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ON ABSORBING EXTENSIONS

KLAUS THOMSEN

Abstract. Building on the work of Kasparov we show that there always exists a
trivial absorbing extension of A by B 
 K, provided only that A and B are sepa-
rable. If A is unital there is a unital trivial extension which is unitally absorbing.

1. Introduction

Absorbing trivial extensions play an important role in the theory of extensions
of C�-algebras, cf. 15.12 in [Bl]. Recently the interest in such extensions has been
renewed because of the wayKK-theory comes into the classi�cation program. In this
connection, as well as in the proper theory of C�-extensions, it is slightly disturbing
that the existence of an absorbing trivial extension has only been established in the
case where at least one of the C�-algebras involved is nuclear, cf. Theorem 5 of
[K]. The purpose of the present note is to show that such extensions always exist
when both C�-algebras are separable. The argument for this is a modi�cation of
Kasparovs approach from [K]. The absorbing trivial extensions were constructed,
in [K] as well as before Kasparovs work, by taking the in�nite direct sum of the
same copy of a faithful unital representation of the separable C�-algebra A (for the
moment assumed to be unital) which plays the role of the quotient in the extensions.
The resulting representation � : A ! B(H) was then composed with the natural
imbedding B(H) �M(B
K), whereB
K is the stable C�-algebra which features as
the ideal in the extensions. So in practice this means that the absorbing extension
was constructed by taking a weak� dense sequence of states of A, repeating all
states in the sequence in�nitely often, and then adding the corresponding GNS-
representations. This procedure has nothing to do with the C�-algebra B, and it is
a highly non-trivial task to show that it often results in an absorbing extension when
prolonged to a map A!M(B 
K), cf. [K]. The observation we o�er here is that
if one instead takes a sequence sn : A! B 
K of completely positive contractions
which is dense for the topology of pointwise norm-convergence among all completely
positive contractions (such a sequence exists when both A and B are separable),
repeats each sn in�nitely often and add up the unital representations

�n : A!M(B 
K) ; n 2 N ;

coming from the Kasparov-Stinespring decompositions

sn(�) = W �
n�n(�)Wn ;

the resulting representation A ! M(B 
 K) will be an unitally absorbing trivial
extension. The general trivial absorbing extensions can then be obtained (for a
not neccesarily unital C�-algebra A) by taking an unitally absorbing representation
� : A+ !M(B 
K) and restricting it to A.
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In order to illustrate how the absorbing �-homomorphisms constructed here can
be used to extend known results we prove a general version of the Paschke-Valette-
Skandalis duality which realizes the group KK(A;B) as the K1-group of a C�-
algebra D� build out of A and B by using an absorbing �-homomorphism � : A!
M(B), cf. [P], [V], [S], [H].

2. Absorbing �-homomorphisms

Given Hilbert B-modules E and F , we let LB(E;F ) denote the Banach space
of adjoinable operators from E to F . The ideal of 'compact' operators from E to
F is denoted by KB(E;F ). When E = F we write LB(E) and KB(E) instead
of LB(E;E) and KB(E;E), respectively. In the special case where E = B there
are well-known identi�cations LB(B) = M(B) = the multiplier algebra of B, and
KB(B) = B which we shall use freely.

Theorem 2.1. Let A and B be separable C�-algebras with A unital and B stable.

Let � : A!M(B) be a unital �-homomorphism. Then the following conditions are

equivalent :

1) For any completely positive contraction ' : A ! B there is a sequence

fWng � M(B) such that

1a) limn!1 k'(a) � W �
n�(a)Wnk = 0 for all a 2 A,

1b) limn!1 kW �
nbk = 0 for all b 2 B.

for all a 2 A.

2) For any completely positive unital map ' : A ! M(B) there is a sequence

fVng of isometries in M(B) such that

2a) V �
n �(a)Vn � '(a) 2 B ; n 2 N ; a 2 A ;

2b) limn!1 kV �
n �(a)Vn � '(a)k = 0 ; a 2 A.

3) For any unital �-homomorphism ' : A ! M(B) there is a sequence fUng of

unitaries Un 2 LB(B �B;B) such that

3a) Un

�
�(a) 0
0 '(a)

�
U�n � �(a) 2 B ; n 2 N ; a 2 A,

3b) limn!1 kUn

�
�(a) 0
0 '(a)

�
U�n � �(a)k = 0 ; a 2 A .

4) For any unital �-homomorphism ' : A ! M(B) there is a sequence fUng of

unitaries Un 2 LB(B �B;B) such that

lim
n!1

kUn

�
�(a) 0
0 '(a)

�
U�n � �(a)k = 0 ; a 2 A :

Proof. 1) ) 2) : Let F � A be a �nite set containing 1 and � > 0. Let ' : A !
M(B) be a completely positive unital map. It su�ces to �nd an element V 2 M(B)
such that

V ��(a)V � '(a) 2 B (2.1)

for all a 2 A and

kV ��(x)V � '(x)k < 3� (2.2)
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for all x 2 F . If namely � is small enough this will imply that W = V [V �V ]�
1
2 is an

isometry close to V such that V �W 2 B, and we can then work withW instead of V .
We repeat Kasparovs arguments : Let X be a compact subset of A containing F and
with dense span in A. By Lemma 10 of [K] there is a sequence  k : A! B; k 2 N,
of completely positive contractions such that  (a) =

P1

k=1  k(a) converges in the
strict topology, '(a) �  (a) 2 B for all a 2 A, and k'(x)� (x)k< � for all x 2 X.
Let fbig be a countable approximate unit for B. It follows from 1) that we can �nd
a sequence fmig � B such that

1) k i(x)�m�
i�(x)mik � �2�i ; x 2 X; i 2 N,

2) km�
i�(x)mjk � �2�i�j ; x 2 X; i; j 2 N; i 6= j,

3)
P1

i=1 km
�
i bkk <1 for all k 2 N.

The argument from the proof of Theorem 5 in [K] shows that
P1

i=1mi converges in
the strict topology to an element V 2 M(B) satisfying (2.1) and (2.2).
2) ) 3) : The following argument is a reading of p. 338-339 of [A] which merely

substitutes the Hilbert spaces with Hilbert B-modules. We include it for the conve-
nience of the reader. Let ' : A!M(B) be a unital �-homomorphism. Let F � A
be a �nite set and let � > 0. All we need to do is to �nd a unitary U 2 LB(B�B;B)
such that

U(� � ')(a)U� � �(a) 2 B ; a 2 A ;

and
kU(� � ')(x)U� � �(x)k � � ; x 2 F :

Let S1; S2; � � � be a sequence of isometries in M(B) such that S�i Sj = 0; i 6= j,
and

P1

i=1 SiS
�
i = 1 in the strict topology. De�ne '0 : A!M(B) such that

'0(a) =
1X
i=1

Si'(a)S
�
i :

It is then easy to show that

U('0 � ')U� = '0 (2.3)

for some unitary U 2 LB(B � B;B). By assumption there is a sequence fVng of
isometries in M(B) such that limn!1 k'0(a) � V �

n �(a)Vnk = 0 for all a 2 A and
'0(a)� V �

n �(a)Vn 2 B for all a; n. By using the identity

(Vn'
0(a)� �(a)Vn)

�(Vn'
0(a)� �(a)Vn) =

(V �
n �(a

�a)Vn � '0(a�a)) + ('0(a�)� V �
n �(a

�)Vn)'
0(a) + '0(a�)('0(a)� V �

n �(a)Vn) ;

we see that

lim
n!1

kVn'
0(a)� �(a)Vnk = 0 (2.4)

and
Vk'

0(a)� �(a)Vk 2 B

for all k; a. Set Pn = VnV
�
n . Then

lim
n!1

kPn�(a)� �(a)Pnk = 0 (2.5)

and

Pk�(a)� �(a)Pk 2 B
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for all k; a. Set �n(�) = (1�Pn)�(�)(1�Pn). De�ne unitaries Un : B�(1�Pn)B ! B
by

Un(x; y) = Vnx+ y :

Let Q1 : B � (1 � Pn)B ! B and Q2 : B � (1 � Pn)B ! (1 � Pn)B be the two
natural projections. Then �(a)Un = �(a)VnQ1+�(a)Q2 while Un['

0(a)��n(a)] =
Vn'

0(a)Q1 + �n(a)Q2, and hence

�(a)Un � Un['
0(a)� �n(a)]

= (�(a)Vn � Vn'
0(a))Q1 + Pn�(a)(1� Pn)Q2

2 KB(B � (1 � Pn)B;B)

(2.6)

for all a; n. By combining (2.4) and (2.5) we see that

lim
n!1

k�(a)Un � Un['
0(a)� �n(a)]k = 0

for all a 2 A. By using this in connection with (2.3) we see that there is a sequence
of unitaries, Tn 2 LB(B � (1 � Pn)B �B;B), such that

lim
n!1

k�(a)Tn � Tn['
0(a)� �n(a)� '(a)]k = 0

and

�(a)Tk � Tk['
0(a)� �n(a)� '(a)] 2 KB(B � (1� Pk)B �B;B)

for all a; k. It follows that

�(a) � Tn(U
�
m � 1)(�(a)� '(a))(Um � 1)T �n 2 B

for all a; n;m, and that

k�(x) � Tn(U
�
m � 1)(�(x)� '(x))(Um � 1)T �nk < �

for all x 2 F , if just n and m are chosen large enough. Thus we can use U =
Tn(U�m � 1) for such n;m.
3) ) 4) is trivial.
4) ) 1) : Let ' : A ! B be a completely positive contraction. Let F � A and

G � B be �nite sets and � > 0. Since A and B are separable it su�ces to �nd
an element L 2 M(B) such that k'(a) � L��(a)Lk < �; a 2 F , and kLbk < �
for all b 2 B. By Kasparovs Stinespring theorem, Theorem 3 of [K], there is a
unital �-homomorphism � : A ! M(B) and an element W 2 M(B) such that
'(�) = W ��(�)W . Let Si; i = 1; 2; 3; � � � , be the sequence of isometries from above
and set �1(a) =

P1

i=1 Si�(a)S
�
i . It follows from 4) that there is a sequence fUng

of unitaries in LB(B �B;B) such that

lim
n!1

kUn

�
�(a) 0
0 �1(a)

�
U�n � �(a)k = 0 ; a 2 A :

De�ne Ti : B ! B �B by Tib = (0; Sib). Then

�(a) = T �i

�
�(a) 0
0 �1(a)

�
Ti

and

'(a) = W �T �i

�
�(a) 0
0 �1(a)

�
TiW
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for all a and i. Choose n so large that

k

�
�(a) 0
0 �1(a)

�
� U�n�(a)Unk <

�

1 + kWk2
; a 2 F :

Then
k'(a) � W �T �i U

�
n�(a)UnTiWk < � ; a 2 F

for all i. Since limi!1 kT �i xk = 0 for all x 2 B �B, we can choose i so large that
kW �T �i U

�
nbk < � for all b 2 G. Set L = UnTiW .

De�nition 2.2. Let A and B be separable C�-algebras with A unital and B sta-
ble. A unital �-homomorphism � : A ! M(B) which satis�es the four equivalent
conditions in Theorem 2.1 is called unitally absorbing (for (A;B)).

The following lemma is surely known, but it is so crucial for us here that we
include a proof.

Lemma 2.3. Let A and B be separable C�-algebras. There is then a countable set

X of completely positive contractions A ! B such that for any completely positive

contraction � : A ! B, any �nite set F � A and any � > 0 there is an element

l 2 X such that

k�(f) � l(f)k � � ; f 2 F :

Proof. Let fa1; a2; a3; � � � g be a dense sequence in the unit ball of A and set Fn =
spanfa1; a2; � � � ; ang. Let ! be a faithful state of A and let (�!;H!) be the GNS-
representation coming from !. We can then consider A as a subspace of H!. The
orthogonal projection Pn : H! ! Fn gives us then by restriction a continuous
idempotent map Pn : A ! Fn. Let 1 < m1 < m2 < m3 < � � � be a sequence of
numbers such that kPnk � mn for all n. We can then de�ne a metric d on the space
B(A;B) of continuous linear maps L : A! B by

d(L1; L2) =
1X
i=1

2�i

mi

kL1(ai) � L2(ai)k :

Choose a linear basis fx1; x2; � � � ; xn0g for Fn. For each n0-tuple b = (b1; b2; � � � ; bn0) 2
Bn0 there is a linear map Lb : Fn ! B such that Lb(xi) = bi; i = 1; 2; � � � ; n. By
using that Bn0 is separable this construction gives us a countable set M of linear
maps Fn ! B which is dense in the strong topology of B(Fn; B). Let now 0 < � < 1
and a �nite set D � Fn be given. Let � 2 B(Fn; B) be a contraction. There is a
�nite subset G of Fn such that every x 2 Fn with kxk � 1�� is a convex combination
of elements from G. Choose l 2 M such that

k�(z) � l(z)k < � ; z 2 D [G : (2.7)

Then k�(x)� l(x)k � � for all x 2 Fn with kxk � 1 � �, and hence klk � 1+�
1�� . Let

q be a positive rational number in ]1�2�1+� ;
1��
1+� [. Then ql 2 Q+M is a contraction and

we �nd that
k�(z) � ql(z)k � k�(z) � l(z)k + kl(z)� ql(z)k

� �+ j1� qjklk supfkzk : z 2 Dg

<
2� + 2�2

1 � �2
supfkzk : z 2 Dg + �
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for all z 2 D. It follows that we can �nd a countable set Yn � Q+M of linear
contractions which is strongly dense among all contractions in B(Fn; B). Set

Y =
1[
n=1

fl � Pn : l 2 Yng :

Let � : A ! B be a linear contraction and let � > 0. Choose n so large that
2
P

i�n+1 2
�i < �

2 . From what we have just proved there is an element l 2 Yn such
that k�(ai) � l(ai)k <

�

2 ; i = 1; 2; � � � ; n. Then l � Pn 2 Y and

d(�; l � Pn) �
nX
i=1

2�i

mi

�

2
+

X
i�n+1

2�i

mi

(1 + kPnk)

�
�

2
+

X
i�n+1

2�i

mi

(1 +mi) � � :

It follows that Y is a countable set in B(A;B) with the property that for any linear
contraction � : A ! B and any � > 0 there is an element l 2 Y such that
d(�; l) < �. For each l 2 Y choose a completely positive contraction l0 : A! B such
that

d(l; l0) � 2 inffd(l; L) : L 2 B(A;B) is a completely positive contraction g :

Then Y 0 = fl0 : l 2 Yg is a countable set of completely positive contractions
in B(A;B) with the property that for any completely positive linear contraction
� : A! B and any � > 0 there is an element l 2 Y 0 such that d(�; l) < �.

Theorem 2.4. Let A and B be separable C�-algebras. Assume that B is stable and

A unital. Then there exists an unitally absorbing �-homomorphism � : A!M(B)
for (A;B).

Proof. By Lemma 2.3 there is a dense sequence fsng in the set of completely positive
contractions from A to B. We may assume that each sn is repeated in�nitely often
in this sequence. By Kasparovs Stinespring Theorem, Theorem 3 of [K], there are
elements Vn 2 M(B) and unital �-homomorphisms �n : A!M(B) such that

sn(�) = V �
n �n(�)Vn

for all n. Note that kVnk2 = kV �
n Vnk = ksn(1)k � 1 for all n. De�ne a unital

�-homomorphism �1 : A! LB(l2(B)) by

�1(a)(b1; b2; b3; � � � ) = (�1(a)b1; �2(a)b2; �3(a)b3; � � � ) :

De�ne Ln 2 LB(B; l2(B)) by

Lnb = (0; 0; � � � ; 0; Vnb; 0; 0; � � � ) ;

where the non-trivial entry occurs at the n'th coordinate. Since we repeated the
sn's in�nitely often there is, for each n, a sequence k1 < k2 < k3 < � � � in N such
that

sn(a) = L�ki�1(a)Lki (2.8)
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for all a 2 A; i 2 N, and

lim
i!1

kL�ki k = 0 ;  2 l2(B) : (2.9)

By Lemma 1.3.2 of [K-JT] there is an isomorphism S : l2(B) ! B of Hilbert B-
modules. Set Tn = SLn 2 M(B) and �(�) = S�1(�)S�. We assert that � satis�es
condition 1) of Theorem 2.1, and to prove it we let ' : A ! B be a completely
positive contraction. In order to construct a sequence fWng in M(B) such that
1a) and 1b) of Theorem 2.1 hold it su�ces, because A and B are separable, to pick
� > 0 and �nite subsets F1 � A and F2 � B and �nd an element W 2 M(B) such
that k'(a) � W ��(a)Wk < �; a 2 F1, and kW �bk < �; b 2 F2. Choose �rst an
n 2 N such that k'(a)� sn(a)k < �; a 2 F1. If we then choose k1 < k2 < k3 < � � �
such that (2.8) and (2.9) hold we have that T �ki�(a)Tki = sn(a) for all a 2 F1 and
kT �kibk < � for all b 2 F2, provided only that i is large enough. We can then set
W = Tki for such an i.

We now turn to the case of a not neccesarily unital C�-algebra A and the general
notion of absorbing �-homomorphisms. Given a C�-algebra A we denote in the
following by A+ the C�-algebra obtained by adding a unit to A. Let B be another
C�-algebra. Any linear completely positive contraction ' : A ! M(B) admits
a unique linear extension '+ : A+ ! M(B) such that '+(1) = 1. '+ is
automatically a completely positive contraction, cf. e.g. Lemma 3.2.8 of [K-JT], and
is automatically a �-homomorphism when ' is. The following theorem is therefore
an immediate consequence of Theorem 2.1.

Theorem 2.5. Let A and B be separable C�-algebras with B stable. Let � : A !
M(B) be a �-homomorphism. Then the following conditions are equivalent :

1) �+ : A+ !M(B) is unitally absorbing for (A+; B).

2) For any completely positive contraction ' : A ! M(B) there is a sequence

fVng of isometries in M(B) such that

2a) V �
n �(a)Vn � '(a) 2 B ; n 2 N ; a 2 A ;

2b) limn!1 kV
�
n �(a)Vn � '(a)k = 0 ; a 2 A.

3) For any �-homomorphism ' : A!M(B) there is a sequence fUng of unitaries

Un 2 LB(B �B;B) such that

3a) Un

�
�(a) 0
0 '(a)

�
U�n � �(a) 2 B ; n 2 N ; a 2 A,

3b) limn!1 kUn

�
�(a) 0
0 '(a)

�
U�n � �(a)k = 0 ; a 2 A .

4) For any �-homomorphism ' : A!M(B) there is a sequence fUng of unitaries

Un 2 LB(B �B;B) such that

lim
n!1

kUn

�
�(a) 0
0 '(a)

�
U�n � �(a)k = 0 ; a 2 A :
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De�nition 2.6. LetA andB be separableC�-algebras withB stable. A �-homomorphism
� : A!M(B) is absorbing (for (A;B)) when it satis�es the four equivalent condi-
tions of Theorem 2.5.

Theorem 2.7. Let A and B be separable C�-algebras with B stable. There exists

an absorbing �-homomorphism � : A!M(B) for (A;B).

Proof. Combine Theorem 2.5 and Theorem 2.4 .

An absorbing �-homomorphism is clearly unique in the following sense : Given two
absorbing �-homomorphisms �1; �2 : A!M(B) there is a sequence fUng �M(B)
of unitaries such that

Un�1(a)U
�
n � �2(a) 2 B ; a 2 A; n 2 N;

and

lim
n!1

Un�1(a)U
�
n � �2(a) = 0 ; a 2 A :

3. Duality in KK-theory

Throughout this section A and B will be separable C�-algebras and B will be
stable. A �-homomorphism � : A ! M(B) is of in�nite multiplicity when � is
unitarily equivalent to �1, where �1 : A ! M(B) is the �-homomorphism given
by

�1(a) =

1X
i=1

Si�(a)S
�
i ;

for some sequence Si; i 2 N, of isometries in M(B) such that S�i Sj = 0; i 6= j, andP1

i=1 SiS
�
i = 1 in the strict topology.

Lemma 3.1. Let � : A!M(B) be a �-homomorphism of in�nite multiplicity and

set

E = fm 2 M(B) : m�(a) = �(a)m 8a 2 A g :

Then K�(E) = f0g.

Proof. Since � has in�nite multiplicity,

E ' fm 2 LB(l2(B)) : m�(a) = �(a)m 8a 2 Ag

where � : A! LB(l2(B)) is given by

�(a)(b1; b2; b3; � � � ) = (�(a)b1; �(a)b2; �(a)b3; � � � ) :

The usual proof that K�(LB(l2(B))) = 0 works to show that K�(E) = 0, cf. e.g.
Proposition 12.2.1 of [Bl].
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Given an absorbing �-homomorphism � : A!M(B) we set

C� = fx 2 M(B) : x�(a)� �(a)x 2 B ; a 2 Ag

and

A� = fx 2 M(B) : x�(A) � Bg :

Then A� is a closed twosided ideal in C� and we set

D� = C�=A� :

The quotient map C� ! D� will be denoted by q. If � : A ! M(B) is another
absorbing �-homomorphism there is a unitary w 2 M(B) such that Adw � �(a)�
� (a) 2 B for all a 2 A and then x 7! wxw� de�nes a �-isomorphism of C� onto C�

which takes A� onto A� . In particular, D� ' D� .

Let u be a unitary in Mn(D�). Choose v 2Mn(C�) such that

idMn

q(v) = u :

De�ne �n : A! LB(Bn) by

�n(a)(b1; b2; � � � ; bn) = (�(a)b1; �(a)b2; � � � ; �(a)bn) :

Let Bn �Bn be graded by (x; y) 7! (x;�y). Then

(Bn �Bn ; ( �
n

�n ) ; (
v

v� ))

is a Kasparov A�B-module. We leave the reader to check that the class of this mod-
ule inKK(A;B) only depends on the class of u inK1(D�), and that the construction
gives rise to a group homomorphism � : K1(D�)! KK(A;B).

Theorem 3.2. Assume that � : A ! M(B) is an absorbing �-homomorphism.

Then � : K1(D�)! KK(A;B) is an isomorphism.

Proof. When � is another absorbing �-homomorphism there is a commuting diagram

K1(D�) //�

��

KK(A;B)

K1(D� )

88qqqqqqqqqq

(3.1)

where K1(D�)! K1(D� ) is induced by the isomorphismD� ! D� described above,
and K1(D� ) ! KK(A;B) is the map obtained by using � instead of � in the
de�nition of �. Indeed if one considers a speci�c unitary in Mn(D�), the Kasparov
A�B-module which results by going down and up in the diagram di�ers from the
one which arises by going across by an isomorphism and a compact perturbation.
Thus if we prove that � : K1(A�)! KK(A;B) is an isomorphism for one absorbing
�-homomorphism � it will follow that it is an isomorphism for any other. Hence by
working with �1 instead of � we may assume that � is of in�nite multiplicity.

� is injective : Let u 2 Mn(D�) be a unitary and choose v 2 Mn(C�) such that
idMn


q(v) = u. Assume that

[Bn �Bn ; ( �
n

�n ) ; (
v

v� )] = 0
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in KK(A;B). This means that there are degenerate Kasparov A � B-modules D1

and D2 such that

(Bn �Bn ; ( �
n

�n ) ; (
v

v� )) � D1

is operator homotopic to

(Bn �Bn ; ( �
n

�n ) ; (
1

1 )) � D2 :

Since D1 and D2 are degenerate we can de�ne a new degenerate Kasparov A � B-
module D by

D = D1 �D2 �D1 �D2 �D1 �D2 � � � � � � � :

Then D1 �D and D2 �D are both isomorphic to D and hence

(Bn �Bn ; ( �
n

�n ) ; (
v

v� )) � D

is operator homotopic to

(Bn �Bn ; ( �
n

�n ) ; (
1

1 )) � D :

By combiningKasparovs stabilization theorem, Theorem 2.12 of [K-JT], with Lemma
1.3.2 of [K-JT] we may assume that

D = (B �B ;
�
�+

��

�
; ( a

b )) ;

where B�B is graded by (x; y) 7! (x;�y); �� : A!M(B) are �-homomorphisms
and a; b 2 M(B). By performing the same alterations to D as was performed to E
on page 125-126 of [K-JT] we may assume that a = w and b = w� for some unitary
w 2 M(B). Finally, by applying the unitary of the Hilbert B-module B �B given
by (x; y) 7! (x;wy), we see that we can assume that w = 1. So all in all we have
that

(Bn �Bn ; ( �
n

�n ) ; (
v

v� )) � (B �B ;
�
�+

��

�
; ( 1

1 ))

is operator homotopic to

(Bn �Bn ; ( �
n

�n ) ; (
1

1 )) � (B �B ;
�
�+

��

�
; ( 1

1 )) :

Note that �+ = �� since (B � B ;
�
�+

��

�
; ( 1

1 )) is degenerate. Finally, by

adding on an in�nite number of copies of

(B �B ;
�
�+

��

�
; ( 1

1 ))

we �nd that there is a �-homomorphism of in�nite multiplicity � : A!M(B) such
that

(Bn �Bn ; ( �
n

�n ) ; (
v

v� )) � (B �B ; ( � � ) ; (
1

1 ))

is operator homotopic to

(Bn �Bn ; ( �
n

�n ) ; (
1

1 )) � (B �B ; ( � � ) ; (
1

1 )) :

Furthermore, by adding on

(B �B ; ( � � ) ; ( 1
1 ))

we may assume that there is a unitary w 2 M(B) such that

w�(a)w� � �(a) 2 B ; a 2 A : (3.2)
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The operator homotopy consists of an isomorphism of Kasparov A � B modules
and a norm-continuous path of operators. The isomorphism gives us a unitary
S 2Mn+1(M(B)) such that

S
�
�n(a)

�(a)

�
=
�
�n(a)

�(a)

�
S

for all a 2 A, and in addition we have a norm-continuous path Ft; t 2 [0; 1], in
Mn+1(M(B)) such that F0 = S; F1 = ( v 1 ),

(FtF
�
t � 1n+1)

�
�n(a)

�(a)

�
2 Mn+1(B);

(F �
t Ft � 1n+1)

�
�n(a)

�(a)

�
2 Mn+1(B);

and

Ft

�
�n(a)

�(a)

�
�
�
�n(a)

�(a)

�
Ft 2 Mn+1(B)

for all t and a. Here and in the following we let 1k denote the unit of Mk(M(B)).
Note that � = ( �

n

� ) is of in�nitymultiplicity, as a �-homomorphismA!M(Mn+1(B)),
since � and � both are of in�nite multiplicity. By Lemma 3.1 we can therefore �nd
an m 2 N and a norm-continuous path of unitaries in

fx 2Mm(n+1)(M(B)) : x�m(a) = �m(a)x ; a 2 A g

connecting
�
S
1(m�1)(n+1)

�
to 1m(n+1). In combination with F this gives us a norm-

continuous path Ht; t 2 [0; 1], in Mm(n+1)(M(B)) such that H0 = 1m(n+1); H1 =� v
1m(n+1)�n

�
,

(HtH
�
t � 1m(n+1))�

m(a) 2 Mm(n+1)(B);

(H�
tHt � 1m(n+1))�

m(a) 2 Mm(n+1)(B);

and
Ht�

m(a) � �m(a)Ht 2 Mm(n+1)(B)

for all t and a. Set

W = diag(1n; w; 1n; w; � � � ; 1n; w| {z }
m times

) 2 Mm(n+1)(M(B))

and
Gt = WHtW

� :

ThenGt is a norm-continuous path inMm(n+1)(M(B)) such that G0 = 1m(n+1); G1 =� v
1m(n+1)�n

�
,

(GtG
�
t � 1m(n+1))�

m(n+1)(a) 2 Mm(n+1)(B);

(G�tGt � 1m(n+1))�
m(n+1)(a) 2 Mm(n+1)(B);

and
Gt�

m(n+1)(a) � �m(n+1)(a)Gt 2 Mm(n+1)(B)

for all t and a. Thus (idMm(n+1)

q)(Gt) is a path of unitaries in Mm(n+1)(D�) con-

necting
� u

1m(n+1)�n

�
to 1m(n+1).

� is surjective : Let (E; ; F ) be a Kasparov A� B-module. The constructions
on pages 125-126 of [K-JT] show that [E; ; F ] 2 KK(A;B) is also represented by
a Kasparov A�B-module of the form

(B �B ; ( '+ '� ) ; (
v

v� ))
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for some �-homomorphisms '� : A ! M(B) and some unitary v 2 M(B). By
adding on

(B �B ; ( � � ) ; ( 1
1 ))

and using that � is absorbing we may assume that there are unitaries u� 2 M(B)
such that

u�'�(a)u
�
� � �(a) 2 B

for all a 2 A. Then
(B �B ; ( '+ '� ) ; (

v
v� ))

is isomorphic to

(B �B ;
�
Ad u+�'+

Adu��'�

�
;
�

u+vu
�

�

u�v
�u�+

�
)

which in turn is a compact perturbation of

(B �B ; ( � � ) ;
�

u+vu
�

�

u�v
�u�+

�
) :

Then u+vu
�
� is a unitary C� such that �([q(u+vu

�
�)]) = [E; ; F ] in KK(A;B).

Of course there is also an isomorphism

K0(D�) ' Ext�1(A;B)

which can be proved in basically the same way.
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