
U N I V E R S I T Y OF A A R H U S
D E P A R T M E N T OF M A T H E M A T I C S

ISSN: 1397–4076

COHOMOLOGY OF LINE BUNDLES

Henning Haahr Andersen

Preprint Series No.: 11 August 2004

Ny Munkegade, Bldg. 530 http://www.imf.au.dk
DK-8000 Aarhus C, Denmark institut@imf.au.dk



COHOMOLOGY OF LINE BUNDLES

HENNING HAAHR ANDERSEN

1. Introduction

Let G be a reductive algebraic group over a field k of characteristic p ≥ 0. If L is a
line bundle on the flag variety X for G then the cohomology modules H i(X,L), i ≥ 0
have a natural G-structure. The G-modules arising in this way play a prominent role
in the representation theory of G. This is for instance illustrated by the following
four results.

1.1. The Chevalley classification of irreducible G-modules [15]. This theo-
rem says that all the finite dimensional irreducible G-modules occur as submodules
in H0(X,L) with L running through the set of effective line bundles on X. More-
over, if p = 0 then any line bundle on X has at most one non-vanishing cohomology
module, and that one is irreducible. This last result is the Borel-Weil-Bott theorem
[13].

1.2. The strong linkage principle [2]. The Borel-Weil-Bott theorem mentioned
above fails badly when p > 0. As a weaker substitute for this result we have in
positive characteristics the strong linkage principle. It says that the composition
factors of a given cohomology module H i(X,L), i ≥ 0,L a line bundle on X, have
highest weights strongly linked (see loc. cit.) to the dominant weight which is
conjugated under the Weyl group to the weight determining L.

1.3. The sum formula for Weyl modules [24], [5]. Via Kempf’s vanishing the-
orem [25] (cf. also 2.2.e) below) one may identify Weyl modules with the top coho-
mology modules HN(X,L), N = dim X, L running through the antidominant line
bundles on X. Using Z-forms of G and X one may for each such L define a filtration
of HN(X,L) and compute the sum of its terms. In low rank this allows a calculation
of all the irreducible characters for G.

1.4. Restriction to Schubert varieties [29], [30], [7]. Vanishing theorems for
the higher cohomology of the restrictions of effective line bundles on X to Schubert
varieties have played a big role in establishing geometric properties like normality
and Cohen Macaulayness for these. They have also lead to the Demazure character
formula first formulated in [16].

∗Supported in part by the Marie Curie Research Training Network “LIEGRITS" (ECM project
MRTN-CT 2003-505078).
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1.5. Let now Uq denote the quantum group corresponding to G. Here q is an arbi-
trary nonzero element of k and Uq is the specialization of the Lusztig integral form
of the generic quantum group. Then we have quantized versions of the cohomology
modules H i(X,L) constructed via induction from the quantized Borel subalgebra to
Uq, cf. [11]. It turns out that there are analogues of all the above results. When q
is not a root of unity then the Borel-Weil-Bott theorem carries over while the other
statements above hold (with l replacing the role of p) when q is an l-th root of unity.

Despite the many efforts leading to the results we have mentioned in 1.1–4 (as well
as to many further related theorems) there is still an abundance of open questions
concerning the cohomology H i(X,L). In this note we have collected some of the
known facts about these modules and at the same time we have tried to call attention
to several such open problems. We do this in such a way that each result and question
may easily be ’quantized’.

Related to the problem of describing the cohomology of line bundles on X is the
calculation of the Hochschild cohomology groups for B, H i(B, λ) = Exti

B(k, kλ), i ≥
0, λ a character of B (considered as a 1-dimensional B-module denoted either just λ
or sometimes kλ). We shall consider the quantized root of unity analogues of these
computations and show that they are related to the cohomology of line bundles
on the cotangent bundle for X. Even when p = 0 this latter cohomology is not
known. We illustrate the complexity of this problem by giving some details of the
computations when G = SL3.

2. Vanishing behaviour

In this section we shall consider the vanishing behaviour of the cohomology of line
bundles on X: For a given i we ask for all line bundles L such that H i(X,L) 6= 0.
Likewise we can fix L and ask for the set of i such that H i(X,L) 6= 0.

2.1. Notation. Let k, p, G, and X be as in the introduction. Choose a Borel
subgroup B in G and identify X with G/B. Let T be a maximal torus in B and set
X equal to the character group of T (and of B). In the root system R for (G, T )
we choose a set of simple roots S such that the corresponding positive roots are the
roots of the Borel subgroup opposite to B. The dominant weights X+ is the subset
consisting of those λ ∈ X for which 〈λ, α∨〉 ≥ 0 for all α ∈ S. Here we have denoted
by α∨ the coroot of a root α.

When p > 0 we set for each r > 0

Xr = {λ ∈ X+ | 〈λ, α∨〉 < pr, α ∈ S}.
This is called the set of pr-restricted weights. For each λ ∈ X we then have a unique
expansion λ = λ0 + prλ1 with λ0 ∈ Xr and λ1 ∈ X.

The Weyl group W for (G, T ) acts naturally on X. Moreover, we have the ’dot’
action given by w · λ = w(λ + ρ)− ρ, w ∈ W, λ ∈ X. Here 2ρ =

∑
α∈R+ α.

We shall also use the dot notation for the action of pr on X given by pr ·λ = pr(λ+
ρ)−ρ. Note that this commutes with the W dot action, i.e we have w ·pr ·λ = pr ·w ·λ
for all w ∈ W .
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All modules considered in this paper will be finite dimensional. For any B-module
E we denote by L(E) the vector bundle on X induced by E. We shall then write
H i(E) short for H i(X,L(E)). In particular, we shall consider the weights λ ∈ X as
1-dimensional B-modules and study the corresponding cohomology modules H i(λ).

2.2. Standard base change arguments show that the vanishing behaviour of H i(λ)
only depends on p (not on k itself). Therefore we set for i ≥ 0

Dp(i) = {λ ∈ X | H i(λ) 6= 0}.
Then the problem we are studying in this section consists of describing the subsets
Dp(i). In general, this is a wide open problem. However, certain cases are known:

a) The Borel-Weil-Bott theorem (cf. 1.1) says that

D0(i) =
⋃

w∈W, l(w)=i

w ·X+.

b) It is well known [22] that independently of p we have

Dp(0) = X+.

Serre duality says that for any finite dimensional B-module E we have isomorphisms
of G-modules H i(E)∗ ' HN−i(E∗ ⊗ −2ρ) for all i ≥ 0. Here N = dim X =

∣∣R+
∣∣

and ∗ denotes dual module with contragredient action.

This gives for all p

c) Dp(i) = −Dp(N − i)− 2ρ.

In particular, b) is then equivalent to

d) Dp(N) = −X+ − 2ρ.

Finally we mention that Kempf’s vanishing theorem [25] says (for all p)

e) Dp(i) ∩X+ = for i > 0.

2.3. The case i = 1 is completely solved in [1]. In the notation from 2.2 the result
can be stated1

Dp(1) =
⋃
r≥0

(pr ·D0(1)−Xr). (1)

Then by Serre duality (2.2.c)) we get

Dp(N − 1) =
⋃
r≥0

(−pr ·D0(1) + Xr − 2ρ) =
⋃
r≥0

(pr ·D0(N − 1) + Xr). (2)

Remark 2.1. The above results completely describe the vanishing behaviour for
the cohomology of line bundles on the 3-dimensional flag variety (i.e G = SL3).
This case was first solved by W. Griffith [21] (by methods completely different from
those used in [1]. Apart from the trivial case G = SL2 (where X = P1) this is still
the only flag variety for which a full solution of our problem is known.

1Please note that equation numbers restarts from (1) in each subsection. Unless otherwise
stated, a cross reference to an equation number only refer to the current subsection.
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2.4. We shall now recall a result whose main application is a short proof of the
Kempf vanishing theorem. As we shall see it has also some further bearing on our
problem.

Let r ≥ 0 and set Str = L((pr − 1)ρ). This is the r-th Steinberg module. Denote
by Fr : G → G (as well as its restriction to B) the r-th Frobenius homomorphism.
If M is a G- (or B-) module we denote by M (r) the same vector space but with G
(or B) action given by g ·m = Fr(g)m, g ∈ G (or B), m ∈ M .

Theorem 2.2. [4] For any B-module E and any i, r ≥ 0 there is a natural G-
isomorphism H i(E)(r) ⊗ Str ' H i(E(r) ⊗ (pr − 1)ρ).

Note that for any two B-modules E1 and E2 we have ’cup product’ maps ∪i,j :
H i(E1) ⊗ Hj(E2) → H i+j(E1 ⊗ E2), i, j ≥ 0. The Frobenius homomorphism
Fr gives rise to natural maps F ∗

r : H i(E)(r) → H i(E(r)), i ≥ 0, E a B-module.
The isomorphism in this theorem is the composite ∪i,0 ◦ (F ∗

r ⊗ 1). (Note that
Str = H0((pr−1)ρ) – an easy consequence of the strong linkage principle mentioned
in the introduction.)

2.5.

Corollary 2.3. Let i ≥ 0. Then for all r ≥ 0 we have

pr ·Dp(i) ⊂ Dp(i) and prDp(i) ⊂ Dp(i).

Proof: The first inclusion is clear from Theorem 2.2 by taking E = λ. The theorem
also implies (via the description of the isomorphism) that F ∗

r : H i(E)(r) → H i(E(r))
is injective for all i and all E. Taking again E = λ we obtain the second inclusion.

Remark 2.4. The corollary contains in particular Kempf’s vanishing theorem (cf.
2.2.e)): If λ ∈ X+ then L(λ + ρ) is an ample line bundle on X and therefore
H i(pr · λ) = 0 for i > 0 and r � 0. This means that for r large pr · λ /∈ Dp(i) for
i > 0, and hence by the corollary Dp(i) ∩X+ = ∅ for i > 0.

2.6. We can improve the result in Corollary 2.3 . Note that pr ·Dp(i) ⊂ prDp(i)+Xr

and pr ·D0(i)−Xr = prD0(i) + Xr.

Proposition 2.5. [3] For any i, r ≥ 0 we have pr ·Dp(i)−Xr ⊂ Dp(i).

Proof: Let λ ∈ Dp(i), ν ∈ Xr and set ν ′ = (pr − 1)ρ − ν. Then we have a
commutative diagram

H i(λ)(r) ⊗H0(ν)⊗H0(ν ′)
1⊗∪0,0 //

(∪i,0◦(F ∗
r ⊗1))⊗1

��

H i(λ)(r) ⊗ Str

��
H i(prλ + ν)⊗H0(ν ′) ∪i,0

// H i(pr · λ)

where the right vertical map is the isomorphism from Theorem 2.2 . Since Str is
irreducible the top horizontal map is surjective. Hence so is the bottom map and
the proposition follows.
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2.7. By semi-continuity we have D0(i) ⊂ Dp(i) for all i. Combining this with Serre
duality and Proposition 2.5 we get

λ ∈ D0(i) ⇐⇒ − λ− 2ρ ∈ D0(N − i) ⊂ Dp(N − i)

=⇒ − prλ− 2prρ + Xr ⊂ Dp(N − i)

=⇒ prλ + 2prρ−Xr − 2ρ ⊂ Dp(i)

⇐⇒ pr · λ + Xr ⊂ Dp(i).

Hence pr ·D0(i) + Xr ⊂ Dp(i). We therefore have

Corollary 2.6. For every i ∈ N the following inclusion holds⋃
r≥0

(pr ·D0(i)±Xr) ⊂ Dp(i).

Remark 2.7. a. For i = 0, 1, N and N − 1 we have equality in this corollary.
For i = 0, 1 (respectively i = N, N − 1) the ’+’-sign (respectively ’−’-sign)
on the left is redundant.

b. Equality does not hold in general in Corollary 2.6. The first case where it
fails is for type B2 and i = 2, see [3]. In loc. cit. there are also some further
study (in part based on the translation principle) of the sets Dp(i).

c. The above results make it possible to find examples where Dp(i)∩Dp(j) 6= ∅
for any i, j > 0: Suppose 0 < i < j and let G = SLj+1. Choose r > 0 such
that pr > j. Let sm denote the m-th simple reflection in W (in the standard
enumeration) and set λ = pr(s1s2 · · · si · 0). Then λ ∈ prD0(i) ⊂ Dp(i). On
the other hand we have also λ ∈ D0(j) (there are exactly j positive roots α
with 〈λ + ρ, α∨〉 < 0) so that also λ ∈ Dp(j).

It is not clear whether in this case we have in fact λ ∈ Dp(m) for all
i < m < j.

3. G-structure

In this section we shall consider the G-module structure on H i(λ), i ≥ 0, λ ∈ X.
For instance, we can ask for the formal characters of these modules, their composition
factors, submodule configurations etc. Even though all of these questions are wide
open it is possible to prove some key facts which have non-trivial applications in the
representation theory for G.

3.1. Recall that if M is a T -module and λ ∈ X then the weight space Mλ is defined
by Mλ = {m ∈ M | tm = λ(t)m, t ∈ T}. The character of M is defined by

ch(M) =
∑
λ∈X

(dim Mλ)e
λ ∈ Z[X].

For any B-module we denote the Euler character of the induced vector bundle
L(E) by χ(E), i.e

χ(E) =
∑

i

(−1)i ch(H i(E)).
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Then χ is additive on short exact sequences of B-modules. This implies that χ(E) =∑
λ dim(Eλ)χ(λ). Moreover, for any λ ∈ X the Euler character χ(λ) is given by

Weyl’s character formula, see e.g [17]

χ(λ) =
∑
w∈W

(−1)l(w)ew(λ+ρ)
/ ∑

w∈W

(−1)l(w)ew(ρ).

This means in particular, that if all cohomology of L(λ) is concentrated in degree
i then the character of H i(λ) is known: in that case ch(H i(λ)) = (−1)iχ(λ). One
such situation is when λ ∈ X+ because then Kempf’s vanishing theorem 2.2.e) gives
the vanishing of all the higher cohomology such that

ch(H0(λ)) = χ(λ) for all λ ∈ X+.

Remark 3.1. a. We do not know ch(H i(λ)) in general. When λ is sufficiently
generic (see [8]) in D0(i) one can prove that H i(λ) is in fact the only non-
vanishing cohomology module. In this case the above applies.

b. Donkin [18], [19] has recently given an algorithm which computes ch(H i(λ))
in terms of smaller weights. To effectively apply this algorithm one has
for some of these smaller weights to deal with vector bundles of rank more
than 1.

3.2. Even though we cannot determine the vanishing behaviour nor find the G-struc-
ture of the individual cohomology modules H i(λ) we can still prove

Theorem 3.2. (The Strong Linkage Principle) Let µ, λ + ρ ∈ X+. If L(µ) is a
composition factor of H i(w · λ) for some w ∈ W, i ≥ 0 then µ is strongly linked to
λ.

Note that any λ′ ∈ X may be written in the form λ′ = w · λ for some w ∈
W, λ + ρ ∈ X+.

For the definition of the strong linkage relation and for the proof of this theorem
we refer to [2]. See also [9] for the quantum case.

Corollary 3.3. Let M be an indecomposable G-module and let λ, µ ∈ X+. If L(λ)
and L(µ) both are composition factors of M then λ ∈ Wp · µ.

Here Wp denotes the affine Weyl group associated with G. This is the group
generated by W together with all translations on X by elements of pR.

We sketch a proof (for details see e.g [9])

Proof: It is enough to check that if Ext1
G(L(λ), L(µ)) 6= 0 then λ ∈ Wp · µ. For

this we may assume λ 6> µ. In this case easy weight considerations show that
Ext1

G(L(λ), H0(µ)) = 0. The exact sequence 0 → L(µ) → H0(µ) → H0(µ)/L(µ) →
0 therefore gives that L(λ) is a composition factor of H0(µ) (in fact that it is a
submodule of H0(µ)/L(µ)). Now Theorem 3.2 gives the conclusion.
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3.3. It is well-known (and a key ingredient in the Chevalley classification theorem
mentioned in the introduction) that H0(λ) contains L(λ) as its unique simple sub-
module for all λ ∈ X+. It is also true that H1(λ) has simple socle for all λ ∈ Dp(1):

Theorem 3.4. Let λ ∈ Dp(1). Then there exists a unique simple root α with
〈λ + ρ, α∨〉 < 0. If 〈λ + ρ, α∨〉 = −apr for some 0 < a < p and r ≥ 0 then the socle
of H1(λ) is L(sα · λ). If −(a + 1)pr < 〈λ + ρ, α∨〉 < −apr for some 0 < a < p and
r > 0 then the socle of H1(λ) is L(λ + aprα).

We refer to [1] for the proof.

Via Serre duality we deduce that HN(λ) and HN−1(λ) for λ ∈ Dp(N), respectively
Dp(N − 1), have simple heads.

Remark 3.5. As already observed it is not generally true that H i(λ) has simple
socles (or heads). However, this is so for generic weights in D0(i), see [8].

3.4. Let GZ denote the Chevalley group over Z corresponding to G. Then we
have similar cohomology modules for GZ which we denote H i

Z(λ) and the universal
coefficient theorem leads to the short exact sequences of G-modules

0 → H i
Z(λ)⊗Z k → H i(λ) → TorZ

1 (H i+1
Z (λ), k) → 0. (1)

For any simple root α with 〈λ + ρ, α∨〉 > 0 we have natural GZ-homomorphisms
H i+1

Z (sα ·λ) → H i
Z(λ) and H i

Z(λ) → H i+1
Z (sα ·λ). Composing these homomorphisms

for a sequence of simple roots corresponding to a reduced expression for the longest
word w0 in W we obtain a homomorphism H i

Z(λ) → HN−i
Z (w0 ·λ). This allows us to

define a Jantzen filtration of H i
Z(λ)⊗Z k. In ’good’ situations this module coincides

with H i(λ). It follows from (1) that this is always so when i = N in which case
we obtain the usual Jantzen filtration ([23] for the Weyl module HN(λ). The setup
allows us also to derive sum formulae for these filtrations (in the Weyl module case
they are the Jantzen sum formulae). We refer to [5] for details.

Remark 3.6. Some further results on the structure of H i(λ) may be found in [28].

4. Hochschild cohomology for B

In this section we demonstrate how to calculate some of the Hochschild cohomol-
ogy of 1-dimensional B-modules. This cohomology which we denote H i(B,−) is
the derived functors of the fixed point functor, i.e H i(B,−) = Exti

B(k,−) where k
denotes the trivial B-module. Rather little is known about this cohomology except
for i = 0 (where it is of course zero unless λ = 0) and i = 1 (where only λ = −prα
for some r ≥ 0 and α a simple root give nonvanishing contributions, see [6]). The
case i = 2 has recently been dealt with in [12].

To simplify things we shall here limit ourselves to consider the quantum case at
a complex root of 1. In this way we avoid having to deal with higher powers of p
which complicates the modular case.
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4.1. Notation. Recall from the introduction that Uq is the quantum group corre-
sponding to G. In the rest of this paper we assume – if not specifically said otherwise
– that q is a primitive complex l-th root of 1. We shall assume that l is odd, larger
than the Coxeter number for R, and prime to 3 if R contains a component of type
G2.

There is a Borel subalgebra Bq in Uq corresponding to B in G (i.e associated with
the negative roots in R).

The standard generators of the quantum group are denoted Ei, Fi and K±1
i and

the divided powers by E
(n)
i etc. The small quantum group uq is the subalgebra

of Uq generated by all Ei, Fi, K
±1
i modulo the ideal generated by the K l

i − 1. We
have similarly a small quantum Borel subalgebra bq. We have a quantum Frobenius
homomorphism Fq : Uq → UC with UC denoting the enveloping algebra of the Lie
algebra for the complex semisimple group Ḡ with root system R. We shall also
denote the restriction of Fq to Bq by the same name. Note that the Frobenius
homomorphism induces the trivial map on uq and bq.

Let M be a Uq-module. By this we shall always mean a finite dimensional module
of type 1. If M restricts to a trivial module for uq then the Frobenius homomorphism
produces from this a UC-module. This we identify with a module for Ḡ which we
denote M [−l]. On the other hand, if M̄ is a Ḡ-module then this gives via Fq rise to
a Uq-module which we denote M̄ [l]. Clearly uq acts trivially on M̄ [l].

Similar conventions and notations apply to Bq- and B̄-modules where B̄ is the
Borel subgroup in Ḡ corresponding to B.

4.2. Let M be a Uq-module. Then the modules Hs(uq, M) are naturally Uq-modules
with trivial uq-action, and we have the Lyndon-Hochschild-Serre spectral sequence

Hr(Ḡ, Hs(uq, M)[−l]) =⇒ Hr+s(Uq, M). (1)

Likewise, if M is a Bq-module we have the spectral sequence

Hr(B̄, Hs(bq, M)[−l]) =⇒ Hr+s(Bq, M). (2)

Note that in our situation the first sequence degenerates because Hr(Ḡ,−) = 0
for r > 0 (Ḡ being reductive). This means that we have(

Hs(uq, M)[−l]
)Ḡ ' Hs(Uq, M). (3)

On the other hand, the spectral sequence (2) does not degenerate (as we shall see
below).

4.3. The cohomology Hs(bq, λ) is completely known for all λ ∈ X. In fact, we have
(see [26] and compare [10], [20] for the corresponding modular case)

Hs(bq, λ) = 0 for all s ≥ 0 unless λ ∈ W · 0 + lZR (1)

Hs(bq, C0)
[−l] ' Si/2(u∗), i ≥ 0 (2)

Hs(bq, w · 0 + lλ)[−l] ' S(i−l(w))/2(u∗)⊗ λ, i ≥ 0. (3)
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Here u denotes the Lie algebra of the unipotent radical of B̄, Sru∗ denotes the
r-symmetric power on its dual (interpreted as 0 unless r ∈ N), and we have written
C0 (instead of just 0) for the trivial 1-dimensional Bq-module determined by 0 ∈ X.
The isomorphisms in (2) and (3) are B̄-isomorphisms.

4.4. Let P̄ denote a parabolic subgroup of Ḡ containing B̄. In analogy with Section
2 we get for any B̄-module E a vector bundle L(E) on Ḡ/B̄. The cohomology of
the restriction of this bundle to P̄ /B̄ is denoted H i(P̄ /B̄, E), i ≥ 0.

If V is a P̄ -module and E is a B̄-module then we have the tensor identities
H i(P̄ /B̄, V ⊗ E) ' V ⊗ H i(P̄ /B̄, E) for all i. Moreover, the spectral sequence
relating the P̄ cohomology of H i(P̄ /B̄, E) to the B̄-cohomology of E shows that if
there exists an integer i0 such that H i(P̄ /B̄, E) = 0 for i 6= i0 then

Hj(B̄, E) ' Hj−i0(P̄ , H i0(P̄ /B̄, E)), j ≥ 0. (1)

This implies in particular ( V still being a P̄ -module so that the induced vector
bundle L(V ) is trivial on P̄ /B̄)

Hj(B̄, V ) ' Hj(P̄ , V ), j ≥ 0. (2)

4.5. Suppose α is a simple root. Let P̄α be the corresponding minimal parabolic
subgroup containing B̄. In this case we abbreviate and write just H i

α instead of
H i(P̄α/B̄,−). Since P̄α/B̄ = P1 we have H i

α = 0 for i > 1. If λ ∈ X then we have
H1

α(λ) = 0 when 〈λ + ρ, α∨〉 ≥ 0 and H0
α(λ) = 0 when 〈λ + ρ, α∨〉 ≤ 0. Moreover,

we have H0
α(λ) ' H1

α(sα · λ) for all λ ∈ X.

Note now that the line of weight α in u∗ is a B̄-submodule and that the quotient
Vα = u∗/α is a P̄α-module. For each n > 0 this leads to an exact sequence of
B̄-modules

0 → Sn−1(u∗)⊗ α → Sn(u∗) → Sn(Vα) → 0. (1)

The standard ’Demazure lemma’ argument gives

Lemma 4.1. If λ ∈ X satisfies 〈λ + ρ, α∨〉 < 0 then Hj(B̄, SnVα ⊗ λ) ' Hj−1(B̄,
SnVα ⊗ sα · λ) for all j, n.

Proof: The properties of H i
α listed above together with 4.4(1–2) give Hj(B̄, SnVα⊗

λ) ' Hj−1(P̄α, SnVα ⊗ H1
α(λ)) ' Hj−1(P̄α, SnVα ⊗ H0

α(sα · λ)) ' Hj−1(B̄, SnVα ⊗
sα · λ).

4.6. Lemma 4.1 together with the easy fact that Hj(B̄, λ) = 0 for all j unless λ ≤ 0
imply that in fact Hj(B̄, λ) = 0 unless λ ∈ W · 0 and Hj(B̄, w · 0) = C for j = l(w)
and zero otherwise (This could also be deduced from the Borel-Weil-Bott theorem
via 4.4(1), see [6]).

Let ht : X → Z denote the height function on X which takes value 1 on all
simple roots. Note that ht(w · 0) ≤ −l(w). So the above tells us in particular that
if Hj(B̄, λ) 6= 0 then ht(λ) ≤ −j. Clearly any weight of Snu∗ has height at least n
and so we deduce

Hj(B̄, Snu∗ ⊗ λ) = 0 unless λ ≤ 0 with ht(λ) ≤ −n− j. (1)
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4.7. Let α be a simple root and λ ∈ X.

Proposition 4.2. If 〈λ + ρ, α∨〉 ≤ 0 and sα · λ 6≤ 0 then Hj(B̄, Snu∗ ⊗ λ) '
Hj(B̄, Sn−1u∗ ⊗ (λ + α)) for all n.

Proof: By Lemma 4.1 we have Hj(B̄, SnVα ⊗ λ) ' Hj−1(B̄, SnVα ⊗ sα · λ). This
is clearly 0 for all j when sα · λ 6≤ 0. Conclusion via the exact sequence 4.5(2).

4.8. We now combine the above results to obtain

Theorem 4.3. i) If λ ∈ X then Hj(Bq, λ) = 0 for all j unless λ ∈ W ·0+lZR.
ii) For each w ∈ W, λ ∈ ZR, j ≥ 0 we have Hj(Bq, w ·0+lλ) ' Hj−l(w)(Bq, lλ).
iii) If α is a simple root and λ ∈ ZR such that 〈λ + ρ, α∨〉 ≤ 0 and sα · λ 6≤ 0

then Hj(Bq, lλ) ' Hj−2(Bq, l(λ + α)) for all j.

Proof: We use the spectral sequence 4.2(2) to compute Hj(Bq, λ). Then i) is
immediate from 4.3(1) and ii) follows from 4.3(3). Finally, iii) is a consequence of
Proposition 4.2 and 4.3(2).

4.9. The following result will turn out to be useful in connection with the above

Proposition 4.4. If α is a simple root and λ ∈ X satisfies 0 ≤ 〈λ+ ρ, α∨〉 ≤ l then
Hj(Bq, λ) ' Hj+1(Bq, sα · λ) for all j ≥ 0.

Proof: Let H i
α,q be the quantum analogue of H i

α. These have properties completely
analogous to the ones recalled in 4.5. Then we get – denoting by Pα,q the quantum
subalgebra analogous to Pα - that Hj(Bq, λ) ' Hj(Pα,q, H

0
α,q(λ)) ' Hj(Pα,q, H

1
α,q(sα·

λ)) ' Hj+1(Bq, sα · λ).

4.10. The first application of Proposition 4.4 is

Corollary 4.5. For each w ∈ W we have

Hj(Bq, w · 0) '
{

C if j = l(w),
0 otherwise.

4.11. Let still α be a simple root

Corollary 4.6. For each m > 0 we have

Hj(Bq, w · 0−mlα) '
{

C if j = l(w) + 2m, l(w) + 2m− 1,
0 otherwise.

Proof: By Theorem 4.3.ii) it is enough to treat the case w = 1. We begin with m =
1. By 4.3(2) we have H i(bq,−lα) ' (Si/2u∗)[l] ⊗ (−lα). Now a direct computation
based on weight considerations give

Hj
(
B̄, Smu∗ ⊗ (−α)

)
'

{
C if m = 0, j = 1; or m = 1, j = 0,
0 otherwise.

Hence the spectral sequence 4.2(2) gives

Hj(Bq,−lα) '
{

C if j = 1, 2,
0 otherwise.
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This proves the corollary for m = 1. For m > 1 we see from Theorem 4.3.iii) (noting
that sα · (−mα) = (m − 1)α 6≤ 0) H i(Bq,−lmα) ' H i−2(Bq,−l(m − 1)α). Hence
induction on m finishes the proof.

4.12.

Example 4.7. When we are in the SL2-case the above corollary gives for all m ≥ 0,
j > 0

Hj(Bq,−lmα) '
{

C if j = 2m, 2m− 1,
0 otherwise;

and
Hj(Bq,−(lm + 1)α) '

{
C if j = 2m, 2m + 1,
0 otherwise.

This accounts for all non-vanishing cohomology in this case.

4.13. When using the spectral sequence 4.2(2) for computing the cohomology
H•(Bq, λ), λ ∈ X

we see via the results in 4.3 that the E2-terms have the form Hr(B̄, Snu∗⊗µ) for some
r, n ∈ N, µ ∈ X. An alternative way to the computations in 4.5–7 of such terms is
to use the spectral sequence 4.4(1) with P̄ = Ḡ. Since Ḡ is reductive this spectral
sequence degenerates in this case and gives isomorphisms Hr(B̄, E) ' Hr(Ḡ/B̄, E)Ḡ

for all r ∈ N and all B̄-modules E. Now for E = Snu∗ ⊗ µ this is related to the
cohomology of the line bundle LȲ (µ) on the cotangent bundle Ȳ = T ∗(Ḡ/B̄). In
fact, Ȳ = Ḡ ×B̄ u so that for the cohomology of LȲ (µ) we have Hr(Ȳ ,LȲ (µ)) =
Hr(Ḡ/B̄, S•u∗ ⊗ µ).

Unfortunately, this cohomology is only known when µ is dominant or ”almost
dominant”, see e.g [14], [31], [27] and [32]. In our case the relevant µ’s are far from
dominant. Our computations in the next section for the SL3-case show that for
such µ there will usually be non-vanishing cohomology for all r = 0, 1, · · · , N .

5. The SL3-case

In this section we shall compute the cohomology Hj(Bq, λ) for all λ ∈ X when Bq

is the Borel subalgebra in the quantum group for SL3 (at a complex root of unity
of odd order l > 3). We denote the two simple roots α and β.

5.1. As a special case of Corollary 4.6 we have

Hj(Bq, sβ · 0− lα) '
{

C if j = 2, 3,
0 otherwise.

Now 〈sβ ·0− lα, β∨〉 = l−2. Hence by Proposition 4.4 we get Hj(Bq, sβ · 0 − lα) '
Hj−1(Bq,−lρ) (note that in this case ρ = α + β). So we find

Hj(Bq,−lρ) '
{

C if j = 3, 4,
0 otherwise;

and from this we determine the cohomology of w · 0− lρ for all w ∈ W via Theorem
4.3.ii).
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5.2. Our next step will be to treat the weight −lα− 2lβ. We claim

Hj(Bq,−lα− 2lβ) '
{

C if j = 2, 3, 5, 6,
0 otherwise.

We shall perform this computation using the spectral sequence 4.2(2). First we
observe that since −α− 2β = sβsα · 0 we find by the classical analogue of Corollary
4.5

Hj(B̄, − α− 2β) '
{

C if j = 2,
0 otherwise.

The exact sequence 0 → β → u∗ → Vβ → 0 together with the observation that
Hj(B̄,−ρ) = 0 for all j give

Hj
(
B̄, u∗ ⊗ (−α− 2β)

)
' Hj(B̄, Vβ ⊗−α− 2β)

' Hj−1(B̄, Vβ ⊗−α) '
{

C if j = 1,
0 otherwise.

Here the second isomorphism comes from Lemma 4.1 (note that sβ · (−α−2β) = −α
and 〈−α− lβ +ρ, β∨〉 = −2 < 0) and the last equality follows by observing that the
weights of Vβ are ρ and α.

Similarly, we get

Hj
(
B̄, S2(u∗)⊗ (−α− 2β)

)
' Hj(B̄, u∗ ⊗−ρ) =

{
C if j = 1,
0 otherwise;

because H i
(
B̄, S2Vβ ⊗ (−α− 2β)

)
' H i−1(B̄, S2Vβ ⊗−α) = 0 for all i.

Finally, easy weight considerations give

Hj
(
B̄, S3(u∗)⊗ (−α− 2β)

)
' Hj(B̄, S2u∗ ⊗−ρ) =

{
C if j = 0,
0 otherwise,

and Hj
(
B̄, Sn(u∗) ⊗ (−α − 2β)

)
= 0 for all j when n > 3. These calculations now

imply the claim.

5.3. The result in 5.2 gives via Theorem 4.3.ii) the cohomology for all the weights
w · 0− l(α + 2β) w ∈ W . Applying Theorem 4.3.iii) we deduce from this

Hj(Bq, w · 0− lα− lmβ) '

 C if j = l(w) + 2m− 2, l(w) + 2m− 1,
l(w) + 2m + 1, l(w) + 2m + 2,

0 otherwise

for all m ≥ 2.

5.4. Set λ1 = sα · 0− lα− 3lβ. Then 〈λ1 + ρ, α∨〉 = −2 + l and hence by Proposi-
tion 4.4 Hj(Bq, λ1) ' Hj+1(Bq, sα · λ1). Note that sα · λ1 = −2lα − 3lβ. Thus the
computation (which we did in Section 5.3) of the cohomology for λ1 leads first to the
cohomology for sα ·λ1, then via Theorem 4.3.ii) to the cohomology for w ·0+ sα ·λ1,
and finally (via Theorem 4.3.iii)) to the cohomology for w · 0− 2lα−mlβ, m ≥ 3.
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The next step is to set λ2 = sα · 0 − 2lα − 5lβ, pass via the same arguments to
sα · λ2 = −3lα− 5lβ, then to w · 0 + sα · λ2, and finally to w · 0− 3lα−mlβ, m ≥ 4.
Continuing this we obtain

Hj(Bq, w ·0−nlα−mlβ) '

 C if j = l(w) + 2m + 2n− 4, l(w) + 2m + 2n− 3,
l(w) + 2m + 2n− 1, l(w) + 2m + 2n,

0 otherwise

for all n ≥ 1, m ≥ n + 1.

5.5. By symmetry we may of course interchange α and β in the computations above.
Our results so far will thus take care of all weights with non-zero cohomology except
those of the form w · 0 −mlα −mlβ, w ∈ W, m ≥ 2. To calculate these we first
reduce to the case w = 1 (by Theorem 4.3.ii)). Then we resort again to the spectral
sequence 4.2(2). Note that −mlα−mlβ = −mlρ.

First we calculate the E0,−
2 -terms:

H0
(
B̄, Snu∗ ⊗ (−mρ)

)
'

{
C if n = 2m,
0 otherwise. (1)

Proof: Clearly, H0
(
B̄, SnVα⊗(−mρ)

)
= 0 = H0(B̄, Sn−1Vβ⊗(α−mlρ). Hence via

4.5(1) we get H0
(
B̄, Snu∗⊗(−mρ)

)
' H0

(
B̄, Sn−1u∗⊗(α−mρ)

)
' H0

(
B̄, Sn−2u∗⊗

((1−m)ρ)
)
. Repeating this we get

if n > 2m then H0
(
B̄, Snu∗ ⊗ (−mρ)

)
' H0(B̄, Sn−2mu∗) = 0,

if n = 2d ≤ 2m then H0
(
B̄, Snu∗ ⊗ (−mρ)

)
' H0(B̄, (d−m)ρ),

and
if n = 2d + 1 ≤ 2m then H0

(
B̄, Snu∗ ⊗ (−mρ)

)
' H0(B̄, u∗ ⊗ (d−m)ρ).

It is easy to check that H0(B̄, u∗ ⊗ rρ) = 0 for all r. So (1) follows.

The next step concerns the E1,−
2 -terms:

H1
(
B̄, Snu∗ ⊗ (−mρ)

)
'

{
C if n = 2m− 1, 2m− 2 > 0,
0 otherwise. (2)

Proof: Note that Vα ' H0
α(ρ) and Sn(Vα) ' H0

α(nρ). Therefore H0(B̄, Sn(Vα) ⊗
λ) ' C for λ = nρ − nα (respectively 0 for all other λ). Combining this with
Lemma 1.6 we get

H1
(
B̄, Snu∗ ⊗ (−mρ)

)
' H1(B̄, Sn−1u∗ ⊗ (α−mρ)) for all n, m (3)

and
H1

(
B̄, Sn−1u∗ ⊗ (α−mρ)

)
' H1(B̄, Sn−2u∗ ⊗ ((1−m)ρ)) for all n 6= m.

So if 2 ≤ n 6= m then H1
(
B̄, Snu∗ ⊗ (−mρ)

)
' H1

(
B̄, Sn−2u∗ ⊗ ((1−m)ρ)

)
. This

gives (2) by induction on n in this case.

For n = m > 2 we apply (3) ’twice’ and get H1
(
B̄, Snu∗ ⊗ (−nρ)

)
' H1

(
B̄,

Sn−2u∗ ⊗ (2α − nρ)
)
. This vanish because the weights of Sn−2u∗ ⊗ (2α − nρ) have

heights ≤ 2(n− 2) + 2− 2n = −2.
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Finally, if n = 1 then we get by (3)

H1
(
B̄, u∗ ⊗ (−mρ)

)
' H1

(
B̄, (α−mρ)

)
=

{
C if m = 1,
0 otherwise,

and if n = 2

H1
(
B̄, S2u∗ ⊗ (−mρ)

)
' H1

(
B̄, u∗ ⊗ (α−mρ)

)
= 0 for m 6= 2.

For m = 2 we use the sequence 0 → (α) ⊕ (β) → u∗ → ρ → 0 to get H1
(
B̄, u∗ ⊗

(α− 2ρ)
)
' C (noticing that H i(B̄,−2β) = 0 = H i(B̄,−ρ) for all i).

5.6. To compute the remaining E2-terms we shall take advantage of the fact that
for any B̄-module E we have H i(B̄, E) ' H3−i(B̄, E∗ ⊗ −2ρ). So we now replace
u∗ by u.

Observe that we have an exact B̄-sequence 0 → (−ρ) → u → (−α)⊕ (−β) → 0.
We set E = (−α)⊕ (−β). Then we have for each n an exact sequence

0 → Sn−1u⊗ (−ρ) → Snu → SnE =
⊕

a+b=n

(−aα− bβ) → 0. (1)

From this we can then derive

H0(B̄, Snu⊗mρ) =

{
C if n = m,
0 otherwise. (2)

Proof: Note that H0(B̄, SnE ⊗ mρ) = 0 unless n = 2m. Hence (1) gives H0(B̄,
Snu ⊗ mρ) ' H0

(
B̄, Sn−1u ⊗ ((m − 1)ρ)

)
for n 6= 2m. So (2) follows if we verify

H0(B̄, S2mu⊗mρ) = 0 for all m > 0. This we do via the sequence dual to 4.5(1):

0 → SnV ∗
α → Snu → Sn−1u⊗ (−α) → 0.

Here SnV ∗
α ' H0

α(−nβ) and therefore H0(B̄, SnV ∗
α ⊗λ) = 0 for λ 6= nρ. This implies

(using the corresponding sequence relative to β)

H0(B̄, S2mu⊗mρ) ⊂ H0(B̄, S2m−1u⊗ (mρ− α)) ⊂ H0(B̄, S2m−2u⊗ ((m− 1)ρ)).

The last module is 0 for m > 1 by induction. The case m = 1 is easy.

Next we claim

H1(B̄, Snu⊗mρ) =

 C2 if m = 0, n = 1,
C if m > 0, n = m + 1, 2m + 1,
0 otherwise.

(3)

Proof: Arguing as above we get for n 6= 2m the exact sequence 0 → H1(B̄, Sn−1u⊗
(m−1)ρ) → H1(B̄, Snu⊗mρ) → H1(B̄, SnE⊗ mρ). Note that H1(B̄, SnE⊗ mρ) =
C2 for n = 2m + 1 and 0 otherwise. So if n 6= 2m, 2m + 1 we have by induction

H1(B̄, Snu⊗mρ) ' H1(B̄, Sn−1u⊗ (m− 1)ρ) =

{
C2 if n = m + 1,
0 otherwise.

If n = 2m > 0 we get an exact sequence 0 → H0(B̄, S2mE⊗mρ) → H1(B̄, S2m−1u⊗
(m − 1)ρ) → H1(B̄, S2mu ⊗mρ) → 0, where by (2) and by induction the first two
terms are both equal to C. So this gives (3) in this case.

For n = 2m + 1 our induction gives the exact sequence
0 → H1(B̄, S2m+1u⊗mρ) → C2 → H2(B̄, S2mu⊗(m−1)ρ) → H2(B̄, S2m+1u⊗mρ).
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By duality and 5.5(2) we have H2(B̄, S2mu⊗(m−1)ρ) ' H1(B̄, S2mu∗⊗−(m+1)ρ) =
C while H2(B̄, S2m+1u⊗mρ) ' H1(B̄, S2m+1u∗ ⊗ (−m− 2)ρ) = 0. So we have the
desired result also in this case.

Finally, we have H1(B̄, Snu) = 0 for n 6= 1 (because then no negative simple
root is a weight of Snu) while the sequence 5.6(1) with n = 1 gives H1(B̄, u) '
H1

(
B̄, (−α)⊕ (−β)

)
= C2. This verifies (2) for m = 0.

5.7. Dualizing 5.6(2)–(3) we get

H3(B̄, Snu∗ ⊗ (−mρ)) =

{
C if n = m− 2,
0 otherwise; (1)

and

H2(B̄, Snu∗ ⊗ (−mρ)) =

 C2 if m = 2, n = 1,
C if m > 2, n = m− 1, 2m− 3,
0 otherwise.

(2)

It follows from 5.5(1)–(2) and (1)–(2) above that all differentials in the spectral
sequence 4.2(2) for the case at hand vanish (for the trivial reason that either their
target or source is zero). Hence we obtain

Proposition 5.1. i)

H i(Bq, (−2lρ)) =

 C2 if i = 4,
C if i = 3, 5, 7, 8,
0 otherwise.

ii) For m > 2 we have

H i(Bq, (−mlρ)) =

{
C if i = 2m− 1, 2m, 4m− 4, 4m− 3, 4m− 1, 4m;
0 otherwise.

Remark 5.2. By Theorem 4.3.ii) we deduce from this proposition also the coho-
mology for the weights w · 0 − mlρ for all w ∈ W, m ≥ 0. Combined with the
computations in 5.1 and 5.4 this describes completely the cohomology H i(Bq, λ) for
all i, λ.
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