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MOD p HOMOLOGY OF THE STABLE MAPPING CLASS

GROUP

SØREN GALATIUS

Abstract. By a recent result of Madsen and Weiss, the classifying space
BΓ∞ of the stable mapping class group is homology equivalent to a compo-
nent of the space Ω∞

�
P∞

−1. In this paper, we compute the homology algebra
H∗(Ω

∞
�

P∞

−1; � p) and hence the group homology H∗(Γ∞; � p).
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1. Introduction

Let Fg,1+1 be a surface of genus g with two boundary components, and Diff+(Fg,1+1)
the topological group of boundary and orientation preserving diffeomorphisms of
Fg,1+1. The space

∐

g≥0

BDiff(Fg,1+1, ∂)

classifies fibre bundles of surfaces with trivial boundary. Gluing along the bound-
ary makes this space a topological monoid, and we can form the group completion

�
× BΓ+

∞ := ΩB

(

∐

g≥0

BDiff(Fg,1+1, ∂)

)

By a recent result of Madsen and Weiss ([MW]), this space is homotopy equiv-
alent to another space Ω∞ � P∞

−1 which we proceed to define.
Let L⊥

n = {(v, L) ∈ � n+1 × � P n | v ∈ L⊥} be the orthogonal complement of
the canonical line bundle and let Th(L⊥

n ) be its Thom space. Since L⊥
n+1| � P n =

L⊥
n ⊕ � , there are stabilisation maps

S2 ∧ Th(L⊥
n )→ Th(L⊥

n+1)

defining a (pre-)spectrum � P∞
−1 with

( � P∞
−1)2n+2 = Th(L⊥

n )

Thus if L denotes the canonical line bundle over � P∞ and −L its inverse virtual
bundle, then the Thom class λ−L sits in degree −2.

The space

Ω∞ � P∞
−1 = colim Ω2n+2( � P∞

−1)2n+2

is the associated infinite loop space and

Ω∞Σ � P∞
−1 = colim Ω2n+1( � P∞

−1)2n+2

is its first deloop.
The precise statement of the Madsen-Weiss theorem is that a certain map

�
×

BΓ+
∞ → Ω∞ � P∞

−1 is a homotopy equivalence. By a theorem of Harer and Ivanov,
the homology in a degree of the unstable groups Γg,b = π0Diff(Fg,b) is independent
of g and b for g sufficiently large. Thus H∗(BΓ∞; Λ) = H∗(Ω∞

0 � P∞
−1; Λ) classifies

stable characteristic classes of surface bundles. In this paper we calculate the
homology algebra H∗(Ω

∞
0 � P∞

−1; � p) for any prime p.
Along the way, we compute the homology Hopf algebra H∗(Ω

∞Σ � P∞
−1; � p) of

the first deloop. This space enters the theory of high-dimensional manifolds via
the cyclotomic trace

trc : A(∗)→ TC(∗)

in which the codomain TC(∗) is homotopy equivalent to QS0 × Ω∞Σ � P∞
−1 after

profinite completion.
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1.1. Outline. The methods used for the calculation are very classical. The start-
ing point is a cofibration sequence

S−2 → � P∞
−1 → Σ∞ � P∞

+

of spectra, in which the map S−2 → � P∞
−1 is induced by the inclusion of a fibre

� n → L⊥
n and the map � P∞

−1 → Σ∞ � P∞
+ is induced by the zero section of Ln:

Th(L⊥
n )→ Th(L⊥

n ⊕ Ln) = � P n
+ ∧ S2n+2.

This cofibration sequence induces a fibration sequence of the associated infinite
loop spaces

Ω∞Σ � P∞
−1

ω
Q(Σ � P∞

+ )
∂

QS0 (1.1)

where Q(X) = Ω∞Σ∞(X) for a pointed space X. Both H∗(Q0S
0) and H∗(QΣ � P∞

+ )
are known, as is the induced map ∂∗ in homology.

In section 2, we recall the needed results about the Eilenberg-Moore spectral
sequence and the functor Cotor. In section 3, we recall the definition of the Dyer-
Lashof algebra R and the category of unstable R-modules and the free functor D
from vectorspaces to unstable R-modules. We recall the expression of H∗(QX)
as a functor of H∗(X), needed for the cases X = Σ � P∞

+ and X = S0. Finally,
we introduce a new algebra � projecting to R and a corresponding category of
unstable � -modules. This algebra is a “free” version of R, and is used to keep
track of relations in R.

Section 4 contains the core of the calculation, namely the algebraic computa-
tions in R where the map ∂∗ is studied from a homological algebraical viewpoint.
In the sections 5 and 6 these results are applied to compute the Eilenberg-Moore
spectral sequences converging to homology of Ω∞ � P∞

−1 and Ω∞Σ � P∞
−1.

Finally in section 7 we carry out the details of the computation at the prime
2.

1.2. Acknowledgements. This calculation is part of my phd-project at the
University of Aarhus. It is a great pleasure to thank my thesis advisor Ib Madsen
for his help and encouragement during my years as a graduate student.

2. Recollections

In this introductory section we collect the results we need later in the paper. We
start by recalling some important results on the structure of Hopf algebras from
[MM] and proceed to review the functor Cotor and the closely related Eilenberg-
Moore spectral sequence, cf. [EM], [MS].

2.1. Hopf algebras. Here and elsewhere, the field � p with p elements is the
ground field, and ⊗ = ⊗ �

p
. Until further notice, p is assumed odd. Algebras and

coalgebras are as in [MM] and in particular they always have units resp. counits.
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Definition 2.1. When A is a coalgebra and MA, AN are A-comodules with struc-
ture maps ∆M : M → M ⊗ A and ∆N : N → A ⊗ N , the cotensor product is
defined by the exact sequence

0 M�AN M ⊗N M ⊗ A⊗N

where the right-hand morphism is ∆M ⊗N −M ⊗∆N . The functors M�A− and
−�AN are left exact functors from A-comodules to k-vectorspaces in general, and
to A-comodules when A is cocommutative.

Definition 2.2. For a morphism f : A → B of Hopf algebras, define the kernel
and cokernel

A\\f = A�Bk, B//f = B ⊗A k

A priori, the kernel and cokernel are vectorspaces, but when A and B are
commutative and cocommutative, they become Hopf algebras and are the kernel
and cokernel in the categorical sense. Hopf algebras that are both commutative
and cocommutative are called abelian, and the category of those is an abelian
category (this essentially follows from [MM, Prop. 4.9]).

All Hopf algebras appearing in this paper will be abelian, of finite type and
connected, i.e. in degree zero A0 = k is a copy of the ground field (except for �
and R that are not commutative and not connected). We cite results for this
class of Hopf algebras, although some of the results are valid for a larger class of
Hopf algebras.

Definition 2.3. For an augmented algebra A, IA = Ker(ε : A→ k) and dually
for an augmented coalgebra A, JA = Cok(η : k → A). Let Q and P be the
functors defined by the exact sequences

IA⊗ IA
ϕ

IA QA 0

and

0 PA JA
∆

JA⊗ JA

As functors from abelian Hopf algebras to vectorspaces, Q is right exact and
P is left exact ([MM, Prop 4.10]).

When A is connected, PA ⊆ A is the subset of elements x satisfying ∆x =
x⊗ 1 + 1⊗ x.

The functors P and Q are related by the short exact sequence of [MM, Thm.
4.23]:

Theorem 2.4. For an abelian Hopf algebra A, let ξ : A → A be the Frobenius
map x 7→ xp and let λ : A → A be the dual of ξ : A∗ → A∗. Let ξA ⊆ A be
the image of ξ and let A→ λA be the coimage of λ. Then there is the following
natural exact sequence

0 PξA PA QA QλA 0 (2.1)
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In particular PA → QA is an isomorphism except possibly in degrees ≡ 0
(mod 2p).

Finally, we recall Borel’s structure theorem ([MM, Theorem 7.11])

Theorem 2.5. Any Hopf algebra A is isomorphic as an algebra to a tensor
product of Hopf algebras of the form E[x], � p[x] and � p[x]/(xpn

), with x primitive.

Corollary 2.6. A is isomorphic as an algebra to a polynomial algebra if and only
if ξ : A → A is injective. Dually, A∗ is polynomial if and only if λ : A → A is
surjective. �

2.2. The functor Cotor. When A is a coalgebra and B and C are left resp. right
A-comodules, the functor

CotorA(B, C)

is defined as the right derived functor of the cotensor product �A. To be explicit
(and to fix grading conventions), choose an injective resolution 0 → B → I0 →
I−1 → . . . of B in the category of right A-comodules and set

CotorA
n (B, C) = Hn(I∗�AC)

When A, B and C are in the graded category, Cotor gets an inner grading and
is thus bigraded with CotorA

n,m(B, C) = (CotorA
n (B, C))m. When A, B, C are all

positively graded, Cotor is concentrated in the second quadrant.
When A, B and C are of finite type over a field, this functor is dual to the

more common Tor:

CotorA(B, C) =
(

TorA∗

(B∗, C∗)
)∗

This follows immediately from the duality between �A and ⊗A∗.
We shall consider Cotor as a functor from diagrams of cocommutative coalge-

bras

�
=











B

C A











to coalgebras. The external product is an isomorphism (see [CE, Theorem 3.1,
p. 209])

CotorA(B, C)⊗ CotorA′

(B′, C ′)→ CotorA⊗A′

(B ⊗ B′, C ⊗ C ′)

and under this isomorphism the comultiplication in CotorA(B, C) is given by the
comultiplication ∆ :

�
→

�
⊗

�
in the diagram

�
.

Dually, when
�

is a diagram of Hopf algebras, CotorA(B, C) is a Hopf algebra
with multiplication induced by the multiplication ϕ :

�
⊗

�
→

�
of the diagram

�
.
Later we will need the structure of CotorA(B, k) where k = � p is the trivial

Hopf algebra and f : B → A is a morphism of Hopf algebras. From the change
of rings spectral sequence and [MM, Theorem 4.9] we get
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Proposition 2.7. For a map f : B → A of Hopf algebras, there is a natural
isomorphism of Hopf algebras

CotorA(B, k)
∼=

B\\f ⊗ CotorA//f (k, k)

�

To complete the description of CotorA(B, k) we need to compute CotorA(k, k).
This is easily done by applying Borel’s structure theorem to the dual algebra
A∗ and using Lemma 2.8 below. The Hopf algebra Γ[x] is dual to a polynomial
algebra: Γ[x] = (k[x∗])∗ and s−ν denotes bigraded desuspension: (s−νV )−ν,n = Vn

for a singly graded object V .

Lemma 2.8. The following isomorphisms hold as Hopf algebras

TorE[x](k, k) = Γ[s−1x]

Tork[x](k, k) = E[s−1x]

Tork[x]/(xpn
)(k, k) = E[s−1x]⊗ Γ[s−2xpn

]

Proof. Write down resolutions. �

By the duality between Tor and Cotor we obtain the Hopf algebra structure
of CotorA(k, k) in terms of a set of generators of the dual algebra A∗.

Corollary 2.9. For any Hopf algebra A, CotorA(k, k) is a free commutative,
primitively generated Hopf algebra. The generators of CotorA(k, k) are in bide-
grees

(−1, k) for x ∈ A∗
k an odd generator

(−1, k) for x ∈ A∗
k an even generator

(−2, pmk) for x ∈ A∗
k an even generator of height pm

The primitive elements of CotorA(k, k) are in bidegrees

pn(−1, k) for x ∈ A∗
k an odd generator

(−1, k) for x ∈ A∗
k an even generator

pn(−2, pmk) for x ∈ A∗
k an even generator of height pm

�

In a more functorial formulation, CotorA(k, k) is the free commutative algebra
on the vectorspace P−1A ⊕ P−2A, where Pν denotes the primitive elements of
bidegree (ν, ∗) in CotorA(k, k).

In particular, the only primitive elements of odd total degree are in bidegrees
(−1, k) for even generators x ∈ A∗

k.
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Remark 2.10. The functorial formulation of the above theorem, and the definition
of P−1 and P−2 is due to [MS]. The functor P−1 is naturally isomorphic to the
functor P , and the functor P−2 measures truncations in the dual algebra. P−1

and P−2 constitute a delta-functor from abelian Hopf algebras to vectorspaces
([MS, Cor. 4.11]).

Finally, we shall need a criterion for left exactness of the functor Q, namely

Proposition 2.11. Let

k → A→ B → C → k

be a short exact sequence of abelian Hopf algebras. If C is a free commutative
algebra, then the sequence

0→ QA→ QB → QC → 0

is short exact.

Proof. Since C is free, we may split B → C with a map of algebras. Thus
B ∼= A ⊗ C as an algebra, and Q(B) depends only on the algebra structure of
B. �

A peculiar consequence of Corollary 2.6 is that if A is a Hopf algebra that is
free as an algebra, then any Hopf subalgebra of A is also free as an algebra.

2.3. The spectral sequence. In this section, we recall the spectral sequence of
[EM] and some of its properties.

We consider homotopy cartesian squares

�
=











F E

X B











of connected spaces, and with B simply connected (homotopy cartesian means
that F = holim(X → B ← E). One can always find a model that is a fibre
square, i.e. where E → B is a fibration, and F → X is the pullback fibration).

Definition 2.12. The Eilenberg-Moore spectral sequence Er is a functor from
fibre squares

�
as above to spectral sequences of coalgebras. It has

E2 = CotorH∗(B)(H∗(E), H∗(X))

and converges as coalgebra to H∗F .

Theorem 2.13 ([EM, Proposition 16.4]). The external product induces an iso-
morphism

Er(
�

)⊗ Er(
� ′)→ Er(

�
×

� ′)

Under this isomorphism, the coalgebra structure is induced by the diagonal ∆ :
�
→

�
×

�
. �
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Dually, when
�

is a diagram of H-spaces and H-maps (here meaning maps
commuting strictly with the multiplication such as loop spaces and loop maps),
there is a multiplication m :

�
×

�
→

�
inducing a multiplication ϕ = m∗ :

Er(
�

) ⊗ Er(
�

) → Er(
�

). In this case, the spectral sequence is one of Hopf
algebras. Furthermore it is clear that on the E2-term the Hopf algebra structure
is the same as the one on Cotor described above.

2.4. The loop suspension. We shall use the spectral sequence only in the case
when X is a point. This corresponds to a fibration

F → E → B

and the spectral sequence computes homology of the fibre. When E is also a
point, we have the path-loop fibration

ΩX → ∗ → X

In this case, the fibre line

E2
0,∗ = Cotor

H∗(X)
0,∗ (k, k) = k�H∗(X)k = k

is concentrated in degree 0 and hence there is a “secondary edge homomorphism”

H∗(ΩX)→ E∞
−1,∗ ↪→ E2

−1,∗
∼= PH∗X (2.2)

Proposition 2.14 ([S, Proposition 4.5]). The morphism in (2.2) is the loop
suspension

σ∗ : QH∗(ΩX)→ PH∗X

�

We shall also need

Lemma 2.15. Let C∗ be a connected differential graded Hopf algebra. If x is
an element of minimal degree with dx 6= 0, then x is indecomposable and dx is
primitive.

Proof. Immediate from the Leibniz rules for product and coproduct. �

Corollary 2.16. Minimal differentials in the spectral sequence of a path-loop
fibration correspond to minimal elements in the cokernel of σ∗.

Proof. Since dx is primitive and not in E2
−1,∗ it is of even total degree. Hence x

is of odd. By Lemma 2.8, the only odd dimensional indecomposable elements are
in E2

−1,∗ and the result follows. �
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3. Unstable R-modules

In this section, we define several categories of graded vectorspaces with a set
of linear transformations {βεQs | ε ∈ {0, 1}, s ∈

�
≥ε} of degree 2(p − 1) − ε.

Most of the material can be found in [CLM] or [DL]. These categories and some
forgetful functors fit in a diagram:

Q-unstable R-modules Q-unstable � -modules

unstable R-modules unstable � -modules

� -modules

graded vectorspaces

(3.1)

Here, � is the free non-commutative algebra on the set {βεQs | ε ∈ {0, 1}, s ∈
�
≥ε}, and the various entries in (3.1) differ in what relations the action of the

operations βεQs are assumed to satisfy. It is the left part of the diagram that is
geometrically relevant, since the homology of an infinite loop space X is naturally
an unstable R-modules, and so is the space of primitive elements PH∗(X). The
space of indecomposable elements QH∗(X) is naturally a Q-unstable R-module.

All of the above forgetful functors to graded vectorspaces have left adjoint
“free” functors. From � -modules it is the functor V 7→ � ⊗ V , and the other
four are quotients thereof.

In 3.2, we define the algebras � and R and the four categories of unstable
modules. In 3.3 we construct the four adjoint functors � , � ′, D and D′. Finally,
in 3.4 we recall the computation of H∗(QX) in terms of H∗(X). It should be
noted that the algebra � and the related categories are needed only in the proof of
Theorem 4.4. It is R that is geometrically relevant but it is also more complicated
than � .

3.1. Araki-Kudo-Dyer-Lashof operations. Recall that an infinite loop space
is a sequence E0, E1, . . . of spaces and homotopy equivalences ΩEi+1 → Ei. One
thinks of E0 as the “underlying space” of the infinite loop space. In particular,
E0 = Ω2E2 is a homotopy commutative H-space. Thus H∗(E0) is a commutative
algebra under the Pontrjagin product. Furthermore H∗(E0) naturally carries a set
of linear transformations Qs, s ≥ 0. These linear transformations are commonly
called Dyer-Lashof operations (or Araki-Kudo operations) and are operations

Qs : Hn(E0)→ Hn+2s(p−1)(E0)

natural with respect to infinite loop maps. They measure the failure of chain
level commutativity of the Pontrjagin product.
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They satisfy a number of relations that makes H∗(E0) an unstable R-module,
the notion of which is defined below.

3.2. The algebras � and R and categories of unstable modules.

Definition 3.1. Let � be the free (non-commutative) algebra generated by sym-
bols

βεQs, ε ∈ {0, 1}, s ∈
�
≥ε.

and write βQs = β1Qs and Qs = β0Qs. � is a graded algebra with

deg(βεQs) = 2s(p− 1)− ε

It will occasionally be convenient to consider � as a bigraded algebra with grad-
ings

degQ(βεQs) = 2s(p− 1), degβ(βεQs) = −ε

� is a cocommutative Hopf algebra with comultiplication

∆(βεQs) =
∑

ε1+ε2=ε
s1+s2=s

βε1Qs1 ⊗ βε2Qs2

Definition 3.2. An � -module is called unstable, if

βεQsx = 0 whenever 2s− ε < deg(x) (3.2)

It is called Q-unstable if furthermore

Qsx = 0 whenever 2s = deg(x) (3.3)

For an infinite loop space X, H∗(X) is naturally an unstable � -module. How-
ever, the ideal in � of elements with universally trivial action is nonzero, and
hence the action of � on H∗X factors through a quotient of � . This quotient is
the Dyer-Lashof algebra R.

Definition 3.3. For each r, s ∈ � and ε ∈ {0, 1} with r > ps, define elements in
�

� (ε,r,0,s) = βεQrQs −

(

r+s
∑

i=0

(−1)r+i(pi− r, r − (p− 1)s− i− 1)βεQr+s−iQi

)

For r ≥ ps define elements

� (0,r,1,s) = QrβQs −

( r+s
∑

i=0

(−1)r+i(pi− r, r − (p− 1)s− i)βQr+s−iQi

−
r+s
∑

i=0

(−1)r+i(pi− r − 1, r − (p− 1)s− i)Qr+s−iβQi

)

and

� (1,r,1,s) = βQrβQs −

(

−
r+s
∑

i=0

(−1)r+i(pi− r − 1, r − (p− 1)s− i)βQr+s−iβQi

)
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where, (i, j) = (i + j)!/(i!j!). These elements are the socalled Adem relations.

Let
�
⊆ � be the k-span of all Adem elements. This is a bigraded subspace

of � . Let 〈
�
〉 ⊆ � be the two-sided ideal generated by

�
. Let � ⊆ � be the

two-sided ideal (or equivalently the left ideal) generated by the relations (3.2) (for
x ∈ � ). � is the smallest ideal such that � / � is unstable as a left � -module.

Definition 3.4. The Dyer-Lashof algebra is the quotient

R = � /(〈
�
〉+ � )

The action of
�

and hence 〈
�
〉 on homology of infinite loop spaces is trivial

by results from [CLM], dual to Adem’s result for the Steenrod algebra. So is
the action of � , by unstability. Hence H∗(X) is an R-module when X is an
infinite loop space. Conversely, a theorem of Dyer and Lashof states that the map
R→ H∗(QS0) induced by acting on the zero-dimensional class [1] represented by
the identity map of Sn, n→∞ is an injection, so there are no further relations.

The set of all products of generators form a vector space basis of � . To have
an explicit basis for R, we recall the notion of admissible monomials, [CLM, p.
16].

A sequence

I = (ε1, s1, . . . , εk, sk)

of integers εi ∈ {0, 1} and si ∈
�
≥εi

determines the iterated homology operation

QI = βε1Qs1 . . . βεkQsk ∈ �

This sequence is called admissible if for all i = 2, . . . , k,

si ≤ psi−1 − εi−1 (3.4)

The corresponding iterated homology operations QI ∈ � are called admissible
monomials. The length and excess of I are

`(I) = k, e(I) = 2s1 − ε1 −
k
∑

j=2

[2sj(p− 1)− εj]

Furthermore, define

b(I) = ε1

Using the Adem relations one may rewrite an arbitrary element of � as a linear
combination of admissible monomials in R. Applying Adem relations does not
raise the excess.

There is a natural quotient map � → R. Thus R-modules are also � -modules.

Definition 3.5. An R-module is called unstable, respectively Q-unstable, if it is
so as an � -module.
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3.3. Free functors.

Definition 3.6. For a graded vectorspace V we define � V to be the quotient of
� ⊗ V by the relations (3.2) and � ′V to be the quotient of � V by the relations
(3.3). Define also

DV = R⊗� � V, D′V = R⊗� � ′V

The functor � is left adjoint to the forgetful functor from unstable � -modules
to vectorspaces. Thus � V is the “free unstable � -module” generated by V .
Similarly, D is left adjoint to the forgetful functor from unstable R-modules to
graded vectorspaces. Analogous remarks apply to � ′ and D′. The functors
appear in the following exact sequences, natural in V

〈
�
〉 ⊗� � V → � V → DV → 0 (3.5)

〈
�
〉 ⊗� � ′V → � ′V → D′V → 0 (3.6)

When V = kι for a homogeneous element ι, DV has basis

{QIι | I admissible, e(I) ≥ deg(ι)}

Together with additivity of D, this describes DV as a k-vectorspace. Since R ∼=
Dk as a left R-module, we also have a basis of R over k.

3.4. Homology of QX. Here, we recall the computation of H∗(QX). We shall
need only the cases X = Σ � P∞ and X = S0. We shall give a nonfunctorial
description of H∗(Q0X) in terms of a basis of JH∗(X). A slicker formulation is
given in [CLM, Theorem 4.2], where H∗(QX) is expressed as a functor of H∗(X).

For a general (possibly non-connected) pointed space X, write π̃0(X) = π0(X)−
{0} where 0 ∈ π0(X) denotes the component of the basepoint. Then π0(QX) =

�
[π̃0(X)], and in particular QX is connected if and only if X is connected. Write

Q0X ⊆ QX for the basepoint component of QX. Define the “translation” map
τ : QX → Q0X as the map that on the component QiX, i ∈ π0(QX) multi-
plies by a point in the component Q−iX. This defines a unique homotopy class
τ : QiX → Q0X.

Theorem 3.7. Let B ⊆ JH∗(X) be a basis consisting of homogeneous elements.
Then, H∗(Q0X) is the free commutative algebra on the set

{τ∗(Q
Ix) | x ∈ B, I admissible, e(I) + b(I) > deg x, deg(QIx) > 0}

�

If x is in the component ax ∈ π0X ⊆ π0QX then QIx will be in the component
p`(I)ax. Hence the element τ∗(Q

Ix) = QIx ∗ [−p`(I)ax] will be in homology of the
identity component Q0X.

Corollary 3.8. The map

ϕQ : D′JH∗(X)→ QH∗(Q0X) (3.7)
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sending QIx to τ∗(Q
Ix) is an isomorphism of Q-unstable R-modules.

If X is connected and H∗(X) has trivial comultiplication (e.g. if X is a sus-
pension), the natural map

ϕP : DJH∗(X)→ PH∗(QX) (3.8)

is an isomorphism of unstable R-modules.

Proof. ϕQ is an isomorphism by Theorem 3.7. It is R-linear because the Cartan
formula ([CLM, Thm. 1.1,(6)]) implies that the translation τ∗ given by multipli-
cation by zero-dimensional classes commutes modulo products in H∗(Q0X) with
Qs.

The Cartan formula for the coproduct implies that the Qs preserves primitives.
Thus ϕP has image in the primitive elements. It is injective by Theorem 3.7 and
surjective by Theorem 2.4. �

4. Homological algebra of unstable modules

The map

Q(∂∗) : QH∗(QΣ � P∞
+ )→ QH∗(Q0S

0)

was computed in [MMM, Theorem 4.5]. The left hand side is D′JH∗(Σ � P∞
+ )

and the right hand side is D′k. The starting point of our theorems is

Theorem 4.1 ([MMM]). Let as ∈ Hs(Σ � P∞
+ ) be the generator, s odd. Then

Q(∂∗)(as) =

{

βQr[1] ∗ [−p] s = 2r(p− 1)− 1

0 otherwise

Proof. The map ∂ : Σ � P∞
+ → QS0 coincides with the universal S1-transfer

denoted t0 in [MMM]. The formula for Q(∂∗)(as) in the theorem now follows
from ignoring all decomposable terms in [MMM, Theorem 4.5]. �

4.1. Main technical theorems. To state the theorems, recall from subsec-
tion 3.2 that � may be bigraded by deg = degQ + degβ. Since the Adem relations
are homogeneous with respect to deg and degβ, there is an induced bigrading of
R. If V is bigraded, � ⊗ V is a bigraded left � -module. Since the unstability
relations (3.2) can be chosen homogeneous, there is an induced bigrading of � V .
Similarly for � ′V , DV and D′V . Thus by Corollary 3.8 a bigrading of JH∗(X)
will induce a bigrading of QH∗(Q0X) and, for X a suspension, a bigrading of
PH∗(QX).

For bigraded modules V with deg = degQ + degβ as above, we shall write V i,j =

{x ∈ V | degQ(x) = i, degβ(x) = j} and V n = ⊕i+j=nV i,j and V (n) = ⊕iV
i,n. We

will only consider gradings in the fourth quadrant, i.e. V i,j = 0 unless i ≥ 0 and
j ≤ 0. Write V (−) = ⊕n<0V

(n).

Theorem 4.2. Im(Q(∂∗)) = QH∗(Q0S
0)(−)
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Proof. The inclusion Im(Q∂∗) ⊆ QH∗(Q0S
0)(0) is immediate from Theorem 4.1.

The other inclusion follows from Lemma 4.3 below. Indeed, the two-sided ideal
in R generated by the set {βQs | s ≥ 1} is spanned by operations QI with at
least one β. By Lemma 4.3 below, any such operation is also in the left ideal with
the same generators, i.e. is a linear combination of elements of the form QJβQs.
In particular, any element in QH∗(Q0S

0)(−) is also in Im(∂∗). �

Lemma 4.3. The left ideal in R generated by the set {βQs | s ≥ 1} is also a
right ideal.

Proof. Write R′ ⊆ R for the left ideal generated by {βQs | s ≥ 1}.
For r ≤ ps, consider the Adem relation

�
(0,ps,1,r−(p−1)s):

QpsβQr−(p−1)s = βQrQs

+
∑

i>s

λiβQr+s−iQi

+ terms of form Qr+s−iβQi

where we have singled out the term in the Adem relation corresponding to i = s,
and where the λi ∈ k are certain binomial coefficients. This shows that in the
left R-module R/R′ we can write βQrQs as a linear combination of βQaQb with
a < r. In particular, βQ1Qs = 0 ∈ R/R′ and by induction βQrQs = 0 ∈ R/R′.

Thus we have βQrQs ∈ R′ whenever βQrQs is admissible. Since a nonadmis-
sible βQrQs is a linear combination of admissible ones, we have βQrQs ∈ R′ for
any r, s. This shows that R′ is invariant under right multiplication with Qs. Since
it is obviously invariant under right multiplication with βQs it follows that R′ is
a right ideal. �

The kernel of Q∂∗ is harder to determine explicitly. The partial information
contained in Theorem 4.4 below suffices for the calculation.

Notice that for any � -module V , the augmentation of � gives a natural quo-
tient map V → k⊗� V identifying k⊗� V with the quotient of V by the relations
βεQsx = 0 for x ∈ V, ε ∈ {0, 1}, s ≥ 1. The functor k⊗ � − agrees with the func-
tor k⊗R− on R-modules. Thus the vectorspace k⊗R V measures the dimensions
of a minimal set of R-module generators of an unstable R-module V .

Theorem 4.4. Bigrade JH∗(Σ � P∞
+ ) by concentrating it in degβ = −1 and give

QH∗(QΣ � P∞
+ ) the induced bigrading. Then the bigraded vectorspace

k ⊗R Ker(Q∂∗) = k ⊗R Q(H∗(QΣ � P∞
+ )\\∂∗)

is concentrated in bidegrees degβ = −1 and degβ = −2. In particular Ker(Q∂∗) is
generated as an R-module by the elements as ∈ Ker(Q∂∗) with s 6≡ −1 (mod 2(p−
1)) together with elements of degree ≡ −1 and ≡ −2 (mod 2(p− 1)).

Proof. The equality Ker(Q∂∗) = Q(H∗(QΣ � P∞
+ )\\∂∗) in the theorem follows

from Proposition 2.11 because H∗(Q0S
0) is a free algebra.
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The last statement of the theorem follows from the first. Indeed the elements
QIas are all in the kernel of Q(∂∗) when s 6≡ −1 (mod 2(p− 1)) because as is in
the kernel. These elements give rise to one “trivial” element as ∈ k⊗R Ker(Q∂∗).
On the span of the QIas with s ≡ −1 (mod 2(p− 1)) the claim about degrees of
generators follows since on these elements deg ≡ degβ (mod 2(p− 1)). Thus we
need only prove the first statement of the theorem.

We have the short exact sequence of Q-unstable R-modules

0 Ker(Q∂∗) QH∗(QΣ � P∞
+ )

Q∂∗

QH∗(Q0S
0)(−) 0 (4.1)

If we applied the functor k ⊗R − from R-modules to vectorspaces, we would
get a long exact sequence involving TorR

∗ (k,−), and a determination of the map
induced by Q∂∗ in Tor1 would give the result. This is more or less what we do,
except that it is technically more convenient to replace the functor k ⊗R − by
k ⊗� − and to replace Tor by a suitable functor taking unstability into account.
We proceed to make these ideas precise.

The category of Q-unstable � -modules is abelian and has enough projectives.
The functor k⊗� − from Q-unstable � -modules is right exact, hence the left de-
rived functors Lr(k⊗� −) are defined. These are unstable versions of Tor

�
r (k,−).

For brevity, let us write T
�
1 (k,−) = L1(k ⊗� −).

With these definitions, applying the functor k ⊗� − to the sequence (4.1)
induces the exact sequence

0 Cok(T
�
1 (k, Q∂∗)) k ⊗R Ker(Q∂∗) Ker(k ⊗R Q∂∗) 0

(4.2)
Claim 1 : The elements as ∈ Ker(Q∂∗) with s 6≡ −1 (mod 2(p−1)) maps in (4.2)
to a generating set in Ker(k ⊗R Q∂∗).

Proof of Claim 1. This is the kernel of the map

k ⊗R Q∂∗ : k ⊗R QH∗(QΣ � P∞
+ )→ k ⊗R QH∗(Q0S

0)(−)

Clearly, the natural map JH∗(QΣ � P∞
+ ) → k ⊗R QH∗(QΣ � P∞

+ ) is an iso-

morphism, and by Lemma 4.3 we get that k ⊗R QH∗(Q0S
0)(−) is spanned by

{βQs[1] ∗ [−p] | s ≥ 1}. Thus Claim 1 follows from Theorem 4.1. �

Claim 2 : Cok(T
�
1 (k, Q∂∗)) is concentrated in degβ = −1 and degβ = −2.

Proof of Claim 2. We will compute T
�
1 (k, Q∂∗) using suitable free resolutions.

For brevity, write V = JH∗(Σ � P∞
+ ). By Corollary 3.8 we may consider Q∂∗ as

a map from D′V onto D′k(−). Let W ⊆ ( � ′k)(−) denote the subspace with basis
{βQs1 . . . Qsk | s1 ≥ 1, s2, . . . , sk ≥ 0}. In the diagram

W D′V

Q∂∗

0 (〈
�
〉 · � ′k)(−) � ′k(−) D′k(−) 0

(4.3)



MOD p HOMOLOGY OF THE STABLE MAPPING CLASS GROUP 16

in which the lower exact sequence is an instance of (3.6), we may choose a lifting
ρ : W → D′V since Q∂∗ is surjective. Writing V = V0⊕ V1 where V0 = span{as |
x ≡ −1 (mod 2(p − 1))} and V1 = span{as | x 6≡ −1 (mod 2(p − 1))}, we may
choose the lifting ρ to have ρ(W ) ⊆ D′V0 since D′V = D′V0⊕D′V1 and since Q∂∗

vanishes on D′V1. We may also choose the lifting to have ρ(βQs) = a2s(p−1)−1

and extend (4.3) to the following exact diagram

0 Ker(ρ)

σ

j
� ′W

ρ
D′V0

Q∂∗

0

0 (〈
�
〉 · � ′k)(−) i � ′k(−) D′k(−) 0

(4.4)

Note that the middle map in (4.4) is an isomorphism.
Next we apply the functor k ⊗� − to (4.4). This gives a diagram involving

the left derived functor T
�
1 (k,−) = L1(k ⊗� −). This functor vanishes on the

middle part of (4.4) since these (isomorphic) objects are free. Thus, a part of the
induced diagram looks like this

0 T
�
1 (k, D′V0)

T �
1

(k,Q∂∗)

k ⊗� Kerρ

σ∗

j∗
k ⊗� � ′W

∼=

0 T
�
1 (k, D′k(−)) k ⊗� (〈

�
〉 · � ′k)(−) i∗

k ⊗� ( � ′k)(−)

(4.5)

where a star in subscript is shorthand for k ⊗ � − on morphisms. Thus we have
represented T

�
1 (k, D′V0) and T

�
1 (k, � ′k(−)) as the kernels of j∗ and i∗, and the

map T
�
1 (k, Q∂∗) as the restriction of σ∗.

To calculate the cokernel of T
�
1 (k, Q∂∗) and to prove Claim 2, note that

(〈
�
〉 · � ′k)(−) = � (−) ·

� (0) · � ′k(0) + � · � (−) · � ′k(0) + � · �
· � ′k(−)

This is generated over � by the subspace

� (−1) ·
� (0) · � ′k(0) + ·

� (−) · � ′k(0) +
�
· � ′k(−) (4.6)

The corresponding � -indecomposable classes will span k ⊗� (〈
�
〉 · � ′k)(−) as a

vectorspace, and since the first and the second term in (4.6) has degβ ∈ {−1,−2},

it suffices to prove that the last term
�
· � ′k(−) does not contribute to the cokernel

of T
�
1 (k, Q∂∗).

To this end, notice that
�
· � ′k(−) corresponds to

�
· � ′W under the middle

isomorphism in (4.4), and that
�
· � ′W is in the kernel of ρ since the action of

�

is trivial in D′V . Notice also that
�
· � ′W vanishes under the projection � ′W →

k ⊗� � ′W and thus by exactness of (4.4) and (4.5) the classes corresponding to�
· � ′k(−) in k ⊗� (〈

�
〉 · � ′k)(−) lifts all the way to T

�
1 (k, D′V0) and therefore

does not contribute to the cokernel of T
�
1 (k, Q∂∗). �
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Now Theorem 4.4 follows from the exact sequence (4.2) and the Claims above.
�

5. Homology of Ω∞Σ � P∞
−1

The spectral sequence associated to the fibration (1.1) has

E2 = CotorH∗(Q0S0)(k, k)⇒ H∗(Ω
∞ � P∞

−1) (5.1)

By Proposition 2.7 the E2-term splits as

E2 ∼= CotorH∗(Q0S0)//∂∗(k, k)⊗H∗(QΣ � P∞
+ )\\∂∗ (5.2)

In this section, p is odd so after localising the fibration (1.1), the base-space is
simply connected and the spectral sequence converges.

To proceed, we need to compute the coalgebra structure of H∗(Q0S
0)//∂∗ or,

equivalently, the algebra structure of H∗(Q0S
0)\\∂∗.

5.1. The Hopf algebra cokernel of ∂∗. To state the results, let us introduce
a bigrading of H∗(Q0S

0). Recall that H∗(Q0S
0) is the free commutative algebra

on the set
{QI [1] ∗ [−p`(I)] | I admissible, e(I) + b(I) > 0}

Make it a bigraded algebra by setting degβ(QI [1] ∗ [−p`(I)]) = degβ(QI). By the

Cartan formula for the coproduct we get that the subalgebra H∗(Q0S
0)(0) is a

Hopf subalgebra, but notice that H∗(Q0S
0) is not a bigraded R-module because

of the relation (3.3).

Theorem 5.1. Consider H∗(Q0S
0) as a bigraded algebra as above. Then the

composition
H∗(Q0S

0)(0) → H∗(Q0S
0)→ H∗(Q0S

0)//∂∗ (5.3)

is an isomorphism of Hopf algebras. Thus H∗(Q0S
0)//∂∗ is a polynomial algebra

on the set

{QI [1] ∗ [−p`(I)] | I admissible, degβ(QI) = 0, e(I) > 0}

Proof. With the bigrading introduced above, we have H∗(Q0S
0) = H∗(Q0S

0)(0)⊕
H∗(Q0S

0)(−) where the first summand is a subalgebra and the second is an ideal.
Since Im(∂∗) ⊆ k ⊕H∗(Q0S

0)(−), the composition (5.3) is injective.
To see surjectivity, note that Q(H∗(Q0S

0)//∂∗) = Cok(Q∂∗) since Q is right
exact. By Theorem 4.2 we have Im(Q∂∗) = QH∗(Q0S

0)(−) and hence Cok(Q∂∗) =
(QH∗(Q0S

0))(0) = Q(H∗(Q0S
0)(0)). �

Theorem 5.2. H∗(Q0S
0)(0) is dual to a polynomial algebra.

Proof. It suffices to prove that λ : H∗(Q0S
0)(0) → H∗(Q0S

0)(0) is surjective. λ
is given by the dual Steenrod operations: If deg(x) = 2ps, λx = P s

∗x. By the
Nishida relations ([CLM, Theorem 1.1 (9)]), one gets λQps = Qsλ and thus

λ(Qps1Qps2 . . . Qpsk [1] ∗ [−pk]) = Qs1Qs2 . . . Qsk [1] ∗ [−pk]
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Thus λ hits the generators of H∗(Q0S
0) and since it is a map of algebras, it is

surjective. �

5.2. The spectral sequence. We are now ready to compute the E2-term of the
spectral sequence (5.1) and to prove that it collapses at the E2-term, E2 = E∞.

Theorem 5.3. The spectral sequence collapses at the E2-term. The E2-term is
given by

E2 = H∗(QΣ � P∞
+ )\\∂∗ ⊗ E[s−1P (H∗(Q0S

0)//∂∗)]

as a Hopf algebra.

Proof. We need to identify the factor CotorH∗(Q0S0)//∂∗(k, k) in the splitting (5.2)
of the E2-term. By Theorem 5.2, the dual algebra H∗(Q0S

0)\\∂∗ is polynomial
and hence by Corollary 2.9 we get

CotorH∗(Q0S0)//∂∗(k, k) ∼= E[s−1P (H∗(Q0S
0)//∂∗)]

as claimed.
In this E2-term, primitives and generators are concentrated in bidegrees (0, ∗)

and (−1, ∗) and hence by Lemma 2.15 there can be no non-zero differentials in
the spectral sequence. �

Corollary 5.4. There is an isomorphism of algebras

H∗(Ω
∞Σ � P∞

−1)
∼= H∗(QΣ � P∞

+ )\\∂∗ ⊗ E[s−1P (H∗(Q0S
0)//∂∗)]

Proof. This is a formal consequence of the E∞-term in Theorem 5.3 being free.
Explicitly, the spectral sequence gives a filtration F0 ⊇ F−1 ⊇ . . . on H∗(Ω

∞Σ � P∞
−1)

and an isomorphism E2
−k,∗ = E∞

−k,∗
∼= F−k/F−k−1. In particular

F0/F−1
∼= H∗(QΣ � P∞

+ )\\∂∗

via the natural map ω∗ of (1.1), and there is a natural map

s−1P (H∗(Q0S
0)//∂∗)→ F−1/F−2 = E∞

−1,∗

that is an isomorphism onto the primitive elements in E∞
−1,∗.

Choosing liftings

H∗(QΣ � P∞
+ )\\∂∗ → F0 = H∗(Ω

∞Σ � P∞
−1)

and
s−1P (H∗(Q0S

0)//∂∗)→ F−1 ⊆ H∗(Ω
∞Σ � P∞

−1)

of these gives a map of algebras

E[s−1P (H∗(Q0S
0)//∂∗)]⊗H∗(QΣ � P∞

+ )\\∂∗ → H∗(Ω
∞Σ � P∞

−1)

that is surjective by induction on the filtration degrees and injective for dimen-
sional reasons. �

Note that under this isomorphism, projection on the first factor corresponds
to the natural map ω∗ induced from the fibration (1.1).
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Corollary 5.5. Let ω : Ω∞Σ � P∞
−1 → QΣ � P∞

+ be the map from (1.1). Then

H∗(Ω
∞Σ � P∞

−1)\\ω∗
∼= E[s−1P (H∗(Q0S

0)//∂∗)]

as a Hopf algebra. In particular, the vectorspace

Ker(Pω∗) = P (H∗(Ω
∞Σ � P∞

−1)\\ω∗) = Q(H∗(Ω
∞Σ � P∞

−1)\\ω∗)

is concentrated in degrees ≡ −1 and ≡ −2 (mod 2(p− 1)).

Proof. The vectorspace s−1P (H∗(Q0S
0)//∂∗) corresponds to odd-dimensional al-

gebra generators of H∗(Ω
∞Σ � P∞

−1). By Theorem 2.4 these have unique primitive
representatives. Thus the map

s−1P (H∗(Q0S
0)//∂∗)→ F−1 ⊆ H∗(Ω

∞Σ � P∞
−1)

from the proof of Corollary 5.4 may be rechosen to map into the primitive ele-
ments. Then it will map into Ker(P∂∗) = P (H∗(Ω

∞Σ � P∞
−1)\\ω∗) and there is a

well-defined injective map of Hopf algebras

E[s−1P (H∗(Q0S
0)//∂∗)]→ H∗(Ω

∞Σ � P∞
−1)\\ω∗

This map is surjective for dimensional reasons. �

Notice that the map s−1P (H∗(Q0S
0)//∂∗) → H∗(Ω

∞Σ � P∞
−1) in the proof of

Corollary 5.5 is independent of previous choices, so the isomorphism in Corol-
lary 5.5 is actually canonical.

The isomorphism in Corollary 5.4 is not canonical. The sequence

k H∗(Ω
∞Σ � P∞

−1)\\ω∗ H∗(Ω
∞Σ � P∞

−1)
ω

H∗(QΣ � P∞
+ )\\∂∗ k

(5.4)
is canonical, with a noncanonical splitting of ω∗. A priori, this splitting is
a map of algebras, so we have not yet determined the coalgebra structure of
H∗(Ω

∞Σ � P∞
−1). This is the topic of the next subsection since the coalgebra

structure of H∗(Ω
∞Σ � P∞

−1) is necessary for the computation of H∗(Ω
∞ � P∞

−1).

5.3. Coalgebra structure of H∗(Ω
∞Σ � P∞

−1; � p). It turns out that the splitting
in the exact sequence (5.4) can be chosen as a map of Hopf algebras.

Lemma 5.6. Let

k A B
π

C k

be a short exact sequence of Hopf algebras. If either A or C is exterior, the
sequence is split exact in the category of Hopf algebras.

Proof. Assume C is exterior. Then by Theorem 2.4 we have that PC ∼= QC and
the diagram

PB
Pπ

PC

∼=

0

QB QC 0
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is exact since Q(−) is right exact. Thus PB → PC is surjective and a choice of
splitting PC → PB of Pπ induces a splitting C ∼= E[PC]→ B of π.

The case where A is exterior follows by duality. �

The following theorem summarises our computation of H∗(Ω
∞Σ � P∞

−1):

Theorem 5.7. The sequence (5.4) is split exact. Hence

H∗(Ω
∞Σ � P∞

−1)
∼= H∗(Ω

∞Σ � P∞
−1)\\ω∗ ⊗H∗(QΣ � P∞

+ )\\∂∗ (5.5)

as a Hopf algebra. In particular, it is primitively generated and free as an algebra.

Proof. This follows from Lemma 5.6 applied to the short exact sequence (5.4),
since H∗(Ω

∞Σ � P∞
−1) is exterior by Corollary 5.5. �

6. Homology of Ω∞ � P∞
−1

Here, the method is to consider the path-loop fibration over Ω∞Σ � P∞
−1. From

the fibration (1.1) one easily gets π1(Ω
∞Σ � P∞

−1) =
�

and therefore we have an
equivalence

Ω∞Σ � P∞
−1 ' S1 × Ω̃∞Σ � P∞

−1

where Ω̃∞Σ � P∞
−1 → Ω∞Σ � P∞

−1 is the universal covering map. Furthermore we

have Ω(Ω̃∞Σ � P∞
−1) = Ω∞

0 � P∞
−1, the basepoint component of Ω∞ � P∞

−1. Similarly

QΣ � P∞
+ ' S1 × Q̃Σ � P∞

+ and under these splittings the map ω in the fibra-
tion (1.1) restricts to a map S1 → S1 of degree 2. Since p is odd we see that
replacing Ω∞Σ � P∞

−1 by its universal covering space just remoes a one-dimensional
vectorspace from the left factor in Theorem 5.7.

The Eilenberg-Moore spectral sequence associated to the path-loop fibration
over Ω̃∞Σ � P∞

−1 is

E2 = CotorH∗(Ω̃∞Σ � P∞

−1
)(k, k)⇒ H∗(Ω

∞
0 � P∞

−1) (6.1)

and by Theorem 5.7, the E2-term splits as

E2 ∼= CotorH∗(Ω∞Σ � P∞

−1
)\\ω∗(k, k)⊗ CotorH∗(Q̃Σ � P∞

+ )\\∂∗(k, k) (6.2)

I claim it must collapse. As before, we consider a possibly nonzero differential
dx = y 6= 0 with deg(x) minimal. We will reach a contradiction in a number of
steps. The argument is based on Theorem 4.4 and a careful analysis of degrees
modulo 2(p− 1) in the spectral sequence.

By Corollary 5.5, the first factor in (6.2) is an exterior algebra on generators
of total degree ≡ −2 (mod 2(p − 1)). To gain information about the second
factor, we map the spectral sequence (6.1) into the spectral sequence of the path-

loop fibration over Q̃Σ � P∞
+ via the map ω : Ω̃∞Σ � P∞

−1 → Q̃Σ � P∞
+ . This

is a map Er(ω) of spectral sequences whose restriction to the first factor in the
splitting (6.2) is zero, and whose restriction to the second factor in (6.2) is induced

by the inclusion H∗(Q̃Σ � P∞
+ )\\∂∗ → H∗(Q̃Σ � P∞

+ ). The next lemma says that
this second factor in (6.2) injects under E2(ω).
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Lemma 6.1. Let f : A → B be an injection of primitively generated Hopf
algebras. Then Cotorf(k, k) : CotorA(k, k)→ CotorB(k, k) is also injective.

Proof. By Theorem 2.4, A∗ and B∗ are tensor products of exterior algebras and
polynomial algebras truncated at height p. Thus we can split f ∗ : B∗ → A∗ in
the category of algebras (since a splitting can be chosen on the generators of A∗).
Dually, f : A→ B is split injective as a map of coalgebras and thus Cotorf(k, k)
is injective. �

Corollary 6.2. Relative to the splitting (6.2), a minimal differential dx = y 6= 0
will have x in the right factor and y in the left.

Proof. Recall that P and Q are logarithmic: P (A⊗B) = PA⊕ PB and Q(A⊗
B) = QA⊕QB. Thus x and y does not contain products between the two factors
in (6.2).

Since y is primitive and in bidegree (≤ −3, ∗), it must be of even total degree
by Corollary 2.9, and thus x is of odd total degree. By Corollary 5.5 this is only
possible if x is in the right factor.

By Lemma 6.1, the right factor injects into the spectral sequence of QΣ � P∞
+ ,

and since all differentials vanish in this spectral sequence, y must map to 0 there,
and hence y is in the left factor. �

The remaining part of the collapse proof is to eliminate the possibility of dif-
ferentials from the right factor to the left. This is the hardest part of the proof,
the main ingredient of which is Theorem 4.4.

Theorem 6.3. The spectral sequence (6.1) collapses.

Proof. Consider a minimal differential dx = y 6= 0. Then y is a primitive element

in CotorH∗(Ω̃∞Σ � P∞

−1)(k, k). By Corollary 6.2 and Corollary 2.9 it is of the form

y = (s−1z)pk

for a z ∈ P (H∗(Ω̃
∞Σ � P∞

−1)\\ω∗). By Corollary 5.5 we must have deg(z) ≡ −1
(mod 2(p− 1)). Write

deg(z) = 2n(p− 1)− 1

Then

deg y = pk(2n(p− 1)− 2) = 2pk(n(p− 1)− 1) ≡ −2 (mod 2(p− 1))

and thus deg x ≡ −1 (mod 2(p− 1)) because the differential has degree −1. By
Proposition 2.15 we get that x corresponds to a minimal element in the cokernel
of σ∗ : QH∗(Ω

∞
0 � P∞

−1) → PH∗(Ω̃
∞Σ � P∞

−1), of degree ≡ 0 (mod 2(p − 1)). By
Corollary 6.2, x is also a minimal element in the cokernel of the composition

QH∗(Ω
∞
0 � P∞

−1)
σ∗

PH∗(Ω̃
∞Σ � P∞

−1)
Pω∗

P (H∗(Q̃Σ � P∞
+ )\\∂∗)

By minimality this element is not a pth power and hence is not zero in Q(H∗(Q̃Σ � P∞
+ )\\∂∗).

Again by minimality, and because the loop suspension σ∗ is R-linear, this element
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is R-indecomposable and hence since σ∗ has degree 1, x will map to a nonzero
element of degree ≡ 0 (mod 2(p− 1)) in

k ⊗R Q(H∗(Q̃Σ � P∞
+ )\\∂∗)

in contradiction with Theorem 4.3. �

Corollary 6.4. As an algebra,

H∗(Ω
∞
0 � P∞

−1)
∼= k[s−2P (H∗(Q0S

0)//∂∗)]⊗ CotorH∗(Q̃Σ � P∞

+
)\\∂∗(k, k)

Proof. This is precisely analogous to Corollary 5.4, using only that the E∞-term
is a free algebra. �

7. The case p = 2

At the prime 2, the calculation of H∗(Ω
∞ � P∞

−1) and H∗(Ω
∞Σ � P∞

−1) can also
be made. Some details are quite different however. In particular, we will use the
looped fibration

Ω∞ � P∞
−1 → Q( � P∞

+ )→ ΩQS0 (7.1)

to compute H∗(Ω
∞ � P∞

−1), instead of the path-loop fibration over Ω∞Σ � P∞
−1. At

p = 2 our base spaces in the fibrations are no longer simply connected. The
following lemma deals with this

Lemma 7.1. As spaces we have

QS0 '
�
×

�
P∞ × Q̃0S

0

ΩQS0 '
�
/2×

�
P∞ × Ω̃0QS0

where X̃ → X denotes the universal covering.

Proof. Let X be an (n− 1)-connected H-space with πn(X) = G. There is an H-
map X → K(G, n) inducing an isomorphism in πn and with fibre the n-connected
cover X〈n〉. If one can find a map K(G, n)→ X inducing an isomorphism in πn,
this map will give a splitting X ' X〈n〉 ×K(G, n).

For n = 0 this is automatic.
For X = Q1S

0 ' Q0S
0, π1(X) =

�
/2 and the definition of the Dyer-Lashof

operation Q1[1] ∈ H1(Q1S
0; � 2) gives a map

�
P∞ = B

�
/2→ Q0S

0

inducing an isomorphism in H1 and thus by the Hurewicz theorem an isomor-
phism in π1 and the splitting of QS0 follows.

For X = Ω0Q0S
0, π1(X) =

�
/2. The Hopf map gives an infinite loop map

η : Q(S1)→ Q0S
0. I claim it is nonzero in π2. To see this it suffices to show that

(η〈1〉)∗ is nonzero in H2 which can be seen as follows. Let σ ∈ H1(QS1) be the
fundamental class. Since QS1 ≈ S1×QS1〈1〉, the element Q1σ ∈ H2(QS1) must
be in the image from H∗(QS1〈1〉). Since η∗(Q

1σ) = Q1(Q1[1] ∗ [−2]) 6= 0, η〈1〉∗
is indeed nonzero in H2.
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Hence, Ω0η : Q0S
0 → Ω0Q0S

0 is nonzero in π1 and thus the composition
�

P∞ → Q0S
0 → Ω0Q

0S0

is nonzero in π1 and the splitting of ΩQS0 follows. �

Lemma 7.1 ensures that our spectral sequences has trivial local coefficients and
hence that the spectral sequences converges.

7.1. Recollections. The structural results about Hopf-algebras from Section 2
hold with the following remarks: The Frobenius map ξ : A → A, x 7→ x2 is no
longer automatically 0 in odd dimensions. Thus, in Theorem 2.4, we can only
conclude that PA → QA is an isomorphism in odd degrees. Borel’s structure
theorem 2.5 holds for p = 2 with the remark that there are no restrictions on
the parity of the generators, and that polynomial algebras truncated at height
2 = p1 is the same thing as exterior algebras. In particular, it still holds that A
is polynomial if ξ : A→ A is injective and that A∗ is polynomial if λ : A→ A is
surjective.

The Dyer-Lashof algebra is also quite different. For p = 2, we let � be the free
non-commutative algebra on the set {Qs | s ≥ 0} with deg(Qs) = s. The Adem
relation

�
(0,r,0,s) in Definition 3.3 still makes sense, and we let

�
⊆ � be the

span of the
�

(0,r,0,s). The unstability relations at p = 2 are

Qsx =

{

x2 if deg x = s

0 if deg x > s

and the algebra R is defined from these data as before. Corresponding to I =
(s1, s2, . . . , sk) there is an iterated operation QI = Qs1 . . . Qsk , and this operation
is called admissible if si ≤ 2si for all i. The definition of excess at p = 2 is

e(I) = s1 −

k
∑

j=2

sj

Given a basis B ⊆ JH∗(X), then H∗(Q0X) is the polynomial algebra on the set

{τ∗(Q
Ix) | x ∈ B, I admissible, e(I) > deg(x), deg(QIx) > 0}

where τ : QX → Q0X is the “translation” map from Section 3.4.
One pleasant feature of p = 2 is the following

Lemma 7.2. The cohomology algebra H∗(Q0X) is polynomial if H∗(X) is poly-
nomial.

Proof. This is because the Nishida relation λQ2s = Qsλ makes λ : H∗(Q0X) →
H∗(Q0X) surjective if λ : H∗(X)→ H∗(X) is surjective. �

In particular, H∗(Q0S
0) and H∗(Q0 � P∞

+ ) are both polynomial.
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The calculation in Theorem 2.8 is valid with the remark that k[x]/(x2) must be
interpreted as E[x] and thus it does not produce generators of Cotor in bidegree
(−2, ∗). Only truncations at height pn, n ≥ 2 does that.

An important difference is that for odd primes, CotorA(k, k) is automatically
a free algebra. This is no longer true for p = 2, since Tork[x](k, k) = E[s−1x], and
exterior algebras are not free in characteristic 2.

One consequence of the above remarks is the following

Proposition 7.3. Let X be a simply connected space with H∗(X) polynomial.
Then H∗(ΩX) is an exterior algebra and the suspension

σ∗ : QH∗(ΩX)→ PH∗(X)

is an isomorphism. The spectral sequence

CotorH∗(X)(k, k)⇒ H∗(ΩX)

collapses.

Proof. This is because

CotorH∗(X)(k, k) ∼= E[s−1PH∗(X)]

has generators and primitives in bidegrees (−1, ∗). Together with Lemma 2.15,
this proves the claims. �

Similarly, we have

Proposition 7.4. For any space X, the spectral sequence

CotorH∗(Q̃ΣX)(k, k)⇒ H∗(Q0X)

collapses and the suspension

σ∗ : QH∗(Q0X)→ PH∗(Q̃ΣX)

is an isomorphism.

Proof. σ∗ is surjective since it hits JH∗(ΣX) and since it is R-linear. Thus by
Corollary 2.16, the spectral sequence must collapse. Now H∗(QΣX) is primitively
generated, so by Theorem 2.4 we get that H∗(QΣX) is exterior and hence the
spectral sequence has

E2 = CotorH∗(Q̃ΣX)(k, k) ∼= k[s−1PH∗(Q̃ΣX)]

Since this is free as an algebra, there are no extension problems in homology, and
since QH∗(Q0X) is in linear bijection with E∞

−1,∗, we get that σ∗ is injective. �
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7.2. Homology of Ω∞ � P∞
−1. The lemmas in subsection 7.1 imply the following

diagram

QH∗(Q0 � P∞
+ )

Q(Ω0∂)∗

∼=

QH∗(Ω0QS0)

∼=

PH∗(Q̃Σ � P∞
+ )

P∂∗

PH∗(Q̃0S
0)

(7.2)

in which the vertical isomorphisms are the suspensions.
The formula for ∂∗ has an extra term because of the Hopf map η. We quote

the result from [MMM, Theorem 4.4]:

Theorem 7.5 ([MMM]). Let as ∈ H∗( � P∞
+ ) be the generator, s odd. Then

Q(∂∗)(as) = Q2s+1[1] ∗ [−2] + Qs+1Qs[1] ∗ [−4]

�

We shall need a lemma analogous to Lemma 4.3

Lemma 7.6. The left ideal in R generated by {Q2s+1 | s ≥ 0} is also a right
ideal.

Proof. This is completely analogous to the proof of Lemma 4.3. One uses the
Adem relation

Q2sQr−s = QrQs +
∑

i>s

λiQ
r+s−iQi

valid for r ≤ 2s, for r odd and s even. �

Lemma 7.7. Let b2s+1 ∈ PH∗(Q0S
0) be the unique primitive element with b2s+1−

Q2s+1[1] ∗ [−2] decomposable. Then PH∗(Q0S
0) is generated over R by the set

{b2s+1 | s ≥ 0}.

Proof. Let λ : QH∗(Q0S
0) → QH∗(Q0S

0) be the dual of the squaring. By the
Nishida relation λQ2s = Qsλ, the coimage of λ has basis

{QI [1] ∗ [−2`(I)] | I admissible, e(I) > 0, 2|I}

where 2|I means that all entries of I are even. Thus Theorem 2.4 implies that
the image of PH∗(Q0S

0)→ QH∗(Q0S
0) has basis

{QI [1] ∗ [−2`(I)] | I admissible, e(I) > 0, 2 6 |I}

and by Lemma 7.6, this is generated over R by the subset

{Q2s+1[1] ∗ [−2] | s ≥ 0}

Thus the subspace of PH∗(Q0S
0) generated over R by {b2s+1 | s ≥ 0} contains

all indecomposable primitives. But this generated subspace is clearly preserved
by the Frobenius map ξ : x 7→ x2, so the claim follows from Theorem 2.4. �
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We are now ready to prove the mod 2 analogue of Theorem 5.1. The result is
much simpler, and the extra term in Theorem 7.5 does not give much trouble.

Theorem 7.8. The map

P∂∗ : PH∗(QΣ � P∞
+ )→ PH∗(Q0S

0)

is surjective.

Proof. By the previous lemma, it suffices to prove that Q∂∗ hits the classes
Q2s+1[1] ∗ [−2]. Indeed, any indecomposable class mapping to Q2s+1[1] ∗ [−2]
is odd-dimensional and thus by 2.4 has a unique primitive representative that
will map to b2s+1.

For s = 0, this is immediate, since ∂∗(a1) = Q1[1] ∗ [−2]. For general s we use
the Adem relation Q2sQ1 = Qs+1Qs to get

Q(∂∗)(a2s+1) = Q2s+1[1] ∗ [−2] + Qs+1(Qs[1] ∗ [−2])

= Q2s+1[1] ∗ [−2] + Q2s(Q1[1] ∗ [−2])

Thus we have

Q(∂∗)(as −Q2sa1) = Q2s+1[1] ∗ [−2]

�

Remark 7.9. The claim of [MMM, Cor. 7.5] that ∂∗ and thus P (∂∗) is injective is
incorrect. The QIQ2r+1 of [MMM, Cor. 7.4] is not necessarily admissible, and in
fact an application of the Adem relations shows that

∂∗(Q
3a1 −Q2Q1a1) = 0

Together with the diagram (7.2), Theorem 7.8 makes the spectral sequence

CotorH∗(Ω̃QS0)(H∗(Q̃ � P∞
+ ), k)⇒ H∗(Ω

∞
0 � P∞

−1) (7.3)

very simple. We have

Theorem 7.10. The spectral sequence (7.3) collapses and the map

(Ω0ω)∗ : H∗(Ω
∞
0 � P∞

−1)→ H∗(Q0 � P∞
+ )\\(Ω0∂)∗

is an isomorphism.

Proof. From Theorem 7.8 and the diagram (7.2) we get that Q(Ω0∂∗) and hence
Ω0∂∗ itself are surjective maps. Hence in the splitting of the E2-term

E2 ∼= CotorH∗(Ω̃0QS0)//(Ω∂)∗(k, k)⊗H∗(Q̃0 � P∞
+ )\\(Ω∂)∗

the Cotor-factor vanishes, and the spectral sequence is concentrated on the fibre
line E2

0,∗ ⊆ E2
∗,∗. �
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7.3. Homology of Ω∞Σ � P∞
−1. This part of the calculation is similar to the

odd primary case. We consider again the spectral sequence (5.1) with the split-
ting (5.2). Notice that the fibration (1.1) splits off the fibration S1 → S1 →

�
P∞

and hence it has trivial local coefficients. As for odd primes, we need to determine
the coalgebra structure on H∗(Q0S

0)//∂∗. The following theorem is analogous to
Theorem 5.1.

Theorem 7.11. Let H∗(Q0S
0)(0) ⊆ H∗(Q0S

0) denote the subalgebra generated
by the set

{QI [q] ∗ [2`(I)] | I admissible, e(I) > 0, 2|I}

Then the composition

H∗(Q0S
0)(0) → H∗(Q0S

0)→ H∗(Q0S
0)//∂∗

is an isomorphism of algebras.

Proof. Since Q is right exact we have Q(H∗(Q0S
0)//∂∗) = Cok(Q∂∗), and from the

calculation in the proof of Lemma 7.7 follows that the composition is surjective.
To prove injectivity, consider again the dual squaring λ : H∗(Q0S

0)→ H∗(Q0S
0).

It is a map of Hopf algebras, and since λQ2s = Qsλ and λQ2s+1 = 0 we get that

λ : H∗(Q0S
0)(0) → H∗(Q0S

0)

is an isomorphism. Hence

H∗(Q0S
0) = H∗(Q0S

0)(0) ⊕ Ker(λ)

where the first summand is a subalgebra and the second is an ideal. Now the
injectivity of the map in the theorem follows from the fact that Ker(λ) is an ideal
and that Im(∂∗) ⊆ k ⊕ Ker(λ). �

Theorem 7.12. H∗(Q0S
0)//∂∗ is dual to a polynomial algebra.

Proof. This follows since λ : H∗(Q0S
0)→ H∗(Q0S

0) is surjective. �

Notice that H∗(Q0S
0) itself is polynomial. This is in contrast to the odd pri-

mary case, where only the subalgebra H∗(Q0S
0)\\∂∗ ⊆ H∗(Q0S

0) is polynomial.
As for odd primes, Theorem 7.12 makes the spectral sequence collapse. The

spectral sequence is

E2 = CotorH∗(Q0S0)(H∗(QΣ � P∞
+ ), k)⇒ H∗(Ω

∞Σ � P∞
−1) (7.4)

and the E2-term splits as

E2 ∼= CotorH∗(Q0S0)//∂∗(k, k)⊗H∗(QΣ � P∞
+ )\\∂∗

∼= E[s−1P (H∗(Q0S
0)//∂∗)]⊗H∗(QΣ � P∞

+ )\\∂∗

Again primitives and generators are concentrated in E2
−1,∗ and E2

0,∗ and hence we
have
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Theorem 7.13. The spectral sequence (7.4) collapses and E2 = E∞ is given by

E2 ∼= E[s−1P (H∗(Q0S
0)//∂∗)]⊗H∗(QΣ � P∞

+ )\\∂∗

�

Remark 7.14. Since the E∞-term is not a free algebra as it was for p odd, we can-
not immediately get the algebra structure of H∗(Ω

∞Σ � P∞
−1) up to isomorphism.

This is the topic of the next section.

7.4. Hopf algebra structure of H∗(Ω
∞Σ � P∞

−1). ¿From the spectral sequence
(7.4) and Theorem 7.13 we get that

k H∗(Ω
∞Σ � P∞

−1)\\ω∗ H∗(Ω
∞Σ � P∞

−1)
ω∗

H∗(QΣ � P∞
+ )\\∂∗ k

(7.5)
is a short exact sequence of Hopf algebras. We proceed to identify the kernel
H∗(Ω

∞Σ � P∞
−1)\\ω∗ and to prove a splitting result analogous to Theorem 5.7.

Proposition 7.15. H∗(Ω
∞Σ � P∞

−1)\\ω∗ is an exterior algebra primitively gener-
ated by the vectorspace s−1P (H∗(Q0S

0)//∂∗).

Proof. Since H∗(QΣ � P∞
+ ) is a free algebra, so is H∗(QΣ � P∞

+ )\\∂∗, and so by
Proposition 2.11 we get an isomorphism

Q(H∗(Ω
∞Σ � P∞

−1)\\ω∗)
∼=

Ker(Qω∗)

The spectral sequence (7.4) and Theorem 7.13 gives a map

s−1P (H∗(Q0S
0)//∂∗)→ E∞

−1,∗ = F−1/F−2

for a filtration F0 ⊇ F−1 ⊇ . . . of H∗(Ω
∞Σ � P∞

−1). By choosing a lift to F−1 ⊆
H∗(Ω

∞Σ � P∞
−1) we get a map of algebras

ϕ : k[s−1P (H∗(Q0S
0)//∂∗)]→ H∗(Ω

∞Σ � P∞
−1)

and since the image of ϕ generates the ideal F−1 ⊆ H∗(Ω
∞Σ � P∞

−1) we get

H∗(Ω
∞Σ � P∞

−1)//ϕ
∼= H∗(QΣ � P∞

+ )\\∂∗

By right exactness of Q we get an induced isomorphism

s−1P (H∗(Q0S
0)\\∂∗)→ Ker(Q∂∗) = Q(H∗(Ω

∞Σ � P∞
−1)\\ω∗)

Thus H∗(Ω
∞Σ � P∞

−1)\\ω∗ is generated by odd-dimensional classes that may be
assumed primitive by Theorem 2.4.

For dimensional reasons, these generators must have height 2, and hence H∗(Ω
∞Σ � P∞

−1)\\ω∗

is exterior. �

As for odd primes, Lemma 5.6 gives the following
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Theorem 7.16. The sequence (7.5) is split exact in the category of abelian Hopf
algebras. Hence as Hopf algebras we have

H∗(Ω
∞Σ � P∞

−1)
∼= H∗(Ω

∞Σ � P∞
−1)\\ω∗ ⊗H∗(QΣCP∞

+ )\\∂∗

�
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