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ABSTRACT. We develop the differential equations of the motion of a non-
linear oscillator with three degrees of freedom that is attached to a rotating rigid
body. The usual Hamiltonian analysis does not apply to rigid body dynamics.
We present an alternative that retains the desirable properties of a Hamiltonian
system. A perturbation analysis is applied to the alternative system. The solu-
tion of the perturbed system exhibits a homoclinic tangle which for three degrees
of freedom results in Arnold diffusion. A real-time display of trajectories of the
motion of the oscillator can be found at the website http://www.csulb.edu/~fatt.

INTRODUCTION
We analyze the motion of a nonlinear spring-mass oscillator with three degrees of
freedom that is attached to a freely rotating rigid body. Because it is attached to
the rotating rigid body, the oscillator can transfer momentum in each of the three
directions; the three spatial modes of vibration then interact with one another
by way of the rotating rigid body. In one direction the springs are nonlinear and
in the remaining two they are linear. The rigid body mediates the interaction.
The effect of the interaction is a perturbation of the motion. The resulting
perturbed motion of the mass is an example of Arnold diffusion. Arnold diffusion
is characteristic of many physical phenomena involving nonlinear motion and
periodic perturbation, both of which are experienced by our oscillator.
The analysis splits into developing the mechanical model and into analyz-

ing the effect of the perturbation. The mechanical model is developed by the
introduction of a Lie algebra of real functions on a momentum space. The Lie
algebra is derived from the Poisson bracket on a phase space and is then carried
over to the momentum space by a momentum map. This derived Lie algebra
contains the dynamics of the model. The model including the attachment is sug-
gested by the work of Marsden and Krishnaprasad, [8]. One would expect that
the usual Hamiltonian analysis would suffice to study the motion of the system,
but this is not the case because spacial coordinates for the rigid body can not
be fixed in space for which Hamilton’s equations are invariant. To consider the
perturbation, we look at a Poincare section of the phase space of the nonlinear
oscillator and at the Poincare map of the section. When the interaction of the
oscillator with the rigid body is taken into consideration, we get a perturbation
of the orbits in the section. If the full dimension of the phase space is taken
into account, it becomes apparent that the wild motion of the oscillator, which
in the case of two dimensional phase space results in chaotic motion, in this
case has additional spatial freedom and can thus move about unrestricted. It

1



is this unrestricted motion that is termed Arnold diffusion. The motion has the
property that each trajectory will eventually connect any two open sets in a
constant energy surface.

1 THE DYNAMICS OF A RIGID BODY
In this section we discuss the general rotational motion of a rigid body about its
center of mass. This motion is characterized by an instantaneous axis of rotation
passing through the center of mass; the axis, which is along the angular velocity
vector, is allowed to vary its orientation with time together with the rotation
of the rigid body. To study this motion, one is tempted to introduce a fixed
set of axes in R3 and then to coordinatize the rotational displacement of the
rigid body with respect to these axes by Euler angles. The Euler angles also
parameterize the group of rotations SO(3) on R3 so that it is possible to think
of SO(3) coordinatizing the rotational displacement of the rigid body. However,
if we focus on a Hamiltonian analysis, we see that the expression for the kinetic
energy must involve the inertia tensor and that the corresponding products of
inertia vary with the motion of the rigid body. Consequently any computation
in terms of the resulting Hamiltonian would be most awkward. Though we dare
not take T ∗SO(3) as our state space, it does play a role in finding a suitable
candidate for the state space.
Our method of attack is first to follow our temptation and to fix a set of

inertial axes in R3. Coordinates with respect to this fixed set of axes are refered
to as space coordinates.We measure the displacment of the rigid body by noting
the Euler angles subtended by the principal axes of the body with respect to
these fixed axes. Take T ∗SO(3), the cotangent space to SO(3), as a phase space.
We then ”reduce” our analysis from T ∗SO(3) to so(3)∗ which is invariant with
respet to rotation, i.e., with respect to the action of SO(3) on so(3)∗. It is on
so(3)∗ that we study the motion of the rigid body.

1.1 REDUCTION OF T ∗SO(3) AND THEMOMENTUM
MAP

We take coordinate (φ, θ,ψ, φ̇, θ̇, ψ̇) on TSO(3), the tangent space to SO(3),
as induced by the Euler angles. In order to carry out a psuedo Hamiltonian
analysis we must first transform TSO(3) to T ∗SO(3). This transformation is
carried out by the Legendre map Fl:TSO(3) → T ∗SO(3). Once we are on the
space T ∗SO(3) our aim is to reduce it to so(3)∗, the tangent space at the iden-
tity, which is appropriate for our analysis of the rigid body. The reduction of
T ∗SO(3) to so(3)∗ legitimatizes our analysis of the rigid body because a Lie
algebra is always abelian as a vector space. The angular momentum is then
well defined. See [4], chapter four for a complete discussion of infinitesimal
rotations. We must somehow carry the natural Lie algebra on T ∗SO(3) given
by the Poisson bracket over to so(3)∗. We shall see that with this induced Lie
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Figure 1:

algebra on so(3)∗ we can define our dynamics of the rigid body. It should be
noted that the Legendre map can not be defined until the rigid body is specified.
Every tangent vector on SO(3) can be inteperated as a velocity vector, but the
corresponding statement does not hold for cotangent vectors on SO(3). Every
cotangent vector on SO(3) can not be said to be a momentum vector. It is
only after we have introduced the rigid body that momenta can be considered.
With the rigid body in hand and its corresponding inertia tensor we can define
an inner product of tangent vectors on SO(3) providing us with a correspon-
dence between the vectors (velocities) and covectors (momenta) on SO(3). We
should be mindful of the fact that momenta are dynamical coordinates whereas
velocities are not. The Legendre map carries the velocity vectors specifically to
the momenta.
Since the consequences of a fixed set of inertial axes is not acceptable, we

instead take the principal axes of the rigid body as the reference frame so that
the reference frame is moving along with the body. In this moving frame the
matrix of the inertia tensor reduces to the diagonal form with the moments of
inertia (the diagonal elements) remaining constant throughout the motion. Of
course we can no longer refer to Euler angles and in fact we need no longer refer
to the psuedo Hamiltonian analysis on T ∗SO(3). The dynamics on T ∗SO(3) is
reduced to dynamics on momentum space which we will see is so(3)∗. The key
to the reduction, and thus the dynamics on so(3)∗, is the ”momentum map”
which we now proceed to define.
In anticipation of a dicussion of the momentum map, we look at the Lie

algebras so(3) and so(3)∗. Let R(t) be curve on SO(3). Then Ṙ(t ) is a tangent
vector on SO(3). A straight forward calculation yields R(Ṙ)T = −ṘRT so that
the matrix bΩ = R−1Ṙ is skew symmetric. By the symbol Ω we understand the
3-vector resulting from bΩ. From the expressionR−1Ṙ we see thatR−1 acts on the
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tangent vector Ṙ on SO(3) and translates it from the point R to the identity, so
that R−1Ṙmust be an element of the Lie algebra of SO(3). A more direct though
lengthier explanation that R−1Ṙ is a tangent vector to SO(3) at the identity is
the following. We write

.

R−1(t)Ṙ(t) = R−1(t) lim
∆t→0

R(t+∆t)−R(t)
∆t

= lim
∆t→0

R−1(t)R(t+∆t)−R−1(t)R(t)
∆t

= lim
∆t→0

R(−t)R(t+∆t)−R(−t)R(t)
∆t

= lim
∆t→0

R(−t+ t+∆t)−R(−t+ t)
∆t

= lim
∆t→0

R(∆t)−R(0)
∆t

= Ṙ(0).

From the expression R−1(t)Ṙ(t) = Ṙ(0) it follows that R−1(t)Ṙ(t) is a tangent
vector to SO(3) at the identity, thus an element of so(3). We can take either
of the expressions, bΩ or Ω, as our representation of the element of so(3). A
straight forward but tedious calculation shows that

Ω =

 θ̇ cosψ + φ̇ sinψ sin θ

−θ̇ sinψ + φ̇ cosψ sin θ

φ̇ cos θ + ψ̇

 . (1)

This expression is standard for the angular velocity of a rigid body with re-
spect to the coordinate system fixed to the principal axes and rotating with
the body. Therefore we can take so(3) as the space of angular velocities of the
rigid body. Evidently (1) defines the map Ω : TSO(3) → so(3). It is notewor-
thy that the angular velocity of a rigid body can not be interperated as a time
derivative.
Since it is desirable to have so(3)∗ as a momentum space, we introduce the

quadratic form <α,β>:=αT Iβ where α, β ∈ so(3) and I is the matrix of the
moment of inertia tensor with respect to the principal axes. Then we have that<
,Ω > is a linear real function on so(3) and can be interperated as the momentum
Π ∈ so(3)∗ that corresponds to the angular velocity Ω. In fact we can now write
IΩ = Π and <Ω,Ω> = ΩT IΩ = 2KE, noting that Ω and consequently Π are
functions of φ, θ,ψ, φ̇, θ̇, ψ̇. We can also interperate the phase space T ∗SO(3)
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Figure 2:

as a momentum space by way of the Legendre map. The kinetic energy can be
written as

KE =
1

2

·
Π21
I1
+
Π22
I2
+
Π23
I3

¸
.

From the expressions IΩ = Π and (1) it follows that KE is a funtion of
φ, θ,ψ, φ̇, θ̇, ψ̇. We then define the functions pφ,pθ, pψ as follows. Let

pφ :=
∂KE

∂φ̇
, pθ :=

∂KE

∂θ̇
, pψ :=

∂KE

∂ψ̇
.

The three expressions for pφ, pθ, pψ are linear funtions of φ̇, θ̇, ψ̇ so it is

consequently easy to solve for φ̇, θ̇, ψ̇. For
³
φ, θ,ψ, φ̇, θ̇, ψ̇

´
∈ TSO(3) we make

the substitution
³
φ̇, θ̇, ψ̇

´
→ (pφ,pθ, pψ). This substitution defines the Legendre

map

Fl : TSO(3)→ T ∗SO(3).

That is, by introducing the rigid body we are able to define the canonical coor-
dinates (φ, θ,ψ, pφ,pθ, pψ) on T ∗SO(3). Actually the funcion Fl is defined only
on the parameters (φ̇, θ̇, ψ̇) so that it is defined on the states. When we make
the above substitution in the expression for Π we get

Π =

 Π1
Π2
Π3

 =

 (pφ−pψ cos θ) sinψ+ pθ sin θ cosψ
sin θ

(pφ−pψ cos θ) cosψ− pθ sin θ sinψ
sin θ
pψ

 (2)
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Figure 3:

so that the map Π : T ∗SO(3)→ so(3)∗ is defined. We can assemble expressions
(1) and (2) into the commutative diagram Figure 3.
Before we continue with the definition of the momentum map it is instructive

to look at why we are interested in it. We have a well recognized and useful
Lie algebra on T ∗SO(3) given by the Poisson bracket of real valued functions
on T ∗SO(3). To continue our investigations, we need a similar Lie algebra of
real valued functions on so(3)∗ which is induced by Π. For F and G, two such
functions on so(3)∗, one is tempted to look at {F ◦Π, G◦Π}P where {,}P is the
Poisson bracket on T ∗SO(3), change variables to Π1,Π2,Π3 and then calculate
the partial derivative with respect to Π1,Π2,Π3 by means of the chain rule and
(2) with the hope that the desired Lie algebra on so(3)∗ will result. One soon
learns that this procedure is fruitless. The purpose of the momentum map is to
provide us with a procedure which does bear fruit.
It is most expedient to approach the problem of producing the desired Lie

algebra ”in abstracto”. To this end take G to be a Lie group with a finite
dimensional Lie algebra g. It follows that G acts on T ∗G symplectically, that is,
the action of G on T ∗G preserves the natural Poisson bracket on T ∗G. Such an
action is given by a Hamiltonian vector field on T ∗G for each element ξ of g. For
convenience we write P := T ∗G with coordinates (q, p) on P . The Hamiltonian
vector field is referred to as the inf initesimal generator corresponding to ξ.
The Hamiltonian for this vector field is written as J(ξ), so we now have the
map J :g→ F(P ) where F(P ) is the set of all differentiable functions on P .
The momentum map J: P →g∗ is defined by

< J(q, p), ξ >= J(ξ)(q, p) (3)

where <,> is the pairing of g∗ and g and J is linear. For our application we
take g as so(3)=R3 so that we have ξ = (ξ1, ξ2, ξ3). It follows then that J(ξ)
can be written as

J(ξ) = ξ1Π1 + ξ2Π2 + ξ3Π3 (4)
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so that J(ξ)(q, p) = ξ1Π1(q, p) + ξ2Π2(q, p) + ξ3Π3(q, p). The relation (2) is an
example of a momentum map. There are other examples, another of which
will be used in what follows to establish relation (18). Keep in mind that
for our application where we take G := SO(3), we understand that (q, p) :=
(φ, θ,ψ, pφ,pθ, pψ).
It is the action of G on T ∗G that makes the usual definition of angular

momentum possible. In fact it is exactly the Hamiltonian J(ξ) given by (4)
that is the angular momentum.

1.2 CONSTRUCTION OF THE LIE-POISSON ALGE-
BRA ON so(3)∗

We are now in the position to construct the appropriate Lie algebra of funtions
on so(3)∗. The construction is accomplished by mapping the Poisson algebra on
T ∗SO(3), which we write as { , }P , over to so(3)∗ via a momentum map. Let
F,G : so(3)∗ → R be two real functions on so(3)∗. Then the desired Lie algebra
on so(3)∗, called the Lie-Poisson algebra on so(3)∗, is given by {F ◦J,G◦J}P :=
{F,G}L−P . In order to calculate {F ◦J,G◦J}P we must first make a number of
observations. First, for F a real valued function on so(3)∗ = R3 we write ∇ΠF
as the gradient of F . As a differential ∇ΠF maps elements of so(3)∗ = R3

linearly to R so that ∇ΠF is an element of so(3) and the quantity J(∇ΠF ) is
well defined. Second, if X is a vector field on a manifold P , then X[h] = ∇Ph ·X
where h is a real function on P and ∇P is the gradient operator with respect
to the coordinates (q, p) on P. Then if Xf is the Hamiltonian vector field on
T ∗SO(3) with Hamiltonian f, and g is a real function on P, we get

Xf [g] = ∇P g ·Xf = ∂g

∂q

∂f

∂p
− ∂f

∂q

∂g

∂p
:= −{f, g}P = {g, f}P .

Keep in mind that the Hamiltonian vector fieldXf can be written in components
as (∂f∂p ,−∂f

∂q )
T . As mentioned above, for our application we take P = T ∗SO(3)

and g∗ =so(3)∗ so that for the momentum map we have

J :=

 Π1
Π2
Π3

 : P → g∗.

where the Π0s are now taken as the generic coordinates of so(3)∗. Now let
H : P → R and F :g∗ → R be real functions and write TPJ as the Jacobian of
J so that we can make the following calculations

XF◦J[H] = ∇PH ·XF◦J = {H,F ◦ J}P = −{F ◦ J,H}P

= −XH [F ◦ J] = −∇P (F ◦ J)·XH = −(∇ΠF )(TPJ)XH
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= −( ∂F
∂Π1

,
∂F

∂Π2
,
∂F

∂Π3
)


∂Π1
∂q

∂Π1
∂p

∂Π2
∂q

∂Π2
∂p

∂Π3
∂q

∂Π3
∂p

Ã ∂H
∂p

−∂H
∂q

!

= −( ∂F
∂Π1

∂Π1
∂q

+
∂F

∂Π2

∂Π2
∂q

+
∂F

∂Π3

∂Π3
∂q

,
∂F

∂Π1

∂Π1
∂p

+
∂F

∂Π2

∂Π2
∂p

+
∂F

∂Π3

∂Π3
∂p

) ·XH

= −∇P ( ∂F
∂Π1

Π1 +
∂F

∂Π2
Π2 +

∂F

∂Π3
Π3) ·XH

= −∇P (J(∇ΠF )) ·XH = −XH [J(∇ΠF )] = {H,J(∇ΠF )}P

= −{J(∇ΠF ),H}P = XJ(∇ΠF [H]
In summary we have

XF◦J[H] = XJ(∇ΠF )[H]. (5)

A similar calculation yields

XF [G ◦ J] =XF [J(∇ΠG)]. (6)

Applying (4) to the calculation of { , }P yields

{J(∇ΠF ), J(∇ΠG)}P = Π1( ∂F∂Π3 ∂G
∂Π2
− ∂F

∂Π2
∂G
∂Π3

)

+Π2(
∂F
∂Π1

∂G
∂Π3
− ∂F

∂Π3
∂G
∂Π1

)

+Π3(
∂F
∂Π2

∂G
∂Π1
− ∂F

∂Π1
∂G
∂Π2

)

= −Π · (∇ΠF ×∇ΠG)
(7)

Here we take advantage of the fact that {Π1,Π3}P = Π2, {Π3,Π2}P = Π1,
{Π2,Π1}P = Π3 which is a consequence of [11], Execise 11.2-2, that is, equiv-
ariance of the momentum map, namely {< J, ξ >,< J,η >} = < J, [ξ,η] >.
Combining (5) and (6) yields

{F ◦ J,G ◦ J}P = −XF◦J[G ◦ J] = −XJ(∇ΠF )[G ◦ J] = −XJ(∇ΠF )[ J(∇ΠG)]
= {J(∇ΠF ), J(∇ΠG)}P

(8)

For the functions F,G : g∗ → R we define the Lie− Poisson A lg ebra on g∗as
{F,G}L−P := −Π · (∇ΠF ×∇ΠG) (9)
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From (7) and (8) we also have

{F ◦ J,G ◦ J}P = −Π · (∇ΠF ×∇ΠG) (10)

The left side of (10) is written as a function of (q,p) while the right side can be
understood to be a function of (Π1,Π2,Π3). The Π0s in relation (10) are taken
from (2), where they are given as functions of (q,p), and are used to define a
momentum map J. It is therefore valid to write

{F,G}L−P ◦ J ={F ◦ J,G ◦ J}P (11)

for any momentum map J. If it is attempted to calculate {F ◦J,G◦J}P directly
from (2) by use of the chain rule, it is soon found that the calculations are
intractable. In such an attempt no use is made of the fact that J (ξ) is the
Hamiltonian of an infinitesimal generator. But it is just this fact that we used
in our derivations of (5) and (6). It is worth noting that (7) holds for the
momentum map J with respect to any coordinates that are canonically related
so that its derivation is independent of the canonical coordinates that are used.
Relation (2) defines the momentum map in terms of the coordinate system given
by the Euler angles and their conjugate momenta. It can be said that { , }L−P is
the natural bracket on so(3)∗ just as { , }P is the natural bracket on T ∗SO(3).
The momentum map J is defined in terms of Hamiltonian fields, but the fields
are all with respect to { , }P on T ∗SO(3). We say that J carries { , }P over to
{ , }L−P .

1.3 DYNAMICS OF A RIGID BODY ON so(3)∗

We start by fixing the general concept of a dynamical system on a phase space as
given by a set of Hamilton’s equations. We consider a phase space consisting of a
manifold M of dimension 2n and write Hamiltons equations, with Hamiltonian
H, in terms of generalized coordinates (also called canonical coordinates) as

dqi
dt =

∂H
∂pi

dpi
dt = −∂H

∂qi
, i = 1...n.

It is these eqations that define the Hamiltonian vector field on M. Now take a
real function F on M and evaluate its time derivative along a solution curve of
the above Hamiltonian system. From the chain rule we have

dF

dt
=
Xµ

∂F

∂qi

dqi
dt
+

∂F

∂pi

dpi
dt

¶
=
Xµ

∂F

∂qi

∂H

∂pi
− ∂F

∂pi

∂H

∂qi

¶
= {F,H}P

ForM = T ∗SO(3) we transfer the dynamics on T ∗SO(3), given by a Hamil-
tonian system of equations, to dynamics on so(3)∗, by way of the momentum
map J :T ∗SO(3) → so(3)∗. In order to carry out the transfer we look at the
above general equation

dF

dt
= {F,H}P
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for F and G real functions on T ∗SO(3) and where both sides of the equation are
evaluated along integral curves of the Hamiltonian vector field XH on T ∗SO(3).
In effect we transfer this eqation over to so(3)∗ via the map J. Let f and h be
real functions on so(3)∗ given by F = f◦J and H = h◦J so that

df ◦ J
dt

= {f ◦ J, h ◦ J}P = {f, h}L−P ◦ J

The the above expression is evaluated along the integral curve ofXH on T ∗SO(3).
Now by applying J to these integral curves we have image curves in so(3)∗ so
that it is valid to write

df

dt
= {f, h}L−P (12)

along the image curves.

Remark. We can arrive at equation (12) by a more direct consideration.
Let f and h be functions in F(so(3)∗) where h is fixed and f varies. Define the
vector field Xh on so(3)∗ by the following relation

∇Πf ·Xh = −Π · (∇Πf ×∇Πh)

Because this equatiion is an identity in f, it can be solved for Xh. In fact we
see that Xh = Π ×∇Πh. By the chain rule the left side of the equation is the
derivative of f along the integral curves of Xh. Consequently we retain equation
(12). It is of interest to note that the above procedure can be generalized to any
differentiable manifold M that is a Poisson manifold, that is, a manifold with a
Lie algebra of functions in F(M) with the condition that the Lie algebra fulfills
Leibniz’s rule. For fixed h in F(M) we can then define the vector Xh = { ,h}.
This definition of a vector is valid because Xh is a differentiation according to
Leibniz’s rule for { ,h}. Now we have Xh[f ] = {f, h} so that

df

dt
= {f, h}

We can conclude that any Poisson manifold whose Lie algebra of functions obeys
Leibniz’s rule is a phase space for a dynamical system.
The dynamics on the cotagent bundle P = T ∗SO(3) is given by the Hamil-

tonian system

dq
dt =

∂H
∂p = {q,H}P

dp
dt = −∂H

∂q = {p,H}P
It is natural then to take (12) for our dynamics on so(3)∗ so that we have

dΠi
dt

= {Πi, h}L−P , for i = 1, 2, 3 (13)
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where

h =
1

2

·
Π21
I1
+
Π22
I2
+
Π23
I3

¸
By computation of (12) with the given expression for h the usual Euler

Equations for the rigid body result

dΠ1
dt =

I2−I3
I2I3

Π2Π3
dΠ2
dt =

I3−I1
I1I3

Π1Π3
dΠ3
dt =

I1−I2
I1I2

Π1Π2

(14)

There are two immediate integrals of system (14). One is the energy integral

h =
1

2

·
Π21
I1
+
Π22
I2
+
Π23
I3

¸
. (15)

The other integral is the total angular momentum integral

m =
1

2
[Π21 +Π

2
2 +Π

2
3]. (16)

It should be noted that the angular momentum components Π1,Π2,Π3 them-
selves are not integrals of system (13), that is to say, that the angular mo-
mentum Π = (Π1,Π2,Π3) of a rigid body is not conserved when viewed with
respect to the body coordinates, that is, when the coordinate axes are fixed to
the principal axes of the rigid body. Equation (14) is valid only for body coordi-
nates which are the natural coordinates for so(3)∗. Also to be noted is that the
system (14) can not be decoupled. Consequently the components of angular
momentum interact with one another.

1.4 DYNAMICS OF A RIGID BODY WITH NONLIN-
EAR ATTACHMENT ON so(3)∗ × T ∗R3

We now introduce a nonlinear oscillator attached to the rigid body. The center
of oscillation is the center of gravity of the rigid body and the right handed
coordinate system is assumed to coincide with the body coordinates. Imagine
the nonlinear oscillator to be a system of three degrees of freedom (three modes)
consisting of a mass suspended by six springs, pairwise colinear and coincident
with each of the coordinate axes. The pair of springs parallel to the x-axis will
be nonlinear soft springs while the remaining two pairs will be the usual linear
Hooke’s springs. To avoid mathematical complications, we say that each pair
of springs moves transversely with the mass.
The phase space of the spring-mass system in isolation can be taken as T ∗R3.

We attach this oscillator to the rigid body and look for the interaction between
the rigid body and the oscillator. In space coordinates the phase space of the
rigid body together with the attachment is taken as T ∗SO(3)×T ∗R3

S where we
apply the subscript S to remind us that we are referring to space coordinates.
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Figure 4:

To study the interaction between the rigid body and the oscillator, we must
look at the dynamics of the system. We already know that the phase space
T ∗SO(3)×T ∗R3

S will not accommodate the dynamics. We must rather use the
phase space so(3)∗ × T ∗R3

B, where the subscript B refers to body coordinates.
The dynamics of the system on this phase space will be determined by an
appropriate Lie algebra on so(3)∗×T ∗R3

B just as the dynamics of the bare rigid
body was developed from the Lie-Poisson algebra on so(3)∗. In order to obtain
this desired Lie algebra we define the map

φ : T ∗SO(3)× T ∗R3
S → so(3)∗ × T ∗R3

B

by

φ ((q, p) ,x) := (J(q, p), R−1x) (17)

where x is carried from T ∗R3
S to T

∗R3
B by the matrix R−1 which is the ele-

ment of SO(3) that corresponds to q. The term R−1x is to be interperated
as a convection action of the point x which fixes it to the rigid body. Part
of our desired Lie algebra will be the Lie-Poisson algebra carried over by the
momentum map J of the left translation

TL∗g : T
∗SO(3)→ so(3)∗

that is, TL∗g translates αg ∈ T ∗g SO(3) to T ∗e SO(3) by multiplication on the left
by g−1.
Remark. If we take (q, p) to be the element of the parameter space corre-

sponding to αg,then (0, p) is the element of the parameter space corresponding
to TL∗eαg, that is we can say J(q, p) = (0, p) for this momentum map.
We must now find the remainder of our Lie algerbra which is induced by the

map x→ R−1x. Since R−1 and x appear in this map, we can expect interaction
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terms to occur in the remainder. In order to introduce this Lie algebra remainder
we first define a Casimir function with respect to a Lie algebra. Let C be
a function on a manifold with a Lie algebra of real functions {, } such that
{C,F} = 0 for any other function F on the manifold. Then C is said to be a
Casimir function. From equation (16) we see that Π21 + Π

2
2 + Π

2
3 := |Π|2 is an

integral of the Euler equation and as such suggests a Casimir function for the
L-P algebra on so(3)∗. We take the bold step and say that for our desired Lie
algebra on so(3)∗×T ∗R3

B we must have that |Π+ r× p|2 is a Casimir funtion,
where (r,p) is a generic element of T ∗R3

B. That is, we demand that the total
angular momentum of both the rigid body and the nonlinear attachment is
conserved. This conservation should characterize the interaction of the two
systems. A calculation shows thatn

|Π+ r× p|2 ,G
o
PB

= −∇rG · (∇Π |Π+ r× p|2 × r)
−∇pG · (∇Π |Π+ r× p|2 × p).

where {,}PB is the usual Poisson bracket on T ∗R3
B. In order that the function

|Π+ r× p|2 is Casimir in the desired bracket, the desired bracket must take the
formn

|Π+ r× p|2 ,G
o
=
n
|Π+ r× p|2 , G

o
PB

+∇rG(∇Π |Π+ r× p|2 × r)
+∇pG · (∇Π |Π+ r× p|2 × p).

Similarly we should haven
F, |Π+ r× p|2

o
=
n
F, |Π+ r× p|2

o
PB
−∇rF · (∇Π |Π+ r× p|2 × r)

−∇pF · (∇Π |Π+ r× p|2 × p).

The obvious choice for the desired Lie algebra of functions F and G on so(3)∗×
T ∗R3

B is then

{F,G} := {F,G}L−P + {F,G}PB
−∇rF · (∇ΠG× r)−∇pF · (∇ΠG× p)
+∇rG · (∇ΠF × r) +∇pG · (∇ΠF × p)

(18)

so that |Π+ r× p|2 is a Casimir function with respect to this Lie algebra.
A calculation shows that the function φ as given above carries the Lie al-
gebra {F,G}L−P + {F,G}PB on T ∗SO(3) × T ∗R3

S to our newly defined Lie
algebra {F,G} on so(3)∗ × T ∗R3

B.
A direct derivation of (18) comes about by carrying the Lie algebra { , }P

on T ∗SO(3) × T ∗R3
S over to a Lie algebra on so(3)

∗ × T ∗R3
B induced by the

map φ given by (17). For this purpose we take F,G : g∗ × T ∗R3
B → R. If we

13



hold the variable x constant, then we understand the bracket {F ◦φ, G◦φ}P to
be the canonical bracket on T ∗SO(3) where the differentiation is with respect
to the real variables q and p. For our present application we keep x constant
and write {F ◦φ,G ◦φ}T∗SO(3) as the canonical bracket on T ∗SO(3) where the
differentation is defined as usual with respect to the elements q and p of the
parameter space of T ∗SO(3). We have

{F ◦ φ, G ◦ φ}T∗SO(3) = ∂F ◦ φ
∂q

∂G ◦ φ
∂p

− ∂G ◦ φ
∂q

F ◦ φ
∂p

The momentum map J as used in (17) is defined on T ∗SO(3) so we can take
it as a function of (q, p). Applying the chain rule where we write z = R−1x,
yields

{F ◦ φ, G ◦ φ}T∗SO(3) =
³
∂F
∂J

∂J
∂q +

∂F
∂z

∂z
∂q

´
∂G
∂J

∂J
∂p

−
³
∂G
∂J

∂J
∂q +

∂G
∂z

∂z
∂q

´
∂F
∂J

∂J
∂p

On multiplying out the the right side of the above expression we get

{F ◦ φ, G ◦ φ}T∗SO(3) = {F,G}L−P ◦ φ−
µ
∂F

∂J

∂G

∂z

∂z

∂q
− ∂G

∂J

∂F

∂z

∂z

∂q

¶
∂J

∂p
.

The derivative ∂z
∂q gives us

∂z
∂q = −Ṙ(0)R−1x. Combine Ṙ(0) with ∂F

∂J ,
∂G
∂J ,and

x and note the remark on page (12) so that ∂J
∂p = 1. The term in parenthesis

then yields

(−∇rF · (∇ΠG× r)−∇pF · (∇ΠG× p)
+∇rG · (∇ΠF × r) +∇pG · (∇ΠF × p)) ◦ φ

The above epression is composed with φ in order to reconcile with the variables
in T ∗SO(3) and is identical to the terms on the second line of equation (18). We
take the dynamics describing the motion of the rigid body-spring-mass system
by means of (18) to be the desired dynamics. Let F and G be real functions
defined on so(3)∗ × T ∗R3

B and take the Lie algebra to be given by

{F,G} := {F,G}L−P + {F,G}PB −∇rF · (∇ΠG× r)−∇pF · (∇ΠG× p)
+∇rG · (∇ΠF × r) +∇pG · (∇ΠF × p).

In the previous derivation of this formula we had to invoke the conservation of
angular momentum. This time we used the map φ to carry the dynamics over
to so(3)∗ × T ∗R3

B. The conservation of angular momentum is included in the
dynamics.
In the Casimir derivation no use was made of the map φ. The derivation

rested entirely on requiring that total angular momentum is conserved. In the
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direct derivation the map φ is introduced and is required to carry the established
Lie-Poisson algebra from T ∗SO(3)×T ∗R3

S over to so(3)
∗×T ∗R3

B. Interestingly
the bracket on so(3)∗ × T ∗R3

B that is obtained this way coincides with the one
obtained from our more empirical derivation using the Casimir functions and
the conservation principle.

1.5 EQUATIONS OF MOTION ON so(3)∗ × T ∗R3
B

From the remark following equation (18) we write the general equation

dF

dt
= {F,H} (18.4)

where the bracket on the right is taken from (18). This general eqaution com-
pletely defines the dynamics for the motion of our system. Take the Hamiltonian
as

H(Π, r,p) = 1/2

µ
Π21
I1
+
Π22
I2
+
Π23
I3

¶
+

1

2m
p2 + V (r) (18.5)

wherem is the mass of the attachment and V is the potential of the attachment’s
spring system. It is noteworthy that the Hamiltonian gives no indication of the
coupling (that is, interaction) of the spring-mass system and the rigid body. It
is the bracket {,} that manifests the coupling.
For our application we take the potential function as

V =
1

2
kx2 − 1

4
ax4 +

1

6
bx6 +

1

2
k1y

2 +
1

2
k2z

2. (18.6)

The terms involving x describe the force of a soft spring. The y and z terms
describe springs with the usual Hooke’s forces. For our perturbation analysis
in the following section we shall take the perturbation parameters as ε1 = 1

I1
,

ε2 =
1
I2
, and ε3 =

1
I3
. For a massive body the ε0s are small. The phase plane

for the ε0s equal to zero is given by Figure 5. The above general equation (18.4)
then yields for the equations of motion of the coupled system

Π̇1 = {Π1,H} = y(k2z)− z(k1y) − ε2(Π2Π3) + ε3(Π2Π3)

Π̇2 = {Π2,H} = −x(k2z) + z(kx− ax3 + bx5) + ε1(Π1Π3 − ε3(Π1Π3)

Π̇3 = {Π3,H} = x(k1y)− y(kx− ax3 + bx5) − ε1(Π1Π2) + ε2(Π1Π2)
ẋ = {x,H} = px

m − ε2(Π2z) + ε3(Π3y)
ẏ = {y,H} = py

m + ε1(Π1z) − ε3(Π3x)
ż = {z,H} = pz

m − ε1(Π1y) + ε2(Π2x)
ṗx = {px,H} = −(kx− ax3 + bx5) − ε2(Π2pz) + ε3(Π3py)
ṗy = {py,H} = −k1y + ε1(Π1pz) − ε3(Π3px)
ṗz = {pz,H} = −k2z − ε1(Π1py) + ε2(Π2px)

(19)
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The last six of the equations (the equations describing the motion of the spring-
mass system) we call the restricted system. They can be rewritten as

Dr := ( ddt+Ω×)r = p
m

Dp := ( ddt+Ω×)p = −∂V
∂r

(19.5)

in terms of the covariant derivative D := d
dt+Ω× . Thus we refer the motion of

the oscillating mass to the rotating coordinate system of the rigid body.

2 PERTURBATION ANALYSIS
Now we want to analyze the solutions of (19). For all the εi = 0 the system is
integrable by elementary mehods and is called the nonperturbed system. For
this case the x − px phase plane is illustrated by Figure 5. When the εi are
not zero, we are unable to solve the system by elementary methods and must
resort to a perturbation analysis to study the behavior of the solutions. In a
perturbation analysis a system of the form

dx

dt
= f(x) + εg(x,t) (20)

is considered where the function g is periodic in t. The bold characters all rep-
resent vector quantities of dimension n. The idea is first to analyze the unper-
turbed system and then to look at the influence of the of the small pertubation
term εg(x,t). In this way we shall be able to anticipate the behavior of the per-
turbed system, at least qualitatively, when it is finally displayed by numerical
methods as a solution curve.
In particular we are interested in the last six equations of the system (19),

that is, the equations describing the motion of the spring-mass system. We note
that this system is Hamiltonian with the perturbation Hamiltonian containing
the parameters Π1,Π2,Π3. The complete Hamiltonian for these equations is
given by

H(Π, r,p) =
1

2m
p2 + V (r)− εΠ · (r× p) :=H0(r,p) + εH1(Π, r,p) (20.5)

where εΠ = (ε1
Q
1, ε2

Q
2, ε3

Q
3). It is to the equations of the restricted

system that we apply our perturbation analysis. The term εΠ · (r× p) reflects
the interaction between the oscillating mass and the rotating rigid body. In the
system (19.5) it is the covariant derivative that reflects the interaction.

2.1 ACTION-ANGLE COORDINATES

In order to carry out the analysis of our restricted system we must turn to action-
angle coordinates. To this end we first consider the unpertubed system. From
(18.5) and (18.6) the Hamiltonian of the unperturbed system can be written as

H0(x, px, y, py, z, pz) =
1

2m
p2 + V (r) = Hx(x, px) +Hy(y, py) +Hz(z, pz).
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That is, the Hamiltonian separates. This separability tells us that the solution
manifold can be viewed as a cartesian product of the solution manifolds in
each degree of freedom. Since the unperturbed form of the restriced system
has periodic solution, in each degree of freedom we can make the action-angle
transformation (x, px, y, py, z, pz) → (x, px, y, py, Jz, θz). The Hamiltonian H0
then reduces to the form

H0(x, px, y, py, Jz, θz) = Hx(x, px) +Hy(y, py) +Hz(Jz)

where

z =

r
2Jz
ω
sin θz, pz =

p
2ωJz cos θz for ω =

r
k2
m
. (21)

Note that the angle θz appears nowhere in the above expression for the Hamil-
tonian Hz. This property is characteristic for action-angle variables, namely,
that the Hamiltonian, when written in action-angle variables, is independent of
the angle. The independence of angle defines circular symmetry
For the time being it is only the coordinate pair (z, pz) that we convert

to action angle-variables (Jz, θz). We can then write the Hamiltonian for the
restricted system with perturbation as

H(Π, x, px, y, py, Jz, θz) = Hx(x, px) +Hy(y, py) +Hz(Jz) (22)

+εH1(Π, x, px, y, py, Jz, θz).

To continue with the perturbation analysis, we must convert the restricted sys-
tem to a nonautonomous system of differential equations. It is for this conver-
sion that we resorted to the variables (Jz, θz). The idea is to use θz as the time
variable. We use substitutions (21) in εH1(Π, x, px, y, py, Jz, θz) so that we get

εH1(Π, x, px, y, py, Jz, θz) : = εH1(Π, x, px, y, py, Jz, sin θz, cos θz) (22
0
)

Clearly the Hamiltonian is periodic in the angle θz so that it also must be
periodic in the restricted system. From the conservation of energy we have

H(Π, x, px, y, py, Jz, θz) = α

and solving for Jz

Jz = L(Π, x, px, y, py, θz,α).

From [5, Eq.4.8.23] we arrive at the periodic system

ẋ = −∂L0(x,px,y,py,α)
∂px

− ε
∂L1(Π,x,px,y,py,t,α)

∂px

ṗx =
∂L0(x,px,y,py,α)

∂x + ε
∂L1(Π,x,px,y,py,t,α)

∂x

ẏ = −∂L0(x,px,y,py,α)
∂py

− ε
∂L1(Π,x,px,y,py,t,α)

∂py

ṗy =
∂L0(x,px,y,py,α)

∂y + ε
∂L1(Π,x,px,y,py,t,α)

∂y

(23)
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Figure 5:

The derivation of L0 and L1 fromH0 andH1 can be found in the above reference
where we note that the angle variable θz has been converted to the time variable
t. The process of eliminating a pair of phase space variables such as (z, pz) and
replacing them by the time variable and a new Hamiltonian L is called reduction.
It is the circular symmetry defined above that enables the reduction.

2.2 THE POINCARE SECTIONAND THE POINCARE
MAP

We consider the phase space of the unperturbed equations (23). As mentioned
above, this phase space is the cartesian product of the individual phase spaces
(x, px) and (y, py) where the phase portrait consists of periodic solutions. First
we look at the phase space (x, px) of the nonlinear oscillator.
We shall subsequently write bold p for a point of phases space and bold x

for an orbit in phase space. Bold x(t) is the point on the orbit x at time t.
We confine our attention to the portion of the phase portrait containing the
hyperbolic point ph and the elliptic point pe. That is, we are interested only in
the orbits centered at pe. The Hamiltonian L0 also separates so that L0 can be
written as

L0(x, px, y, py,α) = L
0
x(x, px,α) + L

0
y(y, py,α)

Hamilton’s equations for the unperturbed motion in the (x, px) phase plane are
then given by

ẋ = −∂L0x
∂px

ṗx =
∂L0x
∂px

This nonlinear system can also be converted to action-angle coordinates
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(J, θ),though not by (21), and therefore can be written as

J̇ = 0

θ̇ = ∂K
∂J = ω(J)

(24)

where K is the Hamiltonian into which Hx transforms and again does not con-
tain θ. These equations are autonomous so that we can consider K as a periodic
function of t for arbitrary period. In particular we take the period as 2π. The
extended phase space (or the suspended phase space) is then a family of tori
where each torus has coordinates (θ, t) and the family is parameterized by J
which we can take as the radius of each torus in the family.
From (24) we see that each orbit given by the parameter J has a constant

angular velocity ω(J). The homoclinic orbit xh passing through the hyper-
bolic point p1 evidently has angular velocity ω = 0. This fact follows from
lim

t→±∞xh(t) = ph and from the fact that at a singular point the time derivtive is

zero. It is instructive to look at a Poincare section
P
0, that is, a section of the

torus for a fixed value of t, say t = 0. We select a point on an arbitrary closed
orbit xJ of the Poincare section, say xJ(0) and follow the trace of this point on
the torus given by J as t goes to 2π. That is, we take the point xJ(0) as initial
data and solve the system (24), finally setting t = 2π. The point returns to the
starting Poincare section

P
0 .We define the Poincare map P:

P
0 →

P
0 =

P
2π

by

P(xJ(0)) = xJ(2π).

If the underlying system of differential equation is autonomous, as is the
system (24), the Poincare map actually returns the point to the orbit xJ . We
now face the question: where on the orbit does the point return?
We look at the path traced out by xJ(0) on the orbit xJ as t goes from

0 to 2π. The possible values of ω(J) must be considered. For ω(J) = m, m
an integer, the point xJ(0) will be traced out exactly m times on xJ so that
P(xJ(0)) = xJ(0) for any point on xJ . For ω(J) = m

n ,
m
n a rational number,

we get Pn(xJ(0)) = xJ(0) where Pn is the n − th iterate of P. Finally for
ω(J) = irrational number, Pk(xJ(0)) will be distinct for all iterates Pk and in
fact Pk(xJ(0)) will cover xJ ergodically as the iteration continues.
We keep in mind that the system (24) is Hamiltonian and as such it preserves

area. Thus if we apply P to any area in the section
P
0, it will be preserved.

This conservation of area is of greatest importance in what follows.

2.3 THEPERTURBEDPOINCAREMAPANDSTOCHAS-
TICITY

If we include the perturbation, the system (24) is written as

J̇ = εf(Π, J, θ, y, py, t)

θ̇ = ω(J) + εg(Π, J, θ, y, py, t).
(24ε)

19



(0)xJ

)(2xJ π

Figure 6:

20



1Jx
2Jx

21 JJ >

Figure 7:

⋅ ⋅⋅⋅=== ))0(x(P))0(P(x)0(x 2
JJJ

x

xp

,0Σ ,)( mJ =ω integer

Figure 8:

21



x

xp

,0Σ

⋅)0(Jx⋅))0(P(x J ))0(x(Pn J

⋅))0(x(P
2

J

,/)( nmJ =ω rational

Figure 9:

x

xp

⋅
⋅

⋅⋅

)0(xJ

))0(P(xJ
))0((xP J

2

,0Σ irrationalJ =)(ω number

Figure 10:

22



•

•

•

_
Jx

Jx +
Jx

Figure 11:

where f and g are periodic functions of t with period 2π resulting from the
change to action-angle variables, and Π, y, py are considered as parameters for
the time being. The fact that f and g are periodic in t means that these
functions have a fixed definition on the section

P
0,that is,

P
0 is invariant with

respect to the system (24)ε. The perturbed Poincare map Pε :
P
0 →

P
0 is

defined by solving the system (24)ε rather than (24). Technically the phase
space should also accommodate the variaables Π = (Π1,Π2,Π3). Since it is only
in the perturbation that these variables appear, we do not incllude them in the
discussion of the Poincare map or the Poincare section.
Next we look at the effect of a perturbation on the Poincare map Since ω(J)

approaches zero as J approaches the homoclinic orbit, we assume that ω is a
decreasing function of J. It is due to the nonlinearity of the restoring force of the
x springs that we have that ω is not identically constant. The fact that ω is not
identically constant is the substance of what follows. Again take ω(J) = m

n so
that for J− < J < J+ we have ω(J−) > ω(J) > ω(J+). Then the unperturbed
Poincare map Pn holds each point on the orbit xJ fixed, rotates each point
on the orbit xJ+ counterclockwise, and rotates each point on the orbit xJ−
clockwise. Along each ray θ = cons tan t Pn generates a tangent vector to each
of the orbits xJ+ and xJ− . This property of rotating some orbits and holding
others fixed is called the stroboscopic property of the Poincare map. It is just
this stroboscopic property that makes the Poincare map so useful. See Figure
11
The perturbed Poincare mapPnε generates vectors that are no longer tangent

to the orbits of the nonperturbed system, though they are roughly in the same
direction Since the perturbed vectors along a ray must swing form ”roughly”
counter clockwise on the orbit xJ− to ”roughly” clockwise on the orbit xJ+ , at
some point p(θ) between the two there is a vector based on the ray and directed
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along it. See Figure12. The set of all such base points is the closed curve Cε

in the phase space of the perturbed system. The set of based vectors along the
rays form a field Vε(Cε) on Cε and direct the action of Pnε on Cε.We write the
result of this directed action as Pnε (Cε). Since the system (24ε) is Hamiltonian
and Pnε must preserve area, the image curve Pnε (Cε) cannot lie entirely within
nor entirely without the curveCε. The fieldVε(Cε) is part of the vector fieldVε

of the system (24)ε. In Figure 13 we show the vector field Vε(Cε) augmented to
the entire vector fieldVε together with the singular points A, B,C, and D. The
points B andD are elliptic and the points A and C are hyperbolic. An orbit that
connects hyperbolic points (that even connects a hyperbolic point to itself) is
called a separatrix because it separates orbits of different topological types. In
Figure 14 we elaborate on the vector field Vε at the time 2πn and sketch in the
heteroclinic solutions, that is, solutions connecting saddle points; we also show
solutions in the neighborhood of elliptic points. These heteroclinic solutions are
suggested solutions in that they are integral curves of an autonomous system
given by the fieldVε that does not differ by much from the field of the perturbed
system (24ε) when t is in a neighborhood of 2πn. For each application of Pε

the increment of perturbation is the same because of the periodicity of H1. This
process of generating a phase portrait by perturbation of the Poincare map Pn

was proposed by Poincare and Birkhoff.
In addition to the creation of heteroclinic paths due to perturbation there

is another phenomenon that occurs on perturbation. This phenomenon is the
splitting of the heteroclinic solution. We superimpose the phase spaces for the
autonomous fieldVε at t = 2πn and for the perturbed system (24)ε for t > 2πn.
See Figure 15. For our illustration of splitting we use a homoclinic setting where
the separatrix is an orbit that begins and ends at the same hyperbolic point q.
The perturbed hyperbolic point is qε. Look at a point pε on the perturbed
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separatrix xε that neighbors a point p lying on an orbit of the unperturbed
system and also lying close to the unpertubed separatrix. Both of these points
are imagined enclosed in a rectangular box which is allowed to flow with Vε.
Since pε is on an orbit of a perturbation, we would expect pε and p to remain
close. But we know that p has a meandering path once it distances itself from
the homoclinc point. But then pε must follow the same sort of meandering
course as p if it is to remain close to p. We conclude that the homoclinic
solution of (24ε), of which pε is a point, could possibly follow an erratic path.
The task now is to analyze the motion of the meandering perturbed homo-

clinic orbit. If the split does indeed occur, the orbit has two branches. From
the above paragraph we know that for one branch lim

t→−∞xε = qε and for the

other lim
t→∞xε =? The question is did the two branches actually split or did they

not split and thus remain as a single continuous orbit based at qε. The answer is
contained in Melnikov’s method which essentially calculates the distance sepa-
rating the two branches of the possibly split homoclinic orbit as viewed from the
unperturbed homoclinic orbit. If the distance function as defined by Melnikov
has a simple zero, then the two branches intersect transversely.

We return to the heteroclnic setting and study the system given by the
abridged Hamiltonian

Lx(Π, x, px, y, py, J, t,α) = Lx(x, px,α) + εL1(Π, x, px, y, py, J, t,α)

where we have separated the Hamiltonian L that appears in equation (23). For
a discussion of how Melnikov’s method is applied to this system see references
[5], [9]. The anaysis of the particular application of Melnikov’s method to the
Hamiltonian appearing in the system (19) is found in [14, page 52]. It is shown
there that in our case the two branches do indeed intersect transversely. It is
possible to have a nonlinear restoring force that according to Melnikov’s method
does not yield a distance function with simple zeros, but for us the branches
actually experience multiple intersections, called heteroclinic points, the points
of intersection approaching the respective hyperbolic points ph1 and ph2. The
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area enclosed in the loops formed by the successive intersections of the two
branches is constant because Hamiltonian systems preserve area. Since succes-
sive heteroclinic points accumulate on the hyperbolic points, the lengths of the
bases of the loops approach zero so that their heights must increase in order to
maintain constant area. By the KAM theorem (see below) the resulting loops
must not intersect any of the stable orbits; they are confined and so display
an erratic disposition. The two branches of the heteroclinic orbits are said to
form a heteroclinic tangle. See Figure 15.
The structure of the two dimensional phase portrait as shown in Figure 16

is dictated by the Kolmogorov, Arnold, Moser theorem. For our application
the theorem can be stated as follows: (KAM theorem) Consider an autonomous
Hamiltonian system whose periodic solutions are enclosed within seperatices (ho-
moclinic orbits, heteroclinic orbits) and let these periodic solutions have periods
that are an increasing function of the action variable J and, further, let the au-
tonomous system experience a Hamiltonian perturbation that is time dependent
with period 2π. Then those periodic solutions of the unperturbed autonomous
system with ω equal to a rational number wll split and form a tangle when per-
turbed. Those periodic solutions of the autonomous system with ω sufficiently
close to a rational number, depending on the magnitude of the perturbation, will
also split on being perturbed. The split solutions can not intersect the surviving
periodic solutions. Most of the periodic solution will retain their topology, that
is, survive. From the statement of the theorem it is apparent that the tangled
solutions will appear in layers. These layers are called stochastic layers and the
tangled solutions are said to be chaotic. We could repeat the same process by
applying Pnε wherever we find a surviving orbit with rational angular velocity
of the form ω = m0

n . We could also apply the process to periodic orbits that
appear in the neighbohoods of the elliptic points that are generated. In any
event most of the peiodic orbits survive the process. Also, all of the surviving
paths are invariant and so can not intersect any other paths, and in fact they
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form a Cantor set. From the statement of the theorem it follow that the tangled
solutions are dense in the space of the surviving solutions. Illustrations of the
tangled solutions can be found in [6].
We see that the x and z modes of the oscillator are coupled by the time

variable t in equations (24ε). The rigid body in mediating the interaction es-
sentially allows the the x and y modes to be only weakly coupled in the case
of the surviving periodic solutions. On the other hand the chaotic solutions
are strongly coupled by the rigid body. This fact is the essence of the KAM
theorem.

2.4 THETOROIDALMOUSTACHEANDARNOLDDIF-
FUSION

Finally in our perturbation analysis we account for the harmonic oscillator that
defines the phase space (y, py). In order to be consistent with accepted terminol-
ogy, we shall refer to the periodic orbits of this phase portrait as tori, keeping in
mind that they are 1-tori. Once again we write this family of tori in action-angle
coordinates as (Jy, θy). We take Jy as the parameter specifying the member of
the family and θy as the coordinate of a point on a particular torus from the
family. Extend the perturbed system (24ε) to

J̇ = εf(Π, J, θ, Jy, θy, t)

θ̇ = ω(J) + εg(Π, J, θ, Jy, θy, t)

J̇y = εh(Π, J, θ, Jy, θy, t)

θ̇y = ω + εk(Π, J, θ, Jy, θy, t)

(25ε)

where again h and k are 2π periodic functions of t, and the ω in the θy equa-
tion is independent of Jy because we have an harmonic oscillator. The system
(25ε) defines a four dimensional phase space. We define xuε as the upper hetero-
clinic solution of (24ε) and xlε as the lower heteroclinic solution of (24ε), both
solutions emminating from the same hyperbolic point on the right as shown
in Figure 16. The solution of the second set of equations in (25ε) is a family
of circles each of which is slightly misshapen and parameterized by Jy. The
phase space of the system is filled with orbits of the form (xJ ,xJy) where xJ
is a solution of the (J, θ) system and xJy is a solution of the (Jy, θy) system.
Note that xlε and xuε are members of the xJ family of solutions. All orbits
of the form (xlε,xJy) is a submanifold of the phase space called the arriving
moustache and it is written as M+(Jy). Likewise we have the departing mous-
tache written asM−(Jy) which consists of the submanifold of orbits of the form
(xuε,xJy ). Then it follows that M

+(Jy)∩M−(Jy) = T(Jy), which is the sup-
port of the orbit xJy and which we referred to as a torus. We might refer to
the orbits in the moustaches as whiskers with w+Jy a whisker in M

+(Jy) and

w−Jy a whisker inM
−(Jy). From Melnikov’s theorem we know that any whisker

w−Jy must penetrate M
+(Jy) transversly. But then the whisker will accumu-

late on the opposite branch of the lower heteroclinic orbit that has split off from
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xlε close to where it departs from its torus and experience wild oscillation [13,
λ − lemma], much as the curve y = 1

x sin
1
x behaves close to the y-axis. The

wildly oscillating w−Jy has multiple transverse intersections with M
+(Jy) As a

result of the wild oscillations any other departing moustache that is sufficiently
nearby will also be tansversly penetrated by w−Jy . Designate the first moustache
penetrated by w−Jy asM

+(J1y ) and the second one asM+(J2y ). The process re-

peats with w−Jy accumulating on itself inM
+(J2y ).We can index the penetrated

moustaches: M+(J1y ),M+(J2y ),M+(J3y ), ... . By this sequence of transverse pen-
etrations w−J1y wanders far from its initial muostache M+(J1y ). This wandering

process is termed Arnold diffusion. The whisker w−J1y in Figure 17 is under-

sood to lie entirely in the moustacheM−(J1y ) and so drags the moustache along
as it penetrates the stable moustaches.From the KAM theorem we know that
the tangled solutions, that is the split solutions, are confined to bands that are
bounded by the periodic solutions. One would think that the solutions of the
system (25ε) would be confined to the tori in θ, J, θy coordinates. However
such a consideration does not account for the Jy variable which gives us a four
dimensional phase space. In a four dimensional phase space a one dimensional
curve can avoid intersecting two dimensional tori. For this reason we do not have
a truly chaotic path. A good discussion connecting the concepts of stochastic
layers, chaotic motion and Arnold diffusion can be found in [6, section 2.7]
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