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ON THE STRUCTURE OF (OK=I)
�

CLAUS MAZANTI SORENSEN

Abstract. In this paper we investigate the structure of the unit group of OK=I where
K is a global number �eld, and I is a nonzero ideal in the ring of integers OK . The case
I = 0 is given by the Dirichlet unit theorem. By the chinese remainder theorem we may
assume that I is a prime power pn. We obtain an explicit decomposition of (OK=p

n)�

in cyclic groups for almost all primes p, namely those lying above a rational prime p
satisfying p > e where e = e(p;Z) is the rami�cation index. In particular we obtain the
structure of (OK=p

n)� for all unrami�ed p.
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1. Introduction

In this paper we consider a global number �eld K=Q with ring of integers OK. We will
decompose the unit group (OK=I)

� in cyclic groups, where I is a nonzero ideal of OK

with prime factors outside the �nite set of primes p satisfying the inequality p � e, where
p is the rational prime under p and e = e(p;Z) is the rami�cation index. The case I = 0
is classical and due to Dirichlet: O�

K is a �nitely generated abelian group with rank equal
to r + s � 1, where r is the number of real primes of K and s is the number of complex
primes of K. Thus

O�
K � �K � Zr+s�1;

where �K is the �nite cyclic group of roots of unity in K. It is easy to �nd the order of
the unit group (OK=I)

� for all nonzero I. For by the chinese remainder theorem it follows
that, as rings

OK=I � OK=p
n1
1 � OK=p

n2
2 � � � � � OK=p

nt
t ;

if I = p
n1
1 p

n2
2 � � �pntt is the factorization of I in prime powers. Since OK=p

n is a local ring
with maximal ideal p=pn it follows immediately that

#(OK=p
n)� = NK=Q(p

n)� NK=Q(p
n)NK=Q(p)

�1 = pf(n�1)(pf � 1);
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where f = f(p;Z) is the inertia degree and NK=Q(I) is the cardinality of the �nite ring
OK=I. The idealnorm NK=Q is strictly multiplicative. Now we have the order of (OK=I)

�:

#(OK=I)
� = NK=Q(I)

Y
pjI

(1� NK=Q(p)
�1):

The �rst step in �nding the structure of (OK=I)
� for general nonzero I, is of course to

use the chinese remainder theorem to reduce to the case where I is a prime power pn, for
then we have

(OK=I)
� � (OK=p

n1
1 )� � (OK=p

n2
2 )� � � � � � (OK=p

nt
t )

�:

As already mentioned, all we can do in this paper is to �nd the structure of (OK=p
n)�,

for primes p satisfying the condition p > e. The structure theorem that we end up with,
is naturally divided in two parts, according to whether p > e+1 or p = e+1. In the case
where p > e+ 1 we obtain the following

Theorem 1.1. Consider a global number �eld K with ring of integers OK. Let p be a
nonzero prime ideal of OK satisfying the condition p > e+1 where p is the rational prime
under p and e = e(p;Z) is the rami�cation index relative to Z. Given any positive integer
n, the structure of the unit group of OK=p

n is given as follows: Write n � 1 = qe + r
where 0 � r < e, then we have the decomposition

(OK=p
n)� � Z=(pf � 1)� Z=pq � � � � � Z=pq| {z }

(e�r)f

�Z=pq+1 � � � � � Z=pq+1| {z }
rf

;

where f = f(p;Z) denotes the inertia degree relative to Z.

In the case where p = e + 1, nothing is changed if the completion Kp of K at p does
not contain all p'th roots of unity. However, if Kp does contain all p'th roots of unity, a
highest order summand decomposes in two cyclic summands and one of them has order
p. This is the essence in the case p = e + 1:

Theorem 1.2. Consider a global number �eld K with ring of integers OK. Let p be a
nonzero prime ideal of OK satisfying the condition p = e+1 where p is the rational prime
under p and e = e(p;Z) is the rami�cation index relative to Z. Given any positive integer
n > 1, the structure of the unit group of OK=p

n is given as follows: Write n� 1 = qe+ r
where 0 � r < e, and de�ne the symbol Æ = Æp to be 1 if the completion Kp of K at
p contains all p'th roots of unity, and to be 0 if not. If r = 0 and q � 1 we have the
decomposition

(OK=p
n)� � Z=(pf � 1)� Z=p� Z=pq�1| {z }

Æ

�Z=pq � � � � � Z=pq| {z }
ef�Æ

:

If r > 0 we have the decomposition

(OK=p
n)� � Z=(pf � 1)� Z=p� Z=pq| {z }

Æ

�Z=pq � � � � � Z=pq| {z }
(e�r)f

�Z=pq+1� � � � � Z=pq+1| {z }
rf�Æ

:

Here f = f(p;Z) denotes the inertia degree relative to Z.

For example, theorem 1.2 is perfectly suited for �nding the structure of (Z[�m]=p
n)�

where p lies above a rational prime p dividing m only once: The rami�cation index is
exactly p � 1, and the completion of Q(�m) at p (indeed Q (�m) itself) contains all p'th
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roots of unity. In the remaining case where p � e, recent work of A. Vazzana indicates
that the structure of the unit group of OK=p

n is not determined by the splitting type

of p. In [V1], Vazzana treats the case of primes dividing 2 for a quadratic �eld Q (
p
d),

with d squarefree. When 2 is rami�ed, the structure depends on d. However, by the
two theorems above, we know the structure of (OK=p

n)� for all unrami�ed p: If p > 2,
theorem 1.1 reduces to

(OK=p
n)� � Z=(pf � 1)� Z=pn�1� � � � � Z=pn�1| {z }

f

:

If p = 2, theorem 1.2 reduces to

(OK=p
n)� � Z=(2f � 1)� Z=2� Z=2n�2� Z=2n�1� � � � � Z=2n�1| {z }

f�1

;

for n > 1, because the completion Kp of K at p does contain all 2'th roots of unity, indeed
�1 2 Q . If p is totally split in the extension K=Q , we have the canonical isomorphism of
rings OK=p

n � Z=pn, and hence (OK=p
n)� � (Z=pn)�. The structure of this last group

(Z=pn)� is known to coincide with the above when f = 1.

2. The structure of (OK=p
n)� in the case where p > e + 1

In this section we will prove theorem 1.1. We consider a global number �eld K=Q , and
a nonzero prime ideal p in the ring of integers OK, satisfying the condition p > e + 1,
where p is the rational prime under p and e = e(p;Z) is the rami�cation index relative
to Z. Given a positive integer n we will �nd the structure of the unit group (OK=p

n)�.
First, completion does not change the residue rings, hence

OK=p
n � OKp

=�n;

where OKp
is the ring of integers in the p�adic number �eld Kp=Q p , and � is the maximal

ideal in OKp
. Now, the n'th unit group Un = 1 + �n of OKp

�ts into the following exact
sequence of abelian groups:

1! Un ! O�
Kp
! (OKp

=�n)� ! 1:

The sequence extends to the right since OKp
is a local ring with maximal ideal �. Thus

we arrive at:
(OK=p

n)� � O�
Kp
=Un:

The next step is to show that for n = 1 the above sequence splits. For then (OK=p
n)� �

Z=(pf � 1) � U1=Un because f(p;Z) = f(Kp=Q p), and we are left with studying higher
unit groups. To prove this splitting we shall use the following easy corollary of Hensels
lemma:

Corollary 2.1. Let O be a complete discrete valuation ring with residue �eld k and let
f(X) 2 O[X]. If �� 2 k is a simple root of the reduction �f(X) 2 k[X], there is a unique
root � 2 O of f(X) with reduction �� 2 k, and � is a simple root of f(X).

The corollary provides a section to the reduction map O�
Kp
! k�p as follows: Consider

the polynomial f(X) = Xq�1 � 1 2 OKp
[X] where q = pf is the cardinality of kp. The

reduction �f(X) 2 kp[X] has the elements of k�p as simple roots. Corollary 2.1 implies

that each �� 2 k�p has a unique lift to a root � 2 O�
Kp

of f(X). This lift k�p ! O�
Kp

is a



4 CLAUS MAZANTI SORENSEN

homomorphism and a section to the reduction map. Thus, all we need is the structure of
the p�group U1=Un. Given any p�group A, the number of cyclic components of order pi

in A, is given by the formula

�i(A) = dimZ=p
pi�1A

piA
� dimZ=p

piA

pi+1A
;

where the quotients are viewed as vector spaces over Z=p in the canonical way. To see this,
prove that this invariant is additive, and then evaluate it on cyclic p�groups: �i(Z=pj) =
Æij. If we could �nd the orders of pi:U1=Un, we could thus read o� the dimensions, and
hence calculate all the �i(U1=Un). The next step is obviously to study the p�power
homomorphism on U1 and its iterates.

Lemma 2.2. Put e0 = e=(p� 1). For � > e0 the p�power homomorphism on U� induces
an isomorphism U� � Ue+�. If � = e0 the p�power homomorphism U� ! Ue+� either
has kernel and cokernel of order p, or is an isomorphism, according as Kp does or does
not contain the p'th roots of unity.

Proof. This is essentially lemma A.4 on page 167 in [M]. A proof is given in the last
section.

Now we use our assumption that p > e+1. This is exactly the assumption that 1 > e0.
Hence the lemma gives us the following string of isomorphisms:

pi : U1 � Ue+1 � U2e+1 � � � � � Uie+1;

and it follows that for i � 0

pi:U1=Un =

(
1 if ie+ 1 � n;

Uie+1=Un if ie+ 1 < n:
(2.1)

The rest is easy: If (i � 1)e + 1 � n we obviously have �i = 0. Now suppose that
n � e � (i � 1)e + 1 < n. Then pi still kills U1=Un, while pi�1 does not. Thus �i =
f(n� 1� (i� 1)e). Next case is where n� 2e � (i� 1)e+ 1 < n� e. Then pi+1 still kills
U1=Un, while p

i does not. Thus

�i = f(n� 1� (i� 1)e)� f(n� 1� ie)� f(n� 1� ie) + 0 = �f(n� 1� (i+ 1)e):

At last, if (i� 1)e+ 1 < n� 2e, we have

�i = f(n� 1� (i� 1)e)� f(n� 1� ie)� f(n� 1� ie) + f(n� 1� (i+ 1)e) = 0:

Writing n� 1 = qe + r with 0 � r < e we see that in the case where r = 0 and q � 1 we
have

�i(U1=Un) =

8>>><
>>>:
0 if i � q + 1;

ef if i = q;

0 if i = q � 1;

0 if i < q � 1:

(2.2)

In the case where r > 0 we have
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�i(U1=Un) =

8>>><
>>>:
0 if i � q + 2;

rf if i = q + 1;

(e� r)f if i = q;

0 if i � q � 1:

(2.3)

Thus we have proved theorem 1.1.

3. The structure of (OK=p
n)� in the case where p = e + 1

In this section we will prove theorem 1.2. Most of the proof of theorem 1.1 in the last
section can be carried over. The only point where we used that p > e+ 1, was to get the
isomorphism p : U1 � Ue+1. If p = e + 1 we have e0 = 1, and if the completion Kp of K
at p does not contain all p'th roots of unity, we still have the isomorphism p : U1 � Ue+1

according to lemma 2.2. Thus we have already settled the case Æ = 0 of theorem 1.2.
Thus, let us assume the following: We consider a global number �eld K=Q , and a nonzero
prime ideal p in the ring of integers OK, satisfying the condition p = e+1, where p is the
rational prime under p and e = e(p;Z) is the rami�cation index relative to Z. We assume
that the completion Kp of K at p contains all p'th roots of unity, that is Æ = 1. According
to lemma 2.2 the p�power homomorphism p : U1 ! Ue+1 has cokernel (and kernel) of
order p, and this enables us to calculate the numbers �i. We have

pi:U1=Un =
Upi

1 Un

Un
� Uie+1Un

Un
=

(
1 if ie + 1 � n;

Uie+1=Un if ie + 1 < n:
(3.1)

To �nd the order of pi:U1=Un for all i (and hence all the �i), we must �nd the index
above. Now,

Uie+1=U
pi

1 � U(i�1)e+1=U
pi�1

1 � � � � � Ue+1=U
p
1 � Z=p;

for i � 1. One could therefore hope that the above index is p. This is exactly the case

when ie + 1 < n: All we need to show is that Un � Upi

1 , and this is easy:

Un = Up
n�e = Up2

n�2e = � � � = Upi

n�ie � Upi

1 ;

since n� ie > 1. We therefore have all the orders #pi:U1=Un:

#pi:U1=Un =

8><
>:
pf(n�1) if i = 0;

1 if i � 1 and ie + 1 � n;

pf(n�1�ie)�1 if i � 1 and ie + 1 < n:

(3.2)

We can now imitate what we did in section 1, and �nd the numbers �i. We will assume
that i � 2 and �nd �1 later. If (i � 1)e + 1 � n we obviously have �i = 0. Now suppose
that n � e � (i � 1)e + 1 < n. Then pi still kills U1=Un, while pi�1 does not. Thus
�i = f(n� 1� (i� 1)e)� 1. Next case is where n� 2e � (i� 1)e+ 1 < n� e. Then pi+1

still kills U1=Un, while p
i does not. Thus

�i = f(n�1� (i�1)e)�1�f(n�1� ie)+1�f(n�1� ie)+1 = �f(n�1� (i+1)e)+1:
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At last, if (i� 1)e+ 1 < n� 2e, we have

�i = f(n�1�(i�1)e)�1�f(n�1� ie)+1�f(n�1� ie)+1+f(n�1�(i+1)e)�1 = 0:

Writing n� 1 = qe + r with 0 � r < e we see that in the case where r = 0 and q � 1 we
have

�i(U1=Un) =

8>>><
>>>:
0 if i � q + 1;

ef � 1 if i = q;

1 if i = q � 1;

0 if i < q � 1:

(3.3)

In the case where r > 0 we have

�i(U1=Un) =

8>>><
>>>:
0 if i � q + 2;

rf � 1 if i = q + 1;

(e� r)f + 1 if i = q;

0 if i � q � 1:

(3.4)

To complete the proof of theorem 1.2, we need to show that there is only one component
of order p in U1=Un. But we know that the order of U1=Un is pf(n�1), so in the case r = 0
we must have

f(n� 1) = �1 + q � 1 + q(ef � 1)) �1 = 1:

In the case r > 0 we must have

f(n� 1) = �1 + q((e� r)f + 1) + (q + 1)(rf � 1)) �1 = 1:

This completes the proof of theorem 1.2.

4. A few remarks in the case where p < e+ 1

The theorems proved in the previous two sections, show that when p > e the structure
of the unit group of OK=p

n is determined by the splitting type of p and conversely. When
p � e this is no longer the case. Let us quote lemma 5.5 on page 258 of [V1] (with a
di�erent notation):

Lemma 4.1. Let d be a squarefree rational integer, and let K = Q (
p
d). For n � 4 we

have the following:

(a) If d � 1 mod 8, then 2 splits, say (2) = p1p2, and

(OK=p
n
i )
� � Z=2� Z=2n�2 for i = 1; 2:

(b) If d � 5 mod 8, then 2 is inert, say (2) = p, and

(OK=p
n)� � Z=2� Z=2n�1� Z=2n�2 � Z=3:

(c) If d � 0 mod 2, then 2 rami�es, say (2) = p2, and

(OK=p
2n)� � Z=2� Z=2n�2� Z=2n:

(d) If d � 3 mod 8, then 2 rami�es, say (2) = p2, and

(OK=p
2n)� � Z=2� Z=2n�1� Z=2n�1:
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(e) If d � 7 mod 8, then 2 rami�es, say (2) = p2, and

(OK=p
2n)� � Z=4� Z=2n�2� Z=2n�1:

This is proved in A. Vazzanas thesis [V2]. Note that the cases (a) and (b) are but special
cases of theorem 1.2. In the case where p � e we cannot give the complete structure of
(OK=p

n)�. However, it is possible to prove, by the methods above, that some components
do not appear.

5. A proof of lemma 2.2

For completeness and convenience, we end this paper by giving a detailed proof of
lemma 2.2 about the p�power homomorphism on U1. This is essentially lemma A.4 on
page 167 in [M]. We want to prove the following:

Lemma 5.1. Put e0 = e=(p� 1). For � > e0 the p�power homomorphism on U� induces
an isomorphism U� � Ue+�. If � = e0 the p�power homomorphism U� ! Ue+� either
has kernel and cokernel of order p, or is an isomorphism, according as Kp does or does
not contain the p'th roots of unity.

Proof. In this proof, � denotes a generator for the maximal ideal in OKp
. For all a 2 OKp

:

(1 + ��a)p = 1 + p��a+

�
p

2

�
�2�a2 + � � �+ �p�ap�n

(
U�+e if � � e0;

Up� if � < e0;
(5.1)

since p has valuation e, and the binomial coeÆcients are divisible by p. For � � e0 the
p�power homomorphism induces a homomorphism

p : U�=U�+1 ! U�+e=U�+e+1:

When � > e0 this is injective, and hence an isomorphism since both groups have order
pf . Suppose � > e0. Given u 2 U�+e we will prove that it has a unique p'th root in U�.
The fact that the p'th root is unique is easy: For suppose x 2 U� and xp = 1. If x 6= 1
there is a �1 � � such that x 2 U�1 with �1 maximal. Then x gives a nontrivial element
in the kernel of the isomorphism

U�1=U�1+1 � U�1+e=U�1+e+1:

Now we will prove that u has a p'th root in U�. It will be constructed as the limit of a
Cauchy sequence. Claim: There is a sequence fxkg � U� such that

u � xpk mod U�+e+k+1 and xk+1x
�1
k 2 U�+k+1:

For k = 0 we choose x0 2 U� such that u � xp0 mod U�+e+1 via the isomorphism above.
Suppose now xk is given. Then, via the isomorphism, we �nd u�+k+1 2 U�+k+1 such that

u � xpku
p
�+k+1 mod U�+e+k+2;

and put xk+1 = xku�+k+1. Now U� = 1 + �� is a closed subgroup, so we may �nd x 2 U�

such that xk ! x. But xpk ! u, so u = xp. This settles the case � > e0 of the lemma.
Now assume � = e0. Let K and C denote the kernel and cokernel of the homomorphism
U� ! U�+e, and let �K and �C denote the kernel and cokernel of the reduced homomorphism
U�=U�+1 ! U�+e=U�+e+1. There are unique homomorphisms K ! �K and C ! �C that
makes the following diagram commute
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1 ���! K ���! U� ���! U�+e ���! C ���! 1??y ??y ??y ??y ??y ??y
1 ���! �K ���! U�=U�+1 ���! U�+e=U�+e+1 ���! �C ���! 1

The homomorphisms K ! �K and C ! �C are isomorphisms as follows from the fact
that p : U�+1 ! U�+e+1 is an isomorphism. Alternatively, one can apply the 3 � 3
lemma twice to a diagram. If Kp does not contain all p'th roots of unity we must have
jKj = jCj = 1 and p : U� � U�+e. If Kp does contain all p'th roots of unity, we want
to to show that they all belong to Ue0. Thus let � be a p'th root of unity. If � does not
belong to Ue0 , there is a � < e0 such that � 2 U� and we choose � maximal. Then � gives
a nontrivial element in the kernel of the isomorphism U�=U�+1 � Up�=Up�+1. For � = 0
we have the isomorphism pf : U=U1 � U=U1 since U=U1 � k�p
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