UNIVERSITY OF A ARHUS

Department of Mathematics

ISSN: 1397-4076

LINE BUNDLES ON Bott-SAMELSON VARIETIES

By Niels Lauritzen and Jesper Funch Thomsen

LINE BUNDLES ON BOTT-SAMELSON VARIETIES

NIELS LAURITZEN, JESPER FUNCH THOMSEN

1. Introduction

Let G be a semisimple, simply connected linear algebraic group over an algebraically closed field k and B be a Borel subgroup in G. If $w=$ $\left(P_{1}, \ldots, P_{n}\right)$ is a sequence of minimal parabolic subgroups containing B, we may form the quotient $Z_{w}=P_{w} / B^{n}$, where $P_{w}=P_{1} \times \cdots \times P_{n}$ and B^{n} acts on P_{w} from the right via

$$
\left(p_{1}, \ldots, p_{n}\right)\left(b_{1}, \ldots, b_{n}\right)=\left(p_{1} b_{1}, b_{1}^{-1} p_{2} b_{2}, b_{2}^{-1} p_{3} b_{3}, \ldots, b_{n-1}^{-1} p_{n} b_{n}\right) .
$$

The quotient Z_{w} is inductively a sequence of \mathbb{P}^{1}-bundles with natural sections starting with the \mathbb{P}^{1}-bundle P_{1} / B (over a point). The product map $P_{w} \rightarrow G$ induces a proper morphism $\varphi_{w}: Z_{w} \rightarrow G / B$ whose image is a Schubert variety in G / B. For "reduced" sequences w the morphism φ_{w} is birational and equal to the celebrated Demazure desingularization of the Schubert variety $\varphi_{w}\left(Z_{w}\right)$. In general we call Z_{w} the Bott-Samelson variety associated with w. The construction of Z_{w} originates in the papers [1][2][3] of Bott-Samelson, Demazure and Hansen. See also the master's thesis (speciale) [4] by Hansen.

We characterize the globally generated, ample and very ample line bundles on Z_{w}. The generators of the ample cone are naturally defined $\mathcal{O}(1)$-bundles for successive \mathbb{P}^{1}-bundles. They form a basis of Pic $\left(Z_{w}\right)$. Proving that they account for all ample line bundles originally lead us to some quite involved computer calculations in the Chow ring of Z_{w}. It later turned out that the key point is Lemma 2.1.

Using Frobenius splitting [7] and our description of globally generated line bundles we prove the vanishing theorem

$$
\mathrm{H}^{i}\left(Z_{w}, \mathcal{L}(-D)\right)=0, i>0
$$

where \mathcal{L} is any globally generated line bundle on Z_{w} and D a subdivisor of the boundary of Z_{w} corresponding to a reduced subexpression of w (cf. Theorem 7.4 for a precise description).

A special case $(D=0)$ of this vanishing theorem has been proved in [6] (with no details on the involved line bundles). The vanishing theorem above is a generalization of the crucial vanishing theorem for pull backs of globally generated line bundles on G / B in Kumar's proof [5] of the Borel-Bott-Weil theorem in the Kac-Moody case. Kumar relied heavily on the Grauert-Riemenschneider vanishing theorem available only in characteristic zero. Our approach shows that one may give
a characteristic free generalization using only the theory of Frobenius splitting.

2. Notation

Fix a semisimple algebraic group G over an algebraically closed field k and let B be a Borel subgroup in G containing the maximal torus T. A simple reflection s (wrt. B) in the Weyl group $W=N_{G}(T) / T$ determines the minimal parabolic subgroup $P_{s}=B s B \cup B \supseteq B$. We let w denote a sequence $\left(s_{1}, s_{2}, \cdots, s_{n}\right)$ of simple reflections, $w[j]$ the truncated sequence $\left(s_{1}, \ldots, s_{n-j}\right), P_{w}=P_{1} \times \cdots \times P_{n}$ and $Z_{w}=P_{w} / B^{n}$ the associated Bott-Samelson variety, where B^{n} acts from the right on P_{w} as

$$
\left(p_{1}, \ldots, p_{n}\right)\left(b_{1}, \ldots, b_{n}\right)=\left(p_{1} b_{1}, b_{1}^{-1} p_{2} b_{2}, b_{2}^{-1} p_{3} b_{3}, \ldots, b_{n-1}^{-1} p_{n} b_{n}\right)
$$

By convention $Z_{w[n]}$ will denote a 1-point space. We may also write Z_{w} as

$$
P_{1} \times{ }^{B} P_{2} \times{ }^{B} \cdots \times{ }^{B} P_{n} / B
$$

where $X \times^{B} Y$ is the quotient $X \times Y / B$ with B acting as $(x, y) b=$ $\left(x b, b^{-1} y\right)$. This shows that Z_{w} comes as the sequence

$$
Z_{w} \rightarrow Z_{w[1]} \rightarrow \cdots \rightarrow Z_{w[n-2]}=P_{1} \times{ }^{B} P_{2} / B \rightarrow Z_{w[n-1]}=P_{1} / B
$$

of successive \mathbb{P}^{1}-fibrations. In general we let $\pi_{w[j]}$ denote the natural morphism

$$
Z_{w} \rightarrow Z_{w[j]}
$$

in the sequence of \mathbb{P}^{1}-bundles above and use π_{w} to denote the morphism $\pi_{w[1]}: Z_{w} \rightarrow Z_{w[1]}$. Let $w(j)=\left(s_{1}, \cdots, \widehat{s_{j}}, \cdots, s_{n}\right)$. The natural embedding $P_{w(j)} \rightarrow P_{w}$ induces a closed embedding $\sigma_{w, j}: Z_{w(j)} \rightarrow Z_{w}$ which makes $Z_{w(j)}$ into a divisor in Z_{w}. The divisor $\partial Z_{w}=Z_{w(1)} \cup \cdots \cup$ $Z_{w(n)}$ in Z_{w} has normal crossing. When $A \subseteq\{1,2, \ldots, n\}$ we define

$$
Z_{w(A)}=\cap_{j \in A} Z_{w(j)}
$$

and let $\sigma_{w, A}: Z_{w, A} \rightarrow Z_{w}$ denote the closed embedding given by $\sigma_{w, j}$ for $j \in A$. Finally we let $\pi: Z_{w} \rightarrow G / B$ denote the natural proper morphism coming from the product map $P_{w} \rightarrow G$.
2.1. Induced bundles on Z_{w}. We let $\mathcal{L}_{w}(V)$ denote the locally free sheaf of sections of the associated vector bundle $P_{w} \times{ }^{B^{n}} V$ on Z_{w}, where V is a finite dimensional B^{n}-representation. We view a B representation V as a B^{n}-representation by letting B^{n} act on $v \in V$ as $\left(b_{1}, b_{2}, \cdots, b_{n}\right) \cdot v=b_{n} \cdot v$. With this convention we get for a B-character $\lambda \in X^{*}(B)$ that $\mathcal{L}_{w}(\lambda)=\mathcal{L}_{w}(0, \cdots, 0, \lambda)$.
2.2. Induced bundles on G / B. Let V be a finite dimensional B representation. We let $\mathcal{L}_{G / B}(V)$ denote the locally free sheaf on G / B associated with V. This is the sheaf of sections of the vector bundle $G \times{ }^{B} V \rightarrow G / B,(g, v) \mapsto g B$. When V has dimension 1, associated to a B-character λ, the sheaf $\mathcal{L}_{G / B}(\lambda)=\mathcal{L}_{G / B}(V)$ is a line bundle. This gives a bijection between B-characters and line bundles on G / B. It is well known, that $\mathcal{L}_{G / B}(\lambda)$ is globally generated (resp. ample) exactly when λ is dominant (resp. regular) wrt. the Borel subgroup opposite to B.
$\left\langle\lambda, \alpha^{\vee}\right\rangle \geq 0\left(\right.$ resp. $\left.\left\langle\lambda, \alpha^{\vee}\right\rangle>0\right)$ for all simple roots $\alpha \in S$. The pull back of $\mathcal{L}_{G / B}(V)$ to Z_{w} under the morphism $\pi: Z_{w} \rightarrow G / B$ is given by the formula

$$
\pi^{*}\left(\mathcal{L}_{G / B}(V)\right) \simeq \mathcal{L}_{Z_{w}}(V)
$$

Lemma 2.1. Let $1 \leq i \leq n$ and $0 \leq j \leq n-1$ be integers and let λ denote a B-character. Then

$$
\sigma_{u, i}^{*} \pi_{w[j]}^{*} \mathcal{L}_{Z_{w[j]}}(\lambda) \simeq \begin{cases}\pi_{w(i)[j-1]}^{*} \mathcal{L}_{w(i)[j-1]}(\lambda) & \text { if } i>n-j, \\ \pi_{w(i)[j]}^{*} \mathcal{L}_{w(i)[j]}(\lambda) & \text { if } i \leq n-j\end{cases}
$$

Proof. When $i>n-j$ the claim follows by the commutativity of the diagram

Similarly, the case $i \leq n-j$ follows from the commutative diagram

3. Line bundles on Z_{w}

The Picard group $\operatorname{Pic}\left(Z_{w}\right)$ is a free abelian group of rank n. This follows easily by induction using the \mathbb{P}^{1}-fibration $\pi_{w}: Z_{w} \rightarrow Z_{w[1]}$. In fact we have a decomposition $\operatorname{Pic}\left(Z_{w}\right)=\operatorname{Pic}\left(Z_{w[1]}\right) \oplus \mathbb{Z} \mathcal{L}$, where \mathcal{L} is any line bundle on Z_{w} with degree one along the fibers of π_{w}.
3.1. The $\mathcal{O}(1)$-basis. Recall our notation $w=\left(s_{1}, \ldots, s_{n}\right)$ for a sequence of simple reflections defining Z_{w}. Suppose that s_{n} is a reflection in the simple root α. Then we let

$$
\mathcal{O}_{w}(1)=\mathcal{L}_{w}\left(\omega_{\alpha}\right),
$$

where ω_{α} denotes the fundamental dominant weight corresponding to α. Then $\mathcal{O}_{w}(1)$ has degree one along the fibres of π_{w}. It is globally generated since it is the pull back of the globally generated line bundle $\mathcal{L}_{G / B}\left(\omega_{\alpha}\right)$ on G / B. This gives inductively a basis for $\operatorname{Pic}\left(Z_{w}\right)$ which we call the $\mathcal{O}(1)$-basis. Thus

$$
\operatorname{Pic}\left(Z_{w}\right)=\mathbb{Z} \mathcal{O}_{w}(1) \oplus \mathbb{Z} \mathcal{O}_{w[1]}(1) \oplus \cdots \oplus \mathbb{Z} \mathcal{O}_{w[n-1]}(1)
$$

where we write $\mathcal{O}_{w[j]}(1)$ instead of the pull back $\pi_{w[j]}^{*} \mathcal{O}_{w[j]}(1)$. The line bundle $m_{1} \mathcal{O}_{w}(1)+\cdots+m_{n} \mathcal{O}_{w[n-1]}(1) \in \operatorname{Pic}\left(Z_{w}\right)$ is denoted

$$
\mathcal{O}_{w}\left(m_{1}, \ldots, m_{n}\right),
$$

where $m_{1}, \ldots, m_{n} \in \mathbb{Z}$.
Theorem 3.1. A line bundle $\mathcal{L}=\mathcal{O}_{w}\left(m_{1}, \ldots, m_{n}\right)$ is very ample on Z_{w} if and only if $m_{1}, \ldots, m_{n}>0$.

Proof If $n=1$ it is well known that \mathcal{L} is ample and very ample if and only if $m_{1}>0$. We proceed using induction on n. In general the \mathbb{P}^{1}-bundle $\pi_{w}: Z_{w} \rightarrow Z_{w[1]}$ may by identified with the projective bundle $\mathbb{P}(V) \rightarrow Z_{w[1]}$, where V is the rank two bundle $\mathcal{L}_{w[1]}\left(\mathrm{H}^{0}\left(P_{\alpha} / B, \omega_{\alpha}\right)\right)$ on $Z_{w[1]}$ and $\mathcal{O}_{\mathbb{P}(V)}(1) \cong \mathcal{O}_{w}(1)$. Since V is the pull back of a globally generated vector bundle on G / B it is globally generated. This implies that we have a commutative diagram (for some $N \in \mathbb{N}$)

where φ is a closed embedding. Since $\varphi^{*}\left(\mathcal{O}_{\mathbb{P}^{N}}(1) \times \mathcal{O}_{Z_{w}}\right) \cong \mathcal{O}_{\mathbb{P}(V)}(1)$ it follows that $\mathcal{O}_{\mathbb{P}(V)}(n) \otimes \pi_{w}^{*} \mathcal{L}^{\prime}$ is very ample if $n>0$ and \mathcal{L}^{\prime} is very ample on $Z_{u[1]}$. By induction \mathcal{L} is very ample if $m_{1}, \ldots, m_{n}>0$.

Suppose on the other hand that \mathcal{L} is very ample. By induction we get that $m_{2}, \ldots, m_{n}>0$, since

$$
\sigma_{w, 1}^{*} \mathcal{L} \simeq \mathcal{O}_{w(1)}\left(m_{2}, \ldots, m_{n}\right)
$$

by Lemma 2.1. Furthermore, Lemma 2.1 also gives

$$
\sigma_{w, 2}^{*} \mathcal{L} \simeq \mathcal{O}_{w(2)}\left(m_{1}, m_{3}, \ldots, m_{n}\right) \otimes \pi_{w(2)[n-2]}^{*}\left(\mathcal{L}_{w(2)[n-2]}\left(\omega_{\beta}\right)\right)
$$

where β is the simple root corresponding to s_{2}. Suppose s_{1} is a reflection in the simple root α. Using that $w(2)[n-2]=\left(s_{1}\right)$ and hence $Z_{w(2)[n-2]}=P_{\alpha} / B \simeq \mathbb{P}^{1}$, we identify $\mathcal{L}_{w(2)[n-2]}\left(\omega_{\beta}\right)$ with $\mathcal{O}_{\mathbb{P}^{1}}\left(\left\langle\omega_{\beta}, \alpha^{\vee}\right\rangle\right)$. When $s_{1} \neq s_{2}$ this means that the line bundle $\pi_{w(2)[n-2]}^{*}\left(\mathcal{L}_{w(2)[n-2]}\left(\omega_{\beta}\right)\right)$ is trivial, and $m_{1}>0$ by induction.

If $s_{1}=s_{2}$ and s_{1} is a reflection in the simple root α, then

$$
Z_{w} \cong P_{\alpha} / B \times Z_{w(1)} \simeq \mathbb{P}^{1} \times Z_{w(1)} .
$$

Under this isomorphism \mathcal{L} identifies with $\mathcal{O}_{\mathbb{P}^{1}}\left(m_{1}\right) \times \mathcal{L}_{w(1)}\left(m_{2}, \ldots, m_{n}\right)$. This proves that $m_{1}>0$.

We obtain the following two corollaries as immediate consequences.
Corollary 3.2. Ample line bundles on Z_{w} are very ample.
Corollary 3.3. A line bundle $\mathcal{L}=\mathcal{O}_{w}\left(m_{1}, \ldots, m_{n}\right)$ is globally generated on Z_{w} if and only if $m_{1}, \ldots, m_{n} \geq 0$.

Proof If $m_{1}, \ldots, m_{n} \geq 0$ then \mathcal{L} is globally generated being a tensor product of globally generated line bundles. Assume there is a globally generated line bundle $\mathcal{L}=\mathcal{O}_{w}\left(m_{1}, \ldots, m_{n}\right)$ with some $m_{i}<0$. Since ample tensor globally generated is ample this contradicts Theorem 3.1.
3.2. The divisor basis. The \mathbb{P}^{1}-bundle $\pi_{w}: Z_{w} \rightarrow Z_{w[1]}$ comes with a natural section $\sigma_{w, n}: Z_{w[1]}=Z_{w(n)} \rightarrow Z_{w}$. So the line bundle $\mathcal{O}\left(Z_{w(n)}\right)$ defined by the divisor $Z_{w(n)}$ has degree one along the fibres of π_{w}. Inductively this shows that the line bundles $\mathcal{O}_{Z_{w}}\left(Z_{w(j)}\right), j=1,2, \ldots, n$, form a basis of the Picard group of Z_{w}. We call this basis the Z-basis. The line bundle $m_{1} \mathcal{O}_{Z_{w}}\left(Z_{w(1)}\right)+\cdots+m_{n} \mathcal{O}_{Z_{w}}\left(Z_{w(n)}\right) \in \operatorname{Pic}\left(Z_{w}\right)$ in the Z-basis is denoted

$$
\mathcal{O}_{Z_{w}}\left(m_{1}, \ldots, m_{n}\right),
$$

where $m_{1}, \ldots, m_{n} \in \mathbb{Z}$.
3.3. Effective line bundles. The line bundles $\mathcal{O}\left(Z_{w(j)}\right)$ are effective. They do not necessarily generate the cone of effective line bundles unless the expression w is reduced as shown by the following example.

Example 3.4. Consider $w=\left(s_{\alpha}, s_{\alpha}\right)$, where α is a simple reflection. Then the corresponding Bott-Samelson variety Z_{w} is isomorphic to $P_{\alpha} / B \times P_{\alpha} / B$ by the map $\left(p_{1}: p_{2}\right) \mapsto\left(p_{1} B, p_{1} p_{2} B\right)$. Under this isomorphism the 2 divisors $Z_{w(1)}$ and $Z_{w(2)}$ corresponds to the diagonal $\Delta_{P_{\alpha} / B}$ and $\{e B\} \times P_{\alpha} / B$. From this we conclude that the effective line bundle corresponding to the divisor $P_{\alpha} / B \times\{e B\}$ is not contained in the cone generated by $\mathcal{O}\left(Z_{w(1)}\right)$ and $\mathcal{O}\left(Z_{w(2)}\right)$.

Proposition 3.5. Let $w=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ be a reduced sequence and $\mathcal{L}=\mathcal{O}\left(\sum_{j=1}^{n} m_{j} Z_{w(j)}\right)$ a line bundle on Z_{w}. Then \mathcal{L} is effective if and only if $m_{j} \geq 0$ for all j.

Proof. If $m_{j} \geq 0$ then \mathcal{L} is clearly effective. We are hence left with proving that $m_{j} \geq 0$ if \mathcal{L} is effective. So assume that \mathcal{L} is effective. Clearly \mathcal{L} is B linearized as Z_{w} and all $Z_{w(j)}$ are compatible B-spaces. Hence the global sections $\mathcal{L}\left(Z_{w}\right)$ is a non-zero finite dimensional (as Z_{w} is projective) B-representation. This allows us to pick a B-semiinvariant (i.e. invariant up to constants) global section s of \mathcal{L}. The zero-scheme
$Z(s)$ of s is then a B-invariant divisor of Z_{w}. As w is reduced the morphism

$$
\psi: Z_{w} \rightarrow X\left(s_{1} \cdots s_{n}\right)
$$

is known to be birational. In fact, it is known (essentially by the Bruhat decomposition) that ψ is an isomorphism above the dense Bruhat cell $C\left(s_{1} \cdots s_{n}\right)$ of $X\left(s_{1} \cdots s_{n}\right)$. This shows that $Z_{w} \backslash \cup_{j=1}^{n} Z_{w(j)}$ is a dense B-orbit. Hence, $Z(s) \subseteq \cup_{j=1}^{n} Z_{w(j)}$ and

$$
\mathcal{L} \simeq \mathcal{O}(Z(s)) \simeq \mathcal{O}\left(\sum_{j=1}^{n} m_{j}^{\prime} Z_{w(j)}\right)
$$

where m_{j}^{\prime} are positive integers. As $\mathcal{O}\left(Z_{w(j)}\right), j=1,2, \ldots, n$ is a basis for the Picard group of Z_{w}, we conclude $m_{j}=m_{j}^{\prime} \geq 0$.

4. Frobenius splitting

Let $\pi: X \rightarrow \operatorname{Spec}(k)$ be a scheme defined over an algebraically closed field k of positive characteristic p. The absolute Frobenius morphism on X is the identity on point spaces and raising to the p-th power locally on functions. The absolute Frobenius morphism is not a morphism of k-schemes. Let X^{\prime} be the scheme obtained from X by base change with the absolute Frobenius morphism on $\operatorname{Spec}(k)$, i.e., the underlying topological space of X^{\prime} is that of X with the same structure sheaf \mathcal{O}_{X} of rings, only the underlying k-algebra structure on \mathcal{O}_{X}, is twisted as $\lambda \odot f=\lambda^{1 / p} f$, for $\lambda \in k$ and $f \in \mathcal{O}_{X^{\prime}}$. Using this description of X^{\prime}, the relative Frobenius morphism $F: X \rightarrow X^{\prime}$ is defined in the same way as the absolute Frobenius morphism and it is a morphism of k-schemes.
4.1. Definition and results. Recall that a variety X is called Frobenius split [7] if the homomorphism $\mathcal{O}_{X^{\prime}} \rightarrow F_{*} \mathcal{O}_{X}$ of $\mathcal{O}_{X^{\prime}}$-modules is split. A homomorphism $\sigma: F_{*} \mathcal{O}_{X} \rightarrow \mathcal{O}_{X^{\prime}}$ is a splitting of $\mathcal{O}_{X^{\prime}} \rightarrow F_{*} \mathcal{O}_{X}$ (called a Frobenius splitting) if and only if $\sigma(1)=1$.

A Frobenius splitting σ is said to compatibly split a subvariety Z of X if $\sigma\left(\mathcal{I}_{Z}\right) \subseteq \mathcal{I}_{Z}$, where \mathcal{I}_{Z} is the ideal sheaf of Z in X. In this case, σ induces a Frobenius splitting of Z.

When X is a smooth variety with canonical bundle ω_{X}, there is a natural isomorphism of $\mathcal{O}_{X^{\prime}}$-modules :

$$
F_{*}\left(\omega_{X}^{1-p}\right) \cong \operatorname{Hom}_{\mathcal{O}_{X^{\prime}}}\left(F_{*} \mathcal{O}_{X}, \mathcal{O}_{X^{\prime}}\right)
$$

In this way global sections of ω_{X}^{1-p} correspond to homomorphisms $F_{*} \mathcal{O}_{X} \rightarrow \mathcal{O}_{X^{\prime}}$. A section of ω_{X}^{1-p} which, up to a non-zero constant, corresponds to a Frobenius splitting in this way, is called a splitting section. One of the first known criteria ([7], Prop. 8) for a smooth projective variety to be Frobenius split was the following

Proposition 4.1. Let X be a smooth projective variety over k of dimension n. Assume that there exists a global section s of the anti canonical bundle ω_{X}^{-1}, with divisor of zeroes of the form

$$
\operatorname{div}(s)=Z_{1}+Z_{2}+\cdots+Z_{n}+D
$$

satisfying :

1. The scheme theoretic intersection $\cap_{i} Z_{i}$ is a point $P \in X$.
2. D is an effective divisor not containing $P=\cap_{j} Z_{j}$.

Then s is a splitting section of X which compatibly splits the subvarieties $Z_{1}, Z_{2}, \ldots, Z_{n}$.

This criterion was taylormade to suit the Bott-Samelson varieties.
Proposition 4.2. Let X be a smooth variety over k and let s be a global section of the anti-canonical bundle ω_{X}^{-1} such that s^{p-1} is a Frobenius splitting section of X. Write the zero divisor $\operatorname{div}(s)$ of s as

$$
\operatorname{div}(s)=\sum_{j=1}^{r} Z_{j}
$$

with $Z_{j}, j=1, \ldots, m$, being irreducible subvarieties of X of codimension 1. Then for any choice of integers $0 \leq m_{j}<p, j=1, \ldots, r$, and any line bundle \mathcal{L} on X, we have, for all integers i, an embedding of cohomology

$$
\mathrm{H}^{i}(X, \mathcal{L}) \hookrightarrow \mathrm{H}^{i}\left(X, \mathcal{L}^{p} \otimes \mathcal{O}\left(\sum_{j=1}^{r} m_{j} Z_{j}\right)\right)
$$

This result is well known, but we have not been able to find an explicit reference. We therefore include a proof.

Proof. Let $\phi: F_{*} \mathcal{O}_{X} \rightarrow F_{*} \omega_{X}^{1-p}$ denote the map induced by the global section s^{p-1} of ω_{X}^{1-p}. Composing this map with the twisted Cartier operator $\mathrm{C}: F_{*} \omega_{X}{ }^{1-p} \rightarrow \mathcal{O}_{X}$, we get, by the identifications above, the splitting section $\psi: F_{*} \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}$, defined by s^{p-1}. In particular, the morphism $\mathcal{O}_{X}, \rightarrow F_{*} \omega_{X}^{1-p}$ defined by s^{p-1} is split. As a consequence, if $\omega^{1-p} \simeq \mathcal{M} \otimes \mathcal{M}^{\prime}$ and $s^{p-1}=t \otimes t^{\prime}$ with t and t^{\prime} global sections of line bundles \mathcal{M} and \mathcal{M}^{\prime}, then the morphism $\mathcal{O}_{X^{\prime}} \rightarrow F_{*} \mathcal{M}$ defined by t is split. Tensoring with the line bundle \mathcal{L}^{\prime} on X^{\prime} corresponding to \mathcal{L} we find, using the projection formula and $F^{*} \mathcal{L}^{\prime} \simeq \mathcal{L}^{p}$, that the morphism $\mathcal{L}^{\prime} \rightarrow F_{*}\left(\mathcal{L}^{p} \otimes \mathcal{M}\right)$ defined by t is split. Now use this on $\mathcal{M}=\mathcal{O}\left(\sum_{j=1}^{r} m_{i} Z_{i}\right)$.

As an immediate consequence of Proposition 4.2 we find
Corollary 4.3. Let X be a Frobenius split projective variety and \mathcal{L} an ample line bundle on X. Then, for each integer $j>0$,

$$
\mathrm{H}^{j}(X, \mathcal{L})=0
$$

We also have the following result which will be important later.
Proposition 4.4. Let X be a variety which is Frobenius split compatibly with subvarieties Z_{1}, \ldots, Z_{n} of codimension 1 , and let a_{1}, \ldots, a_{n} be a collection of positive integers. Let $1 \leq r \leq n$ be an integer. Then there exists an integer M such that for each line bundle \mathcal{L}, each integer i and each integer $m \geq M$ we have an embedding
$\mathrm{H}^{i}\left(X, \mathcal{L} \otimes \mathcal{O}\left(-\sum_{j=1}^{r} Z_{j}\right)\right) \hookrightarrow \mathrm{H}^{i}\left(X, \mathcal{L}^{p^{m}} \otimes \mathcal{O}\left(-\sum_{j=1}^{r}\left(a_{j}+1\right) Z_{j}+\sum_{j=r+1}^{n} a_{j} Z_{j}\right)\right)$.
Proof. Notice first of all that if $a_{j}=0$ for all $j=1, \ldots, n$, then the result follows by successive use of Proposition 4.2 (with $m_{j}=p-1$, $j=1 \ldots, r)$. Assume hence that not all a_{j} are zero and write $a_{j}=$ $p a_{j}^{\prime}+a_{j}^{\prime \prime}$ with $a_{j}^{\prime} \geq 0$ and $0 \leq a_{j}^{\prime \prime}<p$. By induction we may assume that there exists an integer M^{\prime} and an embedding
$\mathrm{H}^{i}\left(X, \mathcal{L} \otimes \mathcal{O}\left(-\sum_{j=1}^{r} Z_{j}\right)\right) \hookrightarrow \mathrm{H}^{i}\left(X, \mathcal{L}^{p^{m}} \otimes \mathcal{O}\left(-\sum_{j=1}^{r}\left(a_{j}^{\prime}+1\right) Z_{j}+\sum_{j=r+1}^{n} a_{j}^{\prime} Z_{j}\right)\right)$.
for each $m \geq M^{\prime}$. Using Proposition 4.2, with values $m_{j}=p-1-a_{j}^{\prime \prime}$ when $j=1, \ldots, t$ and $m_{j}=a_{j}^{\prime \prime}$ when $j=t+1, \ldots, n$, we furthermore find an embedding of the right hand side into

$$
\mathrm{H}^{i}\left(X, \mathcal{L}^{p^{m+1}} \otimes \mathcal{O}\left(-\sum_{j=1}^{r}\left(a_{j}+1\right) Z_{j}+\sum_{j=r+1}^{n} a_{j} Z_{j}\right)\right) .
$$

The claim (with $M=M^{\prime}+1$) now follows by composing the two embeddings above.

5. Frobenius splitting of Bott-Samelson varieties

Let us now return to the situation of a Bott-Samelson variety Z_{w} associated to a sequence w of simple reflections. Recall the following lemma ([8], Proposition 2).

Lemma 5.1. The anti-canonical bundle on Z_{w} is isomorphic to the line bundle

$$
\omega_{Z_{w}}^{-1}=\mathcal{O}\left(\sum_{j=1}^{n} Z_{w(j)}\right) \otimes \mathcal{L}_{w}(\rho)
$$

The divisors $Z_{w(j)}, j=1,2, \ldots, n$, intersect transversally and as $\mathcal{L}_{w}(\rho)$ is globally generated, and hence base point free, Proposition 4.1 and Lemma 5.1 implies

Theorem 5.2 ([7], Thm. 1). The Bott-Samelson variety Z_{w} is Frobenius split compatibly with the divisors $Z_{w(j)}, j=1,2, \ldots, n$.

The following proposition is a consequence of Proposition 4.2.

Proposition 5.3. Let \mathcal{L} be a line bundle on Z_{w}. Then for any choice of integers $0 \leq m_{j}<p, j=1,2 \ldots, n$ and $0 \leq m<p$, we have, for each integer i, an embedding of cohomology

$$
\left.\mathrm{H}^{i}(X, \mathcal{L}) \hookrightarrow \mathrm{H}^{i}\left(X, \mathcal{L}^{p} \otimes \mathcal{O}\left(\sum_{j=1}^{n} m_{j} Z_{w(j)}\right)\right) \otimes \mathcal{L}_{w}(m \rho)\right)
$$

Proof. Let s_{i} be the global section of $\mathcal{O}\left(Z_{i}\right)$ with divisor of zeroes equal to Z_{i}, and let t be a global section of $\mathcal{L}_{w}(\rho)$ with divisor of zeroes $\sum_{j} D_{j}$ with D_{j} irreducible divisors not containing the point $\cap Z_{i}$. As above $s=t \cdot \prod s_{i}$ is a global section of $\omega_{Z_{w}}^{-1}$ such that s^{p-1} is a Frobenius splitting section of Z_{w}. By Propostion 4.2 applied to s, with coefficients m_{i} corresponding to Z_{i} and m corresponding to D_{j}, the result now follows by identifying $\mathcal{L}_{w}(\rho)$ with the line bundle $\mathcal{O}\left(\sum_{j} D_{j}\right)$.

6. Cohomology vanishing of globally generated line BUNDLES

In this section we will prove that the higher cohomology of globally generated line bundles on Bott-Samelson varieties vanishes.

Lemma 6.1. There exists integers $m_{1}, \ldots, m_{n}>0$ such that the line bundle $\mathcal{O}_{Z_{w}}\left(m_{1}, \ldots, m_{n}\right)$ is ample.

Proof. Inductively we know there exists positive integers $m_{1} \ldots, m_{n-1}$ such that $\mathcal{L}=\mathcal{O}_{Z_{w[1]}}\left(m_{1}, \ldots, m_{n-1}\right)$ is ample on $Z_{w[1]}$. As $\mathcal{O}\left(Z_{w(n)}\right)$ has degree one along the fibers of the \mathbb{P}^{1}-bundle $\sigma_{w}: Z_{w} \rightarrow Z_{w[1]}$ this means that $\pi_{w}^{*}\left(\mathcal{L}^{m}\right) \otimes \mathcal{O}\left(Z_{w(n)}\right)$ is ample for m sufficiently large.
Theorem 6.2. Let \mathcal{L} be a globally generated line bundle on a BottSamelson variety Z_{w}. Then

$$
\mathrm{H}^{i}(X, \mathcal{L})=0, \quad i>0
$$

Proof. Choose m_{1}, \ldots, m_{n} according to Lemma 6.1 such that the line bundle $\mathcal{O}\left(\sum_{j=1}^{n} m_{j} Z_{w(j)}\right)$ is ample. By Proposition 4.4 there exists an embedding

$$
\mathrm{H}^{i}\left(Z_{w}, \mathcal{L}\right) \hookrightarrow \mathrm{H}^{i}\left(Z_{w}, \mathcal{L}^{p^{m}} \otimes \mathcal{O}\left(\sum_{j=1}^{n} m_{j} Z_{w(j)}\right)\right)
$$

for some m. Now the result follows from Lemma 4.3 and the fact that a tensorproduct of an ample line bundle with a globally generated line bundle is ample.

7. Kumar vanishing

In his proof [5] of the Demazure character formula in the Kac-Moody case S. Kumar in a crucial way uses the following cohomological vanishing result.

Theorem 7.1. Let $w=\left(s_{1}, \ldots, s_{n}\right)$ be an ordered collection of simple reflections and let Z_{w} be the associated Bott-Samelson variety over a field of characteristic zero. Assume that the subexpression $\left(s_{t}, \cdots, s_{r}\right)$ of w is reduced for integers $1 \leq t \leq r \leq n$. Then

$$
\mathrm{H}^{i}\left(Z_{w}, \mathcal{L}_{w}(\lambda) \otimes \mathcal{O}\left(-\sum_{j=t}^{r} Z_{w(j)}\right)\right)=0, \quad i>0
$$

whenever λ is a dominant weight.
Using Frobenius splitting techniques one may extend this result to arbitrary globally generated line bundles and positive characteristic (notice $\mathcal{L}_{w}(\lambda)$ is globally generated when λ is a dominant weight).

Lemma 7.2. The line bundle $\mathcal{L}=\mathcal{L}_{w}(\rho)^{m} \otimes \mathcal{O}\left(Z_{w(n)}\right) \otimes \pi_{w}^{*}\left(\mathcal{L}_{w[1]}(-\rho)\right)$ is globally generated when m is sufficiently large.

Proof. Using Lemma 5.1 we may express the relative anti-canonical sheaf of the \mathbb{P}^{1}-bundle $\pi_{w}: Z_{w} \rightarrow Z_{w[1]}$ as

$$
\omega_{Z_{w} / Z_{w[1]}}^{-1}=\omega_{Z_{w}}^{-1} \otimes \pi_{w}^{*}\left(\omega_{Z_{w[1]}}\right)=\mathcal{L}_{w}(\rho) \otimes \mathcal{O}\left(Z_{w(n)}\right) \otimes \pi_{w}^{*}\left(\mathcal{L}_{w[1]}(-\rho)\right)
$$

Suppose that s_{n} is a reflection in the simple root α. Consider then the fiber product diagram

where the lower horizontal morphism is the map induced by the product map $P_{w[1]} \rightarrow G$ and the morphism $G / B \rightarrow G / P_{\alpha}$ is the natural projection map. From this we conclude that $\omega_{Z_{w} / Z_{w[1]}}^{-1}$ is the pull back through π of the anti-canonical sheaf of the \mathbb{P}^{1}-bundle $G / B \rightarrow G / P_{\alpha}$. The latter is isomorphic to $\mathcal{L}_{G / B}(\alpha)$, and hence $\omega_{Z_{w} / Z_{w[1]}}^{-1} \simeq \mathcal{L}_{w}(\alpha)$. In particular, $\mathcal{L} \simeq \mathcal{L}_{w}((m-1) \rho+\alpha)$. Using that $(m-1) \rho+\alpha$ is dominant for m sufficiently large, the result now follows.

Lemma 7.3. Let $w=\left(s_{1}, \ldots, s_{n}\right)$ be an ordered collection of simple reflections and Z_{w} the associated Bott-Samelson variety. Assume that the subexpression $\left(s_{t}, \cdots, s_{r}\right)$ of w is reduced for integers $1 \leq t \leq r \leq n$. Then there exists integers m_{1}, \ldots, m_{n} and $m \geq 0$ satisfying all of the following proporties

1. $m_{j} \geq 0, j \notin\{t, \ldots, r\}$.
2. $m_{j} \leq 0, j \in\{t, \ldots, r\}$ and $m_{r}=-1$.
3. The line bundle $\mathcal{O}\left(\sum_{j=1}^{n} m_{j} Z_{w(j)}\right) \otimes \mathcal{L}_{w}(\rho)^{m}$ is globally generated.

Proof. Assume first of all that $r<n$. By induction (in n) we find integers m_{1}, \ldots, m_{n-1} and $m \geq 0$ satisfying the equivalent proporties
for $Z_{w[1]}$. In particular, the line bundle

$$
\mathcal{O}\left(\sum_{j=1}^{n-1} m_{j} Z_{w(j)}\right) \otimes \pi_{w}^{*}\left(\mathcal{L}_{w[1]}(\rho)^{m}\right)
$$

is globally generated. Now choose a positive integer m_{n} such that the line bundle $\mathcal{L}=\mathcal{L}_{w}(\rho)^{m_{n}} \otimes \mathcal{O}\left(Z_{w(n)}\right) \otimes \pi_{u}^{*}\left(\mathcal{L}_{w[1]}(-\rho)\right)$ is globally generated (Lemma 7.2). Then the line bundle

$$
\mathcal{O}\left(\sum_{j=1}^{n-1} m_{j} Z_{w(j)}\right) \otimes \mathcal{O}\left(m_{n} Z_{w(n)}\right) \otimes \mathcal{L}_{w}(p)^{m_{n} m}
$$

is globally generated. We are left with the case $r=n$.
Write $\mathcal{O}_{w[1]}(1)$ in the Z-basis as

$$
\mathcal{O}_{w[1]}(1)=\mathcal{O}_{Z_{w}}\left(a_{1}, \ldots, a_{n-1}, 1\right)
$$

By Proposition 3.5 we know that a_{t}, \ldots, a_{n-1} are positive integers. Now

$$
\mathcal{L}_{w}(\rho) \otimes \mathcal{O}\left(-Z_{w(n)}\right) \otimes \mathcal{O}\left(\sum_{j=t}^{n-1}-a_{j} Z_{w(j)}\right)=\mathcal{L} \otimes \mathcal{O}\left(\sum_{j=1}^{t-1} a_{j} Z_{w(j)}\right)
$$

where $\mathcal{L}=\mathcal{L}_{w}(\rho) \otimes \mathcal{O}_{w[1]}(-1)$ is a globally generated line bundle. It remains to find positive integers m_{1}, \ldots, m_{t-1} such that the line bundle $\mathcal{O}\left(\sum_{j=1}^{t-1}\left(m_{j}+a_{j}\right) Z_{w(j)}\right)$ is globally generated. That this is possible follows from Lemma 6.1.

Theorem 7.4. Let $w=\left(s_{1}, \ldots, s_{n}\right)$ be an ordered collection of simple reflections and Z_{w} the associated Bott-Samelson. Assume that the subexpression $\left(s_{t}, \cdots, s_{r}\right)$ of w is reduced for integers $1 \leq t \leq r \leq n$. Then

$$
\mathrm{H}^{i}\left(Z_{w}, \mathcal{L} \otimes \mathcal{O}\left(-\sum_{j=t}^{r} Z_{w(j)}\right)\right)=0, i>0
$$

whenever \mathcal{L} is a globally generated line bundle.
Proof. Choose integers m_{1}, \ldots, m_{n} and $m \geq 0$ according to the conditions in Lemma 7.3. By successive use of Proposition 5.3 we may assume that $\mathcal{L} \otimes \mathcal{L}_{w}(-\rho)^{m}$ is globally generated. By Proposition 4.4 (with values $a_{j}=\left|m_{j}\right|, j \neq r$ and $a_{r}=0$) the cohomology group $\mathrm{H}^{i}\left(Z_{w}, \mathcal{L} \otimes \mathcal{O}\left(-\sum_{j=t}^{r} Z_{w(j)}\right)\right)$ embeds into (for some m^{\prime}):

$$
\mathrm{H}^{i}\left(Z_{w}, \mathcal{L}^{p^{m^{\prime}}} \otimes \mathcal{O}\left(\sum_{j=1}^{n} m_{j} Z_{w(j)}-\sum_{j=t}^{r-1} Z_{w(j)}\right)\right),
$$

which we may rewrite as

$$
\mathrm{H}^{i}\left(Z_{w}, \mathcal{L}^{\prime} \otimes \mathcal{O}\left(-\sum_{j=t}^{r-1} Z_{w(j)}\right)\right),
$$

where $\mathcal{L}^{\prime}=\mathcal{L}^{p^{m^{\prime}}} \otimes \mathcal{O}\left(\sum_{j=1}^{n} m_{j} Z_{w(j)}\right)$ is globally generated by choice of m_{1}, \ldots, m_{n}. The claim now follows by induction in $r-t$.

As already noted by S . Kumar it is crucial that the subexpression $\left(s_{t}, \cdots, s_{r}\right)$ is reduced.

References

[1] R. Bott and Samelson, H., Application of the theory of Morse to symmetric spaces, Amer. J. Math. 80 (1958), 964-1029
[2] M. Demazure, Désingularisation des variétés de Schubert généralisées Ann. Sci. Ec. Norm. Sup. 7 (1974), 53-88
[3] H. C. Hansen, On cycles on flag manifolds, Math. Scand. 33 (1973), 269-274
[4] H. C. Hansen Cykler på flagmangfoldigheder, speciale, Aarhus Universitet (1972)
[5] Kumar, S., Demazure character formula in arbitrary Kac-Moody setting, Invent. math. 89 (1987), 395-423
[6] Lakshmibai, V., Littelmann P. and Magyar P., Standard monomial theory for Bott-Samelson varieties (preprint).
[7] Mehta, V. and Ramanathan, A., Frobenius splitting and cohomology vanishing for Schubert varieties, Annals of Math. 122 (1985), 27-40
[8] Ramanathan, A. Schubert varieties are arithmetically Cohen Macaulay, Invent. math. 80 (1985), 283-294

Institut for Matematiske Fag, Aarhus Universitet, Ny Munkegade, DK-8000 Århus C, Denmark.

E-mail address: niels@imf.au.dk, funch@imf.au.dk

