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F -REGULARITY OF LARGE SCHUBERT VARIETIES

MICHEL BRION AND JESPER FUNCH THOMSEN

Abstract. Let G denote a connected reductive algebraic group over an alge-
braically closed field k and let X denote a projective G×G-equivariant embedding
of G. The large Schubert varieties in X are the closures of the double cosets BgB,
where B denotes a Borel subgroup of G, and g ∈ G. We prove that these varieties
are globally F -regular in positive characteristic, resp. of globally F -regular type
in characteristic 0. As a consequence, the large Schubert varieties are normal and
Cohen-Macaulay.

1. Introduction

The class of globally F -regular varieties was introduced by Smith in [20] ; these
are projective algebraic varieties in positive characteristics such that all the ideals
in their homogeneous coordinate rings are tightly closed. The globally F -regular
varieties (and their analogues in characteristic 0, the varieties of globally F -regular
type) have remarkable properties, e.g., they are normal and Cohen-Macaulay, and
the higher cohomology groups of all nef invertible sheaves are trivial.

Examples of globally F -regular varieties include the projective toric varieties
(Prop.6.4 in [20]). In this note, we obtain the global F -regularity of a wider class of
varieties with algebraic group action: the G×G-equivariant projective embeddings
of any connected reductive group G, and the closures in any such embedding of the
double cosets BgB, where B denotes a Borel subgroup of G, and g ∈ G is arbitrary.
By the Bruhat decomposition, these “large Schubert varieties” are parametrized by
the Weyl group of G; examples are the closures of parabolic subgroups. We also
show that the large Schubert varieties are of globally F -regular type in characteristic
0.

For this, we exploit the close relation between global F -regularity and Frobe-
nius splitting established in [20], and the Frobenius splitting properties of the large
Schubert varieties, proved in [2] and [18]. Another key ingredient is the global F -
regularity of the flag varieties and their Schubert varieties ([12]). Note that, unlike
for Schubert varieties, no desingularization of large Schubert varieties is known in
general; this makes our arguments somewhat indirect.

As a consequence of our result, the large Schubert varieties in any equivariant
embedding of G are normal and Cohen-Macaulay. This was first proved in the
case of the canonical compactification of a semisimple adjoint group, by Frobenius
splitting methods ([2]). Then Rittatore showed that all the equivariant embeddings
of connected reductive groups are Cohen-Macaulay, again by Frobenius splitting
methods ([18]). On the other hand, the Cohen-Macaulayness of large Schubert
varieties in the space of n×n matrices (regarded as an equivariant embedding of the
general linear group GLn) was established by Knutson and Miller via a degeneration
argument, see [10].
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The group G, regarded as a homogeneous space under G × G, is an example
of a spherical homogeneous space, i.e., it contains only finitely many orbits of the
Borel subgroup B × B of G × G. More generally, one may consider an equivariant
embedding X of a spherical homogeneous G/H, and ask whether the closures in X
of the B-orbits in G/H are globally F -regular. The answer is generally negative
as some of these closures have bad singularities, see Ex.6 in [3]. However, the
question makes sense for the class of multiplicity-free orbit closures introduced in
[3], since these are normal and Cohen-Macaulay (see [3] in characteristic 0, and [4] in
arbitrary characteristic). In fact, the class of multiplicity-free orbit closures includes
the large Schubert varieties in toroidal embeddings of G, i.e., those which dominate
the canonical compactification of the associated adjoint semisimple group.

2. Strong F -regularity

In this section k denotes an algebraically closed field of characteristic p > 0 and R
denotes a commutative k-algebra which is essentially of finite type, i.e., is isomorphic
to a localization of a finitely generated k-algebra.

Composing the R-module structure on an R-module M with the Frobenius map
F : R → R, r 7→ rp, defines a new R-module which we denote by F∗M . The module
defined by iterating this procedure n times will be denoted by F n

∗ M . In particular,
this defines an R-module F n

∗ R for each positive integer n which as an abelian group
coincides with R but where the R-module structure is twisted by the n-th iterated
Frobenius morphism r 7→ rpn .

When s ∈ R and n is a positive integer we may define an R-module map by

F n
s : R → F n

∗ R,

r 7→ rpn

s.

A splitting of F n
s is a R-module map φ : F n

∗ R → R such that the composed map
φ ◦ F n

s coincides with the identity map on R.

Definition. ([8]) The ring R is strongly F -regular if for each s ∈ R, not contained
in a minimal prime of R, there exists a positive integer n such the map F n

s is split.
The affine scheme Spec(R) is said to be strongly F -regular if R is strongly F -regular.

It is known (see [8]) that strongly F -regular rings are reduced, normal, Cohen-
Macaulay, and F -rational. Moreover, strongly F -regular rings are weakly F -regular,
i.e. all ideals are tightly closed. Being strongly F -regular is a local condition in the
sense that R is strongly F -regular if and only if all its local rings are strongly
F -regular.

3. Global F -regularity

In this section X will denote a projective variety over an algebraically closed field
k of characteristic p > 0. (By a variety, we mean a separated integral scheme of
finite type over k; in particular, varieties are irreducible). When L is an ample
invertible sheaf on X we define the associated section ring to be

R = R(X,L) :=
⊕
n∈Z

Γ(X,Ln).

This ring R is a positively graded, finitely generated k-algebra. We may now state
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Definition. ([20]) The projective variety X is globally F -regular if the ring R(X,L)
is strongly F -regular for some ample invertible sheaf L on X.

It can be shown (see Thm.3.10 in [20]) that if X is globally F -regular then the
section ring associated to any ample invertible sheaf is strongly F -regular. Moreover,
if X is globally F -regular then all its local rings are strongly F -regular. In particular,

Corollary 3.1. If the projective variety X is globally F -regular then X is normal
and Cohen-Macaulay. Furthermore, the section ring R(X,L) of any ample invertible
sheaf L on X is normal and Cohen-Macaulay.

3.1. Frobenius splitting. The absolute Frobenius morphism F : Y → Y on a
scheme Y of finite type over k, is the map which is the identity on the set of points
and where the associated map of structure sheafs F ] : OY → F∗OY is the p-th
power map. Following [13] we say that Y is Frobenius split if F ] splits as a map of
OY -modules, i.e. if there exists an OY -linear map φ : F∗OY → OY such that the
composed map φ ◦ F ] is the identity. The map φ is in this case called a Frobenius
splitting of Y . If φ is a (Frobenius) splitting of Y and Z is a closed subscheme of Y
with associated ideal sheaf I, we say that Z is compatibly split (by φ) if φ(I) ⊆ I. In
this case φ induces a splitting of Z. It is easily seen that globally F -regular varieties
are Frobenius split but the converse is in general not true.

Let D denote an effective Cartier divisor on Y and let s denote the canonical
section of the associated invertible sheaf OY (D). When n is a positive integer we
let F n(D) denote the OY -linear map

F n(D) : OY → F n
∗ OY (D),

t 7→ tp
n

s.

We say that Y is stably Frobenius split along D if F n(D) is split, as a map of
OY -modules, for some n. In this case Y is Frobenius split as well; the induced
Frobenius splitting is given by composing the splitting of F n(D) with the map
F∗OY → F n

∗ OY (D), t 7→ tp
n−1

s. In case F 1(D) is split we simply say that Y is
Frobenius split along D.

In the following lemma we will, for later use, collect a number of standard facts
about the concepts introduced above.

Lemma 3.1. Let Y be a scheme of finite type over over k.
(1) If φ is a Frobenius splitting of Y which compatibly splits closed subschemes

Z1 and Z2 then the scheme theoretic intersection Z1 ∩ Z2 is also compatibly
split by φ.

(2) If Z is compatibly Frobenius split in Y by φ then every irreducible component
of Z is compatibly split by φ.

(3) Assume that Y is Frobenius split along D and that the induced splitting
compatibly splits a closed subscheme Z. Assume further that none of the
irreducible components of Z is contained in the support of D. Then Z is
Frobenius split along D ∩Z, where D ∩Z denotes the restriction of D to Z.

(4) Let D′ ≤ D be effective Cartier divisors on Y . Then every (stable) splitting
of Y along D induces a (stable) splitting along D′. Moreover, the induced
Frobenius splittings of Y , defined by these two splittings, coincide.
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(5) Let D and D′ denote effective Cartier divisors on Y . If Y is stably Frobenius
split along both D and D′ then Y is also stably split along the sum D + D′.
Furthermore, the stable splitting along D + D′ may be chosen such that the
induced Frobenius splitting of Y coincides with the one induced by the stable
splitting along D′.

(6) If Y is Frobenius split along (p − 1)D for some effective Cartier divisor D,
then D (regarded as the zero subscheme of its canonical section) is compatibly
split by the induced Frobenius splitting.

Proof. For the proof of (1), (2) and (3) see Prop.1.9 in [16]. For the proof of (4) let
D′′ denote the effective Cartier divisor D −D′ and let sD, sD′ and sD′′ denote the
canonical sections of OY (D), OY (D′) and OY (D′′) respectively. Let

φ : F n
∗ OY (D) → OY

denote the splitting of the map F n(D) which exists by assumption. Consider now
the diagram

OY

F n(D) $$JJJJJJJJJJ

(F n)]

// F n
∗ OY

sD

��

sD′ // F n
∗ OY (D′)

φ′

��

sD′′

wwppppppppppp

F n
∗ OY (D)

φ
// OY

where φ′ is defined such that the diagram is commutative. It follows that φ′ defines
a stable splitting along D′ and that it induces the same Frobenius splitting

F∗OY → OY

as the splitting φ along D.
Let now D and D′ be as described in (5) and let φ : F n

∗ OY (D) → OY and
φ′ : Fm

∗ OY (D′) → OY denote the associated stable splittings. By applying the
projection formula and the isomorphism F ∗L ' Lp, when L is any invertible sheaf
on Y , we may define the map

η : F n+m
∗ OY (D + pnD′) ' Fm

∗ (OY (D′)⊗ F n
∗ OY (D)) → Fm

∗ OY (D′),

where the latter map is induced by tensoring φ withOY (D′) and applying the functor
Fm
∗ . The composition of η with φ′ then defines a stable Frobenius splitting along

D + pnD′, and it is easily checked that the induced Frobenius splitting coincides
with the one induced by φ′. The statement now follows from (4).

Next we prove (6). Consider an effective Cartier divisor D and a Frobenius
splitting of Y along (p− 1)D, defined by the morphism

φ : F∗OY ((p− 1)D) → OY .

As the statement of (6) is a local condition we may assume that Y is affine and
that OY (D) ' OY . Let s be the regular function on Y associated, under the
latter isomorphism, to the canonical section of OY (D). Then φ is identified with an
OY -linear morphism φ̃ : F∗OY → OY , and the induced Frobenius splitting is defined
by

η : F∗OY → OY , t 7→ φ̃(tsp−1).



F -REGULARITY OF LARGE SCHUBERT VARIETIES 5

In particular, for t ∈ OY (Y ) it follows that η(ts) = sφ̃(t) ∈ (s). Hence the zero
subscheme of the canonical section of D, whose ideal is generated by s, is compatibly
Frobenius split. �

We also record the following result.

Lemma 3.2. Let f : X̃ → X be a morphism of projective varieties. Let Ỹ be a
closed subvariety of X̃ and put Y := f(Ỹ ). Assume that X̃ is stably Frobenius split
along an ample effective divisor D̃ not containing Ỹ , and that the induced Frobenius
splitting of X̃ compatibly splits Ỹ . If the map f ] : OX → f∗OX̃ is an isomorphism,
then the map OY → f∗OỸ is an isomorphism as well.

Proof. It suffices to show that the composition OX → f∗OX̃ → f∗OỸ is surjective.
This will follow if the map

Γ(X,L) → Γ(X,L ⊗ f∗OỸ )

is surjective for any very ample invertible sheaf L on X. By the projection formula,
this amounts to the surjectivity of the restriction map

Γ(X̃, f ∗L) → Γ(Ỹ , f ∗L).

The latter map is part of a commutative diagram

Γ(X̃, f ∗L)

��

// Γ(Ỹ , f ∗L)

��

Γ(X̃, F n
∗ (OX̃(D̃)⊗ f ∗Lpn

))

SS

// Γ(Ỹ , F n
∗ (OX̃(D̃)⊗ f ∗Lpn

))

SS

where the split vertical maps are induced from the stable Frobenius splitting of X̃
(resp. Ỹ ) along D̃ (resp. D̃ ∩ Ỹ using Lemma 3.1(3)), and where the horizontal
maps are restriction maps. By Prop.3 in [13] the lower horizontal map is surjective.
Hence, as the splittings of the vertical maps are compatible, we conclude that the
upper horizontal map is also surjective. �

Assume now that Y is a nonsingular variety and let ωY denote its dualizing sheaf.
By duality for the finite morphism F it follows that

HomOY
(F∗OY ,OY ) ' F∗(ω

1−p
Y ),

which means that a Frobenius splitting of Y is the same as a global section of ω1−p
Y

with certain properties. More precisely, let

C : F∗(ω
1−p
Y ) → OY ,

s 7→ s(1),

be the morphism defined by the isomorphism above. Then a global section s of
ω1−p

Y defines a Frobenius splitting if and only if C(s) coincides with the constant
function 1 on Y . Assume that s is a global section of ω1−p

Y which defines a Frobenius
splitting, and let D denote the divisor of zeroes of s. Then, by the discussion above,
the composed map C ◦ F 1(D) is the identity map on OY and hence C defines a
Frobenius splitting of Y along D.
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3.2. A criterion for global F -regularity. The following important result by
Smith (see Thm.3.10 in [20]) connects global F -regularity, Frobenius splitting and
strong F -regularity.

Theorem 3.1. If X is a projective variety over k then the following are equivalent
(1) X is globally F -regular.
(2) X is stably Frobenius split along an ample effective Cartier divisor D and

the (affine) complement X \D is strongly F -regular.
(3) X is stably Frobenius split along every effective Cartier divisor.

The connection between (1) and (3) in this theorem leads to the following result
which can be found in [12].

Corollary 3.2. Let f : X̃ → X be a morphism of projective varieties. If the map
f ] : OX → f∗OX̃ is an isomorphism and X̃ is globally F -regular then X is also
globally F -regular.

4. Equivariant embeddings of reductive groups

In this section G will denote a connected reductive algebraic group over an alge-
braically closed field k of arbitrary characteristic. We will fix a Borel subgroup B
and a maximal torus T ⊆ B of G. The Weyl group NG(T )/T will be denoted by W .
For any w ∈ W we denote by ẇ a representative in NG(T ). The set of roots defined
by T will be denoted by Φ. To each root α is associated a reflection sα in W . We
choose the set of positive roots Φ+ to consist of the roots in Φ defined by B, i.e. Φ+

consists of the T -weights of the Lie algebra of the unipotent radical of B. The set of
positive simple roots will be denoted by ∆ and the associated simple reflections will
be denoted by s1, . . . , s`. Each element w in W is a product of simple reflections
and the least number of factors needed in such a product will be denoted by `(w)
and will be called the length of w. The unique element in W of maximal length is
denoted by w0.

We will denote by Λ the character group of T and by Λ+ the subset of dominant
weights (i.e., those characters having nonnegative scalar product with all the simple
coroots). We have a partial ordering ≤ on the group Λ, where µ ≤ λ if and only if
λ−µ is a linear combination of the simple roots with nonnegative integer coefficients.

For any w ∈ W , the double coset BẇB is a locally closed subvariety of G which
only depends on w; we will denote this subvariety by BwB. By the Bruhat de-
composition the group G is the disjoint union of the double cosets BwB, w ∈ W .
Moreover, dim(BwB) = `(w) + dim(B) = `(w) + `(w0) + `. The closure in G of any
BwB is the union of the BvB, where v ∈ W and v ≤ w for the Bruhat ordering of
W .

An equivariant embedding of G is a normal G × G-variety X containing G as an
open subset and where the induced G × G-action on G is given by left and right
translation. (In other words, X is an equivariant embedding of the homogeneous
space G×G/ diag G ' G.)

The boundary of the equivariant embedding X is the closed G×G-stable subset
X \ G, denoted by ∂X. Its irreducible components D1, . . . , Dn are the boundary
divisors; they are indeed of codimension 1, as the open subset G is affine (see
Prop.II.3.1 in [7]).
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When X is an equivariant embedding of G we denote by X(w), w ∈ W , the
closure in X of the double coset BwB (in particular, X(w0) = X). In this section
we want to study the geometry of these large Schubert varieties X(w). Those of
codimension 1 are the X(w0si), i = 1, . . . , `; they will be denoted by X1, . . . , Xl.

4.1. Two preliminary geometric results. A key ingredient in our study is the
following
Proposition 4.1. Let X be a projective embedding of G, with boundary divisors
D1, . . . , Dn.

(1) There exists a very ample G × G-linearized invertible sheaf L over X such
that Spec R(X,L) is an affine embedding of the group G×Gm, where action
of the multiplicative group Gm on Spec R(X,L) corresponds to the grading
of R(X,L).

(2) There exist positive integers a1, . . . , an such that the invertible sheaf

OX

( n∑
i=1

aiDi

)
is ample.

Proof. (1) We may find a very ample G×G-linearized invertible sheaf L on X, see
e.g. Cor.1.6 in [14]. Then the pull-back of L to the open orbit G ' G× G/ diag G
is the linearized invertible sheaf associated with a character of the isotropy group
diag G. Such a character extends to a character of G × G, so that (changing the
linearization) we may assume that the pull-back of L to G is trivial as a linearized
invertible sheaf.

Replacing L with some positive power, we may also assume that the ring R(X,L)

is normal. Then X̂ := Spec R(X,L) is a normal affine variety endowed with an
action of G×G×Gm, where Gm acts via the grading of R(X,L). By our assumptions
on L, the affine cone X̂ is an affine embedding of the group G×Gm =: Ĝ.

(2) Let X̂, Ĝ as above. Then X̂ is a linear algebraic monoid with unit group Ĝ, by
Prop.1 in [17]. So, by Thm.3.15 in [15], X̂ admits an embedding into some matrix
ring Mn(k) as a closed submonoid (with respect to the multiplication of matrices).
We claim that Ĝ identifies with X̂ ∩ GLn(k) under this embedding. Indeed, the
inclusion Ĝ ⊆ X̂ ∩GLn(k) is clear. Conversely, if γ ∈ X̂ ∩GLn(k) then the images
γiX̂ form a decreasing sequence of closed subsets of X̂. Thus, γiX̂ = γi+1X̂ for
i � 0. It follows that X̂ = γX̂, whence γ has a right inverse. Likewise, γ has a left
inverse, which completes the proof of the claim.

Let s be the regular function on X̂ given by the restriction of the determinant
function on Mn(k). By the claim, the zero set of s is precisely the boundary ∂X̂.
Further, s is an eigenvector of Gm, by the multiplicative property of the determinant.
So s is a section of a positive power of L, with zero set being ∂X. �

We also recall the following result which is known under a stronger form (Prop.3
in [18], see also Prop.6.2.5 in [5]).
Lemma 4.1. For any equivariant embedding X of G, there exists a nonsingular
equivariant embedding X̃ and a projective morphism

f : X̃ → X
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which induces the identity on G.

We will refer to f as an equivariant resolution of X. Note that f is G×G-equiva-
riant and birational. Since X is assumed to be normal, it follows that f∗OX̃ = OX .
Further, X̃ is projective if X is. Also, note that f restricts to a birational morphism
X̃(w) → X(w), for any w ∈ W . Together with Lemma 3.2, this will allow us to
reduce questions on X(w) to the case where X is nonsingular.

4.2. Frobenius splitting of nonsingular embeddings. Now fix a nonsingular
equivariant embedding X of G. We assume from now on that the ground field k has
characteristic p > 0. It is known (see [18], or Prop.6.2.6 in [5]) that the inverse of
the dualizing sheaf on X equals

ω−1
X ' OX

(
∂X +

l∑
i=1

(Xi + X̃i)
)
,

where X̃i = (ẇ0, ẇ0)Xi, and that the (p− 1)-th power sp−1
X of the canonical section

sX of the right hand side defines a Frobenius splitting of X. As noticed at the end
of Section 3.1, this yields in fact a splitting of X along D, where

D := (p− 1)
(
∂X +

l∑
i=1

(Xi + X̃i)
)
.

This leads to the following result.

Proposition 4.2. Let X denote a nonsingular equivariant embedding of G over a
field of characteristic p > 0. Then X is Frobenius split along (p− 1)∂X, compatibly
with the large Schubert subvarieties X(w), w ∈ W .

Proof. Denote by η : F∗OX → OX the underlying Frobenius splitting of X induced
by sX . By Lemma 3.1(2)(6), each Xi is compatibly Frobenius split by η. In other
words, η is compatible with the X(w), where `(w) = `(w0)−1. Now consider w ∈ W
such that `(w) ≤ `(w0) − 2. By Lem.10.3 in [1], there exist distinct w1, w2 in W
such that w < w1, w < w2, and `(w1) = `(w2) = `(w) + 1. Then X(w) is contained
in X(w1) ∩ X(w2) as an irreducible component. Now Lemma 3.1(1)(2) implies by
decreasing induction on `(w) that X(w) is compatibly Frobenius split by η. That
η is induced by a Frobenius splitting of X along (p − 1)∂X follows from Lemma
3.1(4). �

4.3. The main results. We still assume that k has characteristic p > 0.

Theorem 4.3. Let X denote a projective equivariant embedding of G. Then each
X(w), w ∈ W , is globally F -regular.

Proof. First we consider the case where X is nonsingular. Then, by Lemma 3.1(3)
and Proposition 4.2 each X(w) is Frobenius split along (p−1)(∂X∩X(w)). Together
with Lemma 3.1(4)(5), it follows that X(w) is stably Frobenius split along any
divisor

∑n
i=1 ai(Di ∩ X(w)), with ai > 0. By Proposition 4.1, we may find such a

divisor which is ample on X. Then the restriction

D =
n∑

i=1

ai(Di ∩X(w)),
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is an effective ample Cartier divisor on X(w) with support ∂X ∩X(w). Hence, by
Theorem 3.1 it is enough to prove that the open affine subset

G(w) = X(w) \ ∂X

is strongly F -regular.
Notice that the set G(w) coincides with the closure of BwB in G. Hence, there

is a surjective map
π(w) : G(w) → S(w) ⊆ G/B,

onto the corresponding Schubert variety S(w). By [12] S(w) is globally F -regular
and hence locally strongly F -regular. Moreover, by the Bruhat decomposition there
exists a covering of S(w) by open affine subsets Ui, i ∈ I, such that π(w)−1(Ui) '
Ui × B. As B is smooth and Ui is strongly F -regular it follows that Ui × B is
strongly F -regular (Lem.4.1 in [11]). Hence, the affine variety G(w) is also strongly
F -regular. This completes the proof in the case of nonsingular X.

In the general case, we may choose an equivariant resolution f : X̃ → X (Lemma
4.1). By the considerations above the equivariant embedding X̃ is stably Frobenius
split along an ample Cartier divisor. Furthermore according to the last part of
Lemma 3.1(4), this stable splitting may be chosen such that each X̃(w) is compatibly
Frobenius split. Then, by Lemma 3.2, the map OX(w) → f∗OX̃(w) is an isomorphism
and the global F -regularity of X(w) hence follows from Corollary 3.2. �

Corollary 4.1. Let X denote an affine equivariant embedding of G. Then each
X(w), w ∈ W , is strongly F -regular.

Proof. We may embed X as a closed G×G-stable subvariety of a G×G-module M .
Let X be the normalization of the closure of X in the projectivization of M ⊕ k.
Then X is a projective equivariant embedding of G containing X as an open affine
subset. By Theorem 4.3 each X(w) is globally F -regular. In particular, every local
ring of X(w) is strongly F -regular. As X(w) is an open subset of X(w) this implies
that every local ring of the affine variety X(w) is strongly F -regular. This proves
the claim as the condition of being strongly F -regular is local. �

Corollary 4.2. Let X denote any equivariant embedding of G. Then each X(w),
w ∈ W , is normal and Cohen-Macaulay.

Proof. This follows from Theorem 4.3 by using that X has an open cover by equivari-
ant embeddings which are also open subsets of projective equivariant embeddings,
see [21, 22]. �

4.4. From characteristic p to characteristic 0. In this section, k is of charac-
teristic 0. We will obtain versions of Theorem 4.3 and of Corollaries 4.1, 4.2, by
using the notions of strongly (resp. globally) F -regular type ([20]) that we briefly
review.

Let Y be a scheme of finite type over k. Then Y is defined over some finitely
generated subring A of k. This yields a scheme YA which is flat and of finite type
over Spec(A), such that Y is naturally identified with the scheme YA×Spec(A)Spec(k).
On the other hand, the geometric fibers of YA at closed points of Spec(A) are schemes
over algebraic closures of finite fields (of various characteristics).
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Definition. ([20]) An affine (resp. projective) variety X is of strongly (resp. globally)
F -regular type if X is defined over some finitely generated subring A of k such that
the geometric fibers of XA over a dense subset of closed points of Spec(A) are
strongly (resp. globally) F -regular.

Remember that any strongly (resp. globally) F -regular variety is locally F -ra-
tional. It follows that any variety X of strongly (resp. globally) F -regular type
is of F -rational type (this latter notion is defined similarly to the definition of
strongly/globally F -regular type). Hence by Thm4.3. in [19] it follows that X
has rational singularities, in particular, X is normal and Cohen-Macaulay.

Theorem 4.4. Let X denote an affine (resp. projective) equivariant embedding of G
over a field of characteristic 0. Then any X(w), w ∈ W , is of strongly (resp. globally)
F -regular type.

Proof. By Proposition 4.1 (1), it suffices to treat the affine case. For this, we will
recall the classification of affine equivariant embeddings, after [23] (generalized in
[17] to arbitrary characteristic), and show that any such embedding X is defined
and flat over Spec(Z).

Put R := Γ(G,OG) and S := Γ(X,OX), then S is a G × G-stable subalgebra of
R. Further, S is finitely generated and normal, with the same quotient field as R.
Recall the isomorphism of G×G-modules

R ∼=
⊕
λ∈Λ+

∇(λ)⊗∇(−w0λ),

where ∇(λ) denotes the simple G-module with highest weight λ. It follows that

S ∼=
⊕
λ∈M

∇(λ)⊗∇(−w0λ),

for some subset M of Λ+. Thus, the weights of T ×T in the invariant subring SU×U

are exactly the (λ,−w0λ), where λ ∈M; each such weight has multiplicity 1. Since
SU×U is a finitely generated, normal domain (see e.g. [6]), the corresponding affine
variety is a toric variety for the left T -action. Thus, M is the intersection of Λ with
a rational polyhedral convex cone of nonempty interior in Λ⊗Z R, contained in the
positive chamber.

One may show thatM satisfies the following saturation property: For any λ ∈M
and µ ∈ Λ+ such that µ ≤ λ, then µ ∈ M. Conversely, any M satisfying the
preceding properties yields an affine embedding of G, see [23].

Next let GZ be the split Z-form of G, with affine coordinate ring RZ. For any
ring A, this defines the ring RA := RZ ⊗Z A and the corresponding group GA. In
particular, we obtain the Q-form RQ of R. Now the preceding decomposition of R
is defined over Q; further, the subspace

SQ := S ∩RQ =
⊕
λ∈M

∇Q(λ)⊗∇Q(−w0λ)

(with obvious notation) is a subalgebra of RQ, and a Q-form of S. Put SZ := SQ∩RZ
(then the quotient RZ/SZ is torsion-free), and

Rp := RZ ⊗Z Fp, Sp := SZ ⊗Z Fp,
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where p is any prime number, Fp denotes the field with p elements, and Fp denotes
its algebraic closure. Define likewise the connected reductive group Gp over Fp and
its subgroups Bp, Tp, Up. Then Rp = Γ(Gp,OGp), and Sp is a Fp-subalgebra of Rp,
stable under the action of Gp × Gp. We will show that Sp is the coordinate ring of
an affine equivariant embedding Xp of Gp.

By Prop.II.4.20 in [9] (see also Thm.4.2.5 in [5]), the Gp × Gp-module Rp has
an increasing filtration with subquotients being the ∇p(λ) ⊗ ∇p(−w0λ) (λ ∈ Λ+),
where now ∇p(λ) denotes the dual Weyl module of highest weight λ. Further, the
proof of this result given in [5] also shows that the Gp × Gp-module Sp has an
increasing filtration with subquotients being the ∇p(λ) ⊗ ∇p(−w0λ) (λ ∈ M). In
particular, this module has a good filtration. Using Lem.II.2.13 and Prop.II.4.16 in
[9], it follows that the weights of Tp × Tp in the invariant subring S

Up×Up
p are again

the (λ,−w0λ), where λ ∈ M; each such weight has multiplicity 1. Therefore, the
algebra S

Up×Up
p is finitely generated and normal. By [6], the algebra Sp is finitely

generated and normal as well.
Put Xp := Spec(Sp), then Xp is a normal affine variety where Gp ×Gp acts with

a dense orbit. We now show that this orbit is isomorphic to Gp × Gp/ diag Gp;
equivalently, the morphism Gp → Xp associated with the inclusion Sp ⊆ Rp is an
open immersion. Since the corresponding morphism G → X is an open immersion,
we may find f ∈ SU×U with zero set the complement of the open B×B-orbit Bw0B.
Replacing f with a scalar multiple, we may assume that f ∈ SZ is a lift of a nonzero
fp ∈ S

Up×Up
p . Then R[f−1] = S[f−1] = Γ(Bw0B,OBw0B), so that RZ[f−1] = SZ[f−1].

Thus, Rp[f
−1
p ] = Sp[f

−1
p ]; equivalently, the morphism (fp 6= 0) = Bpw0Bp → Xp is

an open immersion. Since the Gp × Gp-translates of Bpw0Bp cover Gp, we have
shown that the reduction Xp is an equivariant embedding of Gp. Further, since all
the double classes BwB in G are defined over Z, their closures X(w) in X are also
defined over Z, with reductions X(w)p. �

By the argument of Corollary 4.2, this implies readily

Corollary 4.3. Let X denote an equivariant embedding of G over a field of char-
acteristic 0. Then each X(w), w ∈ W , has rational singularities.
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