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A geometric theory of harmonic and
semi-conformal maps

Anders Kock

Abstract. We describe for any Riemannian manifold M a certain scheme ML, lying in
between the first and second neighbourhood of the diagonal of M . Semi-conformal maps
between Riemannian manifolds are then analyzed as those maps that preserve ML; har-
monic maps are analyzed as those that preserve the (Levi-Civita-) mirror image formation
inside ML.

Introduction

For any Riemannian manifold M , we describe a subscheme ML ⊆ M×M , which en-
codes information about conformal as well as harmonic maps out of M in a succinct
geometric way. Thus, a submersion φ : M → N between Riemannian manifolds
is semi-conformal (=horizontally conformal) iff φ × φ maps ML into NL (Theorem
11); and a map φ : M → N is a harmonic map if it “commutes with mirror im-
age formation for ML”, where mirror image formation is one of the manifestations
of the Levi-Civita parallelism (derived from the Riemannian metric). The mir-
ror image preservation property is best expressed in the set theoretic language for
schemes, which we elaborate on in Section 1. Then it just becomes the statement:
for (x, z) ∈ ML ⊆ M × M , φ(z′) = (φ(z))′, where the primes denote mirror image
formation in x (respectively in φ(x)). In particular, when the codomain is R (the
real line with standard metric), this characterization of harmonicity reads

φ(z′) = 2φ(x)− φ(z),

that is, φ(x) equals the average value of φ(z) and φ(z′), for any z with (x, z) ∈ ML.
The last section deals with harmonic morphisms between Riemannian manifolds,

meaning harmonic maps which are at the same time semi-conformal.
This paper has some overlap with [7], but provides a simplification of the con-

struction of ML, and hence also of the proofs. Theorems 11 and 14 below are new.
A novelty in the presentation is a systematic use of the log-exp bijections that relate
the infinitesimal neighbourhoods like ML with their linearized version in the tangent
bundle.

The first section is partly expository; it tries to present a (rather primitive)
version of the category of (affine) schemes, and the “synthetic” language in which
we talk about them.
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The paper grew out of a talk presented at the 5th conference “Geometry and
Topology of Manifolds”, Krynica 2003; I want to thank the organizers for the invi-
tation.

1 The language of schemes

Let M be a smooth manifold. In the ring C∞(M × M), we have the ideal I of
functions vanishing on the diagonal M ⊆ M × M . Kähler observed that differ-
ential 1-forms on M may be encoded as elements in I/I2 (the module of Kähler
differentials) (here, I2 is the ideal of functions vanishing to the second order on
the diagonal). Similarly, elements of I2/I3 encode quadratic differential forms on
M . Using the language of schemes will allow us to discuss elements of I/I2 or of
I2/I3 in a more geometric way. We summarize here what we need about schemes.
First, note that every smooth manifold M gives rise (in a contravariant way) to
a commutative R-algebra, the ring C∞(M) of (smooth R-valued) functions on it.
Grothendieck’s bold step was to think of any commutative R-algebra as the ring of
smooth functions on some “virtual” geometric object A, the affine scheme defined
by A. So A = C∞(A), by definition, and the category of affine schemes Sch is just
the opposite (dual) of the category Alg of (commutative R-)algebras,

Sch = (Alg)op.

The category of affine schemes contains the category of smooth manifolds as a full
subcategory: to the manifold M , associate the scheme C∞(M) (which we shall not
notationally distinguish from M , except for the manifold R, where we write R for
C∞(R)).

Some important schemes associated to a manifold M are its infinitesimal “neigh-
bourhoods of the diagonal” M(k), considered classically by Grothendieck [3], Mal-
grange [12], Kumpera and Spencer [10] and others. For each natural number k,
M(k) ⊆ M ×M is the subscheme of M ×M given by the algebra C∞(M ×M)/Ik+1,
where I is the ideal of functions vanishing on the “diagonal” M ⊆ M × M ; thus
Ik+1 is the ideal of functions vanishing to the k + 1’st order on the diagonal.

We have M ⊆ M(1) ⊆ M(2) ⊆ · · · ⊆ M ×M , with M ⊆ M ×M identified with
the submanifold consisting of “diagonal” points (x, x).

Now, by definition,

C∞(M ×M)/I3 = C∞(M(2)),

so in the language of schemes, we arrive at the following way of speaking: elements
of C∞(M ×M)/I3 are functions on M(2); and elements in I2/I3 ⊆ C∞(M ×M)/I3

are functions on M(2) which vanish on M(1).
(A similar geometric language was presented in [8] for the elements of I/I2 (=the

Kähler differentials): they are functions on M(1) vanishing om M(0) = M , i.e. they
are combinatorial differential 1-forms in the sense of [4].)
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Synthetic differential geometry adds one feature to this aspect of scheme theory,
namely extended use of set theoretic language for speaking about objects in (suffi-
ciently nice) categories, like Sch. Thus, since M(k) is a subobject of M × M , the
synthetic language talks about M(k) as if it consisted of pairs of points of M ; we
shall for instance call such pair “a pair of k’th order neighbours” and write x ∼k y
for (x, y) ∈ M(2). For instance, the fact that M(k) is stable under the obvious twist
map M ×M → M ×M , we express by saying “x ∼k y implies y ∼k x”.

The “set” (scheme) of points y ∈ M with x ∼k y, we also denote Mk(x), the
k’th order neighbourhood , or k’th monad , around x. The relation ∼k is reflexive and
symmetric, but not transitive; rather x ∼k y and y ∼l z implies x ∼k+l z. – Any
map f preserves these relations: x ∼k y implies f(x) ∼k f(y).

A quadratic differential form on M , i.e. an element of I2/I3, can now be ex-
pressed: it is a function g(x, y), defined whenever x ∼2 y, and so that g(x, y) = 0 if
x ∼1 y. If further g is positive definite, then we may directly think of g(x, y) ∈ R as
the square distance between x and y.

For M = Rn, M(k) is canonically isomorphic to M × Dk(n): (x, y) ∈ Rn
(k) iff

y− x ∈ Dk(n); here, Dk(n) is the “infinitesimal” scheme corresponding to a certain
well known Weil-algebra:

Recall that a Weil algebra is a finite dimensional R-algebra, where the nilpotent
elements form a (maximal) ideal of codimension one. The most basic Weil algebra
is the ring of dual numbers

R[ε] = R[X]/(X2) = C∞(R)/(x2);

the corresponding affine scheme is often denoted D, and is to be thought of as a
“disembodied tangent vector” (cf. Mumford [13], III.4, or Lawvere, [11]). The reason
is that maps of schemes D → M (M a manifold, say) by definition correspond to
R-algebra maps C∞(M) → R[ε], and such in turn correspond, as is known, to
tangent vectors of M .

Note that since R[ε] is a quotient algebra of C∞(R), D is, by the duality, a
subscheme of R; this subscheme may be described synthetically as {d ∈ R | d2 = 0},
reflecting the fact that R[ε] comes about from C∞(R) by dividing out x2.

More generally, for k and n positive integers, Dk(n) is the scheme corresponding
to the Weil algebra which one gets from R[X1, . . . , Xn] by dividing out by the ideal
generated by monomials of degree k+1; or, equivalently, from C∞(Rn) by the ideal of
functions that vanish to order k+1 at 0 = (0, . . . , 0) (it is also known as the “algebra
of k-jets at 0 in Rn”). – In particular, D1(1) is the ring of dual numbers described
above. Just as D is the subscheme of R described by D = {x ∈ R | x2 = 0}, Dk(n)
may be described in synthetic language as

{(x1, . . . , xn) ∈ Rn | xi1 · xi2 · · ·xik+1
= 0 for all i1, . . . , ik+1}.

The specific Weil algebras which form the algebraic backbone of the present paper
are the following (first studied for this purpose in [7]). For each natural number n ≥
2, we consider the algebra C∞(Rn)/IL, where IL is the ideal generated by all x2

i −x2
j

and all xixj where i 6= j. The linear dimension of this algebra is n + 2; a basis may
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be taken to be (the classes mod IL of) the functions 1, x1, . . . , xn, x
2
1 + · · ·+x2

n. The
corresponding affine scheme we denote DL(n) or DL(Rn); the letter “L” stands for
“Laplace”, for reasons that will hopefully become clear. Using synthetic language,
DL(n) may be described

DL(n) = {(x1, . . . , xn) ∈ Rn | x2
i = x2

j ; xixj = 0 for i 6= j}.

Note that D1(n) ⊆ DL(n) ⊆ D2(n). The inclusion D1(n) ⊆ DL(n) corresponds
to the quotient map

C∞(Rn)/IL → C∞(Rn)/I1

which in turn comes about because IL ⊆ I1. The kernel of this quotient map has
linear dimension 1; a generator for it is the (class mod IL of) x2

1 + · · ·+ x2
n.

The following is a tautological translation of this fact:

Proposition 1 Any function f : DL(n) → R which vanishes on D1(n) is of the
form c · (x2

1 + · · ·+ x2
n) for a unique c ∈ R.

The subscheme Dk(n) ⊆ Rn can be described in coordinate free terms; in fact,
it is just the k-monad Mk(0) around 0. More generally, for any finite dimensional
vector space V , we can give an alternative description of Mk(0), which we also
denote Dk(V ). We only give this description for the case k = 1 and k = 2, which is
all we need:

We have that u ∈ D1(V ) iff for any bilinear B : V × V → R, B(u, u) = 0; this
then also holds for any bilinear V × V → W , with W a finite dimensional vector
space. Similarly u ∈ D2(V ) iff for any trilinear C : V ×V ×V → R , C(u, u, u) = 0;
this then also holds for any trilinear V × V × V → W , with W a finite dimensional
vector space.

Any function f : D2(V ) → W (with W a finite dimensional vector space) can
uniquely be written in the form u 7→ f(0) + L(u) + B(u, u) with L : V → W linear
and B : V × V → W bilinear symmetric.

If V is equipped with a positive definite inner product, we shall in the following
Section also describe a subscheme DL(V ) with D1(V ) ⊆ DL(V ) ⊆ D2(V ); for
V = Rn with standard inner product, it will be the DL(n) already described.

2 L-neigbours in inner-product spaces

For a 1-dimensional vector space V , we say that a ∈ V is L-small if it is 2-small,
i.e. if a ∼2 0.

Given an n-dimensional vector space V (n ≥ 2) with a positive definite inner
product 〈−,−〉. We call a vector a ∈ V L-small if for all u, v ∈ V

〈 a, u 〉〈 a, v 〉 = 1
n
〈 a, a 〉〈u, v 〉. (1)

The “set” (scheme) of L-small vectors is denoted DL(V ).
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It is clear that if a ∈ DL(V ), then λa ∈ DL(V ) for any scalar λ. But DL(V )
will not be stable under addition; it is not hard to prove that if a and b are L-small
vectors, then a + b is L-small precisely if for all u, v ∈ V

〈 a, u 〉〈 b, v 〉+ 〈 a, v 〉〈 b, u 〉 = 2
n
〈 a, b 〉〈u, v 〉. (2)

Let us analyze these notions for the case of Rn, with its standard inner product.
We claim

Proposition 2 The vector t = (t1, . . . , tn) belongs to DL(Rn) iff

t21 = · · · = t2n ; and titj = 0 for i 6= j. (3)

(So DL(Rn) equals the DL(n) described above, or in [7] equation (8).)

Proof. If t ∈ DL(Rn), we have in particular for each i = 1, . . . , n,

t2i = 〈 t, ei 〉〈 t, ei 〉 = 1
n
〈 t, t 〉,

where e1, . . . , en is the standard (orthonormal) basis for Rn. The right hand side
here is independent of i. – Also, if i 6= j,

titj = 〈 t, ei 〉〈 t, ej 〉 = 1
n
〈 t, t 〉〈 ei, ej 〉 = 0,

since 〈 ei, ej 〉 = 0.
Conversely, assume that (3) holds. Let u and v be arbitrary vectors, u =

(u1, . . . , un), and similarly for v. Then

〈 t, u 〉〈 t, v 〉 =
( ∑

i

tiui

)( ∑
j

tjvj

)
=

∑
i,j

titjuivj = t21
∑

i

uivi,

using (3) for the last equality sign. But this is t21〈u, v 〉, and since, again by (3)

t21 = 1
n
(t21 + · · ·+ t2n) = 1

n
〈 t, t 〉,

we conclude 〈 t, u 〉〈 t, v 〉 = 1
n
〈 t, t 〉〈u, v 〉.

As a Corollary, we get that for v ∈ V (an n-dimensional inner-product space),
v ∈ DL(V ) iff for some, or for any, orthonormal coordinate system for V , the
coordinates of v satisfy the equations (3).

From the coordinate characterization of DL(V ) also immediately follows that
DL(V ) ⊆ D2(V ).

Here is an alternative characterization of L-small vectors, for inner product spaces
V of dimension ≥ 2 (the word “self-adjoint” may be omitted, but we shall need the
Proposition in the form stated).

Proposition 3 The vector a belongs to DL(V ) if and only if for every self adjoint
linear map L : V → V of trace zero, 〈L(a), a 〉 = 0.
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Proof. We pick orthonormal coordinates, and utilize the “coordinate” description
of DL(Rn). Assume a ∈ DL(Rn), and assume L is given by the symmetric matrix
[cij] with

∑
cii = 0. Then

〈L(a), a 〉 =
∑
ij

cijajai;

since aiaj = 0 if i 6= j, only the diagonal terms survive, and we get 〈L(a), a 〉 =∑
i ciia

2
i = a2

1

∑
cii, since all the a2

i are equal to a2
1. Since

∑
cii = 0, we get 0,

as claimed. Conversely, let us pick the L given by the symmetric matrix with
cij = cji = 1(i 6= j), and all other entries 0. Then

0 = 〈L(a), a 〉 = aiaj + ajai,

whence aiaj = 0. Next let us pick the L given by the matrix cii = 1, cjj = −1
(i 6= j) and all other entries 0. Then

0 = 〈L(a), a 〉 = aiai − ajaj,

whence a2
i = a2

j . So a ∈ DL(Rn).

We now consider the question of when a linear map f : V → W between inner
product spaces preserves L-smallness, i.e. when f(DL(V )) ⊆ DL(W ). Let us call an
m × n matrix semi-conformal if the rows are mutually orthogonal, and have same
(strictly positive) square norm. (This square norm is then called the square dilation
of the matrix, and is typically denoted Λ.) The rank of a semi-conformal matrix is
m, since its rows, being orthogonal, are linearly independent. It thus represents a
surjective linear map Rn → Rm.

We have

Proposition 4 Let f : V → W be a surjective linear map between inner product
spaces. Then t.f.a.e.

1) f(DL(V )) ⊆ DL(W )
2) In some, or any, pair of orthonormal bases for V , W , the matrix expression

for f is a semi-conformal matrix
In case these conditions hold, the common square norm Λ of the rows of the matrix
is characterized by: for all z ∈ DL(V )

1
m
〈 f(z), f(z) 〉 = Λ 1

n
〈 z, z 〉,

(where n = dim(V ), m = dim(W )).

Proof. Assume 1). Pick orthonormal bases for V and W , thereby identifying V
and W with Rn and Rm, with standard inner product. Let the matrix for f be
A = [aij]. For all z ∈ DL(V ), we have by assumption that

( ∑
j

aijzj

)2
is independent of i.
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We calculate this expression:( ∑
j

aijzj

)2
=

( ∑
j

aijzj

)( ∑
j′

aij′zj′

)
=

∑
j

a2
ijz

2
j (4)

since the condition z ∈ DL(V ) implies that zjzj′ = 0 for j 6= j′, so all terms where
j 6= j′ are killed. Also z2

j = z2
1 , so bringing this factor outside the sum, we get

= z2
1

( ∑
j

a2
ij

)
=

1

n

( ∑
k

z2
k

)( ∑
j

a2
ij

)
. (5)

Since this is independent of i, then so is
∑

j a2
ij, by the uniqueness assertion in

Proposition 1. - The proof that the rows of A are mutually orthogonal is similar
(or see the proof for Theorem 3.2 in [7]). – Conversely assume 2), and assume that
z ∈ DL(Rn). We prove that A · z ∈ DL(Rm). The square of the i’th coordinate here
is ( ∑

j

aijzj

)2
= z2

1

∑
j

a2
ij (6)

by the same calculation as before. But now the sum is independent of i, by assump-
tion on the matrix A. – Similarly, if i 6= i′, the inner product of the i’th and i′’th
row of A · z is ( ∑

j

aijzj

)( ∑
j′

ai′j′zj′

)
= z2

1

( ∑
j

aijai′j

)
,

using again the special equations that hold for the zj’s; but now the sum in the
parenthesis is 0 by the assumed orthogonality of the rows of A.

Let Λ be the common square norm of the rows of the matrix for f . Then for
z ∈ DL(V ),

1

m
〈 f(z), f(z) 〉 =

1

m

∑
i

( ∑
j

aijzj

)( ∑
j′

aij′zj′

)
,

and multiplying out, only the terms where j = j′ survive, since z ∈ DL(V ). Thus
we get

1

m

∑
i

( ∑
j

a2
ijz

2
j

)
=

1

m
z2
1

( ∑
i

∑
j

a2
ij

)
=

1

m
z2
1

( ∑
i

Λ
)

but this is z2
1Λ, since there are m indices i. On the other hand, z2

1 = 1/n(
∑

j z2
j ).

We have the following “coordinate free” version of Proposition 1 (derived from
it by picking orthonormal coordinates):

Proposition 5 Let f1, f2 : DL(V ) → R be functions which agree on D1(V ). Then
there exists a unique number c ∈ R so that for all z ∈ DL(M) we have

f1(z)− f2(z) = c · 〈 z, z 〉.
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Consider a map f : D2(V ) → W with f(0) = 0 and a symmetric bilinear B :
V × V → W . Let b : V → W denote the “quadratic” map u 7→ B(u, u).

Lemma 6 The map f takes DL(V ) into DL(W ) if and only if f + b does.

Proof. This is a simple exercise in degree calculus. Assume f has the property.
To prove that f + b does, let a ∈ DL(V ), and let u, v be arbitrary “test” vectors
in W . We consider 〈 f(a) + b(a), u 〉〈 f(a) + b(a), v 〉. Using bilinearity of inner
product, this comes out as four terms, one of which is 〈 f(a), u 〉〈 f(a), v 〉, and
three of which vanish for degree reasons, thus for instance 〈 b(a), u 〉〈 f(a), v 〉 =
〈B(a, a), u 〉〈 f(a), v 〉 which contains a in a trilinear way, so vanishes since a ∈
DL(V ) ⊆ D2(V ). So the left hand side in the test equation for L-smallness of
f(a) + b(a) equals the left hand side in the test equation for L-smallness of f(a).
The right hand sides of the test equation is dealt with in a similar way.

3 Riemannian metrics

Recall from [6], [7] that a Riemannian metric g on a manifold M may be construed as
an R-valued function defined on the second neighbourhood M(2) of the diagonal, and
vanishing on M(1) ⊆ M(2); we think of g(x, y) as the square distance between x and
y. Also g should be positive definite, in a sense which is most easily expressed when
passing to a coordinatized situation. Since our arguments are all of completely local
(in fact infinitesimal) nature, there is no harm in assuming that one chart covers
all of M , meaning that we have an embedding of M as an open subset of Rn, or of
an abstract n-dimensional vector space V . In this case, each TxM gets canonically
identified with V : to u ∈ V , associate the tangent vector t at x given by d 7→ x+d ·u
for d ∈ D. The vector u is called the principal part of t. In this case g is of the form

g(x, z) = G(x; z − x, z − x),

where G : M × V × V → R is bilinear symmetric in the two last arguments. We
require each G(x;−,−) to be positive definite, i.e. G(x;−,−) provides V with an
inner product (depending on x). Since TxM is canonically identified with V , each
TxM also acquires an inner product; this inner product can in fact be described in
a coordinate free way, in terms of g alone, cf. [7] formula (4).

4 Symmetric affine connections, and the log-exp-

bijection

According to [5], an affine connection ∇ on a manifold M is a law ∇ which allows
one to complete any configuration (with x ∼1 y, x ∼1 z)
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x

z

y1

1

into a configuration

x

z

y1

1

1

1

∇(x, y, z)

(with z ∼1 ∇(x, y, z) ∼1 y), to be thought of as an “infinitesimal parallelogram
according to ∇”. There is only one axiom assumed:

∇(x, x, z) = z; ∇(x, y, x) = y.

If ∇(x, y, z) = ∇(x, z, y) for all x ∼1 y, x ∼1 z, we call the connection symmetric.
In a coordinatized situation, i.e. with M identified with an open subset of a finite

dimensional vector space V , the data of an affine connection ∇ may be encoded by
a map Γ : M × V × V → V , bilinear in the two last arguments, namely

∇(x, y, z) = y − x + z + Γ(x; y − x, z − x),

so that Γ measures the discrepancy between “infinitesimal parallelogram formation
according to ∇” and the corresponding parallelograms according to the affine struc-
ture of the vector space V . This Γ is the “union of” the Christoffel symbols; and ∇
is symmetric iff Γ(x;−,−) is.

A fundamental result in differential geometry is the existence of the Levi-Civita
connection associated to a Riemann metric g. This result can be formulated synthet-
ically, without reference to tangent bundles or coordinates, namely: given a Riemann
metric g on a manifold, then there exists a unique symmetric connection ∇ on M
with the property that for any x ∼1 y, the map ∇(x, y,−) : M1(x) → M1(y)
preserves g, i.e. for z ∼1 x, u ∼1 x,

g(∇(x, y, z),∇(x, y, u)) = g(z, u).

(This latter condition is equivalent to: the differential of ∇(x, y,−) at x is an
inner-product preserving linear map TxM → TyM .)

There is, according to [9] Theorem 4.2, an alternative way of encoding the data
of a symmetric affine connection on M , namely as a “partial exponential map”,
meaning a bijection (for each x ∈ M) M2(x) ∼= D2(TxM) ⊆ Tx(M), with certain
properties. We describe how such bijection expx : D2(TxM) →M2(x) is related to
the connection ∇ (and this equation characterizes expx completely):

expx((d1 + d2)t) = ∇(x, t(d1), t(d2)),
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where t ∈ TxM and d1, d2 ∈ D (this implies (d1 + d2)t ∈ D2(TxM)).
Since ∇(x, y, x) = y, it follows by taking d2 = 0 that exp(d1t) = t(d1), so that the

partial exponential map M2(0) →M2(x) is an extension of the “first order” partial
exponential map M1(0) →M1(x), as considered in [8]; the first order exponential
map is “absolute” in the sense that its construction does not depend on a metric g
on M .

In the coordinatized situation with M ⊆ V an open subset of a vector space
V , the second order exponential map corresponding to ∇ is given as follows. Note
first that since now M is an open subset of V , Tx(M) may be identified with V
canonically, via the usual notion of “principal part” of a tangent vector to V . Let
u ∈ D2(V ). Then

expx(u) = x + u + 1
2
Γ(x; u, u).

This is an element in M ⊆ V , since M is open, in fact, it is an element of M2(x).
The inverse of expx we of course have to call logx; in the coordinatized situation

M ⊆ V , it is given as follows: let y ∼2 x; then y = x + u with u ∈ D2(V ), and

logx(x + u) = u− 1
2
Γ(x; u, u).

The fact that the map logx thus described is inverse for expx is a simple calcu-
lation using bilinearity of Γ(x;−,−), together with Γ(x; u, Γ(x; u, u)) = 0, and
Γ(x; Γ(x; u, u), Γ(x; u, u)) = 0, and these follow because they are trilinear (respec-
tively quatrolinear) in the arguments where u is substituted.

–The following gives an “isometry” property of the log-exp-bijection. (It does not
depend on the relationship between the metric g and the affine connection/partial
exponential.)

Proposition 7 For z ∼2 x, g(x, z) = 〈 logx z, logx z 〉.

Proof. We work in a coordinatized situation M ⊆ V , so that g is encoded by
G : M × V × V → R, and the connection is encoded by Γ : M × V × V → V , with
both G and Γ bilinear in the two last arguments. Let z ∼2 x, so z is of the form
x + u with u ∈ D2(V ). Then on the one hand

g(x, z) = G(x; u, u),

and on the other hand, logx(z) = u− 1
2
Γ(x; u, u) so that

〈 logx z, logx z 〉 = G(x; u− 1
2
Γ(x; u, u), u− 1

2
Γ(x; u, u)),

and expanding this by bilinearity, we get G(x; u, u) plus some terms which vanish
because they are tri- or quatro-linear in u.
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5 Mirror image

Using the (second order) partial exponential map, we can give a simple description
of the infinitesimal symmetry ([7]) which any Riemannian manifold has. Let z ∼2 x
in M . Its mirror image z′ in x is defined by

z′ := expx(− logx(z)).

In the coordinatized situation M ⊆ V , we can utilize the formulae for log and
exp given in terms of Γ to get the following formula for mirror image formation. If
z = x + u with u ∈ D2(V ), we get

z′ = x− u + Γ(x; u, u).

This is a calculation much similar to the one above, namely, cancelling terms of the
form Γ(x; Γ(x; u, u), u) or Γ(x; Γ(x; u, u), Γ(x; u, u)), these being tri- or quatro-linear
in u. A similar calculation will establish that z′′ = z.

Note also that if u ∈ D1(V ), and z = x + u, then z′ = x− u.
From this follows

Lemma 8 Given x ∈ M . Let f : M → R. The function f̃ : M2(x) → R defined by

f̃(z) = f(z′) + f(z)− 2f(x)

vanishes on M1(x).

For, if df denotes the differential of f at x, and z = x+u with u ∈ D1(V ), the right
hand side here is

(f(x) + df(−u)) + (f(x) + df(u))− 2f(x),

and this is 0 since df is linear.

6 L-neighbours in a Riemannian manifold

We consider a Riemannian manifold (M, g), and the various structures on M derived
from it, as in the previous sections. In particular, we have the partial exponential
map exp, and its inverse log. Using these maps, we shall transport the L-neighbour
relation from the inner-product spaces TxM back to a relation in M . Explicitly,

Definition 1 Let x ∼2 z in M . We say that x ∼L z if logx(z) is L-small in the
inner product space TxM (with inner product derived from g).

Note that this is not apriori a symmetric relation, since log(x, z) and log(z, x) are
not immediately related – they belong to two different vector spaces TxM and TzM ;
in a coordinatized situation M ⊆ V , both these vector spaces may be canonically
identified with V , but the notion of exp and log depend on inner products, and V
in general gets different inner products from TxM and TzM . In [7], the question of
symmetry of the relation ∼L was left open (and the relation ∼L was defined in a
different, more complicated way). We state without proof:
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Proposition 9 The L-neighbour relation is symmetric.

This fact will not be used in the present paper. It depends on the fact that parallel
transport according to ∇ preserves L-smallness, being an isometry.

The following is the fundamental property of L-neighbours, and provides the link
to the Laplace operator and harmonic functions, and more generally to harmonic
morphisms. It is identical to Theorem 2.4 in [7], but the argument we give presently
is more canonical (does not depend on chosing a geodesic coordinate system):

Theorem 10 For any f : ML(x) → R, there exists a unique number c so that for
all z ∈ML(x),

f(z) + f(z′)− 2f(x) = c · g(x, z). (7)

Proof. Consider the composite of expx with the function f̃ of z described by the
left hand side of (7),

DL(TxM)
expx - ML(x)

f̃
- R

It is a function defined on DL(TxM) ⊆ TxM . It follows from Lemma 8 that this
function vansihes on D1(TxM), and thus is constant multiple of the square-norm
function TxM → R, by Proposition 5,

f̃(expx(u)) = c · 〈u, u 〉.

Apply this to u = logx z for z ∼L x; we get

f̃(z) = f̃(expx(logx(z))) = c · 〈 logx z, logx z 〉,

which is c · g(x, z) by Proposition 7.

For any function f : M → R, we can for each x ∈ M consider the corresponding
c, characterized by (7); this gives a function c : M → R, and we define ∆(f) to be n
times this function, in other words, the function ∆(f) is characterized by: for each
pair x ∼L z

f(z) + f(z′)− 2f(x) =
∆(f)(x)

n
g(x, z), (8)

where z′ denotes the mirror image of z in x. (This ∆ operator can be proved to be
the standard Laplace operator, cf. [7].)

We call f a harmonic function if ∆(f) = 0. Thus harmonic functions are char-
acterized by the average value property : for any x ∼L z, f(x) is the average of f(z)
and f(z′). This property can also be expressed: for any z ∼L x, f(z′) is the mirror
image of f(z) in f(x), where mirror image of b in a for a, b ∈ R means 2a−b. This is
also the mirror-image formation in R w.r.to the standard Riemannian metric given
by g(a, b) = (b− a)2.

This observation prompts the following definition:
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Definition 2 Let (M, g) and (N, h) be Riemannian manifolds, and let φ : M → N
a map. We say that φ is a harmonic map if it preserves mirror image formation of
L-neighbours x, z,

φ(z′) = φ(z)′,

where the prime denotes mirror image formation in x w.r.to g and in φ(x) w.r.to
h, respectively.

Note that even if z is an L-neighbour of x, φ(z) may not be an L-neighbour of φ(x),
but it will be a 2-neighbour of φ(x), so that the notion of mirror image of it makes
sense. – The notion may be localized at x: φ is a harmonic map at x if for all
z ∼L x, φ(z′) = φ(z)′.)

A stronger notion than harmonic map is that of harmonic morphism; this is a
map which is as well a harmonic map, and is also semi- (or horizontally) conformal
in the sense of the next section. (The terminology is not very fortunate, but classical,
cf. [1].)

7 Semi-conformal maps

We consider again two Riemannian manifolds (M, g) and (N, h), and a submersion
φ : M → N . It defines a “vertical” foliation, whose leaves are the (components of)
the fibres of φ, and hence the transversal distribution consisting of Ker(dfx)

⊥ ⊆
TxM . (This “horizontal” distribution can also be described in purely combinatorial
terms without reference to the tangent bundle.)

Recall (from [1], say) that φ is called semi-conformal (or horizontally conformal)
at x ∈ M , with square-dilation Λ > 0, if the linear map dfx : TxM → Tφ(x)N is
semi-conformal with square-dilation Λ > 0, in the sense of Section 2. (This property
can also be expressed combinatorially.) The following is a generalization of Theorem
3.2 in [7] (which dealt with the case of a diffeomorphism φ).

Theorem 11 Let φ : M → N be a submersion, and let x ∈ M . Then t.f.a.e.:
1) φ is semi-conformal at x (for some Λ > 0)
2) φ maps ML(x) into ML(φ(x)).

Proof. Consider the diagram

M2(x)
φ

- M2(φ(x))

D2(TxM)

logx

? f
-

dφx

- D2(Tφ(x)N)

logφ(x)

?

where f is the unique map making the diagram commutative, and where dφx is (the
restriction of) the differential of φ. It does not make the diagram commutative, but
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when restricted to M1(x), it does, by the very definition of differentials. So f and
dφx agree on M1(x), and hence differ by a quadratic map b. It then follows from
Lemma 6 that f maps DL(TxM) into DL(Tφ(x))if and only if dφx does. By definition,
ML(x) comes about from DL(TxM) by transport along the log-exp-bijection, so φ
preserves ML iff f preserves DL. On the other hand, by the Proposition 4, semi-
conformality of dφx is equivalent to dφx preserving DL.

We may summarize the results of the last two sections by stating the following
(which may be taken as definitions of these notions, but couched in purely geomet-
ric/combinatorial language): let φ : M → N be a submersion between Riemannian
manifolds. Then

• φ is a harmonic map if it preserves mirror image formation of L-neighbours

• φ is a semi-conformal map if it preserves the notion of L-neighbour

• φ is a harmonic morphism if it has both these properties.

If the codomain is R, any 2-neigbour is an L-neighbour, so any map to R is au-
tomatically semi-conformal, so for codomain R, harmonic map and harmonic mor-
phism means the same thing. Such a map/morphism is in fact exactly a harmonic
function M → R.

All three notions make sense “pointwise”: φ is a harmonic at x ∈ M if it preserves
mirror image formation of L-neighbours of x. For this to make sense, we don’t need
φ to be defined on all of M , because the property only depends on the 2-jet of φ at
x, meaning the restriction of φ to M2(x).

8 Sufficiency of harmonic 2-jets

By 2-jets, we understand in this Section 2-jets of R-valued functions; so a 2-jet at
x ∈ M is a map M2(x) → R. If M is a Riemannian manifold, we say that such
a 2-jet f is harmonic if it preserves mirror image formation of L-neigbours of x,
f(z′) = 2f(x)− f(z), for all z ∼L x.

Among such harmonic 2-jets, we have in particular those of the form

M2(x)
logx - TxM

p
- R, (9)

where the last map p is linear. For, by construction of mirror image in terms of
logx, logx(z

′) = − logx(z), and this mirror image formation is preserved by p (here,
we don’t even need z ∼L x, just z ∼2 x).

Another type of harmonic 2-jet are those of the form

M2(x)
logx - TxM

q
- R (10)

where q is a “quadratic map of trace 0”, meaning q(u) = 〈L(u), u 〉 for some self-
adjoint L : TxM → TxM of trace zero. For, z ∼L x means by definition that
logx(z) ∈ DL(TxM), and quadratic trace zero maps kill DL, by Proposition 3.
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These two special kinds of harmonic jets are the only ones that we shall use in
the proof of the following “recognition Lemma”:

Lemma 12 There are sufficiently many harmonic 2-jets to recognize mirror image
formation in x, and to recognize L-neighbours of x.

Precisely, if z and z̃ are 2-neighbours of x, and f(z̃) = 2f(x)− f(z) for all harmonic
2-jets f , then z̃ = z′; and if z is a 2-neighbour of x such that f(z) = 0 for all
harmonic 2-jets f which vanish on M1(x), then z ∼L x.

Proof. The first assertion follows because logx(z
′) = − logx(z), and because there

are sufficiently many linear p : TxM → R to distinguish any pair of vectors (TxM
being finite-dimensional). The second assertion follows because logx maps ML(x)
bijectively onto DL(TxM), and the latter is recognized by quadratic trace zero maps,
by Proposition 3.

There is a partial converse:

Proposition 13 Let f : M2(x) → R be a harmonic 2-jet which vansihes at M1(x).
Then it vanishes at ML(x).

Proof. Let b denote the composite f ◦ expx : D2(TxM) → R. The vanishing
assumption on f implies that there is a unique quadratic map TxM → R extending
b. It suffices to prove that b(u) = 0 for any u ∈ DL(TxM). Let z denote expx(u);
then z ∈ML(x). Harmonicity of f at x implies f(z)+f(z′) = 0 by Theorem 10, and
hence b(u) + b(−u) = 0. But b is a even function, being quadratic, hence b(u) = 0.

9 Characterization Theorem

The following Theorem is now almost immediate in view of the combinatorial/geo-
metric description of harmonic maps and semi-conformal maps. It is a version of
the Characterization Theorem of Fuglede and Ishihara, cf. [1] Theorem 4.2.2.

Theorem 14 Given a submersion φ : M → N between Riemannian manifolds, and
let x ∈ M . Then t.f.a.e.

1) φ is a harmonic morphism at x
2) for any harmonic 2-jet f at φ(x), f ◦ φ : M → R is a harmonic 2-jet.

(The Theorem in the classical form talks about harmonic germs at φ(x), rather than
harmonic 2-jets . The “upgrading” of our version to the classical one thus depends
on a rather deep existence theorem: any harmonic 2-jet comes about by restriction
from a harmonic germ, see Appendix of [1]. Such existence results are beyond the
scope of our methods.)

Proof. Assume that φ is a harmonic morphism at x, and let f be a harmonic 2-jet.
Let z ∼L x. Then φ(z′) = (φ(z))′, since φ is a harmonic map; also φ(z) ∼L φ(x)
since φ is semi-conformal. So f preserves the mirror image of φ(z). So both φ and f
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preserve the relevant mirror images, hence so does the composite f ◦φ : M2(x) → R;
hence it is a harmonic 2-jet.

Conversely, suppose φ has f ◦ φ harmonic for all harmonic 2-jets f at φ(x). Let
z ∼L x. To prove φ(z′) = (φ(z))′, it suffices, by the Recognition Lemma (applied
to N) to prove that all harmonic 2-jets f at φ(x) take φ(z′) to the mirror image
of φ(z). But by assumption f ◦ φ is harmonic at x, so preserves mirror image. –
Also, to prove φ(z) ∼L φ(x), it suffices by the Recognition Lemma to prove that
any harmonic 2-jet at φ(x), vanishing on M1(φ(x)), kills φ(z). But by assumption,
f ◦ φ is a harmonic 2-jet, and it vanishes at M1(x), so by Proposition 13, it kills z.
So f(φ(z)) = 0, so φ(z) ∼L φ(x). This proves the Theorem.
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