UNIVERSITY OF A ARHUS

Department of Mathematics

ISSN: 1397-4076

On THE STRUCTURE OF $\left(O_{K} / I\right)^{\times}$

By Claus Mazanti Sørensen

ON THE STRUCTURE OF $\left(O_{K} / I\right)^{\times}$

CLAUS MAZANTI SORENSEN

Abstract

In this paper we investigate the structure of the unit group of O_{K} / I where K is a global number field, and I is a nonzero ideal in the ring of integers O_{K}. The case $I=0$ is given by the Dirichlet unit theorem. By the chinese remainder theorem we may assume that I is a prime power \mathfrak{p}^{n}. We obtain an explicit decomposition of $\left(O_{K} / \mathfrak{p}^{n}\right)^{\times}$ in cyclic groups for almost all primes \mathfrak{p}, namely those lying above a rational prime p satisfying $p>e$ where $e=e(\mathfrak{p}, \mathbb{Z})$ is the ramification index. In particular we obtain the structure of $\left(O_{K} / \mathfrak{p}^{n}\right)^{\times}$for all unramified \mathfrak{p}.

Contents

$\begin{array}{lll}\text { 1. Introduction } & 1 \\ \text { 2. The structure of }\left(O_{K} / \mathfrak{p}^{n}\right)^{\times} \text {in the case where } p>e+1 & 3 \\ \text { 3. The structure of }\left(O_{K} / \mathfrak{p}^{n}\right)^{\times} \text {in the case where } p=e+1 & 5 \\ \text { 4. A few remarks in the case where } p<e+1 & 6 \\ \text { 5. A proof of lemma } 2.2 & 7 \\ \text { References } & 8\end{array}$

1. Introduction

In this paper we consider a global number field K / \mathbb{Q} with ring of integers O_{K}. We will decompose the unit group $\left(O_{K} / I\right)^{\times}$in cyclic groups, where I is a nonzero ideal of O_{K} with prime factors outside the finite set of primes \mathfrak{p} satisfying the inequality $p \leq e$, where p is the rational prime under \mathfrak{p} and $e=e(\mathfrak{p}, \mathbb{Z})$ is the ramification index. The case $I=0$ is classical and due to Dirichlet: O_{K}^{\times}is a finitely generated abelian group with rank equal to $r+s-1$, where r is the number of real primes of K and s is the number of complex primes of K. Thus

$$
O_{K}^{\times} \approx \mu_{K} \times \mathbb{Z}^{r+s-1}
$$

where μ_{K} is the finite cyclic group of roots of unity in K. It is easy to find the order of the unit group $\left(O_{K} / I\right)^{\times}$for all nonzero I. For by the chinese remainder theorem it follows that, as rings

$$
O_{K} / I \approx O_{K} / \mathfrak{p}_{1}^{n_{1}} \oplus O_{K} / \mathfrak{p}_{2}^{n_{2}} \oplus \cdots \oplus O_{K} / \mathfrak{p}_{t}^{n_{t}}
$$

if $I=\mathfrak{p}_{1}^{n_{1}} \mathfrak{p}_{2}^{n_{2}} \cdots \mathfrak{p}_{t}^{n_{t}}$ is the factorization of I in prime powers. Since O_{K} / \mathfrak{p}^{n} is a local ring with maximal ideal $\mathfrak{p} / \mathfrak{p}^{n}$ it follows immediately that

$$
\#\left(O_{K} / \mathfrak{p}^{n}\right)^{\times}=\mathrm{N}_{K / \mathbb{Q}}\left(\mathfrak{p}^{n}\right)-\mathrm{N}_{K / \mathbb{Q}}\left(\mathfrak{p}^{n}\right) \mathrm{N}_{K / \mathbb{Q}}(\mathfrak{p})^{-1}=p^{f(n-1)}\left(p^{f}-1\right),
$$

Document version: 25.11.99.
1991 Mathematics Subject Classification. 11A07,11F85,11R04,11R27,13B15.
Key words and phrases. Ramification Theory, Higher Unit Groups.
I would like to thank S. Bentzen and J. Milne for helpful advice in solving this problem.
where $f=f(\mathfrak{p}, \mathbb{Z})$ is the inertia degree and $\mathrm{N}_{K / \mathbb{Q}}(I)$ is the cardinality of the finite ring O_{K} / I. The idealnorm $\mathrm{N}_{K / \mathbb{Q}}$ is strictly multiplicative. Now we have the order of $\left(O_{K} / I\right)^{\times}$:

$$
\#\left(O_{K} / I\right)^{\times}=\mathrm{N}_{K / \mathbb{Q}}(I) \prod_{\mathfrak{p} \mid I}\left(1-\mathrm{N}_{K / \mathbb{Q}}(\mathfrak{p})^{-1}\right)
$$

The first step in finding the structure of $\left(O_{K} / I\right)^{\times}$for general nonzero I, is of course to use the chinese remainder theorem to reduce to the case where I is a prime power \mathfrak{p}^{n}, for then we have

$$
\left(O_{K} / I\right)^{\times} \approx\left(O_{K} / \mathfrak{p}_{1}^{n_{1}}\right)^{\times} \times\left(O_{K} / \mathfrak{p}_{2}^{n_{2}}\right)^{\times} \times \cdots \times\left(O_{K} / \mathfrak{p}_{t}^{n_{t}}\right)^{\times}
$$

As already mentioned, all we can do in this paper is to find the structure of $\left(O_{K} / \mathfrak{p}^{n}\right)^{\times}$, for primes \mathfrak{p} satisfying the condition $p>e$. The structure theorem that we end up with, is naturally divided in two parts, according to whether $p>e+1$ or $p=e+1$. In the case where $p>e+1$ we obtain the following
Theorem 1.1. Consider a global number field K with ring of integers O_{K}. Let \mathfrak{p} be a nonzero prime ideal of O_{K} satisfying the condition $p>e+1$ where p is the rational prime under \mathfrak{p} and $e=e(\mathfrak{p}, \mathbb{Z})$ is the ramification index relative to \mathbb{Z}. Given any positive integer n, the structure of the unit group of O_{K} / \mathfrak{p}^{n} is given as follows: Write $n-1=q e+r$ where $0 \leq r<e$, then we have the decomposition

$$
\left(O_{K} / \mathfrak{p}^{n}\right)^{\times} \approx \mathbb{Z} /\left(p^{f}-1\right) \oplus \underbrace{\mathbb{Z} / p^{q} \oplus \cdots \oplus \mathbb{Z} / p^{q}}_{(e-r) f} \oplus \underbrace{\mathbb{Z} / p^{q+1} \oplus \cdots \oplus \mathbb{Z} / p^{q+1}}_{r f}
$$

where $f=f(\mathfrak{p}, \mathbb{Z})$ denotes the inertia degree relative to \mathbb{Z}.
In the case where $p=e+1$, nothing is changed if the completion $K_{\mathfrak{p}}$ of K at \mathfrak{p} does not contain all p 'th roots of unity. However, if $K_{\mathfrak{p}}$ does contain all p 'th roots of unity, a highest order summand decomposes in two cyclic summands and one of them has order p. This is the essence in the case $p=e+1$:

Theorem 1.2. Consider a global number field K with ring of integers O_{K}. Let \mathfrak{p} be a nonzero prime ideal of O_{K} satisfying the condition $p=e+1$ where p is the rational prime under \mathfrak{p} and $e=e(\mathfrak{p}, \mathbb{Z})$ is the ramification index relative to \mathbb{Z}. Given any positive integer $n>1$, the structure of the unit group of O_{K} / \mathfrak{p}^{n} is given as follows: Write $n-1=q e+r$ where $0 \leq r<e$, and define the symbol $\delta=\delta_{\mathfrak{p}}$ to be 1 if the completion $K_{\mathfrak{p}}$ of K at \mathfrak{p} contains all p'th roots of unity, and to be 0 if not. If $r=0$ and $q \geq 1$ we have the decomposition

$$
\left(O_{K} / \mathfrak{p}^{n}\right)^{\times} \approx \mathbb{Z} /\left(p^{f}-1\right) \oplus \underbrace{\mathbb{Z} / p \oplus \mathbb{Z} / p^{q-1}}_{\delta} \oplus \underbrace{\mathbb{Z} / p^{q} \oplus \cdots \oplus \mathbb{Z} / p^{q}}_{e f-\delta} .
$$

If $r>0$ we have the decomposition

$$
\left(O_{K} / \mathfrak{p}^{n}\right)^{\times} \approx \mathbb{Z} /\left(p^{f}-1\right) \oplus \underbrace{\mathbb{Z} / p \oplus \mathbb{Z} / p^{q}}_{\delta} \oplus \underbrace{\mathbb{Z} / p^{q} \oplus \cdots \oplus \mathbb{Z} / p^{q}}_{(e-r) f} \oplus \underbrace{\mathbb{Z} / p^{q+1} \oplus \cdots \oplus \mathbb{Z} / p^{q+1}}_{r f-\delta} .
$$

Here $f=f(\mathfrak{p}, \mathbb{Z})$ denotes the inertia degree relative to \mathbb{Z}.
For example, theorem 1.2 is perfectly suited for finding the structure of $\left(\mathbb{Z}\left[\zeta_{m}\right] / \mathfrak{p}^{n}\right)^{\times}$ where \mathfrak{p} lies above a rational prime p dividing m only once: The ramification index is exactly $p-1$, and the completion of $\mathbb{Q}\left(\zeta_{m}\right)$ at \mathfrak{p} (indeed $\mathbb{Q}\left(\zeta_{m}\right)$ itself) contains all p 'th
roots of unity. In the remaining case where $p \leq e$, recent work of A. Vazzana indicates that the structure of the unit group of O_{K} / \mathfrak{p}^{n} is not determined by the splitting type of \mathfrak{p}. In [V1], Vazzana treats the case of primes dividing 2 for a quadratic field $\mathbb{Q}(\sqrt{d})$, with d squarefree. When 2 is ramified, the structure depends on d. However, by the two theorems above, we know the structure of $\left(O_{K} / \mathfrak{p}^{n}\right)^{\times}$for all unramified \mathfrak{p} : If $p>2$, theorem 1.1 reduces to

$$
\left(O_{K} / \mathfrak{p}^{n}\right)^{\times} \approx \mathbb{Z} /\left(p^{f}-1\right) \oplus \underbrace{\mathbb{Z} / p^{n-1} \oplus \cdots \oplus \mathbb{Z} / p^{n-1}}_{f}
$$

If $p=2$, theorem 1.2 reduces to

$$
\left(O_{K} / \mathfrak{p}^{n}\right)^{\times} \approx \mathbb{Z} /\left(2^{f}-1\right) \oplus \mathbb{Z} / 2 \oplus \mathbb{Z} / 2^{n-2} \oplus \underbrace{\mathbb{Z} / 2^{n-1} \oplus \cdots \oplus \mathbb{Z} / 2^{n-1}}_{f-1}
$$

for $n>1$, because the completion $K_{\mathfrak{p}}$ of K at \mathfrak{p} does contain all 2 'th roots of unity, indeed $\pm 1 \in \mathbb{Q}$. If p is totally split in the extension K / \mathbb{Q}, we have the canonical isomorphism of rings $O_{K} / \mathfrak{p}^{n} \approx \mathbb{Z} / p^{n}$, and hence $\left(O_{K} / \mathfrak{p}^{n}\right)^{\times} \approx\left(\mathbb{Z} / p^{n}\right)^{\times}$. The structure of this last group $\left(\mathbb{Z} / p^{n}\right)^{\times}$is known to coincide with the above when $f=1$.

2. The structure of $\left(O_{K} / \mathfrak{p}^{n}\right)^{\times}$in the case where $p>e+1$

In this section we will prove theorem 1.1. We consider a global number field K / \mathbb{Q}, and a nonzero prime ideal \mathfrak{p} in the ring of integers O_{K}, satisfying the condition $p>e+1$, where p is the rational prime under \mathfrak{p} and $e=e(\mathfrak{p}, \mathbb{Z})$ is the ramification index relative to \mathbb{Z}. Given a positive integer n we will find the structure of the unit group $\left(O_{K} / \mathfrak{p}^{n}\right)^{\times}$. First, completion does not change the residue rings, hence

$$
O_{K} / \mathfrak{p}^{n} \approx O_{K_{\mathfrak{p}}} / \pi^{n}
$$

where $O_{K_{\mathfrak{p}}}$ is the ring of integers in the p-adic number field $K_{\mathfrak{p}} / \mathbb{Q}_{p}$, and π is the maximal ideal in $O_{K_{\mathfrak{p}}}$. Now, the n 'th unit group $\mathrm{U}_{n}=1+\pi^{n}$ of $O_{K_{\mathfrak{p}}}$ fits into the following exact sequence of abelian groups:

$$
1 \rightarrow \mathrm{U}_{n} \rightarrow O_{K_{\mathfrak{p}}}^{\times} \rightarrow\left(O_{K_{\mathfrak{p}}} / \pi^{n}\right)^{\times} \rightarrow 1
$$

The sequence extends to the right since $O_{K_{\mathfrak{p}}}$ is a local ring with maximal ideal π. Thus we arrive at:

$$
\left(O_{K} / \mathfrak{p}^{n}\right)^{\times} \approx O_{K_{\mathfrak{p}}}^{\times} / \mathrm{U}_{n}
$$

The next step is to show that for $n=1$ the above sequence splits. For then $\left(O_{K} / \mathfrak{p}^{n}\right)^{\times} \approx$ $\mathbb{Z} /\left(p^{f}-1\right) \oplus \mathrm{U}_{1} / \mathrm{U}_{n}$ because $f(\mathfrak{p}, \mathbb{Z})=f\left(K_{\mathfrak{p}} / \mathbb{Q}_{p}\right)$, and we are left with studying higher unit groups. To prove this splitting we shall use the following easy corollary of Hensels lemma:

Corollary 2.1. Let O be a complete discrete valuation ring with residue field k and let $f(X) \in O[X]$. If $\bar{\alpha} \in k$ is a simple root of the reduction $\bar{f}(X) \in k[X]$, there is a unique root $\alpha \in O$ of $f(X)$ with reduction $\bar{\alpha} \in k$, and α is a simple root of $f(X)$.

The corollary provides a section to the reduction map $O_{K_{\mathfrak{p}}}^{\times} \rightarrow k_{\mathfrak{p}}^{\times}$as follows: Consider the polynomial $f(X)=X^{q-1}-1 \in O_{K_{\mathfrak{p}}}[X]$ where $q=p^{f}$ is the cardinality of $k_{\mathfrak{p}}$. The reduction $\bar{f}(X) \in k_{\mathfrak{p}}[X]$ has the elements of $k_{\mathfrak{p}}^{\times}$as simple roots. Corollary 2.1 implies that each $\bar{\alpha} \in k_{\mathfrak{p}}^{\times}$has a unique lift to a root $\alpha \in O_{K_{\mathfrak{p}}}^{\times}$of $f(X)$. This lift $k_{\mathfrak{p}}^{\times} \rightarrow O_{K_{\mathfrak{p}}}^{\times}$is a
homomorphism and a section to the reduction map. Thus, all we need is the structure of the $p-$ group $\mathrm{U}_{1} / \mathrm{U}_{n}$. Given any $p-\operatorname{group} A$, the number of cyclic components of order p^{i} in A, is given by the formula

$$
\tau_{i}(A)=\operatorname{dim}_{\mathbb{Z} / p} \frac{p^{i-1} A}{p^{i} A}-\operatorname{dim}_{\mathbb{Z} / p} \frac{p^{i} A}{p^{i+1} A}
$$

where the quotients are viewed as vector spaces over \mathbb{Z} / p in the canonical way. To see this, prove that this invariant is additive, and then evaluate it on cyclic p-groups: $\tau_{i}\left(\mathbb{Z} / p^{j}\right)=$ $\delta_{i j}$. If we could find the orders of $p^{i} . \mathrm{U}_{1} / \mathrm{U}_{n}$, we could thus read off the dimensions, and hence calculate all the $\tau_{i}\left(\mathrm{U}_{1} / \mathrm{U}_{n}\right)$. The next step is obviously to study the p-power homomorphism on U_{1} and its iterates.

Lemma 2.2. Put $e_{0}=e /(p-1)$. For $\nu>e_{0}$ the $p-$ power homomorphism on U_{ν} induces an isomorphism $U_{\nu} \approx U_{e+\nu}$. If $\nu=e_{0}$ the p-power homomorphism $U_{\nu} \rightarrow U_{e+\nu}$ either has kernel and cokernel of order p, or is an isomorphism, according as $K_{\mathfrak{p}}$ does or does not contain the p 'th roots of unity.
Proof. This is essentially lemma A. 4 on page 167 in [M]. A proof is given in the last section.

Now we use our assumption that $p>e+1$. This is exactly the assumption that $1>e_{0}$. Hence the lemma gives us the following string of isomorphisms:

$$
p^{i}: \mathrm{U}_{1} \approx \mathrm{U}_{e+1} \approx \mathrm{U}_{2 e+1} \approx \cdots \approx \mathrm{U}_{i e+1}
$$

and it follows that for $i \geq 0$

$$
p^{i} \cdot \mathrm{U}_{1} / \mathrm{U}_{n}= \begin{cases}1 & \text { if } i e+1 \geq n, \tag{2.1}\\ \mathrm{U}_{i e+1} / \mathrm{U}_{n} & \text { if } i e+1<n .\end{cases}
$$

The rest is easy: If $(i-1) e+1 \geq n$ we obviously have $\tau_{i}=0$. Now suppose that $n-e \leq(i-1) e+1<n$. Then p^{i} still kills $\mathrm{U}_{1} / \mathrm{U}_{n}$, while p^{i-1} does not. Thus $\tau_{i}=$ $f(n-1-(i-1) e)$. Next case is where $n-2 e \leq(i-1) e+1<n-e$. Then p^{i+1} still kills $\mathrm{U}_{1} / \mathrm{U}_{n}$, while p^{i} does not. Thus

$$
\tau_{i}=f(n-1-(i-1) e)-f(n-1-i e)-f(n-1-i e)+0=-f(n-1-(i+1) e) .
$$

At last, if $(i-1) e+1<n-2 e$, we have

$$
\tau_{i}=f(n-1-(i-1) e)-f(n-1-i e)-f(n-1-i e)+f(n-1-(i+1) e)=0
$$

Writing $n-1=q e+r$ with $0 \leq r<e$ we see that in the case where $r=0$ and $q \geq 1$ we have

$$
\tau_{i}\left(\mathrm{U}_{1} / \mathrm{U}_{n}\right)= \begin{cases}0 & \text { if } i \geq q+1 \tag{2.2}\\ e f & \text { if } i=q \\ 0 & \text { if } i=q-1 \\ 0 & \text { if } i<q-1\end{cases}
$$

In the case where $r>0$ we have

$$
\tau_{i}\left(\mathrm{U}_{1} / \mathrm{U}_{n}\right)= \begin{cases}0 & \text { if } i \geq q+2 \tag{2.3}\\ r f & \text { if } i=q+1 \\ (e-r) f & \text { if } i=q \\ 0 & \text { if } i \leq q-1\end{cases}
$$

Thus we have proved theorem 1.1.

3. The structure of $\left(O_{K} / \mathfrak{p}^{n}\right)^{\times}$in the case where $p=e+1$

In this section we will prove theorem 1.2. Most of the proof of theorem 1.1 in the last section can be carried over. The only point where we used that $p>e+1$, was to get the isomorphism $p: \mathrm{U}_{1} \approx \mathrm{U}_{e+1}$. If $p=e+1$ we have $e_{0}=1$, and if the completion $K_{\mathfrak{p}}$ of K at \mathfrak{p} does not contain all p 'th roots of unity, we still have the isomorphism $p: \mathrm{U}_{1} \approx \mathrm{U}_{e+1}$ according to lemma 2.2. Thus we have already settled the case $\delta=0$ of theorem 1.2 . Thus, let us assume the following: We consider a global number field K / \mathbb{Q}, and a nonzero prime ideal \mathfrak{p} in the ring of integers O_{K}, satisfying the condition $p=e+1$, where p is the rational prime under \mathfrak{p} and $e=e(\mathfrak{p}, \mathbb{Z})$ is the ramification index relative to \mathbb{Z}. We assume that the completion $K_{\mathfrak{p}}$ of K at \mathfrak{p} contains all p 'th roots of unity, that is $\delta=1$. According to lemma 2.2 the p-power homomorphism $p: \mathrm{U}_{1} \rightarrow \mathrm{U}_{e+1}$ has cokernel (and kernel) of order p, and this enables us to calculate the numbers τ_{i}. We have

$$
p^{i} \cdot \mathrm{U}_{1} / \mathrm{U}_{n}=\frac{\mathrm{U}_{1}^{p^{i}} \mathrm{U}_{n}}{\mathrm{U}_{n}} \subset \frac{\mathrm{U}_{i e+1} \mathrm{U}_{n}}{\mathrm{U}_{n}}= \begin{cases}1 & \text { if } i e+1 \geq n \tag{3.1}\\ \mathrm{U}_{i e+1} / \mathrm{U}_{n} & \text { if } i e+1<n\end{cases}
$$

To find the order of $p^{i} . \mathrm{U}_{1} / \mathrm{U}_{n}$ for all i (and hence all the τ_{i}), we must find the index above. Now,

$$
\mathrm{U}_{i e+1} / \mathrm{U}_{1}^{p^{i}} \approx \mathrm{U}_{(i-1) e+1} / \mathrm{U}_{1}^{p^{i-1}} \approx \cdots \approx \mathrm{U}_{e+1} / \mathrm{U}_{1}^{p} \approx \mathbb{Z} / p,
$$

for $i \geq 1$. One could therefore hope that the above index is p. This is exactly the case when $i e+1<n$: All we need to show is that $\mathrm{U}_{n} \subset \mathrm{U}_{1}^{p^{i}}$, and this is easy:

$$
\mathrm{U}_{n}=\mathrm{U}_{n-e}^{p}=\mathrm{U}_{n-2 e}^{p^{2}}=\cdots=\mathrm{U}_{n-i e}^{p^{i}} \subset \mathrm{U}_{1}^{p^{i}}
$$

since $n-i e>1$. We therefore have all the orders $\# p^{i} . \mathrm{U}_{1} / \mathrm{U}_{n}$:

$$
\# p^{i} . \mathrm{U}_{1} / \mathrm{U}_{n}= \begin{cases}p^{f(n-1)} & \text { if } i=0, \tag{3.2}\\ 1 & \text { if } i \geq 1 \text { and } i e+1 \geq n \\ p^{f(n-1-i e)-1} & \text { if } i \geq 1 \text { and } i e+1<n .\end{cases}
$$

We can now imitate what we did in section 1 , and find the numbers τ_{i}. We will assume that $i \geq 2$ and find τ_{1} later. If $(i-1) e+1 \geq n$ we obviously have $\tau_{i}=0$. Now suppose that $n-e \leq(i-1) e+1<n$. Then p^{i} still kills $\mathrm{U}_{1} / \mathrm{U}_{n}$, while p^{i-1} does not. Thus $\tau_{i}=f(n-1-(i-1) e)-1$. Next case is where $n-2 e \leq(i-1) e+1<n-e$. Then p^{i+1} still kills $\mathrm{U}_{1} / \mathrm{U}_{n}$, while p^{i} does not. Thus
$\tau_{i}=f(n-1-(i-1) e)-1-f(n-1-i e)+1-f(n-1-i e)+1=-f(n-1-(i+1) e)+1$.

At last, if $(i-1) e+1<n-2 e$, we have
$\tau_{i}=f(n-1-(i-1) e)-1-f(n-1-i e)+1-f(n-1-i e)+1+f(n-1-(i+1) e)-1=0$.
Writing $n-1=q e+r$ with $0 \leq r<e$ we see that in the case where $r=0$ and $q \geq 1$ we have

$$
\tau_{i}\left(\mathrm{U}_{1} / \mathrm{U}_{n}\right)= \begin{cases}0 & \text { if } i \geq q+1 \tag{3.3}\\ e f-1 & \text { if } i=q \\ 1 & \text { if } i=q-1 \\ 0 & \text { if } i<q-1\end{cases}
$$

In the case where $r>0$ we have

$$
\tau_{i}\left(\mathrm{U}_{1} / \mathrm{U}_{n}\right)= \begin{cases}0 & \text { if } i \geq q+2 \tag{3.4}\\ r f-1 & \text { if } i=q+1 \\ (e-r) f+1 & \text { if } i=q \\ 0 & \text { if } i \leq q-1\end{cases}
$$

To complete the proof of theorem 1.2, we need to show that there is only one component of order p in $\mathrm{U}_{1} / \mathrm{U}_{n}$. But we know that the order of $\mathrm{U}_{1} / \mathrm{U}_{n}$ is $p^{f(n-1)}$, so in the case $r=0$ we must have

$$
f(n-1)=\tau_{1}+q-1+q(e f-1) \Rightarrow \tau_{1}=1
$$

In the case $r>0$ we must have

$$
f(n-1)=\tau_{1}+q((e-r) f+1)+(q+1)(r f-1) \Rightarrow \tau_{1}=1
$$

This completes the proof of theorem 1.2.

4. A few remarks in the case where $p<e+1$

The theorems proved in the previous two sections, show that when $p>e$ the structure of the unit group of O_{K} / \mathfrak{p}^{n} is determined by the splitting type of \mathfrak{p} and conversely. When $p \leq e$ this is no longer the case. Let us quote lemma 5.5 on page 258 of [V1] (with a different notation):

Lemma 4.1. Let d be a squarefree rational integer, and let $K=\mathbb{Q}(\sqrt{ } \bar{d})$. For $n \geq 4$ we have the following:
(a) If $d \equiv 1$ mod 8 , then 2 splits, say $(2)=\mathfrak{p}_{1} \mathfrak{p}_{2}$, and

$$
\left(O_{K} / \mathfrak{p}_{i}^{n}\right)^{\times} \approx \mathbb{Z} / 2 \oplus \mathbb{Z} / 2^{n-2} \text { for } i=1,2
$$

(b) If $d \equiv 5 \bmod 8$, then 2 is inert, say $(2)=\mathfrak{p}$, and

$$
\left(O_{K} / \mathfrak{p}^{n}\right)^{\times} \approx \mathbb{Z} / 2 \oplus \mathbb{Z} / 2^{n-1} \oplus \mathbb{Z} / 2^{n-2} \oplus \mathbb{Z} / 3
$$

(c) If $d \equiv 0 \bmod 2$, then 2 ramifies, say $(2)=\mathfrak{p}^{2}$, and

$$
\left(O_{K} / \mathfrak{p}^{2 n}\right)^{\times} \approx \mathbb{Z} / 2 \oplus \mathbb{Z} / 2^{n-2} \oplus \mathbb{Z} / 2^{n}
$$

(d) If $d \equiv 3$ mod 8 , then 2 ramifies, say $(2)=\mathfrak{p}^{2}$, and

$$
\left(O_{K} / \mathfrak{p}^{2 n}\right)^{\times} \approx \mathbb{Z} / 2 \oplus \mathbb{Z} / 2^{n-1} \oplus \mathbb{Z} / 2^{n-1}
$$

(e) If $d \equiv 7 \bmod 8$, then 2 ramifies, say $(2)=\mathfrak{p}^{2}$, and

$$
\left(O_{K} / \mathfrak{p}^{2 n}\right)^{\times} \approx \mathbb{Z} / 4 \oplus \mathbb{Z} / 2^{n-2} \oplus \mathbb{Z} / 2^{n-1}
$$

This is proved in A. Vazzanas thesis [V2]. Note that the cases (a) and (b) are but special cases of theorem 1.2. In the case where $p \leq e$ we cannot give the complete structure of $\left(O_{K} / \mathfrak{p}^{n}\right)^{\times}$. However, it is possible to prove, by the methods above, that some components do not appear.

5. A proof of lemma 2.2

For completeness and convenience, we end this paper by giving a detailed proof of lemma 2.2 about the p-power homomorphism on U_{1}. This is essentially lemma A. 4 on page 167 in $[\mathrm{M}]$. We want to prove the following:

Lemma 5.1. Put $e_{0}=e /(p-1)$. For $\nu>e_{0}$ the $p-$ power homomorphism on U_{ν} induces an isomorphism $U_{\nu} \approx U_{e+\nu}$. If $\nu=e_{0}$ the $p-$ power homomorphism $U_{\nu} \rightarrow U_{e+\nu}$ either has kernel and cokernel of order p, or is an isomorphism, according as $K_{\mathfrak{p}}$ does or does not contain the p 'th roots of unity.

Proof. In this proof, π denotes a generator for the maximal ideal in $O_{K_{\mathfrak{p}}}$. For all $a \in O_{K_{\mathfrak{p}}}$:

$$
\left(1+\pi^{\nu} a\right)^{p}=1+p \pi^{\nu} a+\binom{p}{2} \pi^{2 \nu} a^{2}+\cdots+\pi^{p \nu} a^{p} 1 n \begin{cases}\mathrm{U}_{\nu+e} & \text { if } \nu \geq e_{0} \tag{5.1}\\ \mathrm{U}_{p \nu} & \text { if } \nu<e_{0}\end{cases}
$$

since p has valuation e, and the binomial coefficients are divisible by p. For $\nu \geq e_{0}$ the p-power homomorphism induces a homomorphism

$$
p: \mathrm{U}_{\nu} / \mathrm{U}_{\nu+1} \rightarrow \mathrm{U}_{\nu+e} / \mathrm{U}_{\nu+e+1} .
$$

When $\nu>e_{0}$ this is injective, and hence an isomorphism since both groups have order p^{f}. Suppose $\nu>e_{0}$. Given $u \in \mathrm{U}_{\nu+e}$ we will prove that it has a unique p 'th root in U_{ν}. The fact that the p th root is unique is easy: For suppose $x \in \mathrm{U}_{\nu}$ and $x^{p}=1$. If $x \neq 1$ there is a $\nu_{1} \geq \nu$ such that $x \in \mathrm{U}_{\nu_{1}}$ with ν_{1} maximal. Then x gives a nontrivial element in the kernel of the isomorphism

$$
\mathrm{U}_{\nu_{1}} / \mathrm{U}_{\nu_{1}+1} \approx \mathrm{U}_{\nu_{1}+e} / \mathrm{U}_{\nu_{1}+e+1} .
$$

Now we will prove that u has a p th root in U_{ν}. It will be constructed as the limit of a Cauchy sequence. Claim: There is a sequence $\left\{x_{k}\right\} \subset \mathrm{U}_{\nu}$ such that

$$
u \equiv x_{k}^{p} \bmod \mathrm{U}_{\nu+e+k+1} \text { and } x_{k+1} x_{k}^{-1} \in \mathrm{U}_{\nu+k+1} .
$$

For $k=0$ we choose $x_{0} \in \mathrm{U}_{\nu}$ such that $u \equiv x_{0}^{p} \bmod \mathrm{U}_{\nu+e+1}$ via the isomorphism above. Suppose now x_{k} is given. Then, via the isomorphism, we find $u_{\nu+k+1} \in \mathrm{U}_{\nu+k+1}$ such that

$$
u \equiv x_{k}^{p} u_{\nu+k+1}^{p} \bmod \mathrm{U}_{\nu+e+k+2},
$$

and put $x_{k+1}=x_{k} u_{\nu+k+1}$. Now $\mathrm{U}_{\nu}=1+\pi^{\nu}$ is a closed subgroup, so we may find $x \in \mathrm{U}_{\nu}$ such that $x_{k} \rightarrow x$. But $x_{k}^{p} \rightarrow u$, so $u=x^{p}$. This settles the case $\nu>e_{0}$ of the lemma. Now assume $\nu=e_{0}$. Let K and C denote the kernel and cokernel of the homomorphism $\mathrm{U}_{\nu} \rightarrow \mathrm{U}_{\nu+e}$, and let \bar{K} and \bar{C} denote the kernel and cokernel of the reduced homomorphism $\mathrm{U}_{\nu} / \mathrm{U}_{\nu+1} \rightarrow \mathrm{U}_{\nu+e} / \mathrm{U}_{\nu+e+1}$. There are unique homomorphisms $K \rightarrow \bar{K}$ and $C \rightarrow \bar{C}$ that makes the following diagram commute

The homomorphisms $K \rightarrow \bar{K}$ and $C \rightarrow \bar{C}$ are isomorphisms as follows from the fact that $p: \mathrm{U}_{\nu+1} \rightarrow \mathrm{U}_{\nu+e+1}$ is an isomorphism. Alternatively, one can apply the 3×3 lemma twice to a diagram. If $K_{\mathfrak{p}}$ does not contain all p 'th roots of unity we must have $|K|=|C|=1$ and $p: \mathrm{U}_{\nu} \approx \mathrm{U}_{\nu+e}$. If $K_{\mathfrak{p}}$ does contain all p 'th roots of unity, we want to to show that they all belong to $\mathrm{U}_{e_{0}}$. Thus let ζ be a p 'th root of unity. If ζ does not belong to $\mathrm{U}_{e_{0}}$, there is a $\nu<e_{0}$ such that $\zeta \in \mathrm{U}_{\nu}$ and we choose ν maximal. Then ζ gives a nontrivial element in the kernel of the isomorphism $\mathrm{U}_{\nu} / \mathrm{U}_{\nu+1} \approx \mathrm{U}_{p \nu} / \mathrm{U}_{p \nu+1}$. For $\nu=0$ we have the isomorphism $p^{f}: \mathrm{U} / \mathrm{U}_{1} \approx \mathrm{U} / \mathrm{U}_{1}$ since $\mathrm{U} / \mathrm{U}_{1} \approx k_{\mathfrak{p}}^{\times}$

References

[M] J. Milnor, Introduction to Algebraic K-Theory, Princeton University Press (1971).
[V1] A. Vazzana, 8-Ranks of K_{2} of Rings of Integers in Quadratic Number Fields, Journal of Number Theory 76, 248-264 (1999).
[V2] A. Vazzana, 4-Ranks of K_{2} of Rings of Integers in Quadratic Number Fields, Ph.D. thesis, University of Michigan, 1996.
E-mail address: mazanti@imf.aau.dk
Department of Mathematics, Ny Munkegade, 8000 Aarhus C, Denmark

