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1 Introduction

To make this note accessible to a broad spectrum of readers, we briefly recall the
necessary analytic and algebraic background for the concept of vertex operators (cf.
[3], Chapter 14).

Let Γ0D be the algebra of all polynomials of finitely many variables ξj from the
set {ξ1, ξ2, ..., ξn, ...} and D the space of all linear forms belonging to Γ0D. Finally, let

Γ̃D ⊃ Γ0D be the algebraic adjoint of Γ0D identified with the algebra of all formal
series of variables ξj. An operator which is the sum of compositions of operators of
multiplication by variables ξj composed with derivations ∂

∂ξk
is said to be of normal

form if the operators of multiplication always precede the operators of derivation. Γ0D
is provided with a scalar product 〈, 〉 which makes ∂

∂ξk
the adjoint to the operator of

multiplication by ξk. k = 1, 2, ... respectively.
Select two sequences of complex numbers {tn} and {sn}. Operators of the form

e
∑∞

n=1 tnznξne
∑∞

n=1 snz−n ∂
∂ξn ,

where z ∈ C, acting on Γ0D, are called vertex operators. The operators Sm of the
expansion

e
∑∞

n=1 tnznξne
∑∞

n=1 snz−n ∂
∂ξn =

∑
n∈Z

Snz
n (1)

are called Schur polynomials. In [3], chapter 14, there are produced recursive formulas
for Sm and it is shown that for sn = 1

n
and tn = 1, the operators Sm, m ≥ 1, anti-

commute, i.e. represent fermions. More details concerning vertex operators and vertex
operators algebras can found in the book [1] and in several papers, in particular [2].

In this paper we provide an explicit formula for Sm in their normal form, for any
given vertex operator written in the mathematical frame of a general Bose algebra
(recall that all Bose algebras with infinite dimensional separable one-particle space are
all canonically isomorphic cf.[4]).

2 Preliminaries

Let Γ0D be a Bose algebra (cf. [4]) i.e. a commutative graded algebra generated
by a pre-Hilbert space D, 〈 , 〉 (the so-called one-particle space) and the unity φ (the
vacuum) provided with the extension 〈 , 〉 of the scalar product of D making φ a unit
vector and fulfilling the property that for every x ∈ D, the adjoint x∗ to the operator
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of multiplication by x is defined on the whole Γ0D and constitutes a derivation (i.e.

fulfils the Leibniz rule). We make the space Γ̃D of all antilinear functionals on Γ0D the
extension of Γ0D by identifying f ∈ Γ0D with the antilinear functional 〈·, f〉 . The space

Γ̃D can be naturally made into an algebra containing Γ0D as a subalgebra. We consider
Γ̃D as a locally convex space with the weak topology σ

(
Γ̃D, Γ0D

)
. The weak closure D̃

of D is a subspace of Γ̃D. It is easy to show that Γ0D, 〈 , 〉 admits the completion ΓD
within Γ̃D.

We shall use the exponentials of elements w ∈ D,

ew =
∞∑

n=0

1

n!
wn ∈ ΓD,

which are called coherent vectors. In [4] the following relations are verified:

〈a, b〉j =
1

j!

〈
aj, bj

〉
(2)

(xn)∗ ew = 〈x, w〉n ew (3)

〈eu, fg〉 = 〈eu, f〉 〈eu, g〉 (4)

ea(w)ev = e〈w,v〉ev. (5)

Also a proof that the set {ex : x ∈ D} of coherent vectors is total in ΓD can be found
in [4].

3 The Laurent Expansion for a Vertex

Operator

Let D be spanned by an orthonormal system {fn} and by an orthonormal system {gn}
as well. The operator valued functions of z

V (z) = e
∑∞

n=1 znfne
∑∞

n=1 z−ng∗n : Γ0D → Γ̃D,

shall be called a vertex operator.
Write (p, q) for tuples of non-negative integers

(p, q) = (p1, q1, p2, q2, . . . , pk, qk, . . . )

and define

Nm =

{
(p, q) :

∞∑
k=1

(pk + qk) = m

}
and

Nw =

{
(p, q) :

∞∑
k=1

(pk + qk) < ∞,

∞∑
j=1

j (pj − qj) = w

}
.

For s = (s1, s2, ...) , write

s! =
∞∏

k=1

sk!.

Our main result is the following

2



Theorem. Vertex operators admit the weak evaluation on Γ0D and the weak convergent
Laurent expansion

V (z) = e
∑∞

n=1 znfne
∑∞

n=1 z−ng∗n =
∑
w∈Z

Sw {fn, g
∗
n} zw

with coefficients

Sw {fn, g
∗
n} =

∞∑
m=0

∑
(p,q)∈Nm∩Nw

1

p!q!

(
∞∏

k=1

fpk

k

)(
∞∏

k=1

gqk

k

)∗
called the Schur polynomials (cf.[3]).

To prove the Theorem we shall need the following

Lemma. Take any pair of elements u, v ∈ D. Then the element V (z) eu is well defined

in Γ̃D and we have

〈eu, V (z) ev〉 =

〈
eu,

(∑
w∈Z

Sw {fn, g
∗
n} zw

)
ev

〉
, (6)

where

Sw {fn, g
∗
n} =

∞∑
m=0

∑
(p,q)∈Nm∩Nw

1

p!q!

( ∞∏
k=1

fpk

k

)( ∞∏
k=1

gqk

k

)∗
.

Proof. Take u,v ∈ D. Since by (5)〈
eu, ea+(x)ea(y)ev

〉
= e〈u,v〉e〈u,x〉+〈y,v〉,

we obtain
〈eu, V (z) ev〉 = e〈u,v〉e

∑∞
n=1(〈fn,,u〉zn+〈v,gn〉z−n).

Since u and v are linear combinations of fk and gk respectively, 〈fn,, u〉 zn = 〈v, gn〉 z−n =
0 for large n. Due to (3) we get〈

eu,

( ∞∏
k=1

fpk

k

)( ∞∏
k=1

gqk

k

)∗
ev

〉
=

〈( ∞∏
k=1

fpk

k

)∗
eu,

( ∞∏
k=1

gqk

k

)∗
ev

〉
=

( ∞∏
k=1

〈fk, u〉pk 〈v, gk〉qk

)
e〈u,v〉,

where all the products are finite and they are non-zero only when pk and qk are zeros
for fk and gk orthogonal to v and u respectively. Consequently

1

m!

( ∞∑
n=1

〈fn,, u〉 zn +
∞∑

n=1

〈v, gn〉 z−n

)m
=

∑
(p,q)∈Nm

1

p!q!

∞∏
k=1

(
〈fk, u〉pk 〈v, gk〉qk zk(pk−qk)

)
=
∑
w∈Z

∑
(p,q)∈Nw∩Nm

1

p!q!

(
∞∏

k=1

〈fk, u〉pk 〈v, gk〉qk

)
zw

〈
eu,
∑
w∈Z

( ∑
(p,q)∈Nw∩Nm

1

p!q!

( ∞∏
k=1

fpk

k

)( ∞∏
k=1

gqk

k

)∗ )
zwev

〉
e−〈u,v〉.
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Consequently

1

m!

( ∞∑
n=1

〈fn,, u〉 zn +
∞∑

n=1

〈v, gn〉 z−n

)m
=

〈
eu,
∑
w∈Z

( ∑
(p,q)∈Nm∩Nw

1

p!q!

( ∞∏
k=1

fpk

k

)( ∞∏
k=1

gqk

k

)∗ )
zwev

〉
e−〈u,v〉,

and finally

〈eu, V (z) ev〉 = e〈u,v〉e
∑∞

n=1(〈fn,,u〉zn+〈v,gn〉z−n)

=

〈
eu,

∞∑
m=0

∑
w∈Z

( ∑
(p,q)∈Nm,w

1

p!q!

( ∞∏
k=1

fpk

k

)( ∞∏
k=1

gqk

k

)∗ )
zwev

〉

which concludes the proof of the Lemma.

Proof of the Theorem
Since Γ0D is the linear span of the set

{
xk : x ∈ D, k = 1, 2, ..

}
([4]), it is sufficient

to show that for any u, v ∈ D and any natural numbers k, j we have

〈
uk, V (z) vj

〉
=

〈
uk,

(∑
w∈Z

Sw {fn, g
∗
n} zw

)
vj

〉
which follows by differentiating respectively k and j times at 0 the variables t and s of
the identity 6 with tu and sv substituted for u and v.
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