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Introduction

We examine critically some of the existing descriptions of the envelope of
a 1-parameter family of surfaces in 3-space. An old, natural, description is
that the envelope is the union of the characteristic curves (defined as the
“limit intersection curves” of surfaces from the family). This description fell
in disrepute during the 20th century. We claim that this relegation of the
limit intersection curves made some other aspect of the theory less justified,
namely the definite article “the” in the phrase “the envelope”. We intend to
re-establish the limit intersection curves on a rigourous basis, – thereby also
re-establishing the old obvious argument for the definiteness of envelopes.

The content of the present note was presented at a talk at the Logic Year
at the Mittag-Leffler Institute in Stockholm in April 2001. The key formula
(1) was found during discussions with Gonzalo Reyes.

1 Three descriptions of envelopes

One considers a 1-parameter family of surfaces {Mτ} in 3-space. Under
suitable non-degeneracy conditions, this family has an enveloping surface E,
classically described in three alternative ways:

• 1). The synthetic: E is the union of the characteristics; the characte-
ristic Cτ is the limit curve of the family of curves Mτ ∩ Mτ+h as h → 0.

• 2). The impredicative: E is a surface with the property that at each of
its points, it is tangent to a unique surface from the given family. (The locus
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of points where E touches Mτ , we call the E-characteristic CE
τ

, for the sake
of the comparison.)

• 3). The analytic: one assumes that there is a function F (x, y, z, τ) such
that for each τ , Mτ is the zero set of F (−,−,−, τ). Then the surface E is
the union of the F -discriminant curves, where the F -discriminant curve CF

τ

for the parameter value τ is the solution set for the F -discriminant equations

F (x, y, z, τ) = 0, Fτ (x, y, z, τ) = 0

(where Fτ denotes ∂F

∂τ
).

The two first descriptions are purely geometric. – There are problems
with each of the three descriptions.

ad 1). For the synthetic description, it is not clear what “limit curve”
should mean: the set of (unparametrized) curves in 3-space does not carry
a natural evident topology with respect to which this limit notion can refer.
The assertion of Courant “If we let h tend to zero, the curve of intersection
will approach a definite limiting position . . . ” (a similar description is in [2]
p. 320 ff. or in [3] p. 249) is not supported by a rigourous notion. (We supply
such notion in (1) below.)

ad 2). The impredicative description is problematic in that uniqueness is
not apriori clear. (Nor is existence, and in fact the description does not imply
a construction method. Note that in this description, the characteristics are
described in terms of the envelope, rather than the other way round.)

ad 3). For the analytic description, one is imposing some further structure
on the given geometric data, namely the function F . The problem now is
that is not apriori clear that the resulting surface is independent of the choice
of F .

The theory usually given, cf. e.g. [1], [7], consists in the following:

• (A): Given an analytic presentation F (x, y, z, τ) for the family, as above,
it is proved that the discriminant curves make up an (impredicative) enve-
lope.

• (B): Given an impredicative envelope E, and an analytic presentation F ,
for the family, the E-characteristics must be solutions of the F -discriminant
equations – provided that a compatible parametrization by τ and one further
parameter t exists for E (cf. [7] p. 370; “compatible parametrization” means
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that E can be parametrized by two parameters t, τ such that for each τ0, the
t-parameter curve τ = τ0 is the E-characteristic CE

τ0
).

So the notion of envelope is given in terms of 2) and 3), with 1) only
playing the role of heuristics. Uniqueness (definiteness) of the envelope comes
about by playing the E and F out against each other in (B); and thus the
uniqueness proof depends on this “interplay”, as well as on existence of an
auxiliary compatible parametrization of E. The reason why the sources cited
hardly pay attention to this somewhat sophisticated definiteness question is
presumably that they have the synthetic description 1) in mind, even though,
officially, they have relegated it. Definiteness is clear, and elementary, from
the synthetic description 1), i.e. from the ability to describe the characteristic
curves prior to the description of the enveloping surface.

(For the case of a 1-parameter family of plane curves, the synthetic de-
scription is less problematic: two neighbour curves usually intersect in a
point, and the notion of limit point, unlike limit curve, is less problematic.
But even though the synthetic description thus is feasible, the sources cited
want to circumvent it. Ostrowski [7] even provides an example tho show that
it gives incorrect results (we comment on this “counterexample” in Example
1 below).)

My contention is: analytic geometry of today has not (till now, to the
best of my knowledge) furnished a rigorous meaning to 1) (and thus no
elementary proof of definiteness of envelopes); and further: the method of
Synthetic Differential Geometry has the ability to furnish such a description,
in fact, we shall present one:

Namely, the characteristic (limit intersection curve) Cτ may be described
by the equation

Cτ =
⋂

d∈D

Mτ+d, (1)

where D is the set of d ∈ R with d2 = 0. (We are assuming the basic
axiom of Synthetic Differential Geometry, asserting sufficiently many such
real numbers d with d2 = 0 – the precise meaning will be recalled in the
proof below.)

Note that the description (1) is very close to the one of Courant: “This
curve is often referred to in a non-rigorous but intuitive way as the intersec-
tion of “neighbouring” surfaces of the family” (loc.cit. p. 180) – except that
it is rigorous.

An analogous description gives the characteristic (limit intersection point),
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for the case of a 1-parameter family of curves in the plane. We should stress
that the characteristic, as defined by formula (1) is not always a curve, re-
spectively a point; – see again Example 1 below.

2 Synthetic theory of characteristics

The synthetic description 1) of the characteristics depends neither on an
analytic presentation, nor on an envelope; rather, the envelope is synthe-
sized from the characteristics, as their union. The most recent text I know
of, where the synthetic description is taken as the mathematical (not just
heuristic) starting point for the theory of envelopes, is [3], §46 (or §12, for
the case of families of curves in the plane). The characteristic is here also
called “Grænseskæringskurve” (“limit intersection curve”), and the mean-
ing of this term is the only problematic point in this otherwise very lucid
exposition.

We intend here to vindicate the synthetic theory, by the description (1) of
the limit intersection curve Cτ . As thus defined, it is indeed an intersection
of Mτ with some of the neighbour surfaces, namely with all the Mτ+d’s where
d2 = 0.

We shall prove the correctness of the definition, and make the requisite
comparison.

The notion of analytic presentation F , and the resulting discriminant-
curves CF

τ , are as in the previous section.

Theorem 2.1 Assume given an analytic presentation F of the family of
surfaces. Then the F -discriminant curves agree with the limit intersection
curves of (1): for each τ ,

CF

τ
= Cτ .

Proof. By assumption, Mτ = {(x, y, z) | F (x, y, z, τ) = 0}. By Taylor
expansion,

F (x, y, z, τ + d) = F (x, y, z, τ) + d · Fτ (x, y, z, τ),

for d2 = 0. So (x, y, z) ∈
⋂

d∈D Mτ+d iff

for all d ∈ D, F (x, y, z, τ) + d · Fτ (x, y, z, τ) = 0.
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Consider this expression (for fixed x, y, z, τ) as a real valued function of
d ∈ D. The basic (“Kock-Lawvere”-) axiom of [4] says that such real-valued
function on D is of the form d 7→ a + d · b, for unique numbers a and b. We
conclude that (x, y, z) ∈

⋂
d∈D Mτ+d iff F (x, y, z, τ) = 0 and Fτ (x, y, z, τ) = 0,

which are the defining equations for the discriminant curve.

Since both the impredicative and the synthetic descriptions of envelopes
are independent of analytic data, one should be able to prove that the syn-
thetic E (constructed from the characteristics) has the property requested
of an impredicative envelope. In other words, one should be able to prove
that if x ∈ E ∩ Mτ , then Tx(E) = Tx(Mτ ), without any involvment of ana-
lytic presentation F . In verbal formulation, translated almost literally from
Hadamard’s textbook [2] p. 320 ff.:

Theorem 2.2 The [synthetic] envelope is tangent to each enveloped surface,
along the corresponding characteristic.

The method of Synthetic Differential Geometry does provide a proof not
involving any F . We shall give such a proof (under a mild non-degeneracy
assumption: that the envelope is the disjoint union of the characteristics.
Example 1 below shows that this is not necessarily so). We shall not go into
details about the foundations of the method (the reader is referred to [5] for
these, or more specifically [6]). The basic notion is the notion of “first order
neighbour” of a point in any manifold. (The set of first order neighbours of
0 in the real line form precisely the set D considered above.) To say that the
tangent planes of E and Mτ agree at their common point x is to say that,
for any first order neighbour x′ of x in R3, x′ ∈ E iff x′ ∈ Mτ . For dimension
reasons, it suffices to prove the implication x′ ∈ E implies x′ ∈ Mτ . If x′ ∈ E,
there is a unique parameter value τ ′, so that x′ ∈ Cτ ′. Since the property of
being first-order neighbour is preserved by any mapping, it follows that τ ′ is
a first order neighbour of τ , in other words, τ ′ = τ +d for some d ∈ D. Since
x′ ∈ Cτ+d =

⋂
d′ Mτ+d+d′ , it follows (take d′ = −d) that x′ ∈ Mτ .

Example 1. ([7] p. 337.) This example deals with a parametrized family
of curves in the plane, namely Mτ given by y = (x − τ)3. The envelope
E is the x-axis. Ostrowski’s point is that, in this case, the intersection of
(distinct !) neighbouring curves is empty, so that the synthetic description
gives “empty envelope”. With the supply of nilpotent real numbers in our
setting, the synthetic description does, however, give the correct result.
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The characteristic on Mτ is, by (1), the set of (x, y) so that for all d ∈ D,
we have the first equality sign in

y = (x − τ − d)3 = (x − τ)3 − 3d · (x − τ)2,

the second equality sign by binomial expansion, using d2 = 0. If this is to
hold for all d ∈ D, it follows from the basic axiom of [4] that (x − τ)2 = 0
(and hence (x− τ)3 = 0, and hence y = 0). The characteristic is thus the set
{(x, 0) | (x − τ)2 = 0}; the union of all these sets as τ ranges is the x-axis,
which thus indeed is the synthetic envelope. But note that the chararcteristic
in this example is not the point (τ, 0), but the slightly bigger set (τ+D)×{0}.

Example 2. Consider a (parametrized) space curve ξ(τ). Under suitable
non-degeneracy assumptions, we may consider the family of its osculating
planes Mτ . We shall prove synthetically that the characteristic curve on a
given Mτ is the tangent line Tτ ⊆ Mτ of the curve at the point ξ(τ). For
dimension reasons, it suffices to see the one inclusion

Tτ ⊆
⋂

d∈D

Mτ+d.

Consider a fixed d; we must prove Tτ ⊆ Mτ+d. But the osculating plane
at a given parameter value contains all 1st order neighbour tangents (see
[6] Proposition 3 for a synthetic proof of this). And Tτ is such a neigbour
tangent to Tτ+d ⊆ Mτ+d, since d ∈ D.

Have we proved anything new? Consider Theorem 2.2. It is certainly not
new. Geometers have known since, say, the time of Huygens. But present
day analytic geometry does really not have Theorem 2.2, since limit inter-
section curves, and hence synthetic envelopes, have been relegated from its
formalism: this formalism is too restricted to allow for them. The extension
of the classical formalism, which Synthetic Differential Geometry provides,
allows the Theorem to get back into mathematics.
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