) —
7(a) € B for all @ € A and then # — waw* defines a *-isomorphism of C onto C-
which takes A, onto A,. In particular, D, ~ D.,.

Let u be a unitary in M, (D). Choose v € M, (C;) such that
idas, @q(v) = w.
Define 7" : A — Lg(B™) by
m"(a)(by,be, -+ ,by) = (w(a)by,m(a)by, - ,7(a)b,) .
Let B" & B™ be graded by (x,y) — (2, —y). Then
(B OB, (7)) (")

is a Kasparov A— B-module. We leave the reader to check that the class of this mod-
ule in K K(A, B) only depends on the class of win K1(D;), and that the construction
gives rise to a group homomorphism © : Ki(D,) - KK(A, B).

Theorem 3.2. Assume that 1 : A — M(B) is an absorbing *-homomorphism.
Then © : Ki(D;) = KK(A, B) is an isomorphism.

Proof. When 7 is another absorbing *-homomorphism there is a commuting diagram

Ki(D,) —2— KK(A,B) (3.1)
Ix’l(bT)

where K1(D;) — Ki(D,) is induced by the isomorphism D, — D, described above,
and Ki(D;) — KK(A, B) is the map obtained by using 7 instead of 7 in the
definition of ©. Indeed if one considers a specific unitary in M, (D,), the Kasparov
A — B-module which results by going down and up in the diagram differs from the
one which arises by going across by an isomorphism and a compact perturbation.
Thus if we prove that © : K1(A,;) — KK (A, B) is an isomorphism for one absorbing
*x-homomorphism 7 it will follow that it is an isomorphism for any other. Hence by
working with 7° instead of 7 we may assume that 7 is of infinite multiplicity.

O is injective : Let u € M,(D;) be a unitary and choose v € M, (C;) such that
idas, @g(v) = u. Assume that

[Bn@an (an") ) (u*v)] =0
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in KK (A, B). This means that there are degenerate Kasparov A — B-modules D
and D, such that

(B"®B", (7 w) (o) & Dy
is operator homotopic to
(B"®B", (" ), (') & Dy

Since Dy and D, are degenerate we can define a new degenerate Kasparov A — B-

module D by
D =D &D; @D, @Dy Dy Dy D evvv--
Then Dy & D and D, b D are both isomorphic to D and hence
(B"®&B" . (" ), (»") & D
is operator homotopic to
(B"®B", (™ ), (') @ D.

By combining Kasparovs stabilization theorem, Theorem 2.12 of [K-JT], with Lemma
1.3.2 of [K-JT] we may assume that

D= (BaB, </\+/\_> ("))

where B @ B is graded by (x,y) — (x,—y), Ay : A = M(B) are *-homomorphisms
and a,b € M(B). By performing the same alterations to D as was performed to &
on page 125-126 of [K-JT] we may assume that ¢ = w and b = w* for some unitary
w € M(B). Finally, by applying the unitary of the Hilbert B-module B & B given
by (z,y) — (x,wy), we see that we can assume that w = 1. So all in all we have
that

B OB, (") et @ BoB, () ()

is operator homotopic to
BraB, ("), G e BaeB, (YU)Gh).

Note that Ay = A_ since (B& B, <A+ A_) , (1 1)) is degenerate. Finally, by

adding on an infinite number of copies of

e, (M), (1)

we find that there is a *-homomorphism of infinite multiplicity A : A — M(B) such
that

(B"&B", (" ), (")) & (BaB, (%)), (1))
is operator homotopic to
(B"&B" . ("), (1) & (BeB, (M), (1)
Furthermore, by adding on
(B&B, (T7), (1))
we may assume that there is a unitary w € M(B) such that
wA(a)w" — mla)e B , a€A. (3.2)
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The operator homotopy consists of an isomorphism of Kasparov A — B modules
and a norm-continuous path of operators. The isomorphism gives us a unitary

S € M1 (M(B)) such that

(a) ()
S( Ma)) = < A<a>>5

for all @ € A, and in addition we have a norm-continuous path F;, t € [0,1], in

M,+1(M(B)) such that Fo =5, Fy = ("),
(FtFt* o 1n+1) <7rn(a) /\(a)> & Mn-l—l(B)?

(F7Fy —1,41) <7rn(a) /\(a)> € M,1(B),
and

Ft<7r (a) w) _ <7r (a) A(a)>Ft € M, (B)

for all ¢ and a. Here and in the following we let 1; denote the unit of M,(M(B)).
Note that v = (™ , ) is of infinity multiplicity, as a #-homomorphism A — M(M,11(B)),
since m and A both are of infinite multiplicity. By Lemma 3.1 we can therefore find

an m € N and a norm-continuous path of unitaries in

{2 € Mypy(M(B)) = 2v™(a) =v™(a)r , a € A}

connecting (S to Ly(nt1)- In combination with F' this gives us a norm-

(m n-l-l )
€ [0,1], in My(ng1)(M(B)) such that Hy = 1,41y, Hy =

continuous path Ht,

(U Lm(n41)-n )v

(HeH = Lngan)v™(a) € Mgy (B),
(HfHy — L)V (@) € Mgy (B),
and
Hw™(a) — v™(a)H; € M) (B)
for all t and a. Set
W = diag(l,,w, 1, w, -, 1,,w) € My (M(B))

m times

and
Gt — WHtW* .

Then (7, is a norm-continuous path in M, (,41)(M(B)) such that Go = 1,41y, G1 =
< lm(n-l-l)—n) 9

(GG = Lingua)) 7" (@) € Mongurny(B),

(3G = L)) 7" (@) € Miyngasny(B),
and

Gﬂ'm (n+1) (a) — am (n+1) ( )Gt c M (n—l—l)(B)
for all ¢ and a. Thus (1dM (1) ®@q)(Gy) is a path of unitaries in M,,(,11)(D5) con-
necting (u Lin(nt1)— ) to Lo(nsn)-

O is surjective : Let (E, ¢, F') be a Kasparov A — B-module. The constructions

on pages 125-126 of [K-JT] show that [F,¢, F] € KK(A, B) is also represented by
a Kasparov A — B-module of the form

(BB, (7o) (o))
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for some *-homomorphisms ¢ : A — M(B) and some unitary v € M(B). By
adding on

(BOB, (=), (1)
and using that 7 is absorbing we may assume that there are unitaries uy € M(B)
such that

uzpy(a)uy — mla) € B
for all @ € A. Then
(B@Bv(w_@—)v(v*v))

is isomorphic to

(Ba B, <Adu+ow+ Adu_()@_) : <u_y*ui u+vu*_>)
which in turn is a compact perturbation of
BeB, (") s (e )
Then uyvu® is a unitary Cr such that O([¢(uivu®)]) = [E, ¢, F]in KK(A,B). O

Of course there is also an isomorphism
Ko(D,) ~ Ext™'(A,B)

which can be proved in basically the same way.
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