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1 Introduction: Results and methods

1.1 Results

The main result of this paper amounts to a complete evaluation of the integral cohomological
structure of the stable mapping class group. In particular it verifies the conjecture of
D. Mumford about the rational cohomology of the mapping class group:

H∗(BΓg,b; Q) = Q[κ1, κ2, . . . ] for 2∗ < g − 1

where Γg,b is the mapping class group of an oriented surface Fg,b of genus g with b boundary
circles (and no punctures). The κi are the Miller-Morita-Mumford “tautological” classes
of degree 2i .

For b > 0, the standard homomorphisms

Γg,b → Γg+1,b,
Γg,b → Γg,b−1

(1.1)

yield maps of classifying spaces that induce isomorphisms in integral cohomology in degrees
less than g/2 − 1 by the stability theorems of Harer [17] and Ivanov [21]. The colimit of
the maps

BΓg,b −→ BΓg+1,b −→ BΓg+2,b −→ · · ·

will be denoted BΓ∞,b ,

BΓ∞,b = colim
g

BΓg,b ' hocolim
g

BΓg,b.

The groups Γg,b are perfect for g > 1, so BΓ∞,b has a perfect fundamental group and one
may apply Quillen’s plus construction to it. The result is independent of b up to homotopy
equivalence, so we denote it by BΓ+

∞ . A celebrated result from [40] asserts that Z×BΓ +
∞

and BΓ+
∞ are infinite loop spaces, so that homotopy classes of maps to either of these spaces

form the degree 0 part of a generalized cohomology theory.

Next we review a completely different infinite loop space, one which is rather well known
to homotopy theorists. Let us write Gr2(R

2+n) for the Grassmann manifold of oriented 2-
dimensional subspaces of R2+n . There are two canonical bundles over Gr2(R

2+n), namely,
the tautological 2-plane bundle Ln and its n-dimensional orthogonal complement L⊥

n . The
restriction

L⊥
n+1

∣

∣ Gr2(R
2+n)

is the direct sum of L⊥
n and a trivialized real line bundle. This yields an inclusion of

associated Thom spaces,
S1 ∧ Th (L⊥

n ) −→ Th (L⊥
n+1)

and hence a sequence of maps (in fact cofibrations)

· · · −→ Ωn+1Th (L⊥
n−1) −→ Ωn+2Th (L⊥

n ) −→ Ωn+3Th (L⊥
n+1) −→ · · ·
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whose colimit is traditionally denoted

Ω∞CP∞
−1 = colim

n
Ωn+2Th (L⊥

n ).

There is a map

α∞ : Z×BΓ+
∞ −→ Ω∞CP∞

−1

constructed and examined in considerable detail in [25]. Our main result is the following
theorem conjectured in [25]:

Theorem 1.1.1 The map α∞ : Z×BΓ+
∞ −→ Ω∞CP∞

−1 is a homotopy equivalence.

The cohomological structure of Ω∞CP∞
−1 is completely known both with Q coefficients and

with Fp coefficients for all p , so the theorem gives the cohomology of BΓ +
∞ and hence of

BΓ∞,b with these coefficients.

The space Ω∞CP∞
−1 fits into the homotopy fibration sequence of [33],

Ω∞CP∞
−1

ω
−−−−→ Ω∞S∞(CP∞

+ )
∂

−−−−→ Ω∞+1S∞ (1.2)

where the subscript + denotes an added disjoint base point. The structure of the cohomol-
ogy H∗(Ω∞CP∞

−1; Fp) was recently determined in [11]. It is rather involved and we refrain
from listing the result. The rational structure is much easier to describe.
The homotopy groups of Ω∞+1S∞ are equal to the stable homotopy groups of spheres, up
to a shift of one, and are therefore finite. Thus H ∗(ω; Q) is an isomorphism. The canonical
complex line bundle over CP∞ , considered as a map from CP∞ to {1} ×BU induces via
Bott periodicity a map

L : Ω∞S∞(CP∞
+ ) −→ Z×BU,

and L is a rational equivalence. It follows that the rational cohomology of a component,
say Ω∞

0 CP∞
−1 , is equal to the rational cohomology of BU, and hence by theorem 1.1.1 that

H∗(BΓ∞,b; Q) ∼= H∗(BU; Q).

This yields Mumford’s conjecture.

1.2 A geometric formulation

Fix an integer d ≥ 0. Let π : M → X be a smooth fiber bundle with oriented d-dimensional
fibers. We assume that the fibers are closed. There are two canonical vector bundles on M ,
namely the vertical tangent bundle T πM and the stable vertical normal bundle N πM . The
latter is defined to be the normal bundle of a fiberwise embedding of M into X ×Rd+n for
large n . Let Grd(R

d+n) be the Grassmann manifold of oriented d-dimensional subspaces of
Rd+n , and let Ud,n and U⊥

d,n be the two standard vector bundles over it of dimension d and
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n , respectively. The vertical tangent bundle and the vertical normal bundle are classified
by bundle maps

T πM −→ Ud,n , NπM −→ U⊥
d,n ,

respectively, for large n . We can view N πM as a tubular neighborhood of M in X×Rd+n

and obtain the fiberwise Thom-Pontryagin map

X+ ∧ S
d+n ∼= Th (X × Rd+n) −→ Th (NπM) −→ Th (U⊥

d,n),

by mapping the complement of NπM in Th (X ×Rd+n) to ∞ ∈ Th (NπM). Generalizing
the description of Ω∞CP∞

−1 given earlier, but switching to different notation, we put

Ω∞hV = colimn Ωd+nTh (U⊥
d,n).

The adjoint of the above composition gives a homotopy class of maps from X to Ω∞hV .
The universal case is X =

∐

BDiff(F ), where F runs over over a set of representatives
of the diffeomorphism classes of closed, smooth and oriented d-manifolds. In this case we
obtain

α :
∐

BDiff(F ) −→ Ω∞hV . (1.3)

In the case d = 2, it is convenient to make extra assumptions. For example, we may
wish to consider only connected oriented surfaces F with an embedded copy of S 0 ×D2 ,
and diffeomorphisms F → F relative to the embedded S0 ×D2 . With these conventions,
∐

BDiff(F ) becomes an A∞ -monoid under connected sum, and the map α can be shown
to factor over the group completion of

∐

BDiff(F ). Each Diff(F ) has contractible compo-
nents by [9], [10]. The group of components is the mapping class group Γg,2 where g is the
genus of F . Hence in this case

∐

BDiff(F ) becomes homotopy equivalent to
∐

g BΓg,2 .
The group completion is

ΩB
(

∐

g

BΓg,2

)

' BΓ+
∞ × Z , (1.4)

cf. [25], [40], and α of (1.3) induces the map α∞ of theorem 1.1.1.

Let us return to the general case, with fixed d ∈ N . We give a geometric interpretation of
homotopy classes of maps from a smooth manifold X without boundary into Ω∞hV . We
represent such a homotopy class by a pointed map

X+ ∧ S
d+n −→ Th (U⊥

d,n)

for some large n , transverse to the zero section of U⊥
d,n . The resulting inverse image of

the zero section is a submanifold M ⊂ X × Rd+n , of dimension dim(X) + d , with a map
vM : M → Grd(R

d+n). The projection πM : M → X is proper, since M is closed in
Th (X × Rd+n). The normal bundle of M in X × Rd+n is identified with v∗MU

⊥
d,n , so

TM × Rd+n ∼= TM ⊕ v∗MU
⊥
d,n ⊕ v

∗
MUd,n

∼= (π∗MTX × Rd+n)⊕ v∗MUd,n . (1.5)

Standard obstruction theory now implies that

TM × R ∼= (π∗MTX ×R)⊕ v∗MUd,n . (1.6)
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We set E = M×R , write πE for the composition E →M → X and vE for the composition
E →M → Grd(R

d+n), and obtain from (1.6) a surjective bundle map

π̂E : TE → π∗ETX .

Since E is open, the submersion theorem of Phillips [30], [16], [15] applies, showing that
the pair (πE , π̂E) is homotopic through vector bundle surjections to a pair consisting of a
submersion π : E → X and its differential dπ : TE → π∗TX . For us it is also important
to ensure that the underlying homotopy E × [0, 1] → X combines with the projection
f : E → R to give a proper map E × [0, 1] → X × R . This is trivially the case when X is
closed, in particular when X is a sphere, because then the projection f : E → R is proper.
In the general case a more careful application of the submersion theorem is required; we
omit the details.
There is an additional feature in this situation. Namely, the vertical tangent bundle of the
submersion π : E → X is identified with v∗EUd,n×R and therefore projects to a trivial line
bundle. In terms of the vertical 1-jet bundle

p1
π : J1

π(E,R) −→ E

whose fiber at z ∈ E consists of all affine maps from the vertical tangent space (T πE)z
to R , this feature together with f : E → R amounts to a section f̂ of p1

π such that
f̂(z) : (T πE)z → R is surjective for every z ∈ E .

We introduce the notation hV(X) for the set of pairs (π, f̂), where π : E → X is a smooth
submersion with (d + 1)-dimensional oriented fibers and f̂ : E → J1

π(E,R) is a section of
p1

π with underlying map f : E → R , subject to two conditions: for each z ∈ E the affine
map f̂(z) : (T πE)z → R is surjective, and (π, f) : E → X × R is proper.
Concordance defines an equivalence relation on hV(X). Let hV[X] be the set of equivalence
classes. Then we have a natural bijection

hV[X] ∼= [X,Ω∞hV] . (1.7)

There is a similar but easier interpretation of homotopy classes of maps from X to the source
of (1.3). Namely, let V(X) be the set of pairs (π, f) with π as before and f : E → R

a smooth function, subject to two conditions: the restriction of f to any fiber of the
submersion π : E → X is regular (= nonsingular), and (π, f) : E → X ×R is proper. Let
V[X] be the set of concordance classes of elements in V(X). Then

V[X] ∼= [X,
∐

BDiff(F ) ] (1.8)

with
∐

BDiff(F ) as in (1.3). Indeed, an element of V(X) is a proper submersion with
target X × R , hence a smooth fiber bundle on X × R by Ehresmann’s fibration theorem.
An element (π, f) ∈ V(X), with π : E → X , determines a section j1

πf of the projection
J1

π(E,R)→ E by fiberwise 1-jet prolongation. The map

V(X) −→ hV(X) ; (π, f) 7→ (π, j1πf) (1.9)
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respects the concordance relation and so induces a map V[X]→ hV[X] , which corresponds
to α in (1.3) under the isomorphisms (1.7) and 1.8). When d = 2, it is a good idea to
modify the source of (1.9); we will return to this point in a little while.

The new description of α reformulates theorem 1.1.1 as a statement about integrability of
certain jet bundle sections, up to homotopy or concordance. Statements of this type are
called h-principles [14].

1.3 Outline of proof

The celebrated “first main theorem” of V.A.Vassiliev [41], see also [42], is a wonderful
source of (established) h-principles. One of these Vassiliev h-principles, slightly modified,
turns out to be a rather close approximation to the one we are after in connection with the
Mumford conjecture. We describe this approximation.

Fix d ≥ 0 as before. For smooth X without boundary, let W(X) be the set of all pairs
(π, f) where π : E → X is a smooth submersion with oriented fibers of dimension d + 1,
and f : E → R is a smooth function subject to two conditions: the restriction of f to each
fiber of π is a Morse function, and (π, f) : E → (X,R) is proper.
Let hW(X) be the set of all pairs (π, f̂) where π : E → X is a smooth submersion with
fibers of dimension d+ 1 as before, and f̂ is a section of the vertical 2-jet bundle

p2
π : J2

π(E,R) −→ E ,

subject to two conditions. Namely, for x ∈ X and z ∈ Ex = π−1(x), the value f̂(z) can
be represented by a germ near z of Morse functions Ex → R ; and (π, f) : E → X × R is
proper, where f : E → R is the underlying map of f̂ .
An element (π, f) ∈ W(X), with π : E → X , determines a section j2

πf of the projection
J2

π(E,R)→ E by fiberwise 2-jet prolongation. The map

W(X) −→ hW(X) ; (π, f) 7→ (π, j2πf) (1.10)

respects the concordance relation and so induces a map between the sets of concordance
classes, W[X]→ hW[X] . This is obviously very similar to (1.9). The contravariant functors
X 7→ W[X] and X 7→ hW[X] are representable, so that elements of W[X] and hW[X] are
in bijective natural correspondence with homotopy classes of maps

X −→ |W| , X −→ |hW| ,

respectively, for certain spaces |W| and |hW| . The natural map W[X]→ hW[X] given by
2-jet prolongation corresponds a map between the representing spaces,

|W| −→ |hW| . (1.11)

Vassiliev’s first main theorem is the main ingredient in our proof of:

Theorem 1.3.1 The map (1.11) is a homotopy equivalence.
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We now relate (1.11) to (1.9). The functors X 7→ V[X] and X 7→ hV[X] also have
representing spaces |V| and |hV| , respectively. The inclusions V(X) → W(X) respect
the concordance relation and so induce a map |V| → |W| . To have a similar inclusion
hV(X) → hW(X), we need to adjust the definition of hV(X) by insisting on pairs (π, f̂),
with π : E → X etc., where f̂ is a section of the fiberwise 2-jet bundle

j2π : J2
π(E,R) −→ E ,

but the conditions are, as before, on the induced section of the fiberwise 1-jet bundle j 1
π .

Then there is a commutative square

|V| //

��

|hV|

��
|W| // |hW|

(1.12)

where the vertical arrows are inclusion-induced and the horizontal ones are given by jet pro-
longation. In order to make an efficient comparison between the two rows of diagram (1.12),
we introduce a “localized” version of the second row.
For a smooth X without boundary, let Wloc(X) consist of pairs (π, f), with π : E → X
etc., as in the definition of W(X), except for one change. We no longer require that
(π, f) : E → X × R be proper; instead we require that the restriction of (π, f) to the
fiberwise singularity set

Σ(π, f) = {z ∈ E | df = 0 on (T πE)z }

be a proper map Σ(π, f) → X × R . There is an h-version hWloc(X), consisting of pairs
(π, f̂) as in the definition of hW(X), except for a weakening of the properness condition.
Jet prolongation defines a map between the representing spaces, |Wloc| → |hWloc| .

Theorem 1.3.2 The jet prolongation map |Wloc| → |hWloc| is a homotopy equivalence.

This is much easier than 1.3.1. We briefly describe the ideas involved. For an element
(π, f) ∈ Wloc(X), the set Σ = Σ(π, f) ⊂ E consists of all z ∈ E where f restricted to
the fiber of π through z has a singularity. Since these singularities are nondegenerate by
assumption, Σ is a smooth submanifold of E which is everywhere transverse to the fibers
of π . Hence the projection Σ → X is an étale map, alias codimension zero submersion.
Because of the weakened properness condition, knowledge of the étale map Σ → X , the
normal bundle of Σ in E and the Morse index map Σ → {0, 1, 2, 3, . . . , d + 1} turns out
to be sufficient to reconstruct the concordance class of (π, f). This makes it easy to give a
simple description of Wloc[X] . There is a similar description of hWloc[X] , and theorem 1.3.2
is an easy consequence of these simplified descriptions.

The sets hV(X) ⊂ hW(X) ⊂ hWloc(X) consist of smooth maps (π, f) : E → X × R

with extra tangential structure. It is always a relatively easy matter to classify tangential
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structures, and in fact we are able to determine the homotopy type of all three spaces. The
space |hV| was implicitly determined in the previous subsection:

|hV| ' Ω∞hV .

A very similar analysis gives
|hW| ' Ω∞hW

for another (twice looped down) Thom spectrum hW . Finally,

|hWloc| '
∏

p,q

p+q=d+1

Ω∞S∞(S1 ∧BSO(p, q)+)

where SO(p, q) ⊂ GL(p+ q) is the subgroup which stabilizes the standard quadratic form

(x1, . . . , xd+1) 7→ −(x2
1 + · · ·+ x2

p) + (x2
p+1 + · · ·+ x2

d+1) .

Given the homotopy types, one observes the following

Theorem 1.3.3 The maps |hV| → |hW| → |hWloc| define a homotopy fibration sequence
of infinite loop spaces.

Theorems 1.3.1, 1.3.2, 1.3.3 are valid for any choice of d ≥ 0. This is not the case for the final
result that goes into the proof of theorem 1.1.1, although substantial parts of it are valid
for all d . For the moment we take d = 2. In this case we have a modified version Vc(X)
of V(X). Namely, an element of Vc(X) is a proper submersion, or equivalently, a bundle
(π, f) : E → X×R whose fibers F are connected, closed, smooth, 2-dimensional; in addition
we assume that each fiber comes equipped with an orientation preserving embedding of
S0×D2 . The functor X 7→ Vc[X] has a representing space |Vc| . By the discussion leading
up to 1.4, we have |Vc| '

∐

g BΓg,2 and therefore

ΩB|Vc| ' BΓ+
∞ × Z .

It is a consequence of theorems 1.3.1 and 1.3.2 that the spaces |W| and |Wloc| are group
complete, so that

|W| ' ΩB|W| , |Wloc| ' ΩB|Wloc| .

Theorem 1.3.4 With d = 2 , the sequence ΩB|Vc| −→ |W| −→ |Wloc| is a homotopy
fibration sequence.

Using this in conjunction with 1.3.1 and 1.3.2, we have another homotopy fibration sequence
ΩB|Vc| → |hW| −→ |hWloc| , and therefore by theorem 1.3.3 the conclusion

BΓ+
∞ × Z ' ΩB|Vc| ' |hV| ' Ω∞hV = Ω∞CP∞

−1.
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The proof of theorem 1.3.4 is technically the most demanding part of the paper. It rests on
compatible stratifications of |W| and |Wloc| , where the strata are certain bundle theories.
This part of the analysis is valid for all d ≥ 0. But the Harer stability theorem is also used
in an essential way, if only as a black box. This leads to the condition d = 2.

We end the paragraph with an explanation of where the stratifications of |W| and |W loc|
come from, again for arbitrary but fixed d ≥ 0.
Let (π, f) be an element of W(X), with π : E → X and f : E → R . We can then associate
to each x ∈ X a finite set Tx . This is the set of critical points with critical value 0 of the
Morse function f |Ex , where Ex = π−1(x). It comes with a map

Tx → {0, 1, 2, . . . , d+ 1} ,

the Morse index map. Therefore (π, f) determines a partition of X into locally closed
subsets X〈T 〉 , indexed by the isomorphism classes 〈T 〉 of finite sets over {0, 1, . . . , d + 1} .
Namely, X〈T 〉 ⊂ X consists of all x ∈ X such that Tx

∼= T .
If the partition has only one nonempty part corresponding to a single isomorphism class
〈T 〉 , then we say that (π, f) is pure of class 〈T 〉 . At the other extreme, we have the case
where (π, f) is “generic”. Then the partition of X determined by (π, f) is a stratification.
Each stratum X〈T 〉 is a smooth submanifold of X of codimension |T | . The image of (π, f)
in W(X〈T 〉) is pure of class 〈T 〉 .
Let W〈T 〉(X) ⊂ W(X) consist of the elements which are pure of class 〈T 〉 . Dividing
by the concordance relation, we have a contravariant functor X 7→ W〈T 〉[X] . The above
observations suggest that the representing space |W| of X 7→ W[X] has a stratified model
whose strata are indexed by isomorphism classes 〈T 〉 of finite sets over {0, 1, . . . , d + 1} ,
and such that the stratum corresponding to 〈T 〉 is a representing space for X 7→ W〈T 〉[X] .
We confirm this in section 5. There is a compatibly stratified model of |Wloc| .

The usefulness of the stratifications of |W| and |Wloc| comes from the fact that the strata
|W〈T 〉| and |Wloc,〈T 〉| represent genuine bundle theories. To make this more precise in the
case of |W| , let (π, f) be an element of W〈T 〉(X). By definition, the projection from

Σ0(π, f) = Σ(π, f) ∩ f−1(0)

to X is then a |T |-sheeted covering. Consequently Σ0(π, f) is a codimension 0 submanifold
of Σ(π, f), hence a union of connected components of Σ(π, f). It turns out that the
remaining components of Σ(π, f) are “removable”. That is, every class in W〈T 〉[X] has a
representative (π, f) with

Σ0(π, f) = Σ(π, f) .

In this situation, π : E → X is automatically a bundle of (d + 1)-manifolds. Moreover,
for every nonzero c ∈ R , the restriction of π to f−1(c) is a bundle of closed d-manifolds.
When d = 2, this brings us back to surface bundles and leads (with the Harer stability
theorem) to a proof of theorem 1.3.4.

11
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For the rest of this paper we consider only the surface case d = 2, with additional boundary
data in the definitions of V , W etc., cf. section 2. The reader can easily adapt the arguments
of sections 2–5 to the general case d ≥ 2.

2 Some generalized bundle theories

This section defines the six generalized bundle theories sketched out in the introduction.
They are considered to be sheaves on the category X of smooth manifolds without bound-
ary (of arbitrary dimension) and with smooth maps as morphisms.

2.1 The basic sheaves

Let E be a smooth manifold with boundary and π : E → X a smooth map to an object of
X . The map π is a submersion if its differentials

dπ : (TE)z → TXπ(z) , z ∈ E r ∂E

d(π|∂E) : (T∂E)z → TXπ(z) , z ∈ ∂E

are all surjective. In all cases considered below π : E → X is assumed to be a product
bundle near ∂E . If the submersion π is also proper, then π is a smooth fiber bundle by
Ehresmann’s fibration theorem [2, thm. 8.12].

Pull-back or base change of bundles or submersions is not strictly associative. To get around
this we shall assume that π is a graphic map. The rule which to an X in X associates
the set of graphic submersions π : E → X is a contravariant functor on X .

Definition 2.1.1 Let f : S → T be a map of sets. We say that f is graphic if f has a
factorization S → U × T → T where the first arrow is an inclusion (not just an injection)
and the second arrow is the projection from U × T to T .

An arbitrary map f : S → T has a graphic replacement f̄ : S̄ → T where S̄ ⊂ S×T is the
graph of f .

Let f : S → T2 be a graphic map and let g : T1 → T2 be any map. We make a pullback
square

g∗S //

��

S

f

��
T1

g // T2

(2.1)

12



by letting g∗S consist of all ordered pairs (u, t) such that t ∈ T1 and (u, g(t1)) ∈ S . The
left hand vertical arrow is given by (u, t) 7→ t and it is again a graphic map. Moreover, if
g is an identity, then g∗S = S ; and if g is a composition, g = g2g1 , then g∗S = g1

∗g2
∗S .

Thus, with the above definitions, base change is associative.

Let E be a smooth manifold and pk : Jk(E,R) → E the k -jet bundle, where k ≥ 0. Its
fiber at z ∈ E consists of equivalence classes of smooth map germs f : (E, z)→ R , with f
equivalent to g if the k -th Taylor expansions of f and g agree at z (in local coordinates
near z ). The elements of Jk(E,R) are called k -jets of maps from E to R . The k -jet
bundle pk : Jk(E,R)→ E is a vector bundle.

A smooth function f : E → R induces a smooth section jkf of pk , which we call the k -jet

prolongation of f , following e.g. Hirsch [19]. (Some writers choose to call it the k -jet of
f , which can be confusing.) Not every smooth section of pk has this form. Sections of the
form jkf are called integrable. Thus a smooth section of pk is integrable if and only if it
agrees with the k -jet prolongation of its underlying smooth map f : E → R .

We need a fiberwise version Jk
π (E,R) of Jk(E,R), fiberwise with respect to a submersion

π : Ej+r → Xj with fibers Ex for x ∈ X . In a neighborhood of any z ∈ E we may choose
local coordinates Rj × Rr so that π becomes the projection onto Rj and z = (0, 0). Two
smooth map germs f, g : (E, z) → R define the same element of J k

π (E,R)z if their k -th
Taylor expansions in the Rr coordinates agree at (0, 0). Thus J k

π(E,R)z is a quotient of
Jk(E,R)z and Jk

π (E,R)z = Jk(Eπ(z),R). There is a surjection of vector bundles on E ,

Jk(E,R) −→ Jk
π (E,R).

Sections of the bundle projection pk
π : Jk

π (E,R)→ E will be denoted f̂ , ĝ and their under-
lying smooth functions from E to R by f , g , etc.

A smooth function f : E → R induces a section jk
πf of pk

π , which we call the fiberwise k -jet

prolongation of f . The sections of the form jk
πf are called integrable.

We now take k = 2 and introduce the following (standard)

Notation 2.1.2 (i) A section f̂ of p2
π is fiberwise nonsingular if f̂(z) ∈ J2(Eπ(z),R) has

a non-vanishing linear part, for each z ∈ E .

(ii) A section f̂ of p2
π is fiberwise Morse if each value f̂(z) is either nonsingular or, when

singular, has a non-degenerate quadratic part.

(iii) A smooth map f : E → R is fiberwise nonsingular, resp. fiberwise Morse, if j 2
πf is

fiberwise nonsingular, resp. Morse.

(iv) The singularity set Σ(π, f̂) ⊂ E is the set of points z with f̂(z) singular. If f̂ = j2πf ,
then we write Σ(π, f) instead of Σ(π, f̂).

Let Σπ(E,R) ⊂ J2
π(E,R) be the submanifold consisting of the singular jets, i.e., those with

vanishing linear part. Then for a section f̂ of p2
π , we have

Σ(π, f̂) = f̂−1(Σπ(E,R)) ,

13



so that f̂ is fiberwise nonsingular if and only if it misses Σπ(E,R). For integrable f̂ , we
can also say that f̂ is fiberwise Morse if and only if it is fiberwise transverse to Σπ(E,R).
See [12, II.6.1-4]. This has the following consequence.

Lemma 2.1.3 Suppose that f : E → R is fiberwise Morse. Then the restriction of π to
Σ(π, f) is a local diffeomorphism Σ(π, f)→ X .

Proof The assumption implies that the fiberwise differential dπf viewed as a section of
the vertical cotangent bundle T ∗

πE → E is transverse to the zero section. In particular
Σ = Σ(π, f) is a submanifold of E , of the same dimension as E . But moreover, the
fiberwise Morse condition implies that for each z ∈ Σ , the tangent space (TΣ)z has trivial
intersection in (TE)z with the vertical tangent space (T πE)z . This means that Σ is
transverse to each fiber of π , and also that π|Σ is a local diffeomorphism.

It is customary to call local diffeomorphisms for étale maps. We will follow this tradition:

Definition 2.1.4 A smooth map p : Y → X between smooth manifolds of the same
dimension is called étale if its differential at every point y ∈ Y is a linear isomorphism from
(TY )y to TXπ(z) .

Recall from Ehresmann’s fibration lemma, [2, 8.12], that a proper submersion is a fiber
bundle, and in particular that a proper étale map is a covering projection.

We now define a number of sheaves on the category X , that is, contravariant functors F
from X to the category of sets, which satisfy the following condition: for every X in X
and open cover {Yi}i∈I of X , the sequence

? // F(X) //
∏

i∈I F(Yi)
////
∏

i,j∈I×I F(Yi ∩ Yj)

is exact. In other words, given si ∈ F(Yi) for i ∈ I such that si|Yi ∩ Yj = sj|Yi ∩ Yj , there
exists a unique s ∈ F(X) with s|Yi = si .

Definition 2.1.5 For an object X in X , let hV(X) be the set of pairs (π, f̂ ) where
π : E → X is a graphic submersion with oriented 3-dimensional fibers and f̂ is a section of
p2

π : J2
π(E,R)→ E , subject to the following three conditions:

(i) (π, f) : E → X × R is proper.

(ii) f̂ is nonsingular.

(iii) near their respective boundaries, E and (S1 × R× [0, 1] ) ×X agree. Moreover π is
the standard projection to X and f̂ is the jet prolongation of the projection to R .
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Analogously we have an integrable version V(X) ⊂ hV(X), consisting of pairs (π, f) where
f : E → R is a smooth function such that (π, j2

πf) ∈ hV(X)). This means that for each
x ∈ X the restriction of f to the fiber Ex is nonsingular. Thus (π, f) : E → X × R is a
proper submersion, hence a smooth fiber bundle. Each fiber is an oriented surface with two
boundary circles, but it need not be connected.

Definition 2.1.6 Let Vc(X) ⊂ V(X) denote the subset of pairs (π, f) where the fibers of
(π, f) : E → X ×R are connected.

Definition 2.1.7 For X in X let hW(X) be the set of pairs (π, f̂), as in definition 2.1.5,
which satisfy conditions (i) and (iii), but where condition (ii) is replaced by the weaker
condition

(iia) f̂ is fiberwise Morse.

Again we have an integrable version W(X) ⊂ hW(X) consisting of pairs (π, f) where
f : E → R is a smooth function such that (π, j2

πf) ∈ hW(X). The integrability condition
means that, for each x ∈ X , the restriction of f to the fiber Ex is a Morse function.

Definition 2.1.8 For X in X let hWloc(X) be the set of pairs (π, f̂), as in defini-
tion 2.1.5, which satisfy condition (iii), but where conditions (i) and (ii) are replaced by

(ia) the map Σ(π, f̂)→ X × R ; z 7→ (π(z), f(z)) is proper,

(iia) f̂ is fiberwise Morse.

The integrable version of hWloc(X) is denoted Wloc(X). Making X into a variable, we
have contravariant functors hV , hW , hWloc on X and their integrable versions V , W ,
Wloc . This uses base change for graphic maps to X (here smooth submersions π : E → X )
as defined in 2.1.1. All six functors have the sheaf property. They fit together into the
diagram of sheaves

V //

j2
π

��

W //

j2
π

��

Wloc

j2
π

��

hV // hW // hWloc.

(2.2)

2.2 Homotopy theory of sheaves

Given a sheaf F on X we want to consider for each X in X the concordance classes
of elements of F(X). This requires that we extend F to be defined on manifolds with
boundary. It suffices to consider manifolds with collared boundary. For such X we have
a canonical projection p : Y r ∂X → ∂X for a sufficiently small open neighborhood Y of
∂X in X .
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Definition 2.2.1 Let X be smooth with collared boundary. Let F(X) be the set of all
pairs (r, s) ∈ F(Xr∂X)×F(∂X) such that r and p∗(s) agree on Y r∂X , for a sufficiently
small open neighbourhood Y of ∂X in X . (Here p is the collar projection.)

Definition 2.2.2 Let F be a sheaf on X , let X be an object of X and let s0, s1 ∈ F(X).
A concordance from s0 to s1 is an element (h, s) of F(X × [0, 1]) such that s 7→ (s0, s1)
under the canonical bijection F(X × ∂[0, 1]) → F(X) ×F(X).

We also say that h ∈ F(X× ]0, 1[ ) is a concordance from s0 to s1 . If such a concordance
exists, then s0 and s1 are said to be concordant and we write s0 ' s1 or h : s0 ' s1 .
Concordance is an equivalence relation on F(X). The set of equivalence classes will be
denoted by F [X] .

It is necessary to have a relative version of F [X] . Suppose that A ⊂ X is a closed subset,
where X is in X . Let s ∈ colimUF(U) where U ranges over the open neighborhoods
of A in X . Note for example that any z ∈ F(?) gives rise to such an element, namely
s = {p∗U (z)} where pU : U → ? . In this case we often write z instead of s .

Definition 2.2.3 Let F(X,A; s) ⊂ F(X) consist of the elements t ∈ F(X) whose germ
near A is equal to s . Two such elements t0 and t1 are concordant relative to A if they are
concordant by a concordance whose germ near A is the constant concordance from s to s .
The equivalence classes are denoted F [X,A; s] .

We now construct the representing space |F| of F and list its most important properties.

Let ∆ be the category whose objects are the ordered sets n := {0, 1, 2, . . . , n} for n ≥ 0,
with order preserving maps as morphisms. For n ≥ 0 let ∆n

e ⊂ Rn+1 be the extended
standard n-simplex,

∆n
e := {(x0, x1, . . . , xn) ∈ Rn+1 | Σxi = 1}.

An order-preserving map m → n induces a map of affine spaces ∆m
e → ∆n

e . This makes
n 7→ ∆n

e into a covariant functor from ∆ to X .

Definition 2.2.4 The representing space |F| of a sheaf F on X is the geometric realiza-
tion of the simplicial set n 7→ F(∆n

e ).

An element z ∈ F(?) gives a point z ∈ |F| and F [?] = π0|F| . In appendix A we prove
that |F| represents the contravariant functor X 7→ F [X] . Indeed we prove the following
slightly more general

Proposition 2.2.5 For X in X , let A ⊂ X be closed and z ∈ F(?) . There is a natural
bijection ϑ from the set of homotopy classes of maps (X,A)→ ( |F|, z) to the set F [X,A; z] .
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Taking X = Sn and A equal to the base point, we see that the homotopy group πn(|F|, z)
is identified with the set of concordance classes F [Sn, ?; z] . We introduce the notation

πn(F , z) := F [Sn, ?; z] .

A map v : E → F of sheaves induces a map |v| : |E| → |F| of representing spaces. We call
v a weak equivalence if |v| is a homotopy equivalence.

Proposition 2.2.6 Let v : E → F be a map of sheaves on X . Suppose that v induces a
surjective map

E [X,A; s] −→ F [X,A; v(s)]

for every X in X with a closed subset A ⊂ X and a germ s ∈ colimUE(U) , where U
ranges over the neighborhoods of A in X . Then v is a weak equivalence.

Proof The hypothesis implies easily that the induced map π0E → π0F is onto and that,
for any choice of base point z ∈ E(?), the map of concordance sets πn(E , z)→ πn(F , v(z))
induced by v is bijective.

Applying the representing space construction to the sheaves displayed in diagram (2.2), but
using Vc instead of V , we get a commutative diagram of representing spaces

|Vc| //

j2
π

��

|W| //

j2
π

��

|Wloc|

j2
π

��

|hV| // |hW| // |hWloc|.

(2.3)

Note that |Vc| '
∞
∐

g=0

BΓg,2 .

2.3 Different models and monoid structures

Let F be one of the sheaves from section 2.1. Concatenation along a boundary component
defines a composition law

F [X]×F [X] −→ F [X]

so that each of the spaces in diagram (2.3) comes equipped with a multiplication which
is homotopy associative and with a homotopy unit. Our first task is to give an upgraded
version of the sheaves that turns their values into monoids, and therefore makes the repre-
senting spaces into topological monoids (without unit). We describe this in detail for W
and leave the other cases to the reader.
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Let t : X →] 0,∞ [ be a smooth function. We define

[0, t] ×X := {(s, x) ∈ R×X | 0 ≤ s ≤ t(x)}.

Definition 2.3.1 For X in X let W ′(X) be the set of quadruples (t, u, π, f) where t is
a function as above, (u, π) : E → [0, t] ×X is a smooth graphic map whose X –coordinate
is a submersion π : E → X with 3-dimensional fibers, and f : E → R is a smooth map,
subject to the following conditions.

(i) (π, f) : E → X × R is proper.

(ii) For each x ∈ X the restriction fx : Ex → R is Morse.

(iii) Near their respective boundaries, the manifolds E and (S1×R)× ( [0, t]×X) agree,
and u , π , f agree there with the obvious projections.

There is a monoid structure on W ′(X). Indeed, for (t, u, π, f) and (t′, u′, π′, f ′) in W ′(X)
one defines

(t, u, π, f) ◦ (t′, u′, π′, f ′) = (t+ t′, u′′, π′′, f ′′). (2.4)

Here the source of π′′ is the union (concatenation) of E and σ∗E′ , where σ∗ denotes the
base change, as in (2.1), along the translation homeomorphism

σ : [t, t+ t′]×X −→ [0, t′]×X ; (s, x) 7→ (s− t(x), x) .

The maps π′′ and f ′′ are defined by

π′′ = π ∪ σ∗π′ , f ′′ = f ∪ σ∗f ′ .

There is no unit for the product in (2.4), since we assumed t > 0 in definition 2.3.1. As
a result the representing space |W ′| becomes a topological monoid without a strict unit.
However, the classifying space construction B|W ′| and hence the group completion ΩB|W ′|
make perfectly good sense. We also describe a way to attach an artificial unit to monoids
without unit in appendix C.

Lemma 2.3.2 The sheaves W ′ and W are homotopy equivalent.

Proof There is a subsheaf W ′′ of W ′ which we obtain by allowing only the constant
function t with value 1 in definition 2.3.1. The inclusion W ′′ →W ′ is a weak equivalence,
and so is the forgetful map from W ′′ to W .

There are similar enlarged models for the other sheaves of section 2.1, so diagram (2.3) is
equivalent to a diagram of topological monoids and monoid maps. In the rest of the paper,
we will not make explicit use of these larger models with monoid structures: it is usually
enough to know that they exist.

We next introduce sheaves W0 and hW0 on X . They are weakly equivalent to W and
hW , respectively, but are better related to Vassiliev’s h-principle, see [42, Thm.0.A] and
[41, III, 1.1], than W and hW .
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Definition 2.3.3 For X in X let hW0(X) be the set of all pairs (π, f̂) as in defini-
tion 2.1.7, replacing however condition (iia) by the weaker

(iib) f̂ is fiberwise Morse in some neighborhood of f−1(0).

From the definition, there is an inclusion hW → hW 0 . There are also an integrable version
W0 and an inclusion W →W0 .

Lemma 2.3.4 The inclusions W →W0 and hW → hW0 are homotopy equivalences.

Proof We will concentrate on the first of the two inclusions, W → W 0 . Fix (π, f) in
W0(X), with π : E → X and f : E → R . We will subject (π, f) to a concordance ending
in W(X). Choose an open neighborhood U of f−1(0) in E such that, for each x ∈ X , the
critical points of fx = f |Ex on Ex ∩ U are all nondegenerate. Since E r U is closed in E
and the map (π, f) : E → X ×R is proper, the image of ErU under that map is a closed
subset of X × R which has empty intersection with X × 0. (Proper maps between locally
compact spaces are closed maps.) We can therefore choose a smooth function ϕ : X → ]0, 1]
such that U contains all z ∈ E for which |f(z)| < ϕ(π(z)). And we can choose a smooth
isotopy of embeddings ιt : X × R→ X × R , where 0 ≤ t ≤ 1, such that

(i) each ιt is a map over X ,

(ii) ι0 = id and ι1(X × R) ⊂ {(x, t) | −ϕ(x) < t < ϕ(x)} ,

(iii) ιt = ι0 for t close to 0 and ιt = ι1 for t close to 1.

Then let E(t) be the inverse image of ιt(X × R) under the map (π, f) : E → X × R . Let
f (t) : E(t) → R be the second coordinate of ιt

−1 following on (π, f) : E → X ×R . Let π(t)

be the restriction of π to E(t) . Now

t 7→ (π(t), f (t))

defines a concordance from (π, f) ∈ W0(X) to an element in W(X). (Strictly speaking,
some renaming of some of the elements of E (t) for 0 ≤ t ≤ 1 is required because of the
boundary conditions in the definitions.) If the restriction of (π, f) to an open neighborhood
Y1 of a closed A ⊂ X belongs to W(Y1), then the concordance can be made relative to Y0 ,
where Y0 is a smaller open neighborhood of A in X .

For later use we list

Lemma 2.3.5 If X in X is compact, then every class in W[X] or hW[X] has a repre-
sentative (π, f) , resp. (π, f̂) , in which f : E → R is a bundle projection, so that

E ∼= f−1(0) × R .
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Proof We concentrate on the first case. First pick a representative (π, f) ∈ W(X) such
that f : E → R has 0 as a regular value. Since (π, f) : E → X × R is proper and X
is compact, f itself is proper and therefore closed. It follows that there exists an ε > 0
such that all s ∈ [−ε, ε] are regular values for f . Now choose an isotopy of embeddings
ιt : R→ R , where 0 ≤ t ≤ 1, such that ι0 is the identity and ι1(R) ⊂ [−ε, ε] . Here t runs
from 0 to 1 and the isotopy is stationary near t = 0 and t = 1. The shrinking argument of
the previous lemma gives a concordance from (π, f) to an element (π(1), f (1)), where the
source E(1) of π(1) is f−1(ι1(R)) and f (1) equals f |E(1) followed by the inverse of ι1 . Since
f |E(1) is regular, f (1) is regular. Since f (1) is also proper, f (1) is a proper submersion, i.e.,
a bundle projection.

3 The spaces of diagram (2.3)

This section determines the homotopy types of the spaces of (2.3), save the space |W| which
is deferred to section 4.

3.1 A cofiber sequence of Thom spectra

Let GrW(R3+n) be the manifold of triples (V, `, q) consisting of an oriented 3-dimensional
linear subspace V ⊂ R3+n , a linear map ` : V → R and a quadratic form q : V → R ,
subject to the condition that if ` = 0, then q is nondegenerate. Gr W(R3+n) classifies 3-
dimensional oriented vector bundles whose fibers have the above extra structure, i.e., each
fiber V comes equipped with a Morse type map `+q : V → R and with a linear embedding
into R3+n .

Let S3(R) be the vector space of quadratic forms on R3 (or equivalently, symmetric 3× 3
matrices) and ∆ ⊂ S3(R) the subspace of the degenerate forms (not a linear subspace).
The complement Q(R3) = S3(R) r ∆ is the space of non-degenerate quadratic forms on
R3 , and

A2(R3) = (R3)∗ × S3(R) r (0×∆)

is precisely the space of pairs (`, q) as above, where ` + q : R3 → R is a Morse type map.
The group GL(R3) acts on the right of A2(R3) by (`, q) · g = (`g, qg). Restricting this
action to SO(3) we have

GrW(R3+n) ∼=
(

O(3 + n)/O(n)×A2(R3)
)/

SO(3) . (3.1)

We turn to a description of the homotopy type of A2(R3) in more familiar terms. Since
quadratic forms can be diagonalized,

Q(R3) =

3
∐

i=0

Q(i, 3− i)
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where Q(i, 3 − i) is the connected component containing the form qi given by

qi(x1, x2, x3) = −(x2
1 + · · ·+ x2

i ) + (x2
i+1 + · · · + x2

3).

The stabilizer O(i, 3 − i) of qi for the (transitive) action of GL3(R) on Q(i, 3 − i) has
O(i) × O(3 − i) as a maximal compact subgroup and GL3(R) has O(3) as a maximal
compact subgroup. Hence the inclusion

(O(i)×O(3− i))
∖

O(3) −→ Q(i, 3 − i) ; coset of g 7→ qig

is a homotopy equivalence, and therefore the subspace

Q0(R3) = {q0, q1, q2, q3} ·O(3)

∼=
∐3

i=0 (O(i) ×O(3− i))
∖

O(3)

∼= ? qRP 2 q RP 2 q ?

(3.2)

of Q(R3) is a deformation retract, Q(R3) ' Q0(R3).

Lemma 3.1.1 There is a homotopy equivalence from the join S2 ∗ Q0(R3) to A2(R3)
which is equivariant for the actions of O(3) .

Proof The space A2(R3) is the union of ((R3)∗ − 0) × S3(R) and (R3)∗ × Q(R3) with
intersection ((R3)∗ − 0) × Q(R3). Since S3(R) and (R3)∗ have canonical contractions
and since the inclusion Q0(R3) → Q(R3) is a homotopy equivalence, we get a canonical
homotopy equivalence from the double mapping cylinder (alias homotopy colimit) of the
diagram

S2 −→ S2 ×Q0(R3) −→ Q0(R3)

to A2(R3). The homotopy colimit is precisely the join S2 ∗ Q0(R3) and the map respects
the O(3)-actions.

The tautological 3-dimensional vector bundle UW ,n on GrW(R3+n) is canonically embedded
in a trivial bundle GrW(R3+n)×R3+n . Let

U⊥
W ,n ⊂ GrW(R3+n)×R3+n

be the orthogonal complement, an n-dimensional vector bundle on Gr W(R3+n).

The tautological bundle UW ,n comes equipped with the extra structure consisting of a map
from (the total space of) UW ,n to R which, on each fiber of UW ,n , is a Morse type map.
(The fiber of UW ,n over a point (V, q, `) ∈ GrW(R3+n) is identified with the 3-dimensional
vector space V and the map can then be described as `+ q .)

For the submanifold ΣW ,n ⊂ GrW(R3+n) consisting of the triples (V, `, q) with ` = 0 we
have

ΣW ,n
∼=

(

O(3 + n)/O(n)×Q(R3)
)/

SO(3) . (3.3)
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The restriction of UW ,n to ΣW ,n comes equipped with the extra structure of a fiberwise
nondegenerate quadratic form. There is a canonical normal bundle for ΣW ,n in GrW(R3+n)
which is identified with U ∗

W ,n|ΣW ,n . Hence there is a homotopy cofiber sequence

GrV(R3+n)
�

� // GrW(R3+n) // Th (U∗
W ,n|ΣW ,n)

where GrV(R3+n) = GrW(R3+n)rΣW ,n and Th (. . . ) denotes the Thom space. This leads
to a homotopy cofiber sequence of Thom spaces

Th (U⊥
W ,n|GrV(R3+n)) −→ Th (U⊥

W ,n) −→ Th (U⊥
W ,n ⊕ U

∗
W ,n|ΣW ,n)

which, as n varies, becomes a homotopy cofiber sequence of spectra

hV −→ hW −→ hWloc.

Here we view Th (U⊥
W ,n) as the (2 + n)-th space of the spectrum hW , and similarly for

the other two spectra. We then have the corresponding infinite loop spaces

Ω∞hV = colim Ω2+nTh (U⊥
W ,n|GrV(R3+n)) ,

Ω∞hW = colim Ω2+nTh (U⊥
W ,n) ,

Ω∞hWloc = colim Ω2+nTh (U⊥
W ,n ⊕ U

∗
W ,n|ΣW ,n).

The homotopy cofiber sequence of spectra above yields a homotopy fiber sequence of infinite
loop spaces

Ω∞hV −→ Ω∞hW −→ Ω∞hWloc , (3.4)

that is, Ω∞hV is homotopy equivalent to the homotopy fiber of the right-hand map. In
particular there is a long exact sequence of homotopy groups associated with diagram (3.4)
and a Serre-Leray spectral sequence of homology groups.

Lemma 3.1.2 There is a homotopy equivalence of infinite loop spaces

Ω∞hWloc ' Ω∞S1+∞(ΣW ,∞)+

where ΣW ,∞ ' BSO(3) q BO(2) q BO(2) q BSO(3) .

Proof Since UW ,n|ΣW ,n comes equipped with a fiberwise nondegenerate quadratic form,
U∗
W ,n|ΣW ,n is canonically identified with UW ,n|ΣW ,n . Consequently the restriction

U⊥
W ,n ⊕ U

∗
W ,n

∣

∣ΣW ,n

is trivialized, so that Th (U⊥
W ,n ⊕ U

∗
W ,n

∣

∣ΣW ,n) ' S3+n(ΣW ,n)+ . Hence

Ω∞hWloc ' Ω∞S1+∞(ΣW ,∞)+

where ΣW ,∞ =
⋃

ΣW ,n . Using the description (3.3) of ΣW ,n and the homotopy equivalence
Q(R3) ' Q0(R3), see (3.2), we get

ΣW ,n '
(

O(3 + n)/O(n))×Q0(R3)
)/

SO(3).
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The union
⋃

n O(3+n)/O(n) is a contractible free SO(3)-space, so that ΣW ,∞ is homotopy
equivalent to the homotopy orbit space of the canonical right action of SO(3) on

Q0(R3) ∼=

3
∐

i=0

(O(i) ×O(3− i))
∖

O(3) .

The Grassmann manifold Gr2(R
2+n) of oriented 2-planes P in R2+n can be identified with

a subspace of GrV(R3+n) = GrW(R3+n) rΣW ,n , by P 7→ (R⊕ P,prR, 0). The injection is
covered by a monomorphism of vector bundles

L⊥
n → U⊥

W ,n

∣

∣ GrV(R3+n)

where L⊥
n is the standard n-plane bundle on Gr2(R

2+n).

Lemma 3.1.3 The space Gr V(R3+n) is homotopy equivalent to SO(3+n)/SO(2)×SO(n) ,
and the map Th (L⊥

n ) −→ Th (U⊥
W ,n |Gr V(R3+n)) just constructed is (2n+ 1)-connected.

Proof From (3.1) and lemma 3.1.1 we have an embedding and a homotopy equivalence
(

O(3 + n)/O(n)× S2
)/

SO(3) −→ GrV(R3+n)

where
(

O(3 +n)/O(n)×S2
)/

SO(3) ∼= O(3 + n)/(SO(2)×O(n)). Using this as an identifi-
cation, we may identify the above embedding Gr2(R

2+n)→ GrV(R3+n) with the inclusion

O(2 + n)/(SO(2)×O(n)) −→ O(3 + n)/(SO(2) ×O(n)) .

This is (n+ 1)-connected. Passing to the corresponding map between Thom spaces raises
the connectivity by n .

We collect the results of this section, 3.1, in

Proposition 3.1.4 The homotopy fiber sequence (3.4) is homotopy equivalent to

Ω∞CP∞
−1 −→ Ω∞hW −→ Ω∞S1+∞(ΣW ,∞)+.

3.2 The spaces |hW| and |hV|

In section 2.1 we described the jet bundle J 2(E,R) and its fiberwise version as certain
spaces of smooth map germs (E, z) → R , modulo equivalence. For our use in this section
and the next it is better to view it as a construction on the tangent bundle. For a vector
space V , let J2(V ) denote the vector space of maps

f̂ : V → R , f̂(v) = c+ `(v) + q(v)

where c ∈ R is a constant, ` ∈ V ∗ and q : V → R is a quadratic map. This is a contra-
variant continuous functor on vector spaces, so extends to a functor on vector bundles with
J2(F )z = J2(Fz) when F is a vector bundle over E .
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When F = TE is the tangent bundle of a manifold E , then there is an isomorphism of
vector bundles

J2(TE) ∼= J2(E,R).

Indeed after choice of a spray [2] on E , the associated exponential map induces a diffeo-
morphism germ

expz : (TEz, 0)→ (E, z)

and f̂(z) ∈ J2(TEz) gives an element of J 2(E,R)z . The resulting vector bundle map
J2(TE) → J2(E,R) is the required isomorphism. (To see that it is smooth one may use
that the exponential map takes a neighborhood of the zero section in TE diffeomorphically
to a neighborhood of the diagonal in E ×E .)

Given a submersion π : E → X with vertical tangent bundle T πE , we similarly have an
isomorphism of vector bundles

J2(T πE) ∼= J2
π(E,R) . (3.5)

This time we need an exponential map TE → E for which the restricted map T πE → E is
a map over X , i.e., such that ((T πE)z , 0) → (Eπ(z), z) is a diffeomorphism germ for each
z ∈ E .

Our object now is to construct a natural map

τ : hW[X] −→ [X,Ω∞hW] (3.6)

compatible with the concatenation in the source and loop sum in the target. Here [ , ] in
the right-hand side denotes a set of homotopy classes of maps.

We assume familiarity with the Thom-Pontryagin relationship between Thom spectra and
their infinite loop spaces on the one hand, and bordism theory on the other. See [39]
and especially [31]. Applied to our situation this identifies [X,Ω∞hW] with a group of
bordism classes of certain triples (M, g, ĝ). Here M is smooth without boundary, dim(M) =
dim(X) + 2, and g , ĝ together constitute a vector bundle pullback square

TM ×R1+j
ĝ //

��

TX × UW ,∞ × Rj

��
M

g // X ×GrW(R3+∞).

(3.7)

The X –coordinate of g is required to be a proper map M → X . (We write UW ,∞ for the
tautological 3-dimensional vector bundle on GrW(R3+∞) =

⋃

r GrW(R3+r).) The sum of
bordism classes is given by disjoint union of representatives.
For our purposes a slightly different description is preferable. For this we fix a triple
(S1, g0, ĝ0) in which g0 : S1 → GrW(R3) is the constant map to the base point ? = (R3, `, 0)
with `(t1, t2, t3) = t1 , and ĝ0 is the composite map

(TS1 × R)× R
standard framing×id // R2 × R

switch // R× R2.
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We can then describe [X,Ω∞hW] as the bordism group of triples (M, g, ĝ) as above but
with ∂M = S1×∂[0, 1]×X . (The restrictions of g and ĝ to ∂M and TM |∂M , respectively,
are also prescribed: they must agree with the pullbacks of g0 and ĝ0 under the projection
from S1 × ∂[0, 1] × X to S1 .) With this description, the group structure is given by
concatenation, much as in section 2.3. The isomorphism from the standard description to
the modified one is given by taking disjoint union with S1 × [0, 1] ×X .
Let now (π, f̂) ∈ hW(X), where π : E → X is a submersion with 3-dimensional fibers and
f̂ is a section of J2(T πE)→ E with underlying map f : E → R . See definition 2.1.7. After
a small deformation which does not affect the concordance class of (π, f̂ ), we may assume
that f is transverse to 0 ∈ R (not necessarily fiberwise) and get a manifold M = f−1(0)
with dim(M) = dim(X)+2. The boundary ∂M is identified with S1×∂[0, 1]×X and the
restriction of π to M is a proper map M → X , by the definition of hW(X). The section
f̂ yields for each z ∈ E a map

f̂(z) = f(z) + `z + qz : (T πE)z → R

with the property that the quadratic term qz is nondegenerate when the linear term `z is
zero. For z ∈ M the constant f(z) is zero, so the restriction T πE|M is a 3-dimensional
oriented vector bundle on M with the extra structure considered in subsection 3.1. Thus
T πE|M is classified by a map from M to the space GrW(R3+∞): there is a bundle diagram

T πE|M //

��

UW ,∞

��
M

κ // GrW(R3+∞).

Let g : M −→ X × GrW(R3+∞) be the map z 7→ (π(z), κ(z)). We now have a canonical
vector bundle map

ĝ : TM × R ∼= TE|M ∼= π∗TX|M ⊕ T πE|M −→ TX × UW ,∞

and we get a triple (M, g, ĝ) which represents an element of [X,Ω∞hW] in the (modified)
bordism-theoretic description. It is easily verified that the bordism class of (M, g, ĝ) de-
pends only on the concordance class of the pair (π, f̂). Thus we have defined the map τ
of 3.6.

Theorem 3.2.1 The natural map τ : hW[X] → [X,Ω∞hW] is a bijection when X is a
closed manifold.

Proof We define a map σ in the other direction by running the construction τ backwards.
Again we view [X,Ω∞hW] as a bordism group. Let (M, g, ĝ) be a representative, with
g : M → X ×GrW(R3+∞) and

ĝ : TM × R1+j −→ TX × UW ,∞ × Rj.

We also assume ∂M = S1 × ∂[0, 1]×X . By obstruction theory, see lemma 3.2.2 below, we
can suppose that j = 0. Writing E = M ×R we obtain a map πE : E → X by composing
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the projection E →M with the first component of g . Similarly the map ĝ , now with j = 0
and TM × R = TE , has a first component which is a map of vector bundles

π̂E : TE −→ TX,

covering πE and epimorphic in the fibers. Since E is an open manifold, Phillips’ submersion
theorem [30], [15], [16] applies to show that (πE, π̂E) is homotopic through fiberwise surjec-
tive bundle maps to a pair (π, dπ) where π : E → X is a submersion and dπ : TE → TX
is its differential.
This homotopy lifts to a homotopy of (fiberwise isomorphic) vector bundle maps, starting
with ĝ : TE → TX × UW ,∞ and ending with a map TE → TX × UW ,∞ which refines
the differential dπ : TE → TX . Its restriction to T πE ⊂ TE is a vector bundle map
T πE → UW ,∞ which equips each fiber (T πE)z of T πE with a Morse type map

`z + qz : (T πE)z → R.

Let f : E → R be the projection onto the R factor, and let

f̂(z) = f(z) + `z + qz ∈ J
2(T πE) ∼= J2

π(E,R).

The map f is proper, since X and hence M are compact. Consequently the pair (π, f̂ )
represents an element in hW[X] . Its concordance class depends only on the bordism class
of (M, g, ĝ). This describes a map

σ : [X,Ω∞hW] −→ hW[X].

It is obvious from the constructions that τ ◦ σ = id. In order to evaluate the composition
σ ◦ τ , it suffices by lemma 2.3.5 to evaluate it on an element (π, f̂) where f : E → R is
regular, so that E ∼= M × R with M = f−1(0). For (y, r) ∈M × R , the map

f̂(y, r) : (T π(M × R))(y,r) −→ R

is a second degree polynomial of Morse type. The homotopy

f̂(t)(y, r) = f̂(y, tr) + (1− t)r

shows that (π, f̂) is concordant to (π, f̂(0)), which represents the image of (π, f̂) under
σ ◦ τ . Therefore σ ◦ τ = id.

Lemma 3.2.2 Let T and U be k -dimensional vector bundles over a manifold M . Let
[T,U ]iso be the set of homotopy classes of isomorphisms γ : T → U . The stabilization
map [T,U ]iso −→ [T × R, U × R]iso is bijective for k > dim(M) + 1 and surjective for
k = dim(M) + 1 .

Proof Let iso(T,U) → M be the fiber bundle over M whose fiber at x ∈ M is the
space of linear isomorphisms from Tx to Ux . Then [T,U ]iso is the set of homotopy classes
of sections of iso(T,U) → M . The fibers of iso(T,U) → M are homotopy equivalent to
O(k), and πj(O(k + 1),O(k)) = 0 for j < k . Induction over the skeletons in a (smooth)
triangulation of M completes the proof.
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Finally we give a short description of a map |hW| → Ω∞hW which induces 3.6. We allow
ourselves some flexibility with the models for |hW| and Ω∞hW .

Fix an integer r > 0 and X in X . To the data (π, f̂) in definition 2.1.7, with π : E → X
and f : E → R , we add the following: a smooth embedding

w : E −→ X × R× [0, 1] × R1+r

which covers (π, f) : E → X × R , and a vertical tubular neighborhood N for the sub-
manifold w(E) of X × R× [0, 1] × R1+r , so that the projection N → w(E) is a map over
X × R . Near ∂E both w and N are assumed to be standard. In particular, near ∂E the
embedding w must agree with the standard embedding of

(S1 × R× [0, 1] ) ×X ∼= X × R× [0, 1] × S1

in X×R×R1+r× [0, 1]. Making X into a variable now, we can interpret the forgetful map
taking (π, f̂ , w,N) to (π, f̂) as a map of sheaves

hW(r) −→ hW

on X . This map is highly connected if r is large, by Whitney’s embedding theorem, so
that the resulting map from colimr hW

(r) to hW is a weak equivalence of sheaves.
Let Z(r) be the sheaf taking an X in X to the set of pointed maps

S1 ∧ (X × R)+ −→ Ω1+rTh (U⊥
W ,r)

where we use an exotic base point in the target, to be specified below. Then the representing
space of Z(r) is a good approximation to Ω∞hW , that is, colimr |Z

(r)| ' Ω∞hW . The
Thom-Pontryagin collapse construction gives us a map of sheaves

τ (r) : hW(r) −→ Z(r). (3.8)

In detail: let (π, f̂ , w,N) be an element of hW (r)(X). We assume that f̂ is a section
of J2(T πE) → E , see (3.5). Now the differential dw promotes each fiber (T πE)z of the
vector bundle T πE to a triple (Vz , `z, qz) ∈ GrW(R3+r). Here Vz = dw((T πE)z), viewed
as a subspace of the vertical tangent space at w(z) of the projection

X × R× [0, 1] × R1+r −→ X ,

which we in turn may identify with R3+n , and `z + qz is the non-constant part of f̂(z). In
particular z 7→ (Vz, `z, qz) defines a map κ : E → GrW(R3+r). This extends canonically to
a pointed map

Th (N) −→ Th (U⊥
W ,r)

because N is identified with κ∗U⊥
W ,r . But Th (N) is a quotient of X × R × [0, 1] × S1+r

where we regard S1+r as the one-point compactification of R1+r . Thus we have constructed
a map

X × R× [0, 1] × S1+r −→ Th (U⊥
W ,r)
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or equivalently, X × R× [0, 1] −→ Ω1+rTh (U⊥
W ,r). This is constant on X × R× ∂[0, 1] by

inspection, the constant value being the exotic base point. Therefore our map can also be
written in the form

S1 ∧ (X × R)+ −→ Ω1+rTh (U⊥
W ,r)

and so is an element of Z (r)(X). This element is the image of (π, f̂ , w,N) under τ (r)

in (3.8). Taking colimits over r , we therefore have a diagram

|hW| colimr |hW
(r)|'oo // colimr |Z

(r)| ' // Ω∞hW

which we informally describe as a map τ : |hW| → Ω∞hW .

Theorem 3.2.3 The map τ : |hW| → Ω∞hW is a homotopy equivalence.

Proof This follows easily from theorem 3.2.1 and the fact that τ can be taken to be a
map of topological monoids (cf. section 2.3). First, theorem 3.2.1 with X = ? implies that
the map τ induces a bijection

π0|hW| −→ π0(Ω
∞hW)

and consequently that π0|hW| is a group, like π0(Ω
∞hW). Next, we use theorem 3.2.1

with X = Sn , noting that the grouplike monoid structures imply

πn|hW| ∼= [Sn, |hW| ]
/

[?, |hW| ] , πn(Ω∞hW) ∼= [Sn,Ω∞hW]
/

[?,Ω∞hW]

for arbitrary choices of base points. Thus the map τ induces an isomorphism of homotopy
groups, and Whitehead’s theorem implies that it is a homotopy equivalence.

The arguments above work in a completely similar fashion to identify |hV| . In fact the map
τ in theorem 3.2.3 restricts to a map from |hV| to Ω∞hV and the analogue of theorem 3.2.1
holds. Keeping the letter τ for this restriction, we therefore have

Theorem 3.2.4 The map τ : |hV| → Ω∞hV is a homotopy equivalence.

3.3 The space |hWloc|

We start with a description of [X,Ω∞hWloc] as a bordism group. This is very similar to
the description of [X,Ω∞hW] used in the construction of the map (3.6).

Lemma 3.3.1 For X in X , the group [X,Ω∞hWloc] can be identified with the group of
bordism classes of triples (M, g, ĝ) consisting of a smooth M without boundary, dim(M) =
dim(X) + 2 , and a vector bundle pullback square

TM × R1+j
ĝ //

��

TX × UW ,∞ × Rj

��
M

g // X ×GrW(R3+∞)

where the restriction of the X -coordinate of g to g−1(X ×ΣW ,∞) is proper.
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Proof We first identify UW ,∞|ΣW ,∞ with its dual using the canonical quadratic form q ,
and then with the normal bundle N of ΣW ,∞ in GrW(R3+∞). Let (M, g, ĝ) be a triple
as above, but with g transverse to X × ΣW ,∞ . Then Z = g−1(X × ΣW ,∞) is a smooth
(n − 1)-dimensional submanifold of M , with normal bundle NZ . Restriction of g and ĝ
yields a vector bundle pullback square

(TZ ⊕NZ)× R1+j //

��

TX ×N × Rj

��
Z // X ×ΣW ,∞ .

But since NZ is also identified with the pullback of N , this amounts to a vector bundle
pullback square

TZ × R1+k
ĝ

Z //

��

TX ×ΣW ,∞ × Rk

��
Z

gZ // X ×ΣW ,∞

(3.9)

for some k � 0. Here the X –coordinate Z → X of gZ is still a proper map.
Conversely, given data Z , gZ and ĝZ as in (3.9), let M be the (total space of the) pullback
of N to Z . There is a canonical map from M to N ⊂ GrW(R3+∞), and another from M
to X , hence a map g : M → X ×GrW(R3+∞). Moreover ĝZ determines the ĝ in a triple
(M, g, ĝ) as above. In this way, the bordism group in 3.3.1 is isomorphic to the bordism
group of triples (Z, gZ , ĝZ) as in (3.9). But this is the standard bordism group description
of [X,Ω∞hWloc] ; see lemma 3.1.2.

We now turn to the construction of a localized version of (3.6), namely, a natural map

τ loc : hWloc[X] −→ [X,Ω∞hWloc]. (3.10)

First we modify the bordism group description in 3.3.1 by requiring ∂M = S 1× ∂[0, 1]×X
instead of ∂M = ∅ . The group structure is then given by concatenation.
Let now (π, f̂) ∈ hWloc(X), where π : E → X is a submersion with 3-dimensional fibers
and f̂ is a section of J2(T πE) → E with underlying map f : E → R . See definition 2.1.8
and (3.5). We may assume that f is transverse to 0 and get a manifold M = f−1(0).
Proceeding exactly as in the construction of the map (3.6), we can promote this to a triple
(M, g, ĝ) where (g, ĝ) is a vector bundle pullback square

TM × R1+j
ĝ //

��

TX × UW ,∞ × Rj

��
M

g // X ×GrW(R3+∞) .

This time, we cannot expect that the X -component of g , in other words π|M , is proper.
But its restriction to

g−1(X ×ΣW ,∞) = Σ(π, f̂) ∩M
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is proper, thanks to condition (ia) in definition 2.1.8. Therefore (M, g, ĝ) represents an
element in [X,Ω∞hWloc] . This is the image of (π, f̂) under τ loc .

Theorem 3.3.2 The natural map τ loc : hWloc[X]→ [X,Ω∞hWloc] is a bijection.

Proof There is a map σ loc in the other direction. The construction of σ loc is analogous
to that of σ in the proof of theorem 3.2.1. It is clear that τ loc ◦ σ loc is the identity. The
verification of σ loc ◦ τ loc = id uses lemma 3.3.3 below.

Lemma 3.3.3 Let (π, f̂) ∈ hWloc(X) , with π : E → X . Let U be an open neighborhood
of ∂E ∪ Σ(π, f̂) in E . Then (π|U, f̂ |U) ∈ hWloc(X) is concordant to (π, f̂) .

Proof The concordance that we need is an element (π], f̂ ]) in hWloc(X× ]0, 1[ ). Let E]

be the union of E× ]0, 1/2[ and U× ]0, 1[ . Let π](z, t) = (π(z), t) and f̂ ](z, t) = (f̂(z), t)
for (z, t) ∈ E] . Some renaming of the elements of E] is required to ensure that π] is
graphic.

Next we give a short description of a map |hWloc| → Ω∞hWloc which induces (3.10). This
is analogous to the construction of the map named τ in theorem 3.2.3.

Fix an integer r > 0 and X in X . To the data (π, f̂) in definition 2.1.8, with π : E → X
and f : E → R , we add the following: a smooth embedding

w : E −→ X × R× [0, 1] × R1+r

which covers (π, f) : E → X × R , a vertical tubular neighborhood N for the submanifold
w(E) of X × R× [0, 1] × R1+r , and a smooth function ψ : E → [0, 1] such that ψ(z) = 1
for all z ∈ Σ(π, f̂ ). We require that the restriction of (π, f) : E → X × R to the support
of ψ be proper. Near ∂E , the function ψ is assumed to vanish and both w and N are
assumed to be standard.
Making X into a variable now, we can interpret the forgetful map taking (π, f̂ , w,N, ψ) to
(π, f̂) as a map of sheaves

hW
(r)
loc −→ hWloc

on X . This map is highly connected if r is large. Let Z
(r)
loc be the sheaf taking an X in

X to the set of pointed maps

S1 ∧ (X × R)+ −→ Ω1+rcone
(

Th (U⊥
W ,r|GrV(R3+r)) ↪→ Th (U⊥

W ,r)
)

.

Here the cone is a reduced mapping cone, regarded as a quotient of a subspace of

Th (U⊥
W ,r)× [0, 1] ,

with Th (U⊥
W ,r)× 1 corresponding to the base of the cone. The Thom-Pontryagin collapse

construction gives us a map of sheaves

τ
(r)
loc : hW

(r)
loc −→ Z

(r)
loc . (3.11)
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In detail: let (π, f̂ , w,N, ψ) be an element of hW
(r)
loc (X). We assume that f̂ is a section

of J2(T πE)→ E , see (3.5). The differential dw promotes each fiber (T πE)z of the vector
bundle T πE to a triple (Vz, `z, qz) ∈ GrW(R3+r), as in the proof of theorem (3.2.3). In
particular the formula z 7→ ((Vz, `z, qz), ψ(z)) defines a map κ : E → GrW(R3+r) × [0, 1].
This fits into a vector bundle pullback square

N
κ̂ //

��

U⊥
W ,r × [0, 1]

��
E

κ // GrW(R3+r)× [0, 1]

because N is identified with κ∗U⊥
W ,r . Now we obtain a map from X ×R× [0, 1]× S1+r to

the mapping cone
cone

(

Th (U⊥
W ,r|GrV(R3+r)) ↪→ Th (U⊥

W ,r)
)

,

viewed as a subquotient of Th (U⊥
W ,r)× [0, 1], by z 7→ κ̂(z) for z ∈ N and z 7→ ? for z /∈ N .

It can also be written in the form

S1 ∧ (X × R)+ −→ Ω1+rcone
(

Th (U⊥
W ,r|GrV(R3+r)) ↪→ Th (U⊥

W ,r)
)

so that it is an element of Z
(r)
loc (X). This defines the map τ

(r)
loc . Taking colimits over r , we

therefore have a diagram

|hWloc| colimr |hW
(r)
loc |

'oo // colimr |Z
(r)
loc |

' // Ω∞hWloc

which we informally describe as a map τ loc : |hWloc| → Ω∞hWloc . The following is a
straightforward consequence of theorem 3.3.2 (cf. the proof of theorem 3.2.3):

Theorem 3.3.4 The map τloc : |hWloc| → Ω∞hWloc is a homotopy equivalence.

The combination of theorems 3.3.4, 3.2.3, 3.2.4 and proposition 3.1.4 amounts to a proof of
theorem 1.3.3 from the introduction.

Remark 3.3.5 It must be understood that the expression “homotopy fiber sequence” used
in theorem 1.3.3 is short for a commutative square of pointed spaces and maps

X0
//

��

X1

��
C // X2

which is homotopy cartesian and has a contractible lower left-hand term C . This leaves us
with the task of saying exactly how the lower row of diagram (2.3) should be completed to
a commutative square in which the added term is contractible.
Define a sheaf hVloc on X by copying definition 2.1.5, the definition of hV , but leaving
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out condition (i). Then |hVloc| is contractible by an application of proposition 2.2.5. There
is a commutative square of inclusion maps of pointed CW-spaces

|hV| //

��

|hW|

��

|hVloc| // |hWloc|.

(3.12)

The precise meaning of theorem 1.3.3, apart from the statement |hV| ' Ω∞CP∞
−1 , is

that (3.12) is homotopy cartesian. That is also what we have proved.

3.4 The space |Wloc|

The goal is to show that the inclusion of Wloc in hWloc is a weak equivalence. We begin
with the observation that the analogue of lemma 3.3.3 holds for Wloc :

Lemma 3.4.1 Let (π, f) ∈ Wloc(X) , with π : E → X . Let U be an open neighborhood
of ∂E ∪ Σ(π, f) in E . Then (π|U, f |U) ∈ Wloc(X) is concordant to (π, f) .

Corollary 3.4.2 For X in X , there are natural bijections between Wloc[X] and

(i) the set of bordism classes of triples (Σ, p, g) , where Σ is a smooth manifold without
boundary, p : Σ → X × R is a proper smooth map whose X -coordinate Σ → X is
an étale map (= codimension zero immersion), and g is a map from Σ to ΣW ,∞ ;

(ii) the set of bordism classes of triples (Σ0, v, c) where Σ0 is a smooth manifold without
boundary, v : Σ0 → X is a proper smooth codimension 1 immersion with oriented
normal bundle and c is a map from Σ0 to ΣW ,∞ .

Proof An element (π, f) of Wloc(X) determines by lemma 2.1.3 a triple (Σ, p, g) as in
(i), where Σ is Σ(π, f) and p(z) = (π(z), f(z)) for z ∈ Σ ⊂ E . The map g : Σ → ΣW ,∞

classifies the vector bundle T πE|Σ with the nondegenerate quadratic form determined by
(one-half) the fiberwise Hessian of f . Conversely, given a triple (Σ, p, g) we can make
an element (π, f) in Wloc(X). Namely, let UΣ be the 3-dimensional vector bundle on Σ
classified by g , with the canonical quadratic form q : UΣ → R . Let E be the disjoint union
of UΣ and (S1 ×R× [0, 1] )×X . Let (π, f) : E → X ×R agree with q + p̄ on UΣ , where
p̄ denotes the composition of the vector bundle projection UΣ → Σ with p : Σ → X × R .
The resulting maps from Wloc[X] to the bordism set in (i), and from the bordism set in (i)
to Wloc[X] , are inverses of one another: One of the compositions is obviously an identity,
the other is an identity by lemma 3.4.1.
Next we relate the bordism set in (i) to that in (ii). A triple (Σ, p, g) as in (i) gives
rise to a triple (Σ0, v, c) as in (ii) provided p is transverse to X × 0. In that case we
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set Σ0 = p−1(X × 0) and define v and c as the restrictions of p and g , respectively.
Conversely, a triple (Σ0, v, c) as in (ii) does of course determine a triple (Σ, p, g) as in (i)
with Σ = Σ0 × R . The resulting maps from the bordism set in (i) to that in (ii), and vice
versa, are inverses of one another: One of the compositions is obviously an identity, the
other is an identity by a shrinking lemma analogous to (but easier than) lemma 2.3.5.

It is well known that the bordism set (ii) in corollary 3.4.2 is in natural bijection with

[X,Ω∞S1+∞(ΣW ,∞)+] ∼= [X,Ω∞hWloc].

Namely, Thom-Pontryagin theory allows us to represent elements of [X,Ω∞S1+∞(ΣW ,∞)+]
by quadruples (Σ0, v, v̂, c) where Σ0 is smooth without boundary, v and v̂ constitute a
vector bundle pullback square

TΣ0 × R1+j v̂ //

��

TX × Rj

��
Σ0

v // X

(for some j � 0) with proper v , and c is any map from Σ0 to ΣW ,∞ . By lemma 3.2.2 we
can take j = 0 and by immersion theory we can assume v̂ = dv , that is, v is an immersion
and v̂ is its (total) differential.

Consequently Wloc[X] is in natural bijection with [X,Ω∞hWloc] . It is easy to verify that
this natural bijection is induced by the composition

|Wloc|
�

� // |hWloc|
τ loc // Ω∞hWloc

where τ loc is the map of (3.11), 3.10 and theorem 3.3.4. We conclude that the composition
is a homotopy equivalence (cf. the proof of theorem 3.2.3). Since τloc itself is a homotopy
equivalence, it follows that the inclusion |Wloc| ↪→ |hWloc| is a homotopy equivalence. This
is theorem 1.3.2 from the introduction.

4 Application of Vassiliev’s h-principle

This section contains the proof of theorem 1.3.1. It is based upon a special case of Vassiliev’s
first main theorem, [41, ch.III] and [42].
Let A ⊂ J2(Rr,R) denote the space of 2-jets represented by f : (Rr, z)→ R with f(z) = 0,
df(z) = 0 and det(d2f(z)) = 0, where d2f(z) denotes the Hessian. This set has codimension
r + 2 and is invariant under diffeomorphisms Rr → Rr .
Let N r be a smooth compact manifold with boundary and let ψ : N → R be a fixed smooth
function with j2ψ(z) /∈ A for z in a neighborhood of the boundary. (Use local coordinates
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near z ; the condition means that near ∂N , all singularities of ψ with value 0 are of Morse
type, i.e., nondegenerate.) Define spaces

Φ(N,A, ψ) = {f ∈ C∞(N,R) | f = ψ near ∂N, j2f(z) /∈ A for z ∈ N},

hΦ(N,A, ψ) = {f̂ ∈ ΓJ2(N,R) | f̂ = j2ψ near ∂N, f̂(z) /∈ A for z ∈ N},

where ΓJ2(N,R) denotes the space of smooth sections of the jet bundle J 2(N,R) → N .
Both are equipped with the standard C∞ topology. The special case of Vassiliev’s theorem
that we need is the statement that the map

j2 : Φ(N,A, ψ) −→ hΦ(N,A, ψ) (4.1)

induces an isomorphism on integral homology. We use this when dim(N) = 3.

4.1 Sheaves with category structure

Let F : X → C at be a sheaf with values in small categories. Taking nerves defines a sheaf
with values in the category of simplicial sets,

N•F : X → Sets•

with N0F the sheaf of objects, N0F = ob(F), and N1F the sheaf of morphisms. We have
the associated bisimplicial set N•F(∆•

e) and recall [32] that the realization of its diagonal
is homeomorphic to either of its double realizations,

| k 7→ NkF(∆k
e) |

∼=
∣

∣ ` 7→ | k 7→ NkF(∆`
e) |

∣

∣ ∼=
∣

∣ k 7→ | ` 7→ NkF(∆`
e) |

∣

∣. (4.2)

Since | ` 7→ NkF(∆`
e) | = Nk|F| by A.2.1, the right hand side of (4.2) is the classifying

space B|F| of the topological category |F| .

We next give another construction of B|F| related to Steenrod’s view of principal bundles
as 1-cocycles. We shall consider locally finite open covers Y? = (Yj)j∈J of spaces X in X
indexed by a fixed uncountable set J . For each finite nonempty subset S ⊂ J we write

YS =
⋂

j∈S

Yj .

Associated to the cover Y? there is a topological category, denoted XY?
in [37, §4], with

ob(XY?
) =

∐

S

YS , mor(XY?
) =

∐

R,S

R⊂S

YS .

A continuous functor from XY?
to a topological group G , viewed as a topological category

with one object, is equivalent to a collection of maps

ϕRS : YS −→ G ,

one for each pair R ⊂ S of finite subsets of J , subject to the cocycle conditions listed in
definition 4.1.1 below. More general versions can be found in [29].
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Definition 4.1.1 For X in X an element of βF(X) is a pair (Y?, ϕ?) where Y? is a
locally finite open covering of X , indexed by J , and ϕ? associates to each pair of finite,
nonempty subsets R ⊂ S of J a morphism ϕRS ∈ N1F(YS) subject to the following cocycle
conditions:

(i) every ϕRR is an identity morphism;

(ii) for R ⊂ S ⊂ T , we have ϕRT = (ϕRS |YT ) ◦ ϕST .

Condition (ii) includes the condition that the right-hand composition is defined ; in partic-
ular, taking S = T one finds that the source of ϕRS is the object ϕSS , and taking R = S
one finds that the target of ϕST is ϕSS |YT .

Remark 4.1.2 By an open cover of X indexed by J we mean a map j 7→ Yj from J to
the set of open subsets of X such that

⋃

j Yj = X . This map is not required to be injective,
and cannot always be injective, as the case X = ∅ shows. In definition 4.1.1, we use open
covers indexed by a fixed set J to ensure that βF has the sheaf property. In appendix B,
definition B.1.1, we give a variant of definition 4.1.1 which does not mention an indexing
set, but uses surjective étale maps to X rather than open covers of X .

The sets βF(X) define a sheaf βF : X → Sets and hence a space |βF| . The following key
theorem is one of our main tools used in the proof of both theorem 1.3.1 and theorem 1.3.4.
It may be viewed as a generalization of the result that isomorphism classes of Steenrod’s
principal coordinate bundles (over X ) are in bijective correspondence with homotopy classes
of maps from X to BG . See also [29]. Its proof is deferred to appendix B.

Theorem 4.1.3 The spaces |βF| and B|F| are homotopy equivalent.

Definition 4.1.4 Let E ,F : X → Cat be sheaves and g : E → F a map between them.
We say that g is a transport projection if the following square is a pullback square of sheaves
on X :

N1E
d0 //

g

��

N0E

g

��
N1F

d0 // N0F

where d0 is the source operator.

Proposition 4.1.5 Let g : E → F and g′ : E ′ → F be transport projections as in def-
inition 4.1.4. Let u : E → E ′ be a map of sheaves over F which respects the category
structures. Suppose that the maps N0E → N0F and N0E

′ → N0F obtained from g and g′

have the concordance lifting property, cf. definition A.2.4. Suppose also that, for each object
a of F(?) , the restriction Ea → E

′
a of u to the fibers over a is a weak equivalence (resp.

induces an integral homology equivalence of the representing spaces). Then βu : βE → βE ′

is a weak equivalence (resp. induces an integral homology equivalence of the representing
spaces).
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Proof According to theorem 4.1.3 it suffices to prove that u induces a homotopy (homol-
ogy) equivalence from B|E| to B|E ′| . By (4.2) it is then also enough to show that

Nk(u) : NkE −→ NkE
′

becomes a homotopy equivalence (homology equivalence) after passage to representing
spaces, for each k ≥ 0.
Since g and g′ are transport projections, an obvious inductive argument shows that the
diagrams

NkE //

g

��

N0E

g

��
NkF // N0F

NkE
′ //

g′

��

N0E ′

g′

��
NkF // N0F

are pullback squares for all k ≥ 0. They are therefore homotopy cartesian by A.2.6 and by
our assumptions. Hence it suffices to consider the case k = 0,

N0u : N0E −→ N0E
′.

By assumptions again, N0E → N0F and N0E
′ → N0F have the concordance lifting prop-

erty and N0u induces a weak equivalence (homology equivalence) of the fibers. By A.2.6,
the fibers turn into homotopy fibers upon passage to representing spaces. Consequently
N0u : N0E → N0E

′ is a homotopy equivalence (homology equivalence).

In our applications of theorem 4.1.3, the categories F(X) for X in X will typically be
partially ordered sets or will have been obtained from a functor

F• : C op −→ sheaves on X

where C is a small category. Recall that given such a functor one can define a category
valued sheaf C op∫F• on X . Its value on a manifold X is the category whose objects are
pairs (c, ω) with c ∈ ob(C ) and ω ∈ Fc(X) and whose morphisms are pairs (f, ω) with
f : b→ c in mor(C ) and ω ∈ Fc(X). Then

|β(C op∫F•) | ' B|C op∫F•| ' hocolim
c∈C

|Fc|

(see appendix D for details).

Definition 4.1.6 The sheaf β(C op∫F•) : X −→ Cat will be written hocolim
c∈C

Fc .

It is in order to spell out that an element of (hocolimcFc)(X) consists of a covering Y? of
X indexed by the elements of J , a functor S 7→ θ(S) from the poset of finite nonempty
subsets of J to C , and elements ωS ∈ Fθ(S)(YS) connected to each other via the maps

Fθ(T )(YT ) −→ Fθ(S)(Y (T ))←− Fθ(S)(Y (S))

for each S ⊂ T .
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4.2 Armlets

We begin by defining sheaves WA and hWA on X with values in partially ordered sets,
and natural transformations

Posets

forget

��
��

X

WA 22

W0 -- Sets

Posets

forget

��
��

X

hWA 22

hW0 -- Sets

where W0 and hW0 are the sheaves introduced in section 2.3, weakly equivalent to W and
hW , respectively.

Definition 4.2.1 An armlet for an element (π, f) ∈ W 0(X) is a compact interval A ⊂ R

such that 0 ∈ int(A) and f is fiberwise transverse to the endpoints of A .

Definition 4.2.2 An armlet for an element (π, f̂) ∈ hW0(X) is a compact interval A ⊂ R

such that 0 ∈ int(A) and

(i) f is fiberwise transverse to the endpoints of A ;

(ii) f̂ is integrable on an open neighborhood of f−1(R r int(A)).

We introduce a partial ordering on elements of W 0(X) or hW0(X) equipped with armlets,
namely for elements of W0(X):

(π, f,A) ≤ (π′, f ′, A) if (π, f) = (π′, f ′) and A ⊂ A′

and similarly for elements of hW0(X).

Definition 4.2.3 For a connected X in X we let WA (X) denote the partially ordered
set of elements (π, f,A) with A an armlet for (π, f) ∈ W 0(X). Similarly, hWA (X) is the
partially ordered set of elements (π, f̂ , A) where (π, f̂) ∈ hW0(X) and A and armlet for
(π, f̂). If X is not connected we (must) define

WA (X) =
∏

iW
A (Xi) , hWA (X) =

∏

i hW
A (Xi)

where the Xi are the path components of X .

Any sheaf F : X → Sets can be considered to be a sheaf with category structure, namely
F(X) is the object set, and only identity morphisms are allowed. In this case an element of
βF(X) is a pair (Y?, s) consisting of a locally finite open covering Y? = {Yj | j ∈ J} and a
single element s ∈ F(X). Thus βF ∼= F × β? where ? denotes the terminal sheaf, viewed
as a sheaf with category values. In particular there is a forgetful projection βF −→ F
which is a weak equivalence.
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Proposition 4.2.4 The forgetful maps βWA →W0 and βhWA → hW0 are weak equiv-
alences of sheaves.

The proof of proposition 4.2.4 will be broken up into the following three lemmas.

Lemma 4.2.5 Let X be in X and (π, f) ∈ W0(X) . Every x ∈ X has an open neigh-
borhood U in X such that the image of (π, f) in W0(U) admits an armlet.

Proof Write π : E → X and Ex = π−1(x). By Sard’s theorem, we can find numbers
a < 0 and b > 0 such that fx : Ex → R is transverse to a and b (in other words, a and b
are regular values of fx ). Let A = [a, b] . Let C ⊂ E be the closed subset consisting of all
z ∈ E where f has a fiberwise singularity and f(z) = a or f(z) = b . Then π|C is proper
and so π(C) is a closed subset of X . Let U = X r π(C).

Lemma 4.2.6 With the assumptions of lemma 4.2.5, there exists an element of βWA (X)
mapping to (π, f) under the forgetful transformation βWA →W0 .

Proof Choose a locally finite covering of X by open subsets Yj , where j ∈ J , such that
the restriction of (π, f) to each Yj admits an armlet Aj ⊂ R . For a finite nonempty subset
S ⊂ J with nonempty YS let AS =

⋂

j∈S Aj . Then AS is an armlet for the restriction of
(π, f) to YS . Therefore, given nonempty finite R,S ⊂ J with R ⊂ S and YS 6= ∅ , we can
define ϕRS ∈ N1W

A (YS) to be the relation

(π, f,AS)|YS ≤ (π, f,AR)|YS .

If YS is empty, there is only one element in WA (YS) and so we have only one choice for
ϕRS . The data ϕRS for all finite nonempty R,S ⊂ J with R ⊂ S then constitute an
element of βWA (X) which clearly projects to (π, f) ∈ W(X).

It follows from the two previous lemmas that the forgetful map βWA [X] → W0[X] is
surjective for any X in X . What we really need in order to prove the first half of propo-
sition 4.2.4 is the relative surjectivity as in proposition 2.2.6. This comes from the next
lemma.

Lemma 4.2.7 Let X in X and let (π, f) ∈ W0(X) . Let C ⊂ X be closed and suppose
that a germ of lifts of (π, f) across βWA −→ W0 has been specified near C . Then there
exists an element in βWA (X) which lifts (π, f) ∈ W(X) and extends the prescribed germ
of lifts near C .

Proof Let U be a sufficiently small open neighborhood of C in X so that the prescribed
germ of lifts is represented by an actual lift of (π, f)|U across βWA (U) −→ W0(U). This
gives us a locally finite covering Y ′

? of U , and for each nonempty finite S ⊂ J and each
z ∈ π0(Y

′
S), a compact interval A′

S,z ⊂ R such that 0 ∈ int(A′
S,z). We have A′

S,z ⊂ A′
R,z̄ if
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R ⊂ S and z̄ is the image of z under π0(Y
′
S) → π0(Y

′
R). Making U smaller if necessary,

we can assume that the covering Y ′
? is locally finite in the strong sense that every x ∈ X

has an open neighborhood on X which intersects only finitely many of the Y ′
j .

Now we make a locally finite covering of X by open subsets Yj as follows. For j ∈ J such
that Y ′

j is nonempty, let Yj = Y ′
j . For all other j ∈ J define Yj in such a way that Yj

avoids a fixed neighborhood of C and the restriction of (π, f) to each path component
z ∈ π0(Yj) admits an armlet Aj,z .
It remains to find enough armlets. We need one armlet AS,z ⊂ R for each nonempty finite
S ⊂ J and every component z ∈ π0(YS). These armlets must satisfy AS,z ⊂ AR,z̄ if
R ⊂ S and z̄ is the image of z under π0(YS) → π0(YR). But, reasoning as in the proof
of lemma 4.2.6, we find that it is enough to say what AS,z = Aj,z should be when S is a
singleton {j} . We have already said it in the cases where Yj 6= Y ′

j ; in the other cases we
say Aj,z := A′

j,z .

The proof of the second half of proposition 4.2.4 goes like the proof of the first half, except
for an additional observation which is as follows. For X in X let hcW

0(X) consist of all
(π, f̂) ∈ hW0(X), with π : E → X etc., such that f̂ is integrable on some open U ⊂ E
and π restricted to E r U is proper.

Lemma 4.2.8 The inclusion of sheaves hcW
0 ↪→ hW0 is a weak equivalence.

Proof Let (π, f̂) ∈ hW0(X), with π : E → X . Choose an open U ⊂ E such that π
restricted to E r U is proper and such that the closure of U has empty intersection with
f−1(0). Using the convexity of the fibers of J 2

π(E,R) → E , especially over points z ∈ U ,
deform f̂ (leaving f unchanged) in such a way that it becomes integrable on U . This
shows that hcW

0[X]→ hW0[X] is surjective. The argument can easily be refined to prove
a relative statement as in the hypothesis of proposition 2.2.6.

4.3 Proof of theorem 1.3.1

According to lemma 2.3.4 and proposition 4.2.4 it remains to show that

j2π : βWA → βhWA

is a weak equivalence. To this end we introduce a new sheaf

T A : X −→Posets .

Suppose given a submersion π : E → X with 3-dimensional fibers and standard behavior
near the boundary as in condition (iii) of definitions 2.1.5 and 2.1.7. We consider pairs
(ψ,A) where ψ : E → R is a smooth function such that (π, ψ) : E → X × R is proper,
A ⊂ R is a compact interval with 0 ∈ int(A), and ψ is fiberwise transverse to ∂A (and
prescribed near ∂E in the usual way). There is no restriction on the fiberwise singularities
that ψ might have.
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Definition 4.3.1 For connected X in X , the set T A (X) consists of equivalence classes
of triples (π, ψ,A) as above, where (π, ψ,A) ∼ (π ′, ψ′, A′) if π = π′ , A = A′ and the
support of ψ − ψ′ is contained in the interior of ψ−1(A).

As for WA , we get T A : X →Posets . Moreover there is an obvious commutative diagram
of sheaves

WA
j2
π //

p
��=

==
==

==
hWA

q
����

��
��

�

T A

(4.3)

where p(π, f,A) and q(π, f̂ , A) are the equivalence classes of (π, f,A); in the second case
f is the underlying function of f̂ .

Let (π, ψ,A) be a representative of an element of T A (X) with π : E → X , ψ : E → R

and A ⊂ R . The manifold ψ−1(A) is independent of the choice of representative for the
equivalence class, and π|ψ−1(A) is a proper submersion, hence a smooth fiber bundle by
Ehresmann’s fibration theorem [2]. Moreover, near the boundary of ψ−1(A), the function
ψ is independent of the choice of representative.

Lemma 4.3.2 The maps p and q in (4.3) have the concordance lifting property.

Proof We give the proof for p , since the proof for q is much the same. Write I = [0, 1].
Given an element [π, ψ,A] ∈ T A (X × I) with a lift to WA (X × 0) of its restriction to
X × 0, the projection

ψ−1(A)
π // X × I (4.4)

is a smooth manifold bundle. Hence there exists a diffeomorphism N × I ∼= ψ−1(A) over
X × I , where N = ψ−1(A) ∩ π−1(X × 0). But what we need here is a diffeomorphism

u : N × I −→ ψ−1(A)

over X × I such that ψ(u(z, t)) = ψ(u(0, t)) for all t ∈ I and all z near ∂N , and of course
u(z, 0) = z for all z ∈ N .
Let ∂hψ

−1(A) and ∂vψ
−1(A) be the parts of ∂ψ−1(A) which are mapped to X × (I r ∂I)

and X × ∂I , respectively, by π . Constructing u with the properties above is equivalent to
constructing a smooth vector field ξ = du/dt on ψ−1(A) which

(i) covers the vector field (x, t) 7→ (0, 1) ∈ TXx × TRt on X × I ,

(ii) is parallel to ∂hψ
−1(A),

(iii) satisfies 〈dψ, ξ〉 ≡ 0 near ∂hψ
−1(A).
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(It should be added that ξ = du/dt is also prescribed near ∂vψ
−1(A) due to the details in

definition 2.2.2.) This problem has local solutions which can be pieced together by means
of a partition of unity on ψ−1(A). Hence u with the required properties exists.
Now we define the lifted concordance (π, f,A) ∈ WA (X×I) in such a way that f(u(z, t)) =
f(u(z, 0)) for (z, t) ∈ N × I , bearing in mind that f(u(z, 0)) is prescribed for all z ∈ N
and f must equal ψ outside u(N × I) = ψ−1(A).

Proposition 4.3.3 The fiberwise jet prolongation map

j2π : |βWA | −→ |βhWA |

induces an isomorphism on integral homology.

Proof This will be deduced from proposition 4.1.5 and diagram (4.3). By inspection, both
maps p and q in (4.3) are transport projections. We must determine the fibers of p and q
and check that j2π induces a homology equivalence between fibers over the same point.
We first determine the fiber p−1(τ) of

p : WA −→ T A

over an element τ = [F 3, ψ,A] ∈ T A (?). That is, for each X in X we are interested in
the subset of WA (X) which maps to the element [π, ψ ◦ prF , A] ∈ T A (X) where π and
prF are the projections F ×X → X and F ×X → F , respectively. This subset consists of
(π, f,A) ∈ WA (X) with

supp(f − ψ ◦ prF ) ⊂ int(ψ−1(A))×X.

Thus in the notation of (4.1), the fiber of p over τ is the sheaf taking X in X to the set
of smooth maps from X to

Φ(ψ−1(A),A, ψ).

Similarly, the fiber q−1(τ) of q in (4.3) over the same element τ ∈ T A (?) is the sheaf
taking X in X to the set of smooth maps from X to

hΦ(ψ−1(A),A, ψ).

Thus the representing spaces |p−1(τ)| and |q−1(τ)| have canonical comparison maps to
Φ(ψ−1(A),A, ψ) and hΦ(ψ−1(A),A, ψ), respectively, which are homotopy equivalences.
With these as identifications, the jet prolongation map from |p−1(τ)| to |q−1(τ)| turns
into a special case of (4.1), and so is a homology equivalence by Vassiliev’s first main theo-
rem.

Combining lemma 2.3.4, proposition 4.2.4 and proposition 4.3.3, we get that

j2π : |W| −→ |hW|

induces an isomorphism in homology. Both |W| and |hW| are topological monoids (cf.
sections 2.3 and C.2) and j2π is a map of monoids. The target |hW| is an infinite loop space
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by theorem 3.2.3, hence it is group complete. (That is, the monoid π0|hW| is a group,
or equivalently, the canonical map |hW| → ΩB|hW| is a homotopy equivalence). Since
H∗(j

2
π; Z) is an isomorphism, especially when ∗ = 0, the source |W| is also group complete.

It is well known that a homomorphism between group complete topological monoids is a
homology equivalence if and only if it is a homotopy equivalence. (The statement is easily
reduced to the case where both monoids are connected, so that their classifying spaces are
simply connected. One verifies that the induced map of classifying spaces is a homology
equivalence, hence a homotopy equivalence, and deduces by applying Ω that the original
homomorphism is a homotopy equivalence.) This completes the proof of theorem 1.3.1.

5 Some homotopy colimit decompositions

5.1 Description of main results

The organization and the main results of this section can be summarized in a commutative
diagram of sheaves on X and maps of sheaves

W //Wloc

L //

'

OO

Lloc

'

OO

hocolim
T in K

LT

'

OO

//

'
��

hocolim
T in K

Lloc,T

'

OO

'
��

hocolim
T in K

WT // hocolim
T in K

Wloc,T .

(5.1)

The symbol ' indicates weak equivalences. The homotopy colimits in the diagram are
homotopy colimits in the category of sheaves on X , as in definition 4.1.6. But their
representing spaces can be regarded as homotopy colimits in the category of spaces according
to lemma D.1.5.

The top row of diagram (5.1) is the inclusion map W →Wloc . The bottom row is what we
eventually want to substitute for the top row in order to prove theorem 1.3.4. We now give
a detailed description of the bottom row. This must begin with a definition of the category
K by which the homotopy colimits are indexed.

Definition 5.1.1 An object of K is a finite set S equipped with a map to 3 = {0, 1, 2, 3} .
A morphism from S to T is a pair (k, ε) where k is an injective map (over 3) from S
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to T and ε is a function T r k(S) → {−1,+1} . The composition of two morphisms
(k1, ε1) : S → T and (k2, ε2) : T → U is (k2k1, ε3) : S → U where ε3 agrees with ε2
outside k2(T ) and with ε1 ◦ k2

−1 on k2(T r k1(S)).

Definition 5.1.2 Let T be an object of K . For X in X , let Wloc,T (X) be the set of
oriented, smooth, riemannian 3-dimensional vector bundles V on T ×X equipped with a
fiberwise linear isometric involution % and subject to the following conditions.

(i) For (t, x) ∈ T × X , the dimension of the fixed point space of −% acting on the fiber
V(t,x) is equal to the label of t in 3;

(ii) The composition V → T ×X → X is a graphic map.

A smooth map g : X → Y induces a map Wloc,T (Y ) → Wloc,T (X), given by pullback of
vector bundles along id× g : T ×X → T × Y . This makes Wloc,T into a sheaf on X .

In definition 5.1.2, the involution on V leads to an orthogonal vector bundle splitting
V = V %⊕V −% , where V % consists of the vectors fixed by % and V −% consists of the vectors
fixed by −% . In the next definition, D(V %) and S(V −%) denote the disk and sphere bundles
associated with V % and V −% , respectively.

Definition 5.1.3 For T in K , a sheaf WT on X is defined as follows. For X in X , an
element of WT (X) consists of

(i) a smooth graphic bundle q : M → X of compact oriented surfaces;

(ii) an element (V, %) of Wloc,T (X);

(iii) a smooth and fiberwise orientation preserving embedding over X ,

e : D(V %) ×T×X S(V −%) −→ M r ∂M .

Boundary condition: Near their respective boundaries, the manifolds M and (S 1×[0, 1])×X
agree, and there q agrees as an oriented map with the projection to X .

The sheaves defined in 5.1.2 and 5.1.3 depend contravariantly on the variable T in K .
This is clear in the case of 5.1.2: A morphism (k, ε) : S → T in K induces a map from
Wloc,T (X) to Wloc,S(X) given by pullback of vector bundles along k× id : S×X → T ×X .
The case 5.1.3 is much more interesting. Let (k, ε) : S → T be a morphism in K . If
k is bijective, there is an obvious identification WT

∼= WS and this is the induced map.
Therefore we may assume that k is an inclusion S ↪→ T . Then we can reduce to the case
where T r S has exactly one element, a . This case has two subcases: ε(a) = +1 and
ε(a) = −1.
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Definition 5.1.4 Let (k, ε) : S → T be a morphism in K where k is an inclusion and
T r S = {a} with ε(a) = +1. We describe the induced map

WT (X) −→WS(X).

Let (q, V, %, e) be an element of WT (X), with q : M → X . Map this to an element of WS

by keeping q : M → X , restricting V to S ×X and restricting % and e accordingly.

Definition 5.1.5 Let (k, ε) : S → T be a morphism in K where k is an inclusion and
T r S = {a} with ε(a) = −1. For X in X , the induced map

WT (X) −→WS(X)

is defined as follows. Let (q, V, %, e) be an element of WT (X), with q : M → X . Map this
to the element (q′, V ′, %′, e′) of WS where

(1) q′ : M ′ → X is the surface bundle obtained from q : M → X by fiberwise surgery on
the embedded bundle of thickened spheres e

(

D(V %|Xa)×Xa S(V −%|Xa)
)

, where Xa

means a×X ;

(2) (V ′, %′) is the restriction of (V, %) to S ×X ;

(3) e′ is obtained from e by restriction.

Remark 5.1.6 The fiberwise surgery in (i) amounts to removing the interior of the em-
bedded thickened sphere bundle and gluing in a copy of D(V −%|Xa)×Xa S(V %|Xa) instead.
Note in particular that when V −% = 0, the embedded thickened sphere bundle whose in-
terior we have to remove is empty. In this case the fiberwise surgery consist in adding a
disjoint copy of the sphere bundle S(V )|Xa to M .

Remark 5.1.7 To ensure that T 7→ WT really is a contravariant functor on K , it is
wise to add two conditions of a set-theoretic nature to definition 5.1.3. Namely, e should
be an inclusion and M r im(e) should have no elements in common with V . Surgeries as
in definition 5.1.5 should then be performed by removing something from M which also
happens to be a subset of V , and gluing in another subset of V . (All thickened sphere
bundles in sight can be thought of as subbundles of V .)

There is a forgetful map of sheaves WT →Wloc,T . It has the concordance lifting property,
so that the representing spaces of its fibers are the homotopy fibers of the induced map or
representing spaces

|WT | → |Wloc,T |.

It is easy to see that the representing space of any fiber of WT → Wloc,T is a classifying
space for certain bundles of compact oriented surfaces with fixed boundary.
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5.2 Morse singularities, Hessians and surgeries

We begin by recalling some well known facts about elementary and multi-elementary Morse
functions. The reader is referred to [27, ch.I] and [28] for more details in the non-parame-
trized situation. By an elementary Morse function we shall mean a proper smooth map
E → R which is regular on ∂E and has exactly one critical point in E r ∂E , that one
nondegenerate. By a multi-elementary Morse function we mean a proper smooth map
E → R which is regular on ∂E and has finitely many critical points in E r ∂E , all
nondegenerate and all with the same critical value.

Fix a finite dimensional real vector space V with an inner product (i.e., a positive definite
bilinear form) and a linear isometric involution % : V → V . Then the function fV : V → R

given by

fV (v) = 〈v, %v〉 (5.2)

is a Morse function on V with exactly one critical point. If we write V = V % ⊕ V −% , then
the fomula for fV becomes

fV (v) = ‖v+‖
2 − ‖v−‖

2

where v+ and v− are the components of v in V % and V −% , respectively. The gradient
of fV on V is everywhere perpendicular to the gradient of v 7→ ‖v+‖

2‖v−‖
2 , so that the

latter function is constant on the trajectories of the gradient flow of fV . This motivates
the following definition.

Definition 5.2.1 saddle(V, %) = {v ∈ V
∣

∣ ‖v+‖
2‖v−‖

2 ≤ 1} .

If V % = 0 or V −% = 0, then saddle(V, %) = V . In the remaining cases, the formula

v 7→ (‖v−‖v+, ‖v−‖
−1v−, 〈v, %v〉) (5.3)

defines a smooth embedding of saddle(V, %)rV % in D(V %)×S(V −%)×R , with complement
0 × S(V −%) × [0,∞[ . It respects boundaries and takes the gradient vectors of v 7→ 〈v, %v〉
to tangent vectors which are parallel to the R factor. It is a map over R , where we use the
restriction of fV on the source and the function (x, y, t) 7→ t on the target.
Dually, the formula

v 7→ (‖v+‖v−, ‖v+‖
−1v+, 〈v, %v〉) (5.4)

defines a smooth embedding of saddle(V, %)rV −% in D(V −%)×S(V %)×R , with complement
0× S(V %)× ]−∞, 0]. It respects boundaries and takes the gradient vectors of v 7→ 〈v, %v〉
to tangent vectors which are parallel to the R factor. It is also a map over R .

The map fV in (5.2) restricted to saddle(V, %) is a good local model for elementary Morse
functions. Let M be any smooth compact manifold and let

e : D(V %)× S(V −%)→M r ∂M (5.5)
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be a codimension zero embedding (“surgery data”), assuming dim(V ) = dim(M)+1. Then
in M ×R we have an embedded copy of D(V %)× S(V −%)×R . We can remove its interior
and glue in saddle(V, %) instead, using formula (5.3) to identify the boundary of saddle(V, %)
with the boundary of D(V %) × S(V −%) × R . The result is a smooth manifold trace(e) of
dimension dim(M) + 1. More precisely:

Definition 5.2.2 The long trace of e , denoted trace(e), is the pushout of the two smooth
codimension zero embeddings

saddle(V, %) r V % (e×id)◦(5.3) // (M × R) r e(0× S(V −%))× [0,∞[ ,

saddle(V, %) r V % �

� // saddle(V, %).

(5.6)

For example, if V −% = 0, then saddle(V, %) = V and saddle(V, %) r V % is empty, so that
trace(e) becomes the disjoint union of M × V and V = V % . If V % = 0, then M contains
a codimension zero copy of S(V ). The long trace is obtained by removing S(V ) × [0,∞[
from the copy of S(V ) × R in M × R and adding a single point instead, so that trace(e)
becomes the disjoint union of (M r im(e))× R and V = V −% .

The description 5.2.2 determines a structure of smooth manifold on trace(e) and shows that
trace(e) comes with a (smooth) elementary Morse function, the height function, which is
the projection to R on the complement of V % and equal to v 7→ 〈v, %v〉 on the glued-in copy
of saddle(V, %). The unique critical point is the origin of V % ⊂ trace(e). The corresponding
critical value is 0.

Conversely, suppose that N is any smooth manifold with boundary and g : N → R is an
elementary Morse function, with critical value 0 and unique critical point z ∈ Nr∂N . Let
V = TNz . Choose an exponential map h : V → N r ∂N , an inner product 〈 , 〉 on V , a
linear isometric involution % on V and δ > 0 such that gh(v) = 〈v, %v〉 for all v ∈ V with
〈v, v〉 < δ . This is possible by the Morse-Palais lemma; see for example [23]. At the price
of replacing g by 3δ−1g , we can assume δ = 3. Now choose a smooth vector field ξ on
N which extends h∗(grad(gh)) on h(D(V %) ×D(V −%)), is tangential to ∂N and satisfies
〈dg, ξ〉 > 0 on N r z . For the function f : V → R given by v 7→ 〈v, %v〉 , we then have
a unique smooth embedding h̄ : saddle(V, %) → N which extends h on D(V %) ×D(V −%),
maps gradient flow trajectories of f to flow trajectories of ξ and satisfies g ◦ h̄ = f on
saddle(V, %). This identifies N with a long trace.

The long trace construction has some obvious generalizations. For example, we can allow
simultaneous surgeries on a finite number of pairwise disjoint thickened spheres. In this
case the surgery data consist of a finite set T , a riemannian vector bundle V on T with an
isometric involution % , where dim(V ) = dim(M) + 1, and a smooth embedding

e : D(V %)×T S(V %) −→M r ∂M .
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Then trace(e) is defined as the manifold obtained from M × R by deleting the embedded
copy of

D(V %
t )× S(V −%

t )× R

for each t ∈ T , and substituting saddle(Vt, %) for it using formula (5.3) to do the gluing.
There is a canonical height function on trace(e). It is a Morse function with one critical
point for each t ∈ T . The only critical value is 0 (if T 6= ∅).
Then there is a parametrized version of the previous construction. Let q : M → X be a
bundle of smooth compact n-manifolds, let V → T ×X be a riemannian vector bundle of
fiber dimension n+ 1 with isometric involution % , and let

e : D(V %)×T×X S(V −%) −→M r ∂M

be a smooth embeding over X . We can regard e as a family of embeddings ex for x ∈ X ,
each from a disjoint union of finitely many thickened spheres to a fiber Mx of q . The
manifolds trace(ex) for x ∈ X are the fibers of a smooth bundle

trace(e) −→ X . (5.7)

It comes equipped with a smooth height function f : trace(e) −→ R which is fiberwise
Morse; if T 6= ∅ , then the unique critical value is 0.

For a useful naturality property of saddle(V, %), suppose given a smooth orientation pre-
serving embedding e : R → R such that e(0) = 0. Let fV : V → R be the canonical
quadratic function, fV (v) = 〈v, %v〉 .

Proposition 5.2.3 There is a diffeomorphism

λ : saddle(V, %) −→ f−1
V (e(R)) ∩ saddle(V, %)

such that fV λ = efV on saddle(V, %) and λ′(0) = e′(0)× idV .

Proof The Morse-Palais lemma as presented in [23], for example, gives us the germ of λ
near 0 ∈ saddle(V, %) ⊂ V . We may assume that this is defined on a neighborhood of a
subset of saddle(V, %) of the form

Ka,b = {v ∈ V
∣

∣ ‖v+‖
2‖v−‖

2 ≤ a and |fV (v)| ≤ b}

where a and b are small positive numbers (to begin with). The boundary ∂Ka,b is the
union of a vertical and a horizontal part,

∂0Ka,b = {v ∈ V
∣

∣ ‖v+‖
2‖v−‖

2 = a and |fV (v)| ≤ b},

∂1Ka,b = {v ∈ V
∣

∣ ‖v+‖
2‖v−‖

2 ≤ a and |fV (v)| = b}.

Since fV and efV are both regular away from 0, in particular outside Ka,b , it is easy to
construct an extension to all of saddle(V, %) having the required properties. The extension
can be made in two steps. In the first step, note that K1,b is the union of Ka,b and a closed
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collar on ∂0Ka,b . Use this to define λ on all of K1,b , in such a way that K1,b is mapped
diffeomorphically to

{v ∈ saddle(V, %)
∣

∣ |e−1fV (v)| ≤ b}.

Then note that saddle(V, %) = K1,∞ is the union of K1,b and an open collar on ∂1K1,b .
Use this to define λ on all of saddle(V, %).

5.3 Second row

As the subsection title indicates, we are going to concentrate on the second row of dia-
gram (5.1), but we will also explain how it is related to the first row.

Definition 5.3.1 Let Lloc be the following sheaf on X . For X in X , an element of
Lloc(X) is a triple (p, g, V ) where

(i) p is a graphic and étale map from some smooth Y to X ;

(ii) g is a smooth function Y → R ;

(iii) V is an oriented, smooth, riemannian 3-dimensional vector bundle on Y equipped
with a linear isometric involution % : V → V over Y .

Conditions: The map (p, g) : Y → X × R is proper and the composition of the vector
bundle projection V → Y with p : Y → X is a graphic map.

Remark 5.3.2 Let (π, f) be an element of Wloc(X), with π : E → X and f : X → R .
Let Σ = Σ(π, f) be the fiberwise singularity set of f . We showed in lemma 2.1.3 that
π|Σ is étale. By definition of Wloc(X), the map (π|Σ, f |Σ) : Σ → X × R is proper.
The restriction V of the vertical tangent bundle T πE to Σ comes with an everywhere
nondegenerate symmetric bilinear form 1

2H , where H is the vertical Hessian of f . See
[27, I,§2]. We can choose an orthogonal splitting V = V + ⊕ V − of T πE|Σ into a positive
definite subbundle and a negative definite subbundle. By changing the sign of 1

2H on V − ,
we make V into a riemannian vector bundle, with an isometric involution which is −id on
V − and +id on V + . In this way, the element (π, f) of Wloc(X) determines an element
(π|Σ, f |Σ, V ) ∈ Lloc(X).

We come to the construction of the map from Lloc to Wloc which appears in diagram (5.1).
Fix X in X and let (p, g, V ) be an element of Lloc(X), with p : Y → X and isometric
involution % : V → V . Let E be the disjoint union of V and (S1 × R× [0, 1] ) ×X . Let
π : E → R agree with the composition V → Y → X on the summand V , and with the
projection to X on the other summand. Let f : E → R be given by

f(v) = g(y) + 〈v, %v〉

for y ∈ Y and v in the fiber of V over y , and let f agree with the projection to R on the
other summand. Then (π, f) is an element of Wloc(X). The rule (p, g, V ) 7→ (π, f) is our
map.
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Proposition 5.3.3 The map Lloc →Wloc so defined is a weak homotopy equivalence.

Proof We are going to use the relative surjectivity criterion of proposition 2.2.6. To
deal with the absolute case first, we assume given X in X and (π, f) ∈ Wloc(X), with
π : E → R and f : E → R . Let Σ = Σ(π, f) be the fiberwise singularity set of f .
Choose a tubular neighborhood V of Σ in E such that the vector bundle projection
V → Σ is over X . This is possible by lemma 2.1.3. Choose an open neighborhood E ′

of ∂E in E which, as a space over X × R , agrees with an open neighborhood of the
boundary in (S1 × R× [0, 1]) ×X . This is possible because of the boundary condition in
the definition of Wloc (which is identical with the boundary condition in definition 2.1.6).
By proposition 3.4.1, the element (π, f) in Wloc(X) is concordant to (π(1), f (1)) where π(1)

and f (1) are the restrictions of π and f to V ∪ E ′ , respectively. Another application of
proposition 3.4.1 gives us that (π(1), f (1)) is concordant to (π(2), f (2)), where π(2) and f (2)

are the canonical extensions of π(1) and f (1) to

V q (S1 × R× [0, 1]) ×X .

In particular f (2) is still equal to f on V and is the projection to R on the summand
(S1 × R× [0, 1]) ×X . The next step is to improve f (2)|V = f |V .
Let ψ : [2, 3]→ [0, 1] be a smooth non-increasing function such that ψ(t) = 1 for t close to
2 and ψ(t) = 0 for t close to 3. For t ∈ [2, 3] let f (t) be given by

v 7→

{

fp(v) + ψ(t)−2(f(ψ(t)v) − fp(v)) for ψ(t) > 0 and v ∈ V
fp(v) + 1

2H(pv)(v, v) for ψ(t) = 0 and v ∈ V

where H(pv) denotes the vertical Hessian of f at p(v), alias second derivative in the
fiber direction. Let f (t) agree with f (2) on (S1 × R × [0, 1]) × X and let π(t) = π(2) for
convenience. Then t 7→ (π(t), f (t)) defines a concordance, parametrized by the interval
[2, 3], from (π(2), f (2)) to (π(3), f (3)). To lift (π(3), f (3)) to an element of Lloc(X) we only
need to choose a maximal negative definite subbundle of V for (half) the vertical Hessian.
Compare remark 5.3.2. We have now established the absolute case of the relative surjectivity
condition of 2.2.6 for our map Lloc → Wloc . The relative case is not much more difficult
and we leave it to the reader.

For later use we note the following:

Lemma 5.3.4 Let (p, g, V ) ∈ Lloc(X) , with p : Y → X . For every x ∈ X and every
b > 0 there exist a neighborhood U of x in X such that, on every component of p−1(U) ,
the function g is either bounded below by −b or bounded above by b .

Proof Chose a descending sequence of open balls Ui for i = 0, 1, 2, 3, . . . forming a neigh-
borhood basis for x in X . If the statement is false, then there exists b > 0 and connected
subsets Ki ⊂ Y for i = 0, 1, 2, 3, . . . such that p(Ki) ⊂ Ui and g(Ki) ⊃ [−b, b] for all
i . Choose zi ∈ Ki such that g(zi) = 0. The sequence z0, z1, z2, . . . in Y must have a
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convergent (infinite) subsequence, because (p, g) : Y → X ×R is proper and the two image
sequences in X and R converge. Let z∞ ∈ Y be the point which the subsequence converges
to. Then p(z∞) = x and g(z∞) = 0. Now p : Y → X is étale. Hence, for sufficiently large
i , there are unique neighborhoods U ′

i of z∞ in Y such that p maps U ′
i diffeomorphically to

Ui . It follows that zi ∈ U ′
i for infinitely many i and hence Ki ⊂ U ′

i for infinitely many i .
But it is also clear that the diameter of g(U ′

i ) tends to zero as i tends to infinity; hence the
lim inf of the diameters of the intervals g(Ki) is zero, which contradicts our assumption.

We turn to the left hand side of the second row in diagram (5.1).

Definition 5.3.5 For X in X , an element of L(X) shall consist of

(i) an element (π, f) ∈ W(X), with π : E → X etc.,

(ii) an element (p, g, V ) ∈ Lloc(X), with p : Y → X etc.,

(iii) a smooth, orientation preserving embedding λ : saddle(V, %) −→ E r ∂E over X ×R

such that im(λ) contains Σ(π, f).

Here saddle(V, %) is a subbundle of V , defined as {v ∈ V
∣

∣ ‖v+‖
2‖v−‖

2 ≤ 1} . We have
a canonical map V → R defined by v 7→ g(y) + 〈v, %v〉 for v in a fiber Vy of the vector
bundle V . (This was also used in the construction of the map Lloc → Wloc .) In this
way, saddle(V, %) becomes a space over X × R . The conditions in (iii) then imply that λ
identifies the zero section of V with the fiberwise singularity set Σ(π, f).

Remark 5.3.6 The embedding λ : saddle(V ) → E r ∂E need not have a closed image,
because the étale map Y → X need not be a closed map. But im(λ) is locally compact,
therefore locally closed in E .

Proposition 5.3.7 The forgetful map L →W is a weak homotopy equivalence.

Proof Again we use the relative surjectivity criterion of proposition 2.2.6 and again we
begin with the absolute case. Fix X in X and (π, f) ∈ W(X), with π : E → X . We want
to lift the concordance class of (π, f) to a class in L[X] . As in the proof of proposition 5.3.3,
we begin by choosing a vertical tubular neighborhood V ⊂ E of Σ = Σ(π, f), with vector
bundle projection

ω : V → Σ

over X . Then V is canonically identified with T πE|Σ , the restriction of the vertical tangent
bundle of E to Σ . Using this identification, we define fV : V → R by

fV (v) = 1
2H(ω(v))(v, v) ,

where H(ω(v)) is the second derivative of f , at ω(v), in the vertical direction. (This
second derivative is a symmetric bilinear form on the vertical tangent space at ω(v), well
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defined because the vertical part of the first derivative of f at ω(v) vanishes.) By the
Morse-Palais lemma [23], we can choose the vector bundle structure on V in such a way
that f(v) = fV (v) + fω(v) holds in a neighborhood U of the zero section of V . Next we
choose a positive definite inner product on V such that fV (v) = 〈v, %v〉 for a (unique) linear
isometric involution % : V → V . Without loss of generality, the neighborhood U contains
all v ∈ saddle(V, %) for which |fω(v)| ≤ 1 and |fV (v) + fω(v)| ≤ 1. If not, replace f by
ψf where ψ : E → [1,∞[ is a suitable smooth function which factors through π : E → X .
Multiply the inner product on V by ψ , too. The pairs (π, f) and (π, ψf) are concordant.
Summarizing, we can arrange

f(v) = fV (v) + fω(v) for v ∈ V with |fω(v)| ≤ 1 and |fV (v) + fω(v)| ≤ 1 .

Now choose a smooth embedding e : R → R with im(e) = ] − 1, 1[ , equal to the identity
near 0 ∈ R . Then (π, f) is concordant to (π], f ]), where π] is the restriction of π to
E] = f−1(im(e)) and f ] is e−1f on E] . Let Σ] = Σ ∩E] and V ] = V |Σ] . Let

K =
{

v ∈ saddle(V ], %)
∣

∣ |fV (v) + fω(v)| < 1
}

.

Then f |K = fV |K + fω|K by our assumptions, so K ⊂ E] . Using proposition 5.2.3, we
can construct an orientation preserving diffeomorphism

λ : saddle(V ], %) −→ K

relative to and over Σ] , such that (fV + fω)λ = e(fV + fω). This can also be viewed as
an embedding of saddle(V ], %) in E] . Then

f ]λ = e−1fλ = e−1(fV + fω)λ = e−1e(fV + fω) = fV + fω

on saddle(V ], %). That is, λ promotes the pair (π], f ]) to an element of L(X). This
establishes the absolute case of the relative surjectivity condition.
The truly relative case is slightly more difficult. We sketch it. Again fix X in X and
(π, f) ∈ W(X), with π : E → X . Let C ⊂ X be closed. We want to find an element
in L(X) whose image in W(X) is concordant rel C to (π, f). This can be constructed
essentially as in the absolute case, except for one change which consists in replacing the
embedding e : R → R above by a smooth family of smooth embeddings ex : R → R ,
depending on x ∈ X . Then we have the option to choose ex = idR for x in a very
small neighborhood of C , while having im(ex) ⊂ [−1,+1] for x outside a slightly larger
neighborhood of C .

5.4 Third row

Definition 5.4.1 Fix S in K and X in X . We define a sheaf Lloc,S on X . For X
in X , an element of Lloc,S(X) is an element (p, g, V ) of Lloc(X), where p has source Y ,
together with

(i) an embedding h : S ×X → Y over 3×X ,
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(ii) a continuous function δ : Y r im(h) −→ {−1,+1} .

Condition: Every x ∈ X has a neighborhood U in X such that g admits a lower bound
on p−1(U) ∩ δ−1(+1) and an upper bound on p−1(U) ∩ δ−1(−1).

In definition 5.4.1, the function δ has to be constant on each component of Y r im(h).
Using partitions of unity, one can reformulate the local bound condition by a global one, as
follows: there exists a continuous function b : X → R such that −bp ≤ g on δ−1(+1) and
bp ≥ g on δ−1(−1).

A morphism (k, ε) : R → S in K induces a map Lloc,S → Lloc,R taking an element
(p, g, V, h, δ) of Lloc,S(X) to (p, g, V ′, h′, δ′) where V ′ is obtained from V by pulling back,
h′(r, x) = h(k(r), x) for (r, x) ∈ R×X and

δ′(y) =

{

δ(y) if δ(y) is defined
ε(s) if y = h(s, x) for some (s, x) ∈ (S r k(R))×X.

This makes the rule T 7→ Lloc,T into a contravariant functor from K to the category of
sheaves on X . Moreover, for each T in K there is a forgetful map

Lloc,T → Lloc .

The maps Lloc,T → Lloc,S induced by morphisms S → T in K are over Lloc . This leads
to a canonical map of sheaves

v : hocolim
T in K

Lloc,T −→ Lloc . (5.8)

Proposition 5.4.2 The map v in (5.8) is a weak equivalence.

Proof Let Lδ
loc be the following sheaf on X with category structure. An object of Lδ

loc(X)
is an element (p, g, V ) of Lloc(X), with p : Y → X , together with a continuous function
δ : Y → {−1, 0,+1} subject to the following condition:

Every x ∈ X has a neighborhood U in X such that g admits a lower bound on
p−1(U) ∩ δ−1(+1), an upper bound on p−1(U) ∩ δ−1(−1), and both an upper and a
lower bound on p−1(U) ∩ δ−1(0).

Given two such objects, (p, g, V, δa) and (p, g, V, δb) with the same underlying (p, g, V ), we
write (p, g, V, δa) ≤ (p, g, V, δb) if δ−1

a (+1) ⊂ δ−1
b (+1) and δ−1

a (−1) ⊂ δ−1
b (−1). In this

situation there is a unique morphism from (p, g, V, δa) to (p, g, V, δb), otherwise there is
none. Thus the category Lδ

loc(X) is a poset.
The map v in (5.8) can now be factorized as follows:

hocolim
T in K

Lloc,T
v1 // βLδ

loc

v2 // Lloc (5.9)
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Here v2 is induced by the forgetful map Lδ
loc → Lloc . (Compare proposition 4.2.4.) To

describe v1 we recall that hocolimT Lloc,T was defined as

β(K op∫Lloc,•).

An object in (K op∫Lloc,•)(X) consists of an object T in K and an element a in Lloc,T (X).
A morphism from (T, a) to (S, b) is a morphism S → T in K taking a to b . An object
(T, a) in (K op∫Lloc,•)(X) with a = (p, g, V, δ, h) determines an object

(p, g, V, δ̄)

in Lδ
loc(X), where δ̄(z) = δ(z) if δ(z) is defined and δ̄(z) = 0 otherwise. This canonical

association is a functor, for each X , and as such induces v1 .
For simply connected X , the functor so defined, from (K op∫Lloc,•)(X) to Lδ

loc(X), is
clearly an equivalence of categories. (The point is that, by Ehresmann’s fibration theorem,
a proper étale map to a simply connected manifold is always a trivial bundle with finite
fiber.) In particular, it is an equivalence of categories for the extended simplices, X = ∆k

e

where k ≥ 0. Consequently v1 in (5.9) is a weak equivalence. Compare section 4.1.
With a view to showing that v2 is also a weak equivalence, we make the following obser-
vation. Given objects (p, g, V, δ1) and (p, g, V, δ2) in Lδ

loc(X), with the same underlying
(p, g, V ) ∈ Lloc(X), there always exists an object (p, g, V, δ3) in Lδ

loc(X) such that

(p, g, V, δ3) ≤ (p, g, V, δ1)
(p, g, V, δ3) ≤ (p, g, V, δ2).

Namely, let δ3(z) = +1 if and only if δ1(z) = +1 = δ2(z); let δ3(z) = −1 if and only if
δ1(z) = −1 = δ2(z), and let δ3(z) = 0 in the remaining cases.
Now we apply proposition 2.2.6 to v2 . Given (p, g, V ) ∈ Lloc(X), we can by lemma 5.3.4
find a locally finite covering of X by open subsets Uj , where j ∈ J , such that (p, g, V ) |U
has a lift ϕjj to ob(Lδ

loc)(Uj) for all j . With the observation just above, it is easy to extend
the collection of the ϕjj to a collection of elements ϕRR ∈ ob(Lδ

loc)(UR), in such a way
that ϕRR ≤ ϕQQ|UR whenever Q ⊂ R . The collection of these ϕRR is then an element of
βLδ

loc(X). This establishes the absolute case of the hypothesis in 2.2.6, and the verification
is much the same in the relative case.

Definition 5.4.3 For T in K , we define a sheaf LT as the pullback of

L
forget // Lloc Lloc,T .

forgetoo

Remark 5.4.4 An element in LT (X) consists of (π, f) ∈ W(X) with π : E → X , an
element (p, g, V, h, δ) in Lloc,T (X), with p : Y → X and h : T × X → Y , and a smooth
embedding λ : saddle(V, %) → E over X × R satisfying condition (iii) in definition 5.3.5.
Here E denotes the source of π and f .
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Definition 5.4.3 leads to a canonical map u from hocolimT LT to L .

Proposition 5.4.5 The map u : hocolim
T in K

LT −→ L is a weak equivalence.

Proof The proof is completely analogous to that of proposition 5.4.2. There is a factor-
ization of u having the form

hocolim
T in K

LT
u1 // βLδ u2 // L (5.10)

where Lδ is defined as the pullback of L −→ Lloc ←− L
δ
loc . One shows that u1 and u2 are

weak equivalences.

5.5 Fourth row, right hand column

Definition 5.5.1 Fix T in K . We define a map from Lloc,T to Wloc,T by

Lloc,T (X) 3 (p, g, V, h, δ) 7→ h∗(V ) ∈ Wloc,T (X).

To make sense of this formula, recall that p : Y → X denotes an étale map, V denotes a
riemannian vector bundle with involution on Y and h : T ×X → Y is an embedding over
X . Therefore h∗(V ) is a riemannian vector bundle with involution on T ×X .
There is an equally simple map in the other direction, Wloc,T → Lloc,T . Namely, for X
in X we can identify Wloc,T (X) with a subset of Lloc,T (X), consisting of the elements
(p, g, V, h, δ) ∈ Lloc,T (X) which have h = idT×X and g ≡ 0.

Lemma 5.5.2 The inclusion Wloc,T → Lloc,T is a weak equivalence.

Proof We use proposition 2.2.6. Given (p, g, V, h, δ) ∈ Lloc,T (X) with p : Y → X , choose
a smooth ψ : [0, 1/2[→ [0,∞[ such that ψ(s) = 0 for s close to 0 and ψ(s) tends to +∞
for s→ 1/2. Choose another smooth ϕ : [0, 1]→ [0, 1] such that ϕ(s) = 1 for s close to 0
and ϕ(s) = 0 for s close to 1. Then define

(p̄, ḡ, V̄ , h̄, δ̄) ∈ Lloc,T (X× ]0, 1[ )

in the following way. The source of p̄ is the union of Y× ]0, 1/2[ and h(T × X)× ]0, 1[ .
The formula for p̄ is p̄(y, s) = (p(y), s). (To ensure that p̄ is graphic, we should define
the source of p̄ and ḡ as a subset of the pullback of p : Y → X along the projection
X× ]0, 1 [−→ X . See definition 2.1.1.) The formula for ḡ is ḡ(y, s) := g(y) · ϕ(s) if
y is in h(T × X) and ḡ(y, s) := g(y) + δ(y)ψ(s) otherwise. The vector bundle V̄ is
the pullback of V under the projection. The formula for h̄ is h̄(t, x, s) := (h(t, x), s)
and the formula for δ̄ is δ̄(y, s) = δ(y). By inspection, (p̄, ḡ, V̄ , h̄, δ̄) is a concordance
from (p, g, V, h, δ) ∈ Lloc,T (X) to an element (p[, g[, V [, h[, δ[) ∈ Lloc,T (X) where h[ is a
homeomorphism and g[ ≡ 0. With some renaming we can arrange h[ to be an identity
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map, so that (p[, g[, V [, h[, δ[) ∈ Wloc,T (X). If a closed subset C of X is given, and the
restriction of (p, g, V, h, δ) to some open neighborhood U of C is already in Wloc,T (U),
then the concordance just constructed is constant on U , giving the relative surjectivity
condition in proposition 2.2.6.

Corollary 5.5.3 The map Lloc,T →Wloc,T of definition 5.5.1 is a weak equivalence.

Proof The composite map, from Wloc,T to Lloc,T and back to Wloc,T , is clearly a weak
equivalence.

5.6 Fourth row, left hand column

The goal is to write down a map LT →WT , depending naturally on T in K , and to show
that it is a weak equivalence.

We organise the information contained in a single element of LT (X) as in remark 5.4.4 and
use the same notation. Write ω : V → Y for the vector bundle projection, 〈 , 〉 for the
inner product on V and % : V → V for the isometric involution, as usual. In addition let

C+ = {v ∈ saddle(V, %) | δ(ω(v)) = +1 and 〈v, %v〉 ≥ −1},
C0 = {v ∈ saddle(V, %) | δ(ω(v)) undefined },
C− = {v ∈ saddle(V, %) | δ(ω(v)) = −1 and 〈v, %v〉 ≤ +1}.

The images λ(C+), λ(C0) and λ(C−) are closed subsets of E , despite remark 5.3.6. They
are also codimension zero submanifolds of E , with corners in the case of C+ and C− .
Writing U for the various connected components of V , let

Crg
+ =

∐

U with δω|U≡+1

D(U%)×Y S(U−%)× [−1,∞[ ,

Crg
0 =

∐

U with δω|U undef.

D(U%)×Y S(U−%)× R ,

Crg
− =

∐

U with δω|U≡−1

D(U−%)×Y S(U%)× ]−∞,+1] .

Then we have identifications

∂C+
∼= ∂Crg

+ by (5.3),

∂C0
∼= ∂Crg

0 by (5.3),

∂C−
∼= ∂Crg

− by (5.4).
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Definition 5.6.1 The regularization Erg of E above is obtained by removing the interior
of the closed codimension zero submanifold λ(C+ ∪ C0 ∪ C−) and gluing in a copy of
Crg

+ ∪C
rg
0 ∪C

rg
− instead, using the boundary identifications ∂C+

∼= ∂Crg
+ , ∂C0

∼= ∂Crg
0 and

∂C−
∼= ∂Crg

− just defined.

Remark 5.6.2 More precisely, Erg is defined in two steps. First, remove λ(C+ ∩ V
%),

λ(C0 ∩ V
%) and λ(C− ∩ V

−%) from E . The result is a manifold with disjoint, properly
embedded codimension zero copies of C+ r V % , C0 r V % and C− r V −% . Then make a
(triple) cobase change along the codimension zero embeddings

C+ r V % −→ Crg
+ ,

C0 r V % −→ Crg
0 ,

C− r V −% −→ Crg
−

determined by (5.3) and (5.4). This description gives a preferred structure of smooth
manifold on Erg .

The manifolds Crg
+ , Crg

0 and Crg
− come with a canonical map to X , via the projections to

Y . They also come with a canonical map to R , given by (v, t) 7→ t + 〈v, %v〉 . Under the
identifications in 5.6.2, these maps match π : E → X and f : E → R , respectively, which
leads to well defined and smooth maps

πrg : Erg → X,
f rg : Erg → R.

By construction, πrg is still a submersion and the product map (πrg, f rg) : Erg → X × R

is still proper. But in addition f rg is regular when restricted to any fiber of πrg . Therefore
and by Ehresmann’s fibration theorem we have proved

Proposition 5.6.3 The map (πrg, f rg) : Erg → X × R is a bundle of smooth compact
surfaces.

Keeping the above notation, let M = {z ∈ Erg | f rg(z) = 0} and let q = πrg|M . Then
q : M → X is a bundle of smooth compact surfaces by proposition 5.6.3. The intersection
of M with the embedded copy of C rg

0 in Erg is identified with

D(h∗V %)×T×X S(h∗V −%). (5.11)

The surface bundle q : M → X , the riemannian vector bundle h∗V → T × X and the
canonical embedding e of (5.11) in M now constitute an element of WT (X).

Definition 5.6.4 The map LT → WT promised in diagram (5.1) takes the element in
remark 5.4.4 to (q, h∗V, e) ∈ WT (X), where q = πrg|M and M = {z ∈ Erg | f rg(z) = 0} .
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By inspection, the map 5.6.4 is natural in the variable X and in the variable T , where T
runs through the objects of K . It makes diagram (5.1) commutative.

Remark 5.6.5 There is a slightly different way to describe the regularization process; it
will help us in proving that the map LT → WT defined in 5.6.4 is a weak equivalence.
Keeping the notation of remark 5.4.4, let

K+ = {v ∈ saddle(V, %) | δ(ω(v)) = +1},
K0 = C0 = {v ∈ saddle(V, %) | δ(ω(v)) undefined },

K− = {v ∈ saddle(V, %) | δ(ω(v)) = −1},

so that saddle(V, %) = K+ ∪K0 ∪K− . The regularized versions are

Krg
+ =

∐

U with δω|U≡+1

D(U%)×Y S(U−%)× R ,

Krg
0 =

∐

U with δω|U undef.

D(U%)×Y S(U−%)× R ,

Krg
− =

∐

U with δω|U≡−1

D(U−%)×Y S(U%)× R.

We can re-define Erg as follows: First, remove λ(K+ ∩ V
%), λ(K0 ∩V

%) and λ(K− ∩ V
−%)

from E . The result is a manifold with disjointly embedded codimension zero copies of
K+rV % , K0rV % and K−rV −% . Then make a (triple) cobase change along the codimension
zero embeddings

K+ r V % −→ Krg
+ ,

K0 r V % −→ Krg
0 ,

K− r V −% −→ Krg
−

determined by (5.3) and (5.4).

Comparison with remark 5.6.2 shows that this new description of E rg agrees with the old
one up to a canonical diffeomorphism (over X×R). The new description has the advantage
of giving us a canonical (in general non-closed) codimension zero embedding

Krg
+ ∪K

rg
0 ∪K

rg
− −→ Erg .

Intersecting its image with M = {z ∈ Erg | f rg(z) = 0} , we get a canonical (and in general
non-closed) embedding

D(V %̄)×Y S(V −%̄) −→ M (5.12)

where %̄ : V → V is equal to −% on connected components of V having δω ≡ −1, and
%̄ = % elsewhere on V . This extends the embedding of (5.11) into M and leads to a
factorization of the map LT →WT from definition 5.6.4, which we now make explicit.
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Definition 5.6.6 Let ŴT be the sheaf on X defined as follows. For X in X , an element
of ŴT (X) consists of

(i) a smooth graphic bundle q : M → X of compact oriented surfaces;

(ii) an element (p, g, V, h, δ) of Lloc,T (X), with p : Y → X ;

(iii) a smooth and fiberwise orientation preserving embedding over X ,

e : D(V %̄) ×Y S(V −%̄) −→ M r ∂M .

(It is understood that V in (ii) comes with an involution % ; as in (5.12), this determines
%̄ : V → V .) Boundary condition: as in 5.1.3.

There is a forgetful map ŴT →WT obtained by passing from V in (ii) of definition 5.6.6
to h∗V , and making the corresponding changes in (iii). By the observations leading up to
definition 5.6.6, the map LT →WT in definition 5.6.4 has a factorization

LT
// ŴT

forget //WT . (5.13)

Lemma 5.6.7 The map LT → ŴT in (5.13) is a weak equivalence.

Proof An map which is inverse to LT → ŴT up to canonical concordances can be defined
as follows. Given a surface bundle q : M → X , an element (p, g, V, h, δ) ∈ Lloc,T (X) and
an embedding e as in definition 5.6.6, let Erg = M ×R and define Crg

+ , Crg
0 , Crg

− , C+ , C0

and C− exactly as in definition 5.6.1. Make an embedding

Crg
+ ∪ C

rg
0 ∪ C

rg
− −→ Erg

by (v, t) 7→ (e(v), t + g(ω(v)), where ω : V → Y is the vector bundle projection. Remove
from M × R the interior of the image of this embedding, and glue in C+ ∪ C0 ∪ C− . Call
the result E . This comes with a submersion π : E → X and a smooth f : E → R which is
fiberwise Morse. There is also a canonical embedding λ : saddle(V, %)→ E ; to see this more
clearly, reason as in remark 5.6.5. The result is therefore an element of LT (X), consisting
of (π, f), the element (p, g, V, h, δ) ∈ Lloc,T (X) and the embedding λ .

Lemma 5.6.8 The forgetful map ŴT →WT in (5.13) is a weak equivalence.

Proof The map has a section WT → ŴT . This identifies each set WT (X) with the subset
of ŴT (X) obtained by adding the conditions h = idT×X and g ≡ 0 in definition 5.6.6(ii).
It suffices to show that the section WT → ŴT satisfies the relative surjectivity criterion of
proposition 2.2.6.
Let a surface bundle q : M → X , an element (p, g, V, h, δ) ∈ Lloc,T (X) and an embedding
e as in definition 5.6.6 be given. The proof of lemma 5.5.2 gives us an explicit concordance

(p̄, ḡ, V̄ , h̄, δ̄) ∈ Lloc,T (X× ]0, 1[ ) (5.14)
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from (p, g, V, h, δ) ∈ Lloc,T (X) to an element in the image of Wloc,T (X)→ Lloc,T (X). Here
p̄ is obtained from p × id : Y× ]0, 1[−→ X× ]0, 1[ by restriction to an open subset, and
similarly the vector bundle V̄ is obtained from V× ]0, 1[ by restriction. It is therefore
clear that (5.14) lifts to a concordance between elements of ŴT (X), in such a way that the
underlying surface bundle of the concordance is

q̄ = q × id ]0,1[ : M× ]0, 1[−→ X× ]0, 1[

and the underlying embedding ē is obtained from e × id ]0,1[ by restriction. If a closed
subset C of X is given, and the restriction of (p, g, V, h, δ) to some open neighborhood U
of C is already in Wloc,T (U), then the concordance so constructed is constant on U .

Corollary 5.6.9 The map LT →WT in definition 5.6.4 is a weak equivalence.

This completes the construction of diagram (5.1) and the verification that all the vertical
arrows in it are weak equivalences.

5.7 Using the concordance lifting property

Lemma 5.7.1 For fixed T in K , the forgetful map WT → Wloc,T has the concordance
lifting property.

Proof Let X be a smooth manifold. Any riemannian vector bundle on T ×X× [0, 1] with
isometric involution is isomorphic to the pullback of a riemannian vector bundle on T ×X
(with isometric involution) along the projection T × X × [0, 1] → T × X . Consequently,
any concordance starting at an element z of Wloc,T (X) is trivial up to an isomorphism of
vector bundles. A choice of such a trivializing isomorphism determines, for each y ∈ WT (X)
which lifts z , a lifted concordance starting at y .

Now fix an element (V, %) in Wloc,T (?). That is, V is an oriented 3-dimensional riemannian
vector bundle on T , with a fiberwise isometric involution % . For each t ∈ T , the dimension
of the eigenspace Vt

−% is equal to the label of t in 3. The following is true by definition.

Lemma 5.7.2 The fiber of the forgetful map WT →Wloc,T over (V, %) ∈ Wloc,T (?) is the
sheaf which takes an X in X to the set of all pairs (q, e) where

(i) q denotes a smooth graphic bundle M → X of compact oriented surfaces, subject to
a boundary condition as in definition 5.1.3;

(ii) e : D(V %) ×T S(V −%) × X −→ M r ∂M is a smooth embedding over X which is
fiberwise orientation preserving.
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Corollary 5.7.3 The fiber of the forgetful map WT → Wloc,T over (V, %) ∈ Wloc,T (?) is
weakly equivalent to the sheaf which takes an X in X to the set of all smooth graphic bun-
dles q : M → X of oriented compact surfaces, where each fiber has its (oriented) boundary
identified with

∂(S1 × [0, 1] ) q −S(V %)×T S(V −%).

Proof To get from data (q, e) as in lemma 5.7.2 to the kind of bundle described in corol-
lary 5.7.3, delete the interior of im(e) from the total space of the surface bundle q . To get
from a surface bundle M → X as in corollary 5.7.3 to the data described in lemma 5.7.2,
form the union of M and (D(V %)×T S(V −%))×X along (S(V %)×T S(V −%))×X .

Remark 5.7.4 The description of the (homotopy) fiber in corollary 5.7.3 uses only the
part of T lying over {1, 2} ⊂ 3, since spheres of dimension −1 are empty.

6 The connectivity problem

6.1 Overview and definitions

The previous section gave us decompositions of W and Wloc into pieces WS and Wloc,S ,
respectively, and a description of the homotopy fibers of the forgetful maps

WS −→Wloc,S

as certain surface bundle theories, cf. corollary 5.7.3. For a given S in K , the surfaces
involved are typically not connected, so that the representing space of the fiber theory is
not directly related to the moduli space whose group completion we are studying. In this
section we remedy this by showing that upon taking the homotopy colimit over S , we can
in fact assume that the relevant surfaces are connected.

Definition 6.1.1 For X in X let Wc,S(X) ⊂ WS(X) consist of the triples (q, V, e) as in
definition 5.1.3, with q : M → X etc., such that the surface bundle M r im(e) −→ X has
connected fibers.

Then Wc,S is a subsheaf of WS and |Wc,S| is a union of connected components of |WS | .
The forgetful map from Wc,S to Wloc,S still has the concordance lifting property. By
analogy with corollary 5.7.3, we have the following analysis of its fibers.

Corollary 6.1.2 The fiber of the forgetful map Wc,S → Wloc,S over V ∈ Wloc,S(?) is
weakly equivalent to the sheaf which takes an X in X to the set of all smooth graphic
bundles q : M → X of oriented compact connected surfaces, where the boundary of each
fiber Mx is identified with

∂(S1 × [0, 1] ) q −(S(V %)×S S(V −%)).
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It would therefore be nice to have a statement saying that the inclusion of hocolimSWc,S

in hocolimSWS is a weak equivalence. Unfortunately such a statement is nonsensical if we
insist on letting S run through the entire category K . We have a contravariant functor
S 7→ WS from K to the category of sheaves on X , but we do not have a subfunctor
S 7→ Wc,S . It is not the case that the map

(k, ε)∗ : WT →WS

induced by a morphism (k, ε) : S → T in K will always map the subsheaf Wc,T to the
subsheaf Wc,S . Let us take a more careful look at this phenomenon.
We may assume that k is an inclusion and that T r S has exactly one element t , with
label λ(t) ∈ 3 and sign ε(t) ∈ {±1} . Fix (q, V, e) in WT (X), with q : M → X and let
(q′, V ′, e′) be the image of (q, V, e) in WS(X), with q′ : M ′ → X . For each x ∈ X there is
a canonical embedding of surfaces

Mx r im(ex) −→ M ′
x r im(e′x).

The complement of its image is identified with

D(V %
(t,x))× S(V −%

(t,x)) if ε(t) = +1, and

S(V %
(t,x))×D(V −%

(t,x)) if ε(t) = −1,

where V(t,x) is the fiber of V over (t, x) ∈ T×X . We have a problem when the complement is
nonempty but has empty boundary, because then it will contribute an additional connected
component. This happens precisely when (λ(t), ε(t)) = (3,+1) and when (λ(t), ε(t)) =
(0,−1). In all other cases, there is no problem.

Now our indexing category K is equivalent to a product K03 ×K12 . The categories K03

and K12 can be described as full subcategories of K : namely, K03 is spanned by the
objects S whose reference map S → 3 has image contained in {0, 3} and K12 is spanned
by the objects S whose reference map S → 3 has image contained in {1, 2} .
For homotopy colimits of functors from a product category to spaces (or to sheaves on X )
there is a Fubini principle. In our case it states that

hocolim
T in K

WT ' hocolim
Q in K03

hocolim
S in K12

WQqS. (6.1)

Lemma 6.1.3 For any morphism (k, ε) : P → Q in K03 , the commutative square

hocolim
S in K12

WQqS
(k,ε)∗ //

��

hocolim
S in K12

WPqS

��
hocolim
S in K12

Wloc,QqS
(k,ε)∗ // hocolim

S in K12

Wloc,PqS

is homotopy cartesian (after passage to representing spaces).
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Theorem 6.1.4 The inclusion

hocolim
S in K12

Wc,S −→ hocolim
S in K12

WS

is a weak equivalence.

Theorem 6.1.4 is the main result of the section. We develop a surgery method to prove
it. The idea is to make nonconnected surfaces connected by means of multiple surgeries
on embedded (thickened) 0-spheres. Then we need to know that such multiple 0-surgeries
on a surface are essentially unique. In order to state the uniqueness, we view them as the
objects of a category.

6.2 Categories of multiple surgeries

Definition 6.2.1 Let M be a compact, smooth, nonempty surface. Let CM be the
topological category defined as follows. An object consists of a finite set T and a smooth
orientation preserving embedding eT of D2×S0×T in M r ∂M , subject to the condition
that surgery on eT results in a connected surface. A morphism from (S, eS) to (T, eT ) is
an injective map k : S → T such that k∗eT = eS .
The set of objects ob(CM ) is topologized as a disjoint union, over all T , of spaces of smooth
embeddings from D2 × S0 × T to M r ∂M , with the compact-open C∞ topology. The
total morphism set mor(CM ) is topologized as a closed subset of ob(CM )× ob(CM ) via the
map (source,target).

Proposition 6.2.2 The space BCM is contractible.

The proof requires a lemma.

Lemma 6.2.3 Let σ : N → X be a submersion of smooth manifolds without boundary,
dim(N) > dim(X) . Suppose that for each x ∈ X there exists a contractible open neighbor-
hood V of x in X , a finite set Q and a map Q×V → N over X inducing a surjection from
Q ∼= π0(Q × V ) to π0(Ny) for every y ∈ V . Then there exists a locally finite covering of
X by contractible open sets Vj , where j ∈ J , and finite sets Qj , and a smooth embedding

a :
∐

j

Qj × Vj −→ N

over X , such that the restriction of a to Qj × Vj induces surjections Qj → π0(Nx) , for
each j ∈ J and x ∈ Vj .

Example 6.2.4 The submersion R2 r (0, 0) −→ R ; (x, y) 7→ x satisfies the hypothesis
of lemma 6.2.3. The submersion R r 0→ R ; x 7→ x does not. Surjectivity is not directly
related to the issue; the projection from (R×{0, 1})r (0, 0) to R is a surjective submersion
which also fails to satisfy the hypothesis of lemma 6.2.3.
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Proof of lemma 6.2.3. Note first that the statement is not completely trivial. Using the
hypothesis, we could start with a locally finite covering of X by contractible open sets
Vj , and choose finite sets Qj and maps aj : Qj × Vj → N over X inducing surjections
Qj → π0(Ny) for every y ∈ Vj . This would give us a map

a :
∐

j

Qj × Vj −→ N

which is an immersion. Unfortunately there is no guarantee that it is an embedding. To
solve this problem we will partition a “large”, dense open subset U of N into “levels”
indexed by the real numbers, and arrange that a maps distinct connected components of
∐

Qj × Vj to distinct levels of U . Then a is an embedding.
The jet transversality theorem, applied to sections of the vertical tangent bundle of N ,
implies that we can find a k � 0 and a smooth f : N → R such that the fiberwise k -jet
prolongation jk

σf : N → Jk
σ (N,R) is nowhere 0. Let U ⊂ N consist of all z ∈ N such

that f |Nσ(z) is regular at z . Then U is open in N and Ux := U ∩ Nx is dense in Nx ,
for each x ∈ X . Hence the inclusions Ux → Nx induce surjections π0(Ux) → π0(Nx).
The hypotheses on σ now give us a a covering of X by contractible open subsets Vj , and
for each Vj a finite set Qj and a map aj : Qj × Vj → U over X such that the induced
composite map Qj → π0(Ux)→ π0(Nx) is onto for every x ∈ Vj . We can assume that the
Vj are the open stars of the vertices in a sufficiently fine triangulation of X , in which case
the covering is locally finite. But in addition we can easily arrange that faj is constant on
q×Vj for each q ∈ Qj , and that the resulting map

∐

j Qj → R is injective. Then the map
a which equals aj on Qj × Vj satisfies all our requirements.

In the proof of theorem 6.1.4, we will use a sheaf version CM of CM . For connected X in
X let CM (X) be the (discrete) category whose objects are the pairs (T, eT ) where T is a
finite set and

eT : D2 × S0 × T ×X −→ (M r ∂M)×X

is a smooth embedding over X , fiberwise orientation preserving and subject to the condition
that fiberwise surgery on eT results in a bundle of connected surfaces. A morphism from
(S, eS) to (T, eT ) is an injective map k : S → T such that k∗eT = eS .
Since ob(CM (∆k

e)) is the set of smooth maps from ∆k
e to the embedding space ob(CM ), one

gets a functor of topological categories |CM | → CM which induces a degreewise homotopy
equivalence of the nerves and therefore a homotopy equivalence B|Cop

M |
∼= B|CM | → BCM .

(Here it is best to define BCM as the fat realization [35] of the nerve of CM , ignoring the
degeneracy operators.)

Proof of proposition 6.2.2. We show that βCop
M is weakly equivalent to the terminal

sheaf taking every X in X to a singleton. By proposition 2.2.6, this reduces to the
following

Claim. Let X in X be given with a closed subset A and a germ s ∈ colimU βC
op
M (U),

where U ranges over the neighborhoods of A in X . Then s extends to an element
of βCop

M (X).
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To verify this, choose an open neighborhood U of A in X such that the germ s can be
represented by some s0 ∈ βCop

M (U). The information contained in s0 includes a locally
finite covering of U by open subsets Uj for j ∈ J . (Making U smaller if necessary, we can
assume that this is locally finite in the strong sense that every x ∈ X has a neighborhood
which meets only finitely many Uj .) It also includes a choice of object ψRR ∈ ob(CM (UR))
for each finite nonempty subset R of J . (There are also morphisms ψRS ∈ mor(CM (US)),
but they are of course determined by their sources ψRR|US and targets ψSS .) Next, choose
an open X0 ⊂ X such that U ∪X0 = X and the closure of X0 in X avoids A .
Let N be the open subset of (M r ∂M)×X0 obtained by removing from (M r ∂M)×X0

the closures of the embedded 2-disk bundles determined by the various ϕRR|UR ∩X0 . By
making U and X0 and the Uj smaller if necessary, but taking care that the Uj remain
the same near A , we can arrange that the projection N → X0 satisfies the hypothesis of
lemma 6.2.3.
By the lemma, there exists a locally finite covering of X0 by contractible open sets Vj ,
and finite sets Qj and an embedding a of

∐

j Qj × Vj in N , over X0 , such that a
induces surjections Qj → π0(Nx) for each j and x ∈ Vj . (Again, making X0 smaller if
necessary, we can assume that this is locally finite in the strong sense that every x ∈ X
has a neighborhood which meets only finitely many Vj .) We can also choose a smooth
embedding b of

∐

j Qj ×Vj in N , over X0 , inducing constant maps Qj → π0(Nx) for each

j and x ∈ Vj , and such that im(a)∩im(b) = ∅ . (For example, the distinct sheets of b
∣

∣Qj×Vj

can be chosen very close to a selected sheet of a
∣

∣Qj×Vj .) Since the Vj are contractible, the
normal bundles of a and b can be trivialized (as oriented 2-dimensional vector bundles),
and so the “union” of a and b extends to a smooth and fiberwise orientation preserving
embedding

c : D2 × S0 ×
∐

j(Qj × Vj) −→ N

over X0 . For each j with nonempty Vj , the restriction of c to D2 × S0 × Qj × Vj is an
object ϕjj of CM(Vj). Finally we can arrange that Vj is empty whenever Uj is nonempty.
We are now ready to define an explicit element in βCop

M (X) which extends the germ s . Let
Yj = Uj if Uj is nonempty, Yj = Vj if Vj is nonempty, and Yj = ∅ for all other j ∈ J .
Then the Yj form a locally finite open covering of X . For finite R ⊂ J with nonempty
YR , we can write YR = US ∩ VT for disjoint subsets S, T of R with S ∪ T = R . Let
ϕRR ∈ ob(CM (YR)) be the coproduct (which exists by construction) of ψSS|YR and the
ϕjj|YR for j ∈ T . The covering j 7→ Yj together with the data ϕRR for finite nonempty
R ⊂ J is an element in βCop

M (X) which extends the germ s .

6.3 Parametrized multiple surgeries

We reformulate proposition 6.2.2 in a parametrized setting and deduce theorem 6.1.4 from
the reformulation. First we remind the reader of Segal’s edgewise subdivision of a category.
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Remark 6.3.1 For any category D , the edgewise subdivision es(D) of D is another
category defined as follows. An object of es(D) is a morphism f : c0 → c1 in D . A
morphism in es(D) from an object f : c0 → d0 to an object g : d0 → d1 is a commutative
square

c0
f // c1

��
d0

OO

g // d1

in D . It is well known that B(es(D)) is homeomorphic to BD , if D is a discrete category.
More precisely, by [13, Lm.2.4] the nerve of es(D) is isomorphic as a simplicial set to
the edgewise subdivision of the nerve of D , and this implies by [36] that the realizations
are homeomorphic. In the case of a simplicial category D one can argue degreewise. The
general case of a topological category can in most cases be reduced to the case of a simplicial
category.

Definition 6.3.2 Fix an object S in K12 . Let (T,U) be a pair of finite sets with U ⊂ T
and T ∩S = ∅ . We introduce a sheaf WS;(T,U) on X with a forgetful map WS;(T,U) →WS .
For X in X , an element in WS;(T,U)(X) is an element (q, V, e) of WS(X) with q : M → X
etc., together with a smooth embedding

eT : D2 × S0 × T ×X −→M r ∂M

over X , avoiding im(e). Condition: Fiberwise surgery on eU results in a bundle of con-
nected surfaces; here eU denotes the restriction of eT to D2 × S0 × U ×X .

Let P be the category whose objects are pairs of finite sets (T,U) with U ⊂ T , where a
morphism from (Q,R) to (T,U) is an injective map h : Q → T with h(R) ⊃ U . Such a
morphism (Q,R)→ (T,U) induces a map of sheaves WS;(T,U) −→ WS;(Q,R) , so that there
is a contravariant functor from P to sheaves on X given by

(T,U) 7→ WS;(T,U).

Corollary 6.3.3 The forgetful maps WS;(T,U) →WS induce a homotopy equivalence

hocolim
(T,U)

|WS;(T,U)| ' |WS| .

Proof Fix an element in WS(?), consisting of an oriented surface M and a smooth orien-
tation preserving embedding

e : D(V %)×S S(V −%) −→M r ∂M.

where V denotes a 3-dimensional oriented riemannian vector bundle over S with involution.
It is enough to show that the homotopy fiber of

hocolim
(T,U)

|WS;(T,U)| −→ |WS |
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over the point corresponding to M is contractible. In this situation the processes of forming
homotopy colimits and homotopy fibers commute. Moreover each of the forgetful maps
WS;(T,U) →WS has the concordance lifting property, so by proposition A.2.6, the homotopy
fiber which we are interested in is weakly equivalent to

hocolim
(T,U)

|fiberM (WS;(T,U) →WS)|. (6.2)

Let MS be the compact surface obtained from M by deleting int(im(e)). It is clear that
each expression |fiberM (WS;(T,U) →WS)| in (6.2) can be replaced by the naturally homo-
topy equivalent

mor(T,U)CMS
,

the space of morphisms in CMS
of definition 6.2.1 which induce the inclusion U → T

of finite sets. The homotopy colimit now becomes the classifying space of the transport
category

Pop∫mor•CMS
,

cf. section D.1, where the bullet stands for objects (T,U) of P . This is a category whose
objects are the morphisms (U, eU )→ (T, eT ) in CMS

where the underlying map U → T is
an inclusion. The morphisms correspond to certain commutative squares in CMS

. What we
have here is a category equivalent to the edgewise subdivision (see remark 6.3.1 above) of
CMS

. Its classifying space is therefore homotopy equivalent to BCMS
, hence contractible

by proposition 6.2.2.

Proof of theorem 6.1.4. Using the homotopy invariance property of homotopy direct
limits, we obtain from corollary 6.3.3 a homotopy equivalence of spaces

η+ : hocolim
S in K12

hocolim
(T,U) in P

|WS;(T,U)| // hocolim
S in K12

|WS | .

We compare this with the map

η− : hocolim
S in K12

hocolim
(T,U) in P

|WS;(T,U)| // hocolim
R in K12

|Wc,R| (6.3)

induced by the composite maps

WS;(T,U) // WS∪T
(−)∗ // WS∪(TrU) (6.4)

and renaming, S ∪ (T r U)  R . Here the first arrow in (6.4) is self-explanatory. The
second is induced by the inclusion S ∪ (T r U) → S ∪ T , with the sign function on U
which is ≡ −1. Thus the first arrow amounts to adding the surgery data corresponding
to labels in T (but not performing any surgeries), while the second amounts to performing
the surgeries corresponding to labels in U ⊂ T . It follows that the composite map in (6.4)
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lands in the subsheaf Wc,S∪(TrU) , as required in (6.3). The map η− in (6.3) is clearly a
retraction, with a canonical section ζ which identifies each Wc,R with WR;(∅,∅) . The target
of η− is contained in the target of η+ , so we may ask whether η− and η+ are homotopic
as maps to hocolimS |WS| . This is indeed the case, by remark D.1.3 and the fact that each
WS;(T,U) fits into a natural commutative diagram

WS;(T,U)

forget

{{wwwwwwwwwwww

��

(6.4)

%%LLLLLLLLLLLLLL

WS WS∪T
(+)∗oo (−)∗ //WS∪(TrU) .

The homotopy restricts to a constant homotopy from η+ζ to η−ζ . Consequently, it is a
deformation retraction of hocolimS |WS | to hocolimS |Wc,S| .

6.4 Annihiliation of 2-spheres

The goal is to prove lemma 6.1.3. Most of the proof is based on some elementary product
decompositions.

Lemma 6.4.1 Let T = T1 ∪ T2 be a disjoint union, where T1 is an object of K03 and T2

is an object of K . There are weak equivalences, natural in T2 for fixed T1 ,

WT −→ Wloc,T1
×WT2

, Wloc,T −→ Wloc,T1
×Wloc,T2

.

Proof The second map is induced by the inclusions T1 → T and T2 → T . It should be
clear that it is a weak equivalence. Note that sign functions on T2 and T1 are not needed.
The first coordinate of the first map is again induced by the inclusion T1 → T . The second
coordinate of the first map,

WT −→WT2
,

is defined as follows. Let (q, V, e) be an element of WT (X) as in definition 5.1.3, with
q : M → X . For a ∈ T1 , the bundle

D(V %
a )×Xa S(V −%

a )

(where Xa = a×X and Va = V |Xa ) is either empty or a bundle of 2-spheres. In any case
it has empty boundary and its image under e is a union of connected components of M .
Let M ′ be obtained from M by deleting these components, for all a ∈ T1 . Let V ′ be the
restriction of V to T2 ×X and let e′ be the restriction of e to

∐

b∈T2

D(V %
b )×Xb

S(V −%
b ) .

Then (q′, V ′, e′) ∈ WT2
(X). This determines the map WT −→ WT2

. Again it should be
clear that the resulting map

WT2
−→Wloc,T1

×WT2
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is a weak equivalence: it is easy to write down an inverse for the induced map on homotopy
groups.

Proof of lemma 6.1.3. We may assume that the complement of P in Q has exactly one
element. Using lemma 6.4.1, we can isolate a common factor Wloc,P in each of the four
terms of the square, then remove it. In other words, we can also assume that P = ∅ , which
implies that Q has exactly one element. (We still have a morphism in K03 from ∅ to Q and
we are not going to throw it away.) By the same reasoning we can now isolate a common
factor

hocolim
S in K12

Wloc,S

in the two terms of the lower row of the square, then remove it. Next we can isolate a
common factor Wloc,Q in the two terms of the left-hand column. We can again remove it
because Wloc,Q is connected: Wloc,Q[?] is a singleton. This leaves us with a square of the
form

hocolim
S in K12

WS
u

−−−−→ hocolim
S in K12

WS





y





y

? −−−−−−−→ ?

where the map u can be described as follows. Choose a base point z ∈ Wloc,Q(?). Then
Wloc,Q becomes a sheaf on X with values in the category of pointed sets and gives us a
canonical inclusion of WS in

Wloc,Q ×WS 'WQqS

for each S in K12 . Compose that with the map WQqS → WS induced by our morphism
∅ → Q , regard S as a variable and apply hocolimS .
We have to show that u is a weak equivalence. In order to do that we make a case distinction.
The reference map Q → {0, 3} ⊂ 3 amounts to a choice of an element ` from {0, 3} and
the morphism ∅ → Q amounts to a choice of an element m ∈ {−1,+1} .
Case 1 is the case where (`,m) = (0,+1) or (`,m) = (3,−1). By inspection, u is the
identity map in that case.
Case 2 is the case where (`,m) = (3,+1) or (`,m) = (0,−1). Here we note that our choice
of z ∈ Wloc,Q(?) determines an oriented 3-dimensional vector space V with inner product.
We can assume V = R3 . The map u is given by disjoint union of all surfaces in sight with
S2 . More precisely, for each S in K12 and X in X , we have a map

uS,X : WS(X)→WS(X)

given by (q, V, e) 7→ (q], V, e) where q : M → X is a surface bundle etc., and q] is obtained
from q by disjoint union with a trivial sphere bundle S2 ×X → X . This is natural in the
variables X and S and so induces u above.
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Lemma 6.4.2 The map

u : hocolim
S in K12

WS −→ hocolim
S in K12

WS

given by disjoint union of all surfaces in sight with S2 is a weak equivalence.

Proof Using concatenation of surfaces, we can put a monoid structure on hocolimSWS .
More precisely, we have for each S and T in K12 a map

concatenation : WS ×WT →WSqT

and this induces a multiplication
(

hocolim
S in K12

WS

)

×
(

hocolim
T in K12

WT

)

−→
(

hocolim
U in K12

WU

)

.

Now let y and y′ be the elements of W∅(?) determined by the surfaces (S1 × [0, 1] ) q S2

and S1×[0, 1], respectively. The map u under investigation is simply given by concatenation
with y , where we use the inclusion

W∅ ⊂ hocolim
S in K12

WS .

But the homotopy class of u (after passage to representing spaces) depends only on the
component of y in

∣

∣ hocolim
S in K12

WS

∣

∣ .

The surgery methods of the previous subsection show immediately that this agrees with the
component of y′ . Hence u is homotopic, after passage to representing spaces, to the map
given by concatenation with y′ .

7 Stabilization

7.1 Stabilization

Choose z ∈ Vc(?) of genus 1. For every X in X , the unique map X → ? induces
Vc(?) → Vc(X) and so allows us to think of z as an element of Vc(X). Let z−1Vc be the
sheaf on X obtained by sheafifying the contravariant functor (alias presheaf)

X −→ colim
(

Vc(X)
z·
−→ Vc(X)

z·
−→ Vc(X)

z·
−→ Vc(X)

z·
−→ · · ·

)

,

where z· denotes concatenation with z . The sheafification process is very mild in this case.
In particular, the presheaf and its sheafification agree on compact objects of X , such as
spheres. Hence the canonical map from

z−1|Vc| = colim
(

|Vc|
z·
−→ |Vc|

z·
−→ |Vc|

z·
−→ |Vc|

z·
−→ · · ·

)
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to |z−1Vc| is a homotopy equivalence.
Similarly, for each S in K , define z−1WS and z−1Wc,S as the colimits, in the category of
sheaves on X , of the diagrams

WS
z·
−→ WS

z·
−→WS

z·
−→ WS

z·
−→ · · · ,

Wc,S
z·
−→Wc,S

z·
−→Wc,S

z·
−→Wc,S

z·
−→ · · · ,

respectively. Then again we have homotopy equivalences

|z−1WS| ' z
−1|WS | , |z−1Wc,S| ' z

−1|Wc,S| .

Moreover, since z−1|Vc| , z
−1|WS | and z−1|Wc,S| have been defined as sequential colimits

of CW–spaces, they can also be regarded as homotopy colimits: for example,

z−1|WS | ' hocolim
(

|WS |
z·
−→ |WS |

z·
−→ |WS |

z·
−→ |WS |

z·
−→ · · ·

)

.

Proposition 7.1.1 ΩB|Vc| ' Z×BΓ+
∞,2 .

Proof We noted in section 1 that |Vc| '
∐

g BΓg,2 . It follows that

|z−1Vc| ' Z×BΓ∞,2 .

On the other hand the bar construction gives us a simplicial space E• with

Ek = |z−1Vc| × |Vc|
k

and a simplicial map from it to

k 7→ ?× |Vc|
k .

The Harer stability theorem implies that this simplicial map satisfies the hypotheses of
corollary C.1.2, so that we have a homology fibration sequence

|z−1Vc| −→ |E•| −→ B|Vc|.

It only remains to show that |E•| ' ? . To this end observe that |E•| is homotopy equivalent
to the realization of a monotone union of simplicial spaces of the form k 7→ |Vc|

k+1 . Each
of these has a contractible realization.

For an object T in K12 , corollary 6.1.2 implies that the homotopy fiber of the localization
map |Wc,T | −→ |Wloc,T | over any base point is homotopy equivalent to

∐

g BΓg, 2+2|T | .

Lemma 7.1.2 For T in K12 , any homotopy fiber of |z−1Wc,T | −→ |Wloc,T | is homotopy
equivalent to Z×BΓ∞,2+2|T | .

Finally we have the stabilized versions of lemma 6.1.3 and theorem 6.1.4:
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Corollary 7.1.3 For any morphism (k, ε) : P → Q in K03 , the commutative square

hocolim
S in K12

|z−1WQqS|
(k,ε)∗ //

��

hocolim
S in K12

|z−1WPqS|

��

hocolim
S in K12

|Wloc,QqS|
(k,ε)∗ // hocolim

S in K12

|Wloc,PqS|

is homotopy cartesian.

Corollary 7.1.4 The inclusion

hocolim
T in K12

|z−1Wc, T | −→ hocolim
T in K12

|z−1WT |

is a homotopy equivalence.

Corollaries 7.1.3 and 7.1.4 are about a new homotopy colimit decomposition of |W| :

Lemma 7.1.5 |W| ' | z−1W| ' hocolim
T in K

|z−1WT | .

Proof Since |W| is group complete, the inclusion |W| → z−1|W| ' |z−1W| is a homo-
topy equivalence. The second homotopy equivalence in the chain follows from |z−1WT | '
z−1|WT | and

hocolim
T in K

z−1|WT | ' z−1
(

hocolim
T in K

|WT |
)

.

7.2 Using the Harer-Ivanov stability theorem

Lemma 7.2.1 The canonical map from Z×BΓ∞,2 to the homotopy fiber (over the base
point) of the forgetful map

hocolim
S in K12

|z−1Wc,S| −→ hocolim
S in K12

|Wloc,S|

induces an isomorphism in homology with integer coefficients.

Proof For the object S = ∅ of K12 , we have |z−1Wc,S| ' Z × BΓ∞,2 and |Wloc,S| = ? ,
so that there is indeed a canonical map from Z×BΓ∞,2 to the homotopy fiber of

hocolim
S in K12

|z−1Wc,S| −→ hocolim
S in K12

|Wloc,S |.
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We now check that the hypothesis of corollary C.1.3 is satisfied. Let (k, ε) : S → T be a
morphism in K12 . We have to verify that, in the commutative square of spaces

|z−1Wc,T | //

(k,ε)∗

��

|Wloc,T |

(k,ε)∗

��

|z−1Wc,S| // |Wloc,S |,

the induced map from any of the homotopy fibers in the upper row to the corresponding
homotopy fiber in the lower row induces an isomorphism in homology. The homotopy fibers
in question are related by a map

Z×BΓ∞,2+2|T | −→ Z×BΓ∞,2+2|S|

given geometrically by attaching cylinders D1× S1 or double disks D2× S0 to those pairs
of boundary circles which correspond to elements of T r k(S). This map is an integral
homology equivalence by the Harer-Ivanov stability theorem. Apply corollary C.1.3.

Corollary 7.2.2 The canonical map from Z×BΓ∞,2 to the homotopy fiber (over the base
point) of the forgetful map

hocolim
S in K

|z−1WS | −→ hocolim
S in K

|Wloc,S|

induces an isomorphism in homology with integer coefficients.

Proof Combine lemma 7.2.1 with corollaries 7.1.4 and 7.1.3.

Proof of theorem 1.3.4. By lemma 7.1.5 and diagram 5.1, we have

hocolim
S in K

|z−1WS| ' |W| , hocolim
S in K

|Wloc,S| ' |Wloc| .

Therefore corollary 7.2.2 implies that the homotopy fiber of |W| → |Wloc| is homology
equivalent to Z × BΓ∞,2 . On the other hand, |W| and |Wloc| are infinite loop spaces by
theorems 1.3.1 and 1.3.2, and the map |W| → |Wloc| is an infinite loop map. Hence its
homotopy fiber is an infinite loop space, hence group complete. It follows that the homotopy
fiber is Z×BΓ+

∞,2 ' ΩB|Vc| .

A More about sheaves

A.1 Concordance and the representing space

Let F be a sheaf on X . We shall construct a natural transformation ϑ : [X, |F| ] −→ F [X] ,
and an inverse ξ : F [X]→ [X, |F| ] for ϑ .
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We start with the construction of ξ . Fix X in X and an element u ∈ F(X). Choose
a smooth triangulation of X , with vertex set T . Suppose that S ⊂ T is a distinguished
subset (the vertex set of a simplex in the triangulation). Let

∆e(S) = {w : S → R | Σsw(s) = 1}
∆(S) = {w ∈ ∆e(S) | w ≥ 0}.

The triangulation gives us characteristic embeddings cS : ∆(S) → X , one for each distin-
guished S ⊂ T . By induction on S , we can choose smooth embeddings

ce,S : ∆e(S)→ X ,

extending the cS , which are compatible: i.e., if S is distinguished and R ⊂ S is nonempty,
then ce,S agrees with ce,R on ∆eR) ⊂ ∆e(S). Let uS = ce,S

∗(u) ∈ F(∆e(S)).
Finally choose a total ordering of T . This leads to an identification of each ∆e(S) with a
standard extended simplex. Consequently it promotes each uS to a simplex of the simplicial
set n 7→ F(∆n

e ). We then have a unique map ξ(u) : X → |F| such that, for each S as
above with |S| = n+ 1, the diagram

∆(S)
∼= //

cS

��

∆n

char. map for u

��
X

ξ(u) // |F|

commutes. It is straightforward to show that the resulting homotopy class of maps X → |F|
depends only on the concordance class of u ∈ F(X).

Next we construct ϑ : [X, |F| ] −→ F [X] . We may replace |F| by the “fat” realization
‖F‖ , which is obtained by forgetting the degeneracy operators in

n 7→ F(∆n
e )

and realizing the resulting incomplete simplicial set. So we start with a choice of map
g : X → ‖F‖ . Without loss of generality, we may assume that g is simplicial for a smooth
triangulation of X with totally ordered vertex set T . That is, for each n ≥ 0 and each
distingushed S ⊂ T , with characteristic map cS : ∆(S)→ X , the composition

∆n ∼= ∆(S)
cS // X

g // ‖F‖

is the characteristic map associated with some uS ∈ F(∆n
e ).

Choose a smooth homotopy of smooth maps ht : X → X , where 0 ≤ t ≤ 1, such that

(1) the map h0 is the identity,

(2) for every t , the map ht maps each simplex of the triangulation to itself and

(3) each simplex of the triangulation has a neighbourhood in X which is mapped to the
simplex by h1 .
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Then for each n ≥ 0 and each distinguished S with |S| − 1 = n and a sufficiently small
neighborhood VS of cS(∆(S)) in X , we obtain a smooth map VS → ∆e(S) ∼= ∆n

e by
composing h1|VS with the inclusion of ∆(S) in ∆e(S) ∼= ∆n

e . Using this map to pull back
uS ∈ F(∆n

e ), we obtain compatible elements u′S ∈ F(VS) which, by the sheaf property of
F , determine a unique element ϑ(g) of F(X). Again, it is straightforward to verify that
the concordance class of ϑ(g) depends only on the homotopy class of g .

Proposition A.1.1 The maps ξ and ϑ are reciprocal inverses.

Proof Let u ∈ F(X). We want to show that ϑξ(u) is concordant to u . With suitable
choices in the constructions above, we have VS ⊃ im(ce,S) for all distinguished S , and
then ϑξ(u) equals h1

∗(u), where (ht : X → X)0≤t≤1 is the homotopy which appears in the
definition of ϑ . Since h1 is smoothly homotopic to h0 = idX , this implies that ϑξ(u) is
indeed concordant to u . Therefore

ϑξ = id: F [X] −→ F [X].

In order to show that ξϑ is the identity on [X, |F| ] , we introduce a simplicial monoid Q•

whose realization acts on |F| . Namely, Qn is the monoid of smooth maps f : ∆n
e → ∆n

e

taking each (extended) face of ∆n
e to itself. Then Qn acts on the right of F(∆n

e ) by

s ·f = f∗(s),

and so |Q•| acts on |F| . Consequently the monoid [X, |Q•| ] acts on the right of [X, |F| ] .
The effect of ξϑ on an element [g] ∈ [X, |F| ] can be described in terms of this action.
Indeed,

ξϑ[g] = [g] · [w]

for some w : X → |Q•| . The map w is determined by h1 : X → X constructed above
as part of a homotopy of maps from X to X . Since we are assuming that h1 maps the
image of each ce,S to itself, ce,S

−1h1ce,S is defined. This gives us for each n ≥ 0 and
each n-simplex in the triangulation of X an element in Qn , hence a map from X to the
realization of Q• . Since |Q•| is contractible, [w] ∈ [X, |Q•| ] is always the neutral element,
so that [g] · [w] = [g] .

The discussion above has a compact support version as follows. Fix z ∈ F(∗), so that F
becomes a functor from X op to pointed sets. For X in X , we will say that an element
s ∈ F(X) has compact support if its image in F(X r K) is the base point, for some
compact K ⊂ X . A concordance between elements s0, s1 of F(X) with compact support
is said to have compact support if it restricts to a constant concordance between elements of
F(X rK), for some compact K ⊂ X . The set of compactly supported elements in F(X)
modulo compactly supported concordance is denoted Fc[X] . Similarly, a map X → |F| is
said to have compact support if its restriction to X rK is constant with value z , for some
compact K ⊂ X . We let mapc(X, |F| ) be the set of such maps. Then we have an obvious
extension of the above proof:
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Proposition A.1.2 There is a bijection Fc[X] ∼= π0 mapc(X, |F| ) .

This proves proposition 2.2.5 in the special case where A = {z} . The general case is very
similar.

A.2 Categorical properties

Proposition A.2.1 The construction F 7→ |F| takes pullback squares of sheaves to pull-
back squares of compactly generated Hausdorff spaces. In particular it respects products.

Proof This is obvious from the definition of |F| .

Definition A.2.2 The categorical coproduct F1qF2 of two sheaves F1 and F2 on X can
be defined by (F1 qF2)(X) =

∏

iF1(Xi)qF2(Xi) where Xi denotes the path component
of X corresponding to an i ∈ π0(X).

Proposition A.2.3 |F1 q F2| ∼= |F1| q |F2| .

Proof Note that ∆n
e is path-connected for n ≥ 0.

Definition A.2.4 A natural transformation u : F → G of sheaves on X has the concor-

dance lifting property if, for X in X and s ∈ F(X), any concordance h ∈ G(X× ]0, 1[ )
starting at u(s) lifts to a concordance H ∈ F(X× ]0, 1[ ) starting at s .

Example A.2.5 Given a natural transformation u : F → G of sheaves on X , make a new
sheaf F ] as follows. An element of F ](X) is a triple (h, s0, s1) where s0 ∈ F(X), s1 ∈ G(X)
and h is a concordance from u(s0) to s1 . Then it is not hard to show that the forgetful
transformations F ] → F and F ] → G given by (h, s0, s1) 7→ s0 and (h, s0, s1) 7→ s1 ,
respectively, have the concordance lifting property. It is also clear from proposition 2.2.5
that the forgetful map F ] → F defined by (h, s0, s1) 7→ s0 is a weak homotopy equivalence.

Proposition A.2.6 Suppose given sheaves E ,F ,G on X and morphisms (alias natural
transformations) u : E → G , v : F → G . Let E ×G F be the fiber product (pullback) of u
and v . If u has the concordance lifting property, then the projection E ×G F → F has the
concordance lifting property and the following square is homotopy cartesian:

|E ×G F| //

��

|F|

v

��
|E|

u // |G|.
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A.3 Relative homotopy and fibrations

We begin with a special case of proposition A.2.6. Given a natural transformation u : E → G
of sheaves on X with the concordance lifting property, let z be a point in G(?) and let Ez

be the fiber of u over z (in the category of sheaves). Let hofiberz |u| denote the homotopy
fiber of |u| : |E| → |G| over the point z .

Lemma A.3.1 For any y ∈ Ez(?) , the homotopy set πn(Ez, y) is in canonical bijection
with πn(hofiberz |u|, y) .

Proof (sketch): Because of the concordance lifting property, πn(Ez, y) can be identified
with an appropriate relative homotopy group (or homotopy set) of the map of sheaves
u : E → G . Representatives of the latter are elements

(r, s) ∈ G(Bn+1)×F(Sn),

where Bn+1 = Dn+1 r Sn , such that s ∈ F(Sn) is based at y and (r, u(s)) belongs to
G(Dn+1) ⊂ G(Bn+1)× G(Sn). See definition 2.2.1. We can identify this relative homotopy
group (set) with a relative homotopy group (set) of the map of spaces |u| : |E| → |G| , which
can then be identified with a homotopy group (set) of the homotopy fiber of |u| over z .

Corollary A.3.2 In the situation of lemma A.3.1, the sequence

|Ez|
�

� // |E|
|u| // |G|

is a homotopy fiber sequence.

Proof The composite map from |Ez| to |G| is constant. This leads to a canonical map
from |Ez| to the homotopy fiber of |u| : |cE| → |G| over z . It is easy to verify directly that
this induces a surjection on π0 . For each y ∈ Ez(?), the induced map of homotopy sets

πn(Ez, y) −→ πn(hofiberz |u|, y)

is the one from lemma A.3.1. It is therefore always a bijection.

Proof of proposition A.2.6. We fix z ∈ F(?) and obtain v(z) ∈ G(?). The fiber of

E ×G F −→ F

over z is identified with the fiber of u : E → G over v(z). Using corollary A.3.2 we can
conclude that the homotopy fiber of |E ×G F| −→ |F| over z maps to the homotopy fiber
of |u| : |E| → |G| over v(z) by a homotopy equivalence.

B Sheaves with a category structure

This section contains the proof of theorem 4.1.3.
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B.1 Cocycle sheaves without indices

We begin with the definition of a close relative β ′F of βF . In the definition of β ′F we
trade the open coverings in the definition of βF for surjective étale maps. Recall a smooth
map is étale if it is locally diffeomorphic, i.e., if its differential at any point of the source is
invertible. A covering of a smooth manifold X by open subsets Yj , for j ∈ J , gives rise to
such a map Y → X , where Y ⊂ J ×X is the set of all (j, x) with x ∈ Yj .

Definition B.1.1 For X in X , an element in β ′F(X) consists of the following data:

(i) A smooth manifold Y and a graphic, surjective and étale map Y → X . (We will write
Y (n) for the manifold of all maps n→ Y such that the composition n→ Y → X is
constant.)

(ii) For m,n ≥ 0 and each injective g : m → n (which need not be order-preserving), a
morphism ϕg in the category F(Y (n)).

The morphisms ϕg are subject to a 1-cocycle condition, which comes in two parts. The
first part says that ϕg is an identity morphism if g is bijective. The second part says

ϕgf = g∗(ϕf ) ◦ ϕg.

Here f and g can have the form f : `→ m and g : m→ n , so that gf is defined. We have
written g∗ : F(Y (m))→ F(Y (n)) for the map induced by g∗ : Y (n) −→ Y (m) .

Suppose that (Y, ϕ?) is an element of β ′F . Suppose also that Y is an open subset of
J ×X and the surjective étale map Y → X which is part of the data has been obtained
by restricting the projection J × X → X . Then Y determines an open covering of X
by open subsets Yj . Namely, Yj can be defined as the image of Y ∩ (j × X) under the
projection J ×X → X . Each Y (n) can be identified with a disjoint union of copies of open
subsets YS ⊂ X , where S is a nonempty subset of J with at most n + 1 elements, and
YS =

⋂

j∈S Yj as usual. In this way, ϕ? breaks up into data ϕRS ∈ F(YS), one for each
pair of finite nonempty R,S ⊂ J with R ⊂ S . We leave the detailed verification to the
reader. The conclusion is that βF is a subsheaf of β ′F .

Proposition B.1.2 The inclusion of βF in β ′F is a weak homotopy equivalence.

For the proof we need two lemmas, mostly about étale maps.

Lemma B.1.3 Let Y → X be a smooth, étale and surjective map. There exists an open
subset Y [ ⊂ J ×X such that the projection Y [ → X is locally finite and surjective, and a
map a : Y [ → Y over X .
In addition, suppose given a closed C ⊂ X , an open Y [

C ⊂ J × C such that the projection
Y [

C → C is locally finite and surjective, and a map aC : Y [
C → Y over X . Then we can

construct Y [ and a : Y [ → Y above in such a way that Y [|C = Y [
C and aC = a|Y [

C .
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Proof For the absolute case, select a locally finite open covering of X by open subsets
Y [

j , where j ∈ J , such that Y → X admits a section sj over each Y [
j . Let

Y [ = {(j, x) ∈ J ×X | x ∈ Y [
j}.

The sj together define a map Y [ → Y over X .
In the relative case we make a case distinction. If j ∈ J is such that Y [

C has nonempty
intersection with j × X , select an open Y [

j ⊂ X in such a way that Y → X admits a
section sj over Y [

j and Y [
j ∩ C equals the image of (Y [

C) ∩ (j ×X) in X . For all other
j ∈ J , select an open Y [

j ⊂ X r C in such a way that Y → X admits a section sj over
Y [

j . This is to be done in such a way that the Y [
j constitute a covering of X . Then let

Y [ = {(j, x) ∈ J ×X | x ∈ Y [
j} as before.

Lemma B.1.4 Let (Y [, ϕ[
?) and (Y, ϕ?) be elements of β ′F(X) . Suppose also that there

exists a map g : Y [ → Y over X such that g∗ϕ? = ϕ[
? . Then (Y, ϕ?) and (Y [, ϕ[

?) are
concordant.
Moreover, if C ⊂ X is closed and g is an identity map over a neighborhood of C , then the
concordance can be constructed so as to be constant over a neighborhood of C .

Proof Absolute case: We ignore minor set-theoretic issues related to definition 2.1.1. —
We want to make a concordance of the form

(Z,ψ?) ∈ β
′F(X× ]0, 1[ )

where Z is the disjoint union of Y [× ]0, 2/3[ and Y× ]1/3, 1[ . This comes with an obvious
surjective étale map to X× ]0, 1[ . There is also a map q : Z → Y over X defined by

q(y, t) :=

{

g(y) for (y, t) ∈ Y [× ]0, 2/3[ ,
y for (y, t) ∈ Y× ]1/3, 1[ .

We let ψ? = q∗ϕ? .
Relative case: We proceed somewhat differently. We are assuming Y [|U = Y |U where U
is an open subset of X containing C . Also, g equals id on Y [|U . We make a concordance
of the form (Z,ψ) ∈ β ′F(X× ]0, 1[ ) where Z is the disjoint union of

(Y [× ]0, 1/2[ ) ∪ (Y |U × ]0, 1[ ) ∪ (Y× ]1/2, 1[ )

and (Y [|(XrC))× ]1/4, 3/4[ . This comes with an obvious surjective étale map to X× ]0, 1[ .
There is also a map q : Z → Y over X given by

q(y, t) :=















g(y) for (y, t) ∈ Y [× ]0, 1/2[
y for (y, t) ∈ (Y |U)× ]0, 1[ ,
y for (y, t) ∈ Y× ]1/2, 1[ ,

g(y) for (y, t) ∈ (Y [|(X r C))× ]1/4, 3/4[ .

Again we let ψ? = q∗ϕ? .

Proof of B.1.2. This is now a direct consequence of the relative surjectivity criterion in
proposition 2.2.6 and the two lemmas just above.
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B.2 A variation on the nerve construction

For n ≥ 0 let Dn be the set of nonempty subsets of {0, 1, 2, . . . , n} . This is partially
ordered by inclusion. There are functors vn : Dn→ n given by vn(S) = max(S) ∈ n .

Lemma B.2.1 Let C be a small category. Then the map of simplicial sets

(n 7→ hom(nop,C )) −→ (n 7→ hom(Dnop,C ))

given by composition with v• induces a homotopy equivalence of the geometric realizations.

Proof The simplicial set (n 7→ hom(Dnop ,C )) is obtained by applying Kan’s functor ex,
the right adjoint of the barycentric subdivision, to (n 7→ hom(nop ,C )). The statement is
therefore a special case of [22, 3.7].

We note that the simplicial set (n 7→ hom(nop,C )) is precisely the nerve of C , denoted
N•C in section 4.

Corollary B.2.2 Let m 7→ Cm be a simplicial category. The map of bisimplicial sets

(m,n) � // hom(nop,Cm)

��

(m,n) � // hom(Dnop,Cm)

given by composition with the functors vn : Dn → n induces a homotopy equivalence of
the geometric realizations.

B.3 Completion of the proof

Continuing with the proof of 4.1.3, we come to a user–friendly description of the classifying
space B|F| . Recall that ∆n

e = {(x0, x1, . . . , xn) ∈ Rn+1 | Σixi = 1} .

Lemma B.3.1 The classifying space B|F| is homotopy equivalent to the geometric real-
ization of the simplicial set given by

n 7→ hom(Dnop,F(∆n
e )).

Proof We defined B|F| in section 4 as the geometric realization of a simplicial space given
by n 7→ |hom(nop,F)| , where hom(nop,F) is viewed as a sheaf on X and the vertical bars
around it indicate the representing space construction. This means that we have defined
B|F| as the geometric realization of a bisimplicial set

(m,n) 7→ hom(nop,F(∆m
e )).
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By corollary B.2.2, we may instead use the geometric realization of the bisimplicial set

(m,n) 7→ hom(Dnop,F(∆m
e )).

It is well known that the geometric realization of a bisimplicial set is homeomorphic to the
geometric realization of its diagonal. In our situation this is the simplicial set given by

n 7→ hom(Dnop,F(∆n
e )).

Lemma B.3.2 Let S be an infinite set and let Z• be a simplicial set. The geometric real-
ization |Z•| is homotopy equivalent to the geometric realization of the incomplete simplicial
set n 7→ Zn × emb(n, S) , where emb(n, S) is the set of injective maps from n to S .

Proof There is a projection map from the realization of n 7→ Zn× emb(n, S) to |Z•| . We
will show that it has contractible fibers. Let y be a point in a k -cell of |Z•| , corresponding
to some nondegenerate simplex in Zk . The fiber over y is homeomorphic to the classifying
space of the poset P whose elements are the nonempty finite subsets of S equipped with
a total ordering and a surjection to k . For each finite subset P ′ of P , there exists T ∈P
such that sup(T, T ′) exists for all T ′ ∈ P ′ . This implies that the inclusion of |P ′| in
|P| is homotopic to a constant map (with value equal to the vertex determined by T ).
Therefore P is contractible, i.e., the fiber in question is contractible.

Corollary B.3.3 Let J be the (fixed) infinite set from definition 4.1.1. The classifying
space B|F| is homotopy equivalent to the geometric realization of the incomplete simplicial
set Z• given by

n 7→ hom(Dnop,F(∆n
e ))× emb(n, J).

We come to the construction of a comparison map Ψ from the incomplete simplicial set in
corollary B.3.3 to the simplicial set n 7→ βF(∆n

e ). The idea is simple. An n-simplex in
the incomplete simplicial set of corollary B.3.3 consists of a functor

ϕ : Dnop −→ F(∆n
e )

and an injective map λ : n → J . The functor ϕ carries exactly the same information as
an element in βF(∆n

e ) whose underlying J -indexed open covering is given by j 7→ ∆n
e if

j = λ(t) for some t ∈ n and j 7→ ∅ otherwise. To make this information more functorial,
i.e., compatible with face operators, we replace the nonempty open sets in the open covering
by smaller ones, according to the rule

j = λ(t) 7→ { (x0, x1, . . . , xn) ∈ ∆n
e | xt > 0}. (B.1)

The remaining data can be restricted and we now have an element Ψ(ϕ, λ) ∈ βF(∆n
e ). The

construction Ψ respects the face operators. We now restate theorem 4.1.3 as

Lemma B.3.4 The map Ψ induces a homotopy equivalence from B|F| ' |Z•| to |βF| .
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Proof Let z be a vertex of |Z•| . For each n ≥ 0, the map Ψ induces a map

πn( |Z•|, z) −→ πn(βF , z) ∼= πn(β′F , z).

We will show that this is bijective by constructing the inverse map. As in section A.1, we
can represent elements of πn(β′F , z) by elements of β ′F(Rn) with compact support. Let
(Y, ϕ?) be such an element of β ′F(Rn), with notation as in definition B.1.1. There exists a
smooth triangulation of Rn , with vertex set T , which for each v ∈ T allows an embedding
gv : st2(v)→ Y over Rn . Here st2(v) is the union of the open stars st(w) of all vertices w
adjacent to v . Choose such a triangulation and such embeddings gv . Also, for each finite
nonempty subset S of T spanning a simplex of the triangulation, choose a smooth map
ce,S : ∆e(S) → Rn extending the characteristic inclusion cS : ∆(S) → Rn . This is to be
done in such a way that ce,S agrees with ce,R on a face ∆e(R) ⊂ ∆e(S) and

ce,S(∆e(S)) ⊂ st2(v)

whenever v ∈ S . We then have, for each S as above, a commutative square

S ×∆e(S) //

��

Y

��
∆e(S)

ce,S // Rn

where the top row is given by (v, x) 7→ gv(ce,S(x)) and the vertical arrows are étale and
surjective. Using this to pull back the data ϕ? , we obtain for each S an element

xS ∈ hom(D(S)op,F(∆e(S)))

where D(S) is the poset of nonempty subsets of S . Finally we choose a total ordering on
T and an injection T → J . This promotes each xS to an element of hom(Dnop,F(∆n

e ))
where n = |S| − 1. For each S we also get a canonical injection uS from n ∼= S to T ⊂ J ,
so that the pair (xS , uS) can be regarded as an n-simplex of Z• . Now we have a unique
map from Rn to |Z•| which, on ∆(S) ⊂ Rn , is the characteristic map for the simplex
(xS , uS). It has compact support. Its compactly supported homotopy class depends only
on the compactly supported concordance class of (Y, ϕ?). This gives us the map

Λ : πn(β′F , z) −→ πn( |Z•|, z) ∼= πn(B|F|, z)

which we need.
The composition Ψ∗Λ : πn(β′F , z)→ πn(β′F , z) is the identity. Namely, ϑ−1Ψ∗Λ = ϑ−1 by
construction, where ϑ is the bijective map of propositions 2.2.5 and section A.
To show that ΛΨ∗ is the identity on πn( |Z•|, z), we resurrect the simplicial monoid Q•

which was introduced in section A.1. We may replace |Z•| by the geometric realization of
the (complete) simplicial set

n 7→ hom(Dnop,F(∆n
e ))

on which |Q•| acts (from the right). In this way we get a right action of the monoid πn|Q•|
on πn( |Z•|, z), with monoid structure coming from that on |Q•| . For every [g] ∈ πn( |Z•|, z)
we have

ΛΨ∗[g] = [g] · [h1]
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for some [h1] ∈ πn|Q•| which may depend on [g] . But |Q•| is contractible, so [h1] will
always be the neutral element and [g] · [h1] = [g] .

C Geometric realizations and the bar construction

C.1 Realization, quasifibrations and homology fibrations

Lemma C.1.1 Let u• : E• −→ B• be a map between incomplete simplicial spaces (or
good simplicial spaces). Suppose that the squares

Ek
uk //

di

��

Bk

di

��
Ek−1

uk−1 // Bk−1

are all homotopy cartesian (k ≥ i ≥ 0). Then the following is also homotopy cartesian:

E0
u0 //

incl.
��

B0

incl.
��

|E•|
|u•| // |B•|.

Proof It suffices to prove the statement for incomplete simplicial spaces. (The realiza-
tion of a good simplicial space is homotopy equivalent to the realization of the underlying
incomplete simplicial space.) Without loss of generality all the maps uk : Ek → Bk are
fibrations. Then, by inspection, |u•| from |E•| to |B•| is a quasifibration in the sense of
[6]. By [6], [7], this implies that each fiber of |u•| maps by a weak homotopy equivalence
to the corresponding homotopy fiber. Hence the canonical map from E0 to the homotopy
pullback of

|E•|
|u•| // |B•| B0

incl.oo

is a weak homotopy equivalence.

Corollary C.1.2 Let u• : E• −→ B• be a map between incomplete simplicial spaces (or
good simplicial spaces). Suppose that, in each square

Ek
uk //

di

��

Bk

di

��
Ek−1

uk−1 // Bk−1
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the canonical map from any homotopy fiber of uk to the corresponding homotopy fiber of
uk−1 induces an isomorphism in integer homology. Then in the square

E0
u0 //

incl.
��

B0

incl.
��

|E•|
|u•| // |B•|,

the canonical map from any homotopy fiber of u0 to the corresponding homotopy fiber of
|u•| induces an isomorphism in integer homology.

Proof It suffices to prove the statement for incomplete simplicial spaces. Again we may
assume that each uk : Ek → Bk is a fibration. Let D be the functor X 7→ S1 ∧ X+

from spaces to pointed spaces. Let D(Ek;uk) be the result of applying D to each fiber of
uk : Ek → Bk . We still have quasifibrations

D(Ek;uk) −→ Bk

and we are in a situation where the previous lemma can be applied; so we get a homotopy
cartesian square

D(E0;u0) //

incl.
��

B0

incl.
��

|D(E•;u•)| // |B•|

where the horizontal arrows are quasifibrations. But the lower left hand term is homeo-
morphic to D(|E•|; |u•|), the space obtained by applying D fiberwise to the fibers of |u•| .
Hence we may “undo” the D operation in the left–hand column, replacing D(E0;u0) by E0

and |D(E•;u•)| ∼= D(|E•|; |u•|) by |E•| , without changing the homology of the horizontal
fibers except for a degree shift.

Corollary C.1.3 Let C be a small category and let u : G1 → G2 be a natural transforma-
tion between functors from C to spaces. Suppose that, for each morphism f : a→ b in C ,
the map f∗ from any homotopy fiber of ua to the corresponding homotopy fiber of ub in-
duces an isomorphism in integer homology. Then for each object a of C , the inclusion of any
homotopy fiber of ua in the corresponding homotopy fiber of u∗ : hocolimG1 → hocolimG2

induces an isomorphism in integer homology.

Proof Apply corollary C.1.2 with Ek :=
∐

G1(D(k)) and Bk =
∐

G2(D(k)), where both
coproducts run over the set of contravariant functors D from the poset k to C . Then |E•|
is hocolimG1 and |B•| is hocolimG2 .
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C.2 The bar construction for monoids without unit

Let A be a topological monoid, not necessarily with unit. This determines an incomplete
simplicial space X• where Xk = Ak and the face operators di : Xk → Xk−1 are given by

(a1, a2, . . . , ak) 7→ (a1, a2, . . . , ai−1, aiai+1, ai+2, . . . , ak) if i 6= 0, k
(a1, a2, . . . , ak) 7→ (a2, a3, . . . , ak) if i = 0
(a1, a2, . . . , ak) 7→ (a1, a2, . . . , ak−1) if i = k.

Of course, X• is known as the bar construction on A and |X•| is known as the classifying
space of A .

If A has a unit (neutral element), we can use it to define degeneracy operators in X• ,
making X• into a simplicial space. If this is a good simplicial space [35], then its realization
as a simplicial space is homotopy equivalent to the realization of the underlying incomplete
simplicial space. Either of these two realizations can therefore be regarded as the classifying
space of A .

A topological monoid A , with or without unit, determines another topological monoid A+

which, as a space, is the disjoint union of A with a singleton. The added point serves as
the neutral element (unit) in a topological monoid structure on A+ which extends the one
on A . (If A did have a unit to begin with, then that will no longer be the unit in A+ , but
of course it will be a central idempotent in A+ .)

Lemma C.2.1 The simplicial space k 7→ (A+)k is good and its realization (as a complete
simplicial space) is homeomorphic to the realization of the incomplete simplicial space
k 7→ Ak .

Proof It is well known that the forgetful functor from complete simplicial spaces to incom-
plete simplicial spaces has a left adjoint. We denote it by X• 7→ X∼

• . The most common
description of X∼

• is as follows:

X∼
k :=

k
∐

m=0

∐

f : k�m

Xm

where f runs through all surjective order preserving maps from k to m . This makes it fairly
clear how X∼

• is a simplicial space. Namely, suppose given an order preserving g : j → k
and a triple (m, f, x) in X∼

k , so that f : k → m is order preserving and x ∈ Xm . Then we
let

g∗(m, f, x) := (m′, v, u∗x)

where fg = uv is the unique decomposition of fg : j → m into an order preserving surjec-
tion v : j → m′ and an order preserving injection u : m′ → m .
The simplicial space X∼

• is good and its geometric realization as a complete simplicial space
is homeomorphic to the geometric realization of the incomplete simplicial space X• .
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If X• is the bar construction on A , that is, Xk = Ak , then X∼
• becomes the bar construc-

tion on A+ , that is, X∼
k = (A+)k . Therefore k 7→ (A+)k is a good simplicial space and

its realization as such is homeomorphic to the realization of the incomplete simplicial space
k 7→ Ak .

The observations above concerning topological monoids with or without unit can be general-
ized to topological categories with or without identity morphisms. (Monoids are categories
with only one object.) The category version of lemma C.2.1 is implicit in [25, §2.1].

D Generalities about homotopy colimits and stratifications

D.1 Homotopy colimits

Any functor D from a small (discrete) category C to the category of spaces has a colimit,
colimD . This is the quotient space of the coproduct

∐

a in C

D(a)

obtained by identifying x ∈ D(a) with f∗(x) ∈ D(b) for any morphisms f : a → b in C
and elements x ∈ D(a). It is well known that the colimit construction is not well behaved
from a homotopy theoretic point of view. Namely, suppose that w : D1 → D2 is a natural
transformation between functors from C to spaces and that wa : D1(a) → D2(a) is a
homotopy equivalence for any object a in C . Then this does not in general imply that the
map induced by w from colimD1 to colimD2 is again a homotopy equivalence.

Example D.1.1 Let C be the poset of proper subsets of {0, 1} , ordered by inclusion.
The diagrams

[0, 1]←↩ ∂[0, 1] ↪→ [0, 1], ?← ∂[0, 1] ↪→ ?

can be regarded as functors from C to spaces. There is a natural transformation w from
the first to the second such that wa is a homotopy equivalence for each object a in C . The
colimit of the first diagram is homeomorphic to S1 . The colimit of the second diagram is
a single point.

Call a functor D from C to spaces cofibrant if, for any diagram of functors (from C to
spaces) and natural transformations

D
v // E F

woo

where wa : F(a) → E(a) is a homotopy equivalence for all a ∈ C , there exists a natu-
ral transformation v′ : D → F and a natural homotopy D(a) × [0, 1] → E(a) (for all a)
connecting wv′ and v . It is not hard to show the following. If v : D1 → D2 is a natural
transformation between cofibrant functors such that va : D1(a) → D2(a) is a homotopy
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equivalence for each a ∈ C , then v has a natural homotopy inverse (with natural homo-
topies) and therefore the induced map colimD1 → colimD2 is a homotopy equivalence.

This suggests the following procedure for making colimits homotopy invariant. Suppose that
D from C to spaces is any functor. Try to find a natural transformation D ′ → D specializing
to homotopy equivalences D′(a)→ D(a) for all a in C , where D′ is cofibrant. Then define
the homotopy colimit of D to be colimD ′ . If it can be done, hocolimD is at least well
defined up to homotopy equivalence. (If D is the second diagram in example D.1.1, then
the first diagram in the same example can serve as D ′ because it happens to be cofibrant.
This gives hocolimD ∼= S1 .)

This point of view is carefully presented in [8]. Some of the ideas go back to [26]. As we
will see in a moment, there is a canonical construction for D ′ which depends naturally on
D .

The standard foundational reference for homotopy colimits and homotopy limits is the book
[3] by Bousfield and Kan. But the first explicit construction of homotopy colimits in general
appears to be due to Segal [37].

Again let D be a functor from a discrete small category C to the category of spaces.
Following Segal we introduce a topological category denoted C ∫D , the transport category

of D :
ob(C ∫D) =

∐

a∈ob(C )

D(a) , mor(C ∫D) =
∐

f∈mor(C )

D(σ(f)) .

Here σ(f) denotes the source of a morphism f in C . We will write morphisms in C ∫D
as pairs (f, x) where f ∈ mor(C ) and x ∈ D(σ(f)). The composition (g, y) ◦ (f, x) of
two such morphisms is defined if an only if g ◦ f is defined in C and f∗(x) = y , in which
case (g, y) ◦ (f, x) = (g ◦ f, x). The classifying space B(C ∫D) is a model for the homotopy
colimit of D .

To relate B(C ∫D) to our earlier discussion we define a functor D ′ from C to spaces as
follows. For a ∈ ob(C ) let C ↓a be the category of C -objects over a , [24, II.6]. Let

D′(a) := B ((C ↓a)∫D)

for objects a in C , where we view D as a functor on C ↓a . Then D ′ is cofibrant and the
canonical map D′(a)→ D(a) is a homotopy equivalence for every a in C . Moreover,

B(C ∫D) ∼= colimD′.

Note in passing that if D(a) is a singleton for each a in C , then the transport category
C ∫D is identified with C and so hocolimD = BC .

To make a homotopy colimit, we need a pair (C ,D) consisting of a small category C and
a functor D from C to spaces. By a morphism from one such pair (C s,Ds) to another,
(C t,Dt), we understand a pair (F , ν) consisting of a functor F : C s → C t and a natural
transformation ν from Ds to DtF .
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Remark D.1.2 Such a morphism induces a map (F , ν)∗ from hocolimDs to hocolimDt .

Suppose that (F0, ν0) and (F1, ν1) are morphisms from (C s,Ds) to (C t,Dt). Let θ be a
natural transformation from F0 to F1 such that ν1 = Dt(θ) ◦ ν0 .

Remark D.1.3 Such a θ induces a homotopy θ∗ from (F0, ν0)∗ to (F1, ν1)∗ .

Proof Let I = {0, 1} , viewed as an ordered set with the usual order and then as a
category. Then BI ∼= [0, 1]. Let p : C × I → C be the projection. The data (F0, ν0),
(F1, ν1) and θ taken together define a morphism from (C s × I ,Ds ◦ p) to (C t,Dt). By
remark D.1.2, this leads to a map from hocolim (Ds◦p) ∼= (hocolimDs)×BI to hocolimDt .

Let C be a small category and let a 7→ Fa be a covariant functor from C to the category
of sheaves on X . Define a sheaf C ∫F with category structure as follows. For 0-connected
X in X , let (C ∫F)(X) = C ∫F•(X), where each Fa(X) for a ∈ ob(C ) is regarded as
a discrete space. For X which is not 0-connected we define (C ∫F)(X) =

∏

i(C ∫F)(Xi)
where the Xi are the connected components of X . In section 4.1 we used the following
notation.

Definition D.1.4 In the situation above, we let hocolimaFa := β(C ∫F).

Lemma D.1.5 |hocolima Fa| ' hocolima |Fa| .

Proof Theorem 4.1.3, proved in appendix B above, gives |hocolimaFa| ' B|C ∫F| and
propositions A.2.1, A.2.3 imply B|C ∫F| ∼= B(C ∫ |F?| ), where |F?| denotes the functor
a 7→ |Fa| from C to spaces.

Corollary D.1.6 Let C be a small category and let a 7→ Ea and 7→ E ′a be covariant
functors from C to the category of sheaves on X . Let ν = {νa : Ea → E

′
a} be a natural

transformation such that every νa : Ea → E
′
a is a weak equivalence. Then the induced map

hocolima Ea → hocolima E
′
a is a weak equivalence (between sheaves on X ).

D.2 Stratifications and homotopy colimit decompositions

Here we describe a relationship between stratifications and homotopy colimit decomposi-
tions. The point which we want to make, without proving anything definite in that direction,
is that a stratification of a space often comes from a homotopy colimit decomposition of the
space where the indexing category is an EI-category (a category in which all endomorphisms
are isomorphisms). Compare [38].
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Definition D.2.1 A stratification of a topological space X is a partition of X into locally
closed nonempty subsets, the strata, such that the closure of each stratum is a union of
strata.

The strata Xi of a stratified space X form a poset S where Xi ≤ Xj if the closure of Xi

contains Xj . (This is the reverse of the obvious ordering.) The tautological map X → S
does of course completely describe the stratification. Hence a stratification of X can always
be described by a stratification function, a map from X to a poset S . (We will not discuss
the question which maps from X to a poset give rise to stratifications.)

Definition D.2.2 A stratification of a CW-space X is a CW-stratification if the closure
of each stratum is a CW-subspace.

Definition D.2.3 Let C be a small EI-category. Let ι(C ) be the poset of isomorphism
classes of objects in C , ordered in such a way that [C0] ≤ [C1] iff there exists a morphism
C0 → C1 . Define

f : BC −→ ι(C)

in such a way that f(x) = [Ck] if the unique open cell of BC containing x corresponds to
a k -simplex of the form C0 ← C1 ← · · · ← Ck . Then f is the stratification function for a
CW-stratification of BC .

The following example of an EI-category is closely related to the category K in section 5.

Definition D.2.4 We make an EI-category J as follows. The objects are the finite
subsets of a fixed universe. A morphism from S1 to S2 consists of an injection k : S1 → S2

and a sign function ε from S2 r im(f) to {−1,+1} . The composition of (k1, ε1) : S1 → S2

and (k2, ε2) : S2 → S3 is (k2k1, ε3) where ε3 agrees with ε2 outside k2(S2) and with
ε1 ◦ k2

−1 on k2(S2 r k1(S1)). Then BJ is stratified as above.

Remark D.2.5 We have BJ = Ω∞S∞+1 by [35, 3.2].

Definition D.2.6 Let D be a contravariant functor from a small EI-category C to spaces
(i.e., a covariant functor from C op to spaces). Then we have the projection map

hocolim D −→ BC

and so we get a stratification on hocolimD , the pullback of the stratification of BC just de-
fined. (It is true but not completely trivial that this does give a stratification on hocolimD .)

The homotopy theoretic relationship between the values of D and the strata of hocolimD
is as follows. For an object C in C , the stratum with label [C] has the homotopy type of
a homotopy orbit space D(C)hA where A is the automorphism group of C in C . (In more
detail, the stratum has a deformation retraction to the homotopy colimit of D|A where A
is the full subcategory of C spanned by the objects isomorphic to C .)
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