ON ABSORBING EXTENSIONS

By Klaus Thomsen

ON ABSORBING EXTENSIONS

KLAUS THOMSEN

Abstract

Building on the work of Kasparov we show that there always exists a trivial absorbing extension of A by $B \otimes \mathcal{K}$, provided only that A and B are separable. If A is unital there is a unital trivial extension which is unitally absorbing.

1. Introduction

Absorbing trivial extensions play an important role in the theory of extensions of C^{*}-algebras, cf. 15.12 in [B1]. Recently the interest in such extensions has been renewed because of the way $K K$-theory comes into the classification program. In this connection, as well as in the proper theory of C^{*}-extensions, it is slightly disturbing that the existence of an absorbing trivial extension has only been established in the case where at least one of the C^{*}-algebras involved is nuclear, cf. Theorem 5 of $[\mathrm{K}]$. The purpose of the present note is to show that such extensions always exist when both C^{*}-algebras are separable. The argument for this is a modification of Kasparovs approach from [K]. The absorbing trivial extensions were constructed, in $[\mathrm{K}]$ as well as before Kasparovs work, by taking the infinite direct sum of the same copy of a faithful unital representation of the separable C^{*}-algebra A (for the moment assumed to be unital) which plays the role of the quotient in the extensions. The resulting representation $\pi: A \rightarrow \mathcal{B}(\mathcal{H})$ was then composed with the natural imbedding $\mathcal{B}(\mathcal{H}) \subseteq \mathcal{M}(B \otimes \mathcal{K})$, where $B \otimes \mathcal{K}$ is the stable C^{*}-algebra which features as the ideal in the extensions. So in practice this means that the absorbing extension was constructed by taking a weak* dense sequence of states of A, repeating all states in the sequence infinitely often, and then adding the corresponding GNSrepresentations. This procedure has nothing to do with the C^{*}-algebra B, and it is a highly non-trivial task to show that it often results in an absorbing extension when prolonged to a map $A \rightarrow \mathcal{M}(B \otimes \mathcal{K})$, cf. $[\mathrm{K}]$. The observation we offer here is that if one instead takes a sequence $s_{n}: A \rightarrow B \otimes \mathcal{K}$ of completely positive contractions which is dense for the topology of pointwise norm-convergence among all completely positive contractions (such a sequence exists when both A and B are separable), repeats each s_{n} infinitely often and add up the unital representations

$$
\pi_{n}: A \rightarrow \mathcal{M}(B \otimes \mathcal{K}), n \in \mathbb{N},
$$

coming from the Kasparov-Stinespring decompositions

$$
s_{n}(\cdot)=W_{n}^{*} \pi_{n}(\cdot) W_{n},
$$

the resulting representation $A \rightarrow \mathcal{M}(B \otimes \mathcal{K})$ will be an unitally absorbing trivial extension. The general trivial absorbing extensions can then be obtained (for a not neccesarily unital C^{*}-algebra A) by taking an unitally absorbing representation $\pi: A^{+} \rightarrow \mathcal{M}(B \otimes \mathcal{K})$ and restricting it to A.

[^0]In order to illustrate how the absorbing *-homomorphisms constructed here can be used to extend known results we prove a general version of the Paschke-ValetteSkandalis duality which realizes the group $K K(A, B)$ as the K_{1}-group of a C^{*} algebra D_{π} build out of A and B by using an absorbing $*$-homomorphism $\pi: A \rightarrow$ $\mathcal{M}(B), c f .[\mathrm{P}],[\mathrm{V}],[\mathrm{S}],[\mathrm{H}]$.

2. Absorbing $*$-homomorphisms

Given Hilbert B-modules E and F, we let $\mathcal{L}_{B}(E, F)$ denote the Banach space of adjoinable operators from E to F. The ideal of 'compact' operators from E to F is denoted by $\mathcal{K}_{B}(E, F)$. When $E=F$ we write $\mathcal{L}_{B}(E)$ and $\mathcal{K}_{B}(E)$ instead of $\mathcal{L}_{B}(E, E)$ and $\mathcal{K}_{B}(E, E)$, respectively. In the special case where $E=B$ there are well-known identifications $\mathcal{L}_{B}(B)=\mathcal{M}(B)=$ the multiplier algebra of B, and $\mathcal{K}_{B}(B)=B$ which we shall use freely.

Theorem 2.1. Let A and B be separable C^{*}-algebras with A unital and B stable. Let $\pi: A \rightarrow \mathcal{M}(B)$ be a unital $*$-homomorphism. Then the following conditions are equivalent :

1) For any completely positive contraction $\varphi: A \rightarrow B$ there is a sequence $\left\{W_{n}\right\} \subseteq \mathcal{M}(B)$ such that
1a) $\lim _{n \rightarrow \infty}\left\|\varphi(a)-W_{n}^{*} \pi(a) W_{n}\right\|=0$ for all $a \in A$,
1b) $\lim _{n \rightarrow \infty}\left\|W_{n}^{*} b\right\|=0$ for all $b \in B$.
for all $a \in A$.
2) For any completely positive unital map $\varphi: A \rightarrow \mathcal{M}(B)$ there is a sequence $\left\{V_{n}\right\}$ of isometries in $\mathcal{M}(B)$ such that
2a) $V_{n}^{*} \pi(a) V_{n}-\varphi(a) \in B, n \in \mathbb{N}, a \in A$,
2b) $\lim _{n \rightarrow \infty}\left\|V_{n}^{*} \pi(a) V_{n}-\varphi(a)\right\|=0, a \in A$.
3) For any unital $*$-homomorphism $\varphi: A \rightarrow \mathcal{M}(B)$ there is a sequence $\left\{U_{n}\right\}$ of unitaries $U_{n} \in \mathcal{L}_{B}(B \oplus B, B)$ such that
3a) $U_{n}\left(\begin{array}{cc}\pi(a) & 0 \\ 0 & \varphi(a)\end{array}\right) U_{n}^{*}-\pi(a) \in B, n \in \mathbb{N}, a \in A$,
3b) $\lim _{n \rightarrow \infty}\left\|U_{n}\left(\begin{array}{cc}\pi(a) & 0 \\ 0 & \varphi(a)\end{array}\right) U_{n}^{*}-\pi(a)\right\|=0, a \in A$.
4) For any unital $*$-homomorphism $\varphi: A \rightarrow \mathcal{M}(B)$ there is a sequence $\left\{U_{n}\right\}$ of unitaries $U_{n} \in \mathcal{L}_{B}(B \oplus B, B)$ such that

$$
\lim _{n \rightarrow \infty}\left\|U_{n}\left(\begin{array}{cc}
\pi(a) & 0 \\
0 & \varphi(a)
\end{array}\right) U_{n}^{*}-\pi(a)\right\|=0, a \in A .
$$

Proof. 1) $\Rightarrow 2)$: Let $F \subseteq A$ be a finite set containing 1 and $\epsilon>0$. Let $\varphi: A \rightarrow$ $\mathcal{M}(B)$ be a completely positive unital map. It suffices to find an element $V \in \mathcal{M}(B)$ such that

$$
\begin{equation*}
V^{*} \pi(a) V-\varphi(a) \in B \tag{2.1}
\end{equation*}
$$

for all $a \in A$ and

$$
\begin{equation*}
\left\|V^{*} \pi(x) V-\varphi(x)\right\|<3 \epsilon \tag{2.2}
\end{equation*}
$$

for all $x \in F$. If namely ϵ is small enough this will imply that $W=V\left[V^{*} V\right]^{-\frac{1}{2}}$ is an isometry close to V such that $V-W \in B$, and we can then work with W instead of V. We repeat Kasparovs arguments : Let X be a compact subset of A containing F and with dense span in A. By Lemma 10 of $[\mathrm{K}]$ there is a sequence $\psi_{k}: A \rightarrow B, k \in \mathbb{N}$, of completely positive contractions such that $\psi(a)=\sum_{k=1}^{\infty} \psi_{k}(a)$ converges in the strict topology, $\varphi(a)-\psi(a) \in B$ for all $a \in A$, and $\|\varphi(x)-\psi(x)\|<\epsilon$ for all $x \in X$. Let $\left\{b_{i}\right\}$ be a countable approximate unit for B. It follows from 1) that we can find a sequence $\left\{m_{i}\right\} \subseteq B$ such that

1) $\left\|\psi_{i}(x)-m_{i}^{*} \pi(x) m_{i}\right\| \leq \epsilon 2^{-i}, x \in X, i \in \mathbb{N}$,
2) $\left\|m_{i}^{*} \pi(x) m_{j}\right\| \leq \epsilon 2^{-i-j}, x \in X, i, j \in \mathbb{N}, i \neq j$,
3) $\sum_{i=1}^{\infty}\left\|m_{i}^{*} b_{k}\right\|<\infty$ for all $k \in \mathbb{N}$.

The argument from the proof of Theorem 5 in $[\mathrm{K}]$ shows that $\sum_{i=1}^{\infty} m_{i}$ converges in the strict topology to an element $V \in \mathcal{M}(B)$ satisfying (2.1) and (2.2).
$2) \Rightarrow 3)$: The following argument is a reading of p . 338-339 of $[\mathrm{A}]$ which merely substitutes the Hilbert spaces with Hilbert B-modules. We include it for the convenience of the reader. Let $\varphi: A \rightarrow \mathcal{M}(B)$ be a unital $*$-homomorphism. Let $F \subseteq A$ be a finite set and let $\epsilon>0$. All we need to do is to find a unitary $U \in \mathcal{L}_{B}(B \oplus B, B)$ such that

$$
U(\pi \oplus \varphi)(a) U^{*}-\pi(a) \in B, a \in A
$$

and

$$
\left\|U(\pi \oplus \varphi)(x) U^{*}-\pi(x)\right\| \leq \epsilon, x \in F
$$

Let S_{1}, S_{2}, \cdots be a sequence of isometries in $\mathcal{M}(B)$ such that $S_{i}^{*} S_{j}=0, i \neq j$, and $\sum_{i=1}^{\infty} S_{i} S_{i}^{*}=1$ in the strict topology. Define $\varphi^{\prime}: A \rightarrow \mathcal{M}(B)$ such that

$$
\varphi^{\prime}(a)=\sum_{i=1}^{\infty} S_{i} \varphi(a) S_{i}^{*}
$$

It is then easy to show that

$$
\begin{equation*}
U\left(\varphi^{\prime} \oplus \varphi\right) U^{*}=\varphi^{\prime} \tag{2.3}
\end{equation*}
$$

for some unitary $U \in \mathcal{L}_{B}(B \oplus B, B)$. By assumption there is a sequence $\left\{V_{n}\right\}$ of isometries in $\mathcal{M}(B)$ such that $\lim _{n \rightarrow \infty}\left\|\varphi^{\prime}(a)-V_{n}^{*} \pi(a) V_{n}\right\|=0$ for all $a \in A$ and $\varphi^{\prime}(a)-V_{n}^{*} \pi(a) V_{n} \in B$ for all a, n. By using the identity
$\left(V_{n} \varphi^{\prime}(a)-\pi(a) V_{n}\right)^{*}\left(V_{n} \varphi^{\prime}(a)-\pi(a) V_{n}\right)=$
$\left(V_{n}^{*} \pi\left(a^{*} a\right) V_{n}-\varphi^{\prime}\left(a^{*} a\right)\right)+\left(\varphi^{\prime}\left(a^{*}\right)-V_{n}^{*} \pi\left(a^{*}\right) V_{n}\right) \varphi^{\prime}(a)+\varphi^{\prime}\left(a^{*}\right)\left(\varphi^{\prime}(a)-V_{n}^{*} \pi(a) V_{n}\right)$,
we see that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|V_{n} \varphi^{\prime}(a)-\pi(a) V_{n}\right\|=0 \tag{2.4}
\end{equation*}
$$

and

$$
V_{k} \varphi^{\prime}(a)-\pi(a) V_{k} \in B
$$

for all k, a. Set $P_{n}=V_{n} V_{n}^{*}$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|P_{n} \pi(a)-\pi(a) P_{n}\right\|=0 \tag{2.5}
\end{equation*}
$$

and

$$
P_{k} \pi(a)-\pi(a) P_{k} \in B
$$

for all k, a. Set $\pi_{n}(\cdot)=\left(1-P_{n}\right) \pi(\cdot)\left(1-P_{n}\right)$. Define unitaries $U_{n}: B \oplus\left(1-P_{n}\right) B \rightarrow B$ by

$$
U_{n}(x, y)=V_{n} x+y .
$$

Let $Q_{1}: B \oplus\left(1-P_{n}\right) B \rightarrow B$ and $Q_{2}: B \oplus\left(1-P_{n}\right) B \rightarrow\left(1-P_{n}\right) B$ be the two natural projections. Then $\pi(a) U_{n}=\pi(a) V_{n} Q_{1}+\pi(a) Q_{2}$ while $U_{n}\left[\varphi^{\prime}(a) \oplus \pi_{n}(a)\right]=$ $V_{n} \varphi^{\prime}(a) Q_{1}+\pi_{n}(a) Q_{2}$, and hence

$$
\begin{align*}
& \pi(a) U_{n}-U_{n}\left[\varphi^{\prime}(a) \oplus \pi_{n}(a)\right] \\
& =\left(\pi(a) V_{n}-V_{n} \varphi^{\prime}(a)\right) Q_{1}+P_{n} \pi(a)\left(1-P_{n}\right) Q_{2} \tag{2.6}\\
& \in \mathcal{K}_{B}\left(B \oplus\left(1-P_{n}\right) B, B\right)
\end{align*}
$$

for all a, n. By combining (2.4) and (2.5) we see that

$$
\lim _{n \rightarrow \infty}\left\|\pi(a) U_{n}-U_{n}\left[\varphi^{\prime}(a) \oplus \pi_{n}(a)\right]\right\|=0
$$

for all $a \in A$. By using this in connection with (2.3) we see that there is a sequence of unitaries, $T_{n} \in \mathcal{L}_{B}\left(B \oplus\left(1-P_{n}\right) B \oplus B, B\right)$, such that

$$
\lim _{n \rightarrow \infty}\left\|\pi(a) T_{n}-T_{n}\left[\varphi^{\prime}(a) \oplus \pi_{n}(a) \oplus \varphi(a)\right]\right\|=0
$$

and

$$
\pi(a) T_{k}-T_{k}\left[\varphi^{\prime}(a) \oplus \pi_{n}(a) \oplus \varphi(a)\right] \in \mathcal{K}_{B}\left(B \oplus\left(1-P_{k}\right) B \oplus B, B\right)
$$

for all a, k. It follows that

$$
\pi(a)-T_{n}\left(U_{m}^{*} \oplus 1\right)(\pi(a) \oplus \varphi(a))\left(U_{m} \oplus 1\right) T_{n}^{*} \in B
$$

for all a, n, m, and that

$$
\left\|\pi(x)-T_{n}\left(U_{m}^{*} \oplus 1\right)(\pi(x) \oplus \varphi(x))\left(U_{m} \oplus 1\right) T_{n}^{*}\right\|<\epsilon
$$

for all $x \in F$, if just n and m are chosen large enough. Thus we can use $U=$ $T_{n}\left(U_{m}^{*} \oplus 1\right)$ for such n, m.
$3) \Rightarrow 4)$ is trivial.
4) $\Rightarrow 1$) : Let $\varphi: A \rightarrow B$ be a completely positive contraction. Let $F \subseteq A$ and $G \subseteq B$ be finite sets and $\epsilon>0$. Since A and B are separable it suffices to find an element $L \in \mathcal{M}(B)$ such that $\left\|\varphi(a)-L^{*} \pi(a) L\right\|<\epsilon, a \in F$, and $\|L b\|<\epsilon$ for all $b \in B$. By Kasparovs Stinespring theorem, Theorem 3 of $[\mathrm{K}]$, there is a unital $*$-homomorphism $\chi: A \rightarrow \mathcal{M}(B)$ and an element $W \in \mathcal{M}(B)$ such that $\varphi(\cdot)=W^{*} \chi(\cdot) W$. Let $S_{i}, i=1,2,3, \cdots$, be the sequence of isometries from above and set $\chi^{\infty}(a)=\sum_{i=1}^{\infty} S_{i} \chi(a) S_{i}^{*}$. It follows from 4) that there is a sequence $\left\{U_{n}\right\}$ of unitaries in $\mathcal{L}_{B}(B \oplus B, B)$ such that

$$
\lim _{n \rightarrow \infty}\left\|U_{n}\left(\begin{array}{cc}
\pi(a) & 0 \\
0 & \chi^{\infty}(a)
\end{array}\right) U_{n}^{*}-\pi(a)\right\|=0, a \in A
$$

Define $T_{i}: B \rightarrow B \oplus B$ by $T_{i} b=\left(0, S_{i} b\right)$. Then

$$
\chi(a)=T_{i}^{*}\left(\begin{array}{cc}
\pi(a) & 0 \\
0 & \chi^{\infty}(a)
\end{array}\right) T_{i}
$$

and

$$
\varphi(a)=W^{*} T_{i}^{*}\left(\begin{array}{cc}
\pi(a) & 0 \\
0 & \chi^{\infty}(a)
\end{array}\right) T_{i} W
$$

for all a and i. Choose n so large that

$$
\left\|\left(\begin{array}{cc}
\pi(a) & 0 \\
0 & \chi^{\infty}(a)
\end{array}\right)-U_{n}^{*} \pi(a) U_{n}\right\|<\frac{\epsilon}{1+\|W\|^{2}}, a \in F .
$$

Then

$$
\left\|\varphi(a)-W^{*} T_{i}^{*} U_{n}^{*} \pi(a) U_{n} T_{i} W\right\|<\epsilon, a \in F
$$

for all i. Since $\lim _{i \rightarrow \infty}\left\|T_{i}^{*} x\right\|=0$ for all $x \in B \oplus B$, we can choose i so large that $\left\|W^{*} T_{i}^{*} U_{n}^{*} b\right\|<\epsilon$ for all $b \in G$. Set $L=U_{n} T_{i} W$.

Definition 2.2. Let A and B be separable C^{*}-algebras with A unital and B stable. A unital $*$-homomorphism $\pi: A \rightarrow \mathcal{M}(B)$ which satisfies the four equivalent conditions in Theorem 2.1 is called unitally absorbing (for (A, B)).

The following lemma is surely known, but it is so crucial for us here that we include a proof.
Lemma 2.3. Let A and B be separable C^{*}-algebras. There is then a countable set X of completely positive contractions $A \rightarrow B$ such that for any completely positive contraction $\mu: A \rightarrow B$, any finite set $F \subseteq A$ and any $\epsilon>0$ there is an element $l \in X$ such that

$$
\|\mu(f)-l(f)\| \leq \epsilon, f \in F
$$

Proof. Let $\left\{a_{1}, a_{2}, a_{3}, \cdots\right\}$ be a dense sequence in the unit ball of A and set $F_{n}=$ $\operatorname{span}\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$. Let ω be a faithful state of A and let $\left(\pi_{\omega}, H_{\omega}\right)$ be the GNSrepresentation coming from ω. We can then consider A as a subspace of H_{ω}. The orthogonal projection $P_{n}: H_{\omega} \rightarrow F_{n}$ gives us then by restriction a continuous idempotent map $P_{n}: A \rightarrow F_{n}$. Let $1<m_{1}<m_{2}<m_{3}<\cdots$ be a sequence of numbers such that $\left\|P_{n}\right\| \leq m_{n}$ for all n. We can then define a metric d on the space $\mathcal{B}(A, B)$ of continuous linear maps $L: A \rightarrow B$ by

$$
d\left(L_{1}, L_{2}\right)=\sum_{i=1}^{\infty} \frac{2^{-i}}{m_{i}}\left\|L_{1}\left(a_{i}\right)-L_{2}\left(a_{i}\right)\right\| .
$$

Choose a linear basis $\left\{x_{1}, x_{2}, \cdots, x_{n_{0}}\right\}$ for F_{n}. For each n_{0}-tuple $\underline{b}=\left(b_{1}, b_{2}, \cdots, b_{n_{0}}\right) \in$ $B^{n_{0}}$ there is a linear map $L_{\underline{b}}: F_{n} \rightarrow B$ such that $L_{\underline{b}}\left(x_{i}\right)=b_{i}, i=1,2, \cdots, n$. By using that $B^{n_{0}}$ is separable this construction gives us a countable set \mathcal{M} of linear maps $F_{n} \rightarrow B$ which is dense in the strong topology of $\mathcal{B}\left(F_{n}, B\right)$. Let now $0<\epsilon<1$ and a finite set $D \subseteq F_{n}$ be given. Let $\mu \in \mathcal{B}\left(F_{n}, B\right)$ be a contraction. There is a finite subset G of F_{n} such that every $x \in F_{n}$ with $\|x\| \leq 1-\epsilon$ is a convex combination of elements from G. Choose $l \in \mathcal{M}$ such that

$$
\begin{equation*}
\|\mu(z)-l(z)\|<\epsilon, z \in D \cup G \tag{2.7}
\end{equation*}
$$

Then $\|\mu(x)-l(x)\| \leq \epsilon$ for all $x \in F_{n}$ with $\|x\| \leq 1-\epsilon$, and hence $\|l\| \leq \frac{1+\epsilon}{1-\epsilon}$. Let q be a positive rational number in $] \frac{1-2 \epsilon}{1+\epsilon}, \frac{1-\epsilon}{1+\epsilon}\left[\right.$. Then $q l \in \mathbb{Q}_{+} \mathcal{M}$ is a contraction and we find that

$$
\begin{aligned}
& \|\mu(z)-q l(z)\| \leq\|\mu(z)-l(z)\|+\|l(z)-q l(z)\| \\
& \leq \epsilon+\mid 1-q\|l\| \sup \{\|z\|: z \in D\} \\
& <\frac{2 \epsilon+2 \epsilon^{2}}{1-\epsilon^{2}} \sup \{\|z\|: z \in D\}+\epsilon
\end{aligned}
$$

for all $z \in D$. It follows that we can find a countable set $\mathcal{Y}_{n} \subseteq \mathbb{Q}_{+} \mathcal{M}$ of linear contractions which is strongly dense among all contractions in $\mathcal{B}\left(F_{n}, B\right)$. Set

$$
\mathcal{Y}=\bigcup_{n=1}^{\infty}\left\{l \circ P_{n}: l \in \mathcal{Y}_{n}\right\}
$$

Let $\mu: A \rightarrow B$ be a linear contraction and let $\epsilon>0$. Choose n so large that $2 \sum_{i \geq n+1} 2^{-i}<\frac{\epsilon}{2}$. From what we have just proved there is an element $l \in \mathcal{Y}_{n}$ such that $\left\|\mu\left(a_{i}\right)-l\left(a_{i}\right)\right\|<\frac{\epsilon}{2}, i=1,2, \cdots, n$. Then $l \circ P_{n} \in \mathcal{Y}$ and

$$
\begin{aligned}
& d\left(\mu, l \circ P_{n}\right) \leq \sum_{i=1}^{n} \frac{2^{-i}}{m_{i}} \frac{\epsilon}{2}+\sum_{i \geq n+1} \frac{2^{-i}}{m_{i}}\left(1+\left\|P_{n}\right\|\right) \\
& \leq \frac{\epsilon}{2}+\sum_{i \geq n+1} \frac{2^{-i}}{m_{i}}\left(1+m_{i}\right) \leq \epsilon
\end{aligned}
$$

It follows that \mathcal{Y} is a countable set in $\mathcal{B}(A, B)$ with the property that for any linear contraction $\mu: A \rightarrow B$ and any $\epsilon>0$ there is an element $l \in \mathcal{Y}$ such that $d(\mu, l)<\epsilon$. For each $l \in \mathcal{Y}$ choose a completely positive contraction $l^{\prime}: A \rightarrow B$ such that

$$
d\left(l, l^{\prime}\right) \leq 2 \inf \{d(l, L): L \in \mathcal{B}(A, B) \text { is a completely positive contraction }\} .
$$

Then $\mathcal{Y}^{\prime}=\left\{l^{\prime}: l \in \mathcal{Y}\right\}$ is a countable set of completely positive contractions in $\mathcal{B}(A, B)$ with the property that for any completely positive linear contraction $\mu: A \rightarrow B$ and any $\epsilon>0$ there is an element $l \in \mathcal{Y}^{\prime}$ such that $d(\mu, l)<\epsilon$.

Theorem 2.4. Let A and B be separable C^{*}-algebras. Assume that B is stable and A unital. Then there exists an unitally absorbing $*$-homomorphism $\pi: A \rightarrow \mathcal{M}(B)$ for (A, B).

Proof. By Lemma 2.3 there is a dense sequence $\left\{s_{n}\right\}$ in the set of completely positive contractions from A to B. We may assume that each s_{n} is repeated infinitely often in this sequence. By Kasparovs Stinespring Theorem, Theorem 3 of [K], there are elements $V_{n} \in \mathcal{M}(B)$ and unital $*$-homomorphisms $\pi_{n}: A \rightarrow \mathcal{M}(B)$ such that

$$
s_{n}(\cdot)=V_{n}^{*} \pi_{n}(\cdot) V_{n}
$$

for all n. Note that $\left\|V_{n}\right\|^{2}=\left\|V_{n}^{*} V_{n}\right\|=\left\|s_{n}(1)\right\| \leq 1$ for all n. Define a unital *-homomorphism $\pi_{\infty}: A \rightarrow \mathcal{L}_{B}\left(l_{2}(B)\right)$ by

$$
\pi_{\infty}(a)\left(b_{1}, b_{2}, b_{3}, \cdots\right)=\left(\pi_{1}(a) b_{1}, \pi_{2}(a) b_{2}, \pi_{3}(a) b_{3}, \cdots\right)
$$

Define $L_{n} \in \mathcal{L}_{B}\left(B, l_{2}(B)\right)$ by

$$
L_{n} b=\left(0,0, \cdots, 0, V_{n} b, 0,0, \cdots\right),
$$

where the non-trivial entry occurs at the n 'th coordinate. Since we repeated the s_{n} 's infinitely often there is, for each n, a sequence $k_{1}<k_{2}<k_{3}<\cdots$ in \mathbb{N} such that

$$
\begin{equation*}
s_{n}(a)=L_{k_{i}}^{*} \pi_{\infty}(a) L_{k_{i}} \tag{2.8}
\end{equation*}
$$

for all $a \in A, i \in \mathbb{N}$, and

$$
\begin{equation*}
\lim _{i \rightarrow \infty}\left\|L_{k_{i}}^{*} \psi\right\|=0, \quad \psi \in l_{2}(B) . \tag{2.9}
\end{equation*}
$$

By Lemma 1.3.2 of [K-JT] there is an isomorphism $S: l_{2}(B) \rightarrow B$ of Hilbert B modules. Set $T_{n}=S L_{n} \in \mathcal{M}(B)$ and $\pi(\cdot)=S \pi_{\infty}(\cdot) S^{*}$. We assert that π satisfies condition 1) of Theorem 2.1, and to prove it we let $\varphi: A \rightarrow B$ be a completely positive contraction. In order to construct a sequence $\left\{W_{n}\right\}$ in $\mathcal{M}(B)$ such that 1a) and 1 b) of Theorem 2.1 hold it suffices, because A and B are separable, to pick $\epsilon>0$ and finite subsets $F_{1} \subseteq A$ and $F_{2} \subseteq B$ and find an element $W \in \mathcal{M}(B)$ such that $\left\|\varphi(a)-W^{*} \pi(a) W\right\|<\epsilon, a \in F_{1}$, and $\left\|W^{*} b\right\|<\epsilon, b \in F_{2}$. Choose first an $n \in \mathbb{N}$ such that $\left\|\varphi(a)-s_{n}(a)\right\|<\epsilon, a \in F_{1}$. If we then choose $k_{1}<k_{2}<k_{3}<\cdots$ such that (2.8) and (2.9) hold we have that $T_{k_{i}}^{*} \pi(a) T_{k_{i}}=s_{n}(a)$ for all $a \in F_{1}$ and $\left\|T_{k_{i}}^{*} b\right\|<\epsilon$ for all $b \in F_{2}$, provided only that i is large enough. We can then set $W=T_{k_{i}}$ for such an i.

We now turn to the case of a not neccesarily unital C^{*}-algebra A and the general notion of absorbing $*$-homomorphisms. Given a C^{*}-algebra A we denote in the following by A^{+}the C^{*}-algebra obtained by adding a unit to A. Let B be another C^{*}-algebra. Any linear completely positive contraction $\varphi: A \rightarrow \mathcal{M}(B)$ admits a unique linear extension $\varphi^{+}: A^{+} \rightarrow \mathcal{M}(B)$ such that $\varphi^{+}(1)=1 . \varphi^{+}$is automatically a completely positive contraction, cf. e.g. Lemma 3.2 .8 of [K-JT], and is automatically a $*$-homomorphism when φ is. The following theorem is therefore an immediate consequence of Theorem 2.1.

Theorem 2.5. Let A and B be separable C^{*}-algebras with B stable. Let $\pi: A \rightarrow$ $\mathcal{M}(B)$ be a $*$-homomorphism. Then the following conditions are equivalent :

1) $\pi^{+}: A^{+} \rightarrow \mathcal{M}(B)$ is unitally absorbing for $\left(A^{+}, B\right)$.
2) For any completely positive contraction $\varphi: A \rightarrow \mathcal{M}(B)$ there is a sequence $\left\{V_{n}\right\}$ of isometries in $\mathcal{M}(B)$ such that
2a) $V_{n}^{*} \pi(a) V_{n}-\varphi(a) \in B, n \in \mathbb{N}, a \in A$,
2b) $\lim _{n \rightarrow \infty}\left\|V_{n}^{*} \pi(a) V_{n}-\varphi(a)\right\|=0, a \in A$.
3) For any *-homomorphism $\varphi: A \rightarrow \mathcal{M}(B)$ there is a sequence $\left\{U_{n}\right\}$ of unitaries $U_{n} \in \mathcal{L}_{B}(B \oplus B, B)$ such that
3a) $U_{n}\left(\begin{array}{cc}\pi(a) & 0 \\ 0 & \varphi(a)\end{array}\right) U_{n}^{*}-\pi(a) \in B, n \in \mathbb{N}, a \in A$,
3b) $\lim _{n \rightarrow \infty}\left\|U_{n}\left(\begin{array}{cc}\pi(a) & 0 \\ 0 & \varphi(a)\end{array}\right) U_{n}^{*}-\pi(a)\right\|=0, a \in A$.
4) For any *-homomorphism $\varphi: A \rightarrow \mathcal{M}(B)$ there is a sequence $\left\{U_{n}\right\}$ of unitaries $U_{n} \in \mathcal{L}_{B}(B \oplus B, B)$ such that

$$
\lim _{n \rightarrow \infty}\left\|U_{n}\left(\begin{array}{cc}
\pi(a) & 0 \\
0 & \varphi(a)
\end{array}\right) U_{n}^{*}-\pi(a)\right\|=0, a \in A
$$

Definition 2.6. Let A and B be separable C^{*}-algebras with B stable. $A *$-homomorphism $\pi: A \rightarrow \mathcal{M}(B)$ is absorbing (for (A, B)) when it satisfies the four equivalent conditions of Theorem 2.5.

Theorem 2.7. Let A and B be separable C^{*}-algebras with B stable. There exists an absorbing *-homomorphism $\pi: A \rightarrow \mathcal{M}(B)$ for (A, B).

Proof. Combine Theorem 2.5 and Theorem 2.4 .

An absorbing *-homomorphism is clearly unique in the following sense: Given two absorbing $*$-homomorphisms $\pi_{1}, \pi_{2}: A \rightarrow \mathcal{M}(B)$ there is a sequence $\left\{U_{n}\right\} \subseteq \mathcal{M}(B)$ of unitaries such that

$$
U_{n} \pi_{1}(a) U_{n}^{*}-\pi_{2}(a) \in B \quad, \quad a \in A, n \in \mathbb{N}
$$

and

$$
\lim _{n \rightarrow \infty} U_{n} \pi_{1}(a) U_{n}^{*}-\pi_{2}(a)=0 \quad, \quad a \in A
$$

3. Duality in $K K$-theory

Throughout this section A and B will be separable C^{*}-algebras and B will be stable. A $*$-homomorphism $\pi: A \rightarrow \mathcal{M}(B)$ is of infinite multiplicity when π is unitarily equivalent to π^{∞}, where $\pi^{\infty}: A \rightarrow \mathcal{M}(B)$ is the $*$-homomorphism given by

$$
\pi^{\infty}(a)=\sum_{i=1}^{\infty} S_{i} \pi(a) S_{i}^{*}
$$

for some sequence $S_{i}, i \in \mathbb{N}$, of isometries in $\mathcal{M}(B)$ such that $S_{i}^{*} S_{j}=0, i \neq j$, and $\sum_{i=1}^{\infty} S_{i} S_{i}^{*}=1$ in the strict topology.

Lemma 3.1. Let $\pi: A \rightarrow \mathcal{M}(B)$ be $a *$-homomorphism of infinite multiplicity and set

$$
E=\{m \in \mathcal{M}(B): m \pi(a)=\pi(a) m \forall a \in A\}
$$

Then $K_{*}(E)=\{0\}$.
Proof. Since π has infinite multiplicity,

$$
E \simeq\left\{m \in \mathcal{L}_{B}\left(l_{2}(B)\right): m \mu(a)=\mu(a) m \forall a \in A\right\}
$$

where $\mu: A \rightarrow \mathcal{L}_{B}\left(l_{2}(B)\right)$ is given by

$$
\mu(a)\left(b_{1}, b_{2}, b_{3}, \cdots\right)=\left(\pi(a) b_{1}, \pi(a) b_{2}, \pi(a) b_{3}, \cdots\right)
$$

The usual proof that $K_{*}\left(\mathcal{L}_{B}\left(l_{2}(B)\right)\right)=0$ works to show that $K_{*}(E)=0$, cf. e.g. Proposition 12.2.1 of [B1].

Given an absorbing $*$-homomorphism $\pi: A \rightarrow \mathcal{M}(B)$ we set

$$
C_{\pi}=\{x \in \mathcal{M}(B): x \pi(a)-\pi(a) x \in B, a \in A\}
$$

and

$$
A_{\pi}=\{x \in \mathcal{M}(B): x \pi(A) \subseteq B\}
$$

Then A_{π} is a closed twosided ideal in C_{π} and we set

$$
D_{\pi}=C_{\pi} / A_{\pi}
$$

The quotient map $C_{\pi} \rightarrow D_{\pi}$ will be denoted by q. If $\tau: A \rightarrow \mathcal{M}(B)$ is another absorbing $*$-homomorphism there is a unitary $w \in \mathcal{M}(B)$ such that $\operatorname{Ad} w \circ \pi(a)-$ $\tau(a) \in B$ for all $a \in A$ and then $x \mapsto w x w^{*}$ defines a $*$-isomorphism of C_{π} onto C_{τ} which takes A_{π} onto A_{τ}. In particular, $D_{\pi} \simeq D_{\tau}$.

Let u be a unitary in $M_{n}\left(D_{\pi}\right)$. Choose $v \in M_{n}\left(C_{\pi}\right)$ such that

$$
\mathrm{id}_{M_{n}} \otimes q(v)=u
$$

Define $\pi^{n}: A \rightarrow \mathcal{L}_{B}\left(B^{n}\right)$ by

$$
\pi^{n}(a)\left(b_{1}, b_{2}, \cdots, b_{n}\right)=\left(\pi(a) b_{1}, \pi(a) b_{2}, \cdots, \pi(a) b_{n}\right)
$$

Let $B^{n} \oplus B^{n}$ be graded by $(x, y) \mapsto(x,-y)$. Then

$$
\left(B^{n} \oplus B^{n},\left(\pi^{\pi^{n}} \pi^{n}\right),\left(v^{*}{ }^{v}\right)\right)
$$

is a Kasparov $A-B$-module. We leave the reader to check that the class of this module in $K K(A, B)$ only depends on the class of u in $K_{1}\left(D_{\pi}\right)$, and that the construction gives rise to a group homomorphism $\Theta: K_{1}\left(D_{\pi}\right) \rightarrow K K(A, B)$.

Theorem 3.2. Assume that $\pi: A \rightarrow \mathcal{M}(B)$ is an absorbing *-homomorphism. Then $\Theta: K_{1}\left(D_{\pi}\right) \rightarrow K K(A, B)$ is an isomorphism.

Proof. When τ is another absorbing $*$-homomorphism there is a commuting diagram

where $K_{1}\left(D_{\pi}\right) \rightarrow K_{1}\left(D_{\tau}\right)$ is induced by the isomorphism $D_{\pi} \rightarrow D_{\tau}$ described above, and $K_{1}\left(D_{\tau}\right) \rightarrow K K(A, B)$ is the map obtained by using τ instead of π in the definition of Θ. Indeed if one considers a specific unitary in $M_{n}\left(D_{\pi}\right)$, the Kasparov $A-B$-module which results by going down and up in the diagram differs from the one which arises by going across by an isomorphism and a compact perturbation. Thus if we prove that $\Theta: K_{1}\left(A_{\pi}\right) \rightarrow K K(A, B)$ is an isomorphism for one absorbing *-homomorphism π it will follow that it is an isomorphism for any other. Hence by working with π^{∞} instead of π we may assume that π is of infinite multiplicity.
Θ is injective : Let $u \in M_{n}\left(D_{\pi}\right)$ be a unitary and choose $v \in M_{n}\left(C_{\pi}\right)$ such that $\operatorname{id}_{M_{n}} \otimes q(v)=u$. Assume that

$$
\left[B^{n} \oplus B^{n},\left(\pi_{\pi^{n}}^{\pi^{n}}\right),\left({v^{*}}^{v}\right)\right]=0
$$

in $K K(A, B)$. This means that there are degenerate Kasparov $A-B$-modules \mathcal{D}_{1} and \mathcal{D}_{2} such that

$$
\left(B^{n} \oplus B^{n},\left(\pi^{\pi^{n}}\right),\left(v_{v^{*}}^{v}\right)\right) \oplus \mathcal{D}_{1}
$$

is operator homotopic to

$$
\left(B^{n} \oplus B^{n},\left({\pi^{n}}_{\pi^{n}}\right),\left(1_{1}^{1}\right)\right) \oplus \mathcal{D}_{2} .
$$

Since \mathcal{D}_{1} and \mathcal{D}_{2} are degenerate we can define a new degenerate Kasparov $A-B$ module \mathcal{D} by

$$
\mathcal{D}=\mathcal{D}_{1} \oplus \mathcal{D}_{2} \oplus \mathcal{D}_{1} \oplus \mathcal{D}_{2} \oplus \mathcal{D}_{1} \oplus \mathcal{D}_{2} \oplus \cdots \cdots
$$

Then $\mathcal{D}_{1} \oplus \mathcal{D}$ and $\mathcal{D}_{2} \oplus \mathcal{D}$ are both isomorphic to \mathcal{D} and hence

$$
\left(B^{n} \oplus B^{n},\left(\pi^{n} \frac{\pi^{n}}{}\right),\left(v^{*}{ }^{v}\right)\right) \oplus \mathcal{D}
$$

is operator homotopic to

$$
\left(B^{n} \oplus B^{n},\left(\pi^{\pi^{n}}\right),\left(1^{1}\right)\right) \oplus \mathcal{D}
$$

By combining Kasparovs stabilization theorem, Theorem 2.12 of [K-JT], with Lemma 1.3.2 of [K-JT] we may assume that

$$
\mathcal{D}=\left(B \oplus B,\left(\lambda_{+} \lambda_{-}\right),\left(b^{a}\right)\right)
$$

where $B \oplus B$ is graded by $(x, y) \mapsto(x,-y), \lambda_{ \pm}: A \rightarrow \mathcal{M}(B)$ are $*$-homomorphisms and $a, b \in \mathcal{M}(B)$. By performing the same alterations to \mathcal{D} as was performed to \mathcal{E} on page $125-126$ of [K-JT] we may assume that $a=w$ and $b=w^{*}$ for some unitary $w \in \mathcal{M}(B)$. Finally, by applying the unitary of the Hilbert B-module $B \oplus B$ given by $(x, y) \mapsto(x, w y)$, we see that we can assume that $w=1$. So all in all we have that

$$
\left(B^{n} \oplus B^{n},\left(\pi_{\pi^{n}}^{n}\right),\left(v_{v^{*}}^{v}\right)\right) \oplus\left(B \oplus B,\left(\lambda_{+} \lambda_{-}\right),\left(1_{1}^{1}\right)\right)
$$

is operator homotopic to

$$
\left(B^{n} \oplus B^{n},\left(\pi_{\pi^{n}}\right),\left(1_{1}^{1}\right)\right) \oplus\left(B \oplus B,\left(\lambda_{+} \lambda_{-}\right),\left(1_{1}^{1}\right)\right) .
$$

Note that $\lambda_{+}=\lambda_{-}$since $\left(B \oplus B,\left(\lambda_{+} \lambda_{-}\right),\left(1^{1}\right)\right)$ is degenerate. Finally, by adding on an infinite number of copies of

$$
\left(B \oplus B,\left(\lambda_{+} \lambda_{-}\right),\left(1^{1}\right)\right)
$$

we find that there is a $*$-homomorphism of infinite multiplicity $\lambda: A \rightarrow \mathcal{M}(B)$ such that

$$
\left(B^{n} \oplus B^{n},\left(\pi^{n} \pi^{n}\right),\left(v_{v^{*}}^{v}\right)\right) \oplus\left(B \oplus B,\left(\lambda_{\lambda}\right),\left(1_{1}^{1}\right)\right)
$$

is operator homotopic to

$$
\left(B^{n} \oplus B^{n},\left(\pi^{\pi^{n}} \pi^{n}\right),\left(1^{1}\right)\right) \oplus\left(B \oplus B,\left({ }_{\lambda}\right),\left(1^{1}\right)\right) .
$$

Furthermore, by adding on

$$
\left(B \oplus B,\left({ }_{\pi}^{\pi}\right),\left({ }_{1}{ }^{1}\right)\right)
$$

we may assume that there is a unitary $w \in \mathcal{M}(B)$ such that

$$
\begin{equation*}
w \lambda(a) w^{*}-\pi(a) \in B \quad, \quad a \in A . \tag{3.2}
\end{equation*}
$$

The operator homotopy consists of an isomorphism of Kasparov $A-B$ modules and a norm-continuous path of operators. The isomorphism gives us a unitary $S \in M_{n+1}(\mathcal{M}(B))$ such that

$$
S\left(\begin{array}{ll}
\pi^{n}(a) & \\
& \lambda(a)
\end{array}\right)=\left(\begin{array}{ll}
\pi^{n}(a) & \\
& \lambda(a)
\end{array}\right) S
$$

for all $a \in A$, and in addition we have a norm-continuous path $F_{t}, t \in[0,1]$, in $M_{n+1}(\mathcal{M}(B))$ such that $F_{0}=S, F_{1}=\left({ }^{v}{ }_{1}\right)$,

$$
\begin{aligned}
& \left(F_{t} F_{t}^{*}-1_{n+1}\right)\left(\begin{array}{ll}
\pi^{n}(a) & \\
& \lambda(a)
\end{array}\right) \in M_{n+1}(B), \\
& \left(F_{t}^{*} F_{t}-1_{n+1}\right)\left(\begin{array}{cc}
\pi^{n}(a) \\
& \lambda(a)
\end{array}\right) \in M_{n+1}(B),
\end{aligned}
$$

and

$$
F_{t}\left(\begin{array}{ll}
\pi^{n}(a) & \\
& \lambda(a)
\end{array}\right)-\left(\begin{array}{ll}
\pi^{n}(a) & \\
& \lambda(a)
\end{array}\right) F_{t} \in M_{n+1}(B)
$$

for all t and a. Here and in the following we let 1_{k} denote the unit of $M_{k}(\mathcal{M}(B))$. Note that $\nu=\left(\pi_{\lambda}^{\pi^{n}} \quad\right.$) is of infinity multiplicity, as a $*$-homomorphism $A \rightarrow \mathcal{M}\left(M_{n+1}(B)\right)$, since π and λ both are of infinite multiplicity. By Lemma 3.1 we can therefore find an $m \in \mathbb{N}$ and a norm-continuous path of unitaries in

$$
\left\{x \in M_{m(n+1)}(\mathcal{M}(B)): x \nu^{m}(a)=\nu^{m}(a) x, a \in A\right\}
$$

connecting $\left({ }^{S}{ }_{1_{(m-1)(n+1)}}\right)$ to $1_{m(n+1)}$. In combination with F this gives us a normcontinuous path $H_{t}, t \in[0,1]$, in $M_{m(n+1)}(\mathcal{M}(B))$ such that $H_{0}=1_{m(n+1)}, H_{1}=$ $\left({ }^{v} 1_{m(n+1)-n}\right)$,

$$
\begin{aligned}
& \left(H_{t} H_{t}^{*}-1_{m(n+1)}\right) \nu^{m}(a) \in M_{m(n+1)}(B), \\
& \left(H_{t}^{*} H_{t}-1_{m(n+1)}\right) \nu^{m}(a) \in M_{m(n+1)}(B),
\end{aligned}
$$

and

$$
H_{t} \nu^{m}(a)-\nu^{m}(a) H_{t} \in M_{m(n+1)}(B)
$$

for all t and a. Set

$$
W=\operatorname{diag}(\underbrace{1_{n}, w, 1_{n}, w, \cdots, 1_{n}, w}_{m \text { times }}) \in M_{m(n+1)}(\mathcal{M}(B))
$$

and

$$
G_{t}=W H_{t} W^{*} .
$$

Then G_{t} is a norm-continuous path in $M_{m(n+1)}(\mathcal{M}(B))$ such that $G_{0}=1_{m(n+1)}, G_{1}=$ $\left({ }^{v} 1_{m(n+1)-n}\right)$,

$$
\begin{aligned}
& \left(G_{t} G_{t}^{*}-1_{m(n+1)}\right) \pi^{m(n+1)}(a) \in M_{m(n+1)}(B), \\
& \left(G_{t}^{*} G_{t}-1_{m(n+1)}\right) \pi^{m(n+1)}(a) \in M_{m(n+1)}(B),
\end{aligned}
$$

and

$$
G_{t} \pi^{m(n+1)}(a)-\pi^{m(n+1)}(a) G_{t} \in M_{m(n+1)}(B)
$$

for all t and a. Thus $\left(\operatorname{id}_{M_{m(n+1)}} \otimes q\right)\left(G_{t}\right)$ is a path of unitaries in $M_{m(n+1)}\left(D_{\pi}\right)$ connecting (${ }^{u} 1_{m(n+1)-n}$) to $1_{m(n+1)}$.
Θ is surjective : Let (E, ψ, F) be a Kasparov $A-B$-module. The constructions on pages $125-126$ of $[\mathrm{K}-\mathrm{JT}]$ show that $[E, \psi, F] \in K K(A, B)$ is also represented by a Kasparov $A-B$-module of the form

$$
\left(B \oplus B,\left({ }^{\varphi_{+}} \varphi_{-}\right),\left(v_{v^{*}}^{v}\right)\right)
$$

for some $*$-homomorphisms $\varphi_{ \pm}: A \rightarrow \mathcal{M}(B)$ and some unitary $v \in \mathcal{M}(B)$. By adding on

$$
\left(B \oplus B,\left({ }_{\pi}^{\pi}\right),\left(1_{1}{ }^{1}\right)\right)
$$

and using that π is absorbing we may assume that there are unitaries $u_{ \pm} \in \mathcal{M}(B)$ such that

$$
u_{ \pm} \varphi_{ \pm}(a) u_{ \pm}^{*}-\pi(a) \in B
$$

for all $a \in A$. Then

$$
\left(B \oplus B,\left({ }^{\varphi_{+}}{ }_{\varphi_{-}}\right),\left(v^{*}{ }^{v}\right)\right)
$$

is isomorphic to

$$
\left(B \oplus B,\binom{\operatorname{Ad} u_{+} \circ \varphi_{+}}{\operatorname{Ad} u_{-} \circ \varphi_{-}},\left(u_{-v^{*} u_{+}^{*}}^{u_{+} v u_{-}^{*}}\right)\right)
$$

which in turn is a compact perturbation of

$$
\left(B \oplus B,\left(\pi_{\pi}^{\pi}\right),\left({ }_{u_{-} v^{*} u_{+}^{*}}^{u_{+} v u_{-}^{*}}\right)\right) .
$$

Then $u_{+} v u_{-}^{*}$ is a unitary C_{π} such that $\Theta\left(\left[q\left(u_{+} v u_{-}^{*}\right)\right]\right)=[E, \psi, F]$ in $K K(A, B)$.

Of course there is also an isomorphism

$$
K_{0}\left(D_{\pi}\right) \simeq \operatorname{Ext}^{-1}(A, B)
$$

which can be proved in basically the same way.

References

[A] W. Arveson, Notes on extensions, Duke Math. J. 44 (1977), 329-355.
[B1] B. Blackadar, K-theory for Operator Algebras, MSRI publications, Springer Verlag, New York, 1986.
[H] N. Higson, C* - Algebra Extension Theory and Duality, J. Func. Analysis 129 (1995), 349-363.
[K] G. Kasparov, Hilbert C^{*}-modules: theorems of Stinespring and Voiculescu, J. Oper. Th. 4 (1980), 133-150.
[K-JT] K. Knudsen-Jensen and K. Thomsen, Elements of K K-theory, Birkhäuser, Boston, 1991.
[P] W. Paschke, K-theory for commutants in the Calkin algebra, Pacific J. Math. 95 (1981), 427-437.
[S] G. Skandalis, Une Notion de Nucléarité en K-Théorie (d'après J. Cuntz), K-theory 1 (1988), 549-573.
[V] A. Valette, A remark on the Kasparov Groups $\operatorname{Ext}^{i}(A, B)$, Pacific J. Math. 109 (1983), 247-255.

E-mail address: matkt@imf.au.dk
Institut for matematiske fag, Ny Munkegade, 8000 Aarhus C, Denmark

[^0]: Version: April 28, 1999.

