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On a variant of Wilson’s functional equation on

groups

Henrik Stetkær

Abstract

We study the solutions f, g : G →
�

of the functional equation

f(xy) + f(y−1x) = 2f(x)g(y), x, y ∈ G,

where G is a group. We prove that if G is a connected Lie group (or
more generally is generated by its squares), and f 6= 0, then g satisfies
d’Alembert’s equation, and f is either proportional to g, or it satisfies
Kannappan’s condition.
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I Introduction

We will study the functional equation

f(xy) + f(y−1x) = 2f(x)g(y), x, y ∈ G, (I.1)

where G is a group and f, g : G → � are functions on G that we want infor-
mation about. The functional equation (I.1) is very similar in appearance
to Wilson’s functional equation

f(xy) + f(xy−1) = 2f(x)g(y), x, y ∈ G, (I.2)

but it differs from it on the second term, where the new equation (I.1) has
f(y−1x), while the old one (I.2) has f(xy−1). The two versions of course
agree if G is abelian.

Ng [9] proved in the special case of g = 1 that each solution of

f(xy) + f(y−1x) = 2f(x), x, y ∈ G, (I.3)

also satisfies Jensen’s functional equation

f(xy) + f(xy−1) = 2f(x), x, y ∈ G. (I.4)
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On certain groups (I.4) possesses more solutions than (I.3) (e.g. the Heisen-
berg group, see [12, Example 5.1]). So the functional equations (I.1) and
(I.2) need not have the same solutions. On the other hand, the functional
equation

g(xy) + g(y−1x) = 2g(x)g(y), x, y ∈ G, (I.5)

and d’Alembert’s functional equation

g(xy) + g(xy−1) = 2g(x)g(y), x, y ∈ G, (I.6)

have the same set of solutions on any group G (Proposition B.1).
Inspired by these results the purpose of the present paper is to study

the solutions of (I.1) and their relations to the solutions of (I.2). We are
in particular interested in conditions on G ensuring that each solution of
(I.1) satisfies (I.2) as well, like in the cases of Jensen’s and d’Alembert’s
functional equations above. We prove that so is the case, if G is generated by
its squares, but also that it is not true in general (Example IX.2). Another
reason for the present study is that we want to illuminate the relations
between the variant (I.1) of Wilson’s functional equation and d’Alembert’s
functional equation.

Let us briefly describe one of the main results, because it indicates that
the equation (I.1) often is simpler to study than its counterpart (I.2): Let
G be a connected topological group, and let {f, g} be a continuous solution
of (I.1) on G such that f 6= 0. Then g satisfies d’Alembert’s functional
equation, and there are two possibilities: Either f is proportional to g in
which case (I.1) becomes d’Alembert’s functional equation, or both f and g
satisfy Kannappan condition, so that the form of the solutions is the same
as in the abelian case (Theorem VI.3).

For complex-valued solutions our results encompass those of [9] on large
classes of groups as for example the class of connected Lie groups.

We illustrate the theory by a number of examples in Sections VIII and
IX.

From the aesthetical point of view it might be added that (I.1) has
a more homogeneous structure than (I.2): The left hand side of (I.1) is
a sum of representations (the right regular representation R and the left
regular representation L), while the left hand side of (I.2) is the sum of
a representation and an anti-homomorphism (R and the map y 7→ R(y−1)
respectively).

II Notation

G denotes a group with neutral element e and center Z(G). 〈squares〉 is the
subgroup of G generated by the squares of elements of G. The commutator

2



subgroup [G,G] is the subgroup of G generated by the commutators [x, y] =
xyx−1y−1, x, y ∈ G.

We let L and R denote respectively the left and right regular represen-
tation of G on functions on G, i.e. [L(y)F ](x) = F (y−1x) and [R(y)F ](x) =
F (xy) for x, y ∈ G and F : G → � . L and R commute (i.e. L(x)R(y) =
R(y)L(x) for all x, y ∈ G) as is well known and also easy to check.

For any complex-valued function F on G we introduce certain new func-
tions on G by

F̌ (x) = F (x−1), x ∈ G,

Fe = (F + F̌ )/2, Fo = (F − F̌ )/2,

mF (x) = 2F (x)2 − F (x2), x ∈ G.

F is said to be even, resp. odd, if F̌ = F , resp. F̌ = −F .
Kannappan’s condition on F : G → � is that F (xyz) = F (xzy) for all

x, y, z ∈ G. As is well known, Kannappan’s condition is equivalent to F be-
ing a function on the abelian group G/[G,G]. By a classical solution of (I.1)
or (I.2) we mean a solution {f, g} where both f and g satisfy Kannappan’s
condition.

�∗ denotes the multiplicative group of all non-zero complex numbers.

III Jensen’s functional equation

In [9] Ng studied (I.1) in the special case of g = 1, where (I.1) reduces to
the version of (I.3) of Jensen’s functional equation. To treat a general g we
must proceed in a different way than the one of [9], because the fact that
g = 1 plays a crucial role in the computations in [9].

Our next result, Theorem III.1, is a corollary of [9, eq. (2.14)], but we
present it nevertheless here, partly because it is short and simple, partly
because its proof generalizes to the functional equation (I.1).

Theorem III.1. The solutions f : G → � of (I.3) are the functions of
the the form f = a + α, where a : G → � is additive and α is a complex
constant.

Proof. Let f : G → � be a solution of (I.3). The identity (I.3) says that
[L(y) + R(y)]f = 2f , so that f for any y ∈ G is an eigenfunction for the op-
erator L(y)+R(y) corresponding to the eigenvalue 2. Applying the operator
twice to f we find that

4f = [L(y) + R(y)]2f = [L(y2) + R(y2) + 2L(y)R(y)]f

= 2f + 2L(y)R(y)f,

which reduces to f = L(y)R(y)f , i.e. to f(x) = f(y−1xy). In other words,
f is invariant under inner automorphisms. It is then a solution of Jensen
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functional equation f(xy) + f(xy−1) = 2f(x). But any solution of Jensen’s
functional equation which is invariant under inner automorphisms, has the
desired form (see [1, Lemma 1]).

The other direction of the proof is trivial to verify.

Remark III.2. It should be mentioned that the range space of f in [9] is a
general abelian group H, whereas we in the present paper only work with
H = � . Our proof above of Theorem III.1 works if f takes its values in an
abelian group (H,+) with the property that [h ∈ H, 2h = 0] ⇒ h = 0.

IV Properties of the solutions on any group

In this section we derive basic properties of the solutions of (I.1), and we
find necessary and sufficient conditions for a solution of (I.1) to satisfy (I.2).

In the case of an abelian group it is well known that the g in a solution
{f, g} of Wilson’s functional equation is a solution of d’Alembert’s functional
equation. Recalling that mF for any complex-valued function F on G is
defined by mF (x) = 2F (x)2 − F (x2), x ∈ G, we have

Lemma IV.1. Let G be any group. If g : G → � is a non-zero solution of
d’Alembert’s functional equation (I.6), then g(e) = 1, g is invariant under
inner automorphisms, g = ǧ and mg = 1.

Proof. [11, Lemma V.1].

As an elementary example we mention that the solution g(x) = cos x of
(I.1) on G = � has mg(x) = 2(cos x)2 − cos(2x) = 1, i.e. mg ≡ 1. More
generally we find

Lemma IV.2. Let the pair f, g : G → � be a solution of the variant (I.1)
of Wilson’s functional equation such that f 6= 0.

(a) g(e) = 1, g is invariant under inner automorphisms, and g = ǧ.

(b) mg is a homomorphism of G into the multiplicative group {±1}.

(c) f(y−1xy) = mg(y)f(x) for all x, y ∈ G.

(d) f = mgf and g = mgg.

Proof. (a) To get the first statement put y = e in (I.1). The identity (I.1)
may be rewritten as [L(y) + R(y)]f = 2g(y)f for all y ∈ G. Applying
L(z) + R(z) to this we get (starting with the right hand side) that

4g(y)g(z)f = [L(z) + R(z)][L(y) + R(y)]f

= [L(zy) + R(zy)]f + [L(z)R(y) + R(z)L(y)]f

= 2g(zy)f + [L(z)R(y) + R(z)L(y)]f,
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so

2g(zy)f = 4g(y)g(z)f − [L(z)R(y) + R(z)L(y)]f, y, z ∈ G. (IV.1)

The value of the right hand side of (IV.1) does not change if z and y are
interchanged, because L and R commute. f being non-zero, we infer that g
is invariant under inner automorphisms.

Let x0 ∈ G be arbitrary. Assume first that either f(x0) 6= 0 or f(e) 6= 0.
Then the pair {f, g} is a solution of (I.1) on the subgroup 〈x0〉 of G generated
by x0, and f is not identically 0 on 〈x0〉. The group 〈x0〉 is abelian, so the
pair {f, g} is a solution of Wilson’s functional equation (I.2) on 〈x0〉, from
which it follows that g(x0) = g(x−1

0
).

We may thus assume that f(e) = f(x0) = 0. Putting x = e in (I.1) we
see that f is odd. We get for any x ∈ G that

2f(x)[g(x0) − g(x−1

0
)] = f(xx0) + f(x−1

0
x) − f(xx−1

0
) − f(x0x)

= f(xx0) + f(x−1

0
x) + f(x0x

−1) + f(x−1x−1

0
)

= f(x0x
−1) + f(xx0) + f(x−1

0
x) + f(x−1x−1

0
)

= 2f(x0)g(x−1) + 2f(x−1

0
)g(x) = 0 − 2f(x0)g(x) = 0 − 0 = 0,

which implies that g(x0) = g(x−1

0
), because f 6= 0.

(b) Putting z = y in (IV.1) we find that

[2g(y)2 − g(y2)]f(x) = f(y−1xy), x, y ∈ G. (IV.2)

Defining [i(y)F ](x) := F (y−1xy) for any complex-valued function F on G
we have by (IV.2) that i(y)f = mg(y)f for all y ∈ G. Noting that i(y1y2) =
i(y1)i(y2) we get from the assumption f 6= 0 that mg : G → � is multiplica-
tive. Since mg is not identically 0 [this would by (IV.2) force f to be 0] it fol-
lows that mg(G) ⊆ �∗ and so that mg : G → �∗ is a homomorphism. From
g = ǧ we infer that mg = m̌g, so that mg(x)2 = mg(x)mg(x

−1) = mg(e) = 1,
which implies that mg(G) ⊆ {±1}.

(c) is just a reformulation of the identity (IV.2).
(d) The first result comes about when we in the formula f(y−1xy) =

mg(y)f(x) from Lemma IV.2(c) put x = y. For any x, y ∈ G we get that

2f(x)g(y) = f(xy) + f(y−1x) = f(y−1yxy) + f(y−1xy−1y)

= mg(y)[f(yx) + f(xy−1)] = mg(y)[f((y−1)−1x) + f(xy−1)]

= mg(y)[f(xy−1) + f((y−1)−1x)] = 2mg(y)f(x)g(y).

Since f 6= 0 we get that g(y) = mg(y)g(y).

Theorem IV.3. Let the pair f, g : G → � be a solution of the variant
(I.1) of Wilson’s functional equation such that f 6= 0. Then the following 4
statements are equivalent:
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(a) {f, g} is a solution of Wilson’s functional equation (I.2).

(b) f is invariant under inner automorphisms.

(c) g satisfies d’Alembert’s functional equation (I.6).

(d) mg = 1.

Proof. (a) ⇔ (b): Assuming (a) we subtract (I.2) from (I.1) and get that
f(y−1x) = f(xy−1), which shows (b). The converse statement is trivial.

(a) ⇒ (c): By the assumption {f, g} is a solution of Wilson’s functional
equation, so g is a solution of d’Alembert’s long functional equation

g(xy) + g(yx) + g(xy−1) + g(y−1x) = 4g(x)g(y), x, y ∈ G, (IV.3)

([3, Lemma 1]). Since g is invariant under inner automorphisms (Lemma
IV.2(a)) it is also a solution of d’Alembert’s (short) functional equation.

(c) ⇒ (d): mg = 1 by Lemma IV.1.
(d) ⇒ (b): This is immediate from Lemma IV.2(c).

Let the pair f, g : G → � be a solution of the variant (I.1) of Wilson’s
functional equation such that f 6= 0. Then f and g may not satisfy Wilson’s
and d’Alembert’s functional equations on all of G, but according to Lemma
IV.4 they do satisfy signed versions of them on G, and on the subgroup
ker(mg) = {x ∈ G |mg(x) = 1} of G they satisfy Wilson’s and d’Alembert’s
functional equation. Outside the subgroup both functions f and g vanish
identically (follows from Lemma IV.2(d)).

Lemma IV.4. Let the pair f, g : G → � be a solution of the variant (I.1)
of Wilson’s functional equation such that f 6= 0.

(a) f(xy) + mg(y)f(xy−1) = 2f(x)g(y) for all x, y ∈ G.

(b) g(xy) + mg(y)g(xy−1) = 2g(x)g(y) for all x, y ∈ G.

Proof. (a) is an immediate consequence of Lemma IV.2(c).
(b) The identity (IV.1) says that

2g(zy)f(x) = 4g(y)g(z)f(x) − f(z−1xy) − f(y−1xz), x, y, z ∈ G.

Applying Lemma IV.2(c) to it we find for any x, y, z ∈ G that

2g(zy)f(x) = 4g(y)g(z)f(x) − mg(y)f(yz−1x) − mg(y)f(xzy−1)

= 4g(y)g(z)f(x) − mg(y)[f(yz−1x) + f(xzy−1)]

= 4g(y)g(z)f(x) − 2mg(y)f(x)g(zy−1).

Since f 6= 0 we may divide through by 2f to get g(zy) + mg(y)g(zy−1) =
2g(y)g(z), which up to a change of notation is the same as the result of
(b).
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We next consider the even and odd parts of the solutions.

Lemma IV.5. Let the pair f, g : G → � be a solution of the variant (I.1)
of Wilson’s functional equation.

(a) f is odd if and only if f(e) = 0.

(b) Both fe and fo satisfy (I.1) with the same g as for f .

(c) fe = f(e)g and fe(xy) = fe(yx) for all x, y ∈ G.

(d) The odd part fo of f satisfies

fo(xy) + fo(yx)

2
= fo(x)g(y) + fo(y)g(x) for all x, y ∈ G. (IV.4)

Proof. (a) follows immediately when you put x = e in (I.1).
(b) For the odd part fo of f we get

fo(xy) + fo(y
−1x) =

1

2
[f(xy) − f(y−1x−1)] +

1

2
[f(y−1x) − f(x−1y)]

=
1

2
[f(xy) + f(y−1x)] −

1

2
[f(x−1y) + f(y−1x−1)]

= f(x)g(y) − f(x−1)g(y) = [f(x) − f(x−1)]g(y) = 2fo(x)g(y).

The computation for fe proceeds along the same lines.
(c) Putting x = e in (I.1) we get that fe = f(e)g. The last statement is

immediate from Lemma IV.2(a).
(d) Using that fo satisfies (I.1) we reformulate the right hand side of

(IV.4) as follows:

fo(x)g(y) + fo(y)g(x) =
fo(xy) + fo(y

−1x)

2
+

fo(yx) + fo(x
−1y)

2

=
fo(xy) + fo(yx)

2
+

fo(y
−1x) + fo(x

−1y)

2

=
fo(xy) + fo(yx)

2
+

fo(y
−1x) − fo(y

−1x)

2
=

fo(xy) + fo(yx)

2
,

which is the desired result.

V Properties of mg

In this section we find sufficient conditions for the function mg to be iden-
tically 1 and study what happens if mg(x0) = −1 for some x0 ∈ G.

Proposition V.1. If the pair f, g : G → � is a solution of (I.1) such that
f 6= 0, then mg ≡ 1 on the subgroups Z(G) and 〈squares〉.
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Proof. By assumption there exists an x0 ∈ G such that f(x0) 6= 0. For any
z ∈ Z(G) we get by Lemma IV.2(c) that f(x0) = f(z−1x0z) = mg(z)f(x0),
implying that mg(z) = 1. The last statement follows immediately from
Lemma IV.2(b).

Theorem V.2. Let the pair f, g : G → � be a solution of (I.1) such that
f 6= 0. Then mg ≡ 1 if one of the following conditions holds:

(a) G is abelian.

(b) G is generated by its squares, i.e. G = 〈squares〉.

(c) G is a finite group of odd order.

(d) G is a connected Lie group.

(e) G is a connected topological group and g is continuous.

(f) f(e) 6= 0.

(g) g is a solution of d’Alembert’s functional equation.

Proof. (a) and (b) are immediate from Proposition V.1.
(c) In Appendix A we observe that a finite group of odd order is generated
by its squares, so we may refer to (b).
(d) In Lemma A.3 we observe that a connected Lie group is generated by
its squares, so we may refer to (b).
(e) mg is continuous and takes only the values ±1. G being connected mg

is constant, so mg(x) = mg(e) = 1.
(f) Putting x = e in Lemma IV.2(c) we get that mg(y) = 1 for all y ∈ G.
(g) is part of Lemma IV.1.

It might be pointed out that any solution {f, g} of (I.1) is a solution
of (I.2), unless possibly when f is odd. This is a consequence of Theorem
V.2(f), combined with (a) of Lemma IV.5.

We will next examine what the consequences are if mg is not identically
1. This phenomenon actually happens, for instance on the Heisenberg group
with integer entries (See Example IX.2). It causes among other things f to
be odd as the following Proposition V.3 shows. The proposition is also useful
in computations in concrete examples.

Proposition V.3 (Properties of mg). Let the pair f, g : G → � be a
solution of the variant (I.1) of Wilson’s functional equation such that f 6= 0.

(a) Let x0 ∈ G. Then mg(x0) = −1 ⇒ f(x0) = g(x0) = 0 and g(x2

0
) = 1.

(b) Assume that f and g are not proportional. If x0 ∈ G, then f(x0) =
g(x0) = 0 ⇒ mg(x0) = −1. If mg ≡ 1, then f and g have no common
zeros.
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(c) Assume that there exists an x0 ∈ G such that mg(x0) = −1. Then f ≡ 0
on the centralizer of x0 in G. In particular f ≡ 0 on Z(G), so f is odd.

Proof. (a) The first implication follows immediately from Lemma IV.2(d)
and the computation −1 = mg(x0) = 2g(x0)

2 − g(x2
0
) = 0− g(x2

0
) = −g(x2

0
).

(b) Assume that f(x0) = g(x0) = 0 and that f and g are not propor-
tional. fe = f(e)g (Lemma IV.5(c)) is proportional to g, so our assumption
implies that fo is not proportional to g. In particular fo 6= 0. Furthermore
fo is a solution of (I.1) by Lemma IV.5(b). Finally fo(x0) = f(x0)−fe(x0) =
0−f(e)g(x0) = 0, so we may replace f by fo. Doing so we get for any x ∈ G
from the functional equation (I.1) that

f(x0x) + f(x−1x0) = 2f(x0)g(x) = 0, (V.1)

f(xx0) + f(x−1

0
x) = 2f(x)g(x0) = 0. (V.2)

Now, using (V.1), (V.2) and that f is odd in that order we find for any
x ∈ G that

f(x0x) = −f(x−1x0) = f(x−1

0
x−1) = −f(xx0)

= −f(x−1

0
x0xx0) = −mg(x0)f(x0x).

Since x ∈ G is arbitrary and f 6= 0 we see that mg(x0) = −1.
The last statement of (b) is an immediate consequence of the first state-

ment.
(c) If z is in the centralizer of x0 then f(z) = f(x−1

0
x0z) = f(x−1

0
zx0) =

mg(x0)f(z) = −f(z), so f(z) = 0. That f is odd comes from Lemma
IV.5(a).

(b) is illustrated by the fact that Sine and Cosine have no common zeros
on G = � .

VI Explicite solution formulas when mg = 1

As we shall see below (Proposition VI.2) f and g satisfy Kannappan’s con-
dition unless f is even. Kannappan’s condition reduces the considerations
to the abelian case. We recall the result for Wilson’s functional equation:

Theorem VI.1. Let {f, g} be a solution of (I.1) or (I.2) such that f 6= 0
and such that f satisfies Kannappan’s condition. Then so does g.

Furthermore there exists a homomorphism χ : G → �∗ such that g =
(χ + χ̌)/2. This fixes the homomorphism χ except for interchange of χ and
χ̌.

If χ 6= χ̌, then f = α(χ+ χ̌)/2+β(χ− χ̌)/2 for some constants α, β ∈ �,
and if χ = χ̌, then f = (α + a)χ, where α ∈ � and a : G → � is additive.

Conversely, any pair {f, g} of functions of the forms described above
solves (I.1) and (I.2).
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Proof. See, e.g., [8, Lemma 4.2] or [10, Theorem III.4].

The next results focus on Kannappan’s condition for solutions of (I.1).
Let {f, g} be a solution of (I.1) such that f 6= 0. A necessary condition for
f to satisfy Kannappan’s condition is that mg ≡ 1. Indeed, if f satisfies
Kannappan’s condition then f is invariant under inner automorphisms and
so mg ≡ 1 by Theorem IV.3.

Proposition VI.2. Let the pair f, g : G → � be a solution of the variant
(I.1) of Wilson’s functional equation, such that mg = 1.

(a) If g satisfies Kannappan’s condition, then f also satisfies Kannappan’s
condition.

(b) If fo 6= 0, then both f and g satisfy Kannappan’s condition.

Proof. By Theorem IV.3 we get that f is invariant under inner automor-
phisms. Hence so are fe and fo. From Lemma IV.5(d) we then infer that
fo(xy) = fo(x)g(y) + fo(y)g(x) for all x, y ∈ G. It is known that all so-
lutions {fo, g} with fo 6= 0 of this functional equation satisfy Kannappan’s
condition (See [2] or [5]).

(a) Since fe = f(e)g by Lemma IV.5(c) we see that fe satisfies Kannap-
pan’s condition. By the above so does fo and hence also f = fe + fo.

(b) From the remarks at the beginning of the proof we get since fo 6= 0
that g satisfies Kannappan’s condition. We are done by point (a).

By help of Proposition VI.2 we now describe the complete solution of
(I.1) under the assumption that mg = 1. This encompasses for example all
connected Lie groups.

Theorem VI.3. Let the pair f, g : G → � be a solution of (I.1), such that
f 6= 0 and mg = 1. Then either

(1) {f, g} = {cg, g}, where c ∈ �∗ and g is a non-zero solution of d’Alem-
bert’s functional equation, that does not satisfy Kannappan’s condition,
or

(2) There exists a homomorphism χ : G → �∗ such that g = (χ + χ̌)/2.
This fixes the homomorphism χ except for interchange of χ and χ̌.

(a) If χ 6= χ̌, then f = α(χ + χ̌)/2 + β(χ − χ̌)/2 for some constants
α, β ∈ �.

(b) If χ = χ̌, then f = (α + a)χ, where α ∈ � and a : G → � is
additive.

Conversely, any pair {f, g} of functions of the forms described above
satisfies (I.1).
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To take another example, let G be any group and consider the variant

f(xy) + f(y−1x) = 2f(x), x, y ∈ G, (VI.1)

of Jensen’s functional equation. Here g = 1, so mg = 1. Now, (1) of Theorem
VI.3 does not apply, and in (2) we have χ = χ̌ = 1, so that f = α+a, where
α ∈ � and a : G → � is additive.

VII On the zeros of a solution

In Proposition V.3(b) and (c) we have encountered some of the properties of
the zeros of f and g. In this section we list one more. It is a generalization
of the fact that the zeros of Sine is a subgroup of (� ,+).

Proposition VII.1. Let {f, g} be a solution of (I.1) such that f is odd and
mg = 1. Then {x ∈ G | f(x) = 0} is a normal subgroup of G.

Proof. Let Nf = {x ∈ G | f(x) = 0}. Clearly e ∈ Nf (Lemma IV.5(a)), and
x ∈ Nf ⇒ x−1 ∈ Nf , because f is odd.

Let x1, x2 ∈ Nf . From the functional equation (I.1) we get that

f(x1x2) + f(x−1

2
x1) = 0, and

f(x2x1) + f(x−1

1
x2) = 0,

where the last identity, due to f being odd, is equivalent to

f(x−1

1
x−1

2
) + f(x−1

2
x1) = 0.

Comparing this with the first identity we get that

f(x1x2) = f(x−1

1
x−1

2
) = −f(x2x1) = −mg(x1)f(x1x2) = −f(x1x2),

which implies that f(x1x2) = 0.
That Nf is normal is seen by a simple computation: If x ∈ Nf and

y ∈ G, then f(yxy−1) = mg(y)f(x) = mg(y) · 0 = 0.

VIII Two general examples

First two examples covering two general classes of groups.

Example VIII.1. Let G be a connected nilpotent Lie group. The Heisen-
berg group is an example of such a group.

Let the pair {f, g} be a solution of (I.1) on G such that f 6= 0. Then mg =
1 by Theorem V.2(d), from which it follows that g satisfies d’Alembert’s
functional equation (Theorem IV.3). According to [4, Corollary 2.8] the
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function g then satisfies Kannappan’s condition. From Proposition VI.2(a)
we see that so does f .

Conclusion: If the pair {f, g} is a solution of (I.1) on G such that f 6= 0,
then both f and g satisfy Kannappan’s condition, and so they are given by
the formulas of Theorem VI.1.

Example VIII.2. Let G be a group for which G = [G,G], for example
a connected semisimple Lie group ([14, Corollary 3.18.10]). The group
SL(2,�) is an example of such a group.

Then g = 1 is the only classical solution of d’Alembert’s functional equa-
tion on G. Indeed, if g satisfies Kannappan’s condition then by Kannappan’s
original result g = (χ + χ̌)/2 for some homomorphism χ : G → �∗. But
G = [G,G], so any homomorphism of G into �∗ is identically 1.

Let {f, g} be a solution of (I.1) such that fo 6= 0. G is generated by
its squares (Corollary A.1), so that mg = 1 by Theorem V.2(b). Theorem
IV.3 tells us that g is a solution of d’Alembert’s functional equation. Noting
that g satisfies Kannappan’s condition (Proposition VI.2(b)) we get from the
remarks above that g = 1. fo is a solution of (I.1) (Proposition IV.5(b)),
which with g = 1 reduces to the modified Jensen functional equation (I.3).
But then fo is additive (Theorem III.1) which implies that fo = 0, because
G = [G,G]. Thus the case of fo 6= 0 does not occur, so f is even. Then
f = fe = f(e)g (Lemma IV.5(c)) which by Theorem IV.3(c) means that we
deal with d’Alembert’s functional equation.

Conclusion: The solutions {f, g} of (I.1) with f 6= 0 are the function
pairs of the form {f, g} = {cg, g}, where c ∈ �∗ and g is a non-zero solution
of d’Alembert’s functional equation.

IX Specific examples

We continue by discussing the functional equation (I.1) on specific groups.

Example IX.1. G = SL(2,�) is a connected semisimple Lie group. By
Example VIII.2 the only solutions {f, g} of (I.1) with f 6= 0 are those of
the form {f, g} = {cg, g}, where c ∈ �∗ and g is a non-zero solution of
d’Alembert’s functional equation. Also g = 1 is the only classical non-zero
solution of d’Alembert’s functional equation.

Straightforward computations show that the function g(x) = 1

2
tr(x),

x ∈ SL(2,�), is a solution of d’Alembert’s functional equation. This g does
not satisfy Kannappan’s condition, because g 6= 1, a fact that of course also
can be seen directly:

g(

{

1 0
1 1

}{

1 1
0 1

} {

1 1
−1 0

}

) =
1

2
, but

g(

{

1 0
1 1

}{

1 1
−1 0

}{

1 1
0 1

}

) = 1.
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The example shows that the condition fo 6= 0 in Proposition VI.2(b)
cannot be left out.

On any group G the solutions of d’Alembert’s functional equation are
constant on each of the conjugacy class Cx = {yxy−1 | y ∈ G}, because they
are invariant under inner automorphisms (Lemma IV.1). An analysis of the
set of conjugacy classes shows that the only continuous non-zero solutions g
of d’Alembert’s functional equation on SL(2,�) are the two functions met
above, i.e. g = 1 and g(x) = 1

2
tr(x), x ∈ SL(2,�). We skip the details.

Example IX.2 (The Heisenberg group). The Heisenberg group

H3(�) = {(x, y, z) =





1 x z
0 1 y
0 0 1



 | x, y, z ∈ �}

is covered by Example VIII.1, so all solutions of (I.1) on it are classical. It
might be added that the solutions of (I.2) on H3 are written down in [13].

As a contrast, on the Heisenberg group with integer entries G = H3(�)
there exist solutions of (I.1) that are not solutions of (I.2) as well. Here is
an example:

Let us for (k,m, n) ∈ H3(�) define

f(k,m, n) :=
ik − i−k

2
12�(m)(−1)n, (IX.1)

g(k,m, n) :=
ik + i−k

2
12�(m)(−1)n.

Elementary calculations show that {f, g} is a solution of (I.1).
A small computation based on the definition of mg reveals that

mg(k,m, n) = (−1)m for k,m, n ∈ �, (IX.2)

so that mg 6= 1. Hence {f, g} is not a solution of Wilson’s functional equa-
tion.

The above also provides an example of a solution {f, g} of (I.1) such
that neither f nor g satisfies Kannappan’s condition. Indeed, as noted just
before Proposition VI.2, mg ≡ 1 is a necessary condition for f to satisfy Kan-
nappan’s condition, and mg 6≡ 1 here. For the claim about g we note that
g((1, 1, 0)(1, 0, 0)(0, 1, 0)) = g(2, 2, 2) = −1, while g((1, 1, 0)(0, 1, 0)(1, 0, 0)) =
g(2, 2, 1) = 1.

Example IX.3 (The quaternion group). The quaternion group Q8 =
{±1,±i,±j,±k} is neither abelian, nor is it generated by its squares. We
shall see that the set of solutions of (I.1) nevertheless is a proper subset of
the set of solutions of (I.2).

Let {f, g} be a solution of (I.1) such that f 6= 0. We will show that
mg ≡ 1.
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Assume first that fo 6= 0. We go on by noting that fo(±1) = 0 because
x = x−1 for x = ±1. Since fo 6= 0 there is a y ∈ {±i,±j,±k} such that
fo(y) 6= 0. Now {fo, g} is also a solution of (I.1) (Lemma IV.5(b)), so

g(x) =
1

2fo(y)
(fo(yx) + fo(x

−1y)) for all x ∈ Q8.

Taking x = −1 here we get, since y−1 = −y for the y’s in question, that

g(−1) =
1

2fo(y)
(fo(−y) + fo(−y)) =

1

2fo(y)
(−fo(y) − fo(y)) = −1.

If mg(i) = −1, then g(i) = 0 by Proposition V.3(a), and so mg(i) = 2g(i)2−
g(i2) = 2 · 02 − g(−1) = 0− (−1) = 1. Also mg(−i) = mg(i

−1) = mg(i) = 1.
Similarly we find that mg(±j) = mg(±k) = 1. Finally mg(±1) = 1, because
mg = 1 on Z(G) (Proposition V.1). Thus mg ≡ 1.

If fo = 0 so that f 6= 0 is even, then f is proportional to g, so that the
equation (I.1) becomes d’Alembert’s equation. And then mg ≡ 1 by Lemma
IV.1. So mg ≡ 1 in any case.

We conclude by Theorem IV.3 that on Q8 all solutions of (I.1) satisfy
Wilson’s functional equation (I.2). We next describe these solutions and
show that they form a proper subset of the solutions of (I.2).

We see from Theorem VI.3 that there apart from the classical solutions
only may occur solutions of the form {f, g} = {cg, g}, where c ∈ �∗ and g is
a non-zero solution of d’Alembert’s functional equation, that does not satisfy
Kannappan’s condition. As shown in [13, Example 7.4] there is exactly one
such g, viz. g = g0, where g0(±1) = ±1, g0(x) = 0 for x ∈ Q8 \ {±1}.

In [13, Example 11.3] the solutions {f, g0} of Wilson’s functional equation
are described. There are solutions for which f is odd. Actually the dimension
of the space of these odd solutions is 3. None of the pairs {f, g0} with f odd
is a solution of (I.1), unless f = 0. So on Q8 the set of solutions of (I.1) is
a proper subset of the set of solutions of (I.2).

Example IX.4. Here we consider a group G such that G/〈squares〉 is
cyclic. This is a natural extension of the requirement G = 〈squares〉 that
we have met earlier, for example in Theorem V.2. It is interesting, because
[9, Theorem 2.2] implies that a solution of the variant (I.3) of Jensen’s func-
tional equation is a solution of Jensen’s functional equation (I.4) as well, if
G/〈squares〉 is cyclic. However, as we now shall see, this result does not
carry over to (I.1), when g 6= 1.

Let G = S3 = {e, τ1, τ2, τ3, σ1, σ2} be the group of permutations of 3
objects, where τ1 = {1, 2}, τ2 = {1, 3}, τ3 = {2, 3}, σ1 = {1, 2, 3} and
σ2 = {1, 3, 2}. Then S3/〈squares〉 is a cyclic group of order 2, generated by
τ1〈squares〉.
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By inspection you prove that

f(e) = f(τ1) = f(τ2) = f(τ3) = 0, f(σ1) = −f(σ2) = exp{2πi/3},

g(e) = 1, g(τ1) = g(τ2) = g(τ3) = 0, g(σ1) = g(σ2) = −
1

2
,

defines a solution {f, g} of (I.1). The corresponding function mg is

mg(e) = 1, mg(τ1) = mg(τ2) = mg(τ3) = −1, mg(σ1) = mg(σ2) = 1.

Now, mg is not identically 1, so {f, g} is not a solution of (I.2).
This example is also a counter-example to Theorem V.2(c), if we there

replace the condition ‘of odd order’ by ‘of even order’.

A On the subgroup generated by the squares

In this appendix we study the condition G = 〈squares〉. The subgroup
〈squares〉 contains the commutator group [G,G] (indeed, [x, y] = x2(x−1y)2y−2

for any x, y ∈ G), so 〈squares〉 is a normal subgroup of G, and the quotient
group G/〈squares〉 is abelian.

Corollary A.1. If [G,G] = G, then G is generated by its squares. In
particular, any simple, non-abelian group is generated by its squares.

Example A.2. The group

G = 〈a1, a2, a3, a4 |

[a−1

2
, a−1

1
] = a2, [a−1

3
, a−1

2
] = a3, [a−1

4
, a−1

3
] = a3, [a−1

1
, a−1

4
] = a1〉

that was considered by Higman in [7], has G = [G,G], so it is generated by
its squares.

The next lemma reveals that many important topological groups have
the algebraic property of being generated by their squares. � is an example
of a group, which is not generated by its squares.

Lemma A.3. Any connected Lie group is generated by its squares.

Proof. Let the Lie group be G and its Lie algebra g. It is very well known
that the image U = exp(g) of the exponential map is a neighborhood of e
in G. U consists of squares, because exp(sX) exp(tX) = exp((s + t)X) for
all s, t ∈ � and X ∈ g, so that in particular exp(X/2) exp(X/2) = exp(X)
for all X ∈ g. Since G is connected we have that G =

⋃

∞

n=1
V n for any

neighborhood V of e ∈ G (see [6, Theorem 7.4]). Taking V = U we see that
G is generated by U and hence by the squares of G.
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Infinite-dimensional examples also exist: Let (X, ‖·‖) be a real or complex
Banach space. Let B(X) be the set of all bounded linear operators on X,
and let GL(X) = {A ∈ B(X)|A is invertible}. Then GL(X) is a topological
group with the identity operator I as its neutral element.

Lemma A.4. The identity component of GL(X) is generated by its squares.

Proof. Like in the proof of Lemma A.3 it suffices to produce a neighborhood
U of I, such that U consists of squares from the identity component. As
U we may take {A ∈ B(X) | ‖A − I‖ < 1}. Indeed, if ‖A − I‖ < 1 then
∑

∞

n=0

( 1

2

n

)

(A − I)n is a square root of A in the identity component.

The condition G = 〈squares〉 is not found in the standard textbooks on
algebra, so let us give an equivalent characterization of it.

Lemma A.5. G = 〈squares〉 if and only if G has no subgroup of index 2.

Proof. We will show the equivalent statement that G 6= 〈squares〉 if and only
if G has a subgroup of index 2.

Let us first assume that G 6= 〈squares〉. Then G/〈squares〉 is a non-
trivial abelian group. Let x0 ∈ G\ 〈squares〉. Viewing G as a discrete group
we get from the theory of locally compact abelian groups that there exists
a homomorphism χ : G/〈squares〉 → � such that χ(x0〈squares〉) 6= 1 ([6,
Theorem 22.17]). Consider m = χ ◦ π, where π : G → G/〈squares〉 is the
canonical projection. m : G → � is a homomorphism, and m(x0) 6= 1. Since
m is identically 1 on squares, the values of m are only ±1. Since m(x0) 6= 1
we see that m(x0) = −1. Now H = ker m is a subgroup of G of index 2.

Let us conversely assume that G has a subgroup H of index 2. The index
being 2, H is normal. Again, since the index is 2, we see that any square
belongs to H, so 〈squares〉 ⊆ H. But then 〈squares〉 6= G, because H is a
proper subgroup of G.

In particular any finite group of odd order is generated by its squares.
To take an example to the contrary, we note that the symmetric group

Sn is not generated by its squares, because it has a subgroup of index 2,
viz. the alternating group An.

B Symmetry of the right hand side

The Proposition below applies to various functional equations. It is surely
known and easy to prove, but I don’t know of any explicite reference. It
shows for example that we get nothing new by replacing the left hand side
of d’Alembert’s functional equation or of the quadratic functional equation
by the versions corresponding to the variant (I.1) of Wilson’s functional
equation.
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Proposition B.1. Let G be any group, and let H be an abelian group. Let
g : G → H, and let B : G × G → H be symmetric. Then

g(xy) + g(y−1x) = B(x, y), ∀x, y ∈ G,

m

g(xy) + g(xy−1) = B(x, y), ∀x, y ∈ G.

If one of the two identities holds, then g is even and invariant under inner
automorphisms.

Proof. Let us assume that the first identity holds, i.e. that g(xy)+g(y−1x) =
B(x, y), for all x, y ∈ G. Putting y = e we get that 2g(x) = B(x, e). Using
that we get putting x = e in the first identity that g(y)+g(y−1) = B(e, y) =
B(y, e) = 2g(y), proving the claim g = ǧ.

Now, we get for any x, y ∈ G that

g(xy) + g(y−1x) = B(x, y) = B(y, x) = g(yx) + g(x−1y)

= g(yx) + ǧ(x−1y) = g(yx) + g(y−1x),

which implies the second claim, i.e. that g(xy) = g(yx) for all x, y ∈ G. The
second claim ensures that the second identity holds.

The proof of the implication in the other direction proceeds along the
same lines as the one just given, so we leave it out.
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