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Introduction

In this paper, we evaluate the relativeK-theory of truncated polynomial algebras

� = A[x]=(xn);

where A is a smooth algebra over a perfect �eld k of positive characteristic. This
extends the calculation in [3], where the basic case A = k was considered. Our
motivation to consider the more general case is that it also leads to a calculation
of the groups Nil�(�). The results are stated in terms of the (big) de Rham-Witt
complex of Deligne-Illusie. When A is a polynomial algebra, the structure of these
groups is completely known.

Let A be a smooth k-algebra. The (p-typical) de Rham-Witt complex Ws

�
A of

Deligne-Illusie is a lift of the de Rham complex 
�A to a di�erential graded algebra
over Ws(k) with zeroth term the p-typical Witt ring Ws(A). In a similar way, the
big de Rham-Witt complex Wm


�
A is a lift of 
�A to a di�erential graded algebra

over Ws(k) with zeroth termWm(A). The Verschiebung Vn : Wm(A)!Wmn(A)
extends to an additive map of complexes

Vn : Wm

�
A !Wmn


�
A:

We note, however, that in positive degrees this map is usually not injective.

Theorem A. Let A be a smooth algebra over a perfect �eld of positive charac-

teristic. Then there is a natural long exact sequence

� � � !
M
m�1

Wm

s�2m
A

Vn�!
M
m�1

Wmn

s�2m
A ! Ks�1(A[x]=(x

n); (x))! : : :

The decomposition of the middle and left hand terms in their p-typical parts is
spelled out in the end of paragraph 1 below. When A is a polynomial algebra, the
value of these components is given explicitly in [5, I.2.5].

� Supported in part by NSF Grant and the Alfred P. Sloan Foundation.
�� Supported in part by The American Institute of Mathematics.
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For any associative unital ring �, one considers the exact category Nil(A) with
objects �nitely generated projective (left) �-modules together with a nilpotent en-
domorphism. It contains the exact category P (�) of �nitely generated projective
�-modules as a retract, and this carries over to K-theory:

K�(Nil(�)) ' K�(�)�Nil�(�):

This de�nes the groups Nil�(�). The fundamental theorem in algebraic K-theory
states that

Ki(�[t]) �= Ki(�)�Nili�1(�);

and hence Nil�(�) is the obstruction to K-theory being homotopy invariant. By
a theorem of Serre, a ring � is regular, if and only if every (left) �-module has a
�nite projective resolution. So the resolution theorem and the fact that K 0-theory
is homotopy invariant show that for a regular ring, Nil�(�) = 0. In general, one
knows that the groups Nil�(�) if non-zero are in�nitely generated. It is also known
that the groups Nil�(�) are modules over the big Witt ring W(�), [8].

Theorem B. Let A be a smooth algebra over a perfect �eld of positive charac-

teristic. Then there is a natural long exact sequence

� � � !
M
m�1

Wm

s�2m
(A[t];(t))

Vn�!
M
m�1

Wmn

s�2m
(A[t];(t)) ! Nils�2(A[x]=(x

n))! : : :

All rings are assumed commutative and unital without further notice.

1. Witt functors

1.1. A subset S � N is called a truncation set if it is stable under division,
i.e. if mn 2 S then both m 2 S and n 2 S. In particular, if S is non-empty then
1 2 S. We denote by J the category of truncation sets and inclusions. It comes
with a system of endo-functors �=n : J ! J , n � 1,

S 7! S=n = fm 2 N : mn 2 Sg;

which is multiplicative in the sense that for all m;n � 1, �=m Æ �=n = �=mn.
Note that the set S=n is non-empty if and only if n 2 S. Every object S in J is a
colimit of objects of the form

hni = fd 2 N j d divides ng:

For every S in J , we have the big Witt ring WS(A). As a set WS(A) = AS ,
and the ring structure is characterized by the requirement that the ghost map

w : WS(A)! AS ; wn(�a) =
X
djn

da
n=d
d ;

be a natural ring homomorphism. There are natural maps

Fn : WS(A)!WS=n(A); Vn : WS=n(A)!WS(A);

characterized by the formulas

Fn( �w)m = wmn; Vn(�a)m =

(
am=n; if njm,

0; otherwise.

2



The Teichm�uller character is the multiplicative map

S : A!WS(A)

with aS 2 A
S the function function that maps 1 2 S to a and the rest of S to zero.

Let DGA denote the category of di�erential graded algebras over Z and let A be
a ring. The de Rham-Witt complexWS


�
A to be constructed below is the universal

example of the following structure.

Definition 1.1.1. A Witt functor over a A is a functor

M : Jop ! DGA;

which takes colimits to limits, together with, for every n � 1, additive natural
transformations

Fn : M(S)!M(S=n); Vn : M(S=n)!M(S);

such that Fn is a map of graded rings and Vn is a map of graded M(S)-modules,
whenM(S=n) is considered anM(S)-module via Fn, and such that for allm;n � 1,

F1 = V1 = id; FmFn = Fmn; VmVn = Vmn;

FnVn = n; FmVn = VnFm if (m;n) = 1;

FmdVn = kdFm=cVn=c + lFm=cVn=c d;

(1.1.2)

where in the bottom line c = (m;n) is the greatest common divisor and k and l
is any pair of integers such that km + ln = c. In addition, it is required that as a
functor to rings M(S)0 = WS(A) such that Fn and Vn extend the Frobenius and
Verschiebung, respectively, and that for all a 2 A,

FndaS = an�1S=n daS=n;(1.1.3)

where S : A!WS(A) is the Teichm�uller character. A map of Witt functors is a
natural transformation which preserves all the relevant structure and which is the
identity in degree zero.

The following relations are valid for every Witt functor

dFn = nFnd; Vnd = ndVn; Vn(xdy) = Vn(x)dVny;(1.1.4)

for all x; y 2M(S=n). Indeed, Vn(xdy) = Vn(xFndVny) = Vn(x)dVny and

Vndx = Vn(1)dVnx = Vn(x)dVn(1) + Vn(1)dVnx

= d(Vn(1)Vnx) = dVn(FnVnx) = ndVnx:

The �rst relation is proved similarly. We note that since a Witt functor takes
colimits to limits, it is determined by its values on the truncation sets hni, n � 1.
This also implies that M(;) = 0 is the trivial ring concentrated in degree zero.

More generally, if T is a truncation set, we let JT = (J # T ) be the category over
T . The projection functor JT ! J is a full embedding which identi�es JT with the
full subcategory of J which consists of all truncation sets S � T . We then de�ne a
T -Witt functor over A to be a functor

M : Jop
T ! DGA

which takes colimits to limits, together with additive natural transformations

Fn : M(S)!M(S=n); Vn : M(S=n)!M(S)
3



subject to the same requirements as above.

For example, a f1g-Witt functor over A is the same as a DGA whose degree
zero term is equal to A, and the trivial ring 0 is the unique ;-Witt functor. More
importantly, for every prime p, we have the truncation set

P = f1; p; p2; : : : g:

We call a P -Witt functor a p-typical Witt functor. For T � U andM : Jop
U ! DGA

a U -Witt functor, we get a T -Witt functor i�M by restriction.

Proposition 1.1.5. For every pair of truncation sets U � T , there is an ad-

junction i� a i�,

fU -Witt functors over Ag
i� //
fT -Witt functors over Ag;

i�
oo

where i� is the forgetful functor.

Proof. We use the Freyd adjoint functor theorem to prove the existence of
a left adjoint, see [6]. The category WT

A of T -Witt functors over A obviously
has all limits, and i� preserves limits. We verify the solution set condition. Let
f : N ! i�M be a map in WU

A . We shall de�ne an S-Witt functor

imS f : J
op
S ! DGA;

for all sub-truncation sets S � T . If S � U , we set (imS f)(S
0) = f(N(S0)),

for all S0 � S. Suppose that S � (S \ U) is �nite and assume inductively that
imQ f has been de�ned, for all proper sub-truncation sets Q � S. We de�ne
imS f as follows: if S0 � S is a proper subset, we set (im fS)(S

0) = (imS0 f)(S
0),

and (imS f)(S) � M(S) is de�ned to be the smallest DGA which contains both
Vn((imS=n f)(S=n)), for all n > 1, and the image of the Teichm�uller character

S : A!WS(A). To prove that the functor imS f so de�ned is an S-Witt functor,
we must show that (imS f)(S)

0 = WS(A) and that Fn(imS f(S)) � imS f(S=n),
for all n � 1. The �rst requirement follows from the fact that every x 2 WS(A)
may be written (uniquely) as a sum

x =
X
n2S

VnanS=n;

where an 2 A are the Witt coordinates of x. The second follows readily from
(1.1.2), (1.1.3) and the fact that Fn is multiplicative. Finally, for a general S � T ,
we de�ne (imS f)(S

0) as the limit of (imQ f)(Q) as Q ranges over the sub-truncation
sets Q � S0 such that Q� (Q \ U) is �nite.

By construction, there is a canonical map of T -Witt functors

g : imT f !M

such that f : N ! i�M factors through i�g : i� imT f ! i�M . Given N in WU
A ,

there is clearly only a set worth of isomorphism classes of T -Witt functors of the
form imT f for some f : N ! i�M . Hence the solution set condition is satis�ed.

Taking U = ;, we see that the category of T -Witt functors over A has an initial
object, namely, i�0, where 0 is the unique ;-Witt functor.
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Definition 1.1.6. The universal T -Witt functor over A is denoted

S 7!WT
S

�
A

and called the T -deRham-Witt complex of A.

1.2. We will now study p-typical Witt functors more closely. Let us �rst
restate the de�nition slightly di�erent. A p-typical Witt functor is a functor

M : Jop
P ! DGA;

which takes colimits to limits, together with two additive natural transformations

F : M(S)!M(S=p); V : M(S=p)!M(S);

such that F is a map of graded rings, V is a map of M(S)-modules when M(S=p)
is considered an M(S)-module via F , and such that

FV = p; FdV = d:

Moreover, it is required that as a functor to rings M(S)0 = WS(A) such that F
and V extend the Frobenius Fp and Verschiebung Vp, respectively, and that for all
a 2 A,

FdaS = aS=pdaS=p:

We writeWS

�
A instead of WP

S

�
A and call it the p-typical de Rham-Witt complex

of A. If A is an Fp -algebra, this agrees with the de Rham-Witt complex of Deligne-
Illusie, [5, I.1.3, I.2.17].

Let A be a Z(p) -algebra and, for a truncation set S, let

I(S) = fk 2 S j (k; p) = 1g:

Then the Witt ring decomposes

WS(A) =
Y

k2I(S)

WS(A)ek;(1.2.1)

with

ek =
Y

l2I(S=k)nf1g

� 1
k
Vk(1)�

1

kl
Vkl(1)

�
:

Indeed, the ghost components for Vk(1) are wn(Vk(1)) = k, if kjn, and 0 otherwise,
so w( 1kVk(1)) is the indicator function 1S\kN and hence w(ek) = 1S\kP . Also,

Fk(ekm) = em; Vk(em) = kem:

Moreover, the kth factor in (1.2.1) may be identi�ed via the composite

WS(A)ek ,!WS(A)
Fk�!WS=k(A)

R
S=k

S=k\P
�����!WS=k\P (A)

which is an isomorphism. We de�ne two new functors

fp-typical Witt functors over Ag
i! //
fWitt functors over Ag

i!
oo(1.2.2)
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If L is a DGA over Z(p) and k a natural number prime to p, we write L(1=k) for the
graded algebra L with the di�erential d replaced by (1=k)d. Let N : Jop

P ! DGA

be a p-typical Witt functor over A. Then i!N : J ! DGA is the functor

i!N(S) =
Y

k2I(S)

N(S=k \ P )(1=k)(1.2.3)

and the natural transformations

Fn : i!N(S)! i!N(S=n);

Vn : i!N(S=n)! i!N(S);

are de�ned as follows: write n = psh with (h; p) = 1. Then Fn takes a factor k = hl
to the factor l by the map F s and annihilates the remaining factors. Similarly, Vn
takes the factor l to the factor k = hl by the map hV s. It follows from (1.2.1) that
i!N(S)0 =WS(A), and given this, one readily veri�es that i!N is a Witt functor.

Conversely, for M : Jop ! DGA a Witt functor, de�ne i!M : Jop
P ! DGA by

i!M(S) =M([S])e1;(1.2.4)

where [S] = fks 2 N j s 2 S; (k; p) = 1g is the union of all truncation sets T with
T \ P = S. Then i!M is a p-typical Witt functor.

Proposition 1.2.5. Let A be a Z(p)-algebra. Then there are adjunctions

i� a i
� a i! a i

!:

Proof. The adjunction i� a i� follows from 1.1.5, and the composites i�i!
and i!i! are both the identity. Indeed, by construction i!N has the property that
i!N(T )ek = N(T=k \ P ). We de�ne � : M(S)! i!i

�M(S) to be the map which on
the kth factor is given by

M(S)
Fk�!M(S=k)(1=k)

R
S=k

S=k\P
�����!M(S=k \ P )(1=k):

Then i! a i� is easily veri�ed. Next, we de�ne � : i!i!M(S)!M(S) as the composite

i!i
!M(S) =

Y
k2I(S)

M([S=k \ P ])e1(1=k)!
Y

k2I(S)

M([S=k \ P ])ek

!
Y

k2I(S)

M(S)ek =M(S);

with the �rst map given by

1

k
Vk : M([S])e1(1=k)!M([S])ek

and with the second map induced from the inclusion S � [S=k \ P ]. Again the
adjunction i! a i! is easily checked.

It follows that the functors i�, i
� and i! all preserve colimits. In particular, they

preserve initial objects and hence we have

Corollary 1.2.6. There are canonical isomorphisms

WS

�
A = i�(W�


�
A)(S) = i!(W�


�
A)(S);

WS

�
A = i�(W�


�
A)(S);

valid for any Z(p)-algebra A.
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One may well expect that the last equality hold for every ring A. More generally,
one would like that whenever T � U , the universal U -Witt functor restricts to the
universal T -Witt functor. We leave this as an open question.

For the convinience of the reader, we spell out the statement of the corollary in
the case of the truncated de Rham-Witt complexes which appear in theorems A and
B of the introduction. First, for every natural number m, we have the truncation
set m = fl 2 N j l � mg, and we write

Wm

�
A =Wm


�
A:

The set I(m) is equal to the set of natural numbers d which are prime to p and less
than or equal to m, and m=d \ P = fpi j pid � mg. Finally, in the notation of [5],

Wm=d\P

�
A =Ws


�
A;

where s = s(m; d) = maxfi j pid � mg+ 1. See also [3, pp. 95{96].

2. Truncated polynomial algebras

2.1. Let T denote the circle group and let Cr � T denote the cyclic subgroup
of order r. The topological Hochschild spectrum T (A) is a T-spectrum indexed
on a complete universe U . The reader is referred to [4] for the de�nition. Let
j : UT ! U be the inclusion of the trivial universe. We shall mostly be concerned
with the underlying naive T-spectrum j�T (A) but will not distinquish in notation.
The obvious inclusion maps

Fr : T (A)
Crs ! T (A)Cs

are accompanied by transfer maps going in the opposite direction,

Vr : T (A)
Cs ! T (A)Crs :

We call these maps the rth Frobenius and Verschiebung, respectively.

In addition, T (A) is cyclotomic. The cyclotomic structure gives a map

Rr : T (A)
Crs ! T (A)Cs ;

called the rth restriction. It has the following equivariance property: Let Cr � T

be a subgroup of order r and let �r : T ! T=Cr , �r(z) = z1=rCr, be the root
isomorphism. If we view the naive T=Cr -spectrum T (A)Cr as a naive T-spectrum
��rT (A)

Cr via �r, then Rr is a map of T-spectra

Rr : �
�
rsT (A)

Crs ! ��sT (A)
Cs :

We de�ne a functor

M : Jop ! DGA(2.1.1)

as follows. Its value on the elementary truncation set hri is the graded abelian
group

M(hri) = ��T (A)
Cr ;

with a di�erential to be speci�ed shortly, and M(hrsi) ! M(hsi) is the map of
graded abelian group induced by Rr. To de�ne the di�erential, let �; � 2 �S1 (T+)
be the generators which under the obvious collaps maps restrict to id 2 �S1 (T) and
� 2 �S1 (S

0), respectively, and consider the maps

Æ; � : �i(�
�
rT (A)

Cr)
�;�
��! �i+1(T+ ^ �

�
rT (A)

Cr)
�
�! �i+1(�

�
rT (A)

Cr):
7



The left hand map is given by exterior multiplication by � and �, respectively, and
the right hand map is induced from the action by T. One easily veri�es that � is
equal to multiplication by � and that Æ Æ Æ = � Æ Æ = Æ Æ �. It follows that

d :M(hni)!M(hni); dx = Æx+ jxj�;

is a di�erential. Standard equivariant homotopy theory shows that Æ is a derivation
for the product onM(hni); hence so is d. We extendM to general truncation sets
by continuity,

M(S) = lim �M(hni)

with the limit running over n 2 S. The Frobenius and Verschiebung maps on
M(hni) induce natural transformations

Fn :M(S)!M(S=n); Vn :M(S=n)!M(S):

Proposition 2.1.2. The functor M : Jop ! DGA is a Witt functor. In partic-

ular, there is a preferred map

WS

�
A !M(S):

Proof. We proved in [4, addendum 3.3] that there is a canonical isomorphism

M(S)0
�
�!WS(A);

compatible with restriction, Frobenius and Verschiebung. The relation (1.1.3) was
proved in [1, lemma 1.5.6], and the relations (1.1.2), except for the last one, are
easy consequences of the fact that, for every G-ring spectrum, the functor which
takes G=H to ��T

H is a Green functor. It remains to prove last relation in (1.1.2).
The proof is similar to the proof given in [1, lemma 1.5.1] of the case m = n, where
the relation reads FndVn = d. We leave the general case to the reader. See also [2,
3.2.1].

Lemma 2.1.3. If A is a Z(p)-algebra then the Witt functor of proposition 2.1.2

is of the form i!N .

Proof. Let N be the P -Witt functor de�ned by continuity from ��T (A)
Cps .

The lemma then follows from [3, proposition 4.2.5].

2.2. Let k be a perfect �eld of characteristic p > 0 and let A be a k-algebra.
It was proved in [3, 4.2.10] that there is a natural isomorphism

�� holim
 �
R

T (k)CsV
[ s�1
n

]

�=
M
m�0

W(m+1)n(k)[2m]:

Here and below, if M is a graded module, we write M [i] for the ith suspension
given by M [i]j =Mj�i. The pairing

holim
 �
R

T (A)Cs ^ holim
 �
R

T (k)CsV
[ s�1
n

]

! holim
 �
R

T (A)CsV
[ s�1
n

]

and canonical map of proposition 2.1.2 induces a pairing

W
�A 
W(k) �� holim
 �
R

T (k)CsV
[ s�1
n

]

! �� holim
 �
R

T (A)CsV
[ s�1
n

]

;
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whereW
�A is the limit of allWhni

�
A. TheW(k)-generator �2m 2W(m+1)n(k)[2m]

de�nes a W(A)-linear map

�2m : W
�A[2m]! �� holim
 �
R

T (A)CsV
[ s�1
n

]

:(2.2.1)

We shall prove

Theorem 2.2.2. Let k be a perfect �eld of characteristic p > 0 and let A be

a smooth k-algebra. Then the sum of the maps in (2.2.1) factors to a natural

isomorphism M
m�0

W(m+1)n

�
A[2m]

�
�! �� holim

 �
R

T (A)CsV
[ s�1
n

]

:

The proof which occupies the rest of the paragraph is based on [1] and [3]. It
has two parts listed separately below. The �rst part is calculational and veri�es
the theorem when A = k[x1; : : : ; xd]. The second part uses standard covering
techniques for smooth algebras as in [1] and [5].

Lemma 2.2.3. The theorem holds for A = k[x1; : : : ; xd].

Proof. We prove the lemma for A = Fp [x] leaving the many variable case
to the reader. It is only notationally more complicated, compare [1, x2.2]. The
extension to a general perfect coeÆcient �eld of characteristic p > 0 is proved in a
manner similar to op.cit. (2.4.5). It is convenient to break up the statement in its
p-typical components. Then by [3, proposition 4.2.5] and corollary 1.2.6 above it
suÆces to prove that the maps (2.2.1) induce an isomorphismM

m�0

Ws(m;d)

�
A[2m]

�
�! �� holim

 �
R

T (A)
Cpr

V
[
prd�1

n
]

;

where s(m; d) = maxfi j pid � (m+ 1)ng.

Let us write Vr for V[ prd�1
n ]. Then V

Cp
r = Vr�1 and there is a T-equivalence

T (A)Vr '
_
s�1

T (k)Vr ^ S
1(s)+;

where S1(s) is the unit circle in the representation C

s . Let �pr : S

1 ! S1=Cpr be
the prth root. Then we get a T-equivalence

�#prT (A)
Cpr

Vr

�
�!

_
(l;p)=1

1_
u=r

�#prT (Fp)
Cpr

Vr
^ S1(pu�rl)+_

_
(l;p)=1

r�1_
u=0

�#pu(�
#
pr�uT (Fp)

Cpr�u

Vr
^Cpu S

1(l)+):

Moreover, there is a T-equivalence

��Cpr�uT (Fp)
Cpr�u

Vr
^Cpu S

1(l)+
�
�! jT (Fp)

Cpr�u

Vr
j ^ S1(l)=Cpu+;

where the bars indicate trivial action. Indeed, the lth power map �l : S
1(1)! S1(l)

is a p-local homotopy equivalence, and we have the isomorphism

jT (Fp)
Cpr�u

Vr
j ^ S1(1)+

�
�! �#pr�uT (Fp)

Cpr�u

Vr
^ S1(1)+
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which maps (t; z) to (tz�1; z). The restriction map

R : T (A)
Cpr

V r ! T (A)
Cpr�1

V r�1

is the identity on the circle factors in the above decomposition, and equal to the
restriction

R : T (Fp)
Cpr�u

Vr
! T (Fp)

Cpr�1�u

Vr�1
; 0 � u � r;

on the �rst factor in each sum. Finally, by [4, proposition 9.1],

�2m holim
 �
R

T (Fp)
Cpr�u

Vr
�=Ws�u(Fp)

with s = s(m; d). The spectrum holim
 �

T (Fp)
Cpr�u

Vr
is a module over K(Fp)

^

p so is

a wedge of the Eilenberg-MacLane spectra H(Ws(m;d)�u(Fp); 2m). Let us name
generators as follows:

H�(S
1(l)=Cpu+;Z(p)) = Z(p)fx

l=pu ; xl=p
u

d log xg;

H�(S
1(pu�rl);Z(p)) = Z(p)fx

pu�rl; xp
u�rld log xg:

Then we have

�� holim
 �
R

T (A)
Cpr

Vr
�=
M
m�0

(Ws(Fp)fx
k; xkd log x j vp(k) � 0; k > 0g)[2m] �

M
m�0

(
s�1M
u=1

Ws(Fp)fx
k; xkd log x j vp(k) = �ug)[2m];

with s = s(m; d). Since Wt(Fp) = Z=pt the right hand side is precisely equal to the
direct sum of p-typical de Rham-Witt complexes,

�� holim
 �
R

T (A)
Cpr

Vr
�=
M
m�0

Ws(m;d)

�
Fp [x]

[2m];

compare [1, x2.1] or [5]. It follows that the two sides of the statement in theorem
2.2.2 above are abstractly isomorphic. One argues as in [1, x2] that the stated map
induces an isomorphism.

We next consider �etale extensions, following [1] and [5]. If A! B is �etale then
so is WS(A) ! WS(B), and for any pair of truncation sets S � T , there is a
natural isomorphism

WT (B)
WT (A) WS

�
A
�
�!WS


�
B ;(2.2.4)

see [5, p. 513, 549]. Let FilSWT

�
A denote the kernel of the restriction,

0! FilSWT

�
A !WT


�
A !WS


�
A ! 0:

Then, more generally, (2.2.4) and the fact that �etale maps are at implies that the
natural map

WT (B)
WT (A) Fil
SWT


�
A
�
�! FilSWT


�
B(2.2.5)

is an isomorphism.

Let us de�ne

V�hsi(A) = ��T (A)
Cs
V
[ s�1
n

]

;
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and extend to all truncation sets by continuity. An argument similar to [1, propo-
sition 2.4.4] and [3, proposition 4.2.5] shows that for A! B �etale,

WT (B)
WT (A) V
�
S(A)

�
�! V�S(B):(2.2.6)

We write

V�(A) = lim �V
�
hsi(A) = lim �V

�
T (A);

and recall that by [3, 4.2.7], the projection

Vi(A)! Vi
T (A)(2.2.7)

is an isomorphism for i � [(pvp(T ) � 1)=n]. Here vp(T ) denote the maximum of the
p-adic valuations of elements of T . Suppose that A is a smooth k-algebra. Then
the complexW
�A is bounded, and hence (2.2.7) implies that the map

�2m : W
�A[2m]! V�(A)

factors over WT

�
A[2m], for some �nite T .

Lemma 2.2.8. Let A = k[x1; : : : ; xd] and let A ! B be an �etale map. Then the

map (2.2.1) factors to a map

�2m : W(m+1)n

�
B [2m]! �� holim

 �
R

T (B)CsV
[ s�1
n

]

:

Proof. The statement is true for B = A by lemma 2.2.3. We have isomor-
phisms

FilSW
�B
�
�! lim �FilSWT


�
B ;

V�(B)
�
�! lim �WT (B)
WT (A) V

�
T (A);

and the lemma follows from 2.2.5 with S = (m+ 1)n.

A k-algebra A is smooth if there exists relatively prime elements f1; : : : ; fr such
that the localizations Afi = A[1=fi] are �etale extensions of a polynomial algebra
k[x1; : : : ; xd]. Consider WT (A) ! WT (Afi) as a cochain complex with the left
hand term located in degree zero. Then the tensor complex

rO
i=1

WT (A)(WT (A)!WT (Afi))(2.2.9)

is acyclic and at over WT (A), see [1, lemma 2.4.6]. Tensoring this complex with
W
�A over WT (A) we thus get an exact sequence

0!WT

�
A !

rM
i=1

WT

�
Afi
!

rM
i;j=1

WT

�
Afifj

! : : :

and similarly with V�(A) in place of W
�A. (This uses that

WT (Afi)
WT (A) WT (Afj ) =WT (Afij );
11



which, in turn, is an immediate consequence of the fact thatWT (Af ) =WT (A)f
T
,

see [5].) In particular, the horizontal maps in the diagram

W
�A // //

�2m

��

Lr
i=1W
�Afi

[2m]

�2m

��

V�(A) // //
Lr

i=1V
�(Afi)

are injective. Indeed, taking limits is left exact. We conclude from lemma 2.2.8
that the left hand vertical map factors to

�2m : W(m+1)n

�
A[2m]! �� holim

 �
R

T (A)CsV
[ s�1
n

]

:

Finally, the sum of the exact sequences

0!W(m+1)n

�
A[2m]!

M
i

W(m+1)n

�
Afi

[2m]!
M
i;j

W(m+1)n

�
Afij

[2m]

for m � 0 maps to the exact sequence

0! V�(A)!
M
i

V�(Afi)!
M
i

V�(Afij );

and the maps of the middle and right hand terms are isomorphisms. But then so
is the left hand map. This �nishes the proof of theorem 2.2.2.

We shall also need to know the following result.

Theorem 2.2.10. With the assumptions of 2.2.2 there is a natural isomorphism

�2m :
M
m�0

Wm+1

�
A[2m]

�
�! �� holim

 �
R

T (A)
Cs=n
V
[ s�1
n

]

:

Proof. The proof, given [3, theorem 4.2.10], is entirely similar to the proof of
theorem 2.2.2 above.

2.3. We can now prove theorems A and B of the introduction. The relative
term K(A[x]=(xn); (x)) is de�ned by the split co�bration sequence

K(A[x]=(xn); (x))! K(A[x]=(xn))! K(A); x 7! 0;

and similarly for topological cyclic homology. A theorem of McCarthy, [7], implies
that the cyclotomic trace induces an equivalence

K(A[x]=(xn); (x))
�
�! TC(A[x]=(xn); (x)):

Indeed, it follows from results from [4] that both terms already are p-complete. On
the other hand, from [3, proposition 4.2.3] we have the co�bration sequence

�holim
 �
R

T (A)
Cs=n
V
[ s�1
n

]

Vn�! �holim
 �
R

T (A)CsV
[ s�1
n

]

! TC(A[x]=(xn); (x));

and theorems 2.2.2 and 2.2.10 above identi�es the left hand and middle terms.
Moreover, using the proof of [3, theorem 4.2.10], one identi�es the map Vn with the
map induced from the Verschiebung

Vn : Wm+1

�
A !W(m+1)n


�
A:

This completes the proof of theorem A.
12



To prove theorem B, recall that for any ring �, one de�nes NK(�) by the split
co�bration sequence

NK(�)! K(�[t])! K(�); t 7! 0:

The fundamental theorem in algebraic K-theory shows that Nil�(�) = NK(�)[�1].
Now the nil groups vanish for regular rings and a smooth algebra over a �eld is
regular. Therefore in the case at hand,

NK(A[x]=(xn); (x))
�
�! NK(A[x]=(xn));

and hence we have a split co�bration sequence

NK(A[x]=(xn))! K(A[t; x]=(xn); (x))! K(A[x]=(xn); (x)); t 7! 0:

Thus theorem B follows from theorem A.
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