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Categorification of the Temperley category, tangles

and cobordisms via projective functors

Catharina Stroppel∗

Abstract

To each generic tangle projection from the three dimensional real
vector space onto the plane, we associate a derived endofunctor on
a graded parabolic version of the Bernstein-Gelfand category O. We
show that this assignment is (up to shifts) invariant under tangle iso-
topies and Reidemeister moves and defines therefore invariants of tan-
gles. The occurring functors are defined via so-called projective func-
tors. The first part of the paper deals with the indecomposability of
such functors and their connection with generalised Temperley-Lieb
algebras which are known to have a realisation via decorated tan-
gles. The second part of the paper describes a categorification of the
Temperley-Lieb category and proves the main conjectures of [BFK99].
Moreover, we describe a functor from the category of 2-cobordisms into
the category of projective functors.

∗Partially supported by CAALT and EPSRC.
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Introduction

On the way of finding topological invariants for knots and links, recently
some new ideas concerning a connection to representation theory appeared
(see e.g. [Kho00], [FK97]). Our paper was mainly motivated by [BFK99]
and contains a proof of the main conjectures therein. Bernstein, Frenkel
and Khovanov constructed a realisation of the Temperley-Lieb algebra via
projective functors on parabolic versions of the Bernstein-Gelfand-Gelfand
category O. The category O is given by representations (with certain finite-
ness conditions) of a complex semisimple Lie algebra g. It is stable under
tensoring with a finite dimensional g-module E. A direct summand of •⊗E
is called a projective functor, since it preserves projectivity. Such functors
play a crucial role in representation theory. The indecomposable projective
functors on O were classified by Bernstein and Gelfand ([BG80]). When
restricting to the main block O0, their isomorphism classes are in bijec-
tion to the Weyl group. The famous Kazhdan-Lusztig-theory is based on
the fact that the Grothendieck ring of projective functors is described by
the corresponding (specialised) (Iwahori-)Hecke algebra. In other words,
this algebra has a ‘functorial realisation’, i.e. there is a ring homomorphism
from the specialised (Iwahori-)Hecke algebra into the Grothendieck ring of
projective functors on a regular integral block of O. In type A, there is a
well-known quotient of the Iwahori-Hecke algebra which is called Temperley-
Lieb algebra. Because of its diagrammatical description it is directly linked
with knot theory and has several applications in physics and science (see
e.g. [Kau01]). In [BFK99], the authors considered the action of the spe-
cialised Iwahori-Hecke algebra induced via projective functors on the direct
sum over all maximal parabolic subcategories of O0. They proved that it
factors through the specialised Temperley-Lieb algebra. On the level of the
Grothendieck group the resulting representation coincides with the natural
representation on the n-fold tensor product of C

2 given by place permuta-
tions.
The following questions appeared in this context (and are the content of our
paper):

(I) ([BFK99]) Is there a ‘functorial realisation’ of the Temperley-Lieb
algebra where the deformation variable comes into the picture?

(II) ([Bac01]) Is there a classification of indecomposable projective func-
tors in the parabolic setup?

(III) Is it possible to generalise the results of [BFK99] to other types?
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(IV) ([BFK99]) Is there a ‘functorial realisation’ of the Temperley-Lieb
2-category and of arbitrary tangles?

The first problem can be solved using the graded version of category O in-
troduced in [BGS96]. In [Str03], a graded version of translation functors
is defined such that one can easily get the required ‘functorial realisation’
(Theorem 4.1). In this context we also obtain a ‘functorial realisation’ of the
Temperley-Lieb algebras of Type B, C and D. This might be interesting,
since these algebras can be realised via decorated tangles (see e.g. [Gre98]).
The classification problem, however, seems to be much more complicated.
We are far away from a reasonable answer. Nevertheless, we give a combina-
torial formula (Proposition 3.6, Theorem 5.7) for the number of isomorphism
classes of indecomposable functors. This formula was motivated by discus-
sions with W. Soergel, who conjectured that it should determine the number
of indecomposable projective functors. However, in non-simply-laced cases
we do not have equality in general (see Examples 3.7). In Proposition 3.8
we prove, that it is sufficient to study the case of simple Lie algebras.
A very nice (and helpful!) result is given by Theorem 5.1, where we prove
that an indecomposable projective functor on O0(sln) stays either indecom-
posable or becomes zero after restricting to a maximal parabolic subcategory.
(This was conjectured in [BFK99]. Note that it is not true for other types;
see Examples 3.7). Moreover, the indecomposable functors corresponding
to a non-braid avoiding Weyl group elements becomes always trivial after
restriction (Lemma 5.2).
Our main results are the proofs of the Conjectures 1 to 4 of [BFK99]: Let
Omax
n be the direct sum of all parabolic subcategories of the main block of
O(sln) given by parabolic subgroups of the form Sk×Sn−k. We associate to
each morphism f of the Temperley-Lieb 2 category, i.e. to each (m,n)-tangle
projection without crossings, a projective functor F (f) : Omax

m → Omax
n .

Theorem 6.2 can be read as

If f ' g via planar isotopies then F (f) ∼= F (g) as functors

and

To each 2-morphism in the Temperley 2-category we can assign a natural
transformation between the functors given by the corresponding

1-morphisms.

We extend this ‘functorial realisation’ to tangles with crossings as follows:
Let Db

(

Omax
n

)

denote the bounded derived category of Omax
n . To each

(m,n)-tangle projection t we associate a functor T (t) : Db
(

Omax
m

)

→ Db
(

Omax
n

)

.



4

The functors assigned to a right or left-curl are given as mapping cones of the
adjunction morphisms between the identity functor and translation functors
through the wall. That means they coincide with the derived functors of
Irving’s shuffling functors ([Irv93]). We prove in Theorem 7.1:

If t ' t′ via ambient isotopies then T (t) ∼= T (t′)

up to a grading shift and a shift in the derived category. These results prove
Conjecture 3 and Conjecture 4 from [BFK99]. Using the fact that projec-
tive functors are Koszul dual to Zuckerman’s functors (as proved in [RH]),
a ‘functorial realisation’ of tangles via singular blocks of category O follows
([BFK99, Conjecture 1 and 2]).
Therefore, we get functor invariants for tangles. In particular, we can assign
to a disjoint union of closed oriented 1-manifolds a certain endofunctor on
a parabolic version of category O(sln). Our final result (Theorem 8.1) is a
‘functorial realisation’ of the category of 2-cobordisms. In other words, we
assign to each cobordism a natural transformation between the correspond-
ing functors and prove that this assignment is invariant under isomorphisms
of cobordisms. Since all the occurring functors can be lifted to a Z-graded
version (as explained in [Str03]), the natural transformations corresponding
to cobordisms can be interpreted as (homogeneous) transformations between
Z-functors. It turns out that the Euler characteristic of the cobordism sur-
face coincides with the degree of the assigned natural transformation. How
to realise the 2-category of tangle cobordisms in terms of projective functors
will be explained in a subsequent paper.

The paper is organised as follow: In the first section we recall the main
results on Category O, its parabolic version and its combinatorics. In section
2 we explain how the deformation variable of the (Iwahori-)Hecke algebra
can be interpreted as grading shifts. In the third section we define the cate-
gories of projective functors and prove some basic and general results. The
problem about indecomposability of projective functors is worked out; in-
cluding a description of how to define graded lifts of projective functors. In
section 4 we describe ‘functorial realisations’ of generalised Temperley-Lieb
algebras. Section 5 considers the maximal parabolic situation of type A.
It includes the theorem on indecomposability of indecomposable projective
functors after restriction to the parabolic category. Since some proofs rely
on explicit calculations, we attached an appendix containing the descrip-
tion of distinguished coset representatives for maximal parabolic subgroups.
The following two sections contain (the proof of) the two ‘functorial reali-
sation’ theorems for tangles. In the last section we finally describe ‘functo-
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rial realisations’ of the 2-cobordisms category and mention how the Euler
characteristic of cobordism surfaces can be realised as degrees of natural
transformations between Z-functors.

Acknowledgement: I wish to thank Robert Marsh for helpful discus-
sion related to the combinatorics in this paper and for his invitation to
Paris. I am in particular grateful to Henning Haahr Andersen for answering
many questions and for helpful comments. Thanks to Wolfgang Soergel who
initiated this work. I thank Mikhail Khovanov for several comments on a
previous version and for pointing out an inaccuracy in a proof.

1 Category O and its Combinatorics

Let g ⊃ b ⊃ h be a semisimple complex Lie algebra with a fixed Borel and
Cartan subalgebra. Let g = n−⊕b = n−⊕h⊕n be the corresponding Cartan
decomposition. The universal enveloping algebras are denoted by U = U(g),
U(b) etc. Let Z ⊂ U be the centre.
We consider the category O of Bernstein and Gelfand ([BG80]) which is the
full subcategory of the category of all U -modules given by the following set
of objects

Ob(O) :=







M ∈ g−mod

∣

∣

∣

∣

∣

∣

M is finitely generated as a U(g)-module
M is locally finite for b

h acts diagonally on M







where the second condition means that dimC U(n) ·m < ∞ for all m ∈ M
and the last says that M = ⊕µ∈h∗Mµ, where Mµ = {m ∈ M | h · m =
µ(h)m for all h ∈ h} is the µ-weight space of M . Many results about this
category can be found for example in [BGG76, Jan79, Jan83].
For a given weight λ ∈ h∗, let M(λ) = U(g) ⊗U(b) Cλ denote the Verma
module with highest weight λ and simple head L(λ). Let P (λ) ∈ O be the
projective cover of L(λ).
Let π ⊂ R be the set of simple roots inside the set of all roots. For α ∈ R
let gα be the α-weight space of g under the adjoint action. The coroot
of α is denoted by α̌. We use the letter W for the Weyl group with unit
element e and denote by S the set of simple reflections. The length of
w ∈ W is denoted by l(w). For w, a1, . . . , ar ∈ W we call an expression
w = a1a2 · · · ar minimal, if

∑r
i=1 l(ai) = l(w). In particular, any reduced

expression is minimal. The Weyl group acts in a natural way on h∗ (with
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fix point 0); for any λ ∈ h∗ we denote by w · λ = w(λ + ρ) − ρ the image
of λ under the ‘translated’ action of W with fix point −ρ, where ρ is the
half-sum of positive roots.
Let Wλ denote the stabiliser of λ under this action. We denote by Oλ the
full subcategory of O having as objects all modules annihilated by a large
enough power of the maximal ideal kerχλ = AnnZ M(λ) in the centre of U .
We will call λ ∈ h∗ dominant (with respect to −ρ) if 〈λ+ρ, α̌〉 ≥ 0 and label
the subcategories Oλ always with dominant weights.

1.1 The parabolic category Op

Let S ⊆ π be a subset of the simple roots with corresponding root system
RS = R ∩ ZS. We define the Lie algebra gS ⊆ g as

gS = n−S ⊕ hS ⊕ n+
S ,

where n∓S =
⊕

α∈∓R∩RS
gα. Then gS is semisimple with Cartan subalgebra

hS = ⊕α∈SCα̌ and root system RS . Let us denote the corresponding Weyl
group by WS and let W S be the set of minimal length coset representatives
for WS\W , i.e. W S = {w ∈ W | ∀s ∈ S ∩ WS : l(sw) > l(w)}. The
parabolic subalgebras (containing b) of g are parametrised by the elements
of the power set of π, in the way that S ⊆ π corresponds to

pS = (gS ⊕ hS) + n,

where hS =
⋂

α∈S kerα. Using this bijection we identify WpS
= WS , W S =

W pS etc.
Let p = pS be a parabolic subalgebra (containing b) of g with universal
enveloping algebra U(p). The category OS = Op is the full subcategory of
O whose objects are exactly the locally p-finite modules of O, i.e. M ∈ Op

if and only if dimC U(p)m < ∞ for all m ∈ M . This category is called the
parabolic category O (with respect to p or S respectively).
Let P+

p = {λ ∈ h∗ | 〈λ, α̌〉 ∈ N, ∀α ∈ S} be the strict dominant integral
weights with respect to S. The map which sends a simple U(p)-module to
its highest weight gives (see [RC80]) a bijection

{iso-classes of finite dimensional simple U(p)-modules}
1:1
←→ P+

p . (1.1)

We denote the (unique up to isomorphism) simple p-module of highest
weight λ by E(λ). The parabolic Verma module (with respect to S or p

respectively) of highest weight λ is defined as

Mp(λ) = U(g)⊗U(p) E(λ).
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It has a unique simple quotient Lp(λ) ∼= L(λ) (see [RC80, Proposition 3.3]).
Note that if S = ∅, then pS = b and Mp(λ) = M(λ) is the ‘ordinary’ Verma
module. In the other extreme case where S = π, we have Mg(λ) ∼= L(λ).
There is a bijection between the isomorphism classes of simple modules in
Op and the elements of P+

p by mapping a module to its highest weight. The
category Op has enough projectives. We denote the projective cover of the
simple module L(λ) corresponding to λ ∈ P+

p by P p(λ). (for details see
[RC80, Proposition 3.3, Corollaries 4.2 and 4.4]). A categorical characteri-
sation of the parabolic Verma modules is given by the following fact:

Lemma 1.1 (Parabolic Verma Modules as Projective Objects). Let
λ ∈ P+

p . The module Mp(λ) is projective in the full subcategory Op
λ≥ of Op,

objects of which have only composition factors of the form L(µ) with µ 6> λ.

Proof. For M ∈ Op
λ≥ we have by Frobenius’ reciprocity

Homg(M
p(λ),M) = Homg(U(g)⊗U(p) E(λ),M) ∼= Homp(E(λ),M) ∼= Mλ.

Therefore, Homg(M
p(λ), •) is exact and Mp(λ) is projective. (Note that the

last isomorphism follows from (1.1) and the fact that λ is by assumption a
maximal possible weight.)

The following Proposition describes how to construct the projective cov-
ers in Op given a projective cover in O:

Proposition 1.2 (Projective Covers in Op). Let Q ∈ Op with projective
cover P ∈ O. Then the projective cover of Q in Op is (up to isomorphism)
the quotient P/M , where M is the smallest submodule of P containing all
composition factors of P not contained in Op.

Proof. First of all, it is clear from the definition of Op that P/M ∈ Op. Since
HomO(P, •) = HomO(P/M, •) = HomOp (P/M, •) on Op, the projectivity of
P/M follows. If a submodule of P/M surjects onto Q, then its preimage
under the canonical map P→→P/M maps surjectively onto Q as well. Hence,
P/M is a projective cover by the minimality of P .

Restriction to the subcategory Op
λ≥ gives the following

Corollary 1.3. For λ ∈ h∗, there is an isomorphism Mp(λ) ∼= M(λ)/M ,
where M denotes the smallest submodule containing all composition factors
not contained in Op.
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1.2 The parabolic Hecke module N

We recall some facts on the Kazhdan-Lusztig combinatorics developed in
[KL79], [Deo87]. We use the notation of [Soe97].
Let Z[v, v−1] be the ring of Laurent polynomials in one variable v. Let
H = H(W,S) denote the Hecke algebra of (W,S), i.e. the free Z[v, v−1]-
module with basis {Hx | x ∈W} and relations

H2
s = He + (v−1 − v)Hs for s ∈ S and (1.2)

HxHy = Hxy, if l(x) + l(y) = l(xy). (1.3)

We denote byH 7→ H the duality onH, i.e. the ring homomorphism given by
Hx 7→ H−1

x−1 and v 7→ v−1. The Kazhdan-Lusztig basis is given by elements

Hx (for x ∈ W ) such that Hx is self-dual (i.e. Hx = Hx) and Hx ∈ Hx +
∑

y∈W vZ[v]Hy. In particular Cs := Hs = Hs + v is a Kazhdan-Lusztig
basis element for each simple reflection s ∈ W . For S ⊆ π, a subset of
the simple roots, let HS = H(WS,WS ∩ S) be the corresponding Hecke
algebra. We consider Z[v, v−1] as a right HS-module where Hs for s ∈ S
acts by multiplication with −v. On the other hand, the Hecke algebra H is
in a natural way, via restriction, a left HS-module. Therefore, the following
definition of the parabolic Hecke module (with respect to S or p) makes sense:

N p := Z[v, v−1]⊗HS
H.

Hence, the parabolic Hecke module N p is a right H-module and a free
Z[v, v−1]-module with basis {Np

x := 1 ⊗ Hx | x ∈ W p}. The structure
as a right H-module is given by the following

Lemma 1.4. (see [Soe97])

Np
xCs =











Np
xs + vNp

x if xs > x and xs ∈W p

Np
xs + v−1Np

x if xs < x and xs ∈W p

0 if xs /∈W p

1.3 Translation through the wall and the parabolic Hecke

module

For λ ∈ h∗ dominant and integral, let θλ0 : O0 → Oλ (and θ0
λ : Oλ → O0

respectively) be the corresponding translation functors. For Wλ = {e, s},
s ∈ S, we denote by θs = θ0

λθ
λ
0 the translation functor through the wall (for

more details see e. g. [Jan79], [Jan83]).
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Since for a module M being p-locally finite the tensor product M ⊗ E is
also p-locally finite for any finite dimensional g-modules E, the functor θs
restricts to a functor Op

0 −→ O
p
0 for any parabolic subalgebra containing b.

Let [Op
0] denote the Grothendieck group of Op

0. Since θs is exact, it induces
a group homomorphism on [Op

0] which is denoted by
[

[θs]
]

. Each of the fol-
lowing sets is a basis of [Op

0]: {[P
p(x · 0)] | x ∈W p}, {[Mp(x · 0)] | x ∈W p}

and {[L(x · 0)] | x ∈ W p}. In the following we use the abbreviations
P p(x) = P p(x · 0), Mp(x) = Mp(x · 0) and L(x) = L(x · 0) for any x ∈W .

We state the following well-known results

Proposition 1.5. Let x ∈W p. Let s be a simple reflection.

1.) If xs ∈ W p and x < xs then θsM
p(x) ∼= θsM

p(xs) and there is a short
exact sequence of the form

0→Mp(x) −→ θsM
p(x) −→Mp(xs)→ 0

2.) If xs /∈W p then θsM
p(x) = 0.

3.) The following diagram commutes

N p

·Cs

��

v=1

Np
x 7→[Mp(x)] // [Op

0]
[

[θs]
]

��

N p
v=1

Np
x 7→[Mp(x)] // [Op

0].

Proof. The first part of the theorem is [Irv85, Proposition v]. For the second
part we assume xs /∈W p, hence xs > x (Otherwise, choose t ∈Wp∩ S such
that txs < xs. Hence l(txs) = l(xs) − 1 = l(x) − 2 = l(tx) − 3. This
is a contradiction.) Any non-zero quotient of θsM(x) contains L(xs) as a
composition factor; hence there is no nontrivial quotient which is p-locally
finite. In particular, θsM

p(x) = 0. The commutativity of the diagram is
then clear by Lemma 1.4.

2 Gradable Modules and graded translation

In the following we consider an integral regular block (say O0) of category
O with its parabolic subcategory. Let P = ⊕x∈WP (x) be the sum over
all indecomposable projectives in this block. This is a minimal projective



2 GRADABLE MODULES AND GRADED TRANSLATION 10

generator. How its endomorphism ring becomes a Z-graded ring is explained
in [BGS96] and [Str03]. In the following, let A = Endg(P ) be equipped with
this (Z-)grading. By Morita equivalence we can consider O0 as a category of
finitely generated (non-graded!) right modules over a graded ring A. If we
denote by mof −A the category of finitely generated right A-modules this
means

O0
∼= mof −A.

We denote by (g)mof −A the category of finitely generated graded right A-
modules. As in [Str03] we call a module M ∈ O0 gradable, if Homg(P,M) is
gradable, i.e. if there exists a graded right A-module M̃ such that f(M̃) ∼=
Homg(P,M). (Here f denotes the grading forgetting functor gmof −A −→
mof −A.) In this case, M̃ is called a lift of M . We call M ∈ Op

0 gradable, if
it is gradable considered as an object of O0.
In [Str03] and [BGS96] it is shown that all ‘important’ objects of O0, like
projective modules, simple modules and Verma modules etc. are gradable.
We generalise this result to the parabolic situation:

Theorem 2.1. Let M ∈ Op
0 be either a simple object, a projective object,

or a parabolic Verma module. Then M is gradable (considered as objects in
O0).

Proof. Since the simple modules in the parabolic subcategory are also simple
in O0, the statement for simple objects is proved in [Str03]. By Lemma 1.2,
there is for each x ∈W p an isomorphism P p(x) ∼= P (x)/M , where M is the
smallest submodule containing all simple composition factors of the form
L(y) with y /∈W p. We consider the graded lift P̃ (x) of P (x), which is defined
in [Str03]. Let M be its smallest submodule which is generated by the
collection of one-dimensional subspaces corresponding to simple composition
factors of the form L(y) of P (x) with y /∈W p. Therefore, M is by definition
generated by homogeneous elements; hence the module P̃ (x)/M is a lift of
P p(x). For the parabolic Verma modules we can do (by Lemma 1.1 and
Lemma 1.2) an analogous construction. The theorem follows.

The proof of the last theorem gives the following

Corollary 2.2. Let P p :=
⊕

x∈W p

P p(x) be a minimal projective generator of

Op
0. Then Endg(P

p) is a quotient of Endg(P ) even as a graded ring.

Remark 2.3. 1.) By construction, the graded rings A = Endg(P ) and
Ap = Endg(P

p) coincide with the ones introduced in [BGS96].
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2.) The graded lifts of P p(x) (with x ∈ W p) are unique up to isomorphism
and a shift of the grading (see [Str03, Lemma 1.5]). We defined the lifts
in a way such that the simple head is concentrated in degree 0. The
same is true for the lifts of the parabolic Verma modules and of the
simple objects.

3.) It follows directly from the construction that a module M ∈ Op
0 is grad-

able if and only if it is gradable as an object of Op
0, i.e. there exists a

graded right Ap-module M̃ such that f(M̃) ∼= Homg(P
p,M) (as non-

graded right Ap-modules).

4.) In [Bac99] is proved that Ap (even for singular blocks) becomes a Koszul
ring, generalising the results of [BGS96].

2.1 Combinatorics of graded translation functors

Let us from now on denote by P̃ p(x), M̃p(x), and L̃(x) the graded lifts of
P p(x), Mp(x) and L(x), respectively, as defined in the proof of Theorem 2.1;
i.e. with head concentrated in degree zero. We consider Ap := Endg(P

p), the
endomorphism ring of the minimal projective generator P p =

⊕

x∈W p P p(x)
of Op

0 as a graded ring. For m ∈ Z let M〈m〉 be the graded module defined
by M〈m〉n := Mn−m with the same module structure as M , i.e. f(M〈m〉) =
f(M). Let [gmof −Ap] be the Grothendieck group of the category of all
finitely generated right Ap-modules. Each of the following three sets is a
basis of [gmof −Ap]: {[L̃(x)〈i〉] | x ∈ W p, i ∈ Z}, {[M̃p(x)〈i〉] | x ∈ W p, i ∈
Z}, {[P̃ p(x)〈i〉 | x ∈ W p, i ∈ Z}. Let θ̃s : gmof −A −→ gmof −A denote the
graded version of θs with the graded adjunction morphisms ID〈1〉 → θ̃s and
θ̃s → ID〈−1〉 as defined in [Str03]. We get the following generalisation of
[Str03, Theorems 3.6 and 5.3]:

Theorem 2.4. Let s ∈W be a simple reflection.

1.) Let x, xs ∈W p such that x < xs. The graded lifts of the parabolic Verma
modules fit into the following short exact sequences of graded modules

0 → M̃p(x · 0)〈1〉 → θ̃sM̃
p(x · 0) → M̃p(xs · 0) → 0

0 → M̃p(x · 0) → θ̃sM̃
p(xs · 0) → M̃p(xs · 0)〈−1〉 → 0.

2.) Let x ∈W p such that xs /∈W p then θ̃sM̃
p(x) = 0

Proof. Note that the maps have to be (up to a scalar) the adjunction mor-
phisms, since the homomorphism spaces in question are all one-dimensional.
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Hence, the upper inclusion and the lower surjection is clear. On the other
hand, the canonical surjection M̃(xs)→→M̃p(xs) is homogeneous of degree 0
by definition. The surjection of graded modules (see [Str03, Theorem 3.6])
θ̃sM̃(x)→→M̃(xs) has kernel M̃(x)〈1〉. Therefore the surjection in the first
row has to be homogenous of degree 0. For the injection in the second row,
we consider the inclusion of graded modules M̃(x) ↪→ θ̃sM̃(xs) (see [Str03,
Theorem 5.3]). This induces the injection in the second sequence.
For the second part, we know already the statement when forgetting the
grading (Proposition 1.5), hence there is nothing to do.

We get a combinatorial description of the graded translation functors:

Corollary 2.5. The following diagram commutes

N p

·Cs

��

vnNx 7→[M̃p(x)〈n〉] // [gmof −Ap]
[

[θ̃s]
]

��
N p

vnNx 7→[M̃p(x)〈n〉] // [gmof −Ap].

Proof. This follows from the previous theorem using Lemma 1.4.

Remark 2.6. The horizontal maps in the corollary are in fact isomorphisms
of Z[v, v−1]-modules where the action on [gmof −A] is given by vi[M ] =
[M〈i〉].

3 The categories of projective functors

In this section we define the additive categories of projective functors.
For each dominant weight h∗ we denote by pp

λ : Op→ Op
λ the canonical

projection. An endofunctor on Op
λ is called projective, if it is a (nonzero)

direct summand of pp
λ(•⊗E) for some finite dimensional g-module E. Note

that the direct sum of two such functors is again projective. Together with
the zero functor, these functors form an additive category Pp

λ with the usual
morphisms (i.e. natural transformation between functors) and the usual no-
tation of (finite) direct sums.
A (projective) functor F on Op

λ is indecomposable, if F ∼= F1 ⊕ F2 for some
endofunctors F1, F2 on Op

λ implies F1 = 0 or F2 = 0. In particular, a projec-
tive functor on Op

λ is indecomposable if and only if it is an indecomposable
object in Pp

λ; hence there is no obstacle to call such functors indecomposable
projective functors (on Op

λ).
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In the following we write just Pp instead of Pp
0 and Pλ = P∅

λ. We denote by
IndP(g, p) the set of isomorphism classes of indecomposable objects in Pp

and by # IndP(g, p) the order of this set. The indecomposable functors on
Oλ are classified by the following

Theorem 3.1. ([BG80], Theorem 3.3 and Theorem 3.5)

1. Let λ be an integral dominant weight. Let F , G ∈ Pλ. Then

F ∼= G ⇐⇒ F (M(λ)) ∼= G(M(λ)).

2. The assignment F 7→ F (M(λ)) defines a bijection between IndP(g, b)
and the set of isomorphism classes of indecomposable projective objects
in Oλ.

For λ = 0 let Fw ∈ P such that FwM(e) ∼= P (w). We denote by
[

[F ]
]

the induced homomorphism on the Grothendieck group.

Remark 3.2. Since for F ∈ P the module F (M(e)) is projective, we can
reformulate the first part of the Theorem as follows

F ∼= G ⇐⇒ [F (M(e))] = [G(M(e))] ⇐⇒
[

[F ]
]

=
[

[G]
]

.

Unfortunately, the obvious generalisation of Theorem 3.1 to the parabolic
situation is no longer true: Let s be a simple reflection. Choose p such that
L(s · 0) /∈ Op

0. We have θs 6= 0 in general, but θs(M
p(e)) = 0. Nevertheless,

we conjecture a generalisation of Remark 3.2

Conjecture 3.3. Let F , G ∈ Pp then

F ∼= G ⇐⇒
[

[F ]
]

=
[

[G]
]

.

3.1 Indecomposable projective functors

In the following section, we state some characterisations of indecomposable
(projective) functors in a general setup and define graded lifts.

Proposition 3.4. Let λ ∈ h∗ be dominant and integral. Let F ∈ Pp
λ be

indecomposable. The following are equivalent:

(i) F is indecomposable.

(ii) The only idempotents in End(F ) are 0 and 1.
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(iii) End(F ) is a local ring.

Proof. (ii) ⇒ (i): Assume F is decomposable; F ∼= F1 ⊕ F2. The natural
transformation given by projection onto the first factor defines obviously a
nontrivial idempotent.
(i) ⇒ (ii): Let π ∈ End(F ) be a nontrivial idempotent. This defines an
endofunctor Fπ on Op

λ by Fπ(M) = π(F (M)) on objects and Fπ(f) = πN ◦
F (f)|πM (F (M)) on morphisms f ∈ Hom(M,N): Since π is idempotent it
is Fπ(IDM ) = IDπ(M) for any object M . Let f ∈ Hom(M,N) and g ∈
Hom(Q,M). We get πN ◦ F (f) ◦ πM ◦ F (g)|πQ(F (Q)) = πN ◦ F (f) ◦ F (g) ◦
πQ|πQ(F (Q)) = πN ◦ F (f ◦ g)|πQ(F (Q)), since π is idempotent. Hence Fπ is
indeed a functor. On the other hand (ID−π) ∈ End(F ) is also idempotent
and we have F ∼= Fπ ⊕ FID−π.
(ii) ⇔ (iii): Note that dim End(F ) ≤ dim Endg(F (P )) for some (minimal)
projective generator P of Op

0, hence dim End(F ) <∞. Then the equivalence
is well-known (see e.g. [Lam91]).

We get a generalisation of the classical Krull-Remak-Azumaya-Schmidt-
Theorem (see e.g. [Lam91]).

Corollary 3.5. Let λ ∈ h∗ be dominant and integral. Let F ∈ Pp
λ. Then F

is isomorphic to a finite direct sum of indecomposable projective functors on
Op
λ. Moreover, this decomposition is unique up to isomorphism and order of

the summands.

Proof. Let ll(F ) denote the length of a Jordan-Hölder series of F (P p). Of
course, ll(F1) < ll(F ) when F1 is a direct summand of F . This shows that
the desired decomposition exists. The uniqueness follows then by standard
arguments (see e.g. [Lam91, 19.23]) using Lemma 3.4.

3.2 The image of the Hecke algebra

The action of the Hecke algebra on the parabolic Hecke module (see Lemma 1.4)
induces a homomorphism

Φp : H −→ EndZ(N p
v=1) = EndZ([Op

0]), (3.1)

whereN p
v=1 denotes the specialisation v  1 ofN p. The Z-rank of the image

of Φp is denoted by R(g, p). The following Lemma gives a lower bound for
the number of indecomposable projective functors:
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Proposition 3.6. For any parabolic subalgebra p containing b the following
holds:

# IndP(g, p) ≥ R(g, p). (3.2)

Proof. The image of Φp is generated by the multiplications ·Hx with x ∈W .
Let {·Hx | x ∈ I} be a maximal linear independent subset. Let {Fx | x ∈ I}
be the corresponding projective functors on O0. Let {Gi | 1 ≤ i ≤ m}
be a system of representatives for IndP(g, p). For x ∈ I we have therefore
Fx|Op

0

∼= ⊕mi=1G
αi

i for some non-negative integers αi. (Here, Gαi

i denotes

the direct sum of αi copies of Gi.) Hence
[

[Fx|Op
0
]
]

=
∑m

i=1 αi
[

[Gi]
]

. That

means, the
[

[Gi]
]

generate the image of Φp and the claim follows.

We list some examples including some where we have strict inequality in
formula (3.2).

Examples 3.7. (a) Let g be arbitrary semisimple. For p = b both sides
of formula (3.2) are equal to the order of the Weyl group. The left
hand side by Theorem 3.1; and the right hand side, since the self-dual
elements Hx = HeHx, with x ∈ W constitute a Z[v, v−1]-basis of H
giving rise to a Z-basis after specialisation.

(b) In the other extremal case, we have IndP(g, g) = 1. The isomorphism
EndZ(N p

v=1)
∼= EndZ(Z) implies R(g, g) = 1.

(c) Let g be of type B2 or G2 with p a maximal parabolic subalgebra. Then

10 = # IndP(so3, p) > R(g, p) = 6.

26 = # IndP(g of type G2, p) > R(g, p) = 10.

Consider g = so3. Let Wp = 〈t〉 ⊆ 〈s, t〉, hence W p = 〈e, s, st, sts〉. By
Theorem 3.9, θt is indecomposable (with X = {L(t)}). For λ ∈ h∗ dom-
inant and integral such that Wλ = {e, s}, the category Op

λ is semisimple.
(Note that θλ0P

p(e) ∼= Mp(λ) and [θλ0P
p(st)] = [θλ0 (Mp(st)⊕Mp(sts))] =

[Mp(st ·λ)⊕Mp(st ·λ)]. Therefore, P p(x · λ) = Mp(x · λ) = L(x · λ) for
x ∈ {e, st}.)
We define (exact) endofunctors Ge, Gst on Op

λ by

GwL(x · λ) =

{

L(x · λ) if w = x

0 otherwise.
(3.3)



3 THE CATEGORIES OF PROJECTIVE FUNCTORS 16

In particular ID ∼= Ge ⊕ Gst. Set Gw = θ0
λGwθ

λ
0 . Then θs ∼= Ge ⊕ Gst,

hence decomposable. If x 6∈ {e, s} then Geθ
λ
0M

p(x) = 0. Otherwise,

[Geθ
λ
0M

p(x)] = [GeM
p(λ)] = [Mp(λ)] = [Ge(M

p(λ)⊕Mp(st · λ))]

= [Geθ
λ
0 (Mp(s)⊕Mp(st))] = [Geθ

λ
0θt(M

p(e) ⊕Mp(s))]

= [Geθ
λ
0θtGeM

p(x)]

By the semi-simplicity of Op
λ we get Geθ

λ
0θtGe

∼= Geθ
λ
0 , hence GeθtGe ∼=

Ge. Analogously it is GstθtGst ∼= Gst. One can easily check that for w,
z ∈ {e, st} with w 6= z the functors

ID, θt,Gw,Gwθt, θtGw, θwθtGz

induce pairwise distinct morphisms on the Grothendieck group [Op
0].

The criterion of Theorem 3.9 shows that the functors are all indecompos-
able. Hence (by Theorem 3.1 and Corollary 3.5) they represent Ind(g, p).
(We remark that the induced representation on the Grothendieck group
is isomorphic to the one obtained by taking by g = sl4 where Wp is
generated by non-commuting simple reflections s2, s3.)
The case G2 can be done in an analogous way.

3.3 Restriction to the simple case

To get a description of indecomposable projective functors it is enough to
consider simple Lie algebras because of the following

Proposition 3.8. Let g1, g2 be two semisimple complex Lie algebras with
parabolic subalgebras pi containing the fixed borel subalgebra bi ⊂ gi for
i=1, 2. Then

# IndP(g1 × g2, p1 × p2) = # IndP(g1, p1) ·# IndP(g2, p2).

Proof. There is a triangular decomposition g1 × g2 = (n−1 × n−2 ) ⊕ (h1 ×
h2)⊕ (n1 × n2) arising from the corresponding triangular decompositions of
g1 and g2 respectively. The identification U(g1×g2) = U(g1)�U(g2) induces
Z(U(g1 × g2)) = Z(U(g1)) � Z(U(g2)) (where � denotes the outer tensor
product over C). This corresponds to an identification h∗1 × h∗2 = (h1 × h2)

∗

and an isomorphism between the Weyl group of g1 × g2 and the product
W1 ×W2 of the single Weyl groups. Then the outer tensor product defines
a functor

� : O0(g1)×O0(g2) −→ O(0,0)(g1 × g2).
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The simple objects in O(0,0)(g1 × g2) are given as tensor products of simple
objects; in formulas L((x, y)) ∼= L(x) � L(y) for (x, y) ∈ W1 × W2 with
projective cover

P ((x, y)) ∼= P (x)� P (y). (3.4)

(For more details concerning this see [Bac01, section 2]). On the other
hand, the outer tensor product defines a map between the sets of projective
functors

� : P(g1)× P(g1) −→ P(g1 × g2).

The isomorphisms (3.4) together with the Classification Theorem 3.1 imply
that the map is in fact a bijection. This proves the Theorem for pi = bi,
i = 1, 2.
On the other hand, for any F , G ∈ P, there is an isomorphism of rings

Γ : End(F )� End(G) −→ End(F �G) (3.5)

given by Γ(φ⊗ ψ)(P,Q)(p, q) = φP (p) ⊗ ψQ(q) on projective generators P ∈
O0(g1), Q ∈ O0(g2) and p ∈ P , q ∈ Q. (It is not difficult to see that
this defines in fact a homomorphism of functors. For the bijectivity see e.g.
[Bac01, Lemma 2.1]).
It induces an isomorphism Γp : End(F|O

p1
0

) � End(G|O
p2
0

) −→ End(F �

G|O0(p1×p2)). Note that Γp(φ ⊗ ψ) is an idempotent if and only if φ, ψ are
idempotents. Moreover, Γp(φ⊗ψ) is a trivial idempotent if and only if so are
φ and ψ. Hence, pairs of indecomposable projective functors corresponds to
indecomposable projective functors. This proves the proposition.

3.4 A criterion for indecomposability

For F ∈ Pp and X ⊆W p, we consider the sets of simple objects in Op
0:

supp(F ) = {L | F (L) 6= 0},

Comp(X) = {L | [Mp(x) : L] 6= 0 for some x ∈ X}.

We get a criterion for a projective functor to be indecomposable:

Theorem 3.9. Let 0 6= F ∈ Pp. Assume, there exists X ⊆ W with
supp(F ) ⊆ Comp(X) such that

(a) F (Mp(x)) is indecomposable for any x ∈ X.
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(b) For any nontrivial decomposition X = X1 ∪X2 we have

Comp(X1) ∩ Comp(X2)∩ supp(F ) 6= ∅.

Then F is indecomposable.

Remark 3.10. • The functor ID ∈ Pp is indecomposable, therefore
IndP(g, g) = {ID}.

• Let p = b. The theorem gives an alternative proof of the fact that
the indecomposability of F (M(e)) implies the indecomposability of F :
Let X = {e}. Since every simple module occurs as a composition
factor in M(e), the assumptions are satisfied if and only if F (M(e)) is
indecomposable.
On the other hand we could also choose X = W . Note that F (M(e))
is indecomposable if and only if so is F (M(x)) for all x ∈W by [AS03,
Theorem 2.2 and Corollary 4.2]. Since F (L(wo)) 6= 0 and L(wo) occurs
in the socle of each Verma module, the assumption (b) is satisfied.

• Let us consider the situation g = so3 of Example 3.7 for F = θs.
Condition (a) is always satisfied. Let us assume the existence of a
set X as in the theorem. For i ∈ {1, 2}, set Xi = X ∩ Ai, where
A1 = {e, s} and A2 = {st, sts}. Hence, condition (b) is not satisfied.
It turned out that θs is indeed decomposable.

Proof of Theorem 3.9. We assume the existence ofX. Let π ∈ End(F ) be an
idempotent. By assumption (a) it is πMp(x) ∈ {ID, 0} for all x ∈ X. Choose
x1 ∈ X such that FMp(x1) 6= 0. Set X1 = {x1} and X2 = X\X1. Let L
be an element of the intersection given in (b) occurring in say Comp({x2}),
x2 ∈ X2. If πMp(x1) = ID then πL = ID and therefore πMp(x2) = ID. Going
on with X1 := {x1, x2} etc. in the same way gives finally πMp(x) = ID for
any x ∈ X. The same arguments work if πMp(x1) = 0. Hence π is on all
simple objects simultaneously either the identity or zero.
We first consider the case where π is the identity on simple objects. We
prove that πM = ID for any M by induction on the length. Let M1 ↪→

M→→M2 be a short exact sequence. Then F (M1)
i
↪→ F (M)

p
→→ F (M2) is

exact. Let x ∈ F (M). If x = i(y) for some y ∈ F (M1) then πM (x) =
πM (i(y)) = i(y) = x. Otherwise 0 6= p(x) = πM2(p(x)) = p(πM (x)). Hence
x − πM (x) = i(y) for some y ∈ F (M1). Since π is idempotent, we have
0 = πM (πM (x)− x) = πM (i(y)) = i(y). Therefore, y = 0 and πM = ID. Let
now πMi

= 0 for i = 1, 2. For x ∈ F (M) we get p(πM (x)) = πM2(p(x)) = 0,
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hence πM (πM (x)) = πM (i(y)) = i(πM1(y)) = 0 for some y ∈ M1. The
theorem follows.

3.5 Lifts of projective functors

Let F be an exact endofunctor on Op
0. We call F̃ : gmof −Ap −→ gmof −Ap

a graded lift of F , if F̃ is a Z-functor and induces F after forgetting the
grading and applying the equivalence mof −Ap→ Op

0 (for details see [Str03]
or [AJS94, section E3]). If such a lift exists, we call F gradable.

Proposition 3.11. Let F ∈ Pp be indecomposable. A lift F̃ of F (if it
exists) is unique up to isomorphism and grading shift.

Proof. Under the equivalence Op
0
∼= gmof −Ap, the functor F corresponds

to •⊗Ap X for some Ap-bimodule X (see [Bas68]). Moreover, F is indecom-
posable if and only if so is X (as an Ap-bimodule). A graded lift F̃ of F
is therefore given as tensoring with some graded Ap-bimodule X̃ such that
X̃ ∼= X after forgetting the grading. By the indecomposability of X, a lift
is unique up to isomorphism and grading shift (use [Str03, Lemma 1.5] for
the graded ring Ap⊗ (Ap)opp.)

Corollary 3.12. Let F ∈ P be indecomposable. Then F is gradable. A lift
of F is unique up to isomorphism and grading shift.

Proof. The translation functors through a wall are gradable ([Str03]), hence,
their compositions as well. Theorem 3.1 shows that there is a decomposition
of functors

θsrθsr−1 · . . . · θs1
∼= Fx ⊕

⊕

y<x

F
αy
y (3.6)

for some αy ∈ N and x = s1 · . . . ·sr a reduced expression of x. By induction
hypothesis, the Fy’s are gradable for y < x. (Note that Fe = ID is gradable.)
Therefore, Fx is gradable (see [Str03, Lemma 1.4]). The statement on the
uniqueness is the previous proposition.

We fix a lift F̃w of Fw such that F̃wM̃(e) ∼= P̃ (w).

Remark 3.13. Let [w] = s1s2 · . . . · sr be a reduced expression of w ∈ W .
With the conventions on the lift F̃w and Theorem 2.5 we get

θ̃sr θ̃sr−1 · . . . · θ̃s1
∼=

⊕

y∈W

(F̃y〈i〉)
α[w],y,i ,
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where the α[w],y,i are defined as Cs1Cs2 · . . . · Csr =
∑

y∈W,i∈Z
αw,y,i v

iHy.
Note that αw,y,i does not depend on the reduced expression of w provided
w is braid-avoiding.

4 Generalised Temperley-Lieb algebras

In this section we describe ‘functorial realisations’ of generalised Temperley-
Lieb algebras. Let W be a Weyl group of type A, B, C or D with corre-
sponding Hecke algebra H. We consider the (generalised) Temperley-Lieb
algebra H/(TL); i.e. TL is generated by all

∑

w∈Wadj
v−l(w)Hw such that

Wadj ⊂ W is generated by two simple reflections where the corresponding
vertices in the Dynkin diagram are connected. These algebras were intro-
duced by Temperley and Lieb [TL71] for type A and Dieck [Die98] for other
types. Alternatively, they can be defined by the following relations (with s,
t ∈ S):

C2
s = (v + v−1)Cs (4.1)

CsCt = CtCs if ts = st. (4.2)

Additionally for type A B, C and D:

CsCtCs = Cs if ts 6= st, (4.3)

and for type B and C:

CtCsCtCs = CtCs + CtCs if ts 6= st and sts 6= tst. (4.4)

Theorem 4.1 (TL-algebras and projective functors). Let g be a simple
Lie algebra of type A, B, C or D. Let p ⊂ g be maximal parabolic. With the
interpretation of vi as grading shift 〈i〉, the graded translation functors sat-
isfy the relations (4.1), (4.2) and the corresponding Temperley-Lieb algebra
relations.

Proof. Let s, t be commuting simple reflections. By Theorem 3.1, θsθt ∼=
θtθs. The functors are indecomposable and therefore θ̃sθ̃t ∼= θ̃tθ̃s〈i〉 for some
i ∈ Z (Corollary 3.12). Since M̃(e)〈2〉 occurs in both θ̃sθ̃tM̃(e) and θ̃tθ̃sM̃(e)
as a submodule (Theorem 2.4), it follows i = 0. Therefore, relation (4.2) is
satisfied. Since there is an isomorphism θ2

s
∼= θs⊕θs, we get θ̃2

s
∼= θs〈i〉⊕θ̃s〈j〉

for some i, j (again using Corollary 3.12). On the other hand, Corollary 2.5
shows [θ̃2

sM̃(e)] = [θ̃sM̃(e)〈1〉]+[θ̃sM̃(e)〈−1〉]. The relation (4.1) is satisfied.
Let now st 6= ts but sts = tst. We just recall the arguments of [BFK99]:
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We have θsθtθs ∼= Fsts ⊕ θs by Theorem 3.1. Let η ∈ h∗ be dominant and
integral such that Wη = 〈s, t〉. Since FstsM(e) ∼= P (sts) ∼= θ0

ηθ
η
0M(e) (see

e.g. [Jan83, 14.13 (1)] and [Soe97, Proposition 2.9]) we get Fsts ∼= θ0
ηθ
η
0 by

Theorem 3.1. In particular, Fsts = 0 when restricting to Op
0 (for p maximal

parabolic!). In the graded picture we have θ̃sθ̃tθ̃s ∼= F̃sts〈i〉 ⊕ θ̃s〈j〉 for some
i, j ∈ Z. Since we did not prove Remark 3.13 we determine i and j directly:
By Theorem 2.4 θ̃sθ̃tθ̃sM̃(e) surjects onto M̃(sts) and therefore, i = 0.
Corollary 2.5 shows that M̃(e)〈k〉 occurs as a submodule in θ̃sθ̃tθ̃sM̃(e) for
k = 3, 1. By Theorem 2.4 M̃(e)〈3〉 is a submodule of θ̃tθ̃sM̃(e)〈1〉. The
latter is contained in θ̃sθ̃tθ̃sM̃(e) ∼= P̃ (sts) ⊕ P̃ (s)〈j〉, hence it must be a
submodule of P̃ (sts). Therefore, M̃ (e)〈1〉 is a submodule of θ̃sM̃(e)〈j〉.
Theorem 2.4 implies j = 0. Formula (4.3) follows.
If st 6= ts and sts 6= tst then θsθtθsθt ∼= Ftsts ⊕ θts ⊕ θts by Theorem 3.1.
The same arguments as above show that Ftsts = 0 when restricting to Op

0

and θ̃tθ̃sθ̃tθ̃s ∼= F̃stst⊕ θ̃ts〈i〉 ⊕ θts〈j〉 for some i, j ∈ Z. Corollary 2.5 implies
that M̃(e)〈4〉 ⊕ M̃(e)〈2〉 ⊕ M̃(e)〈2〉 occurs as submodule in θ̃tθ̃sθ̃tθ̃sM̃(e).
Since P̃ (tst)〈1〉 is a submodule of θ̃sP (tst) (hence of P̃ (tsts)), the module
M̃(e)〈4〉 is a submodule of P (tsts). Theorem 2.4 shows that M̃(e)〈2〉 is a
submodule of θ̃tθ̃sM̃(e). We get i = j = 0. The theorem follows.

For W of type A and N ∈ N>0, the N -generalised Temperley-Lieb alge-
bra HN is defined as H/IN , where IN is the Z[v, v−1]-span of all (Kazhdan-
Lusztig) basis elements indexed by tableaux with more than N columns
(see [Här99], [Lip94], [BK95]). In particular, H1

∼= Z[v, v−1] and H2 is the
ordinary Temperley-Lieb algebra.

Proposition 4.2. Let n > 1. Let p = pS ⊂ sln+1 be a parabolic subalgebra
and N ≥ n− |S|+ 1. The corresponding Φp from (3.1) factors through HN .

Proof. This is just a reformulation of say [Här99, 3.1], [Mar92], or [BK95,
Theorem 3.1].

Remark 4.3. • Via (3.1), the previous proposition provides an injec-
tion HN → End Z[v, v−1](⊕N pS) where the sum runs over all S ⊂ π
satisfying |S| ≥ n−N + 1 ([Mar92] or [Här99]).

• The description of IN in terms of Kazhdan-Lusztig basis elements (see
[Här99], [Lip94]) provides many F ∈ P which become zero after re-
stricting to Op

0. In particular, the case I2 = ({Hsts), st 6= ts}) together
with the relation CsCtCs = Hsts+Cs implies Theorem 4.1 for type A.
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• It is not clear, whether the HN have a diagrammatical/topological
interpretation. However, the generalised Temperley-Lieb algebras of
type B and D are known to have a description via decorated tangles
(see e.g. [Gre98]). This might be of topological interest.

5 Type A: Maximal Parabolic Subalgebras

In general, an indecomposable projective functor does not stay indecom-
posable when restricting to parabolic subcategories (see Example 3.7 (c)).
However, this section is devoted to a proof of the following result (conjec-
tured in [BFK99]):

Theorem 5.1 (Indecomposability). Let n > 1. Let p ⊂ g = sln be
a maximal parabolic subalgebra. Let F ∈ P be indecomposable, then its
restriction to Op

0 is indecomposable or zero.

For w ∈ W with a reduced expression [w] = si1si2 · . . . · sir let θ[w] =
θsir

θsir−1
· . . . · θsi1

. If g = sln then w ∈ W = Sn is braid-avoiding if some

(=any) reduced expression does not contain a substring of the form sts with
non-commuting simple reflections s and t. In this case θ[w] ∈ P is indecom-
posable (see [BW01, Theorem1]), hence isomorphic to Fw. In particular it
is independent of the chosen reduced expression.
In the following we study the case g = sln with corresponding category
O(sln). We always consider the Weyl group of sln as generated by si = sαi

,
1 ≤ i ≤ n such that sisj = sjsi iff |i − j| > 1. To simplify notation
set Oi(sln) = O(sln)λ, where λ ∈ h∗ is dominant and integral such that
Wλ = {e, si}. For 1 ≤ k ≤ n let Sk = π\{αk} and set S0 = Sn+1 = π. We
denote by Ok(sln) the main block of the corresponding parabolic category
OSk . To make formulas easier, Ok(sln) denotes the zero category if k < 0
or k > n + 1. We also use the notation Oki (sln) for the full subcategory of
Oi(sln) defined by all locally pSk

-finite modules. Let θi0 : O0(sln) −→ Oi(sln)
(and θ0

i : Oi(sln) −→ O0(sln) respectively) denote the translation onto/out
of the i-th wall and let θi = θsi

denote the translation through the i-th wall.

The following observation simplifies the proof of Theorem 5.1:

Lemma 5.2. Let n > 1 and let p ⊂ g = sln be a maximal parabolic sub-
algebra. Let F = Fw ∈ P be indecomposable with w not braid-avoiding.
Restriction to Op

0 gives Fw = 0.
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Proof. Let w = b(sts)a be minimal with simple reflections s, t. Then,
Fw ∈ P is a direct summand of θ[a]θ[sts]θ[b] ∼= θ[a]Fstsθ[b] ⊕ θ[a]θsθ[b]. If Fw
occurs in the first summand, then Fw = 0 when restricting to Op

0, since Fsts
becomes zero after restriction (see proof of Theorem 4.1). On the other hand,
by construction it cannot occur in the second summand (see formula (3.6)),
because l(asb) ≤ l(w) − 2. The lemma follows.

The following lemma describes Supp(F ) for certain F ∈ Pp:

Lemma 5.3. Let n > 1 and p ⊂ g = sln be a maximal parabolic subalgebra.
Let x ∈W p and w ∈W with reduced expression [w] = si1si2 · . . . · sir .

1. If ij+1 = ij + 1 for all 1 ≤ j < r or if ij+1 = ij − 1 for all 1 ≤ j < r
then the following holds:

θ[w]L(x) 6= 0 ⇐⇒ θsi1
L(x) 6= 0 ⇐⇒ x > xsi1.

2. If sijsik = siksij for all 1 ≤ j, k ≤ r then the following holds:

θ[w]L(x) 6= 0 ⇐⇒ (xsij < x for 1 ≤ j ≤ r).

Proof. 1. Let F = θir−1θsir−2
·. . .·θsi1

. The definitions and Proposition 4.1
give the following implications

0 6= θ[w]L(x) ⇒ 0 6= FL(x) = θir−1θirFL(x) ⇒ θ[w]L(x) 6= 0.

Inductively the first equivalence follows. The second is well-known
([Jan83, 4.12 (3), 4.13 (3)]).

2. We already verified the implication from the left hand side to the right.
If x satisfies the condition on the right hand side it is [θ[w]L(x)] =
[θsir
· . . . · θsi2

L(x)]+ [θsir
· . . . · θsi2

M ] for some module M (see [Jan83,
4.12 (3), 4.13 (3’)]. By induction hypothesis the first summand is
non-trivial and the statement follows.

Proposition 5.4. Let n > 1. Let pm ⊂ sln be a maximal parabolic subalge-
bra (1 ≤ m ≤ n). Let w ∈ W be of the form described in Lemma 5.3 (2).
The following holds:

a.) Fw(Mp(x)) is indecomposable or zero for any x ∈W p.

b.) The restriction Fw = θ[w] to Op
0 is indecomposable.
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Proof. a.) If xsij 6∈ W
p for some j ∈ {1, 2, . . . , r} then FwM

p(x) = 0. By
Proposition 1.5, we may assume xsij > x and xsij ∈ W

p for 1 ≤ j ≤ r.
In particular, xsij is braid-avoiding (see Proposition A-2). Since all the
sij are pairwise commuting, the expression xw is minimal and braid-
avoiding as well ([BW01, Lateral Convexity]). Hence FwM

p(x) is a
homomorphic image of FwP (x) ∼= θ[w]θ[x]M(e) ∼= θ[xw]M(e) ∼= P (xw).
(We used [BW01, Theorem 1] and Theorem 3.1.) In particular, FwM

p(x)
is indecomposable.

b.) It remains to check that X = {x ∈ W p | L(x) ∈ Supp(Fw)} satisfies
property (b) of Theorem 3.9. Assume, there is a decomposition X =
X1 ∪X2 such that Comp(X1) ∩ Comp(X2) ∩X = ∅. We first consider
the special case r = 1. Let i1 = i; hence X = {x ∈ W p, xsi < x}. With
the notation of Proposition A-2 the elements of X are exactly those
containing i but not i− 1. Let x = k1.k2. . . . .km ∈ X with kj = i. We

consider xjo = (i + j − 1).(i + j − 2). . . . .(i + 1).i. It is not difficult
to see that there exists a chain xjo, x

j
1,. . ., x

j
p = x where xjl ∈ X and

l(xjl+1) = l(xjl ) + 1 for 0 ≤ l < p. Therefore, xjo ∈ Xa ⇒ x ∈ Xa for
a = 1, 2.
We choose j minimal such that xjo 6= e. Let xjo ∈ X1, say. We show
that X ⊂ X1, hence X2 = ∅. If i + j − 1 = n, then j is also maximal
such that xjo 6= e and we are done. Otherwise let y = (i + j).(i + j −
1). . . . .(i+ 2).i, that is y ∈ X1 and xj+1

o = ysi+1si. On the other hand
we have [θiθi+1M

p(y)] = [Mp(xj+1
o )]+[Mp(ysi+1)]+[Mp(y)]+[M(ysi)].

In particular 0 6= [θi+iθiP
p(y) : Mp(y)] = [P p(xj+1

o ) : Mp(y)] =
[Mp(y) : L(xj+1

o )]. (Note that the first equality uses the fact that
xj+1
o is braid-avoiding and [BW01, Theorem 1]). Therefore, xj+1

o ∈ X1,
because y ∈ X1. Inductively, all xjo are contained in X1. Hence, X ⊆ X1.
That means the assumptions of Theorem 3.9 are satisfied, and Fw = θi
is indecomposable.
Let us now consider the general case. By Lemma 5.3 L(x) ∈ X if
and only if xsk < x for all simple reflections sk occurring in a reduced
expression of w. In the notation of Proposition A-2, the expression for x
contains all such k’s but none of the k − 1. Similar arguments as above
show again that a nontrivial decomposition X = X1 ∪ X2 such that
Comp(X1) ∩ Comb(X2) ∩X = ∅ does not exist. We omit the details.
(Or perhaps not completely: We assume ij > ij′ if j < j′. For J a
sequence of numbers n ≥ j1 > j2 > · · · > jk ≥ m let XJ = {x =
x1.x2. · · · .xm ∈ X | xjk = ik, 1 ≤ k ≤ r} be the elements of X, where
the ‘important’ numbers occur exactly at the places given by J . Again,
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it is easy to see from Proposition A-2 that XJ is a finite set of the form
xJ0 < xJ1 < · · · < xJ

|XJ |
such that l(xJb+1) = l(xJb ) + 1 for 0 ≤ b < |XJ |.

This implies in particular xJ0 ∈ X1 ⇐⇒ xJb ∈ X1 for any b. We fix now
some J , such that XJ 6= ∅. Assume jl+1 6= jl + 1 for some l. Without
loss of generality let xjl+1 = il − 2. We consider the following two cases

(I) Assume it exists x ∈ XJ of the form x = x1. · · · .xm such that
xjl−1 > il+1. Then y = xsil+1sil−1sil ∈ X

J ′
, where j′l = jl+1 and

j′i = ji otherwise. On the other hand [θkM
p(x) : Mp(x)] 6= 0 for

k = il+1, il−1, il. Hence [θilθil−1
θil+1M

p(x) : Mp(x)] 6= 0. Since x,
y are braid-avoiding we get ([BW01]) P p(y) ∼= θirθir−1θir+1P

p(x).
In particular, 0 6= [P p(y) : Mp(x)] = [Mp(x) : L(y)]. We proved
that x ∈ XJ , y ∈ XJ ′

, then x ∈ X1 ⇐⇒ y ∈ X1.

(II) Let z be minimal such that xi = xi+1 + 1 for z ≤ i ≤ jl. Let x′ =
sjz+1sjz · . . . ·sjl+2. Note that xx′ ∈ XJ and y = xx′sjl+1sjl−1sjl ∈
XJ ′

as above. Direct calculations give [θ[x′]M
p(x) : Mp(xx′)] 6= 0.

Applying the earlier arguments to xx′ gives [P p(y) : Mp(xx′)] =
[Mp(xx′) : L(y)] 6= 0.

Inductively, it follows that Xi = ∅ for some i ∈ {1, 2}. Therefore, the
assumptions of Theorem 3.9 are satisfied. The Proposition follows.)

Lemma 5.5. Let g = sln and e 6= w ∈ W be braid-avoiding. Then there
exists a reduced expression w = si1si2 · . . . · sir such that (at least) one of the
following properties is satisfied

(i) sijsik = siksij for 1 ≤ j, k ≤ r.

(ii) si1si2 6= si2si1.

(iii) sirsir−1 6= sir−1sir .

Proof. Write w = d1d2 · · · dn minimal such that d1d2 · · · dm ∈ 〈s1, s2, . . . , sm〉
and dm ∈ 〈s1, s2, . . . , sm−1〉\〈s1, s2, . . . sm〉 is a distinguished coset represen-
tative of minimal length for any m ∈ {1, 2, . . . , n}. By Proposition A-2
dm = smsm−1 · · · . . . · sm−k for some k or dm = e. Pick (if it exists) j ∈
{1, 2, . . . , n}minimal such that dj , dj+1 6= e. By assumption dj−1 = e, hence
we get a minimal expression w = dsjsj+1w

′dj+2 · · · dn for some w′ ∈W and
d ∈ 〈s1, s2, . . . , sj−2〉. Therefore, w = sjsj+1x for some x ∈W , and w satis-
fies (ii).
If j as above does not exist we proceed by induction on the length of w.
Without loss of generality let dn 6= e. If l(dn) > 1, then obviously (iii)
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holds; otherwise dn = sn (and dn−1 = e)), and therefore, w = xsn = snx
for some x ∈ 〈s1, s2 . . . , sn−2〉. Certainly, x is braid-avoiding. The lemma
follows from the induction hypothesis.

Proof of Theorem 5.1: By Lemma 5.2, we may assume w ∈W to be braid-
avoiding. If w = e or if w satisfies the assumptions of Proposition 5.4 we are
done. Otherwise we prove the statement by induction on the length of w.
Let us assume that w has a minimal expression of the form w = w′ts with
non-commuting s, t ∈ S; in particular Fw ∼= θsθtFw′ . Let Fw ∼= G1 ⊕ G2

for some nontrivial Gi when restricting to Op
0. Considered as functor on

Op
0 we have θtFw ∼= θtθsθtFw′ ∼= θtFw′ ∼= Fw′t; hence it is indecomposable

by induction hypothesis. This implies θtGi = 0 for i = 1, say. Note that
θsFw ∼= Fw ⊕ Fw. We claim that

θsG1
∼= G1 ⊕H (5.1)

for some H ∈ Pp such that
[

[H]
]

=
[

[G1]
]

. Let us believe this for a moment,
then θsθtθsG1

∼= θsG1
∼= G1 ⊕ H 6= 0. Hence, θtθsG1 6= 0. On the other

hand
[

[θtθsG1]
]

=
[

[θt(G1 ⊕ G1)]
]

. Therefore, θtG1 6= 0. This gives a
contradiction. To prove (5.1) we fix an embedding i : G1 → Fw together
with a split i′ and consider the following diagram

G1 i
//

α

��

Fw
jss

β
��

θsG1
θsi // θsFwθsj

ll

β′

UU

The vertical maps α and β are the adjunction morphisms, so the inner
diagram commutes. The isomorphism θ2

s
∼= θs ⊕ θs provides a split β′ of

β. The composition φ := j ◦ β′ ◦ θsi is then a split of α, because φ ◦ α =
j ◦β′ ◦θsi◦α = j ◦β′ ◦β◦i = j ◦i = id. This gives an isomorphism as in (5.1)
for some H ∈ Pp. Let Q ∈ Op

0 be projective, hence G1(Q) ∼= ⊕x∈W pP (x)αx

for some αx ∈ N. Moreover, αx = 0 if xs > x. If x, xs ∈ W p such that
x > xs then θsP

p(x) ∼= P p(x)⊕ P p(x). (Note that θsP (x) is projective and
its head is isomorphic to L(x)⊕L(x).) We get

[

θsG1(Q)] = [(G1 ⊕G1)(Q)]
for any projective object Q ∈ Op

0 hence
[

[θsG1]
]

=
[

[G1 ⊕ G1]
]

. The claim
follows.

By Lemma 5.5 we are left with the case where w = tsw′ with non-
commuting s, t ∈ S. Similar arguments as above prove the indecomposabil-
ity.
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Remark 5.6. Applying the same induction arguments as in the proof of
Theorem 5.1 shows the indecomposability of F (Mp(x)) for any indecompos-
able F ∈ P and x ∈W p. Moreover, just using the description from Proposi-
tion A-2 one can easily deduce that, with the assumptions of Lemma 5.3(1),
θ[w]M

p(x) ∼= θsi1
Mp(y) for some y ∈ W p. So, the indecomposability of

Fw in this case follows directly from the proof of Proposition 5.4 using
Lemma 5.3 (1).

Theorem 5.7. Let p ⊂ sln be maximal parabolic. Then Conjecture 3.3 holds
and we have equality in (3.2).

Proof. Let F = ⊕w∈W (Fw |Op
o
)αw andG = ⊕w∈W (Fw |Op

o
)βw such that

[

[F ]
]

=
[

[G]
]

. By Lemma 5.2 we may assume αw = 0 = βw for non-braid avoiding
w. The specialisation of H/(TL) at v = 1 is semisimple (see e.g. [Wes95])
hence N p

v=1
∼= ⊕ri=1Li for some simple H/(TL)v=1−modules Li. Since (see

[Wes95]) AnnH/(TL)v=1
Li = C{Hx | x ∈ W [i]} for some W [i] ⊂ W we get

αw = βw for all w /∈ I := ∩ri=1W [i]. Hence, F ∼= ⊕w/∈I(F|Op
o
)αw ∼= G. On

the other hand, it also shows that Ind(g, p) = |{Hw | w /∈ I} = R(g, p). The
theorem follows.

6 The Temperley-Lieb 2-category

In this section we describe a functor from the Temperley-Lieb 2-category into
a 2-category given by projective functors with their natural transformations.
Let O(sln)

max =
⊕n+1

k=0 O
k(sln). In [BFK99], the authors consider functors

∩i,n : O(sln)
max −→ O(sln−2)

max

∪i,n : O(sln)
max −→ O(sln+2)

max

which are given on each summand as follows: For any 0 < k ≤ n+ 1 let

∩ki,n : Ok(sln) −→ Ok−1(sln−2)

∪ki,n : Ok(sln) −→ Ok+1(sln+2)

defined as

∩ki,n = ζn,kθ
1
0θ2θ3 · · · θi

∪ki,n = θiθi−1 · · · θ2θ
0
1ζ

−1
n+2,k,

for 1 ≤ k ≤ n and zero otherwise. Here, ζn,k : Ok1(sln)→̃O
k−1(sln−2) denotes

the Enright-Shelton-equivalence (see [ES87, chapter 11]). Let ζn = ⊕k ζn,k.
The following statement follows directly from the definitions
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Lemma 6.1. The functors ∩i,n and ∪i,n−2 are biadjoint.

We prove the following main result ([BFK99, Conjecture 3]):

Theorem 6.2. Let j ≥ i. There are isomorphisms of functors

∩i+1,n+2 ∪i,n ∼= ID (6.1)

∩i,n+2 ∪i+1,n
∼= ID (6.2)

∩j,n∩i,n+2
∼= ∩i,n ∩j+2,n+2 (6.3)

∪j,n−2∩i,n ∼= ∩i,n+2 ∪j+2,n (6.4)

∪i,n−2∩j,n ∼= ∩j+2,n+2 ∪i,n (6.5)

∪i,n+2∪j,n ∼= ∪j+2,n+2 ∪i,n (6.6)

∩i,n+2∪i,n ∼= ID⊕ ID (6.7)

Proof. By adjointness (Lemma 6.1), it is enough to prove (6.1), (6.2), (6.3),
(6.4), and (6.7). As already mentioned in [BFK99], the isomorphisms (6.1)
and (6.2) follow from the definitions and [BFK99, Lemma 4]. The formula
(6.7) can be verified as follows

∩i,n+2∪i,n = ζn+2θ
1
0θ2 · · · θi−2(θi−1(θiθi)θi−1)θi−2 · · · θ2θ

0
1ζ

−1
n+2

∼= ζn+2θ
1
0θ2θ

0
1 ⊕ ζn+2θ

1
0θ2θ

0
1ζ

−1
n+2

∼= ID⊕ ID .

The first isomorphism follows from θ2
i
∼= θi ⊕ θi and the relation (4.3). The

second isomorphism follows from [BFK99, Lemma 4]. The rest of the section
is devoted to proving formulas (6.3) and (6.4) (Propositions 6.6 and 6.4).

Lemma 6.3. Let j ≥ i then

∪j,n−2∩i,n ∼= θjθj−1 · · · θi and ∪i,n−2∩j,n ∼= θiθi+1 · · · θj.

Proof. Using again Theorem 4.1 we get

∪j,n−2∩i,n ∼= θjθj−1 · · · θ2θ
0
1ζ

−1
n ζnθ

1
0θ2θ3 · · · θi

∼= θjθj−1 · · · θ2θ1θ2 · · · θi
∼= θjθj−1 · · · θi;

∪i,n−2∩j,n ∼= θiθi−1 · · · θ2θ
0
1ζ

−1
n ζnθ

1
0θ2θ3 · · · θj

∼= θiθi−1 · · · θ2θ1θ2 · · · θj
∼= θiθi+1 · · · θj.
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Proposition 6.4. Let j ≥ i. There exists an isomorphism

∪j,n−2∩i,n ∼= ∩i,n+2 ∪j+2,n .

Proof. First we claim

∩j,n+2 ∪j+2,n ∩i,n+2∪j+1,n
∼= ∩i,n+2 ∪j+2,n . (6.8)

By Lemma 6.3 and Theorem 4.1 we are able to handle the left hand side of
the formula:

LHS ∼= ζn+2θ
1
0θ2θ3 · · · θj(θj+2θj+1 · · · θi) ∪j+1,n

∼= ζn+2θ
1
0θj+2θ2θ3 · · · θi−1(θiθi+1 · · · θjθj+1θj · · · θi) ∪j+1,n

∼= ζn+2θ
1
0θj+2θ2θ3 · · · θi−1(θi)(θj+1θj · · · θ2θ

0
1ζ

−1
n+2)

∼= ζn+2θ
1
0θ2θ3 · · · θi−1(θi)(θj+2θj+1θj · · · θ2θ

0
1ζ

−1
n+2).

The latter is by definition the RHS of the formula (6.8). We prove now
the statement by induction on a = j − i. By induction hypothesis and
Lemma 6.3 we get

∩i,n+2∪j+2,n
∼= ∩j,n+2 ∪j+2,n ∩i,n+2 ∪j+1,n

∼= ∪j,n−2 ∩j,n ∪j−1,n−2 ∩i,n
∼= θj(θj−1 · · · θi)
∼= ∪j,n−2 ∩i,n .

It remains to check the starting point of the induction, i.e. ∩i,n+2∪i+2,n
∼= θi.

We first note that the functor in question is a projective functor. To see this
one has to consider the construction of ζn,k (see [ES87]). It is a composite of
four functors Λi. Two functors (i = 1, 3) are given by tensoring with a finite
dimensional representation and two functors are given by compositions of
parabolic induction and Zuckerman’s functor. In particular, if E is a finite
dimensional g-modules then ζn(• ⊗ E) ∼= (• ⊗ E′)ζn for some finite dimen-
sional module E′. That means projective functors are sent to projective
functors via the equivalence.
Direct calculations (using the explicit formula [ES87, section 11]) show that
[∩i,n+2 ∪j+2,n (Mp(e))] = [Mp(e) ⊕Mp(si)] if p = pi and zero otherwise.
Hence the projective functor ∩i,n+2∪j+2,n contains θi as a direct summand.
Hence, it is sufficient to show that ∩i,n+2 ∪j+2,n (Mp(x)) has a generalised
Verma flag whose length is equal to the length of a generalised Verma flag
of θi(M

p(x)) for any x ∈ W p. We claim that ∩i,n+2 ∪i+2,n M
p(λ) has a
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generalised Verma flag of length 2 or 0 for any Mp ∈ O(sln)
max; equiv-

alently: θ1
0θi+2θ2θ

0
1M

p(λ) has such a flag for any Mp(λ) ∈ O1(sln+2)
max.

Since θ0
1θ

1
0θi+2θ2θ

0
1θ

1
0M

p(x) ∼= θi+2θ1θ2θ1M
p(x) ∼= θi+2θ1M

p(x) has always
a Verma flag of length 4 or 0, the claim follows (see [Jan83, 4.12 (2); 4.13
(1)]). To get an isomorphism ∩i,n+2∪j+2,n

∼= θi it is therefore enough to
show that ∩i,n+2 ∪j+2,nM

p(λ) 6= 0 implies θiM
p(λ) 6= 0 for any parabolic

Verma module Mp(λ).
Since ζ−1

n,k is an equivalence, it induces a natural map φ such that ζ−1
n,kL(x) ∼=

L(φ(x)). There is an explicit formula in [ES87, Proposition 11.2], namely
φ(x) = wx�r for a certain w ∈ W (depending on k) and r = snsn−1 ·
. . . · s2. (The symbol x� means that we have to renumbering the indices
i  i + 1 in a reduced expression of x). In particular, xsi is a distin-
guished coset representative if and only if w((xsi)

�)r = (wx�r)r−1(si)
�r =

wx�r(si+1)
� = wx�rsi+2 is so. On the other hand ∩i,n+2 ∪j+2,n (Mp(x)) ∼=

ζnθ
1
0θi+2θ2θ

0
1ζ

−1
n+2(M

p(x)) 6= 0 implies θi+2M(φ(x)) 6= 0. Therefore, we get
∩i,n+2 ∪j+2,nM

p(λ) 6= 0⇒ θiM
p(λ) 6= 0. The theorem follows.

Lemma 6.5. Let j ≥ i. There are isomorphisms of functors

∪i,n−2∩j,n ∼= ∩j+2,n+2 ∪i,n (6.9)

∪j+2,n ∪i,n−2 ∩i,n∩j+2,n+2
∼= θiθj+2 (6.10)

∪j+2,n ∪i,n−2 ∩j,n∩i,n+2
∼= θiθj+2 (6.11)

Proof. Formula (6.9) is clear, since the adjoint functors are isomorphic
(Lemma 6.1 and Proposition 6.4). Therefore, we get with Lemma 6.3

∪j+2,n(∪i,n−2∩j,n)∩i,n+2
∼= ∪j+2,n ∩j+2,n+2 ∪i,n∩i,n+2

∼= θj+2θi.

This shows formula (6.11). Proposition 6.4, Lemma 6.3 and Theorem 4.1
imply

∪j+2,n(∪i,n−2∩i,n)∩j+2,n+2
∼= ∪j+2,n ∩i,n+2 ∪i+2,n ∩j+2,n+2

∼= (θj+2θj+1 · · · θi)(θi+2θi+3 · · · θj+2)
∼= θj+2θj+1 · · · θi+2θi+1θi+2 · · · θj+2θi
∼= θj+2θi.

This proves formula (6.10).

Finally we can do the last step of proving Theorem 6.2:

Proposition 6.6. Let j ≥ i. There exist an isomorphism of functors

∩j,n∩i,n+2
∼= ∩i,n∩j+2,n+2
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Proof. Let F = ∩i,n∩j+2,n+2 ∪j+2,n∪i,n−2. Applying relation (6.7) twice we
get F ∼= ⊕2

m=1 ∩i,n ∪i,n−2
∼= ⊕4

m=1 ID. Lemma 6.5 implies F ∩i,n ∩j+2,n+2
∼=

∩i,n ∩j+2,n+2 θiθj+2
∼= F ∩j,n ∩i,n+2. In other words

4
⊕

l=1

∩i,n ∩j+2,n+2
∼=

4
⊕

l=1

∩j,n ∩i,n+2 .

The proposition follows from Corollary 3.5.

As a preparation for the next section we prove the following result: (It
contains in fact a refinement of formula (6.7).)

Proposition 6.7. 1. The functors ∩i,n and ∪i,n are gradable.

2. There are graded lifts ∩̃i,n, ∪̃i,n with isomorphisms of graded functors
(j ≥ i)

∪̃j,n−2∩̃i,n ∼= θ̃j θ̃j−1 · · · θ̃i

∪̃i,n−2∩̃j,n ∼= θ̃iθ̃i+1 · · · θ̃j

∩̃i,n+2∪̃i,n ∼= ID〈1〉 ⊕ ID〈−1〉.

With these choices, the remaining isomorphisms of Theorem 6.2 are
compatible with the grading.

Proof. 1. Let G be one of the functors in question. In [RH], it is proved
that the Enright-Shelton-equivalence is compatible with the grading.
All the other functors occurring in the definition of G are gradable by
the results of [Str03]. This defines graded lifts ∩̃i,n and ∪̃i,n. In the
following, concerning the notation, we will not distinguish between the
Enright-Shelton equivalence and its graded lift.

2. The first two isomorphisms follow from the proof of Lemma 6.3 and
Theorem 4.1, since we have canonically θ̃0

1 θ̃
1
0
∼= θ̃1 (see [Str03, Corollary

8.3]). To get the third isomorphism, we first note that ∩̃i,n∪̃i,n−2
∼=

ID〈j〉 ⊕ ID〈k〉 for certain j, k ∈ Z. Therefore,

θ̃i〈j〉 ⊕ θ̃i〈k〉 ∼= ∪̃i,n−2∩̃i,n〈j〉 ⊕ ∪̃i,n−2∩̃i,n〈k〉
∼= ∪̃i,n−2(ID〈j〉 ⊕ ID〈k〉)∩̃i,n
∼= ∪̃i,n−2∩̃i,n∪̃i,n−2∩̃i,n
∼= (θ̃i)

2 ∼= θ̃i〈1〉 ⊕ θ̃i〈−1〉.
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(The last isomorphism is given by Theorem 4.1.) This implies {j, k} =
{−1, 1} and provides the third isomorphism. We have to check the
compatibility of (6.1). Since a graded lift of an indecomposable exact
functor is unique up to isomorphism and grading shift (see [Str03,
Lemma 1.5]) we may assume F = (ζn,kθ̃

1
0θ̃2 · · · θ̃i+1)(θ̃i · · · θ̃2θ̃0

1ζ
−1
n,k)
∼=

ID〈l〉 for some l ∈ Z. Using again Theorem 4.1 and the isomorphism
θ̃0
1θ̃

1
0
∼= θ̃1 we get

θ̃1〈l〉 ∼= θ̃0
1 θ̃

1
0〈l〉

∼= θ̃1
0ζ

−1
n,kFζn,kθ̃

1
0

∼= θ̃1θ̃2 · · · θ̃i+1θ̃i · · · θ̃2θ̃1
∼= θ̃1θ̃2θ̃1 ∼= θ̃1.

The indecomposability of θ1 implies therefore l = 0. The compatibil-
ity with the grading for the isomorphism (6.2) can be proved in an
analogous way. To see that the isomorphism (6.4) is compatible with
the grading, it is by induction sufficient to consider the case i = j
(see formula (6.8) and its proof). Then ∪̃i,n−2∩̃i,n ∼= θ̃i is self-adjoint
([Str03, Corollary 8.5]). Assume θ̃i ∼= ∩̃i,n+2∪̃i+2,n〈l〉 for some l ∈ Z.
The adjoint pairs (θ̃1

0, θ̃
0
1〈−1〉) and (θ̃0

1, θ̃
1
0〈1〉) (see [Str03, Corollary

8.3]) directly imply that ∩̃i,n+2∪̃i+2,n is self-adjoint; hence l = 0.
Let us consider (6.6). We fix 0 ≤ k ≤ n. We first claim that the
restriction, call it R, of F = ∪i,n+2∪j,n to Ok(sln) is indecomposable.
Assume R = F1 ⊕ F2. There are isomorphisms of functors

F ∩j,n+2 ∩i,n+4
∼= ∪i,n+2 ∪j,n ∩j,n+2 ∩i,n+4

∼= ∪i,n+2 ∩j,n+4 ∪j+2,n+2 ∩i,n+4

∼= (θiθi+1 · · · θj)(θj+2θj+1 · · · θi)
∼= (θiθi+1 · · · θj)(θj+1 · · · θi)θj+2

∼= θiθj+2.

In particular, its restriction to Ok+2(sln+4) is indecomposable, hence
Fm ∩

k+1
j,n+2 ∩

k+2
i,n+4 = 0 for m = 1, say. This implies F1

∼= F1 ∩
k+1
j,n+2

∩k+2
i,n+4 ∪

k+1
i+1,n+2 ∪

k
j+1,n = 0. Hence, R is indecomposable, therefore it

exists l ∈ Z such that

∪̃i,n+2 ∪̃j,n ∼= ∪̃j+2,n+2 ∪̃i,n〈l〉.
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Using the graded versions of (6.1) and (6.4) we get isomorphisms

∪̃j,n ∼= ∩̃i+1,n+4∪̃j+2,n+2 ∪̃i,n〈l〉
∼= ∪̃j,n∩̃i+1,n+2∪̃i,n〈l〉
∼= ∪̃j,n〈l〉.

Hence l = 0. The compatibility with the grading of the remaining
two isomorphisms (6.3) and (6.5) follows then easily by adjointness
properties.

7 Tangles and knot invariants

Any tangle in R
3 has a generic plane projection which is isomorphic to a

concatenation of elementary tangles t1i , t
2
i , t

3
i as depicted below and the

right twisted curls t4i . We associate now to each tangle a certain projec-
tive functor and prove that this assignment is compatible with concatena-
tion/composition and well-defined up to isomorphism.
We consider Db

(

Õ(sln)
max

)

, the bounded derived category of the graded ver-
sion ofO(sln)

max. (More precisely: for 0 ≤ k ≤ n+1 let P kn be a minimal pro-
jective generator of Ok(sln) with endomorphism ring Akn equipped with the
grading from [BGS96] or [Bac99]. Then

⊕

kO
k(sln) ∼=

⊕

k mof −Akn, and
Db

(

Õ(sln)
max

)

denotes the bounded derived category of
⊕

k gmof −Akn.)
For an exact endofunctor F of O(sln)

max we denote by F also its exten-
sion to Db

(

O(sln)
max

)

. As suggested in [BFK99], we associate functors to
elementary tangles as follows:

t1i :

1   2       i-1  i   i+1 i+2     n-1 n

.... ....

 ∩̃i,n : Db
(

Õ(sln)
max

)

−→ Db
(

Õ(sln−2)
max

)

.

t2i :

1   2       i-1            i       n-1  n

.... ....
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 ∪̃i,n : Db
(

Õ(sln)
max

)

−→ Db
(

Õ(sln+2)
max

)

.

t3i : .... ....

1   2       i-1  i   i+1 i+2     n-1 n

 Ci := Cone (ID〈1〉
adj
→ θ̃i)〈1〉 : Db

(

Õ(sln)
max

)

−→ Db
(

Õ(sln)
max

)

.

Note that Ci is the left derived functor of the graded version of the shuffling
functor studied by Irving ([Irv93]). These derived shuffling functors also
occur in the context of tilting complexes ([Ric94]). Let Ki be the adjoint
functor of Ci. The main properties of these functors are (see [MS03])

(P1) They define auto-equivalences of derived categories, i.e. CiKi
∼= ID ∼=

KiCi.

(P2) Let w = s1s2 · . . . · sr be a reduced expression. Up to isomorphism, the
composition Cw = Cs1Cs2 · · · · · Cir is independent of the choice of the
reduced expression.

We associate to the right-twisted curl t4i the functor Ki. We call a tangle
with m bottom and n top points an (m,n)-tangle. Given a presentation tα
of a tangle t as a composition of elementary tangles, we associate T (tα), the
corresponding composition of functors. (If t′ is an (m,n)-tangle and t is an
(n, n′)-tangle, the composition tt′ is given by putting t above t′.) We state
the main result (see [BFK99, Conjecture 4]):

Theorem 7.1. Let t be an (m,n)-tangle with representations tα, tβ and
corresponding functors T (tα), T (tβ). Then

T (tα) ∼= T (tβ)〈r〉[s] : Db
(

Õ(slm)max
)

−→ Db
(

Õ(sln)
max

)

for certain r, s ∈ Z. In particular, up to grading and degree shifts, T (tαt
′
α′) ∼=

T (tα)T (t′α′) for any two tangles t, t′ with representations tα and tα′ respec-
tively, such that the concatenation is defined.

Proof. In Theorem 6.2 we already proved that for tangles without crossings
T (tα) ∼= T (tβ) if α ∼= β via plane diagram automorphisms. It remains to
check the compatibility with the isotopies depicted in Figure 1, its vertical
flip, and that the assignment is stable under Reidemeister moves (see e.g
[Kau01], [Tur94]).
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Figure 1: Tangle isotopies

(I) Addition/removal of a left-twisted curl: Using Proposition 6.7 we get
isomorphisms

T (t1i,nt
3
i,n) = ∩̃i,n ◦ Ci,n ∼= Cone

(

∩̃i,n〈1〉
adj
−→ ∩̃i,nθ̃i

)

〈1〉

∼= Cone
(

∩̃i,n〈1〉
adj
−→ ∩̃i,n〈1〉 ⊕ ∩̃i,n〈−1〉

)

〈1〉

∼= ∩̃i,n〈−1〉〈1〉
∼= T (t1i,n).

(II) Addition/removal of a right-twisted curl:

T (t1i,nt
4
i,n) = ∩̃i,n ◦ Ki,n ∼= Cone

(

∩̃i,nθ̃i
adj
−→ ∩̃i,n〈−1〉

)

〈−1〉

∼= ∩̃i,n〈1〉〈−1〉
∼= T (t1i,n).

(III) Tangency moves: T (t3i,nt
4
i,n) = CiKi ∼= ID and T (t4i,nt

3
i,n) = KiCi ∼= ID

by property (P1).

(IV) Triple point move: T (t3i,nt
3
i+1,nt

3
i,n)
∼= T (t3i+1,nt

3
i,nt

3
i+1,n) by property (P2),

therefore also T (t4i,nt
4
i+1,nt

4
i,n)
∼= T (t4i+1,nt

4
i,nt

4
i+1,n) by property (P1).

(V) Height shifting: The property (P2) implies CjCi ∼= CiCj and then also
isomorphisms like KjCi ∼= CiKj if |i− j| ≥ 2 by property (P1).

To see the compatibility with Figure 1, we recall the equivalence

Õ(sln)
max =

⊕

k

gmof −Akn.

Set B :=
⊕

k gmof −Akn. Via the equivalence, Ci and Ki are given by tensor-

ing with the tilting complex
(

B〈1〉
adj
−→ θiB

)

〈1〉 and
(

θiB
adj
−→ B〈−1〉

)

〈−1〉

respectively (see [Ric94], [MS03]). Let us consider the first picture from
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Figure 1. By (6.1) and (6.2), it is sufficient to verify Kiθ̃i+1
∼= Ci+1θ̃iθ̃i+1

up to shifts. The LHS is described by tensoring with the tilting complex Ti

given as

(

T0 = θ̃iθ̃i+1

f :=adj
θ̃i+1

−→ θ̃i+1〈−1〉 = T−1

)

〈−1〉,

whereas the RHS is given by tensoring with G defined as

(G1 = θiθi+1〈1〉
g:=adj

θ̃iθ̃i+1
−→ G0 = θ̃i+1θ̃iθ̃i+1)〈1〉.

We claim that (with Theorem 4.1) T〈3〉[1] ∼= G. To avoid explicit calcu-
lations let us for a moment consider the translation functors as endofunc-
tors of gmof −A, the graded version of O0. The isomorphism θ̃i+1θ̃iθ̃i+1

∼=
F̃si+1sisi+1 ⊕ θ̃i+1 gives a natural transformation p : θ̃i+1θ̃iθ̃i+1

∼= θ̃i+1, ho-
mogeneous of degree zero. Using Corollary 8.8 which is proved later we
get that R = Hom(θ̃iθ̃i+1, θ̃i+1) ∼= Hom(θ̃i+1θ̃iθ̃i+1, ID) is strictly positively
graded and R1

∼= C. Hence g ◦ p = λ · f for some λ ∈ C. Restricting to
the parabolic categories, p becomes an isomorphism (Theorem 4.1) and the
maps λ−1 · id and p define the required isomorphism. The compatibility with
the second picture in Figure 1 and the vertically flipped ones is proved in an
analogous way. (The compatibility with the vertically flipped follows also
by adjointness properties.)

Remark 7.2 (Kauffman bracket and Jones polynomial). If we renor-

malise by taking Ci := Cone (ID〈1〉
adj
→ θ̃i) and Ki := C−1

i [1]〈1〉 then we
have the following equalities in the Grothendieck group [∩̃i,n+2∪̃i,n] = (v +
v−1)[ID], [Ci] = [θ̃i]−v[ID] and [Ki] = [ID]−v[θ̃i]. This can be considered as
a Kauffman bracket in the normalisation as in [Kho00]. Given a tangle t with
cj crossings of type tji for j = 3, 4 we can define K(t) :=

[

T (t)〈c4−2c3〉[c3]
]

.
Then K(t) satisfies the defining relation for the scaled Kauffman bracket (as
in [Kho00]) which is up to a normalisation the Jones polynomial.

Remark 7.3. Using the main result of [RH] that translation and Zuck-
erman’s functors are Koszul dual to each other, Conjecture 1 of [BFK99]
follows directly. On the other hand, it is not clear, if one really needs Ryom-
Hansen’s result to prove the Conjecture. All our arguments can easily be
transfered to the singular case with one exception: It doesn’t seem to be
obvious how to translate the starting point for the induction in the proof of
Proposition 6.4.
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8 Cobordisms and natural transformations

To each tangle, hence in particular to a closed loop/circle, we assigned a
functor. The goal of this section now is to describe a functor from the
category COB of 2-cobordisms into a 2-category given by projective func-
tors. The objects of COB are disjoint unions of labelled oriented closed
1-dimensional manifolds, that is a disjoint union of labelled oriented circles.
(We also allow the emptyset, i.e. no circle.) A surface between n oriented cir-
cles n and m oriented circles m is a surface S with an orientation preserving
isomorphism φS between the boundary δS of S and the union nrtm, where
nr denotes the manifold n but with reversed orientation. Two surfaces S
and T between n and m are equivalent if there is an isomorphism of surfaces
(=a diffeomorphism) ψ : S→̃T such that the following diagram commutes

δS
φS //

ψ|δS

��

nr tm

δT

φT

66nnnnnnnnnnnnn

A morphism Σ : n→m in COB is an equivalence class of surfaces S : n→m
between n and m. The morphisms in COB are generated by glueing copies
of the six basic surfaces depicted in Figure 2 subject to certain relations.
For details we refer to [Abr96, section 4].

2

2

S S

1

1

S
0

1

S
2

1

S

2

1

S
1

0

Figure 2: Basic cobordisms
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8.1 Basic cobordisms

We fix n ∈ N and write ζn+2 = ζ. Recall that we assigned to an occurring
circle the composition

∩i,n+2∪i,n = (ζθ1
0θ2 · · · θi)(θiθi−1 · · · θ2θ

0
1ζ

−1). (8.1)

Since this is (up to isomorphism) independent of i we choose i = 2 and set
G = ζθ1

0, F = θ0
1ζ

−1. Note that Gθ2F ∼= ID and θ2FGθ2 ∼= θ2θ
0
1ζζ

−1θ1
0θ2
∼=

θ2θ1θ2 ∼= θ2 as endofunctors on Omax(sln). Let adj : ID→ θ2 and adj : θ2 →
ID denote the adjunction morphisms. Since θ̃2θ̃2 ∼= θ̃2〈1〉 ⊕ θ̃2〈−1〉, there is
a monomorphism α̃′ : θ̃2 → θ̃2θ̃2 and also an epimorphism β̃′ : θ̃2θ̃2 → θ̃2 of
degree −1. Let α′ and β′ denote the corresponding morphisms of functors
after forgetting the grading. There is an isomorphism of graded functors
σ̃′ : θ̃2θ̃2θ̃2 ∼= θ̃2〈2〉⊕θ̃2⊕θ̃2⊕θ̃2〈−2〉 by switching the two middle summands.
Let σ′ denote the corresponding isomorphism after forgetting the grading.
To each basic cobordism we assign a natural transformation as follows

Φ(S2
1) = ∆ : θ2θ2

θ2 adjθ2(•)
−→ θ2θ2θ2,

Φ(S1
2) = µ : θ2θ2θ2

θ2adjθ2(•)
−→ θ2θ2,

Φ(S1
0) = i : θ2

α′

−→ θ2θ2,

Φ(S0
1) = ε : θ2θ2

β′

−→ θ2,

Φ(S2
2) = σ′ : θ2θ2θ2

σ′
−→ θ2θ2θ2,

Φ(S1
1) = id : θ2θ2

id
−→ θ2θ2.

(8.2)

If S = S1tS2t· · · tSr is a disjoint union of basic cobordisms Si : mi → ni,
then Φ(S) : (θ2)

m1+m2+···+mr+1 −→ (θ2)
n1+n2+···+nr+1 is inductively defined

as the composite

(θ2)
n1(Φ(S2 t · · · t Sr)) ◦ Φ(S1)(θ2)m2+m3+···+mr+1 .

Let Pmax
n denote the category of projective functors on Omax(sln).

8.2 The Functor from Cobordisms into Algebraics

With the notations above we get the following main result:

Theorem 8.1 (Cobordisms as natural transformations).

There is a functor CAT = CAT n : COB → Pmax
n given by

m 7−→ G(θ2)
m+1F
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on objects and on disjoint unions of basic morphisms as

CAT (S) = GΦ(S)F (•)

To make computations easier we use Soergel’s functor V : O0 −→ C −
mof, where C − mof denotes the category of finitely generated modules
over the coinvariant algebra C = S(h)/(S(h)+)W · for the ‘translated’ W -
action. We recall its main properties, give explicit formulas and then prove
Theorem 8.1. For details see [Soe90], [Soe00]. The functor V is exact and
fully faithful on projectives. For a simple reflection s, there is a natural
isomorphism Vθs ∼= C⊗Cs V, where Cs denotes the invariants of C under s.
Note that C is a free Cs-module. A basis is given by 1 and X, the coroot
corresponding to s.

Lemma 8.2. The adjunction morphisms corresponds under V to the natural
transformations given by the following morphisms of C-modules:

mN : C ⊗Cs N −→ N, δN : N −→ C ⊗Cs N
c⊗ n 7−→ cn 1⊗ n 7−→ 1⊗Xn+X ⊗ n

for c ∈ C, n ∈ N ∈ C −mof.

Proof. The first adjunction morphism is given as the preimage of the identity
under the canonical isomorphism

HomC(C ⊗Cs N,N) −→ HomCs(N,N) (8.3)

f 7−→
(

n 7→ f(1⊗ n)
)

(

c⊗ n 7→ cf(n)
)

←−[ f

Hence mN (c ⊗ n) = cn. To prove the second statement we use the isomor-
phisms

HomCs(N,N) ∼= HomCs(N∗, N∗) ∼= HomC(C ⊗Cs N∗, N∗)
Ψ
∼= HomC((C ⊗Cs N)∗, N∗) ∼= HomC(N,C ⊗Cs N).

The second isomorphism is given by (8.3). According to [Soe00, Lemma
2.9.2], there is an isomorphism ψ : C ⊗Cs N∗→̃(C ⊗Cs N)∗ of C-modules
given by ψ(1 ⊗ f)(1 ⊗ n) = 0 and ψ(1 ⊗ f)(X ⊗ n) = f(n) for f ∈ N∗,
n ∈ N . This defines Ψ. All the other maps are given by duality. Since
mN∗(1⊗f) = f , we get Ψ(mN∗)(ψ(1⊗f)) = f . On the other hand δ∗(ψ(1⊗
f)(n) = ψ(1⊗f)(δ(n)) = ψ(1⊗f)(1⊗Xn+X⊗n) = ψ(1⊗f)(X⊗n) = f(n).
This proves in fact that δ is the adjunction morphism.
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The isomorphism θsθs ∼= θs ⊕ θs becomes via V the following

Lemma 8.3. There are natural isomorphisms of C-modules

QN : C ⊗Cs C ⊗Cs N −→ C ⊗Cs N ⊕ C ⊗Cs N

1⊗ 1⊗ n 7−→ (1⊗ n, 0)

X ⊗ 1⊗ n 7−→ (X ⊗ n, 0)

1⊗X ⊗ n 7−→ (−X ⊗ n, 1⊗ n)

X ⊗X ⊗ n 7−→ (−X2 ⊗ n,X ⊗ n)

Hence, β′ corresponds to β = p1 ◦ Q where p2 denotes the projection onto
the second summand, α′ corresponds to α = Q−1 ◦ i1 where i1 denotes the
inclusion of the first summand.

Proof. The inverse map is defined by (1⊗n, 0) 7→ 1⊗1⊗n and (0, 1⊗n) 7→
1⊗X ⊗ n+X ⊗ 1⊗ n.

The permutation morphism σ becomes under V the following isomor-
phism

Lemma 8.4. There is an isomorphism of functors

σ : C ⊗Cs C ⊗Cs (C ⊗Cs •) −→ C ⊗Cs C ⊗Cs (C ⊗Cs •)

given by σ = Q−1
C⊗Cs(•) ◦ (Q−1 ⊕ Q−1) ◦ (id⊕σ ⊕ id) ◦ (Q ⊕ Q) ◦ QC⊗Cs (•),

where σ : (C⊗Cs N)⊕ (C⊗CsN)→̃(C⊗CsN)⊕ (C⊗Cs N), σ(x, y) = (y, x).

Proof. This follows directly from the previous lemma.

Proof of Theorem 8.1. By [Abr96, Proposition 12] we first have to check
that ∆, µ, ε, i and σ satisfy formally the properties of a (co-)associative
and (co-)commutative, ‘(co-)multiplication’, a ‘(co-)unit’ and a ‘permutation
map’. Secondly, we have to show that θ2µ◦∆θ2 = ∆◦µ : θ2θ2θ2 −→ θ2θ2θ2.

• Associativity, that is CAT
(

S1
2 ◦ (S1

2 t S
1
1)

)

= CAT
(

S1
2 ◦ (S1

1 t S
1
2)

)

. It
is enough to verify

adj adjθ2(•) = adj θ2 adj(•) : (θ2)
2 → ID .

We claim that this holds even on O0. Let N ∈ C−mof. Let c⊗d⊗n ∈
C⊗CsC⊗CsN . We calculate m◦(m⊗id)(c⊗d⊗n) = m(cd⊗n) = cdn,
on the other hand m ◦ (id⊗m)(c ⊗ d ⊗ N) = m(c ⊗ dn) = cdn. The
associativity follows.
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• Coassociativity. Since

(δ ⊗ id) ◦ δ(1⊗ n) = δ ⊗ id(1⊗ (X ⊗ n) +X ⊗ (1⊗ n))

= 1⊗X ⊗X ⊗ n+X ⊗ 1⊗X ⊗ n+ 1⊗X2 ⊗ 1⊗ n+X ⊗X ⊗ 1⊗ n

= 1⊗ 1⊗X2 ⊗ n+ 1⊗X ⊗X ⊗ n+X ⊗ 1⊗X ⊗ n+X ⊗X ⊗ 1⊗ n

= id⊗δ(1 ⊗X ⊗ n+X ⊗ 1⊗ n)

= (id⊗δ) ◦ δ(1 ⊗ n),

it follows CAT
(

(S2
1 t S

1
1) ◦ S2

1

)

= CAT
(

(S1
1 t S

2
1) ◦ S2

1

)

.

• Unit, i.e. CAT
(

S1
2 ◦(S

1
1 tS

1
0)

)

= CAT (S1
1) = CAT

(

S1
2 ◦(S

1
1 ◦S

1
0)

)

. For

the first equality it is enough to check adjθ2 ◦ α
′ = id : θ2 → θ2. This,

however, is true, since (m⊗ id)◦α(1⊗n) = (m⊗ id)(1⊗1⊗n) = 1⊗n
by Lemma 8.3. Similarly, (id⊗m)◦α(1⊗n) = id⊗m(1⊗1⊗n) = 1⊗n
proving the second equality.

• Counit. We omit to show explicitly the dual statement for the counit.

• The commutativity µ ◦ σ′ = µ follows from the commutativity of the
diagram

θ2θ2θ2

θ2adjθ2 ))TTTTTTTTTTTTTTTT

σ′ // θ2θ2θ2

θ2adjθ2
��

θ2θ2 = θ2 ID θ2.

Or more general from the commutativity of

C ⊗Cs C ⊗Cs (C ⊗Cs N)

id⊗m⊗id ++XXXXXXXXXXXXXXXXXXXXXX

σ // C ⊗Cs C ⊗Cs (C ⊗Cs N)

id⊗m⊗id
��

C ⊗Cs C ⊗Cs ⊗N.

Direct calculations using Lemma 8.3 and Lemma 8.4 show that σ(c1⊗
c2 ⊗ c3 ⊗ n) = c1 ⊗ c3 ⊗ c2 ⊗ n for ci ∈ {1,X}, n ∈ N . Therefore,
(id⊗m ⊗ id) ◦ σ(c1 ⊗ c2 ⊗ c3⊗) = c1 ⊗ c3c2 ⊗ n = c1 ⊗ c2c3 ⊗ n =
id⊗m⊗ id(c1 ⊗ c2 ⊗ c3 ⊗ n). The commutativity follows.

• The cocommutativity follows from the following calculations: σ◦(id⊗δ⊗
id)(c⊗ 1⊗n) = σ(c⊗ 1⊗X ⊗n+ c⊗X⊗ 1⊗n) = c⊗X⊗ 1⊗n+ c⊗
1⊗X ⊗ n = (id⊗δ ⊗ id)(c⊗ 1⊗ n) and σ ◦ (id⊗δ⊗ id)(c⊗X ⊗ n) =
σ(c⊗X ⊗X ⊗ n) = c⊗X ⊗X ⊗ n = (id⊗δ ⊗ id)(c⊗ 1⊗ n).
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• To prove the remaining relation it is enough to check the commuta-
tivity of

θ2θ2θ2
µ=θ2adjθ2 //

∆θ2
=θ2 adjθ2θ2

��

θ2θ2

∆=θ2 adjθ2
��

θ2θ2θ2θ2
θ2µ=θ2θ2adjθ2 // θ2θ2θ2

or just the commutativity of one of the following diagrams (with arbi-
trary N ∈ C −mof):

θ2
adj //

adjθ2
��

ID

adj

��

C ⊗Cs N
m //

δC⊗Cs

��

N

δ
��

θ2θ2θ2adj
θ2adj // θ2 C ⊗Cs C ⊗Cs N

id⊗m // C ⊗Cs N.

Let 1⊗n ∈ C⊗Cs N . Since δ ◦m(1⊗n) = δ(n) = 1⊗Xn+X⊗n and
(id⊗m)◦δ)(1⊗n) = (id⊗m)(1⊗X⊗n+X⊗1⊗n) = 1⊗Xn+X⊗n,
the last diagram above commutes. This proves θ2µ ◦∆θ2(•) = ∆ ◦ µ.
Therefore, the assignment of the theorem is well-defined and defines a
functor as described.

Remark 8.5 (Gradings and Euler characteristic). All the occurring
functors assigned to closed oriented labelled 1-manifolds are gradable. Choos-
ing the standard lifts, by construction, the natural transformations assigned
to the basic cobordisms become homogeneous with the following degrees:
deg ∆̃ = deg µ̃ = 1, deg(̃i) = deg(ε̃) = −1, deg σ̃′ = deg id = 0. Let
S = S1S2 · · ·Sr : n→ m be a surface between two disjoint unions of labelled
oriented closed 1-manifolds given as a product of disjoint unions of surfaces
Si (1 ≤ i ≤ r) from Figure 2 with corresponding natural transformations
Φ(Si). Set deg(S) =

∑r
i=1 deg Φ(Si). The relations [Abr96] directly im-

ply that deg(S) is well-defined, i.e. constant on equivalence classes. If χ(S)
denotes the Euler characteristic of S. Then we get

χ(S) = − deg(S).

Remark 8.6. If a surface between two closed oriented 1-manifolds contains
a punctured genus > l(wo) surface, where wo is the longest element in the
Weyl group corresponding to sln, then CAT n(S) = 0. To verify this one has
to consider the composition g = (m ◦ δ)l(wo). Since VP for any projective
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module P ∈ O0(sln) has a natural grading (see [Soe90]), g induces a homo-
geneous endomorphism of degree (l(wo) ·deg(X)) on C⊗Cs VP for any P ∈
O0(sln). On the other hand, however, VPi 6= 0⇒ l ≤ i ≤ l+ l(w0) ·(deg(X))
for some l ∈ Z (again by e.g. [Soe90]).

We finish with a small result describing homomorphisms between trans-
lation functors on the graded version of the main block of O via bimodules
over the coinvariant algebra (see also [Bac01]). Let C be given the even
grading induced from S(h), where S(h)2 = h. Let x ∈ W with a reduced
expression [x] = s1s2 · . . . · sr. Let θ̃[x] = θ̃sr · · · θ̃s2 θ̃s1 considered as endo-
functor of gmof −A. We denote C[x] = C ⊗Csr C ⊗Csr−1 · · · ⊗Cs2 C ⊗Cs1 •
as functor on graded C-modules.

Proposition 8.7. Let x, w ∈ W with fixed reduced expressions [x] and [w]
respectively. There is a natural isomorphism of graded vector spaces

Hom(θ̃[x], θ̃[w]) ∼= HomC−gmof −C

(

C[x](C)〈−l(x)〉,C[w](C)〈−l(w)〉
)

.

Proof. The results of [Soe90] give a natural map

Φ : Hom(θ̃[x], θ̃[w]) → HomC−gmof

(

C[x]〈−l(x)〉,C[w]〈−l(w)〉
)

f 7→ V̂f
VP̃ (w0·0)

,

where V̂ denotes the functor Homgmof −A(P̃ (w0·0), ·) : gmof −A→ gmof −C.
Since f is a natural transformation, we have f ◦ C[x](g) = C[w](g) ◦ f for

any endomorphism g ∈ Endgmof −A(P̃ (wo · 0)) = C. Hence Φ(f) is a mor-
phism of graded C-bimodules. Φ is injective, since any projective object
Q ∈ gmof −A has a copresentation of the form

Q ↪→
⊕

i∈I1

P̃ (w0 · 0)〈i〉 →
⊕

i∈I2

P̃ (w0 · 0)〈i〉

for some finite multisets I1, I2. Any homomorphism in the target space
of Φ defines a natural transformation between functors C[x]〈−l(x)〉 and
C[w]〈−l(w)〉 on the category of graded C-modules. By Soergel’s struc-
ture theorem [Soe90] we therefore get a natural transformation g between
the functors θ̃[x] and θ̃[w] restricted to projective objects. For arbitrary
N ∈ gmof −A we choose a projective resolution P •. Since g is a natural
transformation, it provides a morphism of resolutions θ̃[x]P

• → θ̃[w]P
• in-

ducing a unique morphism gN : θ̃[x]N → θ̃[w]N . By standard arguments gN
does not depend on the actual choice of the projective resolution and these
maps define a natural transformation of functors. Hence Φ is surjective and
the statement of the proposition follows.
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We give the following example needed in the proof of Theorem 7.1:

Corollary 8.8. Let x = sts = tst for non-commuting simple reflections s
and t. Fix [x] = tst. Then R = Hom(θ̃[x], ID) is strictly positively graded
(i.e. Ri = 0 for i ≤ 0) and R1 = C.

Proof. Direct calculations show that C[x](C) is generated as a C-bimodule
by 1⊗1⊗1⊗1 and 1⊗X⊗1⊗1, where X denotes the coroot corresponding
to s. Hence, C[x](C)〈−3〉 is generated in degrees −3 and −1. Since C is
positively graded with C0 = C the statement follows, because there is a
nontrivial transformation of degree 1 (namely p ◦ adjθ̃sθ̃t

occurring in the
proof of Theorem 7.1).

Appendix: Explicit calculations in Type A

We consider the special example, where g = sln and p = pm ∼= slm × sln−m
is a maximal parabolic subalgebra.

Distinguished coset representatives

We first explicitly describe distinguished coset representatives. Let W (n) =
〈s1, . . .,sn〉 be the Weyl group of type An.

Lemma A-1. Let n ≤ 1. Then

W (n)p1 = {e, s1, s1s2, . . . , s1s2 · · · sn}; (A-1)

and all the expressions are reduced.

Proof. The expressions in (A-1) are obviously reduced since no braid relation
or commutator relation can be applied. For n = 1 or n = 2 the assertion is
true. Let us assume the lemma to be true for type An−1. For 2 < j ≤ n we
get

l(sj(s1s2 · · · sk) = l(s1sjs2 · · · sk) = 1 + l(sjs2 · · · sk)

> 1 + l(s2 · · · sk) = l(s1s2 · · · sk)

by the induction hypothesis. On the other hand l(s2(s1s2 · · · sk)) = l(s2s1s2)+
l(s3s4 · · · sk) = 3 + l(s3 · · · sk) = 1 + l(s1s2s3 · · · sk). Hence, the elements of

the set (A-1) are distinguished coset representatives. Since |W |
|WS |

= n+1 the
lemma follows.
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Let S(n+ 1,m) be the set of all subsets of order m of {0, 1, . . . , n}. We
write i1.i2. · · · .ik to denote the element {i1, . . . ik} ∈ S(n, k) with i1 > i2 >
· · · > ik.

Proposition A-2. Let m ∈ {1, . . . , n}. There is a bijection of sets

Ψ(n,m) : S(n + 1,m) −→ W (n)pm (A-2)

i1.i2. . . . .ik 7−→ (smsm+1 · · · si1)(sm−1sm · · · si2) · · · (s1s2 · · · sim),

where, by definition, sjsj+1 ·. . .·sr = e if r < j. All the expressions occurring
in the image of this map are reduced.

We just write w = i1.i2. · · · .ik if they correspond via the bijection
above. Moreover we abuse notation and write just i1.i2. · · · .il with l < m
if sjsj−1 · . . . · sr = e for j > l.

Proof. For n = 2, or for n arbitrary but m = 1, the Proposition holds by
Lemma A-1. Let now 1 ≤ m < n. We assume that the claim holds for
Ψ(n′,m′), if either n′ < n or if n′ = n and m′ < m. Lemma A-1 successively
shows that the occurring expressions are reduced.
Let w = (smsm+1 · · · si1)(sm−1sm · · · si2) · · · (s1s2 · · · sim) = (smsm+1 · · · si1)y =
w′(s1s2 · · · sim) To show, that w ∈W pm we consider two cases:

• j ∈ {2, 3, . . . n}\{m}: Then l(sjw) = l(sjw
′) + ik = l(w′) + 1 + ik =

l(w) + 1 by induction hypothesis.

• j = 1: By induction hypothesis, l(s1w) = l(s1smsm+1 · · · si1) + l(y) =
1 + l(smsm+1 · · · si1) + l(y) = 1 + l(w).

Hence, all the elements occurring in the image of Ψ(n,m) are distinguished
coset representatives. The remaining thing, we have to prove is the injectiv-
ity of the map. Let us assume Ψ(n,m)(i1. . . . , .im}) = Ψ(n,m)(j1. . . . .jm).
Since smax{i1,j1} has to occur on both sides, we conclude i1 = j1, hence

(sm−1sm · · · si2) · · · (s1sn−1 · · · sik) = (sm−1sm · · · si2) · · · (s1sn−1 · · · sik)

The same argumentation gives successively i2 = j2, . . ., ik = jk. The theo-
rem follows.
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