UNIVERSITY OF AARHUS DEPARTMENT OF MATHEMATICS

ISSN: 1397-4076

LINE BUNDLES ON BOTT-SAMELSON VARIETIES

By Niels Lauritzen and Jesper Funch Thomsen

Preprint Series No.: 1

Ny Munkegade, Bldg. 530 DK-8000 Aarhus C, Denmark January 2002

http://www.imf.au.dk institut@imf.au.dk

LINE BUNDLES ON BOTT-SAMELSON VARIETIES

NIELS LAURITZEN, JESPER FUNCH THOMSEN

1. INTRODUCTION

Let G be a semisimple, simply connected linear algebraic group over an algebraically closed field k and B be a Borel subgroup in G. If $w = (P_1, \ldots, P_n)$ is a sequence of minimal parabolic subgroups containing B, we may form the quotient $Z_w = P_w/B^n$, where $P_w = P_1 \times \cdots \times P_n$ and B^n acts on P_w from the right via

$$(p_1,\ldots,p_n)(b_1,\ldots,b_n) = (p_1b_1,b_1^{-1}p_2b_2,b_2^{-1}p_3b_3,\ldots,b_{n-1}^{-1}p_nb_n).$$

The quotient Z_w is inductively a sequence of \mathbb{P}^1 -bundles with natural sections starting with the \mathbb{P}^1 -bundle P_1/B (over a point). The product map $P_w \to G$ induces a proper morphism $\varphi_w : Z_w \to G/B$ whose image is a Schubert variety in G/B. For "reduced" sequences w the morphism φ_w is birational and equal to the celebrated Demazure desingularization of the Schubert variety $\varphi_w(Z_w)$. In general we call Z_w the *Bott-Samelson* variety associated with w. The construction of Z_w originates in the papers [1][2][3] of Bott-Samelson, Demazure and Hansen. See also the master's thesis (speciale) [4] by Hansen.

We characterize the globally generated, ample and very ample line bundles on Z_w . The generators of the ample cone are naturally defined $\mathcal{O}(1)$ -bundles for successive \mathbb{P}^1 -bundles. They form a basis of Pic (Z_w) . Proving that they account for all ample line bundles originally lead us to some quite involved computer calculations in the Chow ring of Z_w . It later turned out that the key point is Lemma 2.1.

Using Frobenius splitting [7] and our description of globally generated line bundles we prove the vanishing theorem

$$\mathrm{H}^{i}(Z_{w},\mathcal{L}(-D))=0, i>0$$

where \mathcal{L} is any globally generated line bundle on Z_w and D a subdivisor of the boundary of Z_w corresponding to a reduced subexpression of w(cf. Theorem 7.4 for a precise description).

A special case (D = 0) of this vanishing theorem has been proved in [6] (with no details on the involved line bundles). The vanishing theorem above is a generalization of the crucial vanishing theorem for pull backs of globally generated line bundles on G/B in Kumar's proof [5] of the Borel-Bott-Weil theorem in the Kac-Moody case. Kumar relied heavily on the Grauert-Riemenschneider vanishing theorem available only in characteristic zero. Our approach shows that one may give a characteristic free generalization using only the theory of Frobenius splitting.

2. NOTATION

Fix a semisimple algebraic group G over an algebraically closed field k and let B be a Borel subgroup in G containing the maximal torus T. A simple reflection s (wrt. B) in the Weyl group $W = N_G(T)/T$ determines the minimal parabolic subgroup $P_s = BsB \cup B \supseteq B$. We let w denote a sequence (s_1, s_2, \dots, s_n) of simple reflections, w[j] the truncated sequence (s_1, \dots, s_{n-j}) , $P_w = P_1 \times \dots \times P_n$ and $Z_w = P_w/B^n$ the associated Bott-Samelson variety, where B^n acts from the right on P_w as

$$(p_1,\ldots,p_n)(b_1,\ldots,b_n) = (p_1b_1,b_1^{-1}p_2b_2,b_2^{-1}p_3b_3,\ldots,b_{n-1}^{-1}p_nb_n).$$

By convention $Z_{w[n]}$ will denote a 1-point space. We may also write Z_w as

$$P_1 \times^B P_2 \times^B \cdots \times^B P_n / B$$

where $X \times^B Y$ is the quotient $X \times Y/B$ with B acting as $(x, y)b = (xb, b^{-1}y)$. This shows that Z_w comes as the sequence

$$Z_w \to Z_{w[1]} \to \cdots \to Z_{w[n-2]} = P_1 \times^B P_2 / B \to Z_{w[n-1]} = P_1 / B$$

of successive \mathbb{P}^1 -fibrations. In general we let $\pi_{w[j]}$ denote the natural morphism

$$Z_w \to Z_{w[j]}$$

in the sequence of \mathbb{P}^1 -bundles above and use π_w to denote the morphism $\pi_{w[1]} : Z_w \to Z_{w[1]}$. Let $w(j) = (s_1, \dots, \hat{s_j}, \dots, s_n)$. The natural embedding $P_{w(j)} \to P_w$ induces a closed embedding $\sigma_{w,j} : Z_{w(j)} \to Z_w$ which makes $Z_{w(j)}$ into a divisor in Z_w . The divisor $\partial Z_w = Z_{w(1)} \cup \cdots \cup Z_{w(n)}$ in Z_w has normal crossing. When $A \subseteq \{1, 2, \dots, n\}$ we define

$$Z_{w(A)} = \bigcap_{j \in A} Z_{w(j)},$$

and let $\sigma_{w,A}: Z_{w,A} \to Z_w$ denote the closed embedding given by $\sigma_{w,j}$ for $j \in A$. Finally we let $\pi: Z_w \to G/B$ denote the natural proper morphism coming from the product map $P_w \to G$.

2.1. Induced bundles on Z_w . We let $\mathcal{L}_w(V)$ denote the locally free sheaf of sections of the associated vector bundle $P_w \times^{B^n} V$ on Z_w , where V is a finite dimensional B^n -representation. We view a Brepresentation V as a B^n -representation by letting B^n act on $v \in V$ as $(b_1, b_2, \dots, b_n).v = b_n.v$. With this convention we get for a B-character $\lambda \in X^*(B)$ that $\mathcal{L}_w(\lambda) = \mathcal{L}_w(0, \dots, 0, \lambda)$. 2.2. Induced bundles on G/B. Let V be a finite dimensional B representation. We let $\mathcal{L}_{G/B}(V)$ denote the locally free sheaf on G/Bassociated with V. This is the sheaf of sections of the vector bundle $G \times^B V \to G/B$, $(g, v) \mapsto gB$. When V has dimension 1, associated to a B-character λ , the sheaf $\mathcal{L}_{G/B}(\lambda) = \mathcal{L}_{G/B}(V)$ is a line bundle. This gives a bijection between B-characters and line bundles on G/B. It is well known, that $\mathcal{L}_{G/B}(\lambda)$ is globally generated (resp. ample) exactly when λ is dominant (resp. regular) wrt. the Borel subgroup opposite to B.

 $\langle \lambda, \alpha^{\vee} \rangle \geq 0$ (resp. $\langle \lambda, \alpha^{\vee} \rangle > 0$) for all simple roots $\alpha \in S$. The pull back of $\mathcal{L}_{G/B}(V)$ to Z_w under the morphism $\pi : Z_w \to G/B$ is given by the formula

$$\pi^*(\mathcal{L}_{G/B}(V)) \simeq \mathcal{L}_{Z_w}(V).$$

Lemma 2.1. Let $1 \le i \le n$ and $0 \le j \le n-1$ be integers and let λ denote a *B*-character. Then

$$\sigma_{w,i}^* \pi_{w[j]}^* \mathcal{L}_{Z_{w[j]}}(\lambda) \simeq \begin{cases} \pi_{w(i)[j-1]}^* \mathcal{L}_{w(i)[j-1]}(\lambda) & \text{if } i > n-j, \\ \pi_{w(i)[j]}^* \mathcal{L}_{w(i)[j]}(\lambda) & \text{if } i \le n-j. \end{cases}$$

Proof. When i > n - j the claim follows by the commutativity of the diagram

Similarly, the case $i \leq n - j$ follows from the commutative diagram

3. LINE BUNDLES ON Z_w

The Picard group $\operatorname{Pic}(Z_w)$ is a free abelian group of rank n. This follows easily by induction using the \mathbb{P}^1 -fibration $\pi_w : Z_w \to Z_{w[1]}$. In fact we have a decomposition $\operatorname{Pic}(Z_w) = \operatorname{Pic}(Z_{w[1]}) \oplus \mathbb{Z}\mathcal{L}$, where \mathcal{L} is any line bundle on Z_w with degree one along the fibers of π_w .

3.1. The $\mathcal{O}(1)$ -basis. Recall our notation $w = (s_1, \ldots, s_n)$ for a sequence of simple reflections defining Z_w . Suppose that s_n is a reflection in the simple root α . Then we let

$$\mathcal{O}_w(1) = \mathcal{L}_w(\omega_\alpha),$$

where ω_{α} denotes the fundamental dominant weight corresponding to α . Then $\mathcal{O}_w(1)$ has degree one along the fibres of π_w . It is globally generated since it is the pull back of the globally generated line bundle $\mathcal{L}_{G/B}(\omega_{\alpha})$ on G/B. This gives inductively a basis for Pic (Z_w) which we call the $\mathcal{O}(1)$ -basis. Thus

$$\operatorname{Pic}(Z_w) = \mathbb{Z}\mathcal{O}_w(1) \oplus \mathbb{Z}\mathcal{O}_{w[1]}(1) \oplus \cdots \oplus \mathbb{Z}\mathcal{O}_{w[n-1]}(1),$$

where we write $\mathcal{O}_{w[j]}(1)$ instead of the pull back $\pi^*_{w[j]}\mathcal{O}_{w[j]}(1)$. The line bundle $m_1\mathcal{O}_w(1) + \cdots + m_n\mathcal{O}_{w[n-1]}(1) \in \operatorname{Pic}(Z_w)$ is denoted

$$\mathcal{O}_w(m_1,\ldots,m_n),$$

where $m_1, \ldots, m_n \in \mathbb{Z}$.

Theorem 3.1. A line bundle $\mathcal{L} = \mathcal{O}_w(m_1, \ldots, m_n)$ is very ample on Z_w if and only if $m_1, \ldots, m_n > 0$.

Proof If n = 1 it is well known that \mathcal{L} is ample and very ample if and only if $m_1 > 0$. We proceed using induction on n. In general the \mathbb{P}^1 -bundle $\pi_w : Z_w \to Z_{w[1]}$ may by identified with the projective bundle $\mathbb{P}(V) \to Z_{w[1]}$, where V is the rank two bundle $\mathcal{L}_{w[1]}(\mathrm{H}^0(P_\alpha/B,\omega_\alpha))$ on $Z_{w[1]}$ and $\mathcal{O}_{\mathbb{P}(V)}(1) \cong \mathcal{O}_w(1)$. Since V is the pull back of a globally generated vector bundle on G/B it is globally generated. This implies that we have a commutative diagram (for some $N \in \mathbb{N}$)

where φ is a closed embedding. Since $\varphi^*(\mathcal{O}_{\mathbb{P}^N}(1) \times \mathcal{O}_{Z_w}) \cong \mathcal{O}_{\mathbb{P}(V)}(1)$ it follows that $\mathcal{O}_{\mathbb{P}(V)}(n) \otimes \pi_w^* \mathcal{L}'$ is very ample if n > 0 and \mathcal{L}' is very ample on $Z_{w[1]}$. By induction \mathcal{L} is very ample if $m_1, \ldots, m_n > 0$.

Suppose on the other hand that \mathcal{L} is very ample. By induction we get that $m_2, \ldots, m_n > 0$, since

$$\sigma_{w,1}^* \mathcal{L} \simeq \mathcal{O}_{w(1)}(m_2, \dots, m_n)$$

by Lemma 2.1. Furthermore, Lemma 2.1 also gives

$$\sigma_{w,2}^*\mathcal{L} \simeq \mathcal{O}_{w(2)}(m_1, m_3, \dots, m_n) \otimes \pi_{w(2)[n-2]}^*(\mathcal{L}_{w(2)[n-2]}(\omega_\beta))$$

where β is the simple root corresponding to s_2 . Suppose s_1 is a reflection in the simple root α . Using that $w(2)[n-2] = (s_1)$ and hence $Z_{w(2)[n-2]} = P_{\alpha}/B \simeq \mathbb{P}^1$, we identify $\mathcal{L}_{w(2)[n-2]}(\omega_{\beta})$ with $\mathcal{O}_{\mathbb{P}^1}(\langle \omega_{\beta}, \alpha^{\vee} \rangle)$. When $s_1 \neq s_2$ this means that the line bundle $\pi^*_{w(2)[n-2]}(\mathcal{L}_{w(2)[n-2]}(\omega_{\beta}))$ is trivial, and $m_1 > 0$ by induction.

If $s_1 = s_2$ and s_1 is a reflection in the simple root α , then

$$Z_w \cong P_\alpha / B \times Z_{w(1)} \simeq \mathbb{P}^1 \times Z_{w(1)}$$

Under this isomorphism \mathcal{L} identifies with $\mathcal{O}_{\mathbb{P}^1}(m_1) \times \mathcal{L}_{w(1)}(m_2, \ldots, m_n)$. This proves that $m_1 > 0$. \Box

We obtain the following two corollaries as immediate consequences.

Corollary 3.2. Ample line bundles on Z_w are very ample.

Corollary 3.3. A line bundle $\mathcal{L} = \mathcal{O}_w(m_1, \ldots, m_n)$ is globally generated on Z_w if and only if $m_1, \ldots, m_n \ge 0$.

Proof If $m_1, \ldots, m_n \ge 0$ then \mathcal{L} is globally generated being a tensor product of globally generated line bundles. Assume there is a globally generated line bundle $\mathcal{L} = \mathcal{O}_w(m_1, \ldots, m_n)$ with some $m_i < 0$. Since ample tensor globally generated is ample this contradicts Theorem 3.1. \Box

3.2. The divisor basis. The \mathbb{P}^1 -bundle $\pi_w : Z_w \to Z_{w[1]}$ comes with a natural section $\sigma_{w,n} : Z_{w[1]} = Z_{w(n)} \to Z_w$. So the line bundle $\mathcal{O}(Z_{w(n)})$ defined by the divisor $Z_{w(n)}$ has degree one along the fibres of π_w . Inductively this shows that the line bundles $\mathcal{O}_{Z_w}(Z_{w(j)})$, $j = 1, 2, \ldots, n$, form a basis of the Picard group of Z_w . We call this basis the Z-basis. The line bundle $m_1 \mathcal{O}_{Z_w}(Z_{w(1)}) + \cdots + m_n \mathcal{O}_{Z_w}(Z_{w(n)}) \in \text{Pic}(Z_w)$ in the Z-basis is denoted

$$\mathcal{O}_{Z_w}(m_1,\ldots,m_n),$$

where $m_1, \ldots, m_n \in \mathbb{Z}$.

3.3. Effective line bundles. The line bundles $\mathcal{O}(Z_{w(j)})$ are effective. They do not necessarily generate the cone of effective line bundles unless the expression w is reduced as shown by the following example.

Example 3.4. Consider $w = (s_{\alpha}, s_{\alpha})$, where α is a simple reflection. Then the corresponding Bott-Samelson variety Z_w is isomorphic to $P_{\alpha}/B \times P_{\alpha}/B$ by the map $(p_1 : p_2) \mapsto (p_1B, p_1p_2B)$. Under this isomorphism the 2 divisors $Z_{w(1)}$ and $Z_{w(2)}$ corresponds to the diagonal $\Delta_{P_{\alpha}/B}$ and $\{eB\} \times P_{\alpha}/B$. From this we conclude that the effective line bundle corresponding to the divisor $P_{\alpha}/B \times \{eB\}$ is not contained in the cone generated by $\mathcal{O}(Z_{w(1)})$ and $\mathcal{O}(Z_{w(2)})$.

Proposition 3.5. Let $w = (s_1, s_2, \ldots, s_n)$ be a reduced sequence and $\mathcal{L} = \mathcal{O}(\sum_{j=1}^n m_j Z_{w(j)})$ a line bundle on Z_w . Then \mathcal{L} is effective if and only if $m_j \geq 0$ for all j.

Proof. If $m_j \geq 0$ then \mathcal{L} is clearly effective. We are hence left with proving that $m_j \geq 0$ if \mathcal{L} is effective. So assume that \mathcal{L} is effective. Clearly \mathcal{L} is B linearized as Z_w and all $Z_{w(j)}$ are compatible B-spaces. Hence the global sections $\mathcal{L}(Z_w)$ is a non-zero finite dimensional (as Z_w is projective) B-representation. This allows us to pick a B-semiinvariant (i.e. invariant up to constants) global section s of \mathcal{L} . The zero-scheme Z(s) of s is then a B-invariant divisor of Z_w . As w is reduced the morphism

$$\psi: Z_w \to X(s_1 \cdots s_n),$$

is known to be birational. In fact, it is known (essentially by the Bruhat decomposition) that ψ is an isomorphism above the dense Bruhat cell $C(s_1 \cdots s_n)$ of $X(s_1 \cdots s_n)$. This shows that $Z_w \setminus \bigcup_{j=1}^n Z_{w(j)}$ is a dense *B*-orbit. Hence, $Z(s) \subseteq \bigcup_{j=1}^n Z_{w(j)}$ and

$$\mathcal{L} \simeq \mathcal{O}(Z(s)) \simeq \mathcal{O}(\sum_{j=1}^{n} m'_{j} Z_{w(j)}),$$

where m'_j are positive integers. As $\mathcal{O}(Z_{w(j)}), j = 1, 2, ..., n$ is a basis for the Picard group of Z_w , we conclude $m_j = m'_j \ge 0$.

4. FROBENIUS SPLITTING

Let $\pi: X \to \text{Spec}(k)$ be a scheme defined over an algebraically closed field k of positive characteristic p. The absolute Frobenius morphism on X is the identity on point spaces and raising to the p-th power locally on functions. The absolute Frobenius morphism is not a morphism of k-schemes. Let X' be the scheme obtained from X by base change with the absolute Frobenius morphism on Spec(k), i.e., the underlying topological space of X' is that of X with the same structure sheaf \mathcal{O}_X of rings, only the underlying k-algebra structure on $\mathcal{O}_{X'}$ is twisted as $\lambda \odot f = \lambda^{1/p} f$, for $\lambda \in k$ and $f \in \mathcal{O}_{X'}$. Using this description of X', the relative Frobenius morphism $F: X \to X'$ is defined in the same way as the absolute Frobenius morphism and it is a morphism of k-schemes.

4.1. **Definition and results.** Recall that a variety X is called *Frobe*nius split [7] if the homomorphism $\mathcal{O}_{X'} \to F_*\mathcal{O}_X$ of $\mathcal{O}_{X'}$ -modules is split. A homomorphism $\sigma : F_*\mathcal{O}_X \to \mathcal{O}_{X'}$ is a splitting of $\mathcal{O}_{X'} \to F_*\mathcal{O}_X$ (called a *Frobenius splitting*) if and only if $\sigma(1) = 1$.

A Frobenius splitting σ is said to *compatibly split* a subvariety Z of X if $\sigma(\mathcal{I}_Z) \subseteq \mathcal{I}_Z$, where \mathcal{I}_Z is the ideal sheaf of Z in X. In this case, σ induces a Frobenius splitting of Z.

When X is a smooth variety with canonical bundle ω_X , there is a natural isomorphism of $\mathcal{O}_{X'}$ -modules :

$$F_*(\omega_X^{1-p}) \cong Hom_{\mathcal{O}_{X'}}(F_*\mathcal{O}_X, \mathcal{O}_{X'}).$$

In this way global sections of ω_X^{1-p} correspond to homomorphisms $F_*\mathcal{O}_X \to \mathcal{O}_{X'}$. A section of ω_X^{1-p} which, up to a non-zero constant, corresponds to a Frobenius splitting in this way, is called a *splitting section*. One of the first known criteria ([7], Prop. 8) for a smooth projective variety to be Frobenius split was the following

Proposition 4.1. Let X be a smooth projective variety over k of dimension n. Assume that there exists a global section s of the anti canonical bundle ω_X^{-1} , with divisor of zeroes of the form

$$\operatorname{div}(s) = Z_1 + Z_2 + \dots + Z_n + D,$$

satisfying :

- 1. The scheme theoretic intersection $\cap_i Z_i$ is a point $P \in X$.
- 2. D is an effective divisor not containing $P = \bigcap_j Z_j$.

Then s is a splitting section of X which compatibly splits the subvarieties Z_1, Z_2, \ldots, Z_n .

This criterion was taylormade to suit the Bott-Samelson varieties.

Proposition 4.2. Let X be a smooth variety over k and let s be a global section of the anti-canonical bundle ω_X^{-1} such that s^{p-1} is a Frobenius splitting section of X. Write the zero divisor div(s) of s as

$$\operatorname{div}(s) = \sum_{j=1}^{r} Z_j,$$

with Z_j , j = 1, ..., m, being irreducible subvarieties of X of codimension 1. Then for any choice of integers $0 \le m_j < p$, j = 1, ..., r, and any line bundle \mathcal{L} on X, we have, for all integers i, an embedding of cohomology

$$\mathrm{H}^{i}(X,\mathcal{L}) \hookrightarrow \mathrm{H}^{i}(X,\mathcal{L}^{p} \otimes \mathcal{O}(\sum_{j=1}^{r} m_{j}Z_{j})).$$

This result is well known, but we have not been able to find an explicit reference. We therefore include a proof.

Proof. Let $\phi: F_*\mathcal{O}_X \to F_*\omega_X^{1-p}$ denote the map induced by the global section s^{p-1} of ω_X^{1-p} . Composing this map with the twisted Cartier operator $C: F_*\omega_X^{1-p} \to \mathcal{O}_{X'}$ we get, by the identifications above, the splitting section $\psi: F_*\mathcal{O}_X \to \mathcal{O}_{X'}$ defined by s^{p-1} . In particular, the morphism $\mathcal{O}_{X'} \to F_*\omega_X^{1-p}$ defined by s^{p-1} is split. As a consequence, if $\omega^{1-p} \simeq \mathcal{M} \otimes \mathcal{M}'$ and $s^{p-1} = t \otimes t'$ with t and t' global sections of line bundles \mathcal{M} and \mathcal{M}' , then the morphism $\mathcal{O}_{X'} \to F_*\mathcal{M}$ defined by t is split. Tensoring with the line bundle \mathcal{L}' on X' corresponding to \mathcal{L} we find, using the projection formula and $F^*\mathcal{L}' \simeq \mathcal{L}^p$, that the morphism $\mathcal{L}' \to F_*(\mathcal{L}^p \otimes \mathcal{M})$ defined by t is split. Now use this on $\mathcal{M} = \mathcal{O}(\sum_{j=1}^r m_i Z_i)$.

As an immediate consequence of Proposition 4.2 we find

Corollary 4.3. Let X be a Frobenius split projective variety and \mathcal{L} an ample line bundle on X. Then, for each integer j > 0,

$$\mathrm{H}^{j}(X,\mathcal{L})=0.$$

We also have the following result which will be important later.

Proposition 4.4. Let X be a variety which is Frobenius split compatibly with subvarieties Z_1, \ldots, Z_n of codimension 1, and let a_1, \ldots, a_n be a collection of positive integers. Let $1 \leq r \leq n$ be an integer. Then there exists an integer M such that for each line bundle \mathcal{L} , each integer i and each integer $m \geq M$ we have an embedding

$$\mathrm{H}^{i}(X, \mathcal{L} \otimes \mathcal{O}(-\sum_{j=1}^{r} Z_{j})) \hookrightarrow \mathrm{H}^{i}(X, \mathcal{L}^{p^{m}} \otimes \mathcal{O}(-\sum_{j=1}^{r} (a_{j}+1)Z_{j}+\sum_{j=r+1}^{n} a_{j}Z_{j})).$$

Proof. Notice first of all that if $a_j = 0$ for all j = 1, ..., n, then the result follows by successive use of Proposition 4.2 (with $m_j = p - 1$, j = 1..., r). Assume hence that not all a_j are zero and write $a_j = pa'_j + a''_j$ with $a'_j \ge 0$ and $0 \le a''_j < p$. By induction we may assume that there exists an integer M' and an embedding

$$\mathrm{H}^{i}(X,\mathcal{L}\otimes\mathcal{O}(-\sum_{j=1}^{r}Z_{j}))\hookrightarrow\mathrm{H}^{i}(X,\mathcal{L}^{p^{m}}\otimes\mathcal{O}(-\sum_{j=1}^{r}(a_{j}'+1)Z_{j}+\sum_{j=r+1}^{n}a_{j}'Z_{j})).$$

for each $m \ge M'$. Using Proposition 4.2, with values $m_j = p - 1 - a''_j$ when $j = 1, \ldots, t$ and $m_j = a''_j$ when $j = t + 1, \ldots, n$, we furthermore find an embedding of the right hand side into

$$\mathrm{H}^{i}(X, \mathcal{L}^{p^{m+1}} \otimes \mathcal{O}(-\sum_{j=1}^{r} (a_{j}+1)Z_{j} + \sum_{j=r+1}^{n} a_{j}Z_{j}))$$

The claim (with M = M' + 1) now follows by composing the two embeddings above.

5. FROBENIUS SPLITTING OF BOTT-SAMELSON VARIETIES

Let us now return to the situation of a Bott-Samelson variety Z_w associated to a sequence w of simple reflections. Recall the following lemma ([8], Proposition 2).

Lemma 5.1. The anti-canonical bundle on Z_w is isomorphic to the line bundle

$$\omega_{Z_w}^{-1} = \mathcal{O}(\sum_{j=1}^n Z_{w(j)}) \otimes \mathcal{L}_w(\rho)$$

The divisors $Z_{w(j)}$, j = 1, 2, ..., n, intersect transversally and as $\mathcal{L}_w(\rho)$ is globally generated, and hence base point free, Proposition 4.1 and Lemma 5.1 implies

Theorem 5.2 ([7], Thm. 1). The Bott-Samelson variety Z_w is Frobenius split compatibly with the divisors $Z_{w(j)}$, j = 1, 2, ..., n.

The following proposition is a consequence of Proposition 4.2.

Proposition 5.3. Let \mathcal{L} be a line bundle on Z_w . Then for any choice of integers $0 \leq m_j < p, j = 1, 2..., n$ and $0 \leq m < p$, we have, for each integer *i*, an embedding of cohomology

$$\mathrm{H}^{i}(X,\mathcal{L}) \hookrightarrow \mathrm{H}^{i}(X,\mathcal{L}^{p}\otimes \mathcal{O}(\sum_{j=1}^{n}m_{j}Z_{w(j)}))\otimes \mathcal{L}_{w}(m\rho)).$$

Proof. Let s_i be the global section of $\mathcal{O}(Z_i)$ with divisor of zeroes equal to Z_i , and let t be a global section of $\mathcal{L}_w(\rho)$ with divisor of zeroes $\sum_j D_j$ with D_j irreducible divisors not containing the point $\cap Z_i$. As above $s = t \cdot \prod s_i$ is a global section of $\omega_{Z_w}^{-1}$ such that s^{p-1} is a Frobenius splitting section of Z_w . By Proposition 4.2 applied to s, with coefficients m_i corresponding to Z_i and m corresponding to D_j , the result now follows by identifying $\mathcal{L}_w(\rho)$ with the line bundle $\mathcal{O}(\sum_i D_j)$.

6. Cohomology vanishing of globally generated line bundles

In this section we will prove that the higher cohomology of globally generated line bundles on Bott-Samelson varieties vanishes.

Lemma 6.1. There exists integers $m_1, \ldots, m_n > 0$ such that the line bundle $\mathcal{O}_{Z_w}(m_1, \ldots, m_n)$ is ample.

Proof. Inductively we know there exists positive integers $m_1 \ldots, m_{n-1}$ such that $\mathcal{L} = \mathcal{O}_{Z_{w[1]}}(m_1, \ldots, m_{n-1})$ is ample on $Z_{w[1]}$. As $\mathcal{O}(Z_{w(n)})$ has degree one along the fibers of the \mathbb{P}^1 -bundle $\sigma_w : Z_w \to Z_{w[1]}$ this means that $\pi_w^*(\mathcal{L}^m) \otimes \mathcal{O}(Z_{w(n)})$ is ample for m sufficiently large. \Box

Theorem 6.2. Let \mathcal{L} be a globally generated line bundle on a Bott-Samelson variety Z_w . Then

$$\mathrm{H}^{i}(X,\mathcal{L}) = 0, \ i > 0.$$

Proof. Choose m_1, \ldots, m_n according to Lemma 6.1 such that the line bundle $\mathcal{O}(\sum_{j=1}^n m_j Z_{w(j)})$ is ample. By Proposition 4.4 there exists an embedding

$$\mathrm{H}^{i}(Z_{w},\mathcal{L}) \hookrightarrow \mathrm{H}^{i}(Z_{w},\mathcal{L}^{p^{m}} \otimes \mathcal{O}(\sum_{j=1}^{n} m_{j}Z_{w(j)})),$$

for some m. Now the result follows from Lemma 4.3 and the fact that a tensorproduct of an ample line bundle with a globally generated line bundle is ample.

7. Kumar vanishing

In his proof [5] of the Demazure character formula in the Kac-Moody case S. Kumar in a crucial way uses the following cohomological vanishing result. **Theorem 7.1.** Let $w = (s_1, \ldots, s_n)$ be an ordered collection of simple reflections and let Z_w be the associated Bott-Samelson variety over a field of characteristic zero. Assume that the subexpression (s_t, \cdots, s_r) of w is reduced for integers $1 \le t \le r \le n$. Then

$$\mathrm{H}^{i}(Z_{w},\mathcal{L}_{w}(\lambda)\otimes\mathcal{O}(-\sum_{j=t}^{\prime}Z_{w(j)}))=0,\ i>0,$$

whenever λ is a dominant weight.

Using Frobenius splitting techniques one may extend this result to arbitrary globally generated line bundles and positive characteristic (notice $\mathcal{L}_w(\lambda)$ is globally generated when λ is a dominant weight).

Lemma 7.2. The line bundle $\mathcal{L} = \mathcal{L}_w(\rho)^m \otimes \mathcal{O}(Z_{w(n)}) \otimes \pi_w^*(\mathcal{L}_{w[1]}(-\rho))$ is globally generated when m is sufficiently large.

Proof. Using Lemma 5.1 we may express the relative anti-canonical sheaf of the \mathbb{P}^1 -bundle $\pi_w : Z_w \to Z_{w[1]}$ as

$$\omega_{Z_w/Z_{w[1]}}^{-1} = \omega_{Z_w}^{-1} \otimes \pi_w^*(\omega_{Z_{w[1]}}) = \mathcal{L}_w(\rho) \otimes \mathcal{O}(Z_{w(n)}) \otimes \pi_w^*(\mathcal{L}_{w[1]}(-\rho))$$

Suppose that s_n is a reflection in the simple root α . Consider then the fiber product diagram

$$Z_w \xrightarrow{\pi} G/B$$

$$\downarrow_{\pi_w} \qquad \downarrow$$

$$Z_{w[1]} \xrightarrow{} G/P_\alpha$$

where the lower horizontal morphism is the map induced by the product map $P_{w[1]} \to G$ and the morphism $G/B \to G/P_{\alpha}$ is the natural projection map. From this we conclude that $\omega_{Z_w/Z_{w[1]}}^{-1}$ is the pull back through π of the anti-canonical sheaf of the \mathbb{P}^1 -bundle $G/B \to G/P_{\alpha}$. The latter is isomorphic to $\mathcal{L}_{G/B}(\alpha)$, and hence $\omega_{Z_w/Z_{w[1]}}^{-1} \simeq \mathcal{L}_w(\alpha)$. In particular, $\mathcal{L} \simeq \mathcal{L}_w((m-1)\rho + \alpha)$. Using that $(m-1)\rho + \alpha$ is dominant for m sufficiently large, the result now follows.

Lemma 7.3. Let $w = (s_1, \ldots, s_n)$ be an ordered collection of simple reflections and Z_w the associated Bott-Samelson variety. Assume that the subexpression (s_t, \cdots, s_r) of w is reduced for integers $1 \le t \le r \le n$. Then there exists integers m_1, \ldots, m_n and $m \ge 0$ satisfying all of the following proporties

- 1. $m_j \ge 0, j \notin \{t, \dots, r\}.$
- 2. $m_j \leq 0, j \in \{t, \ldots, r\}$ and $m_r = -1$. 3. The line bundle $\mathcal{O}(\sum_{j=1}^n m_j Z_{w(j)}) \otimes \mathcal{L}_w(\rho)^m$ is globally generated.

Proof. Assume first of all that r < n. By induction (in n) we find integers m_1, \ldots, m_{n-1} and $m \ge 0$ satisfying the equivalent proporties for $Z_{w[1]}$. In particular, the line bundle

$$\mathcal{O}(\sum_{j=1}^{n-1}m_jZ_{w(j)})\otimes \pi_w^*(\mathcal{L}_{w[1]}(\rho)^m),$$

is globally generated. Now choose a positive integer m_n such that the line bundle $\mathcal{L} = \mathcal{L}_w(\rho)^{m_n} \otimes \mathcal{O}(Z_{w(n)}) \otimes \pi_w^*(\mathcal{L}_{w[1]}(-\rho))$ is globally generated (Lemma 7.2). Then the line bundle

$$\mathcal{O}(\sum_{j=1}^{n-1} m_j Z_{w(j)}) \otimes \mathcal{O}(m_n Z_{w(n)}) \otimes \mathcal{L}_w(\rho)^{m_n m},$$

is globally generated. We are left with the case r = n.

Write $\mathcal{O}_{w[1]}(1)$ in the Z-basis as

$$\mathcal{O}_{w[1]}(1) = \mathcal{O}_{Z_w}(a_1, \ldots, a_{n-1}, 1).$$

By Proposition 3.5 we know that a_t, \ldots, a_{n-1} are positive integers. Now

$$\mathcal{L}_w(\rho) \otimes \mathcal{O}(-Z_{w(n)}) \otimes \mathcal{O}(\sum_{j=t}^{n-1} -a_j Z_{w(j)}) = \mathcal{L} \otimes \mathcal{O}(\sum_{j=1}^{t-1} a_j Z_{w(j)}),$$

where $\mathcal{L} = \mathcal{L}_w(\rho) \otimes \mathcal{O}_{w[1]}(-1)$ is a globally generated line bundle. It remains to find positive integers m_1, \ldots, m_{t-1} such that the line bundle $\mathcal{O}(\sum_{j=1}^{t-1} (m_j + a_j) Z_{w(j)})$ is globally generated. That this is possible follows from Lemma 6.1.

Theorem 7.4. Let $w = (s_1, \ldots, s_n)$ be an ordered collection of simple reflections and Z_w the associated Bott-Samelson. Assume that the subexpression (s_t, \cdots, s_r) of w is reduced for integers $1 \le t \le r \le n$. Then

$$\mathrm{H}^{i}(Z_{w},\mathcal{L}\otimes\mathcal{O}(-\sum_{j=t}^{r}Z_{w(j)}))=0,\ i>0,$$

whenever \mathcal{L} is a globally generated line bundle.

Proof. Choose integers m_1, \ldots, m_n and $m \ge 0$ according to the conditions in Lemma 7.3. By successive use of Proposition 5.3 we may assume that $\mathcal{L} \otimes \mathcal{L}_w(-\rho)^m$ is globally generated. By Proposition 4.4 (with values $a_j = |m_j|, j \ne r$ and $a_r = 0$) the cohomology group $\mathrm{H}^i(Z_w, \mathcal{L} \otimes \mathcal{O}(-\sum_{j=t}^r Z_{w(j)}))$ embeds into (for some m'):

$$\mathrm{H}^{i}(Z_{w},\mathcal{L}^{p^{m'}}\otimes\mathcal{O}(\sum_{j=1}^{n}m_{j}Z_{w(j)}-\sum_{j=t}^{r-1}Z_{w(j)})),$$

which we may rewrite as

$$\mathrm{H}^{i}(Z_{w},\mathcal{L}'\otimes\mathcal{O}(-\sum_{j=t}^{r-1}Z_{w(j)})),$$

where $\mathcal{L}' = \mathcal{L}^{p^{m'}} \otimes \mathcal{O}(\sum_{j=1}^{n} m_j Z_{w(j)})$ is globally generated by choice of m_1, \ldots, m_n . The claim now follows by induction in r - t.

As already noted by S. Kumar it is crucial that the subexpression (s_t, \dots, s_r) is reduced.

References

- R. Bott and Samelson, H., Application of the theory of Morse to symmetric spaces, Amer. J. Math. 80 (1958), 964-1029
- M. Demazure, Désingularisation des variétés de Schubert généralisées Ann. Sci. Ec. Norm. Sup. 7 (1974), 53-88
- [3] H. C. Hansen, On cycles on flag manifolds, Math. Scand. 33 (1973), 269-274
- [4] H. C. Hansen Cykler på flagmangfoldigheder, speciale, Aarhus Universitet (1972)
- [5] Kumar, S., Demazure character formula in arbitrary Kac-Moody setting, Invent. math. 89 (1987), 395-423
- [6] Lakshmibai, V., Littelmann P. and Magyar P., Standard monomial theory for Bott-Samelson varieties (preprint).
- [7] Mehta, V. and Ramanathan, A., Frobenius splitting and cohomology vanishing for Schubert varieties, Annals of Math. 122 (1985), 27-40
- [8] Ramanathan, A. Schubert varieties are arithmetically Cohen Macaulay, Invent. math. 80 (1985), 283-294

INSTITUT FOR MATEMATISKE FAG, AARHUS UNIVERSITET, NY MUNKEGADE, DK-8000 ÅRHUS C, DENMARK.

E-mail address: niels@imf.au.dk , funch@imf.au.dk