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Introduction

The purpose of this paper is twofold. Firstly, it gives a thorough treatment
of the de Rham-Witt complex for Z(p)-algebras, which we �rst considered in [8].
This complex is the natural generalization to Z(p)-algebras, where p is assumed
odd, of the de Rham-Witt complex for Fp -algebras of Deligne-Illusie, [12]. We
give a, perhaps, more direct construction and prove an explicit formula for the
de Rham-Witt complex of a polynomial ring in terms of that of the coeÆcient ring.
Using this formula, we show that the construction of the de Rham-Witt complex
of [12] works, more generally, for Z(p)-algebras and coincides with the de Rham-
Witt complex constructed here. Secondly, we generalize [8, theorem C] to smooth
algebras over a discrete valuation ring of mixed characteristic (0; p) with perfect
residue �eld and p odd. We proceed to describe our results in more detail.

For every ring A, the cyclotomic trace is a map of pro-abelian groups

tr : Kq(A)! TC�

q(A; p)

from the algebraic K-theory of A to the topological cyclic homology of A, [2].
This is a highly non-trivial invariant. For instance, it induces a pro-isomorphism

� Supported in part by NSF Grant.
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with Z=pv-coeÆcients in non-negative degrees, if A is a �nite algebra over the ring
W (k) of Witt vectors in a perfect �eld of characteristic p > 0. There is a natural
long-exact sequence

� � � ! TC�

q(A; p)! TR�

q(A; p)
1�F
���! TR�

q(A; p)! TC�

q�1(A; p)! � � �

and it is the pro-groups TR�

q(A; p) which are our main object of study here. We
recall from [7, theorem A], that the limit TRq(A; p) coincides with the p-typical
curves on Kq+1(A) introduced by Bloch in [1]. Here and throughout we assume
that A is a Z(p)-algebra with p an odd prime.

Associated with the ring A, one has the topological Hochschild spectrum T (A).
It has an action by the circle group T, and by de�nition

TRnq (A; p) = �q(T (A)
C
pn�1 )

is the qth homotopy group of the �xed points by the �nite subgroup of the indicated
order. Usually these are very large abelian groups. But they are, as n and q varies,
related by a number of operators, and the combined algebraic structure is quite
rigid. We call this structure a Witt complex over A. By de�nition, this is:

(i) a pro-di�erential graded ring E�
�

and a map of pro-rings

� : W
�
(A)! E0

�

from the pro-ring of Witt vectors in A;

(ii) a map of pro-graded rings

F : E�
�

! E�
��1

such that �F = F� and such that for all a 2 A,

Fd�(an) = �(an�1)
p�1d�(an�1);

where an 2Wn(A) is the multiplicative representative;

(iii) a map of graded E�
�

-modules

V : F�E
�
��1 ! E�

�

such that �V = V � and such that

FdV = d;

FV = p:

A map of Witt complexes over A is a map f : E�
�

! E0
�

� of pro-di�erential graded
rings such that �0 = f�, F 0f = fF and V 0f = fV .

In the Witt complex E�
�

= TR�

�(A; p), the map F is induced from the obvious
inclusion, V is the accompanying transfer map, and the di�erential is induced from
the T-action. The structure maps in the pro-system and the map � are harder
to de�ne. The latter is an isomorphism. We write WA for the category of Witt
complexes over A. Using standard category theory, we show:

Theorem A. The category WA has an initial object W
�

�A. Moreover, the

canonical map �
�
: 
�W

�
(A) !W

�

�A is surjective.

For a ring homomorphism f : A! A0, we have the direct image functor

f� : WA0 !WA
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given by viewing a Witt complex over A0 as a Witt complex over A by replacing
the map � by the composite �W

�
(f). We show that this functor has a left adjoint

f� : WA !WA0 ;

the inverse image functor. The universal properties imply that the canonical map

W
�

�A0

�
�! f�W

�

�A

is an isomorphism. The proof of the existence of f�, again, is by category theory.
However, in the case of the ring homomorphism

� : A! A[x]

given by the inclusion of the constant polynomials, we can give an explicit descrip-
tion of the inverse image functor. If E = E�

�

is a Witt complex over A, we consider
the pro-graded abelian group

P (E) = P (E)�
�

where P (E)qn is given by the set of (�nite) formal sums of the form
X
j2N0

a
(n)
0;j x

j
n +
X
j2N

b
(n)
0;j x

j�1
n dxn

+

n�1X
s=1

X
j2Ip

�
V s(a

(n�s)
s;j xjn�s) + dV s(b

(n�s)
s;j xjn�s)

�
;

with the components a
(m)
s;j 2 E

q
m and b

(m)
s;j 2 E

q�1
m . Addition is component-wise, and

the structure maps in the pro-system are induced from the ones in E. If E0 = E0
�

�

is a Witt complex over A[x] and if f : E ! ��E
0 is a map of Witt complexes over

A, there is an induced map of pro-graded abelian groups

~f : P (E)! E0

which maps the formal sum above to the sumX
j2N0

f(a
(n)
0;j )�

0(xjn) +
X
j2N

f(b
(n)
0;j )�

0(xj�1n )d�0(xn)

+

n�1X
s=1

X
j2Ip

�
V s(f(a

(n�s)
s;j )�0(xjn�s)) + dV s(f(b

(n�s)
s;j )�0(xjn�s))

�

in E0q
n. The requirement that for all E0 in WA0 , this be a map of Witt complexes

leaves only one possible way to de�ne a product, a di�erential, and the maps F and
V on P (E). The explicit formulas are given in section 4.2 below.

The construction P (E) may be explained as follows: The �rst two summands in
the formula above form the sub-pro-di�erential graded ring

E�
�


Z(p)

�
Z(p)[x ]

� P (E)�
�

;

the Frobenius on P (E) induces the map of pro-graded rings

F = F 
 F : E�
�


Z(p)

�
Z(p)[x ]

! E�
�


Z(p)

�
Z(p)[ x ]

;

given on the second factor by F (xn) = xpn�1 and Fdxn = xp�1n�1dxn�1, and the
Verschiebung on P (E) induces the (partially de�ned) map of pro-abelian groups

V = V 
 F�1 : E�
�


Z(p)
F (
�

Z(p)[x ]
)! E�

�


Z(p)

�
Z(p)[x ]

:
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From this point of view, P (E) is the minimal extension of E�
�



�
Z(p)[x ]

that admits
a globally de�ned Verschiebung operator.

Theorem B. Let E be a Witt complex over A. Then P (E) is a Witt complex
over A[x], and the canonical map

��E
�
�! P (E)

is an isomorphism.

This gives, in particular, the promised formula for the de Rham-Witt complex
of A[x] in terms of that of A. Indeed, the canonical map

P (W
�

�A)

�
�! W

�

�A[x]

is an isomorphism. We also show:

Theorem C. The canonical map

P (TR�

�(A; p))
�
�! TR�

�(A[x]; p)

is an isomorphism.

The original construction by Deligne-Illusie, [12], of the de Rham-Witt complex
for Fp -algebras proceeds in two steps. Firstly, one considers a categoryW

0
A (denoted

VDR(A) in op. cit.) whose objects, in essence, are Witt complexes without an F -
operator. This category has an initial object W 0

�


�A, which can be constructed
somewhat more concretely. This works for all rings. Secondly, one constructs an
F -operator on W 0

�


�A and proves that the combined structure is a Witt complex,
which then necessarily is the initial object ofWA. The proof given in op. cit. works
only for Fp -algebras. For it uses that for a polynomial algebra over Fp , the limit
W 0
A = limnW

0
n


�
A is torsion free, and this is not the case for a polynomial

algebra over Z(p). We give a di�erent proof based on theorem B. Hence, for every
Z(p)-algebra we have:

Theorem D. The forgetful functor WA !W
0
A preserves initial objects.

Let V be a complete discrete valuation ring of mixed characteristic (0; p) with
quotient �eld K and perfect residue �eld k. Our second objective in this paper is to
generalize [8, theorem C] to smooth V -algebras. To state the result, we �rst recall
the notion of a log-di�erential graded ring from [13].

A log ring (R;M) is a ring R together with a pre-log structure de�ned as a map
of multiplicative monoids � : M ! R, and a log di�erential graded ring (D;M)
is a di�erential graded ring D, a pre-log structure � : M ! D0, and a map of
monoids D log: M ! (D1;+) such that d�(a) = �(a)D log a, for all a 2 M . We
note that a pre-log structure on R induces one on Wn(R) by composing with the
multiplicative map n : R!Wn(R). The notion of a Witt complex and theorem A
above generalize to log rings; see paragraph 7 below for details. The universal
example is denoted W

�
!�(R;M); it generalizes the construction of Hyodo-Kato [11]

for log Fp -algebras.

Let A be a smooth V -algebra, let Ak = A 
V k, and let AK = A 
V K. The
canonical log structure on A is given by the inclusion

� : MA = A \ A�K ,! A:
4



In this situation, one has the localization sequence in K-theory,

: : :! Kq(Ak)
i!
�! Kq(A)

j�
�! Kq(AK)

@
�! Kq�1(Ak)! : : :

We constructed in [8] a corresponding sequence

: : :! TR�

q(Ak; p)
i!
�! TR�

q(A; p)
j�
�! TR�

q(AjAK ; p)
@
�! TRq�1(Ak; p)! : : :

and a trace map from the sequence above. The groups TR�

�(AjAK ; p) form a Witt
complex over the log ring (A;MA) with the map

d logn : MA ! TRn1 (AjAK ; p)

given by the composite

MA = A \ A�K ,! A�K ! K1(AK)
tr
�! TRn1 (AjAK ; p):

Hence, we have the canonical map from the universal Witt complex,

W
�
!�(A;MA)

! TR�

�(AjAK ; p):

If we assume that �pv � K, there is, in addition, a unique ring homomorphism

SZ=pv(�pv )! TR�

�(AjAK ; p;Z=p
v);

which takes a generator � 2 �pv to the image by the trace map of the corresponding
Bott element b� 2 K2(K;Z=p

v). In all we have a map of Witt complexes

W
�
!�(A;MA)


ZSZ=pv(�pv )! TR�

�(AjAK ; p;Z=p
v);

where on the left, the maps R and F act as the identity on the second tensor factor.
The di�erential acts trivially on the second tensor factor.

Theorem E. Let V be a discrete valuation ring of mixed characteristic (0; p)
with quotient �eld K and perfect residue �eld k, and assume that p is odd and that
�pv � K. Then for every smooth V -algebra A, the canonical map

W
�
!�(A;MA)


ZSZ=pv(�pv )
�
�! TR�

�(AjAK ; p;Z=p
v)

is a pro-isomorphism.

It appears an interesting problem to formulate and prove the analog of theorem E
for p = 2. In this case, the right hand side of the statement is not a Witt complex
over A with the de�nition given here. For (d Æ d)(x) = � � d(x), where � = tr(�1)
is the image of the Hopf class. This class is non-zero, for instance, if A = Z(2), but

the square �2 is always zero, see Rognes [23, theorem 1.5].

Finally, we mention that at the same time as this paper was written, A. Langer
and T. Zink introduced a relative version of the de Rham-Witt complex, [14], which
to a map of Z(p)-algebras R! A associates a Witt complex W

�

�A=R. Hence, there

is a canonical map W
�

�A !W

�

�A=R, and this map is always surjective. However,

it is not an isomorphism for R = Z(p).

Unless otherwise stated, all rings considered in this paper will be commutative
and unital Z(p)-algebras with p an odd prime. We denote by N (resp. by N0 ,
resp. by Ip) the set of positive integers (resp. non-negative integers, resp. positive
integers prime to p). A pro-object in a category C will be taken to mean a functor
from N, viewed as a category with one arrow from n+ 1 to n, to C.
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1. Witt complexes

1.1. We briey recall Witt vectors and the de Rham complex. For a fuller
discussion, we refer the reader to [21, appendix] and [20], respectively.

The de Rham complex of a ring A is characterized by the following universal
property: given a DG-ring E� and a ring homomorphism � : A ! E0, there exists
a unique map of DG-rings


�A ! E�;

which in degree zero is given by the map �. It is also easy to construct. Let I be
the kernel of the multiplication A
A! A. It is generated as an A-module by the
elements a
 1� 1
 a, a 2 A. The two A-module structures on I de�ne the same
A-module structure on 
1

A = I=I2, and the map

d : A! 
1
A

which takes a to (a
1�1
a)+ I2 is a derivation. This is the universal derivation
from A to an A-module. One now de�nes the de Rham-complex to be the exterior
algebra


�A = ��A

1
A

with di�erential

d(a0da1 : : : dan) = da0da1 : : : dan:

It is a DG-ring and clearly has the universal property stated above.

The ring Wn(A) of Witt vectors of length n in A is the set of n-tuples in A but
with a new ring structure characterized by the requirement that the \ghost" map

w : Wn(A)! An

which takes the vector (a0; a1; : : : ; an�1) to the sequence (w0; w1; : : : ; wn�1) with

wi = ap
i

0 + pap
i�1

1 + � � �+ piai;

be a natural transformation of functors from rings to rings. If the ring A is p-
torsion free, the ghost map is injective. If, in addition, there exists a ring homo-
morphism f : A! A with the property that f(a) � ap modulo pA, then a sequence
(x0; : : : ; xn�1) is in the image of the ghost map if and only if

xi � f(xi�1) modulo piA;

for all 0 < i < n. The latter statement | the lemma of Dwork | encodes the
congruences needed to construct every map involving Witt vectors. As an example
of how this works, we construct the addition on Wn(A).

By naturality, it suÆces to consider A = Z[a0; : : : ; an�1; b0; : : : ; bn�1] and de�ne
the sum of the vectors a = (a0; : : : ; an�1) and b = (b0; : : : ; bn�1). The ring homo-
morphism f : A ! A, which raises the variables to the pth power, is a lift of the
Frobenius, so we can use the lemma of Dwork to identify the image of the ghost
map. One veri�es immediately that the sequence w(a)+w(b) is in the image of the
ghost map. Hence, there exists a vector s = (s0; : : : ; sn�1) such that

w(s0; : : : ; sn�1) = w(a0; : : : ; an�1) + w(b0; : : : ; bn�1);

and since A is p-torsion free, the vector s is unique. The only possible de�nition,
therefore, is that a+ b = s.
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The projection on the �rst n� 1 factors is a ring homomorphism

R : Wn(A)!Wn�1(A);

called restriction, and this makes W
�
(A) a pro-ring. There is a second ring homo-

morphism, the Frobenius,

F : Wn(A)!Wn�1(A);

characterized by the formula

w(F (a0; : : : ; an�1)) = (w1(a); : : : ; wn�1(a));

and a Wn(A)-linear map, the Verschiebung,

V : F�Wn�1(A)!Wn(A)

given by

V (a0; : : : ; an�2) = (0; a0; : : : ; an�1):

Here the notation F�Wn�1(A) indicates that Wn�1(A) is considered a Wn(A)-
module via the Frobenius F : Wn(A) ! Wn�1(A). Thus, the linearity of the Ver-
schiebung is the statement that for all x 2Wn(A) and y 2 Wn�1(A), the Frobenius
reciprocity formula xV (y) = V (F (x)y) holds. The Frobenius and Verschiebung
both commute with the restriction. The Teichm�uller map is the multiplicative
map

n : A!Wn(A);

given by

an = (a; 0; : : : ; 0):

In particular, 1n is the multiplicative unit in Wn(A). The following relations hold

F (an) = apn�1; FV = p;

where on the right, p denotes multiplication by p = 1+ � � �+1 (p times). In general,
it is very diÆcult, to describe the coordinates of the vector p � a in terms of the
coordinates of a. It is often convenient to display a Witt vector as

(a0; : : : ; an�1) =

n�1X
i=0

V i(ain�i):

1.2. The de�nition of a Witt complex over A was given in the introduction.
The following result will be used repeatedly throughout the paper.

Lemma 1.2.1. Let E�
�

be a Witt complex over A. Then

dF = pFd; V d = pdV; V (xdy) = V (x)dV (y):

Proof. Let x; y 2 E�n. Then

V (xdy) = V (xFdV (y)) = V (x)dV (y);

dF (x) = FdV F (x) = Fd(V (1)x) = F (dV (1)x+ V (1)dx)

= FdV (1)F (x) + FV (1)Fdx = d(1)F (x) + pFdx = pFdx;

V d(x) = V (1)dV (x) = d(V (1)x)� dV (1) � V (x)

= dV (FV (1)x)� V (FdV (1)x) = dV (px)� V (d(1)x) = pdV (x):

This completes the proof. �
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Proof of theorem A. The existence of an initial object follows from the
Freyd adjoint functor theorem, [17, p. 116]. The categoryWA clearly has all small
limits, so it suÆces to verify the solution set condition. To this end, we show that
for every E = E�

�

in WA, the image of the map induced from �,

� : 
�W
�
(A) ! E�

�

;

is a (sub) Witt complex of E. Since the isomorphism classes of such images form a
set, the proposition will follow. We must show that the Frobenius and Verschiebung
of E�

�

preserves the image of the canonical map. To prove the statement for the
Frobenius, it suÆces, since F is multiplicative, to show that for all n � 1 and all
a 2Wn(A), Fd�(a) is in the image of the canonical map. But, using the formula

a = a0n + V (a1n�1) + V 2(a2n�2) + � � �+ V n�1(an�11);

we �nd

Fd�(a) = �(a0n�1)
p�1d�(a0n�1) + d�(a1n�1) + � � �+ dV n�1�(an�11);

and this sum clearly is in the image of the canonical map. The statement for the
Verschiebung follows immediately from lemma 1.2.1. This proves that an initial
object exists.

Finally, we show that the map �
�
is surjective, or equivalently, that the inclusion

of the image E of this map is a surjection. Since E is a Witt complex, there is a
unique map W

�

�A ! E�

�

of Witt complexes. But then also the composition

W
�

�A ! E�

�

!W
�

�A

is a map of Witt complexes. And since W
�

�A is the initial object, this composite

is the identity map. The statement follows. �

Remark 1.2.2. Theorem A shows, in particular, that the canonical map

W
�
(A)!W

�

0
A

is surjective. In e�ect, this is an isomorphism. For E�
�

= W
�
(A) is a Witt com-

plex over A. We will prove later that also the canonical map 
�A ! W1

�
A is an

isomorphism. The proof of this, however, requires theorem D.

The direct image functor f� : WB !WA associated with a ring homomorphism
f : A! B takes E�

�

to E�
�

and replaces the map � by the composite �W
�
(f).

Proposition 1.2.3. The direct image functor f� has a left adjoint

f� : WA !WB ;

the inverse image functor.

Proof. The proof, which is similar to the proof of theorem A, is an application
of the adjoint functor theorem, [17, p. 116]. Given an object E = E�

�

in WA, the
object f�E in WB is the initial object in the over category E=f�. This category
has small limits, so we must verify the solution set condition.

We �rst construct, for all n � 1, a non-commutative graded ring T �n which
depends only on E. Assume, inductively, that T �n�1 has been constructed (we let
T �0 = f0g), and let

S�n = fe; de j e 2 Wn(B) 
Wn(A) E
�
ng [ fV (e

0); dV (e0) j e0 2 T �n�1g
8



be the graded set, where e and V (e0) are assigned the degree of e and e0, respectively,
and where the degree of de and dV (e0) is one higher than the degree of e and e0.
Then we de�ne T �n to be the free non-commutative graded ring generated by the
graded set of S�n.

Given an object (D;' : E ! f�D) of the over category E=f�, we recursively
de�ne maps of graded rings

 n : T
�
n ! D�n:

The given map of gradedWn(A)-algebras 'n : E
�
n ! f�D

�
n induces a map of graded

Wn(B)-algebras

'̂n : Wn(B)
Wn(A) E
�
n ! D�n;

and with  n�1 : T
�
n�1 ! D�n�1 already de�ned, we let  

0
n : S

�
n ! D�n be the map of

graded sets given by  n(e) = '̂n(e),  n(de) = d('̂n(e)), for e 2Wn(B)
Wn(A)E
�
n,

and by  n(V (e
0)) = V ( n�1(e

0)),  n(dV (e
0)) = dV ( n�1(e

0)), for e0 2 T �n�1. Then
 n : Tn ! Dn is the unique map of graded rings which extends  0n.

One shows, as in the proof of theorem A, that the images I(D;') = fim( n)gn�1
form a Witt complex over B, and that the map '0 : E ! f�I(D;'), which takes

e 2 Ed
n to  n(1 
 e) 2 I

d
(D;');n, is a map of Witt complexes over B. Hence, the

canonical inclusion I(D;') ! D de�nes a map

(I(D;'); '
0 : E ! f�I(D;'))! (D;' : E ! f�D)

in the over category E=f�. Since the isomorphism classes of the objects of E=f�
of the form (I(D;'); '

0 : E ! f�I(D;')) form a set, the solution set condition is
satis�ed. �

Example 1.2.4. We consider W
�

�
Z(p)

. In general, an integer invertible in A is

also invertible in Wn(A), and hence, the ring Wn(Z(p)) is a Z(p)-algebra. We claim
that as a Z(p)-module,

Wn(Z(p)) =

n�1Y
i=0

Z(p) � V
i(1)

with the product given by

V i(1) � V j(1) = piV j(1);

if 0 � i � j < n. The �rst statement follows by an easy induction argument based
on the exact sequences

0! Z(p)
V n�1

���! Wn(Z(p))
R
�!Wn�1(Z(p))! 0;

and the product formula is an immediate consequence of the relations FV = p and
xV (y) = V (F (x)y). In general, it is diÆcult to �nd the coordinates of a 2 Wn(Z(p))

with respect to the basis V i(1), 0 � i < n.

We can use the canonical surjection


�Wn(Z(p))
!Wn


�
Z(p)

to get an upper bound for the right hand side. This is an isomorphism in degree
zero, and in degree one we have the relations that for 0 � i � j < n,

V i(1)dV j(1) = V i(F idV j(1)) = V idV j�i(1) = pidV j(1);

V j(1)dV i(1) = V j(F jdV i(1)) = V jF j�id(1) = 0:
9



It follows that pidV i(1) and dV i(1)dV j(1) are zero, for all 0 � i; j < n. Hence
Wn


q
Z(p)

vanishes for q > 1, and there is canonical surjection

n�1Y
i=0

Z=piZ � dV i(1)� Wn

1
Z(p)

:

In fact, this is an isomorphism. To prove injectivity, it suÆces to �nd a Witt
complex E = E�

�

such that the canonical map

n�1Y
i=0

Z=piZ � dV i(1)! E1
n

is injective. We show in proposition 2.6.1 below that TR�

�(Z(p); p) is such a Witt
complex.

2. The Witt complex TR�

�(A; p)

2.1. In this paragraph we recall the Witt complex TR�

�(A; p) associated with
a ring A. Details may be found in [9], [8], [7], and [4]. See also [18].

Let G be a compact Lie group. The G-stable category is a triangulated category
and a closed symmetric monoidal category, and the two structures are compatible,
[15, II.3.13]. The objects of the G-stable category are called G-spectra. A monoid
for the smash product is called a ring G-spectrum. We denote the set of maps
between two G-spectra T and T 0 by [T; T 0]G.

Associated with a pointed G-space X one has the suspension G-spectrum which
we denote by suspG(X) or simply by X . If V is an orthogonal G-representation, we
denote by SV the one-point compacti�cation. Then the suspension homomorphism

[T; T 0]G
�
�! [T ^ SV ; T 0 ^ SV ]G

is an isomorphism, [15, I.6.1]. Let H � G be a closed subgroup, let q be an integer,
and let T be a G-spectrum. We de�ne the (derived) homotopy group

�Hq (T ) = [G=H+ ^ S
q; T ]G;

where the subscript + indicates the addition of a disjoint G-�xed basepoint. There
is a canonical isomorphism

�Hq (T )
�= �q(T

H);

where TH is the H-�xed point WGH-spectrum. More generally, given a pair of
closed subgroupsK � H � G withK normal inH , there is a canonical isomorphism

�Hq (T )
�= �H=Kq (TK):

A map in the G-stable category is an isomorphism if and only if the induced map
of homotopy groups is an isomorphism, for all H � G and all q, [15, I.5.12].

Let H � G be a closed subgroup. The diagonal map of the space G=H induces
a map in the G-stable category

�: G=H+ ! G=H+ ^G=H+;

and if T and T 0 are G-spectra, this gives rise to a pairing

�Hq (T )
 �
H
q0 (T

0)! �Hq+q0 (T ^ T
0):

10



If T is a ring G-spectrum, we may compose with the map of homotopy groups
induced by the multiplication � : T ^T ! T . This way the homotopy groups �H� (T )
form a graded ring, and if T is commutative, this graded ring is commutative in
the graded sense.

Finally, we mention the Segal-tom Dieck splitting, [24, Satz 2]. If H � G is
�nite and if X is a pointed G-space, there is a canonical isomorphism

(2.1.1)
M
(K)

�q(susp(E(WHK)+ ^WHK XK))
�
�! �Hq (suspG(X));

where the sum is over conjugacy classes of subgroups of H , and E(WHK) is the
universal cover of the classifying space B(WHK).

2.2. Let T be the circle group. Associated with every ring A one has the
topological Hochschild spectrum T (A). This is a ring T-spectrum, and by de�nition,

TRnq (A; p) = [Sq ^ T=Cpn�1+; T (A)]T;

where Cpn�1 � T denotes the �nite subgroup of the indicated order. The maps

(2.2.1)

F : TRnq (A; p)! TRn�1q (A; p);

V : TRn�1q (A; p)! TRnq (A; p);

d : TRnq (A; p)! TRnq+1(A; p);

which are part of the structure of a Witt complex, are induced by maps in the
T-stable category

(2.2.2)

f : T=Cpn�2+ ! T=Cpn�1+;

v : T=Cpn�1+ ! T=Cpn�2+;

Æ : T=Cpn�1+ ^ S
1 ! T=Cpn�1+;

the de�nition or which we briey recall.

The map f is induced by the canonical projection of T-spaces, and v is the
corresponding transfer map de�ned as follows. Let i : T=Cpn�2 ,! V be an em-
bedding into an orthogonal T-representation, and consider the product embedding
(pr; i) : T=Cpn�2 ,! T=Cpn�1 � V . The normal bundle of the latter is trivial, and
the linear structure on V gives a preferred trivialization. Hence, by the Thom-
Pontryagin construction, we have a map of pointed T-spaces

T=Cpn+ ^ S
V ! T=Cpn�1+ ^ S

V ;

and (under the suspension isomorphism) this induces the map v. Finally, the map
Æ is induced from a map of pointed T-spaces

Æ : T=Cpn�1+ ^ S
m+1 ! T=Cpn�1+ ^ S

m:

The set of T-homotopy classes of such maps, if m � 2, is a direct sum of an in�nite
cyclic group and a cyclic group of order 2, and the map Æ is a generator of an
in�nite cyclic summand. The induced map on reduced homology,

~Hm+1(T=Cpn�1+ ^ S
m+1)

Æ
�! ~Hm(T=Cpn�1+ ^ S

m);

takes the generator on the left which, under the canonical isomorphism

~Hq(X+ ^ S
m) �= Hq�m(X);
11



corresponds to class of the point Cpn�1 in H0(T=Cpn�1) to the generator on the
right which corresponds to the fundamental class [T=Cpn�1 ] 2 H1(T=Cpn�1).

If we ignore 2-torsion, these maps satisfy the following relations

(2.2.3)
vf = p � id; fÆ = pÆf; Æv = pvÆ;

vÆf = Æ; ÆÆ = 0;

and hence the dual relations hold among the maps (2.2.1). Moreover, there are
further relations among the maps f , v, Æ, and the diagonal map �. The relations

(f ^ f)� = �f; (f ^ id)�v = (id^v)�;

shows that F is a map of graded rings, and that V is a map of graded modules.
And the relation

�Æ = (Æ ^ id_ id^Æ) � r�;

valid up to 2-torsion, shows that d is a derivation. Here � permutes the appropriate
smash factors, and r is the fold map. The proof of these facts may be found in [9,
lemma 3.3] and [7, 1.4.2, 1.5.1].

Remark 2.2.4. Up to 2-torsion, the full subcategory of the T-stable category
with objects T=Cpn�1+ ^ S

q, where 0 � q � 2 and n 2 N, is equal to the cat-
egory, enriched in abelian groups, generated by the maps (2.2.2) subject to the
relations (2.2.3). In more detail, if m is the minimum of r and s, then:

(i) The maps from T=Cpr+ to T=Cps+ form a free abelian group of rank m+ 1
generated by fr�ivs�i with 0 � i � m.

(ii) The abelian group of maps from T=Cpr+ ^S
1 to T=Cps+ is, up to 2-torsion,

the sum of a free abelian group of rank m+ 1 and, for every 1 � i � m, a copy of
Z=piZ. If r � s (resp. if r � s) then fr�ivs�iÆ (resp. Æfr�ivs�i) is a generator
of a summand Z, and in either case, pr�mÆfr�ivs�i � ps�mfr�ivs�iÆ generates a
summand Z=pm�iZ.

(iii) The abelian group of maps from T=Cpr+^S
2 to T=Cps+ is, up to 2-torsion,

the sum for 1 � i � m, of a copy of Z=pm�iZ generated by Æfr�ivs�iÆ.

(iv) If q > 0 then every map from T=Cpr+ to T=Cps+ ^ S
q is zero.

This follows from the Segal-tom Dieck splitting, (2.1.1).

2.3. An isomorphism f : G
�
�! G0 of compact Lie groups induces an equiv-

alence of categories f� from the G0-stable category to the G-stable category, [15,
II.1.7]. If H � G is a closed subgroup, we let H 0 � G0 be the closed subgroup
H 0 = f(H). Then for every closed subgroup H � G and every integer q, there is a
canonical isomorphism of G-spectra

G=H+ ^ S
q �= f�(G0=H 0 ^ Sq);

and this induces, for every G0-spectrum T 0, a canonical isomorphism

�Hq (f
�(T 0)) �= �H

0

q (T 0):

In the case of the circle group, we have the isomorphism

�p : T
�
�! T=Cp
12



given by the pth root. If T is a T-spectrum, then TCp is a T=Cp-spectrum, and
hence, ��p(T

Cp) is a T-spectrum. We have the canonical isomorphisms

�
C
pn�2

q (��p(T
Cp)) �= �

C
pn�1=Cp

q (TCp) �= �
C
pn�1

q (T );

and these are compatible with the maps F , V , and d induced from (2.2.2).

The topological Hochschild T-spectrum T (A) is a cyclotomic spectrum in the
sense of [9, de�nition 2.2]. This implies that there is a a map of T-spectra

r : ��p(T (A)
Cp)! T (A):

Hence, we have the map

R : TRnq (A; p)! TRn�1q (A; p)

de�ned as the composite

�
C
pn�1

q (T (A)) �= �
C
pn�2

q (��p(T (A)
Cp))

r
�! �

C
pn�2

q (T (A));

and this map commutes with the operators F , V , and d. Moreover, r is a map of
ring T-spectra, and hence R is a map of graded rings.

2.4. In order to construct the T-spectrum T (A) we need a model category
for the T-stable category. The model category we use is the category of symmetric
spectra of orthogonal T-spectra, [19]. This model has a closed symmetric monoidal
product which induces the smash product on the T-stable category. We �rst recall
the topological Hochschild space THH(A). See [4, x1] and [9, x2] for more details.

If A is a ring and X a pointed simplicial set, the homotopy groups of the space

A(X) = jAfXg=Afx0gj

are canonically isomorphic to the reduced singular homology groups of jX j with
coeÆcients in A. Here AfXg denotes the degree-wise free A-module generated by
X . Let S1 = �[1]=@�[1] be the standard simplicial circle and let Si be the smash
product of i copies of S1. Then

~Ai = A(Si)

is an Eilenberg-MacLane space for A concentrated in degree i. It has a natural
�i-action given by permuting the smash factors in Si. Moreover, there are natural
maps

e : Si ! ~Ai; � : ~Ai ^ ~Ai0 ! ~Ai+i0 ;

which are �i-equivariant and �i ��i0 -equivariant, respectively. This constitutes a
symmetric ring spectrum ~A in the sense of [10], commutative if A is. The space
THH(E) is de�ned for every symmetric ring spectrum E.

Let I be the category with objects the �nite sets

i = f1; 2; : : : ; ig; i � 0;

and morphisms all injective maps. It is a strict monoidal (but not symmetric
monoidal) category under concatenation of sets and maps. Let E be a symmetric
ring spectrum and let X be a pointed space. There is a functor Gk(E;X) from
Ik+1 to pointed spaces, which on objects is given by the pointed function space

Gk(E;X)(i0; : : : ; ik) = F (Si0 ^ � � � ^ Sik ; Ei0 ^ � � � ^ Eik ^X):
13



The homotopy colimit

THHk(E;X) = holim
�!
Ik+1

Gk(E;X)

is naturally the space of k-simplices in a cyclic space, and by de�nition

THH(E;X) = j[k] 7! THHk(E;X)j:

This is a T-space, [16, 7.1.4].

More generally, let (n) be the �nite ordered set f1; 2; : : : ; ng. The product cate-
gory I(n) is a strict monoidal category under component-wise concatenation of sets
and maps. (The category I(0) is the category with one object and one morphism.)
Concatenation of sets and maps according to the ordering of (n) de�nes a functor

tn : I
(n) ! I;

but this does not preserve the monoidal structure. (The functor t0 takes the unique

object to 0.) We let G
(n)
k (E;X) be the functor from (I(n))k+1 to the category of

pointed spaces given by

G
(n)
k (E;X) = Gk(E;X) Æ (tn)

k+1;

and de�ne

THH
(n)
k (E;X) = holim

�!
(I(n))k+1

G
(n)
k (E;X):

This again is the space of k-simplices in a cyclic space, and we de�ne

THH(n)(E;X) = j[k] 7! THH
(n)
k (E;X)j:

It is a �n � T-space. If E is commutative, there is a natural product

THH(m)(E;X) ^ THH(n)(E;Y )! THH(m+n)(E;X ^ Y );

which is �m ��n � T-equivariant with T acting diagonally on the left.

Let V be a �nite dimensional orthogonalT-representation. We de�ne the (n; V )th
space in the symmetric orthogonal T-spectrum T (E) by

(2.4.1) T (E)n;V = THH(n)(E;SR
n�V ):

There are two T-actions on the this space: one which comes from the topological
Hochschild space, and another induced from the T-action on SV . There are also
two �n-actions: one which comes from the �n-action on the topological Hochschild
space, and another induced from the permuation representation of �n on Rn . We
give T (E)n;V the diagonal �n�T-action. If E is commutative, there is, in addition,
a �m ��n � T-equivariant product

T (E)m;V ^ T (E)n;W ! T (E)m+n;V�W :

This product makes T (E) a monoid in the symmetric monoidal category of sym-
metric orthogonal T-spectra.
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2.5. A pointed monoid is a monoid � in the category of pointed spaces and
smash product. The unit and multiplication are maps

e : S0 ! �; � : � ^�! �:

The (k + 1)-fold smash product

Ncy
k (�) = �^(k+1)

is the k-simplices of cyclic space. The geometric realization

Ncy(�) = j[k] 7! Ncy
k (�)j

is a pointed T-space called the cyclic bar construction of �. It comes equipped with
a natural T-equivariant homeomorphism

�: Ncy(�)
�
�! ��pn�1(Ncy(�)Cpn�1 );

see [2, 1.1, 2.3].

If E is a symmetric ring spectrum, then the 0th space E0 is a pointed monoid.
In the case E = ~A, this is the underlying multiplicative monoid of the ring A with
basepoint 0. In the symmetric orthogonal T-spectrum T (E) de�ned above, the
(0; 0)th space is

T (E)0;0 = Ncy(E0):

Hence, there is a canonical map

k : �q(�
�
pn�1Ncy(E0)

C
pn�1 )! �q(�

�
pn�1T (E)

C
pn�1 ) = TRnq (E; p):

We de�ne a map of pointed sets

!n : �0(E0)! TRn0 (E; p)

to be the composite

�0(E0)! �0(N
cy(E0))

�
�! �0(�

�
pn�1Ncy(E0)

C
pn�1 )

k
�! �0(�

�
pn�1T (E)

C
pn�1 );

where the left hand map is induced by the inclusion of the vertices. If E is commu-
tative, this is a multiplicative map. It is proved in [7, lemma 1.5.6] that for every
x 2 �0(E0),

(2.5.1) Fd!n(x) = !n�1(x)
p�1d!n�1(x):

For E = ~A, we now de�ne the map

(2.5.2) � : Wn(A)! TRn0 (A; p)

by the formula

�(a0; : : : ; an) =

n�1X
s=0

V s(!n�s(as)):

It is proved in [9, theorem F] that this is an isomorphism of rings. This completes
our recollection of the Witt complex TR�

�(A; p).
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2.6. Let S be the symmetric ring spectrum with Si = Si. This is the sphere
spectrum. It was proved in [2, 3.7], but see also [18, 4.4.4], that the unit for the
ring spectrum structure

suspT(S
0)! T (S)

induces an isomorphism of homotopy groups, for all integers q and all �nite sub-
groups of T. Hence, we have a canonical isomorphism

TRnq (S; p)
�= [T=Cpn�1+ ^ S

q; S0]T:

The groups on the right are well-known, at least for small values of q, by (2.1.1). We
will use the result for 0 � q � 2. Under the isomorphism above, the multiplicative
unit corresponds to the map of T-spectra

e : T=Cpn�1+ ! S0

induced from the projection which collapses T=Cpn�1 to the non-basepoint in S0.
Composition with e de�nes a map

[T=Cpn�1+ ^ S
q ;T=Cpn�1+]T! [T=Cpn�1+ ^ S

q; S0]T:

If 0 � q � 2, the group on the left was described, up to 2-torsion, in 2.2.4 above.
Since d is a derivation, eÆ is zero. This is the only extra relation. Hence:

(i) The maps from T=Cpn�1+ to S0 form a free abelian group of rank n generated
by efsvs with 0 � s < n.

(ii) The abelian group of maps from T=Cpn�1+ ^ S
1 to S0 is, up to 2-torsion,

the sum for 1 � s < n, of a copy of Z=psZ generated by efsvsÆ.

(iii) Up to 2-torsion, every map from T=Cpn�1+ ^ S
2 to S0 is null.

The unit map S ! ~Z induces an isomorphism of homotopy groups with Z(p)-
coeÆcients in degrees less than 2p� 3. And the functor TRn(�; p) preserves con-
nectivity. Thus we have:

Proposition 2.6.1. The group TRn
0 (Z(p); p) is a free Z(p)-module of rank n

generated by V s(1), 0 � s < n. The group TRn1 (Z(p); p) is a sum for 1 � s < n, of
a copy of Z=psZ generated by dV s(1). The group TRn2 (Z(p); p) is zero. �

3. Polynomial extensions

3.1. In this section we prove theorem C of the introduction. We briey recall
the statement. The ring homomorphism given by the inclusion of the constant
polynomials,

� : A! A[x];

induces a map of Witt complexes over A,

f : TR�

�(A; p)! �� TR
�

�(A[x]; p);

where on the right �� is the direct image functor. And as part of the structure of
a Witt complex, we have the map of pro-rings

� : W
�
(A[x]) ! TR�

0(A[x]; p):
16



We wish to show that for all n � 1 and q � 0, every element of TRnq (A[x]; p) can
be written uniquely as �nite sum

(3.1.1)

f(a
(n)
0;0 ) +

X
j2N

�
f(a

(n)
0;j )�(x

j
n) + f(b

(n)
0;j )�(x

j�1
n )d�(xn)

�

+

n�1X
s=1

X
j2Ip

�
V s(f(a

(n�s)
s;j )�(xjn�s)) + dV s(f(b

(n�s)
s;j )�(xjn�s))

�

with ams;j 2 TR
m
q (A; p) and b

(m)
s;j 2 TR

m
q�1(A; p).

We recall that, by de�nition, the group TRnq (A[x]; p) is the qth homotopy group
of the T-spectrum

(3.1.2) ��pn�1T (A[x])
C
pn�1 :

Let � be the sub-pointed monoid of A[x] generated by the variable x. The T-space
Ncy(�) decomposes as a wedge sum

_
i2N0

Ncy(�; i)
�
�! Ncy(�)

and the T-spectrum (3.1.2) can then be expressed as a wedge sum

(3.1.3)

_
j2N0

��pn�1T (A)
C
pn�1 ^Ncy(�; j)

_

n�1_
s=1

_
j2Ip

��ps(�
�
pn�1�sT (A)

C
pn�1�s ^Ncy(�; j))Cps :

We recall below how this equivalence is de�ned and show that the homotopy groups
of (3.1.3) are given by the �nite sums of the form (3.1.1). This will prove theorem C.

3.2. It is proved in [9, theorem 7.1] that the composite

T (A) ^N cy(�)
f^�
��! T (A[x]) ^Ncy(A[x])

�
�! T (A[x]);

where � is the inclusion, is a natural equivalence of T-spectra. Since A and � are
commutative, this equivalence is multiplicative with the componentwise multipli-
cation on the left. This induces an equivalence of T-spectra

��pn�1(T (A) ^Ncy(�))Cpn�1 �
�! ��pn�1T (A[x])

C
pn�1 ;

and the wedge decomposition of the T-space N cy(�) induces one of T-spectra
_
i2N0

��pn�1(T (A) ^N cy(�; i))Cpn�1 �
�! ��pn�1(T (A) ^N cy(�))Cpn�1 :

Regrouping the wedge summands after the p-adic valuation of the index, we can
write the left hand side in the following way:

_
j2N0

��pn�1(T (A) ^Ncy(�; pn�1j))Cpn�1

_

n�1_
s=1

_
j2Ip

��ps(�
�
pn�1�s(T (A)

C
pn�1�s ^Ncy(�; pn�1�sj))Cpn�1�s )Cps :
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Finally, we have the the equivalence of T-spectra given by the pairing

��pvT (A)
Cpv ^ ��pvN

cy(�; pvj)Cpv
�
�! ��pv (T (A) ^N

cy(�; pvj))Cpv

and the T-equivariant homeomorphism

�: Ncy(�; j)
�
�! ��pvN

cy(�; pvj)Cpv :

This gives the desired equivalence of T-spectra from the wedge sum (3.1.3) to the
T-spectrum (3.1.2).

3.3. We �rst consider the restriction of the equivalence described above to
the top summand in (3.1.3). This amounts to a map of T-spectra

��pn�1T (A)
C
pn�1 ^Ncy(�)! ��pn�1T (A[x])

C
pn�1 ;

which is multiplicative, if the left hand side is given the componentwise multiplica-
tion. Hence, the induced map on homotopy groups

��(�
�
pn�1T (A)

C
pn�1 ^Ncy(�))! TRn� (A[x]; p)

identi�es the left hand side with a sub-di�erential graded ring of the di�erential
graded ring on the right.

We recall the structure of the T-spaces Ncy(�; i). The space Ncy(�; 0) is the
discrete space f0; 1g, and for i positive, there is a T-equivalence

T=Ci+
�
�! Ncy(�; i):

The multiplication on Ncy(�) restricts to a pairing of the ith and i0th summands
to the (i+ i0)th summand. The equivalences above are compatible with this pairing
in that there is a commutative diagram

Ncy(�; i) ^Ncy(�; i0)
�

// Ncy(�; i+ i0)

T=Ci+ ^ T=Ci0+

�

OO

�
// T=C(i+i0)+;

�

OO

where the lower horizontal map is induced from the multiplication in T.

Lemma 3.3.1. The map of di�erential graded rings

TRn� (A; p)

�
Z[x]! TRn� (A[x]; p)

which takes a 
 1 to f(a) and 1 
 x to �(xn) is an isomorphism onto the sub-

di�erential graded ring ��(�
�
pn�1T (A)

C
pn�1 ^Ncy(�)).

Proof. We �rst show that the map of the statement lands in the indicated
sub-di�erential graded ring. The map of components induced from the composite

�! Ncy(�)
�
�! �pn�1Ncy(�)Cpn�1 ! ��pn�1T (A[x])

C
pn�1

takes xi to �(xin). For by de�nition, the map A[x] ! TRn0 (A[x]; p), which takes g
to �(g

n
), is the map of components induced by the composite

A[x]! Ncy(A[x])
�
�! �pn�1Ncy(A[x])Cpn�1 ! ��pn�1T (A[x])

C
pn�1 :

And the composite

��pn�1T (A)
C
pn�1 �

�! ��pn�1T (A)
C
pn�1 ^N cy(�; 0)! ��pn�1T (A[x])

C
pn�1 ;

18



where the left hand map is the canonical isomorphism, is equal to the map induced
from � : A! A[x].

Let xi 2 ~H0(N
cy(�) be the image of the generator of ~H0(T=Ci+) given by the

point Ci. We show that the map of di�erential graded rings


�
Z[x]

�
�! ~H�(N

cy(�));

which takes x to x1 is an isomorphism. The map in homology induced by the
product

T=Ci+ ^ T=Ci0+ ! T=C(i+i0)+

takes the cycles Ci 
 Ci0 to the cycle Ci+i0 , and hence, xixi0 = xi+i0 . This proves
that the map is an isomorphism in degree zero. To prove that it is an isomorphism
in degree one, it suÆces to show that xi�1dx is a generator of ~H1(N

cy(�; i)). But
ixi�1dx = d(xi) and d(xi) is i times a generator.

Since the homology of Ncy(�) is torsion free, the spectral sequence obtained
from the skeleton �ltration of Ncy(�) takes the form

E2 = TRn� (A; p)
 ~H�(N
cy(�))) ��(�

�
pn�1T (A)

C
pn�1 ^Ncy(�)):

The spectral sequence is concentrated on the lines E2
0;� and E2

1;�, and hence all
di�erentials are zero. In particular, the edge homomorphism is an isomorphism.
We can write this as the composite

TRn� (A; p)
Z[x]! TRn� (A; p)
 
�
Z[x]! ��(�

�
pn�1T (A)

C
pn�1 ^Ncy(�));

where the left hand map is the inclusion and the right hand map is the map of the
statement. It remains to show that the induced map

(TRn
� (A; p)

�

Z[x])=(TR
n
� (A; p)
Z[x])! TR�(A; p)
 ~H1(N

cy(�))

is an isomorphism. The domain and range are both free TR�(A; p)
Z[x]-modules
of rank one. And the generator 1
 dx = d(1
x) on the left maps to the generator
1
 dx on the right. This completes the proof. �

3.4. It remains to prove that the homotopy groups of the lower wedge sum-
mands in (3.1.3) correspond to the lower summands in (3.1.1). This follows from
lemma 3.3.1 and the following

Lemma 3.4.1. Let T be a T-spectrum, let j 2 Ip, and let � : Cj=Cj ! T=Cj be
the canonical inclusion. Then for all integers q and v � 0, the map

V v�+ dV v� : �q(T )� �q�1(T )
�
�! �q(T ^ T=Cj+)

Cpv

is an isomorphism.

Proof. If X is a pointed Cpv -CW-complex, the skeleton �ltration gives rise
to a spectral sequence

E1
s;t = �s+t((T ^Xs=Xs�1)

Cpv )) �s+t((T ^X)Cpv ):

And if the Cpv -action on X is free away from the base point, the canonical map

�s+t((T ^X)Cpv )
�
�! (��(T ^X))Cpv

is an isomorphism. And since, non-equivariantly, Xs=Xs�1 is a wedge of s-spheres,
there are Cpv -equivariant isomorphisms

�s+t(T ^Xs=Xs�1)
�
 � �t(T )
 �s(Xs=Xs�1)

�
�! �t(T )
 ~Hs(Xs=Xs�1):
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Here the left hand map is the natural pairing and the right hand map is the Hurewitz
homomorphism. Hence, we have a natural isomorphism of chain complexes

E1
�;t
�= (�t(T )
 ~C�(X))Cpv ;

where ~C�(X) is the reduced cellular complex of X .

In the case at hand, we give X = T=Cj a Cpv -CW-structure with one free cell in

dimensions zero and one. Let g be the generator e2�i=p
v

2 Cpv . Then the attaching
maps

�s : D
s � Cpv ! Xs

are given by �0(g
n) = gnCj and �1(x; g

n) = gne�i(x+1)=pvCj , respectively. We
de�ne W (j) to be the complex of Z[Cpv]-modules which in degrees s = 0; 1 is a free
Z[Cpv]-module on a single generator ys with di�erential d(y1) = (gj � 1)y0. Then
the attaching maps de�ne an isomorphism of complexes

W (j)
�
�! C�(T=Cj);

which takes ys to the image of the generator of Hs(D
s; @Ds) corresponding to the

standard orientation of Ds. Since T is a T-spectrum the action of Cpv on �t(T ) is
trivial. Hence

E1
s;t
�= �t(T ) �Nys; s = 0; 1;

where N 2 Z[Cpv] is the norm element. And since gj 2 Cpv is a generator,

(gj � 1)N = N �N = 0;

so the d1-di�erential vanishes. The higher di�erentials are zero for degree reasons,
and hence, the groups �q((T ^T=Cj+)

Cpv ) are as stated, at least up to an extension.

It remains to show that the map of the statement is an isomorphism. We also
have a spectral sequence

E1
s;t = �s+t(T ^Xs=Xs�1)) �s+t(T ^X):

In the case at hand, the same reasoning as above gives a natural isomorphism of
complexes

E1
�;t
�= �t(T )
W (j):

It follows that E2
0;t
�= �t(T ) � y0 and E

2
1;t
�= �t(T ) �Ny1. The map

V v : ��(T ^ T=Cj+)! ��((T ^ T=Cj+)
Cpv )

induces a map of spectral sequences. With our identi�cation of the E1-terms, this
corresponds to the norm map

N : �t(T )
W (j)! (�t(T )
W (j))Cpv :

The induced map on E2
0;t maps x � y0 to x �Ny0, and hence, is an isomorphism. We

also note that the induced map on E2
1;t maps x �Ny1 to x �NNy1 = pvx �Ny1.

Finally, we show that under the above identi�cations, the composite

E2
0;t� �t((T ^ T=Cj+)

Cpv )
d
�! �t+1((T ^ T=Cj+)

Cpv )� E2
1;t

takes x � Ny0 to jx � Ny1. By naturality, we may assume that �t(T ) is torsion
free. For given x 2 �t(T ), we can �nd a map of T-spectra St ^ T+ ! T such that
the induced map on homotopy groups maps a generator of �t(S

t ^ T+) �= Z to x.
Hence, it suÆces to show that the composite

E2
0;t� �t((T ^ T=Cj+)

Cpv )
pvd
��! �t+1((T ^ T=Cj+)

Cpv )� E2
1;t
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takes x �Ny0 to p
vjx �Ny1. But x �Ny0 = V v(x � y0), and hence it suÆces to show

that the composite

E2
0;t� �t(T ^ T=Cj+)

d
�! �t+1(T ^ T=Cj+)� E2

1;t

takes x � y0 to jx �Ny1. This is the statement that the map

H1(T)
H0(T=Cj)
�
�! H1(T� T=Cj)

�
�! H1(T=Cj)

takes [T]
 y0 to jNy1, which is standard. �

4. The functor P (�)

4.1. We �rst evaluate the Witt ring Wn(A[x]).

Lemma 4.1.1. Let A be a ring. Then every element f (n) 2 Wn(A[x]) may be
written uniquely

f (n) =
X
j2N0

a
(n)
0;j x

j
n +

n�1X
s=1

X
j2Ip

V s(a
(n�s)
s;j xjn�s)

with a
(n�s)
s;j 2 Wn�s(A), and where all but �nitely many a

(n�s)
s;j are zero.

Proof. Let Qn be the set of expressions of the form

f (n) =
X
j2N0

a
(n)
0;j x

j
n +

n�1X
s=1

X
j2Ip

V s(a
(n�s)
s;j xn�s);

with the components a
(n�s)
s;j 2 Wn�s(A), all but �nitely many of which are zero.

We consider Qn an abelian group under componentwise addition. Moreover, inter-
preting the expression f (n) as an element of Wn(A[x]) de�nes an additive map

Qn !Wn(A[x]);

and it is clear that this is an isomorphism, for n = 1. The proof of the general case
is by induction on n based on the diagram

0 // Q1
V n�1

//

��

Qn
R //

��

Qn�1
//

��

0

0 // A[x]
V n�1

// Wn(A[x])
R // Wn�1(A[x]) // 0:

The lower sequence is exact and the right and left vertical maps are isomorphisms
by the inductive hypothesis. It thus suÆces to show that the upper sequence is
exact. The restriction R : Qn ! Qn�1,

Rf (n) =
X
j2N0

Ra
(n)
0;j x

j
n�1 +

n�2X
s=1

X
j2Ip

V s(Ra
(n�s)
s;j xn�1�s);

is surjective since R : Wn(A)!Wn�1(A) is surjective, and V
n�1 : Q1 ! Qn,

V n�1(f (1)) =
X
j2N0

V n�1(a
(1)
0;pn�1j)x

j
n +

n�1X
s=1

X
j2Ip

V s(V n�1�s(a
(1)
0;pn�1�sj)x

j
n�s);
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is injective since the maps V m : A ! Wm(A), 1 � m < n, are injective. It is
also clear that the composite RV n�1 is zero. Finally, Rf (n) vanishes if and only

if each a
(n�s)
s;i is in the kernel of R : Wn�s(A) ! Wn�1�s(A), or equivalently, if

a
(n)
s;j = V n�1�s(a

(1)
pn�1�sj). Hence f

(n�1) = V n�1(
P

j2N0
a
(1)
j xj). �

4.2. Let � : A ! A[x] be the inclusion of the constant polynomials. In this
paragraph, we give an explicit construction of the inverse image functor

�� : WA !WA[x]:

Let E = E�
�

be a Witt complex over A, we let P (E) = P (E)�
�

be the pro-graded
abelian group with P (E)qn equal to the set of all (�nite) formal sums of the form

(4.2.1)

X
j2N0

a
(n)
0;j x

j
n +
X
j2N

b
(n)
0;j x

j�1
n dxn

n�1X
s=1

X
j2Ip

�
V s(a

(n�s)
s;j xjn�s) + dV s(b

(n�s)
s;j xjn�s)

�
;

with components a
(m)
s;j 2 E

q
m and b

(m)
s;j 2 E

q�1
m . Addition is component-wise, and

the structure maps in the pro-system are induced from the ones in E. Given a Witt
complex E0 = E0

�

� over A[x] and a map f : E ! ��E
0 of Witt complexes over A,

the induced map of pro-graded abelian groups

(4.2.2) ~f : P (E)! E0

maps the formal sum (4.2.1) to the sum
X
j2N0

f(a
(n)
0;j )�

0(xjn) +
X
j2N

f(b
(n)
0;j )�

0(xn)
j�1d�0(xn)

n�1X
s=1

X
j2Ip

�
V s(f(a

(n�s)
s;j )�0(xn�s)) + dV s(f(b

(n�s)
s;j )�0(xjn�s))

�

in E0q
n. The requirement that for all E0 in WA0 , this be a map of Witt complexes

leaves only one possible way to de�ne a product, a di�erential, and the maps F
and V on P (E). We give the formulas which de�ne these operations. There are
several special cases to consider, and to enhance readability, we suppress all non-
essential indices. It is understood that the formulas are valid for all possible values
of non-restricted indices.

The di�erential

(4.2.3) d : P (E)qn ! P (E)q+1
n

is given by the following formulas:

d(V s(axj) = (da)xj + (�1)qjaxj�1dx; if s = 0,

= dV s(axj); if s > 0;

d(bxj�1dx) = (db)xj�1dx;

d(dV s(bxj) = 0:

The Frobenius

(4.2.4) F : P (E)qn ! P (E)qn�1
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is given by

F (V s(axj)) = F (a)xpj ; if s = 0,

= pV s�1(axj); if s > 0;

F (bxj�1dx) = F (b)xpj�1dx;

F (dV s(bxj)) = dV s�1(bxj):

The Verschiebung

(4.2.5) V : P (E)qn�1 ! P (E)qn

is given by

V (V s(axj)) = V s+1(axj);

V (bxj�1dx) = (�1)q�1
p

j
dV (bxj)

� (�1)q�1
1

j
V ((db)xj); if vp(j) = 0,

= V (b)xp
�1j�1dx; if vp(j) > 0;

V (dV s(bxj)) = pdV s+1(bxj):

The product

(4.2.6) �n : P (E)
q
n 
 P (E)

q0

n ! P (E)q+q
0

n

is given by

V s(axj)V s0(a0xj
0

) = psV s0(F s0�s(a)a0xp
s0�sj+j0 ); if 0 � s < s0,

= psV s0�v(V v(aa0)xp
�v(j+j0)); if 0 � s = s0 and

v = vp(j + j0) < s0,

= psV s0(aa0)xp
�s0 (j+j0); if 0 � s = s0 and

v = vp(j + j0) � s0;

V s(axj)b0xj
0�1dx = ab0xj+j

0�1dx; if s = 0,

= (�1)q+q
0 1

j + psj0
V s(d(aF s(b0))xj+p

sj0 )

� (�1)q+q
0 ps

j + psj0
dV s(aF s(b0)xj+p

sj0);

if 0 < s;

dV s(bxj)V s0(a0xj
0

) = V s0(F s0�s(db)a0xp
s0�sj+j0 )

+
ps

0

j

ps0�sj + j0
dV s0(F s0�s(b)a0xp

s0�sj+j0 )

�
j

ps0�sj + j0
V s0(d(F s0�s(b)a0)xp

s0�sj+j0 );

if 0 � s < s0,
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= V s0�v(V v(d(b)a0)xp
�v(j+j0))

+
ps

0

j

j + j0
dV s0�v(V v(ba0)xp

�v(j+j0))

�
pvj

j + j0
V s0�v(dV v(ba0)xp

�v(j+j0));

if 0 < s = s0 and

v = vp(j + j0) < s0,

= V s0(d(b)a0)xp
�s0 (j+j0)

+ (�1)q+q
0

jV s0(ba0)xp
�s0 (j+j0)�1dx;

if 0 < s = s0 and

v = vp(j + j0) � s0,

= (�1)qV s(bF s�s0(da0)xj+p
s�s0 j0)

+
ps

0

j

j + ps�s0j0
dV s(bF s�s0(a0)xj+p

s�s0 j0)

+
j0

j + ps�s0j0
V s(d(bF s�s0 (a0))xj+p

s�s0 j0);

if 0 � s0 < s;

bxj�1dx b0xj
0�1dx = 0;

dV s(bxj)b0xj
0�1dx = (�1)q�1+q

0 1

j + psj0
dV s(db F s(b0)xj+p

sj0)

+ (�1)q
0 1

j + psj0
V s(db F s(db0)xj+p

sj0 );

if 0 < s;

dV s(bxj)dV s0(b0xj
0

) = (�1)qdV s0(F s0�s(db)b0xp
s0�sj+j0 )

� (�1)q
j

ps0�sj + j0
dV s0(d(F s0�s(b)b0)xp

s0�sj+j0 );

if 0 � s < s0.

Finally, the map

(4.2.7) � : Wn(A[x])! P (E)0n

is given by

�(V s(axj)) = V s(�(a)xj):

Here we use lemma 4.1.1 to write every element of Wn(A[x]) as a sum of elements
of the form V s(axj) with a 2 Wn�s(A).

Theorem 4.2.8. The formulas (4.2.3){(4.2.7) make P (W
�

�A) a Witt complex

over A[x]. Moreover, the canonical map

W
�

�A[x]

�
�! P (W

�

�A)

is an isomorphism.
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Proof. Suppose that P (W
�

�A) is a Witt complex over A[x]. Then the com-

position of the map of the statement and the map

P (W
�

�A)!W

�

�A[x]

induced from the unique map W
�

�A ! ��W�


�A[x] is a self map of W
�

�A[x]. But

the only self map of an initial object is the identity, and hence the map of the
statement is injective. It is surjective because the composition


�W
�
(A[x]) !W

�

�A[x] ! P (W

�

�A)

is surjective. We proceed to prove that P (W
�

�A) is a Witt complex. The proof is

in two steps.

Suppose �rst that A is a �nitely generated polynomial algebra over Z(p). We
prove by induction on the number of variables that P (W

�

�A) is a Witt complex

and that the canonical map

W
�

�A[x] ! TR�

�(A[x]; p)

is injective. The proof of the basic case A = Z(p) and the induction step are similar.
In both cases, the starting point is the fact that the canonical map

W
�

�A ! TR�

�(A; p)

is injective. We proved in proposition 2.6.1 that this true if A = Z(p), and in the
induction step, it follows from the previous case. It follows that the induced map

P (W
�

�A)! P (TR�

�(A; p))

is injective. But the canonical map

P (TR�

�(A; p))
�
�! TR�

�(A[x]; p)

is an isomorphism by theorem C, and hence the canonical map

P (W
�

�A)! TR�

�(A[x]; p)

is injective. The de�nitions (4.2.3){ (4.2.7) were made such that this map is multi-
plicative and commutes with the maps d, F , V , and �. Hence, since TR�

�(A[x]; p)
is a Witt complex over A[x], so is P (W

�

�A). Finally, in the commutative diagram

P (W
�

�A)

� � //

�

��

P (TR�

�(A; p))

�

��

W
�

�A[x] // TR�

�(A[x]; p)

the top horizonal map is injective and the vertical maps isomorphisms. Hence the
lower horizontal map is injective.

Let A be a general Z(p)-algebra. To show that P (W
�

�A) is a Witt complex

over A[x] we must verify a number of relations. Each relation involves only a �nite
number of elements from W

�

�A. Hence, it suÆces to show that given a �nite set

of elements of W
�

�A, we can �nd a ring homomorphism A0 ! A from a �nitely

generated polynomial algebra over Z(p) such that this �nite set of elements is in
the image of the induced map

W
�

�A0 !W

�

�A:
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Indeed, we already know that P (W
�

�A0) is a Witt complex, so the corresponding

relations hold there. It is clear that given a �nite set of elements of 
�W
�
(A), we can

�nd A0 ! A, where A0 is a �nitely generated Z(p)-algebra, such that these elements
are in the images of 
�W

�
(A0) ! 
�W

�
(A). And since 
�W

�
(A) ! W

�

�A is surjective,

we are done. �

Proposition 4.2.9. Let E be a Witt complex over A. Then the product (4.2.6)
and the di�erential (4.2.3) makes P (E) a pro-di�erential graded ring, and the
map (4.2.7) is a map of pro-rings. The Frobenius (4.2.4) is multiplicative, and
the Frobenius (4.2.4) and Verschiebung (4.2.5) satis�es Frobenius reciprocity.

Proof. This is a long staightforward but tedious calculation which we omit.
Along the way one uses the relations among F , d and V in E. As an example, we
verify the associativity relation

(dV s(axj)b0xj
0�1dx)b00xj

00�1dx = dV s(axj)(b0xj
0�1dxb00xj

00�1dx):

The right hand side, by de�nition, is zero, so we must show that the left hand side,
too, is zero. This is easy if s = 0, so we consider the case s > 0. The product in
the parenthesis is equal to the unit (�1)q

0

=(j + psj0) times

(�1)q�1dV s(db F s(b0)xj+p
sj0 ) + V s(db F s(db0)xj+p

sj0 ):

If we multiply the �rst summand by b00xj
00�1dx from the right, we get the unit

(�1)q
00

=(j + psj0 + psj00) times

(�1)q
0

dV s(d(db F s(b0))F s(b00)xj+p
sj0+psj00 )

+ (�1)q�1V s(d(db F s(b0))F s(db00)xj+p
sj0+psj00 )

= (�1)q+q
0

psdV s(db F s(db0)F s(b00)xj+p
sj0+psj00 )

� psV s(db F s(db0)F s(db00)xj+p
sj0+psj00 ):

Here we use the relation dF s = psF s in E. Similarly, the product of the second
summand with b00xj

00�1dx is the same unit (�1)q
00

=(j + psj0 + psj00) times

(�1)q+q
0

V s(d(db F s(db0))F s(b00)xj+p
sj0+psj00 )

� (�1)q+q
0

psdV s(db F s(db0)F s(b00)xj+p
sj0+psj00 )

= psV s(db F s(db0)F s(db00)xj+p
sj0+psj00 )

� (�1)q+q
0

psdV s(db F s(db0)F s(b00)xj+p
sj0+psj00 ):

The sums cancel as desired. �

Proof of theorem B. To show that P (E) is a Witt complex over A[x], it
remains to verify that for all f 2 A[x],

Fd�(f
n
) = �(f

n�1
)p�1d�(f

n�1
):

This is a relation between elements in the image of the map P (W
�

�A) ! P (E)

induced by the unique map W
�

�A ! E. And the relation holds in P (W

�

�A) by

theorem 4.2.8. Hence it also holds in P (E).

The second part of the theorem is equivalent to the statement that the map

HomWA
(E; ��E

0)! HomWA[x]
(P (E); E0);
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which takes f : E ! ��E
0 to the induced map ~f : P (E) ! E0 is a bijection. The

inverse map takes g : P (E)! E0 to the composite

E
�
�! ��P (E)

��g
��! ��E

0;

where the right hand map takes a 2 Eq
n to ax0 2 P (E)qn. �

The proof of [14, proposition 1.3] shows that

r(f) = Fd�(f
n
)� �(f

n�1
)p�1d�(f

n�1
)

is an additive function of f . This makes it possible to prove that r(f) = 0 without
the use of theorem 4.2.8. We conclude with the following result, which we shall
need in paragraph 7 below.

Lemma 4.2.10. Let E0, E, and E00 be Witt complexes and suppose there is a
long-exact sequence of pro-abelian groups

: : :! E0
�

q fq

�! Eq
�

gq

�! E00
�

q hq
�! E0

�

q�1 ! : : :

such that the maps commute with F , d, and V . Then there is an induced long-exact
sequence of pro-abelian groups

: : :! P (E0)q
�

fq

�! P (E)q
�

gq

�! P (E00)q
�

hq
�! P (E0)q�1

�

! : : :

and the maps commute with F , d, and V .

Proof. Indeed, as an abelian group P (E)qn is the direct sum of copies of Eq
m

and Eq�1
m with 1 � m � n. �

5. The de Rham-Witt complex of Deligne-Illusie

5.1. For Fp -algebras, [12] contains a construction of the de Rham-Witt com-
plex that is somewhat more concrete than the construction in theorem A. In this
paragraph we extend Illusie's method to Z(p)-algebras. We recall from [12, I] that
a V -pro-complex over A consist of:

(i) a pro-di�erential graded ring D�
�

and a map of pro-rings

� : W
�
(A)! D0

�

;

(ii) an map of pro-graded abelian groups

V : D�
��1 ! D�

�

such that �V = V � and such that for all x; y 2 D�
�

and a 2 A,

V (xdy) = V (x)dV (y);

V (x)d�(an) = V (x�(an�1)
p�1)dV (�(an�1)):

A map of V -pro-complexes over A is a map of pro-DG-rings f : D�
�

! D0
�

� such
that �0 = f� and V 0f = fV .

There is natural forgetful functor from the category of Witt complexes over A
to the category of V -pro-complexes over A,

WA !W
0
A
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Indeed, the calculation

V (xdy) = V (xFdV y) = V (x)dV (y);

V (y)d�(an) = V (yFd�(an)) = V (y�(an�1)
p�1d�(an�1))

= V (y�(an�1)
p�1)dV (�(an�1));

shows that a Witt complex is a V -pro-complex upon forgetting the Frobenius.

The proof of theorem A shows that the category W 0
A has an initial object. A

more constructive proof is given by Illusie in [12, theorem I.1.3]. We will need this
construction later on, so we include it here.

Proposition 5.1.1. The category W 0
A has an initial object W 0

�


�A, and the
canonical map 
�W

�
(A) !W 0

�


�A is surjective.

Proof. One recursively de�nes the DG-rings W 0
m


�
A and the maps R, V , and

�, starting from W 0
1 


�
A = 
�A. So suppose that for all n < m, the DG-ring W 0

n

�
A

and the maps
R : W 0

n

�
A !W 0

n�1

�
A;

V : W 0
n�1


�
A !W 0

n 

�
A;

� : Wn(A)!W 0
k 


0
A;

have been constructed such that R is a map of DG-rings, V is additive, �R = R�,
�V = V �, and such that for all x; y 2W 0

n�1

�
A and a 2 A,

V (xdy) = V (x)dV (y);

V (x)d�(an) = V (x�(an�1)
p�1)dV (�(an�1)):

Suppose, in addition, that for all n < m, the canonical map


�Wn(A)
!W 0

n 

�
A

is surjective. Then, one de�nes

W 0
m


�
A = 
�Wm(A)=N

�
m;

where N�
m is the DG-ideal generated by the elements

(5.1.2)
X
�

V (�(x�))dV (�(y1;�)) : : : dV (�(yi;�));

for all x�; yi;� 2Wm�1(A) such that the sum
X
�

�(x�)d�(y1;�) : : : d�(yi;�)

is equal to zero in W 0
m�1


�
A, and by the elements

(5.1.3) V (�(x))d�(am)� V (�(x)�(am�1)
p�1)dV (�(am�1));

for all a 2 A and x 2 Wm�1(A). The unique DG-map


�Wm(A) ! W 0
m�1


�
A;

which extends �R : Wm(A)!W 0
m�1


0
A, factors to give a DG-map

R : W 0
m 
�A !W 0

m�1

�
A:

The additive map

V : W 0
m�1


�
A !W 0

m

�
A
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given by

V (�(x)d�(y1) : : : d�(yi)) = V (�(x))dV (�(y1)) : : : dV (�(yi))

is well-de�ned and satis�es that �V = V � and that for all x; y 2 W 0
m�1


�
A and

a 2 A,
V (xdy) = V (x)dV (y);

V (x)d�(am) = V (x�(am�1)
p�1)dV (�(am�1)):

This gives a V -pro-complex W 0
�


�A. One veri�es immediately that this is the inital
object in W 0

A. �

Lemma 5.1.4. The relation V d = pdV holds in W 0
�


�A.

Proof. It follows from the construction above that the map V is a map of
graded Wn(A)-modules

V : F�W
0
n�1


�
A !W 0

n

�
A;

where on the left, W 0
n�1


�
A is considered a Wn(A)-module via the Frobenius F :

Wn(A)!Wn�1(A). Hence,

V (dx) = V (1)dV (x) = d(V (1)V (x)) � dV (1) � V (x)

= dV (FV (1)x)� V (d(1)x) = pdV (x):

This proves the lemma. �

Lemma 5.1.5. Suppose that for A, the canonical map

W 0
�


�A !W
�

�A

is an isomorphism. Then the same is true A[x].

Proof. The assumption of the lemma implies that the induced map

P (W 0
�


�A)! P (W
�

�A)

is an isomorphism of pro-graded abelian groups. We proved in theorem 4.2.8 above
that the right hand side is a Witt complex over A[x]. Therefore, the left hand side
is a V -pro-complex over A[x]. But then the canonical map

W 0
�


�A[x] ! P (W 0
�


�A)

is an inverse of the map

~� : P (W 0
�


�A)!W 0
�


�A[x]

induced from W 0
�


�A ! ��W
0
�


�A[x]. �

Proof of theorem D. We must construct a map

F : W 0
n


�
A !W 0

n�1

�
A

and show that this makes W 0
�


�A a Witt complex over A.

Suppose �rst that A is a polynomial algebra over Z(p) in a �nite number of
variables. Then, we claim, the canonical map

W 0
�


�A !W
�

�A

is an isomorphism. By lemma 5.1.5 it suÆces to consider the case A = Z(p). And in
this case, the statement follows from example 1.2.4 and the calculation of W

�

�
Z(p)

.
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In the general case, we �rst construct a derivation

Æ : Wn(A)!W 0
n�1


�
A

such that once F is de�ned, Æ = Fd�. Given a Witt vector

a = a0n + V (a1n�1) + � � �+ V n�1(an�11);

we de�ne

Æ(a) = �(a0n�1)
p�1d�(a0n�1) + d�(a1n�1) + � � �+ dV n�2(�(an�11)):

In order to verify that Æ is a derivation, we may assume that A is a polynomial
algebra over Z(p) in a �nite number of variables. But in this case, the canonical
map

W 0
�


�A !W
�

�A

is an isomorphism, and the composite

Wn(A)
Æ
�!W 0

n�1

�
A
�
�!Wn�1


�
A

is equal to Fd�, which is indeed a derivation.

There is a unique map of graded Wn(A)-algebras

F 0 : 
�Wn(A)
! F�W

0
n�1


�
A

such that F 0d = Æ : Wn(A) ! W 0
n�1


1
A, and we claim that F 0 annihilates the

di�erential graded ideal N�
n. Indeed, it follows immediately from the de�nition of

Æ that Æ(V (a)) = da, and hence, F 0 annihilates elements of the from (5.1.2). And
the calculation

F 0(V (�(x))d�(an�1)� V (�(x)�(an�1)
p�1)dV (�(an�1)))

= p(�(x)Æ(�(an�1))� �(x)�(an�1)
p�1Æ(�(an�1))) = 0;

show that F 0 annihilates the elements (5.1.3), too. Hence, the map F 0 factors to
give a map of graded Wn(A)-algebras

F : W 0
n 


�
A !W 0

n�1

�
A:

It is clear from the way that F was constructed that the canonical map

W 0
�


�A !W
�

�A

commutes with Frobenius operators. The map is an isomorphism, if A is a polyno-
mial algebra in �nitely many variables over Z(p). Hence, in this case, the operator
F satis�es the relations which makes W 0

�


�A a Witt complex. But then it satis�es
these relations, for every Z(p)-algebra. �

6. Etale extensions

6.1. A map of rings f : A ! B, we recall, is �etale if it is �nitely presented,
at, and if 
1

B=A vanishes; see [5, x17]. Let A be a ring in which p is a non-zero-

divisor, and let Wn;v(A) be the reduction modulo pv of the Witt ring Wn(A). We
show in proposition 6.2.2 below that if A! B is �etale, then also the induced map

Wn;v(A)!Wn;v(B)

is �etale The analogous statement for Fp -algebras was proved in [12, proposition
0.1.5.8], and the proof in the case we consider is similar.
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We need a slight generalization of a standard result about atness and �ltra-
tions, [3, chap. III, x5]. Let A be a ring and let FilsA, 0 � s < n, be a �nite
descending �ltration by ideals,

A = Fil0A � Fil1A � � � � � Filn A = 0:

The �ltration is called multiplicative if for 0 � s; t < n, the multiplication maps

FilsA
A FiltA! Fils+tA:

If N is an A-module, we have the induced �ltration FilsN , 0 � s < n, where FilsN
is the image of the canonical map FilsA
A N ! N .

Lemma 6.1.1. Let FilsA, 0 � s < n, be a �nite descending multiplicative �l-
tration of the ring A, and let M be an A module. Suppose that gr0M is a at
gr0A-module and that the canonical map

Fil1A
AM
�
�! Fil1M

is an isomorphism. Then M is a at A-module.

Proof. The sequence

TorA1 (A;M)! TorA1 (gr
0A;M)! Fil1A
AM !M

shows that TorA1 (gr
0A;M) vanishes. Since gr0M is assumed gr0A-at, this implies

that TorA1 (N;M) vanishes for every A-module N which is annihilated by Fil1A.
Indeed, the change of rings spectral sequence

E2
s;t = Torgr

0 A
p (N;TorAq (gr

0A;M))) TorAs+t(N;M)

has vanishing E2-term in total degree one. In general, the short exact sequences

0! Fils+1N ! FilsN ! FilsN=Fils+1N ! 0

give rise to exact sequences

TorA1 (Fil
s+1N;M)! TorA1 (Fil

sN;M)! TorA1 (Fil
sN=Fils+1N;M):

The right hand term vanishes by the above, since the module FilsN=Fils+1N is

annihilated by Fil1A. But FilnN is zero, and hence by easy induction, TorA1 (N;M)
vanishes. Thus M is a at A-module. �

Lemma 6.1.2. Let Fils A, 0 � s < n, be a �nite descending multiplicative �ltra-
tion of the ring A, and let M be an A module. Suppose that for 0 � s < n, the
canonical map

grsA
gr0 A gr0M
�
�! grsM

is an isomorphism. Then Fils A
AM
�
�! FilsM is an isomorphism, 0 � s < n.

Proof. The assumptions imply that the canonical map

grsA
AM
�
�! grsM

is an isomorphism. Indeed, the left hand map in the exact sequence

grsA
A Fil1M ! grs A
AM ! grs A
A gr0M ! 0
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is zero. The statement now follows from the diagram

Fils+1A
AM
//

��

FilsA
AM //

��

grsA
AM //

�

��

0

0 // Fils+1M // FilsM // grsM // 0

by induction, starting from s = n� 1. �

Lemma 6.1.3. Let f : A! B be a ring homomorphism, let I � A be a nilpotent
ideal, and suppose that 
1

(B=IB)=(A=I) vanishes. Then 
1
B=A vanishes.

Proof. In the short-exact sequence

0! I
1
B=A ! 
1

B=A ! 
1
B=A 
A A=I ! 0;

the right hand term is isomorphic to 
1
(B
AA=I)=(A=I)

, which vanishes by assump-

tion. Hence, the left hand map is an isomorphism. By simple induction, so is

In
1
B=A

�
�! 
1

B=A;

for all n � 0, and since I is nilpotent, 
1
B=A is zero. �

6.2. If p is a non-zero-divisor in A and if f : A ! B is at, then p is a
non-zero-divisor in B. Indeed, this follows from the diagram

0 // A
A B
p

//

�

��

A
A B //

�

��

A=p
A B //

��

0

B
p

// B // B=p // 0:

We recall from [6, XIV, x1, prop. 2] that if f : A! B is an �etale map of Fp -algebras,
then the following diagram, where ' is the Frobenius, is cocartesian:

(6.2.1) A
'

//

f

��

A

f

��

B
'

// B

This means that we can write every b 2 B as a sum

b =
X
i

bpi f(ai)

with bi 2 B and ai 2 A.

Proposition 6.2.2. Let f : A ! B be an �etale map and suppose that p is a
non-zero-divisor in A. Then for all n; v � 1 and all 0 � s < n, Wn;v(f) is �etale
and the diagrams

Wn;v(A)
Rn�s //

Wn;v(f)

��

Ws;v(A)

Ws;v(f)

��

Wn;v(A)
Fn�s //

Wn;v(f)

��

Ws;v(A)

Ws;v(f)

��

Wn;v(B)
Rn�s // Ws;v(B) Wn;v(B)

Fn�s // Ws;v(B)

cocartesian.
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Proof. Suppose �rst that v = 1. The V -�ltrations of Wn;1(A) and Wn;1(B)
are �nite and multiplicative. But in order to apply the results of the previous
section, we must �rst show that the V -�ltration ofWn;1(B) is equal to the �ltration
induced by the V -�ltration of Wn;1(A), or equivalently, that the canonical map

Wn;1(B)
Wn;1(A) V
sWn;1(A)! V sWn;1(B)

is surjective. This, we note, is equivalent to the statement that the left hand square
in the statement of the proposition is cocartesian. Indeed, there is a natural short-
exact sequence of Wn;v(A)-modules

0! F s
�Wn�s;1(A)

V s

��!Wn;1(A)
Rn�s
���! Rn�s

� Ws;1(A)! 0;

and the left hand map has image V sWn;1(A). In particular, it will suÆce to consider
the case s = n� 1. But the map

Wn;1(B)
Wn;1(A) F
n�1
� A1 ! Fn�1

� B1

takes bn 
 a to b
pn�1

f(a), and hence, is surjective by (6.2.1). Indeed, f1 : A1 ! B1

is �etale since f : A ! B is. Hence, the V -�ltration of Wn;1(B) is equal to the
�ltration induced from the V -�ltration of Wn;1(A). We can now conclude from
lemma 6.1.2 that the canonical map

Wn;1(B)
Wn;1(A) V
sWn;1(A)

�
�! V sWn;1(B)

is an isomorphism, or equivalently, that the right hand square in the statement of
the proposition is cocartesian (with s and n� s interchanged). Indeed, the map

grsV Wn;1(A)
gr0
V
Wn;1(A) gr

0
V Wn;1(B)! grsV Wn;1(B)

is naturally identi�ed with the canonical map

's�A1 
A1 B1
�
�! 's�B1;

and the latter is an isomorphism by (6.2.1).

We can now show that Wn;1(f) is �etale. First, Wn;1(f) is �nitely presented. To
see this, it suÆces to show that gr�V Wn;1(f) is �nitely presented. But this follows
from the isomorphism

B1 
A1 gr
�

V Wn;1(A)
�
�! gr�V Wn;1(B);

since f1 : A1 ! B1 is �nitely presented. Next, it follows from lemma 6.1.1 that
Wn;1(f) is at; for f1 : A1 ! B1 is at and

Wn;1(B) 
Wn;1(A) V Wn;1(A)
�
�! V Wn;1(B)

is an isomorphism. Finally, since V Wn;1(A) � Wn;1(A) is a square-zero ideal,
and since 
1

B1=A1
vanishes, lemma 6.1.3 shows that 
1

Wn;1(B)=Wn;1(A)
is zero. This

completes the proof of the proposition, if v = 1.

In the general case v � 1, we consider the p-adic �ltration of Wn;v(A), which is
�nite and multiplicative. Moreover, the canonical map, clearly, is an isomorphism:

psWn;v(A)
Wn;v(A) Wn;v(B)
�
�! psWn;v(B):

Hence, one can easily conclude from the case v = 1 thatWn;v(f) is �etale. It remains
to prove that the two squares in the statement of the proposition are cocartesian.
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As we noted earlier, this is equivalent to the statement that for all 0 � s < n, the
canonical map

V sWn;v(A) 
Wn;v(A) Wn;v(B)! V sWn;v(B)

is an isomorphism. Injectivity follows immediately from the fact that Wn;v(f) is
at. For surjectivity it suÆces to prove the case s = n� 1. It follows by induction
from (6.2.1) that every b 2 B can be written

b =
X

aib
pn�1

i + pvb0

with ai 2 A and bi; b
0 2 B. Hence

V n�1(b) =
X

V n�1(ai)bi + pvV n�1(b0);

which proves surjectivity. �

Proposition 6.2.3. Let A ! B be an �etale map and suppose that p is a non-
zero-divisor in A. Then for all n; v � 1 and q � 0, the canonical map

Wn;v(B)
Wn;v(A) Wn;v

q
A
�
�!Wn;v


q
B

is an isomorphism.

Proof. This is proved from proposition 6.2.2 by the argument of [12, propo-
sition I.1.14]: to produce the inverse of the map of the statement one shows that
the left hand side is a V -pro-complex. �

Proposition 6.2.4. Let f : A ! B be an �etale map and suppose that p is a
non-zero-divisor in A. Then for all n; v � 1 and q � 0, the canonical map

Wn;v(B)
Wn;v(A) TR
n
q (A; p;Z=p

v)
�
�! TRnq (B; p;Z=p

v)

is an isomorphism.

Proof. The proof is by induction on n starting from the case n = 1, which
was proved in [4, proposition 3.2.1]. The proof of the induction step is similar to
the proof of [9, theorem 5.5]. In brief, there is a natural long exact sequence of
Wn;v(A)-modules

� � � ! hTR
n
q (A; p;Z=p

v)! TRnq (A; p;Z=p
v)

R
�! R�TR

n�1
q (A; p;Z=pv)! : : :

The base-change of this sequence along Wn;v(f), which is exact since Wn;v(f) is
at, maps to the long-exact sequence of Wn;v(B)-modules

� � � ! hTR
n
q (B; p;Z=p

v)! TRnq (B; p;Z=p
v)

R
�! R�TR

n�1
q (B; p;Z=pv)! : : :

The map of the right hand terms,

Wn;v(B)
Wn;v(A) R�TR
n�1
q (A; p;Z=pv)! R�TR

n�1
q (B; p;Z=pv);

inductively, is an isomorphism, since the left hand square in the statement of propo-
sition 6.2.2 is cocartesian. In order to show that the map of left hand terms,

Wn;v(B)
Wn;v(A) hTR
n
q (A; p;Z=p

v)! hTR
n
q (B; p;Z=p

v);

is an isomorphism, we recall that there is a natural �rst quadrant spectral sequence
of Wn;v(A)-modules

E2
s;t = Hs(Cpn ; F

n�1
� TR1

�(A; p;Z=p
v))) hTR

n
s+t(A; p;Z=p

v);
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see the discussion preceeding [9, theorem 5.5] and also [8, x4]. The desired isomor-
phism now follows from the case n = 1, since the left hand square in the statement
of proposition 6.2.2 is cocartesian. �

7. Smooth V -algebras

7.1. In this paragraph we prove theorem E of the introduction. Let V be a
complete discrete valuation ring of mixed characteristic (0; p) with quotient �eld K
and perfect residue �eld k. Let A be a smooth V -algebra, let AK = A 
V K, and
let Ak = A
V k.

Lemma 7.1.1. Let A be a smooth V -algebra and let f : A! B be an �etale map.
Then the canonical map is an isomorphism:

Wn;v(B)
Wn;v(A) TR
n
q (AjAK ; p;Z=p

v)
�
�! TRnq (BjBK ; p;Z=p

v):

Proof. We recall from proposition 6.2.4 that the canonical map

Wn;v(B)
Wn;v(A) TR
n
q (A; p;Z=p

v)
�
�! TRnq (B; p;Z=p

v)

is an isomorphism. We have the long-exact sequence of Wn;v(A)-modules

: : :! TRnq (Ak ; p;Z=p
v)

i!
�! TRnq (A; p;Z=p

v)
j�
�! TRnq (AjAK ; p;Z=p

v)! : : : ;

where the left hand term is a Wn;v(A)-module via i� : Wn;v(A) ! Wn;v(Ak). We
claim that also the canonical map

Wn;v(B) 
Wn;v(A) TR
n
q (Ak ; p;Z=p

v)! TRnq (Bk; p;Z=p
v)

is an isomorphism. Since Wn;v(A) ! Wn;v(B) is at by proposition 6.2.2, the
obvious �ve-lemma argument completes the proof. To prove the claim, we �rst
recall from [7, proposition 2.4.4] that the canonical map

Wn(Bk)
Wn(Ak) TR
n
q (Ak ; p)

�
�! TRnq (Bk; p)

is an isomorphism; the proof is analogous to the proof of proposition 6.2.4 above.
A �ve-lemma argument based on the coeÆcient sequence

: : :! TRnq (Ak ; p)
pv

�! TRnq (Ak; p)! TRn
q (Ak; p;Z=p

v)
�
�! TRnq�1(Ak ; p)! : : :

shows that the canonical map

Wn;v(Bk)
Wn;v(Ak) TR
n
q (Ak; p;Z=p

v)
�
�! TRnq (Bk; p;Z=p

v)

is an isomorphism. Hence, it suÆces to show that

Wn;v(B)
Wn;v(A) Wn;v(Ak)!Wn;v(Bk)

is an isomorphism. The statement for v implies the statement for v � 1, so we can
assume that n � v. Then Wn;v(Ak) = Wn(Ak) and Wn;v(Bk) = Wn(Bk). We
proceed by induction on 1 � n � v starting from the trivial case n = 1. In the
induction step, we consider the short exact sequence of Wn;v(A)-modules

0! Fn�1
� Ak

V n�1

���!Wn(Ak)
R
�! R�Wn�1(Ak)! 0
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(the corresponding sequence for Wn;v(Ak) is not exact, if v < n). We wish to show
that the upper horizontal map in the diagram

Wn;v(B)
Wn;v(A) F
n�1
� Ak // Fn�1

� Bk

Wn;v(B) 
Wn;v(A) F
n�1
� A
A Ak

� //

�

OO

Fn�1
� B 
A Ak;

�

OO

is an isomorphism. But proposition 6.2.2 shows that the lower horizontal map is
an isomorphism, and the vertical maps are isomorphisms for trivial reasons. One
shows in a similar fashion that the map

Wn;v(B)
Wn;v(A) R�Wn�1(Ak)
�
�! R�Wn�1(Bk)

is an isomorphism. This completes the proof. �

We recall from the introduction that W
�
!�(A;MA)

denotes the universal Witt

complex over the log ring (A;MA); see also [8, section 3.2].

Lemma 7.1.2. Let A be a smooth V -algebra and let f : A! B be an �etale map.
Then the canonical map is an isomorphism:

Wn;v(B)
Wn;v(A) Wn;v !
q
(A;MA)

�
�!Wn;v !

q
(B;MB)

:

Proof. This is similar to the proof of proposition 6.2.3. �

Lemma 7.1.3. Let A be a smooth V -algebra. Then the canonical map

P (TR�

�(AjAK ; p;Z=p
v))

�
�! TR�

�(A[x]jA[x]K ; p;Z=p
v)

is an isomorphism.

Proof. By theorem C, the canonical map

P (TR�

�(R; p))
�
�! TR�

�(R[x]; p)

is an isomorphism, for every Z(p)-algebra R. The coeÆcient sequence

� � � ! TRnq (R; p)
pv

�! TRnq (R; p)! TRnq (R; p;Z=p
v)

�
�! TRnq�1(R; p)! : : : ;

by lemma 4.2.10, gives rise to a long-exact sequence

� � � ! P (TR�

�(R; p))
n
q

pv

�! P (TR�

�(R; p))
n
q ! P (TR�

�(R; p;Z=p
v))nq ! : : :

which maps to the coeÆcient sequence

� � � ! TRn
q (R[x]; p)

pv

�! TRnq (R[x]; p)! TRnq (R[x]; p;Z=p
v)! : : :

By theorem C, this is an isomorphism of two out of three terms, and hence, of the
remaning terms. This shows that for every Z(p)-algebra R, the canonical map

P (TR�

�(R; p;Z=p
v))

�
�! TR�

�(R[x]; p;Z=p
v)

is an isomorphism. This applies, in particular, to R = A and R = Ak. A similar
argument based on the sequence

� � � ! TRnq (Ak; p;Z=p
v)

i!
�! TRnq (A; p;Z=p

v)
j�
�! TRnq (AjAK ; p;Z=p

v)! : : :

completes the proof. �
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Lemma 7.1.4. Let A be a V -algebra. Then the canonical map

P (W
�
!�(A;MA)


ZSZ=pv(�pv ))
�
�!W

�
!�(A[x];MA[x])


ZSZ=pv(�pv )

is an isomorphism.

Proof. Let � : A ! A[x] be the inclusion of the constant polynomials. A
functor which has a right adjoint preserves colimits; in particular, it preserves
initial objects. It follows that the canonical map

W
�
!�(A[x];MA[x])

�
�! ��W

�
!�(A;MA)

is an isomorphism. Hence, by theorem B, we have a canonical isomorphism

W
�
!�(A[x];MA[x])

�
�! P (W

�
!�(A;MA)

):

Finally, the canonical map

P (W
�
!�(A;MA)

)
ZSZ=pv(�pv )
�
�! P (W

�
!�(A;MA)


ZSZ=pv(�pv ))

is an isomorphism, since F (resp. d) is the identity map (resp. the zero map) on
the factor SZ=pv(�pv ). For instance,

V s(!)
 � = V s(! 
 F s(�)) = V s(! 
 �):

The lemma follows. �

A pro-abelian group D is Mittag-Le�er zero, if for all n � 1, there exists m � n
such that the structure map Dm ! Dn is zero. A map f : D ! D0 of pro-abelian
groups is a pro-isomorphism if and only if the kernel and cokernel of f are Mittag-
Le�er zero.

Lemma 7.1.5. Let f : E ! E0 be a map of Witt complexes and suppose this map
is a pro-isomorphism. Then also P (f) : P (E)! P (E0) is a pro-isomorphism.

Proof. Let K be the kernel of f : E ! E0 considered as a map of pro-
abelian groups, and, by slight abuse of notation, let P (K) denote the kernel of
P (f) : P (E) ! P (E0) considered as a map of pro-abelian groups. For n � 1, we
can �nd t � 0 such that for all 1 � s � n, the structure map Es+t ! Es is equal
to zero. By inspection, we see that the structure map P (K)n+t ! P (K)n is zero,
and hence, P (K) is Mittag-Le�er zero. A similar argument shows that also the
cokernel of P (f) : P (E)! P (E0) is Mittag-Le�er zero. �

Proof of theorem E. We recall from [5, corollary 17.11.4] that a V -algebra
A is smooth if and only if there exists relatively prime elements f1; : : : ; fr 2 A and
�etale maps

V [x1; : : : ; xn]! Afi :

We �rst prove the statement for polynomial algebras. The proof is by induction on
the number of variables; the basic case A = V is the statement of [8, theorem C].
In the induction step, we assume the statement for A and consider the diagram

P (W
�
!�(A;MA)


ZSZ=pv(�pv ))
� //

�

��

P (TR�

�(AjAK ; p;Z=p
v))

�

��

W
�
!�(A[x];MA[x])


ZSZ=pv(�pv ) // TR�

�(A[x]jA[x]K ; p;Z=p
v):
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The left and right hand vertical maps are isomorphism by lemmas 7.1.4 and 7.1.3,
respectively, and the top horizontal map is a pro-isomorphism by lemma 7.1.5 and
by the assumption that the theorem holds for A. This proves the induction step.

Let A be a smooth V -algebra, let f : A! B be an �etale map, and suppose that
the theorem holds for A such that the canonical map

W
�
!�(A;MA)


ZSZ=pv(�pv )
�
�! TR�

�(AjAK ; p;Z=p
v)

is a pro-isomorphism of pro-graded W
�;v(A)-modules. Then the map obtained by

base-change along W
�;v(f) again is a pro-isomorphism, and hence, lemmas 7.1.2

and 7.1.1 show that the canonical map

W
�
!�(B;MB)


ZSZ=pv(�pv )
�
�! TR�

�(BjBK ; p;Z=p
v)

is a pro-isomorphism.

The proof is completed by the following covering argument: let En be a functor,
which to a smooth V -algebra A associates a Wn;v(A)-module En(A), and suppose
that for all f 2 A, the canonical map

Wn;v(Af )
Wn;v(A) En(A)
�
�! En(Af )

is an isomorphism. If f1; : : : ; fr 2 A are relatively prime, the diagram

Wn;v(A) //
Q

1�i�rWn;v(Afi)
//
//

Q
1�i;j�rWn;v(Afifj )

is an equalizer. Indeed, this is the statement that Wn;v(OX) is a sheaf of rings; for
a proof see [22, II.1, lemmas 1 and 2]. Moreover, by proposition 6.2.2, each term in
the diagram is a atWn;v(A)-module, and hence, the diagram remains an equalizer
upon tensoring with En(A). It follows that the diagram

En(A) //
Q

1�i�r En(Afi)
//
//

Q
1�i;j�r En(Afifj )

is an equalizer. �
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