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Abstract

In contrast to the wide-spread opinion that any separable quantum state satisfies every

classical probabilistic constraint, we present a simple example where a separable quantum

state does not satisfy the original Bell inequality although the latter inequality, in its perfect

correlation form, is valid for all joint classical measurements.

In a very general setting, we discuss inequalities for joint experiments upon a bipartite

quantum system. For any separable quantum state, we derive quantum analogues of the

original Bell inequality and specify the conditions sufficient for a separable state to satisfy the

original Bell inequality. We introduce the extended CHSH inequality and prove that, for any

separable quantum state, this inequality holds for a variety of linear combinations.
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1 Introduction

The relation between non-separability and the violation of Bell-type inequalities is discussed in
many papers (see, for example, the review [1] and references therein). It has been argued that any
separable quantum state satisfies every Bell-type inequality.

A Bell-type inequality is usually viewed as any constraint on averages or probabilities arising
under the description of joint experiments in the classical probabilistic frame. In this paper, we
consider a simple example where, for a joint experiment upon the two-qubit system in a separable

∗This work is partially supported by MaPhySto - A Network in Mathematical Physics and Stochastics, funded
by The Danish National Research Foundation.
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state, the original Bell inequality [2-4], in its perfect correlation form, is violated. The latter
inequality is, however, valid for all joint classical measurements1.

In a very general setting, we analyze inequalities arising for quantum ”locally realistic” [5]
joint experiments on a bipartite quantum system. For any separable state, we derive quantum
analogues of the original Bell inequality and specify the conditions where a separable state satisfies
the original Bell inequality, in its perfect correlation or anti-correlation forms. These sufficient
conditions include Bell’s correlation restrictions as particular cases.

We introduce the extended CHSH inequality for a linear combination of mean values and prove
that, for any separable quantum state, this inequality is valid for a variety of linear combinations.
The latter fact may be used for distinguishing between separable and non-separable quantum
states via computer processing of linear combinations of statistical averages.

2 Violation of Bell’s inequality for a separable state

Consider a bipartite quantum system Sq + Sq, described in terms of the tensor product C2 ⊗ C2.
Following the presentation in [6], page 156, denote by

J (θ) = {| ↑〉〈↑ | − | ↓〉〈↓ |} cos 2θ + {| ↑〉〈↓ | + | ↓〉〈↑ |} sin 2θ (1)

a self-adjoint operator on C2 with eigenvalues λ
(θ)
1,2 = ±1. Here, θ is a real valued parameter

representing from the physical point of view an angle from some axis (say, z-axis) and by the
symbols | ↑〉 and | ↓〉 we denote eigenvectors of the operator J (0), corresponding to the eigenvalues
(+1) and (−1), respectively. Formally, the operator J (θ) represents the spin operator Sz cos 2θ +
Sx sin 2θ.

Under a joint experiment, constituting a measurement of a quantum observable J (θ1) ⊗ J (θ2),
∀θ1, θ2, and performed upon the two-qubit system in a state ρ, the quantum average

〈J (θ1) ⊗ J (θ2)〉ρ := tr[ρ{J (θ1) ⊗ J (θ2)}] (2)

represents the expectation value

〈λ(θ1)λ(θ2)〉ρ = 〈J (θ1) ⊗ J (θ2)〉ρ (3)

of the product λ(θ1)λ(θ2) of the observed outcomes.
For three different joint experiments upon Sq + Sq, constituting measurements of quantum

observables
J (θa) ⊗ J (θb), J (θa) ⊗ J (θc), J (θb) ⊗ J (θc), (4)

respectively, consider the corresponding expectation values

〈λ(θa)λ(θb)〉ρ, 〈λ(θa)λ(θc)〉ρ, 〈λ(θb)λ(θc)〉ρ, (5)

for the case where the two-qubit is initially in the same state ρ. (Here, a, b, c are indices, specifying
different θ.)

Take a separable initial quantum state2

ρ0 =
1

2
{| ↑><↑ | ⊗ | ↓><↓ | + | ↓><↓ | ⊗ | ↑><↑ |} . (6)

Then the corresponding expectation values (5) are given by:

〈λ(θa)λ(θb)〉ρ0 = tr[ρ0{J
(θa) ⊗ J (θb)}] = − cos 2θa cos 2θb, (7)

〈λ(θa)λ(θc)〉ρ0 = tr[ρ0{J
(θa) ⊗ J (θc)}] = − cos 2θa cos 2θc,

〈λ(θb)λ(θc)〉ρ0 = tr[ρ0{J
(θb) ⊗ J (θc)}] = − cos 2θb cos 2θc.

1See Appendix.
2Since quantum sub-systems are identical, we take a symmetrized initial density operator.
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For the three joint experiments considered, the original Bell inequality, in its perfect correlation
form3, ∣∣∣〈λ(θa)λ(θb)〉ρ0 − 〈λ(θa)λ(θc)〉ρ0

∣∣∣ ≤ 1 − 〈λ(θb)λ(θc)〉ρ0 (8)

reads
| cos 2θa cos 2θb − cos 2θa cos 2θc) | ≤ 1 + cos 2θb cos 2θc. (9)

For example, let θa = 0, θb = π/6, θc = π/3, then

cos 2θa = 1, cos 2θb = 1/2, cos 2θc = −1/2. (10)

Substituting (10) into (9), we derive the obvious violation.
It is also easy to verify the violation of (8) if the expectation values, standing in this inequality,

are expressed via the symmetrized tensor products (for details, see section 3.2):

〈λ(θa)λ(θb)〉ρ0 = tr[ρ0{J
(θa) ⊗ J (θb)}sym], (11)

〈λ(θa)λ(θc)〉ρ0 = tr[ρ0{J
(θa) ⊗ J (θc)}sym],

〈λ(θb)λ(θc)〉ρ0 = tr[ρ0{J
(θb) ⊗ J (θc)}sym],

where we introduce the notation

{V1 ⊗ V2}sym :=
1

2
{V1 ⊗ V2 + V2 ⊗ V1}, (12)

for any operators V1, V2.
The above simple example shows that the statement that any separable state satisfies every

classical constraint is false.

For the example considered, let us also check the validity of the original CHSH inequality [7].
Suppose that we have four different joint experiments, constituting measurements of quantum

observables
J (θa) ⊗ J (θb), J (θc) ⊗ J (θb), J (θc) ⊗ J (θd) J (θa) ⊗ J (θd), (13)

and performed on the two-qubit in a state ρ0. Here the indices a, b, c, d specify different θ.
For these four joint experiments, consider the left-hand side of the original CHSH inequality:

∣∣∣〈λ(θa)λ(θb)〉ρ0 + 〈λ(θc)λ(θb)〉ρ0 + 〈λ(θc)λ(θd)〉ρ0 − 〈λ(θa)λ(θd)〉ρ0

∣∣∣ ≤ 2. (14)

From (7) it follows,
∣∣∣〈λ(θa)λ(θb)〉ρ0 + 〈λ(θc)λ(θb)〉ρ0 + 〈λ(θc)λ(θd)〉ρ0 − 〈λ(θa)λ(θd)〉ρ0

∣∣∣ (15)

= |cos 2θa cos 2θb + cos 2θc cos 2θb + cos 2θc cos 2θd − cos 2θa cos 2θd | .

Due to the inequality
|x − y| ≤ 1 − xy, (16)

which is valid, for any |x| ≤ 1, |y| ≤ 1, we further derive for the right-hand side of (15):

|cos 2θa cos 2θb + cos 2θc cos 2θb + cos 2θccos2θd − cos 2θa cos 2θd | (17)

≤ |cos 2θa cos 2θb + cos 2θc cos 2θb | + |cos 2θc cos 2θd − cos 2θa cos 2θd |

≤ 1 + cos 2θa cos 2θc + 1 − cos 2θa cos 2θc

≤ 2.

Hence, in the considered example, the original CHSH inequality holds although the original Bell
inequality, in its perfect correlation form, is violated.

Both, the original CHSH inequality and the original Bell inequality (in its perfect correlation
form), represent the probabilistic constraints valid under all joint classical measurements.

3See [2-4] and also [6], page 163, and the formula (A6) in Appendix.
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3 Quantum inequalities for a separable state

In a very general setting, let us analyze inequalities arising under quantum ”locally realistic”
(see [5]) joint experiments of the Alice/Bob type, performed on a bipartite quantum system in a
separable state.

3.1 General case

Let S
(1)
q +S(2)

q be a bipartite quantum system, described in terms of a separable complex Hilbert
space H1 ⊗H2.

Consider two joint experiments on S
(1)
q +S(2)

q , each with real valued outcomes in a set Λ1 and
in a set Λ2, and described by the POV measures:

M (α,β1)(B1 × B2) = M
(α)
1 (B1) ⊗ M

(β1)
2 (B2), (18)

M (α,β2)(B1 × B2) = M
(α)
1 (B1) ⊗ M

(β2)
2 (B2),

for any subset B1 of Λ1 and any subset B2 of Λ2.
In (18), the parameters α, β ∈ Γ are of any nature and characterize set-ups of the corresponding

(marginal) experiments with outcomes in Λ1 and in Λ2, respectively. (Λ1 may be thought as a set
of outcomes on the ”side” of Alice and Λ2 as a set of outcomes on the ”side” of Bob.)

For simplicity, we suppose that the absolute value of each observed outcome is bounded, that
is:

Λ1 = {λ1 ∈ R : |λ1| ≤ C1}, Λ2 = {λ2 ∈ R : |λ2| ≤ C2}, (19)

with some C1 > 0, C2 > 0.

For each of the joint experiments (18), performed on a bipartite quantum system S
(1)
q +S(2)

q in
an initial state ρ :

• the formula
tr[ρ{M

(α)
1 (B1) ⊗ M

(βn)
2 (B2)}], n = 1, 2, (20)

represents the joint probability of an outcome λ1 belonging to a subset B1 ⊆ Λ1 and an
outcome λ2 belonging to a subset B2 ⊆ Λ2, that is, of a compound outcome (λ1, λ2) ∈
B1 × B2;

• the formula

〈λ1λ2〉
(α,βn)
ρ :=

∫

Λ1×Λ2

λ1λ2tr[ρ{M
(α)
1 (dλ1) ⊗ M

(βn)
2 (dλ2)}] (21)

= tr[ρ(W
(α)
1 ⊗ W

(βn)
2 )], n = 1, 2,

represents the expectation value of the product λ1λ2 of the observed outcomes.

Here, by W
(α)
1 and W

(βi)
2 , we denote the self-adjoint bounded linear operators on H1 and

H2, respectively, defined by the relations

W
(α)
1 =

∫

�1

λ1M
(α)
1 (dλ1),

∥∥∥W
(α)
1

∥∥∥ ≤ C1 (22)

W
(βn)
2 =

∫

�2

λ2M
(βn)
2 (dλ2),

∥∥∥W
(βn)
2

∥∥∥ ≤ C2, n = 1, 2,

and corresponding, respectively, to the outcomes in Λ1 (on the side of Alice) and to the
outcomes in Λ2 (on the side of Bob).
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Suppose that a bipartite quantum system S
(1)
q +S(2)

q is initially in a separable state and, for
concreteness, denote a separable state by ρs. Let

ρs =
∑

m

ξmρ
(m)
1 ⊗ ρ

(m)
2 , ξm > 0,

∑

m

ξm = 1, (23)

be a possible separable representation of ρs.
For any separable representation (23) of ρs, we derive, using (21) and (16), the following upper

bound:
∣∣∣〈λ1λ2〉

(α,β1)
ρs

− 〈λ1λ2〉
(α,β2)
ρs

∣∣∣ ≤
∑

m

ξmC1

∣∣∣tr[ρ(m)
2 W

(β1)
2 ] − tr[ρ

(m)
2 W

(β2)
2 ]

∣∣∣ (24)

≤ C1C2 −
C1

C2

∑

m

ξmtr[ρ
(m)
2 W

(β1)
2 ]tr[ρ

(m)
2 W

(β2)
2 ]

= C1C2 −
C1

C2
〈λ2λ

′
2〉

(β1,β2)
σ2

,

where:
(i) σ2 is the separable density operator

σ2 :=
∑

m

ξmρ
(m)
2 ⊗ ρ

(m)
2 (25)

on H2 ⊗H2, corresponding to a separable representation (23) of ρs;

(ii) W
(βn)
2 , n = 1, 2, are the self-adjoint bounded linear operators on H2, defined by (22), and the

notation {·}sym is introduced by (12);

(iii) 〈λ2λ
′
2〉

(β1,β2)
σ2 is the expectation value

〈λ2λ
′
2〉

(β1,β2)
σ2

= tr[σ2{W
(β1)
2 ⊗ W

(β2)
2 }sym] (26)

=

∫

�2 ×Λ2

λ2λ
′
2tr[σ2{M

(β1)
2 (dλ2) ⊗ M

(β2)
2 (dλ′

2)}sym],

under the joint experiment, with outcomes in Λ2 × Λ2, represented by the POV measure

{M
(β1)
2 (B2) ⊗ M

(β2)
2 (B′

2)}sym, (27)

for any subsets B2, B
′
2 of Λ2, and performed on the bipartite quantum system S

(2)
q +S(2)

q in the
state σ2.

The inequality (24) establishes the relation between three joint experiments and is valid for any
initial separable state.

In general, the mean values in the left and the right hand sides of (24) refer to joint experiments

on different bipartite systems, namely, on S
(1)
q +S(2)

q and S
(2)
q +S(2)

q , respectively.

Moreover, the upper bound in (24) depends on a chosen separable representation of ρs.
All possible separable representations of ρs induce, via (25), the set

D(ρs)
H2⊗H2

(28)

of density operators σ2 on H2 ⊗ H2. For any two density operators σ
(1)

2 and σ
(2)

2 in this set and
any non-negative real number α ≤ 1, there exists a separable representation of ρs such that the
density operator (25), corresponding to this separable representation, coincides with the convex
linear combination

ασ
(1)

2 + (1 − α)σ
(2)

2 . (29)

Hence, the set D(ρs)
H2⊗H2

is convex linear.
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Furthermore, since the upper bound (24) is valid for any separable representation of ρs, we
have the following inequality:

∣∣∣〈λ1λ2〉
(α,β1)
ρs

− 〈λ1λ2〉
(α,β2)
ρs

∣∣∣ ≤ inf
σ2∈D

(ρs)
H2⊗H2

{
C1C2 −

C1

C2
〈λ2λ

′
2〉

(β1,β2)
σ2

}
. (30)

Consider now the case where both quantum sub-systems S
(1)
q and S

(2)
q (possibly different) are

described by the same Hilbert space: H1 = H2 = H.
In this case, if a state ρs admits a separable representation of the form

ρs =
∑

m

ξmρ(m) ⊗ ρ(m), ξm > 0,
∑

m

ξm = 1, (31)

then, for this separable representation of ρs, the corresponding density operator (25) coincides
with ρs and the corresponding upper bound (24) has the form:

∣∣∣〈λ1λ2〉
(α,β1)
ρs

− 〈λ1λ2〉
(α,β2)
ρs

∣∣∣ ≤ C1C2 −
C1

C2
〈λ2λ

′
2〉

(β1,β2)
ρs

(32)

and refers to the mean values in the same quantum state although to the joint experiments on
different bipartite systems. Namely, in the left-hand side of (32) the averages correspond to the

joint experiments on S
(1)
q + S

(2)
q while in the right hand side on S

(2)
q + S

(2)
q .

Using (16), we further generalize (24) to the case of any linear combination of the expectation
values:

∣∣∣γ1〈λ1λ2〉
(α,β1)
ρs

+ γ2〈λ1λ2〉
(α,β2)
ρs

∣∣∣ (33)

= γ0

∣∣∣∣
γ1

γ0
〈λ1λ2〉

(α,β1)
ρs

+
γ2

γ0
〈λ1λ2〉

(α,β2)
ρs

∣∣∣∣

≤ γ0C1

∑

m

ξm

∣∣∣∣
γ1

γ0
tr[ρ

(m)
2 W

(β1)
2 ] +

γ2

γ0
tr[ρ

(m)
2 W

(β2)
2 ]

∣∣∣∣

≤ γ0C1C2

{
1 +

γ1γ2

γ2
0C2

2

〈λ2λ
′
2〉

(β1,β2)
σ2

}

= γ0C1C2 +
γ1γ2

γ0

C1

C2
〈λ2λ

′
2〉

(β1,β2)
σ2

,

where γ1, γ2 are any real numbers with |γ1| + |γ2| 6= 0 and γ0 := maxi=1,2 |γi|.

3.2 Identical quantum sub-systems

Consider now the situation where quantum sub-systems are identical: S
(1)
q = S(2)

q = Sq.
In this case, H1 = H2 = H and, for both Boson and Fermi statistics, an initial state must

satisfy the relation
S2ρ = ρ, (34)

where we denote by S2 the symmetrization operator on H⊗H (see [8], page 53).
Moreover, for any joint experiment on Sq +Sq of the Alice/Bob type, with outcomes in Λ1×Λ2,

the POV measure of each individual (marginal) experiment on the side of Alice or Bob must have
a symmetrized tensor product form and be specified by a set Λi, i = 1, 2, of outcomes but not by
the ”side” of the tensor product.

The latter means that, for this type of a joint experiment on Sq + Sq, the POV measure must
have the following form:

M(B1 × B2) = {M1(B1) ⊗ M2(B2)}sym =
1

2
{M1(B1) ⊗ M2(B2) + M2(B2) ⊗ M1(B1)}, (35)
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for any subset B1 of Λ1 and any subset B2 of Λ2.
However, for further calculation of traces in a state ρ, satisfying the condition (34), the sym-

metrization (35) is not essential since, for this state,

tr[ρ{V1 ⊗ V2}sym] = tr[ρ(V1 ⊗ V2)], (36)

for any bounded V1 and V2 on H.
Consider two joint experiments (of the Alice/Bob type) on Sq + Sq, represented by the POV

measures

M (α,β1)(B1 × B2) = {M
(α)
1 (B1) ⊗ M

(β1)
2 (B2)}sym, (37)

M (α,β2)(B1 × B2) = {M
(α)
1 (B1) ⊗ M

(β2)
2 (B2)}sym,

and performed on a bipartite quantum system Sq+Sq being initially in a state ρ, satisfying (34).
In (37), the parameters α and β (of any nature) characterize set-ups of the corresponding

(marginal) experiments with outcomes in Λ1 and in Λ2, respectively.
For each of the joint experiments (37), the formula

〈λ1λ2〉
(α,βn)
ρ

=

∫
λ1λ2tr[ρ{M

(α)
1 (dλ1) ⊗ M

(βn)
2 (dλ2)}sym] (38)

= tr[ρ{W
(α)
1 ⊗ W

(βn)
2 }sym], n = 1, 2,

represents the expectation value of the product λ1λ2 of the observed outcomes. Here, W
(α)
1 and

W
(βn)
2 are the self-adjoint bounded linear operators on H, defined by (22) and corresponding to

the observed outcomes in Λ1 (on the side of Alice) and in Λ2, (on the side of Bob), respectively.

Suppose that a bipartite quantum system Sq+Sq is initially in a separable quantum state ρs

and let

ρs =
∑

m

ξm

2
{ρm ⊗ ρ′m + ρ′m ⊗ ρm} =

∑

m

ξm{ρm ⊗ ρ′m}sym, ξm > 0,
∑

m

ξm = 1, (39)

be a separable representation of ρs.
For any separable representation (39) of ρs, we derive, similarly to (24), the following quantum

inequality:
∣∣∣〈λ1λ2〉

(α,β1)
ρs

− 〈λ1λ2〉
(α,β2)
ρs

∣∣∣ (40)

≤
∑

m

ξm

2
C1

{∣∣∣tr[ρmW
(β1)
2 ] − tr[ρmW

(β2)
2 ]

∣∣∣ +
∣∣∣tr[ρ′mW

(β1)
2 ] − tr[ρ′mW

(β2)
2 ]

∣∣∣
}

≤ C1C2 −
C1

C2

∑

m

ξm

2

{
tr[ρmW

(β1)
2 ] tr[ρmW

(β2)
2 ] + tr[ρ′mW

(β1)
2 ] tr[ρ′mW

(β2)
2 ]

}

≤ C1C2 −
C1

C2
〈λ2λ

′
2〉

(β1,β2)
σ ,

where

σ =
∑

m

ξm

2
{ρm ⊗ ρm + ρ′m ⊗ ρ′m} (41)

is the separable density operator on H ⊗H, corresponding to a separable representation (39) of
ρs, and

〈λ2λ
′
2〉

(β1,β2)
σ = tr[σ{W

(β1)
2 ⊗ W

(β2)
2 }sym] (42)

=

∫
λ2λ

′
2tr[σ{M

(β1)
2 (dλ2) ⊗ M

(β2)
2 (dλ′

2)}sym]
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is the expectation value under the joint experiment, with outcomes in Λ2 × Λ2 (both outcomes
are on the side of Bob), described by the POV measure

{M
(β1)
2 (B2) ⊗ M

(β2)
2 (B′

2)}sym, (43)

for any subsets B2, B
′
2 of Λ2, and performed on Sq+Sq in the state σ, possibly different from ρs.

Notice that, in the state σ :
〈λ2λ

′
2〉

(β1,β1)
σ ≥ 0. (44)

Quite similarly to our derivation of (33), for any separable state ρs, we have:

∣∣∣γ1〈λ1λ2〉
(α,β1)
ρs

+ γ2〈λ1λ2〉
(α,β2)
ρs

∣∣∣ ≤ γ0C1C2 +
γ1γ2

γ0

C1

C2
〈λ2λ

′
2〉

(β1,β2)
σ , (45)

where γ1, γ2 are any real numbers with |γ1| + |γ2| 6= 0 and γ0 := maxi=1,2 |γi|.

3.2.1 Quantum analogues of Bell’s inequality

Consider further the case where, in (19), C1 = C2 = C.
Assume that the (marginal) experiments on the sides of Alice and Bob are similar - in the

sense that
∫

λ2M
(β1)
2 (dλ2) =

∫
λ1M

(β1)
1 (dλ1) (46)

⇔ W
(β1)
2 = W

(β1)
1 .

The condition (46) does not represent the Bell correlation restrictions [2-4] on the observed out-
comes on the sides of Alice and Bob and is usually fulfilled4 under Alice/Bob joint quantum
experiments.

Under the condition (46), the expectation value

〈λ2λ
′
2〉

(β1,β2)
σ = tr[σ{W

(β1)
2 ⊗ W

(β2)
2 }sym] (47)

= tr[σ

{∫
λ2λ

′
2{M

(β1)
2 (dλ2) ⊗ M

(β2)
2 (dλ′

2)}sym

}
]

=

∫
λ1λ

′
2tr[σ{M

(β1)
1 (dλ1) ⊗ M

(β2)
2 (dλ′

2)}sym]

= 〈λ1λ2〉
(β1,β2)
σ ,

and, hence, the inequality (40) takes the Bell form:
∣∣∣〈λ1λ2〉

(α,β1)
ρs

− 〈λ1λ2〉
(α,β2)
ρs

∣∣∣ ≤ C2 − 〈λ1λ2〉
(β1,β2)
σ , (48)

with all three mean values referring to Alice/Bob joint experiments.
However, in general, σ 6= ρs and this means that, under these joint experiments, the initial

states of Sq + Sq may be different.
We call (48) a quantum analogue of the original Bell inequality for a separable quantum state.

To different separable representations of a separable state ρs, there correspond different terms

〈λ1λ2〉
(β1,β2)
σ in the right-hand side of (48).

In general, for a separable state, any quantum inequality (48) need not coincide with the
original Bell inequality and, hence, for this state, the original Bell inequality may be violated.

Let specify the conditions under which a separable state of Sq + Sq satisfies the original Bell
inequality. We suppose that the condition (46) is fulfilled.

4For identical quantum sub-systems, this is a condition on identical measurement devices, used on both sides,
for example, identical polarization analyzers.
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1. Let an initial separable state ρs on H⊗H admit a representation of the special form

ρs =
∑

m

ξmρm ⊗ ρm, ξm > 0,
∑

m

ξm = 1. (49)

Then, from (41) it follows that, for this separable representation,

σ = ρs (50)

and, hence, the corresponding quantum inequality (48) reduces to

∣∣∣〈λ1λ2〉
(α,β1)
ρs

− 〈λ1λ2〉
(α,β2)
ρs

∣∣∣ ≤ C2 − 〈λ1λ2〉
(β1,β2)
ρs

, (51)

so that a separable state (49) satisfies the original Bell inequality in its perfect correlation
form.

For a separable state (49), the correlation function 〈λ1λ2〉
(β1,β1)
ρs is always non-negative:

〈λ1λ2〉
(β1,β1)
ρs

≥ 0 (52)

and may take any value in [0, C2].

2. Consider further the situation where the marginal experiments and a separable state ρs are
such that for some separable representation (39) of ρs :

tr[σ{W
(β1)
1 ⊗ W

(β2)
2 }sym] = ±tr[ρs{W

(β1)
1 ⊗ W

(β2)
2 }sym], (53)

or, equivalently,
〈λ1λ2〉

(β1,β2)
σ = ±〈λ1λ2〉

(β1,β2)
ρs

. (54)

Notice, that, under the condition (49) in the point 1, the condition (53) is satisfied. However,
we have specially separated these two cases since (49) represents a restriction only on a
separable state while (53) is, in general, a restriction on the combination - a joint experiment
plus a state.

Under the condition (54), the corresponding quantum analogue (48) reduces to

∣∣∣〈λ1λ2〉
(α,β1)
ρs

− 〈λ1λ2〉
(α,β2)
ρs

∣∣∣ ≤ C2 ∓ 〈λ1λ2〉
(β1,β2)
ρs

, (55)

and coincides with the original Bell inequality, in its perfect correlation (sign ”minus”) or
anti-correlation (sign ”plus”) forms.

In (54), the correlation function 〈λ1λ2〉
(β1,β1)
σ in the state σ is always non-negative (see

(44) and (47)). Hence, a necessary condition for a separable state ρs to satisfy the perfect
correlation form of the original Bell inequality constitutes:

〈λ1λ2〉
(β1,β1)
ρs

≥ 0. (56)

The relation
〈λ1λ2〉

(β1,β1)
ρs

≤ 0 (57)

represents a necessary condition for a separable state.ρs to satisfy the perfect anti-correlation
form of the Bell inequality.

The condition (54) (equivalently, (53)) is, in particular, satisfied if, for all indices m,

tr[ρmW
(β1)
1 ] = ±tr[ρ′mW

(β1)
1 ]. (58)
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The latter relation implies that, for a separable quantum state, Bell’s correlation restric-
tions5:

〈λ1λ2〉
(β1,β1)
ρs

= ±1 (59)

represent a particular case of the condition (58), and, hence, of the condition (54).

Example 1 Consider the example of section 2. In this example,

C = 1, ρs = ρ0, α = θa, β1 = θb, β2 = θc. (60)

For any parameters θa, θb, θc, we have:

〈λ1λ2〉
(θa,θb)
ρ0

= tr[ρ0{J
(θa) ⊗ J (θb)}sym] = − cos 2θa cos 2θb, (61)

〈λ1λ2〉
(θa,θc)
ρ0

= tr[ρ0{J
(θa) ⊗ J (θc)}sym] = − cos 2θa cos 2θc,

σ =
1

2
{{| ↑><↑ | ⊗ | ↑><↑ | + | ↓><↓ | ⊗ | ↓><↓ |} ,

〈λ1λ2〉
(θb,θc)
σ = tr[σ{J (θb) ⊗ J (θc)}sym] = cos 2θb cos 2θc.

For any θb, θc,
〈λ1λ2〉

(θb,θc)
σ = −〈λ1λ2〉

(θb,θc)
ρ0

, (62)

and hence, the condition (54) is satisfied. For all θa, θb, θc, the quantum inequality (48) is given
by ∣∣∣〈λ1λ2〉

(θa,θb)
ρ0

− 〈λ1λ2〉
(θa,θc)
ρ0

∣∣∣ ≤ 1 + 〈λ1λ2〉
(θb,θc)
ρ0

, (63)

and coincides with the anti-correlation form of the original Bell inequality.

Thus, under the condition (46) on similarity6 of experimental devices on the side of Alice and
the side of Bob, any separable quantum state of Sq+Sq satisfies a quantum analogue of the original
Bell inequality.

Under the sufficient conditions, specified in items 1 and 2, a separable state satisfies the original
Bell inequality, in its perfect correlation or anti-correlation forms.

4 Extended CHSH inequality

In this section, we introduce the extended CHSH inequality for any linear combination of mean
values. Based on our results in section 3.1, we prove that this inequality is valid for any separable
state.

Consider four joint experiments of the Alice/Bob type on a bipartite quantum system S
(1)
q +S(2)

q

on H1 ⊗H2. Let all these experiments have outcomes in Λ1 × Λ2 (see (19)) and be described by
the POV measures:

M (a,b)(B1 × B2) = M
(a)
1 (B1) ⊗ M

(b)
2 (B2), M (c,b)(B1 × B2) = M

(c)
1 (B1) ⊗ M

(b)
2 (B2), (64)

M (c,d)(B1 × B2) = M
(c)
1 (B1) ⊗ M

(d)
2 (B2), M (a,d)(B1 × B2) = M

(a)
1 (B1) ⊗ M

(d)
2 (B2),

for any subset B1 ⊆ Λ1 and any subset B2 ⊆ Λ2.
In (64), the parameters a, b, c, d are of any nature and a, b refer to the set-ups of the experiments

with outcomes in Λ1 (the ”side” of Alice) while b, d refer to the set-ups of the experiments with
outcomes in Λ2 (the ”side” of Bob).

5Introduced for the derivation of the original Bell inequality in the frame of a LHV model (see [4], sections 2,
4).

6We would like to underline once more that this is not a condition on any correlation between the observed
outcomes on the sides of Alice and Bob.
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Suppose that all four joint experiments (64) are performed on a bipartite quantum system

S
(1)
q +S(2)

q in the same separable state ρs.
For any real numbers γi, i = 1, ..., 4, with

|γ1| + |γ2| + |γ3| + |γ4| 6= 0, (65)

let estimate the linear combination
∣∣∣γ1〈λ1λ2〉

(a,b)
ρs

+ γ2〈λ1λ2〉
(c,b)
ρs

+ γ3〈λ1λ2〉
(c,d)
ρs

+ γ4〈λ1λ2〉
(a,d)
ρs

∣∣∣ (66)

of the mean values under four joint experiments (64).
Similarly to the derivation of (33), to any separable representation (23) of ρs, we have:

∣∣∣γ1〈λ1λ2〉
(a,b)
ρs

+ γ2〈λ1λ2〉
(c,b)
ρs

+ γ3〈λ1λ2〉
(c,d)
ρs

+ γ4〈λ1λ2〉
(a,d)
ρs

∣∣∣ (67)

≤
∣∣∣γ1〈λ1λ2〉

(a,b)
ρs

+ γ4〈λ1λ2〉
(a,d)
ρs

∣∣∣ +
∣∣∣γ2〈λ1λ2〉

(c,b)
ρs

+ γ3〈λ1λ2〉
(c,d)
ρs

∣∣∣

= γ̃0

∣∣∣∣
γ1

γ̃0
〈λ1λ2〉

(a,b)
ρs

+
γ4

γ̃0
〈λ1λ2〉

(a,d)
ρs

∣∣∣∣ + γ̃0

∣∣∣∣
γ2

γ̃0
〈λ1λ2〉

(c,b)
ρs

+
γ3

γ̃0
〈λ1λ2〉

(c,d)
ρs

∣∣∣∣

≤ 2γ̃0C1C2 +
C1

γ̃0C2
{γ1γ4 + γ2γ3} 〈λ2λ

′
2〉

(b,d)
σ2

,

where γ̃0 := maxi=1,...,4 |γi| and

〈λ2λ
′
2〉

(b,d)
σ2

:= tr[σ2{W
(b)
2 ⊗ W

(d)
2 }sym],

with the density operator σ2 on H2 ⊗H2, defined by (25).
However, if, in the second line of (67), we combine the terms in another way, we derive:

∣∣∣ γ1〈λ1λ2〉
(a,b)
ρs

+ γ2〈λ1λ2〉
(c,b)
ρs

+ γ3〈λ1λ2〉
(c,d)
ρs

+ γ4〈λ1λ2〉
(a,d)
ρs

∣∣∣ (68)

≤
∣∣∣ γ1〈λ1λ2〉

(a,b)
ρs

+ γ2〈λ1λ2〉
(c,b)
ρs

∣∣∣ +
∣∣∣ γ3〈λ1λ2〉

(c,d)
ρs

+ γ4〈λ1λ2〉
(a,d)
ρs

∣∣∣

≤ 2γ̃0C1C2 +
C1

γ̃0C2
{γ1γ2 + γ3γ4} 〈λ1λ

′
1〉

(a,c)
σ1

,

where
〈λ1λ

′
1〉

(a,c)
σ1

= tr[σ1{W
(a)
1 ⊗ W

(c)
1 }sym],

with
σ1 =

∑

m

ξmρ
(m)
1 ⊗ ρ

(m)
1 (69)

being the density operator on H1 ⊗H1, corresponding to a separable representation (23).

From (67) and (68) it follows that, for any separable state ρs, the inequality

∣∣∣γ1〈λ1λ2〉
(a,b)
ρs

+ γ2〈λ1λ2〉
(c,b)
ρs

+ γ3〈λ1λ2〉
(c,d)
ρs

+ γ4〈λ1λ2〉
(a,d)
ρs

∣∣∣ ≤ 2γ̃0C1C2. (70)

holds for all real numbers γ1, γ2, γ3, γ4, with |γ1| + |γ2| + |γ3| + |γ4| 6= 0, such that

γ1γ4 = −γ2γ3 or γ1γ2 = −γ3γ4. (71)

We refer to (70) as the extended CHSH inequality. The original CHSH inequality

∣∣∣ 〈λ1λ2〉
(a,b)
ρs

+ 〈λ1λ2〉
(c,b)
ρs

+ 〈λ1λ2〉
(c,d)
ρs

− 〈λ1λ2〉
(a,d)
ρs

∣∣∣ ≤ 2 (72)
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is the special case of (70) for

γ1 = γ2 = γ3 = −γ4, C1C2 = 1. (73)

Similarly to our presentation in this section, it is easy to verify that the extended CHSH in-
equality is valid for all joint classical measurements7.

Thus, in contrast to the situation with the original Bell inequality (A6), such a classical prob-
abilistic constraint as the extended CHSH inequality is valid for any separable quantum state.
Moreover, this inequality holds for a variety of linear combinations of the mean values.

Acknowledgments. I am indebted to Klaus Mø lmer, Asher Peres, Michael Steiner and Marek
Zukowski for valuable comments and useful discussions.

5 Appendix: Classical measurements

Let a system S be described in terms of some parameters θ ∈ Θ (hidden or real) and a probability
distribution π of these parameters.

An experiment, representing a non-perturbing measurement of some property A of S, which
existed before an experiment, is described by a measurable function8 fA on Θ, with values that
are outcomes under this experiment. This type of an experiment is called (see in [9, 10]) a classical
measurement.

Under this type of ideal experiment on S, the probability distribution of outcomes is an image
of an initial probability distribution π and does not depend on an arrangement of a measurement.
Notice that Bell’s LHV model ([4], sections 2, 4) describes a perturbing classical experiment, where
the probabilities of the system properties, which existed before an experiment, are modified by
this measurement.

Any joint classical measurement on two system properties (say A and D) is described by two
real-valued functions fA, fD on Θ, with values equal to the outcomes λ1 and λ2, observed under

this joint classical measurement. The expectation value 〈λ1λ2〉
(A&D)
cl of the product of the observed

outcomes is given by

〈λ1λ2〉
(A&D)
cl =

∫

Θ

fA(θ)fD(θ)π(dθ). (A1)

Notice that, for the probabilistic description of any joint experiment, classical or quantum, it is
not essential whether or not individual (i.e. marginal) experiments are separated in time or space.

Suppose now that we have two joint classical measurements of properties A&D1 and A&D2

and
|fA(θ)| ≤ C1, |fD1(θ)| ≤ C2, |fD2(θ)| ≤ C2, (A2)

for all those θ ∈ Θ where π does not vanish.
Consider, in a very general setting, the relation between the expectation values

〈λ1λ2〉
(A&D1)
cl =

∫

Θ

fA(θ)fD1 (θ)π(dθ), 〈λ1λ2〉
(A&D2)
cl =

∫

Θ

fA(θ) fD2(θ)π(dθ), (A3)

〈λ1λ2〉
(D1&D2)
cl =

∫

Θ

fD1(θ)fD2(θ)π(dθ),

under three joint classical measurements on properties

A&D1, A&D2, D1&D2 (A4)

7For the description of a classical measurement, see appendix.
8In classical probability, these functions are called random variables.
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of S. Due to the inequality (16), we have:

∣∣∣〈λ1λ2〉
(A&D1)
cl − 〈λ1λ2〉

(A&D2)
cl

∣∣∣ (A5)

≤

∫

Θ

|fA(θ)| | fD1(θ) − fD2(θ)| π(dθ)

≤ C1

∫

Θ

| fD1(θ) − fD2(θ) |π(dθ)

≤ C1C2 −
C1

C2
〈λ1λ2〉

(D1&D2)
cl .

If C1 = C2 = 1 then (A5) coincides in form with the original Bell inequality [2-4] for the case
of the perfect correlation of the observed outcomes.

In order to distinguish (A5) from numerous generalizations and strengthenings of Bell’s in-
equality, in this paper, for any joint experiments, classical or quantum, we refer to an inequality9

∣∣∣〈λ1λ2〉
(A&D1) − 〈λ1λ2〉

(A&D2)
∣∣∣ ≤ C1C2 −

C1

C2
〈λ1λ2〉

(D1&D2) (A6)

as the original Bell inequality, in its perfect correlation form.
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