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Abstract

Based on the general probabilistic framework of randomness, introduced in [6], we
analyze in mathematical terms the link between the CHSH inequality and the physical
concept of ”local realism”. We prove that the violation of this inequality in the quantum
case has no connection with the violation of ”local realism”.

In the most general settings, we formulate mathematically a condition on ”local real-
ism” under a joint experiment and consider examples of quantum ”locally realistic” joint
experiments. For any quantum state of a bipartite quantum system, we derive quantum
analogs of Bell’s inequality under quantum ”locally realistic” joint experiments of the
Alice/Bob type.

In view of our results, we argue that the violation of the CHSH inequality in the
quantum case cannot be a valid argument in the discussion on locality or non-locality of
quantum interactions.
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1 Introduction

The Bell inequality [1-3] and the CHSH inequality [4] describe the relation between the
statistical data observed under joint experiments. The original derivations of these inequalities
(and their further numerous generalizations and strengthenings) are based on the structure of
probability theory, associated with the formalism of random variables. The latter probabilistic
formalism is often referred to as classical probability.

The sufficient mathematical condition, used for the derivation of Bell’s inequality and
the CHSH inequality in the classical probabilistic frame, is usually linked with the physical
concept of ”local realism”. The latter refers (see, for example, [5], page 160) to those situations
where, under a joint experiment, set-ups of marginal experiments are chosen independently.

In the quantum case, Bell’s inequality is violated and Bell’s theorem states that a ”locally
realistic” model cannot describe statistics under quantum joint experiments.

In this paper, we analyze this statement from the point of view of the general probabilistic
formalism, introduced in [6] and based on the notions of an information state and a generalized
observable.

For joint experiments upon a system of any type, represented initially by an information
state, we formulate a general condition, which is sufficient for the derivation of the (original)
CHSH inequality and, more generally, any CHSH-type inequality. This sufficient condition
is valid for any initial information state of a system and concerns only a factorizable form of
generalized observables describing these joint experiments.

Under this sufficient condition, the CHSH inequality is true whether or not an initial
information state of a system is entangled.

We further specify the conditions for the derivation of the (original) Bell inequality and
show that Bell’s correlation restrictions on the observed outcomes (used for the derivation of
this inequality in [1,3]) represent particular cases of the condition, introduced in this paper.

We discuss possible mathematical reasons for the violation of the CHSH inequality and
point out that the sufficient condition for its derivation does not, in general, represent math-
ematically the physical concept of ”local realism”.

For a joint experiment upon a system of any type, we formulate mathematically in a very
general setting a condition on ”local realism” and consider examples of ”locally realistic”
joint experiments. In particular, we introduce examples of quantum ”locally realistic” joint
experiments.

From our presentation it follows that, for ”locally realistic” joint experiments, the CHSH
inequality and Bell’s inequality may be violated whenever generalized observables, describing
these joint experiments, do not have a factorizable form. The latter is just the situation in
the quantum case.

For any quantum state of a bipartite system, we derive in a very general setting quantum
analogs of Bell’s inequality under quantum joint experiments of the Alice/Bob type. As an
example, we consider inequalities under joint experiments on the two-qubit system.

In view of our results, we argue that the violation of the CHSH inequality and Bell’s
inequality in the quantum case cannot be a valid argument in the discussion on locality or
non-locality of quantum interactions.
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2 Description of joint experiments

Let (Λi,FΛi
), i = 1, 2, be some measurable spaces of outcomes.

Consider a joint experiment, with outcomes in a product space

(Λ1 × Λ2, FΛ1 ⊗FΛ2) (1)

and performed on a system S of any type.
Let S be initially represented by any of the information states (see [6], for details)

I = (Θ,FΘ, π), ∀π, (2)

where (Θ,FΘ) is a measurable space and π is a probability distribution on (Θ,FΘ).
We call (Θ,FΘ) an information space of S and denote by µ(·;I) the probability distribu-

tion of outcomes in the case where S is initially in a state I.

Let Π be a generalized observable, with an outcome space (1), uniquely representing this
joint experiment on an information space (Θ,FΘ) (cf. [6]).

Then, for any initial state I of S, the probability distribution of outcomes is given by:

µ(D;I) =

∫

Θ
(Π(D))(θ)π(dθ), (3)

∀D ∈ FΛ1 ⊗FΛ2 .

For a generalized observable Π, the marginal generalized observable

Π1(B1) := Π(B1 × Λ2), ∀B1 ∈ FΛ1 , (4)

with the outcome space (Λ1,FΛ1), and the marginal generalized observable

Π2(B2) := Π(Λ1 × B2), ∀B2 ∈ FΛ2 , (5)

with the outcome space (Λ2,FΛ2), describe the experimental situations where the outcomes
in (Λ2,FΛ2) and in (Λ1,FΛ1), respectively, are ignored completely.

With respect to Π1 and Π2, the generalized observable Π is called joint.
Let, under a joint experiment, the outcomes be real-valued and, for simplicity, suppose

they are bounded, that is:
Λi = {λ ∈ R : |λ| ≤ Ci}, (6)

with some Ci > 0, i = 1, 2.
Due to (3), for any initial information state I, the mean values are given by the formulae:

〈λi〉
(Π)
I

=

∫

Λi

∫

Θ
λi(Πi(dλi))(θ)π(dθ) (7)

=

∫

Θ
fi(θ)π(dθ), i = 1, 2,

〈λ1λ2〉
(Π)
I

=

∫

Λ1×Λ2

∫

Θ
λ1λ2(Π(dλ1 × dλ2))(θ)π(dθ) (8)

=

∫

Θ
fjoint(θ)π(dθ).
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In (7) and (8),

fi(θ) :=

∫

Λi

λi(Πi(dλi))(θ), ∀θ ∈ Θ, i = 1, 2, (9)

fjoint(θ) :=

∫

Λ1×Λ2

λ1λ2(Π(dλ1 × dλ2))(θ), ∀θ ∈ Θ (10)

are real-valued measurable functions1 on (Θ,FΘ) and, for any θ ∈ Θ,

|fi(θ)| ≤ Ci, i = 1, 2; |fjoint(θ)| ≤ C1C2. (11)

Remark 1 From (7) it follows that, under a joint experiment on a system S of any type,
represented initially by an information state I on (Θ,FΘ), each mean value

〈λi〉
(Π)
I

, i = 1, 2, (12)

is expressed in terms of the corresponding random variable fi on (Θ,FΘ). However, in contrast
to the formalism of classical probability, the values of these random variables do not, in
general, represent outcomes observed under this joint experiment.
Moreover, due to (8), the mean value

〈λ1λ2〉
(Π)
I

(13)

is represented via the random variable fjoint, which is, in general, different from the product
f1f2.

Remark 2 The values of the random variables fi do represent outcomes, observed under
a joint experiment, if and only if this experiment is described by an ”image” generalized
observable (see in [6]):

(Π(B1 × B2))(θ) = χ
f−1
1 (B1)∩f−1

2 (B2)(θ), (14)

∀θ ∈ Θ, ∀Bi ∈ FΛi
, i = 1, 2, where χF (θ) is the indicator function of a subset F ∈ FΘ and,

for any i = 1, 2,
f−1

i (Bi) = {θ ∈ Θ : fi(θ) ∈ Bi} (15)

is the preimage of a subset Bi ∈ FΛi.in FΘ.

”Image” generalized observables (14) describe the special type of experiments, called classical
measurements2. For classical measurements fjoint = f1f2.

Remark 3 As we discuss this in detail in section 3, the relation fjoint = f1f2 may be valid
not only under classical measurements but, for any joint experiment, described by a product
generalized observable (21). However, for any product generalized observable, the values of f1

and f2 do not, in general, represent the observed outcomes.

1Called random variables in probability theory.
2On the notion of a classical measurement, see [6] and the references therein.
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Let two joint experiments on S be described on (Θ,FΘ) by generalized observables Π(1)

and Π(2), with an outcome space (1).
From (8) it follows that

〈λ1λ2〉
(Π(1))

I
± 〈λ1λ2〉

(Π(2))

I
=

∫

Θ
{f

(1)
joint(θ) ± f

(2)
joint(θ)}π(dθ), (16)

where, to each Π(n), n = 1, 2, the corresponding random variable f
(n)
joint is defined by (10).

Due to the inequality:
|x − y| ≤ 1 − xy, (17)

valid for any real numbers |x| ≤ 1, |y| ≤ 1, we derive
∣∣∣∣〈λ1λ2〉

(Π(1))

I
± 〈λ1λ2〉

(Π(2))

I

∣∣∣∣ ≤ C1C2 ±
1

C1C2
〈λ1λ2〉

(Π(1))

I
〈λ1λ2〉

(Π(2))

I
. (18)

3 Factorizable generalized observables

Let a generalized observables Π, with an outcome space (1), have the factorizable form:

Π =

∫

Ω
Π1,ω × Π2,ω ν(dω), (19)

where (Ω,FΩ) is a measurable space and ν is a probability measure on (Ω,FΩ).
The relation (19) means that, for any θ ∈ Θ and any subsets B1 ∈ FΛ1 , B2 ∈ FΛ2 ,

(Π(B1 × B2))(θ) =

∫

Ω
(Π1,ω(B1))(θ)(Π2,ω(B2))(θ) ν(dω). (20)

If, in particular, ν is a Dirac measure then Π has the product form.

3.1 Product generalized observables

For two joint experiments on S, with outcomes in (1), let each generalized observable Π(n),

n = 1, 2, on (Θ,FΘ) have the product form

Π(n) = Π
(n)
1 × Π

(n)
2 . (21)

Suppose further that Π
(1)
1 = Π

(2)
1 = Π1 and, hence,

Π(n) = Π1 × Π
(n)
2 , n = 1, 2. (22)

Under the joint experiments, described by (22), we have the following expressions:

f̃1(θ) =

∫

Λ1

λ(Π1(dλ))(θ), (23)

f̃
(n)
2 (θ) =

∫

Λ2

λ(Π
(n)
2 (dλ))(θ), n = 1, 2, (24)

f̃
(n)
joint(θ) =

∫

Λ1×Λ2

λ1λ2 (Π1(dλ1)) (θ) (Π
(n)
2 (dλ2))(θ) (25)

= f̃1(θ)f̃
(n)
2 (θ), n = 1, 2,
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for the random variables, introduced by the formulae (9), (10). Notice that

|f̃1(θ)| ≤ C1, |f̃
(n)
2 (θ)| ≤ C2, n = 1, 2, (26)

for any θ ∈ Θ.

From (8) and (25) it follows that, under two joint experiments, described by (22),

〈λ1λ2〉
(Π(n))

σ =

∫

Θ
f̃1(θ)f̃

(n)
2 (θ)π(dθ), n = 1, 2, (27)

and, hence, in (16),

〈λ1λ2〉
(Π(1))

I
± 〈λ1λ2〉

(Π(2))

I
=

∫

Θ
f̃1(θ)

{
f̃

(1)
2 (θ) ± f̃

(2)
2 (θ)

}
π(dθ). (28)

We formulate and prove the following proposition.

Proposition 1 Let product generalized observables Π(n), n = 1, 2, be specified by (22).
Then, for any initial information state I,

∣∣∣∣〈λ1λ2〉
(Π(1))

I
± 〈λ1λ2〉

(Π(2))

I

∣∣∣∣ ≤ C1C2 ±
C1

C2
〈λ′

2λ2〉
(Π)

I
, (29)

where

〈λ′
2λ2〉

(Π)

I
:=

∫

Θ
f̃

(1)
2 (θ)f̃

(2)
2 (θ)π(dθ) (30)

=

∫

Θ

∫

Λ2×Λ2

λ′
2λ2(Π(dλ′

2 × dλ2))(θ)π(dθ)

and
Π : = Π

(1)
2 × Π

(2)
2 (31)

is a generalized observable on (Θ,FΘ) with the outcome space (Λ2 × Λ2,FΛ2 ⊗FΛ2).

Proof. The proof is based on (28), bounds (26), the inequality (17) and notation (30):

∣∣∣∣〈λ1λ2〉
(Π(1))

I
± 〈λ1λ2〉

(Π(2))

I

∣∣∣∣ ≤
∫

Θ

∣∣∣f̃1(θ){f̃
(1)
2 (θ) ± f̃

(2)
2 (θ)}

∣∣∣ π(dθ) (32)

≤ C1

∫

Θ

∣∣∣f̃ (1)
2 (θ) ± f̃

(2)
2 (θ)

∣∣∣ π(dθ)

≤ C1C2

∫

Θ
(1 ±

1

C2
2

f̃
(1)
2 (θ)f̃

(2)
2 (θ))π(dθ)

= C1C2 ±
C1

C2
〈λ′

2λ2〉
(Π)

I
.
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3.2 The CHSH inequality

Consider now four joint experiments, with outcomes in (1), described by the product gener-
alized observables

Π(1) = Π
(a)
1 × Π

(b)
2 , Π(2) = Π

(a)
1 × Π

(d)
2 , (33)

Π(3) = Π
(c)
1 × Π

(b)
2 , Π(4) = Π

(c)
1 × Π

(d)
2 ,

where a, b, c, d are parameters of any nature characterizing set-ups of marginal experiments.
The following statement follows from proposition 1.

Corollary 1 (The CHSH inequality) For product generalized observables (33), the in-
equality ∣∣∣∣〈λ1λ2〉

(Π(1))

I
+ 〈λ1λ2〉

(Π(2))

I
+ 〈λ1λ2〉

(Π(3))

I
− 〈λ1λ2〉

(Π(4))

I

∣∣∣∣ ≤ 2C1C2 (34)

is valid for any initial information state I.

In view of the obvious correspondence

(1) → (a, b), (2) → (a, d), (3) → (c, b), (4) → (c, d), (35)

for C1 = C2 = 1, the inequality (34) coincides in form with the original CHSH inequality [4]
We further refer to (34) as the CHSH inequality.

3.3 Bell’s inequality

Consider now two joint experiments, with real-valued outcomes in

(Λ × Λ,FΛ ⊗FΛ) (36)

(with |λ| ≤ C, ∀λ ∈ Λ) and described by the product generalized observables

Π(1) = Π
(a)
1 × Π

(b)
2 , Π(2) = Π

(a)
1 × Π

(d)
2 . (37)

In view of proposition 1, we have the following statement.

Proposition 2 (Bell’s inequality) Let two product generalized observables (37) satisfy the
relation ∫

Λ
λΠ

(b)
2 (dλ) = ±

∫

Λ
λ1Π

(b)
1 (dλ1). (38)

Then, for any information state I,
∣∣∣〈λ1λ2〉

(a,b)

I
− 〈λ1λ2〉

(a,d)

I

∣∣∣ ≤ C2 ∓ 〈λ1λ2〉
(b,d)

I
, (39)

where

〈λ1λ2〉
(b,d)

I
:=

∫

Λ×Λ

∫

Θ
λ1λ2(Π(dλ1 × dλ2))(θ)π(dθ) (40)

and
Π := Π

(b)
1 × Π

(d)
2 (41)

is a generalized observable on (Θ,FΘ) with the outcome space (36).

If C= 1 then the inequality (39) coincides in form with the original Bell inequality3 [1,3].

3The sign (−) corresponds to the perfect correlation form while the sign (+) - to the anti-correlation form
of the original Bell inequality.
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We further refer to (39) as the Bell inequality.
Notice that the original Bell inequality and its further numerous generalizations and

strengthenings have been proved with restrictions on the number and the character of ob-
served outcomes (the so-called ”measurement result”restrictions).

We derive the Bell inequality in a very general setting without such ”measurement result”
restrictions.

Moreover, we derive the Bell inequality under the condition (38), which is more general
than the Bell correlation restrictions on the observed outcomes4 and reduces to the latter
only for classical measurements.

3.4 Sufficient condition

Let us specify the sufficient condition, used in corollary 1 for the derivation of the CHSH
inequality.

Condition 1 Under joint experiments on a system S of any type, the product form (33) of
generalized observables represents a sufficient condition for the CHSH inequality to hold for
any initial information state I of S.

Moreover, this condition is sufficient for the derivation of any CHSH-type inequality.
Notice also that, based on the general framework, introduced in [6], we have derived the

CHSH inequality and Bell’s inequality in very general settings and without any reference to
a local hidden variable (LHV) model [1-3].

Remark 4 (On sufficient condition and ”local realism”) Although all joint experiments,
described by (33) and (37), may be ”locally realistic”, the arguments based on the physical
concept of ”local realism” are not essential for the derivation of the CHSH inequality.
We discuss this in detail in section 4, after example 1.
There, we show that if, for example, in (33) the parameter a depends on parameters b, d,
then the corresponding joint experiments are not ”locally realistic”. However, for these joint
experiments, the setting of corollary 1 is fulfilled and, hence, the CHSH inequality (34) is
satisfied for any information state.

Consider now a more general sufficient condition for the CHSH inequality to hold.
Let Π(n), n = 1, 2, be factorizable5 generalized observables of the form:

Π(n) =

∫

Ω
Π1,ω × Π

(n)
2,ω ν(dω). (42)

Proposition 3 For factorizable generalized obserables Π(n), n = 1, 2, specified by (42), the
inequality ∣∣∣∣〈λ1λ2〉

(Π(1))

I
± 〈λ1λ2〉

(Π(2))

I

∣∣∣∣ ≤ C1C2 ±
C1

C2
〈λ′

2λ2〉
(Π)

I
(43)

is valid for any initial information state I. Here,

〈λ′
2λ2〉

(Π)

I
:=

∫

Λ2 ×Λ2

∫

Θ
λ′

2λ2(Π(dλ′
2 × dλ2))(θ)π(dθ) (44)

4Used for the derivation of Bell’s inequality in [1,3].
5See (19).
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and

Π =

∫

Ω
Π

(1)

2,ω × Π
(2)

2,ων(dω) (45)

is a generalized observable on (Θ,FΘ) with the outcome space (Λ2 × Λ2,FΛ2 ⊗FΛ2).

Consider four factorizable generalized observables, with an outcome space (1) and having
the form:

Π(1) =

∫

Ω
Π

(a)
1,ω × Π

(b)
2,ω ν(dω), Π(2) =

∫

Ω
Π

(a)
1,ω × Π

(b)
2,ω ν(dω), (46)

Π(3) =

∫

Ω
Π

(c)
1,ω × Π

(b)
2,ω ν(dω), Π(4) =

∫

Ω
Π

(c)
1,ω × Π

(d)
2,ω ν(dω),

where a, b, c, d are some parameters.

Corollary 2 For factorizable generalized observables (46), the CHSH inequality
∣∣∣∣〈λ1λ2〉

(Π(1))

I
+ 〈λ1λ2〉

(Π(2))

I
+ 〈λ1λ2〉

(Π(3))

I
− 〈λ1λ2〉

(Π(4))

I

∣∣∣∣ ≤ 2C1C2 (47)

is valid for any initial information state I.

Hence, a more general condition for the CHSH inequality to hold constitutes:

Condition 2 The factorizable form (46) of generalized observables represents a sufficient
condition for the CHSH inequality to hold for any initial information state I of S.

Remark 5 (On initial correlation) Under this sufficient condition, the CHSH inequality
is valid whether or not an initial information state of a compound system S is entangled.

Remark 6 (On possible reasons for the violation ) The violation of the CHSH inequal-
ity may happen whenever joint generalized observables, describing the corresponding joint ex-
periments, are not of the factorizable type.
This is, for example, the case where, for a system of some concrete type, the generalized ob-
servables must satisfy a superselection rule and this rule excludes product (hence, factorizable)
generalized observables from consideration (see [6]). The latter is just the general situation
under quantum joint experiments and we discuss this in sections 4, 5.

4 General ”local realism” condition

As we explain in introduction, the physical concept of ”local realism” under a joint exper-
iment refers to the situation where set-ups of marginal experiments (possibly remote) are
independent.

Based on the notion of a joint generalized observable, representing on (Θ,FΘ) a joint
experiment on S, we proceed to express the physical concept of ”local realism” mathematically
in the most general settings.

Suppose that a set-up of a joint experiment is characterized by a pair (a, b) of parameters
of any nature: a, b ∈ Γ. Then the generalized observable, describing this joint experiment,
depends on (a, b) and we denote this by Π(a,b).

Let Π
(a,b)
1 and Π

(α,b)
2 be the marginal generalized observables of Π(a,b), defined by (4) and

(5).

9



Definition 1 (”Local realism” condition) We say that a joint generalized observable Π(a,b),

with outcomes in a product space

(Λ1 × Λ2,FΛ1 ⊗FΛ2), (48)

satisfies the ”local realism” condition if parameters a and b are functionally independent and

if both marginal generalized observables of Π(a,b), that is, Π
(a,b)
1 , with outcomes in (Λ1,FΛ1),

and Π
(a,b)
2 , with outcomes in (Λ2,FΛ2), satisfy one of the following relations:

Π
(a,b)
1 = Π

(a)
1 , Π

(a,b)
2 = Π

(b)
2 , (49)

or
Π

(a,b)
1 = Π

(b)
1 , Π

(a,b)
2 = Π

(b)
2 . (50)

We call a joint experiment ”locally realistic” if it is described by this type of a joint generalized
observable.

Since the parameters a and b are functionally independent, the relation (49) (or (50))
implies, in the most general settings, that set-ups of individual experiments are independent.

Example 1 (”Locally realistic”product generalized observables) From definition 1 it
follows that a product generalized observable

Π(a,b) = Π
(a,b)
1 × Π

(a,b)
2 (51)

on (Θ,FΘ) is ”locally realistic” iff, in (51), the marginal generalized observables have one of
the following forms:

Π
(a,b)
1 = Π

(a)
1 , Π

(a,b)
2 = Π

(b)
2 , (52)

or
Π

(a,b)
1 = Π

(b)
1 , Π

(a,b)
2 = Π

(a)
2 . (53)

with parameters a, b being functionally independent.

However, in general, a ”locally realistic” joint generalized observable does not need to be
of the product type.

In corollary 1, the four product generalized observables (33) are all ”locally realistic” iff
parameters a, b, c, d are functionally independent. If this is not the case and, for example,

a = a(b, d), c = c(b, d), (54)

then, in (33), each of joint experiments is not ”locally realistic”. However, the settings of
corollary 1 are valid, and, that is why, for these joint experiments, the CHSH inequality (34)
holds.

Hence, the ”local realism” condition (although may be fulfilled) is not essential for the
derivation of CHSH-type inequalities.

Further, consider an example where a ”locally realistic” joint experiment is not described
by a factorizable generalized observable.
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Let K be a separable complex Hilbert space of a quantum system S
Q

and RK be the set
of all density operators ρ on K. On the information space6

(RK,FRK
), (55)

of a quantum system S
Q
, any joint experiment on S

Q
is uniquely represented by the quantum

generalized observable
(Π

Q
(·))(ρ) = tr[ρM(·)], ∀ρ ∈ RH, (56)

where M is a POV measure of this quantum experiment.
Suppose that a set-up of a quantum joint experiment is specified by parameters (α, β).
Then, in (56), a generalized observable and the corresponding POV measure have the

forms: Π(α,β)
Q

and M (α,β).

The marginal POV measure M
(α,β)
1 and M

(α,β)
2 of M (α,β) are defined by the relations:

M
(α,β)
1 (B1) = M (α,β)(B1 × Λ2), (57)

M
(α,β)
1 (B2) = M (α,β)(Λ1 × B2),

for any subset B1 of Λ1 and any subset B2 of Λ2.

According to definition 1, a quantum joint experiment is ”locally realistic” iff parameters
α and β are functionally independent and

M
(α,β)
1 = M

(α)
1 , M

(α,β)
2 = M

(β)
2 , (58)

or
M

(α,β)
1 = M

(β)
1 , M

(α,β)
2 = M

(α)
1 .

Example 2 (Quantum ”locally realistic” experiments) Consider, for example, a bi-

partite quantum system S
(1)
q +S

(2)
q , described in terms of a separable complex Hilbert space

K = H1 ⊗H2. (59)

Suppose that the POV measure of a joint experiment on S
(1)
q +S

(2)
q is given by

M (α,β)(B1 × B2) = M
(α)
1 (B1) ⊗ M

(β)
2 (B2), (60)

for any subsets B1 ∈ FΛ1 , B2 ∈ FΛ2 , with parameters α and β being functionally independent.
Then, the POV measure (60) satisfies the relations (58) and, hence, represents a quantum
”locally realistic” joint experiment.
For convenience, Λ1 and Λ2 may be thought as sets of outcomes on the ”sides” of Alice and
Bob, respectively.

From (56) it follows that, for any joint experiment, represented by a POV measure (60),
the value of the corresponding quantum generalized observable

(Π
Q
(B1 × B2))(ρ) = tr{ρM (α,β)(B1 × B2)} (61)

= tr{ρ(M
(α)
1 (B1) ⊗ M

(β)
2 (B2))}

6See in [6].
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on a separable state

ρsep =
∑

m

γmρ
(m)
1 ⊗ ρ

(m)
2 , γm > 0,

∑

m

γm = 1, (62)

has the factorizable form:

(Π
Q
(B1 × B2))(ρsep) =

∑

m

γmtr[ρ
(m)
1 M

(α)
1 (B1)] tr[ρ

(m)
2 M

(β)
2 (B2)], (63)

∀B1 ∈ FΛ1 , ∀B2 ∈ FΛ2 .

However, the relation (63) is valid only on separable density operators on H1 ⊗H2 and,
moreover, for a separable state ρsep, a representation (62) is not, in general, unique. That is
why (63) does not mean that, on the information space (RK,FRK

), the quantum generalized
observable (61) is of the factorizable type.

A quantum ”locally realistic” generalized observable (61) does not satisfy the sufficient
condition 2, and the CHSH inequality does not need to hold for any quantum state ρ of

S
(1)
q +S

(2)
q .

5 Quantum analogs of Bell’s inequality

In this section, we proceed to introduce in a very general setting quantum analogs of Bell’s
inequality for quantum joint experiments of the Alice/Bob type (60).

We suppose that
S(1)

q = S(2)
q = Sq. (64)

In this case, H1 = H2 = H and, for both Boson and Fermi statistics, a quantum state of
Sq+Sq is represented by a density operator ρ on H⊗H, satisfying the relation

S2ρ = ρ, (65)

where S2 is the symmetrization operator on H ⊗H. Below, an initial density operator ρ of
Sq+Sq satisfies this condition.

Furthermore, in the case of identical quantum sub-systems, for any joint experiment of
the Alice/Bob type, the POV measure of each marginal experiment must have a symmetrized
tensor product form and be specified by a set of outcomes on the ”side” of Alice or Bob but
not by the ”side” of the tensor product.

The latter means that, for any Alice/Bob joint experiment on Sq+Sq, the joint POV
measure must have the form:

M(B1 ×B2) = {M1(B1)⊗M2(B2)}sym :=
1

2
{M1(B1)⊗M2(B2) + M2(B2)⊗M1(B1)}, (66)

for any subsets B1 ∈ FΛ1 , B2 ∈ FΛ2 .

Consider two joint experiments on Sq+Sq, with real-valued outcomes in

(Λ × Λ,FΛ ⊗FΛ) (67)

(where |λ| ≤ C, ∀λ ∈ Λ) and described by the POV measures

M (α,β1)(B1 × B2) = {M (α)(B1) ⊗ M (β1)(B2)}sym, (68)

M (α,β2)(B1 × B2) = {M (α)(B1) ⊗ M (β2)(B2)}sym,
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for any subsets B1, B2 ∈ FΛ. In (68), the parameters α, β1, β2 ∈ Γ are of any nature and
characterize set-ups of marginal experiments.

Introduce by

A(α) =

∫

�
λM (α)(dλ), A(β) =

∫

�
λM

(β)
2 (dλ) (69)

self-adjoint bounded linear operators on H with the operator norms

||A(α)|| ≤ C, ||A(β)|| ≤ C. (70)

Let ρ be an initial quantum state of Sq+Sq.
Due to (61) and (69), under joint experiments, described by the POV measures (68)

and performed on a bipartite quantum system Sq+Sq in a state ρ, we have the following
expressions for the mean values7:

〈λ〉(α)
ρ = tr[ρ{A(α) ⊗ I}sym] = tr[ρ(A(α) ⊗ I)], (71)

〈λ〉(βi)
ρ = tr[ρ{I ⊗ A(βi)}sym] = tr[ρ(I ⊗ A(βi))], i = 1, 2,

〈λ1λ2〉
(α,βi)
ρ

= tr[ρ{A(α) ⊗ A(βi)}sym] = tr[ρ(A(α) ⊗ A(βi))], i = 1, 2. (72)

For a state ρ, consider a representation of the form

ρ =
∑

j

αj

2
{τj ⊗ τ̃j + τ̃j ⊗ τj} + σ(τ)

ρ , (73)

αj > 0,
∑

j

αj = 1,

where {τj}
N
j=1 and {τ̃j}

N
j=1, N ≤ ∞, are any families of density operators on H.

For concreteness, we further refer to (73) as a τ -representation of ρ.

The operator σ
(τ)
ρ on H⊗H, defined to each τ -representation (73), is self-adjoint , trace

class and satisfies (65). Below, we denote by ||σ
(τ)
ρ ||1 the trace norm of σ

(τ)
ρ .

Lemma 1 For any state ρ of Sq+Sq, the inequality

∣∣∣〈λ1λ2〉
(α,β1)
ρ

− 〈λ1λ2〉
(α,β2)
ρ

− 〈z(ρ)〉
∣∣∣ (74)

≤ C2 −
∑

j

αj

2

{
tr[τjA

(β1)]tr[τjA
(β2)] + tr[τ̃jA

(β1)]tr[τ̃jA
(β2)]

}

is valid for every τ -representation (73) of ρ. Here,

〈z(ρ)〉 = tr[σ(τ)
ρ (A(α) ⊗ (A(β1) − A(β2)))] (75)

≤ 2||σ(τ)
ρ ||1C

2.

Proof. We use (72), (73), the bound

|tr{ηW}| ≤ ||η||1||W ||, (76)

7A density operator ρ satisfies (65).
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valid for any trace class operator η any bounded linear operator W on H, then we use (70),
(71), and, finally, the inequality (17).

If bounded linear operators Aα, Aβ are Hilbert-Schmidt, then, in lemma 1, the bound for
|〈z(ρ)〉| can be easily specified in terms of the operator norms || · ||2 on the Hilbert space of
Hilbert-Schmidt operators on H.

Denote further by

ρ̃(τ)
ρ :=

∑

j

αj

2
{τj ⊗ τj + τ̃j ⊗ τ̃j} (77)

the density operator on H⊗H, arising in (74) and defined to each τ -representation (73) of ρ.
Due to lemma 1, it is easy to prove the following statement.

Proposition 4 (Quantum analogs of Bell’s inequality) For any state ρ of Sq+Sq and
any τ -representation (73) of ρ, the inequality

∣∣∣〈λ1λ2〉
(α,β1)
ρ

− 〈λ1λ2〉
(α,β2)
ρ

∣∣∣ ≤ γ(τ)
ρ C2 − 〈λ1λ2〉

(β1,β2)

ρ̃
(τ)
ρ

, (78)

with

γ(τ)
ρ = 1 + C−1||σ(τ)

ρ ||1||A
(β1) − A(β2)|| (79)

≤ 1 + 2||σ(τ)
ρ ||1,

holds under all Alice/Bob joint experiments (68). In (78),

〈λ1λ2〉
(β1,β2)

ρ̃
(τ)
ρ

= tr[ρ̃(τ)
ρ {A(β1) ⊗ A(β2)}sym] (80)

is the mean value in the state ρ̃
(τ)
ρ under the joint experiment described by the POV measure

M (β1,β1)(B1 × B2) = {M (β1)(B1) ⊗ M (β2)(B2)}sym, (81)

∀B1, B2 ∈ FΛ.

Let a quantum state ρ′ admit a separable ”symmetrical” approximation

ρ′ =
∑

j

αjτj ⊗ τj + σρ, ||σρ||1 = 0, (82)

αj > 0,
∑

i

αj = 1.

From proposition 4, we have:

Corollary 3 Any quantum state ρ′, which admits a separable ”symmetrical” approximation
(82), satisfies the perfect correlation form of the Bell inequality, that is:

∣∣∣〈λ1λ2〉
(α,β1)
ρ′ − 〈λ1λ2〉

(α,β2)
ρ′

∣∣∣ + 〈λ1λ2〉
(β1,β2)
ρ′ ≤ C2. (83)
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As an example, let us consider ”locally realistic” joint measurements upon the two-qubit
quantum system, presented usually in connection with the violation of Bell’s inequality in the
quantum case (see, for example, [5], page 164).

Example 3 (Two-qubit system) Let H = C
2 and, under joint experiments, the self-

adjoint operators A(βi), A(α) are given by:

A(βi) = {| ↑〉〈↑ | − | ↓〉〈↓ |} cos 2βi + {| ↑〉〈↓ | − | ↓〉〈↑ |} sin 2βi, i = 1, 2, (84)

A(α) = {| ↑〉〈↑ | − | ↓〉〈↓ |} cos 2α + {| ↑〉〈↓ | − | ↓〉〈↑ |} sin 2α.

In (84), the parameters α, β1, β2 characterizing set-ups of marginal experiments, represent
angles from some axis, and, by symbols | ↑〉 and | ↓〉, we denote the eigenvectors of the self-
adjoint operator A(0) with eigenvalues (+1) and (−1), respectively.
For the considered joint experiment, the constant C= 1 and

||A(β1) − A(β2)|| = 2| sin(β1 − β2)|. (85)

Take, the non-separable pure initial state

ρ0 =
1

2
| ↑ ⊗ ↑ + ↓ ⊗ ↓〉〈↑ ⊗ ↑ + ↓ ⊗ ↓ |, (86)

which has a τ -representation

ρ0 =
1

2
{ | ↑〉〈↑ | ⊗ | ↑〉〈| ↑ | + | ↓〉〈↓ | ⊗ | ↓〉〈↓ |} (87)

+
1

2
{| ↑〉〈↓ | ⊗ | ↑〉〈↓ | + | ↓〉〈↑ | ⊗ | ↓〉〈↑ |} .

To this τ -representation,

ρ̃ρ0 =
1

2
{ | ↑〉〈↑ | ⊗ | ↑〉〈| ↑ | + | ↓〉〈↓ | ⊗ | ↓〉〈↓ |}, (88)

σρ0 =
1

2
{| ↑〉〈↓ | ⊗ | ↑〉〈↓ | + | ↓〉〈↑ | ⊗ | ↓〉〈↑ |} ,

and, hence,

‖σρ0‖1 = tr[
√

σ2
ρ0

] (89)

=
1

2
tr {| ↑〉〈↑ | ⊗ | ↑〉〈| ↑ | + | ↓〉〈↓ | ⊗ | ↓〉〈↓ |} = 1.

Substituting (89) into the inequality (78), we have
∣∣∣〈λ1λ2〉

(α,β1)
ρ0

− 〈λ1λ2〉
(α,β2)
ρ0

∣∣∣ + 〈λ1λ2〉
(β1,β2)
ρ̃ρ0

(90)

≤ 1 + 2| sin(β1 − β2)|.

To check that (90) is valid for all α, β1, β2, let us substitute the mean values

〈λ〉(α)
ρ0

= 〈λ〉(βi)
ρ0

= 0, i = 1, 2, (91)

〈λ1λ2〉
(α,βi)
ρ0

= cos 2(α − βi), i = 1, 2,

〈λ1λ2〉
(β1,β2)
ρ̃ρ0

= cos 2β1 cos 2β2
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into (90):

|cos 2(α − β1) − cos 2(α − β2)| + cos 2β1 cos 2β2 ≤ 1 + 2| sin(β1 − β2)|. (92)

Since, for any α, β1, β2,

|cos 2(α − β1) − cos 2(α − β2)| = 2 |sin(β1 − β2) sin(2α − β1 − β2) | (93)

≤ 2| sin((β1 − β2)|,

the left hand-side of (92) has the following upper bound:

| cos 2(α − β1) − cos 2(α − β2)| + cos 2β1 cos 2β2 (94)

≤ 2| sin(β1 − β2)| + cos 2β1 cos 2β2

≤ 2| sin(β1 − β2)| + 1.

This bound coincides with the right-hand side of (92). Hence, (90) is true for all angles
α, β1, β2.

The cases of any other initial quantum states of the two-qubit can be considered similarly.

6 On locality and non-locality of quantum interactions

In the present paper, based on the general probabilistic framework, introduced in [6], we
considered the description of joint experiments on a system of any type.

Mathematically, a joint experiment is described by the notion of a joint generalized ob-
servable, and this notion does not include any specifications on whether or not marginal
experiments are separated in space and in time.

The main results of our paper indicate:

• For joint experiments, described by factorizable generalized observables, the CHSH
inequality holds true whether or not an initial information state of a compound system
is entangled;

• The sufficient condition for the CHSH inequality to hold does not, in general, represent
mathematically the physical concept of ”local realism”;

• The physical concept of ”local realism” can be expressed mathematically for a joint
experiment on a system of any type. The mathematical specification of this concept in
the frame of a LHV model corresponds to a particular case of classical measurements;

• There exist quantum ”locally realistic” joint experiments. However, quantum ”locally
realistic” joint generalized observables do not have a factorizable form. That is why the
CHSH inequality and Bell’s inequality do not need to be true in the quantum case;

• The quantum analogs of Bell’s inequality, derived in this paper, specify the relation
between the statistical data under quantum joint experiments of the Alice/Bob type.

In the light of these results, we argue that the violation of the CHSH inequality and Bell’s
inequality in the quantum case cannot be a valid argument in the discussion on the problem
of locality and non-locality of quantum interactions.
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