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ON BESSEL FUNCTIONS AND DUNKL OPERATORS –
THEORY AND APPLICATIONS

SALEM BEN SAÏD AND BENT ØRSTED

Abstract. In this paper we extend previous classes of generalized Bessel func-
tions using the Heckman-Opdam theory of hypergeometric functions, and the
theory of Dunkl operators. We furthermore define a Segal-Bargmann transform
associated with Coxeter groups, and give an analogue of Howe dual pair theory
for Coxeter groups. This paper is a survey of recent results in [B-Ø1], [B-Ø2],
and [B-Ø3].

1. Introduction

A basic problem in harmonic analysis and applications is to study the Fourier
transforms of invariant measures on submanifolds of Euclidean space. For exam-
ple, let dµ be the SO(n + 1)-invariant probability measure on the unit sphere
Sn ⊂ Rn+1 and consider

ψ(y) =

∫
Sn

ei〈x,y〉 dµ(y) (E1)

with 〈·, ·〉 the usual inner product. It is well-known that (E1) can be found explic-
itly in terms of the standard Bessel functions

Iν(r) =
∞∑

k=0

(r/2)ν+2k

k!Γ(ν + k + 1)
(E2)

Indeed, ψ(y) = Γ (n/2) (i|y|/2)−
n
2
+1 In

2
−1(i|y|), and for n odd, these functions are

elementary (they may be expressed in terms of polynomials, exponential functions,
or their derivatives).

In this paper we shall study integrals of type (E1), and special functions as in
(E2) needed to express them. The main tools are the Dunkl-operators introduced
by Dunkl around 1990, and a deformation principle, which we now explain in a
simple case. It is well-known that the solutions of Laplace’s differential equa-
tion on R3, which are symmetric around the z-axis and analytic in a neighbor-
hood of the origin, can be expressed in spherical coordinates (r, θ, φ) in the form
rnPn(cos θ). Here Pn is the Legendre polynomial of order n = 0, 1, 2, · · · . Now,
consider the nature of the structure of spheres, cones, and planes associated with
spherical coordinates in a region of space far from the origin and near the z-axis.
The spheres approximate to planes and the cones approximate to cylinders, and
the structure resembles the one associated with cylindrical coordinates (ρ, φ, z).
The solutions of Laplace’s equation referred to such coordinates are of the form
e±kzJ0(kρ), where J0 is the Bessel function of order 0, and k is any constant.
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2 SALEM BEN SAÏD AND BENT ØRSTED

Recall that Jν(r) = iνIν(−ir). It is therefore to be expected that, when r and
n are large and θ is small in such a way that r sin θ(= ρ) remains bounded, the
Legendre polynomial should approximate to a Bessel function. This is equivalent
to expect Bessel functions as limits of Legendre polynomials. In 1868, this type
of limit was proved by Mehler as follows

lim
n→∞

Pn

(
cos

θ

n

)
= J0(θ). (E3)

The same formula also appeared in a work of Heine, done independently at about
the same time, and it is nowadays known as the Mehler-Heine formula. This result
has been extended to generalized Legendre polynomials by Heine and Rayleigh.

In the original proof of (E3), the parameter n is assumed to tend to infinity
through integral values. One also can prove it when n goes to infinity as a con-
tinuous real parameter.

Now, let us give another interpretation of the limit formula (E3) in terms of
spherical functions associated with non-compact symmetric spaces. In analogue
with (E3), we get

lim
ε→0

P iλ
ε
(ch εz) = J0(λz), λ ∈ R.

The functions z 7→ Piλ(ch z) are the spherical functions of the non-compact Rie-
mannian symmetric space SO(2, 1)/SO(2). The functions x 7→ J0(λ|x|) are the
Bessel functions on the tangent space at the origin of SO(2, 1)/SO(2), viewed as
a flat symmetric space. Thus, we may expect Bessel functions on flat symmetric
spaces to be expressed as limits of spherical functions on the corresponding Rie-
mannian symmetric spaces. This was the starting point of our investigation on
Bessel functions on flat symmetric spaces by means of Harish-Chandra’s spheri-
cal functions. In [B-Ø1] (see Section 2 below), we prove the following statement
which can be seen as a generalization of the Mehler-Heine formula:

The Bessel functions on flat symmetric spaces can be obtained as limits of
Harish-Chandra’s spherical functions on Riemannian symmetric spaces
of non-compact type.

(S)
In this setting, the integral representation of the Bessel functions is sometimes
called Harish Chandra–Itzykson–Zuber (HIZ)-type integral.

The advantage of this approach is that we can derive at least the same amount
of explicit information for the Bessel functions, by a limit analysis, as for Harish-
Chandra’s spherical functions; in some cases even more information is attained.
An important motivation to study Bessel functions originates in their relevance
for the analysis of quantum many body systems of Calogero-Moser type, and in
connection with the study of random matrices.

After this generalization of the Mehler-Heine-type formula in the case of non-
compact Riemannian symmetric spaces, we move to other directions were we may
expect a statement similar to (S) to hold.

In recent years, Harish-Chandra’s theory of spherical functions on Riemannian
symmetric spaces has been generalized in three different directions. In the 80s
Heckman and Opdam extended the theory of Harish-Chandra to multi-variables
hypergeometric functions associated with root systems and depending on addi-
tional parameters, namely the multiplicities. Their construction was motivated
by the theory of special functions. In one variable, Harish-Chandra’s spherical
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functions on Riemannian symmetric spaces of rank-one are special instances of
the Gaussian hypergeometric functions. This was the starting point of Heckman-
Opdam’s theory of hypergeometric functions. Harish-Chandra’s spherical func-
tions can always be regained by specializing the multiplicities. Another line of
study consists in extending the theory of Harish-Chandra to a class of non-
Riemannian symmetric spaces, called non-compact causal symmetric spaces. This
was done in 1994 by Faraut, Hilgert, and Ólafsson. Recently, Pasquale has pre-
sented an extension of Heckman-Opdam’s theory which also includes the theory
of Faraut-Hilgert- Ólafsson, by introducing the so-called Θ-spherical functions.

Using these developments in the theory of spherical functions, in [B-Ø2] (see
Section 3, 4, and 5 below), we were able to extend the statement (S) to the above
mentioned three directions, namely to Bessel functions related to root systems,
to Bessel functions associated with non-compact causal symmetric spaces, and
finally to what we shall call the Θ-Bessel functions.

After the important contributions by Heckman and Opdam in the area of spe-
cial functions related to root systems, the subject has attracted much interest
and there has been a rapid development in this area during the last ten years.
Around 1990, Dunkl introduced a family of differential-reflection operators associ-
ated with Coxeter groups on finite-dimensional Euclidean spaces. These operators
are nowadays known as Dunkl operators. They are parameterized deformations
of the ordinary derivatives, for which it is still possible to study the spectral
problem and develop the theory of the corresponding Fourier transform, which
is now called the Dunkl transform. Quite remarkably, it is easier to study the
Dunkl operators in the general context than to specialize to invariant objects.
The invariant side of Dunkl’s theory corresponds to the study of the Bessel func-
tions related to root systems, discussed above. In [B-Ø3] (see Section 6 below),
we present various applications of the Dunkl operators, notably with Fock-type
spaces, Segal-Bargmann transforms, and an analogue of Howe duality.

The main results of the present paper are: Theorems 2.3, 2.7, 3.3, 3.5, 4.3, 5.4,
6.5, 6.7, and 6.11.

The first author would like to thank the organizers of the Colloque International
de Mathématiques, Analyse et Probabilités, Hammamet (Tunisia), 20–25 October
2003, for their hospitality during his stay in Hammamet.

2. Bessel functions on flat symmetric spaces

In this section we shall initiate an investigation of the so-called HIZ-type integral
(Harish Chandra-Itzykson-Zuber); these are Fourier transforms of orbits of K in
the tangent space at the origin of a semi-simple non-compact symmetric space
G/K, where G is a connected non-compact semi-simple Lie group with finite
center, and K is a maximal compact subgroup. These integrals play a role in
the theory of integrable systems in physics, and in connection with the study of
random matrices. It is well-known that they correspond to spherical functions on
the tangent space, viewed as a flat symmetric space. Our point of view is to see
the HIZ-type integrals as limits of spherical functions for G/K, and we are able to
obtain new and explicit formulas by analyzing the deformation (as the curvature
goes to zero) of G/K to its tangent space. We refer to [B-Ø1] for more details
and information.
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Let G be a connected semisimple Lie group with finite center, and let K be
a maximal compact subgroup of G. The symmetric space G/K is a Riemannian
symmetric space of the non-compact type.

Let θ : G → G be the Cartan involution on G corresponding to K. Denote
by the same letter the derived involution θ : g → g. Then g = k ⊕ p where
k = {X ∈ g | θ(X) = X} and p = {X ∈ g | θ(X) = −X}.

Let a be a maximal abelian subspace in p, and let Σ = Σ(g, a) be the set of
roots of g with respect to a. Fix a Weyl positive chamber a+ ⊂ a, and let Σ+ be
the corresponding set of positive roots. For α ∈ Σ, let g(α) := {X ∈ g | [H,X] =
α(H)X for all H ∈ a} be the associated root space, and set mα := dim(g(α)).
We denote by ρ := (1/2)

∑
α∈Σ+ mαα. Let n be the sum of the root spaces corre-

sponding to the positive roots. The connected subgroups of G associated with the
subalgebras a and n are denoted by the corresponding capital letters. We have the
Iwasawa decomposition G = KAN, and the Cartan decomposition G = KAK.
For g ∈ G, define H(g) ∈ a by g ∈ K exp(H(g))N.

Denote by 〈·, ·〉 the inner product on a induced by the Killing form B(·, ·) of g,
and let Π be the fundamental system of simple roots associated with Σ+. Denote
by WΠ the Weyl group generated by the reflections rα : a∗ → a∗, with α ∈ Π and
rα(λ) := λ − 2〈λ, α〉α/〈α, α〉. The action of WΠ on a∗ extends to a, and to the
complexifications aC and a∗C.

Let D(G/K) be the algebra of G-invariant differential operators on G/K. Sup-
pose the smooth complex-valued function ϕλ is an eigenfunction of each D ∈
D(G/K)

Dϕλ = γD(λ)ϕλ, λ ∈ a∗. (2.1)

Here the eigenfunction is labeled by the parameters λ, and γD(λ) is the eigen-
value. If in addition ϕλ satisfies ϕλ(e) = 1, where e is the identity element, and
ϕλ(kgk

′) = ϕλ(g) for k, k′ ∈ K, then the function ϕλ is called a spherical func-
tion. In [HC1], Harish-Chandra proves the following integral representation of the
spherical functions.

Theorem 2.1. (cf. [HC1]) As λ runs through a∗C, the functions

ϕλ(g) =

∫
K

e(iλ−ρ)H(gk) dk, g ∈ G,

exhaust the class of spherical functions on G. They are real analytic functions of
g ∈ G and holomorphic functions of λ ∈ a∗C. Moreover, two such functions ϕλ and
ϕµ are identical if and only if λ = ωµ for some ω in the Weyl group WΠ.

Since a+ is the interior of a fundamental domain of WΠ, the Cartan decompo-
sition implies that ϕλ is uniquely determined by its restriction to A+ := exp(a+).
Moreover, a K-bi-invariant function ϕλ is an eigenfunction for D(G/K) if and
only if its restriction to A+ is an eigenfunction for the system of equation on A+

given by the radial components of operators from D(G/K).
Let {Hi}N

i=1 be a fixed orthonormal basis of a. For H ∈ a, denote by ∂(H)
the corresponding directional derivative in a. Let ∆(m) be the radial part of the
Laplace-Beltrami operator on G/K. Then

∆(m) =
N∑

i=1

∂(Hi)
2 +

∑
α∈Σ+

mα(cothα)∂(Aα),
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where Aα ∈ a is determined by B(Aα, H) = α(H) for H ∈ a. In particular

∆(m)ϕλ = −(〈λ, λ〉+ 〈ρ, ρ〉)ϕλ. (2.2)

For ε > 0, denote by gε the Lie algebra k ⊕ p with the Lie bracket [·, ·]ε such
that

[X,X ′]ε := [X,X ′] (X,X ′ ∈ k),

[Y, Y ′]ε := ε2[Y, Y ′] (Y, Y ′ ∈ p),

[X, Y ]ε := [X, Y ] (X ∈ k, Y ∈ p).

Here [·, ·] denotes the Lie bracket associated with g. The following map Φε : gε → g
defined by

Φε(X) := X, if X ∈ k and Φε(Y ) := ε−1Y, if Y ∈ p,

is an isomorphism from gε to g. Further, if α ∈ Σ(g, a) then εα ∈ Σ(gε, a), and

the corresponding root space g
(εα)
ε is given by

g(εα)
ε =

{
εXk +Xp | Xk +Xp ∈ g(α) where Xk ∈ k, Xp ∈ p

}
.

Let Gε be the analytic Lie group with Lie algebra gε via the Baker-Campbell-
Hausdorff formula. Denote by ∆(ε)(m) the radial part of the Laplace-Beltrami
operator on Gε/K given by

∆(ε)(m) =
N∑

i=1

∂(Hi,ε)
2 +

∑
α∈Σ+

mα coth(εα)∂(Aεα),

where {Hi,ε} is a fixed orthonormal basis of a in gε, and Aεα ∈ a is determined
by Bε(Aεα, H) = εα(H) for H ∈ a. Here Bε(·, ·) is the Killing form of gε. The

above relationship between g(α) and g
(εα)
ε yields to the fact that Bε(Aεα, H) =

ε2B(Aεα, H), which implies that

Aεα = ε−1Aα, and Hi,ε = ε−1Hi. (2.3)

Now, the following theorem holds.

Theorem 2.2. (cf. [B-Ø1]) Let

∆◦(m) :=
N∑

i=1

∂(Hi)
2 +

∑
α∈Σ+

mα

α
∂(Aα).

The following limit holds

lim
ε→0

ε2∆(ε)(m) = ∆◦(m).

By (2.3), one may check the relation ∆(ε)(m) = (ε∗)−1 ◦ ∆(m) ◦ (ε∗), where
ε∗f(X) := f(εX), whilst ϕλ is an eigenfunction for ∆(m). This observation sug-
gests to obtain the eigenfunctions of ∆◦(m) as an appropriate limit of the Harish-
Chandra’s spherical functions; which turns out to be true.

In terms of symmetric spaces, consider the limit ε → 0 as equivalent to let-
ting the curvature of G/K tend to zero. This scaling removes the curvature so
that in the limit we recover the tangent space at the origin of G/K, viewed as
a flat symmetric space in the following sense: The symmetric spaces fall into
three different categories: the compact-type, the non-compact-type, and the flat
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symmetric space. The three cases can be distinguished by means of their curva-
ture. In the class of compact-type, the symmetric space has sectional curvature
everywhere positive. In the class of non-compact-type, the symmetric space has
sectional curvature everywhere negative, and in the class of flat symmetric spaces,
the sectional curvature is zero.

Actually, if g is the Lie algebra of a Lie group G with the Cartan decomposition
g = k⊕ p, then, if G0 := K n p, the flat symmetric space G0/K can be identified
with p. The elements g0 = (k, p) ∈ G0 act on G0/K in the following way

g0(p
′) = Ad(k)p′ + p, k ∈ K, p, p′ ∈ G0/K.

An example of a zero curvature symmetric space is the flat Euclidean space in
four dimensions. It is known that this space can be realized as the coset of the Eu-

clidean Poincaré group P̃ with respect to SO(4), p ' P̃ /SO(4). The translations
of the Poincaré group play the role of p, and they are isomorphic to Euclidean
space and have all the characteristics of a zero curvature symmetric space. The
fact that the zero curvature spaces can be obtained as limits of positive curva-
ture spaces can be exemplified as follows. We can realize the Euclidean Poincaré
group as a suitable limit of the SO(5) group. In this limit the coset SO(5)/SO(4),
which is the four dimensional unit sphere, becomes the Euclidean four-dimensional
space.

For the spherical functions on the three categories of symmetric spaces, it is
well-known that the spherical functions on symmetric spaces of the non-compact-
type can be obtained from the spherical functions on symmetric spaces of the
compact-type, and vice versa, via some analytic continuation. Next we prove that
the spherical functions associated with flat symmetric spaces can also be obtained
from the spherical functions on symmetric spaces of the non-compact-type, or the
compact-type, by letting the curvature tend to zero from the left, or from the
right, respectively.

For ε > 0, write gε = k exp(εX) where k ∈ K and X ∈ p. Using the fact
that ∆(ε)(m) = (ε∗)−1 ◦∆(m) ◦ (ε∗), and ϕλ is an eigenfunction of ∆(m) with the
eigenvalue −(〈λ, λ〉+ 〈ρ, ρ〉), we obtain

∆(ε)(m)ϕλ
ε
(gε) = −

(〈λ
ε
,
λ

ε

〉
+

〈
ρ, ρ

〉)
ϕλ

ε
(gε).

Denote by
ψ(λ,X) := lim

ε→0
ϕλ

ε
(gε).

Now, we summarize the consequence of all the above discussions in the light of
Theorem 2.1 and Theorem 2.2.

Theorem 2.3. (cf. [B-Ø1]) The limit ψ(λ,X), and its derivatives exist. Its
integral representation is given by

ψ(λ,X) =

∫
K

eiB(Ad(k)X,Aλ) dk, λ ∈ a∗C, X ∈ p.

Moreover, ψ(λ,X) satisfies

∆◦(m)ψ(λ,X) = −〈λ, λ〉ψ(λ,X).

The limit ψ(λ,X) is the so-called Harish Chandra-Itzykson-Zuber (HIZ)-type in-
tegral, and it is well known that it corresponds to spherical functions, or the Bessel
functions, on the flat symmetric space p.
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Briefly we give the argument used to obtain the integral representation of
ψ(λ,X). Denote by P : p → a the orthogonal projection on a for the scalar product
associated with the Killing form. Notice that H(exp(εX)k) = H(exp(εk−1 · X))
where k−1 · X = Ad(k)X. Write k−1 · X = P(k−1 · X) + Y ∈ a ⊕ a⊥, where a⊥

is the orthogonal complement of a in p, and use the fact that Y ∈ a⊥ can be
written as Y = Yk + Yn ∈ k ⊕ n. Then k−1 · X = P(k−1 · X) + Yk + Yn. Now
one may check that the functions ε 7→ H(exp(εYk) exp(εP(k−1 ·X)) exp(εYn)) and
ε 7→ H(exp(εk−1 ·X)) have the same derivative at ε = 0, and therefore

lim
ε→0

λ

ε
H

(
exp(εk−1 ·X)

)
= λP

(
k−1 ·X

)
.

Remark 2.4. (i) Since ϕλ = ϕµ if and only if λ = ωµ for ω ∈ WΠ, the same
assertion holds for ψ(λ,X).

(ii) The spherical functions ψ(λ,X) are symmetric with respect to λ and X,
while ∆◦(m) is not symmetric under interchange of λ and X.

(iii) The contraction principle was used earlier in [Do-Ri] for understanding
the relationship between the representation theories of K n p and G. The limit
approach was also used in [Ø-Z] to define the Weyl transform on flat symmetric
spaces where G/K is a Hermitian symmetric space. Another application of the
limit approach can be found in [Cl].

It is remarkable that in spite of many results about the analysis of spherical
functions on G/K, their Fourier analysis and asymptotic properties, it is only for
very few cases that explicit formulas exist for these functions. From Theorem
2.3, one can see that for flat symmetric spaces we may derive at least the same
amount of explicit information by a limit analysis, as the curvature goes to zero,
of spherical functions; and in some cases even more information is attained. In
some interesting cases, for instance SU∗(2n)/Sp(n) and SU(p, q)/S(U(p)×U(q)),
we are able to give in [B-Ø1] explicit formulas for the spherical functions ψ(λ,X).
In particular, these formulas give concrete solutions for problems of many body
systems, which are related to quantum mechanics. We refer to [B-Ø1] for further
details. Other interesting cases are also investigated. After [B-Ø1] was completed,
we were able to give in [B-Ø2] a unified formula for the Bessel functions on flat
symmetric spaces when mα ∈ 2N for all α ∈ Σ. See Theorem 5.4, Table I, and
Table II below for more information.

Example 2.5. (The real rank-one case) This case corresponds to Riemannian
symmetric spaces G/K of non-compact type for which a is one dimensional. There
are only four type of groups G with real rank-one, namely SO0(n, 1), SU(n, 1),
Sp(n, 1), and F4(−20).
Fix α = 1. The set Σ+ consists at most of two elements α and, possibly, 2α. We
may identify a and a∗ with R, and their complexifications aC and a∗C with C.
For symmetric spaces of real rank-one, the algebra D(G/K) of G-invariant dif-
ferential operators on G/K is generated by the Laplace-Beltrami operator, where
its radial part defines the differential equation{

d2

dt2
+ (mα coth t+ 2m2α coth 2t)

d

dt

}
y = −(λ2 + ρ2)y (t ∈ R), (2.4)
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with λ ∈ C and ρ = 1
2
(mα + 2m2α). The spherical function

ϕλ(t) = 2F1

(
iλ+ ρ

2
,
−iλ+ ρ

2
;
mα +m2α + 1

2
;− sh2 t

)
is the unique solution of (2.4) that satisfies ϕλ(e) = 1 in the unit e of G. Here
mα = n − 1 and m2α = 0 for G = SO0(n, 1); mα = 2(n − 1) and m2α = 1 for
G = SU(n, 1); mα = 4(n − 1) and m2α = 3 for G = Sp(n, 1); and mα = 8 and
m2α = 7 for G = F4(−20). Using the following well-known fact

Γ(z + a)

Γ(z + b)
= za−b

{
1 +

1

2z
(a− b)(a+ b− 1) +O(z−2)

}
, if z →∞,

one can prove that

ψ(λ, t) = Γ

(
mα +m2α + 1

2

) (
λt

2

)−mα+m2α−1
2

Jmα+m2α−1
2

(λt),

where Jν is the Bessel function of the first kind.

Example 2.6. (The complex case) Let G be a Lie group with complex structure.
Complex symmetric spaces are mainly characterized by the fact that Σ is reduced
and mα = 2 for all α ∈ Σ. For the complex case, an explicit formula for the
spherical functions ϕλ on G/K was given by Harish-Chandra, namely

ϕλ(exp(X)) =

∏
α∈Σ+

〈α, ρ〉∏
α∈Σ+

〈α, iλ〉

∑
ω∈WΠ

(detω)e〈iωλ,X〉

∑
ω∈WΠ

(detω)e〈ωρ,X〉
, X ∈ a,

(cf. [He]). Notice that∑
ω∈WΠ

(detω)e〈ωρ,X〉 = e〈ρ,X〉
∏

α∈Σ+

(1− e−2〈α,X〉).

Using Theorem 2.3, we obtain

∫
K

eiB(Aλ,Ad(k)X) dk =

∏
α∈Σ+

〈α, ρ〉∏
α∈Σ+

〈α, iλ〉
∏

α∈Σ+

2〈α,X〉

∑
ω∈WΠ

(detω)e〈iωλ,X〉. (2.5)

In this case, i.e. when G is complex, the integral representation of ψ is the
so-called Harish-Chandra integral, and its explicit expression (2.5) was proved
earlier by Harish-Chandra in [HC2] using other techniques. Another proof is
given in Berline-Getzler-Vergne’s book [Be-G-V] by using the orbit method. Our
approach gives a new and simple proof of the Harish-Chandra integral.

We close this section by giving the Taylor expansion of ψ(λ,X) in a series of the
Jack polynomials, when G/K admits a root system of type AN−1 (N = 2, 3, . . . ).
This follows from Theorem 2.3 by using the generalized binomial formula of the
spherical functions on G/K proved in [Ok-Ol]
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Consider the following list of non-compact symmetric spaces with root system
of type AN−1 (N = 2, 3, . . . )

GL(N,R)/O(N), GL(N,C)/U(N), GL(N,H)/Sp(N),

E6(−26)/F4, O(1, N)/O(N).

Let ℘ be a strictly positive parameter. Let PN = C[x1, . . . , xN ] be the polynomial
algebra in N independent variables and ΛN ⊂ PN be the algebra of symmetric
polynomials. A partition is any sequence λ = (λ1, . . . , λN , . . .) of nonnegative
integers in decreasing order λ1 ≥ · · · ≥ λN ≥ · · · containing only finitely many
nonzero terms. The number of nonzero terms in λ is the length of λ denoted by
l(λ). The sum |λ| = λ1 + · · · + λN + · · · is called the weight of λ. The set of
partitions of weight N is denoted by PN . On this set there is a natural involution:
in the standard diagrammatic representation it corresponds to the transposition
(reflection in the main diagonal). The image of a partition λ under this involution
is called the conjugate of λ and is denoted by λ′.

An important example of symmetric functions are Jack polynomials. We give
here their definition. Recall that on the set of partitions PN there is the following
dominance partial ordering: we write µ ≤ λ if for all i ≥ 1

µ1 + µ2 + · · ·+ µi ≤ λ1 + λ2 + · · ·+ λi.

Consider the following Calogero-Moser-Sutherland operator

∆N
℘ =

N∑
i=1

(
xi

∂

∂xi

)2

+ 2℘
∑
i6=j

xixj

xi − xj

∂

∂xi

.

If ℘ is not a negative rational number or zero, then for any partition λ such that
l(λ) ≥ N, there is a unique polynomial Pλ(x, ℘) ∈ ΛN , called the Jack polynomial,
such that

(i) Pλ(x, ℘) is an eigenfunction of the ∆N
℘ operator.

(ii) Pλ(x, ℘) = eλ +
∑

µ<λ vλ,µeµ, where vλ,µ ∈ C and eµ is the elementary
symmetric polynomial.

Now we discuss the so-called shifted Jack polynomials investigated recently by
Knop, Sahi, Okounkov, and Olshanski (cf. [Kn-Sa] [Ok-Ol]). Let us denote by
Λ℘,N the algebra of polynomials f(x1, . . . , xN) which are symmetric in the shifted
variables xi℘(1− i). Let us introduce the following function on the set of partition

H(λ, ℘) =
∏
�∈λ

(c℘(�) + 1),

where

c℘(�) = λi − j + ℘(λ′j − i).

Here we identify a partition λ with its diagram

λ = { � = (i, j) : 1 ≤ i ≤ l(λ), 1 ≤ j ≤ λi }.

Let λ be a partition with λN+1 = 0. There exists a unique shifted symmetric
polynomial P ∗

λ (x, ℘) ∈ ΛN,℘, called shifted Jack polynomial, such that deg(P ∗
λ ) ≤

|λ|, and

P ∗
λ (µ, ℘) =

{
H(λ, ℘), µ = λ
0, |µ| ≤ |λ|, µ 6= λ, µN+1 = 0.
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Knop and Sahi proved that the shifted Jack polynomial P ∗
λ (x, ℘) satisfies the extra

vanishing property P ∗
λ (µ, ℘) = 0 unless the diagram of µ is a subset of the diagram

of λ, i.e. µi ≤ λi for all i ≥ 1, and that P ∗
λ (x, ℘) is the usual Jack polynomial

Pλ(x, ℘) plus lower order terms. We shall write µ ⊂ λ to mean that the diagram
of λ contains the diagram of µ.

By [M] and [St], we have the following branching rule for the Jack polynomials

Pλ(x1, x2, . . . , xN , ℘) =
∑
µ≺λ

ϕλ/µ(℘)x
|λ/µ|
1 Pµ(x2, . . . , xN ;℘), (2.6)

where µ ≺ λ stands for the inequalities of interlacing

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ µN−1 ≥ λN ,

the weight of the skew diagram λ/µ equals |λ| − |µ|, and ϕλ/µ(℘) is the following
coefficient

ϕλ/µ(℘) =
∏

1≤i≤j≤N−1

(µi − µj + ℘(j − i) + ℘)µj−λj+1

(µi − µj + ℘(j − i) + 1)µj−λj+1

×
(λi − µj + ℘(j − i) + 1)µj−λj+1

(λi − µj + ℘(j − i) + ℘)µj−λj+1

.

For the shifted Jack polynomial P ∗
λ , Okounkov proved in [Ok] the following

formula

P ∗
λ (x1, . . . , xN ;℘) =

∑
µ≺λ

ϕλ/µ(℘)
∏

�∈λ/µ

(x1 − c′℘(�))P ∗
µ(x2, . . . , xN ;℘), (2.7)

where ϕλ/µ(℘) is the same as for Pλ, and

c′℘(�) = (j − 1)− ℘(i− 1), � = (i, j).

Next, we review the spherical functions on symmetric cones. For details, we
refer to Faraut-Korányi’s book [F-K].

Let Ω be an open and convex cone associated with an Euclidean Jordan algebra
V. The Riemannian symmetric space Ω can be identified with one of the symmetric
spaces G/K listed above.

Assume that V is a simple Euclidean Jordan algebra, i.e. V does not contain
non-trivial ideals. Let N be the rank of V, and let {c1, . . . , cN} be a complete
system of orthogonal idempotents elements. Each element x in V can be written
as x = k

∑N
i=1 xici, with k ∈ K and xi ∈ R.

For m = (m1, . . . ,mN) and x =
∑N

j=1 xjcj, the spherical functions on Ω are
given by

ϕm(x) =

∫
K

∆m1−m2
1 (kx) · · ·∆mN−1−mN

N−1 (kx)∆mN
N (kx) dk,

where ∆j(y) is the principal minor of order j of y, and dk denotes the normalized
Haar measure on K. This formula corresponds to the classical Harish-Chandra’s
formula for the spherical functions on G/K with m = λ+ρ

2
where ρ = (ρ1, . . . , ρN),

ρj = 1
2
(2j −N − 1), and λ ∈ CN .

If m = (m1, . . . ,mN) ∈ NN such that m1 ≥ · · · ≥ mN ≥ 0, the spherical
function ϕm is a polynomial, and can be written in terms of the Jack polynomials.
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If x = k
∑N

j=1 xjcj

ϕm(x) =
Pm(x1, . . . , xN ;℘)

Pm(1, . . . , 1;℘)
, ℘ =

2

d
,

where 

d = 1 for GL(N,R)/O(N),

d = 2 for GL(N,C)/U(N),

d = 4 for GL(N,H)/Sp(N),

d = 8 for E6(−26)/F4, and

d = N for O(1, N)/O(N).

By [Ok-Ol, (2.6)], we have the following binomial formula

Pm(1 + x1, . . . , 1 + xN ;℘)

Pm(1, . . . , 1;℘)
=

∑
µ⊂m

P ∗
µ(m, ℘)Pµ(x, ℘)

Pµ(1, . . . , 1;℘)H(µ, ℘)
(2.8)

For ℘ = 1, formula (2.8) reduces to the usual binomial formula

Sm(1 + x1, . . . , 1 + xN)

Sm(1, . . . , 1)
=

∑
µ⊂m

S∗µ(m)Sµ(x)∏
�=(i,j)∈µ(N + j − i)

where Sµ is the Schur function

Sµ(x) =
det

(
x

µj+N−j
i

)
1≤i,j≤N∏

1≤i<j≤N(xi − xj)

and

S∗µ(m) =
det((mi +N − i) · · · (mi − i+ j − µj + 1))1≤i,j≤N∏

1≤i<j≤N(mi − i−mj + j)
.

Henceforth, ς denotes a very large integer. After using formula (2.6) N -times,
we obtain

Pµ(1− es1/ς , . . . , 1− esN/ς ;℘) ∼ ς−|µ|Pµ(s1, . . . , sN ;℘) as σ →∞.

The same argument for the shifted Jack polynomials gives

P ∗
µ(m1ς, . . . ,mN ς;℘) ∼ ς |µ|Pµ(m1, . . . ,mN ;℘), as ς →∞.

Thus, by (2.8) the following theorem holds

Theorem 2.7. (cf. [B-Ø1]) For X =
∑N

i=1 xici, m = (m1, . . . ,mN) ∈ NN such
that m1 ≥ · · · ≥ mN , and ς ∈ N, the following Taylor series holds

lim
ς→∞

ϕmς(exp(ς−1X)) =
∑

µ∈PN

Pµ(m1, . . . ,mN ; 2
d
)Pµ(x1, . . . , xN ; 2

d
)

Pµ(1, . . . , 1; 2
d
)H(µ; 2

d
)

.

Remark 2.8. (i) For a real vector ν = (ν1, . . . , νN) such that ν1 ≥ · · · ≥ νN , write

ψc(ν,X) :=

∫
K

eB(Aν ,Ad(k)X) dk.
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As in Theorem 2.3, one can prove that

ψc(ν,X) = lim
ς→∞

ϕ[ςν](exp(ς−1X))

=
∑

µ∈PN

Pµ(ν1, . . . , νN ; 2
d
)Pµ(x1, . . . , xN ; 2

d
)

Pµ(1, . . . , 1; 2
d
)H(µ; 2

d
)

(by Theorem 2.7)

where [ςν] = ([ςν1], . . . , [ςνN ]) is the N -vector of integral parts.
(ii) Using [Sw], one can prove that for m = (m1,m2)

ϕm(x1, x2) = em1x1em2x2
2F1

(
m2 −m1,

d

2
; d; 1− ex2−x1

)
.

Hence, if N = 2, we may rewrite the Bessel function ψc(ν1, ν2;x1, x2) explicitly as

ψc(ν1, ν2;x1, x2) = eν1x1eν2x2
1F1

(
d

2
, d; (ν1 − ν2)(x1 − x2)

)
,

where 1F1 is the confluent hypergeometric function of the first kind.

3. Bessel functions related to root systems

As stated in Example 2.5, the spherical functions ϕλ on Riemannian symmet-
ric spaces G/K of rank-one are a special type of hypergeometric functions. The
specialization occurs with the choice of the multiplicities mα and m2α as the
dimension of the root spaces g(α) and g(2α), respectively. This specialization is
still effective even for symmetric spaces with higher-rank by constraining the root
multiplicities mα to assume certain positive integer values. The spherical func-
tions are determined as well by the geometry, since ϕλ is an eigenfunction of each
G-invariant differential operator that belongs to D(G/K). Notice though, the dif-
ferential system (2.2) makes perfect sense without the geometric restriction on
the multiplicities mα. This was the starting point of Heckman-Opdam’s theory
on hypergeometric functions. Their objective was to generalize Harish-Chandra’s
theory of spherical functions for arbitrary complex values of multiplicities associ-
ated with root systems (cf. [Hec-O, Hec1, O1, O2]).

In Heckman-Opdam’s theory, the Riemannian symmetric spaces G/K are re-
placed by the following ingredients: a N -dimensional real Euclidean vector space
a with fixed inner product 〈·, ·〉, a root system R in the dual a∗ of a – which is
assumed to satisfy the crystallographic condition, i.e. 2〈α, β〉/〈β, β〉 ∈ Z for all
α, β ∈ R, and finally a multiplicity function k : R→ C invariant under the action
of the Weyl group associated with R.

The symbols aC, a
∗
C, a

+, A,AC, A
+ shall have the same meaning as in the previ-

ous section.
Let R+ be a choice of positive roots in R, and denote by Π the corresponding

fundamental system of simple roots. The Weyl group WΠ is generated by the
reflections rα : a∗ → a∗, with α ∈ Π and rα(λ) = λ − λ(α̌)α ∈ a∗. Here λ(α̌) :=
2〈λ, α〉/〈α, α〉. The action of WΠ extends to a by duality, to a∗C and aC by C-
linearity, and to AC and A by the exponential map.

Let k : R → C be a multiplicity function. Setting kα := k(α) for α ∈ R, we
have kwα = kα for all w ∈ WΠ. Denote by K the set of all multiplicity functions
on R. If m = ]{WΠ−orbits in R}, then K ∼= Cm.
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The set Areg
C := {a ∈ AC | eα(log a) 6= 1 ∀ α ∈ R} consists of the regular elements

of AC for the WΠ-action. Notice that A+ is a subset of Areg
C . Denote by C[Areg

C ]
the algebra of regular functions on Areg

C .
Let S(aC) be the symmetric algebra over aC considered as the space of polynomi-

als functions on aC, and let S(aC)WΠ be the subalgebra of WΠ-invariant elements.
Each p ∈ S(aC) defines a constant-coefficient differential operator ∂(p) on AC and
on aC such that ∂(H) is the directional derivative in the direction of H for all
H ∈ a. The algebra of the differential operators ∂(p), with p ∈ S(aC), will also be
denoted by S(aC). Let D(Areg

C ) := C[Areg
C ] ⊗ S(aC) be the algebra of differential

operators on AC with coefficients in C[Areg
C ]. The Weyl group action on D(Areg

C )
is given by

w(f ⊗ ∂(p)) = wf ⊗ ∂(wp), w ∈ WΠ.

Set D(Areg
C )WΠ to be the subspace of WΠ-invariant elements.

For k ∈ K and for a fixed orthonormal basis {ξi}N
i=1 of a, write

∆(k) :=
N∑

j=1

∂2
ξj

+
∑

α∈R+

kα coth
(α

2

)
∂α. (3.1)

Here we write ∂ξi
for ∂(ξi).Denote by D̃(Areg

C ) the commutator of ∆(k) in D(Areg
C )WΠ .

In [Hec-O], Heckman and Opdam proved that D̃(Areg
C ) is a commutative algebra

and parameterized by the elements of S(aC)WΠ . In [C], Cherednik was able to

give an algebraic algorithm for constructing the operators D(k, p) ∈ D̃(Areg
C ) cor-

responding to p ∈ S(AC)WΠ by using the so-called Dunkl-Cherednik operators.
We recall briefly this algorithm following [Hec2]. For k ∈ K and ξ ∈ aC, the
Dunkl-Cherednik operator T (ξ, k) ∈ D(Areg

C )⊗ C[WΠ] is defined by

T (ξ, k) := ∂ξ − ρ(k)(ξ) +
∑

α∈R+

kαα(ξ)(1− e−α)−1 ⊗ (1− rα), (3.2)

where ρ(k) := (1/2)
∑

α∈R+ kαα ∈ a∗C. In particular, for all ξ, ν ∈ aC and k ∈
K , [T (ξ, k), T (ν, k)] = 0. Due to the commutativity of the Dunkl-Cherednik
operators, the map aC → D(Areg

C ) ⊗ C[WΠ], ξ 7→ T (ξ, k), can be extended in a
unique way to an algebra homomorphism S(aC) → D(Areg

C )⊗ C[WΠ]. The image
of p ∈ S(aC) will be denoted by T (p, k). Suppose p ∈ S(aC)WΠ , then by [Hec2]

T (p, k) =
∑

w∈WΠ

D(w, p, k)⊗ w ∈ D(Areg
C )⊗ C[WΠ].

Moreover, if we denote by “Proj” the map from D(Areg
C )⊗C[WΠ] to D(Areg

C ) given
by Proj(

∑
iDi ⊗ w) =

∑
iDi, then

D(p, k) := Proj(T (p, k)) =
∑

w∈WΠ

D(w, p, k) ∈ D(Areg
C )WΠ .

The operator D(p, k) is the unique element in D(Areg
C )WΠ which has the same re-

striction to C[AC]WΠ as T (p, k). By [Hec2] the element D(p, k) preserves C[AC]WΠ ,
and
D(p, k)D(q, k) = D(pq, k) for p, q ∈ S(aC)WΠ . Thus the set {D(p, k) | p ∈
S(aC)WΠ} is a commutative algebra of differential operators. For instance, if

p0 =
∑N

j=1 ξ
2
j where {ξi}N

i=1 is the fixed orthonormal basis of a, then D(p0, k) =

∆(k) + 〈ρ(k), ρ(k)〉, where ∆(k) is the Laplacian operator (3.1).
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Example 3.1. Let g be a real semisimple Lie algebra with Cartan decomposition
g = k ⊕ p. Let a ⊂ p be a maximal abelian subspace in p, and Σ(g, a) be the
restricted root system associated with a. If we put R = 2Σ(g, a) and kα = 1

2
mα,

where mα is the multiplicity of the root α, then ∆(k) coincides with the radial part

of the Laplace-Beltrami operator on the symmetric space G/K. The set D̃(Areg
C )

represents the commutative algebra of radial parts on A+ of the differential opera-
tors in D(G/K). This setting corresponds to the situation in the previous section
which we shall refer to it by the geometric case.

For λ ∈ a∗C, the following system of differential equations

D(p, k)F = p(λ)F, p ∈ S(aC)WΠ , (3.3)

is the so-called hypergeometric system of differential equations associated with
the root system R. In particular, if p0 =

∑N
j=1 ξ

2
j , the differential equations (3.3)

becomes

∆(k)F = (〈λ, λ〉 − 〈ρ(k), ρ(k)〉)F. (3.4)

In the geometric case, the hypergeometric system (3.3) coincides with the system
of differential equations (2.1) defining Harish-Chandra’s spherical functions ϕiλ.

By the explicit expression of the differential equation (3.4), Heckman and Op-
dam searched for solutions for the hypergeometric system on A+ = exp(a+) of the
form

Φ(λ, k, a) =
∑
`>0

Γ`(λ, k)e
λ−ρ(k)−`(log a), a ∈ A+

where Γ0(λ, k) = 1 and Γ`(λ, k) ∈ C satisfying some recurrence relations [Hec-O].
Using Φ(λ, k, ·), Heckman and Opdam were able to build a basis for the solution
space of the entire hypergeometric system with spectral parameter λ. This is
possible if λ is generic, i.e. λ(α̌) 6∈ Z for all α ∈ R. To write the main result of
Heckman and Opdam, set

c̃(λ, k) :=
∏

α∈R+

Γ(λ(α̌) + 1
2
kα

2
)

Γ(λ(α̌) + 1
2
kα

2
+ kα)

, (λ, k) ∈ a∗C ×K , (3.5)

and define the following meromorphic c-function

c(λ, k) :=
c̃(λ, k)

c̃(ρ(k), k)
.

Theorem 3.2. (cf. [Hec-O, Hec-S]) Let S := { zeros of the entire function c̃(ρ(k), k) } .
There exists a WΠ-invariant tubular neighborhood U of A in AC such that the hy-
pergeometric function

F (λ, k, a) :=
∑

w∈WΠ

c(wλ, k)Φ(wλ, k, a),

is a holomorphic function on a∗C × (K \ S)× U. Moreover

F (wλ, k, a) = F (λ, k, wa) = F (λ, k, a),

for all w ∈ WΠ and (λ, k, a) ∈ a∗C × (K \ S)× U.

The functions F (λ, k, a) are nowadays known as Heckman-Opdam hypergeo-
metric functions.
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To obtain the Bessel functions related to the root system R as an appropriate
limit of Heckman-Opdam hypergeometric functions, we will proceed as in Section
2.

For strictly positive small real ε, we introduce the following principle

(P)
– substitute α by εα
– substitute 〈·, ·〉 by ε2〈·, ·〉 on a.

Applying the principle (P) to the definition of the operator T (ξ, k) in (3.2), we
obtain

T (ε)(ξ, k) =
1

ε
∂ξ − ρ(k)(ξ) +

∑
α∈R+

kα
α(ξ)

εα

∞∑
m=0

Bm(1)εmαm

m!
(1− rα),

where Bm(1) is the Bernoulli number. Clearly the following limit exists

lim
ε→0

εT (ε)(ξ, k) = T ◦(ξ, k),

with

T ◦(ξ, k) = ∂ξ +
∑

α∈R+

kα
α(ξ)

α
(1− rα). (3.6)

The differential operator T ◦(ξ, k) is the so-called Dunkl operator [Du1]. We are
not aware of any previous work mentioning a connection of this type between the
Dunkl-Cherednik operators T (ξ, k) and the Dunkl operators T ◦(ξ, k). A similar
relation between T (ξ, k) and T ◦(ξ, k) is however given in [T].

Further, by the principle (P), the operator D(p0, k) = Proj(T (p0, k)) = ∆(k) +
〈ρ(k), ρ(k)〉 becomes ∆(ε)(k) + 〈ρ(k), ρ(k)〉 where

∆(ε)(k) =
1

ε2

N∑
j=1

∂2
ξj

+
1

ε2

∑
α∈R+

2kα

α
∂α +

∑
α∈R+

∞∑
m=1

kαB2m(0)

(2m!)

(α
2

)2m−1

ε2(m−1)∂α,

and B2m(0) is the Bernoulli number. Thus

lim
ε→0

ε2
[
∆(ε)(k) + 〈ρ(k), ρ(k)〉

]
=

N∑
j=1

∂2
ξj

+
∑

α∈R+

kα

(
2

α

)
∂α. (3.7)

In the geometric case, this is equivalent to Theorem 2.2. We will denote by ∆◦(k)
the right-hand side of (3.7).

To derive the eigenfunctions of ∆◦(k) by a limit analysis of Heckman-Opdam
hypergeometric functions, we will use the same argument to that in the previous
section for Harish-Chandra’s spherical functions. We should notice that F (λ, k, a)
does not have an integral representation, since there is no longer a group theory
behind. To get over this missing fact, we will proceed by induction on the multi-
plicity functions k.

From the definition of the c̃-function, one can see that c̃(λ, 0) = 1. By [Hec-S,
(3.5.14)] limk→0 c̃(ρ(k), k) = |WΠ| and therefore

F (λ, 0, a) =
1

|WΠ|
∑

w∈WΠ

ewλ(log a), a ∈ A.
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In particular, the following limit formula holds

lim
ε→0

F
(λ
ε
, 0, exp(εX)

)
=

1

|WΠ|
∑

w∈WΠ

ewλ(X), X ∈ a. (3.8)

Next, forX ∈ a and λ ∈ a∗C, we will denote by F ◦(λ, k,X) the limit of F (λ
ε
, k, exp(εX))

as ε→ 0, if it exists.
Recall that K ∼= Cm where m = ]{WΠ−orbits in R}. In the remaining part of

this section we will assume that k ∈ Z := K ∩ Zm, i.e. kα ∈ Z for all α ∈ R.
Denote by Z + the set of positive-integer valued multiplicity functions.

The main tool in the induction process is to use the so-called Opdam’s shift
operators G±(±`, k) of shifts ±`, where ` ∈ Z + and k ∈ Z . These operators
satisfy

G−(−`, k)Φ(λ, k, a) =
c̃(λ, k − `)

c̃(λ, k)
Φ(λ, k − `, a)

G+(`, k)Φ(λ, k, a) =
c̃(−λ, k)

c̃(−λ, k + `)
Φ(λ, k + `, a).

We refer to [O1] and [O2] for more details on G±(±`, k).
Using the explicit forms of G±(±`, k) and the principle (P), we obtain two

deformed operators G
(ε)
± (±`, k), and we prove that the following limits exist

G◦
+(`, k) := lim

ε→0
ε2

P
α>0 `αG

(ε)
+ (`, k), (3.9)

G◦
−(−`, k) := lim

ε→0
G

(ε)
− (−`, k). (3.10)

We refer to [B-Ø2] for the explicit expressions of G◦
±(±`, k). Further results on

G◦
±(±`, k) are also obtained. The shift operators G◦

±(±`, k) can also be con-
structed by composing fundamental shift operators of shifts ±1.

Recall that F ◦(λ, k,X) exists for k ≡ 0. Using the shift operators G◦
±(±`, k),

we prove the following theorem by induction on k.

Theorem 3.3. (cf. [B-Ø2]) For all k ∈ Z \ S, the following limit and its deriva-
tives exist

lim
ε→0

F
(λ
ε
, k, exp(εX)

)
= F ◦(λ, k,X),

and it satisfies the following Bessel system of differential equations on WΠ \ aC

T ◦(p, ξ)∣∣C[aC]WΠ
Ψ = p(λ)Ψ, ∀ p ∈ S(aC)WΠ . (3.11)

Moreover, for ` ∈ Z +

G◦
+(`, k)F ◦(λ, k,X) = λ2

P
α∈R+ `α

c̃(ρ(k + `), k + `)

c̃(ρ(k), k)
F ◦(λ, k + `,X),

G◦
−(−`, k)F ◦(λ, k,X) =

c̃(ρ(k − `), k − `)

c̃(ρ(k), k)
F ◦(λ, k − `,X).

Corollary 3.4. (cf. [B-Ø2]) The Bessel function F ◦(λ, k,X) satisfies

F ◦(wλ, k,X) = F ◦(λ, k, wX) = F ◦(λ, k,X) for all w ∈ WΠ,

F ◦(λ, k, 0) = 1.
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The above corollary follows immediately from the fact that a similar statement
for Heckman-Opdam hypergeometric functions holds, by taking the limit. As one
can notice, we may derive at least the same amount of explicit information for the
Bessel functions F ◦ by a limit analysis of the hypergeometric functions F. Indeed,
in [Ó-P], the authors were able to give an explicit formula for Heckman-Opdam
hypergeometric functions when the root system R is reduced and k ∈ Z + \ S,
which we use to prove the following theorem.

Theorem 3.5. (cf. [B-Ø2]) Assume that k ∈ Z + \ S, and R is reduced. There
exists a differential operator D(k) ∈ C[aC] ⊗ S(aC), and a WΠ-invariant tubular
neighborhood u of a in aC such that

F ◦(λ, k,X) =
(−1)

P
α>0 1+kα2

P
α>0 1−2kα

c̃(ρ(k), k)

D(k)
( ∑

w∈WΠ
ε(w)ewλ(X)

)
∏

α∈R+〈α,X〉2kα
∏

α∈R+〈α, λ〉2kα−1
,

for all (λ,X) ∈ a∗C × u.

Explicit expression for D(k), which is given in terms of the Dunkl operators,
can be found in [B-Ø2].

In [O4, Theorem 3.15] and for k ∈ K +, Opdam proved that the hypergeometric
functions can be written as F (λ, k, a) = 1

|WΠ|
∑

w∈WΠ
G(wλ, k, a) where G(λ, k, a)

is an eigenfunction for the Dunkl-Cherednik operator T (ξ, k) with eigenvalue λ(ξ).
Using Theorem 3.3, and the fact that limε→0 εT

(ε)(ξ, k) = T ◦(ξ, k), we obtain the
following connection between the Bessel functions F ◦(λ, k,X) and the eigenfunc-
tions of T ◦(ξ, k) with spectral parameter λ. The proof of the following theorem
can be found in [B-Ø2], Theorem 4.6 and Proposition 4.7.

Theorem 3.6. (cf. [B-Ø2]) Assume that k ∈ Z +.
(i) There exists a unique holomorphic function G◦(λ, k, · ) in a tubular neigh-

borhood u of a in aC such that

T ◦(ξ, k)G◦(λ, k,X) = λ(ξ)G◦(λ, k,X), ξ ∈ aC,

G◦(λ, k, 0) = 1.

(ii) The Bessel functions can be written as

F ◦(λ, k,X) =
1

|WΠ|
∑

w∈WΠ

G◦(wλ, k,X).

(iii) For all w ∈ WΠ, G
◦(wλ, k, wX) = G◦(λ, k,X) and G◦(λ, k, 0) = 1.

We should note that the above theorem (other than (ii)) is also proved in [O3],
where the author uses a different approach. In [O3], the statement (ii) appears as
the definition of the Bessel functions.

The eigenfunctions G◦(λ, k,X) are known as the Dunkl kernels. This kernel
plays a major role in the theory of special functions related to Coxeter groups,
which has been a rapid development in this area in the last few years. In the last
section of the present paper, we will give new applications for the Dunkl kernels
in connection with Hilbert spaces of holomorphic functions and Segal-Bargmann
transforms.

Example 3.7. (Generalization of Example 2.5) Assume that R is a rank-one
root system of type BC1, i.e. R = {±α,±2α }. In this example we have AC ' C∗



18 SALEM BEN SAÏD AND BENT ØRSTED

and C[AC] = C[x−1, x] where x = eα. The nontrivial Weyl group element acts by
x 7→ x−1 on AC.
If ξ = (2α)ˇ, then ∂ξ = x∂x. We will normalize the inner product on aC and a∗C by
〈α, α〉 = 1. In the x coordinate, the differential operators (3.1) and (3.2) become

∆(k) = (x∂x)
2 −

(
kα

1 + x

1− x
+ 2k2α

1 + x2

1− x2

)
x∂x,

T (ξ, k) = x∂x +

(
kα

1− x−1
+

2k2α

1− x−2

)
(1− r) + (

1

2
kα + k2α),

where r(xm) = x−m. Opdam’s shift operators G±(±1, k) are given by [Hec-S]

G+(+1, k) =
x∂x

x− x−1
,

G−(−1, k) = (x2 − 1)∂x + (kα + 2k2α − 1)(x+ x−1) + 2kα.

Let z = −1
4
x−1(1 − x)2 be a coordinate on WΠ \ AC. Put γ1 = λ + 1

2
kα + k2α,

γ2 = −λ+ 1
2
kα+k2α, and γ3 = 1

2
+kα+k2α. The functions F (λ, k, a) and G(λ, k, a)

are given by

F (λ, k, a) = 2F1(γ1, γ2; γ3; z),

G(λ, k, a) = 2F1(γ1, γ2; γ3; z) +
γ1

4γ3

(x− x−1)2F1(γ1 + 1, γ2 + 1; γ3 + 1; z),

where 2F1(γ1, γ2; γ3; z) is the Gauss hypergeometric function.
On aC, the infinitesimal operator (3.6) associated with T (ξ, k) is given by

T ◦(ξ, k) = ∂X +
kα + k2α

X
(1− r),

and the shift operators G◦
±(±1, k) are given by

G◦
+(+1, k) =

1

2X
∂X , G◦

−(−1, k) = (2X)∂X + 2(2kα + 2k2α − 1).

Using the fact that

Γ(z + a)

Γ(z + b)
= za−b

{
1 +O(z−1)

}
, if z →∞,

we obtain

F ◦(λ, k,X) = lim
ε→0

F

(
λ

ε
, k, exp(εX)

)
= Γ

(
1

2
+ kα + k2α

) (
λX

2

) 1
2
−kα−k2α

Ikα+k2α− 1
2
(λX),

where Iν(z) = e−iπν/2Jν(iz), with Jν(z) is the Bessel function of the first kind.
To regain Example 2.5 one needs to assume kα = mα/2 and k2α = m2α/2. As we
can see, the Bessel function F ◦ generalizes ψ(λ, t) from Example 2.5, since we do
not constrain the root multiplicities kα and k2α to assume certain specific values.
From classical analysis on special functions, it is a well-known fact that for fixed
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λ ∈ C, the function ζ(X) := Γ(1
2

+ kα + k2α)
(

λX
2

) 1
2
−kα−k2α

Ikα+k2α− 1
2
(λX) is the

unique analytic solution of the differential equation

ζ ′′ +
2(kα + k2α)

X
ζ ′ = λ2ζ,

which is even and normalized by ζ(0) = 1. The eigenfunction G◦(λ, k,X) for
T ◦(ξ, k) is given by

G◦(λ, k,X) = lim
ε→∞

G

(
λ

ε
, k, exp(εX)

)
= Γ

(
1

2
+ kα + k2α

) (
λX

2

) 1
2
−kα−k2α {

Ikα+k2α− 1
2
(λX) + Ikα+k2α+ 1

2
(λX)

}
.

4. Bessel functions associated with non-compact causal symmetric
spaces

The theory of Harish-Chandra’s spherical functions depends mainly on a com-
pact subgroup K of a Lie group G, i.e. a Cartan involution θ; on the fact that
the algebra D(G/K) contains an elliptic differential operator, and therefore all
the joint eigenfunctions are real analytic; and finally on the Iwasawa decompo-
sition KAN and the Cartan decomposition KAK of the Lie group G. Now, if
we substitute θ by an arbitrary involution τ : G → G, and the subgroup K by
H := {h ∈ G | τ(h) = h}. Then H is no longer compact and, in general, there
are no elliptic invariant differential operators on G/H. Further, G 6= HAN and

G 6= HAH. However, in [F-H-Ó] Faraut, Hilgert, and Ólafsson were able to prove
that there exists a class of symmetric spaces, which is the so-called non-compact
causal symmetric spaces, where an analogue theory of spherical functions defined
on open H-invariant conal subset of G/H can be developed. We refer to [H-Ó]
for information on causal symmetric spaces.

Let (G,H) be a symmetric pair, i.e. G is a connected semisimple Lie group with
finite center, H is a closed subgroup, and there exists an involutive automorphism
τ of G such that

(Gτ )0 ⊂ H ⊂ Gτ ,

where Gτ := { g ∈ G | τ(g) = g } , and (Gτ )0 is the identity component in Gτ . Let
g and h be the Lie algebras of G and H and denote the differential of τ also by
the same letter. Therefore h = gτ . Set q = g−τ . Let x0 = eH where e is the unit
element in G. The tangent space at x0 can be identified with q. Let θ be a Cartan
involution of G commuting with τ, and K be the corresponding maximal compact
subgroup of G with Lie algebra k = gθ. Put p = g−θ.

Assume that there exists in p∩ q a non-zero vector X0 which is invariant under
Ad(H ∩K) and such that the projection on every irreducible component is non
zero. Thus if a is a maximal abelian subspace of p ∩ q, then X0 ∈ a and a is a
maximal abelian in p.

Let Σ = Σ(g, a) be the restricted root system and choose a positive system Σ+

in Σ. Notice that Σ is always reduced. Therefore one obtains in q a closed con-
vex H-invariant cone Cmax such that Cmax ∩ a 6= ∅. Put as usual n = ⊕α∈Σ+g(α),
and ρ = 1

2

∑
α∈Σ+ mαα where mα = dim(g(α)). On the Lie algebra level, g de-

composes as g = n ⊕ a ⊕ h and the map N × A × H 3 (n, a, h) 7→ nah ∈ G is
a diffeomorphism onto an open subset of G. From this it follows that the map
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N × a → G/H, (n,X) 7→ n exp(X) · x0 is a diffeomorphism of N × a onto the
open set NA · x0. For x in this set, x = n exp(X) · x0, we set A(x) := X. Note
that the map A is right H-invariant.

Denote by E = { λ ∈ aC | Rel〈λ+ ρ, α〉 < 0 ∀α ∈ Σ+ }, and write S the semi-
group given by S = exp(Cmax)H. For λ ∈ E , the spherical function ϕλ is defined
on the interior S0 of S by

ϕλ(x) =

∫
H

e〈ρ−λ,A(hx)〉 dh, (4.1)

(cf. [F-H-Ó]). (The measures are normalized via the Killing form.)
For ε > 0, write γε = exp(εX)h with h ∈ H and X ∈ C0

max. For arbitrary fixed
λ ∈ E , denote by

ψ(λ,X) := lim
ε→0

ϕλ
ε
(γε).

Using (4.1), a similar argument to that of Theorem 2.3 gives the following in-
tegral representation of the Bessel functions associated with non-compact causal
symmetric spaces.

Theorem 4.1. (cf. [B-Ø2]) Let G/H be a non-compact causal symmetric space,
λ ∈ E , and X ∈ C0

max. The limit ψ(λ,X) and its derivatives exist. Its integral
representation is given by

ψ(λ,X) =

∫
H

e−B(Aλ,Ad(h)X) dh.

Example 4.2. Let G = SO0(1, n) and let H = SO0(1, n−1), n ≥ 2. Let a = RX0

where X0 = E1,n+1 + En+1,1. Here we use the standard notations for the matrix
element Ei,j. We choose the positive roots such that α(X0) = 1 and identify a∗C
with C via z 7→ −zα. Then ρ = −(n− 1)/2. For t > 0 and Rel(λ) < −(n− 3)/2,
we have

ϕλ(exp(tX0)) = π−1/22n/2−1e−iπ(n/2−1)Γ
(n

2
− 1

2

)
(sh t)−(n/2−1)

×
Γ(λ− n

2
+ 3

2
)

Γ(λ+ n
2
− 1

2
)
Q

n/2−1
λ−1/2(ch t),

where Qµ
ν is the Legendre function of the second kind (cf. [F-H-Ó]). Using [E, 3.2

(10)], we can rewrite the spherical function ϕλ as ϕλ(exp(tX0)) = ϕ
(1)
λ (exp(tX0))+

ϕ
(2)
λ (exp(tX0)), where

ϕ
(1)
λ (exp(tX0)) = (i)

n
2
−1π

−1
2 2n−3Γ

(n
2
− 1

2

)
Γ
(n

2
− 1

)
(sh t)−(n−2) Γ(λ− n

2
+ 3

2
)

Γ(λ+ n
2
− 1

2
)

× 2F1

(λ
2
− n

4
+

3

4
,−λ

2
− n

4
+

3

4
,−n

2
+ 2;− sh2 t

)
,

and

ϕ
(2)
λ (exp(tX0)) = (i)

n
2
−1π

−1
2 2−1Γ

(n
2
− 1

2

)
Γ
(
− n

2
+ 1

)
× 2F1

(λ
2

+
n

4
− 1

4
,−λ

2
+
n

4
− 1

4
,
n

2
;− sh2 t

)
.
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Using the fact that

Γ(z + a)

Γ(z + b)
= za−b

{
1 +O(z−1)

}
, if z →∞,

we obtain

lim
ε→0

ϕ
(1)
λ
ε

(exp(εtX0)) = −(i)
n
2
−1π

1
2 2

n
2
−2Γ

(n
2
− 1

2

)
(λt)−

n
2
+1

I1−n
2
(λt)

sin(π(1− n
2
))
,

and

lim
ε→0

ϕ
(2)
λ
ε

(exp(εtX0)) = (i)
n
2
−1π

1
2 2

n
2
−2Γ

(n
2
− 1

2

)
(λt)−

n
2
+1

In
2
−1(λt)

sin(π(1− n
2
))
.

Here Iν(z) = e−iπν/2Jν(iz), where Jν is the Bessel function of the first type. In
conclusion

ψ(λ, t) = lim
ε→0

ϕλ
ε
(exp(εtX0)) = (i)

n
2
−1π−

1
2 2

n
2
−1Γ

(n
2
− 1

2

)
(λt)−

n
2
+1K1−n

2
(λt),

where the function

Kν(z) =
π

2

I−ν(z)− Iν(z)

sin(πν)

is known as Macdonald’s function, or the Bessel function of the third kind.

Put Σ0 := Σ(k∩h⊕p∩q, a), and let Π0 be the corresponding fundamental system
of simple roots. Denote by WΠ0 the Weyl group generated by {rα | α ∈ Π0}, where
rα : a∗ → a∗ is the reflection rα(λ) = λ− λ(α̌)α (recall the definition of λ(α̌)).

In the next section we will investigate a more general class of Bessel functions
related to arbitrary root subsystem, which will be called the Θ-Bessel functions.
This new class encloses both, the Bessel functions F ◦ discussed in Section 3 and the
present theory of Bessel functions associated with non-compact causal symmetric
spaces. Indeed, in [B-Ø2] we were able to give explicit formulas for the Θ-Bessel
functions under certain conditions on the multiplicity functions. See the next
section for more details. In particular, the general expression of the Θ-Bessel
functions for non-compact causal symmetric spaces reduces to:

Theorem 4.3. (cf. [B-Ø2]) Let G/H be a non-compact causal symmetric space
such that mα ∈ 2Z for all α ∈ Σ. For (λ,X) ∈ E × (a ∩ C0

max), there exists a
differential operator D(m) ∈ C[aC]⊗ S(aC) such that∫

H

e−B(Aλ,Ad(h)X) dh = c0(m)
D(m)

( ∑
w∈WΠ0

ε(w)e−wλ(X)
)

∏
α∈Σ+〈α,X〉mα

∏
α∈Σ+〈α, λ〉mα−1

,

where c0(m) is a constant that depends only on m = (mα)α∈Σ, and one may find it
explicitly in Theorem 5.4 below (recall that for all non-compact causal symmetric
spaces, Σ is always reduced).

See Table III and Table IV below for the list of all possible causal symmetric
spaces for which the assumption of the above theorem holds. Explicit expression
for D(m), which is given in terms of the Dunkl operators, can be found in [B-Ø2].

In the case when G is a connected semisimple Lie group such that GC/G is
ordered, the above theorem gives a similar formula to the one for the character of
discrete series representations of G. This case is mainly characterized by the fact
that mα = 2 for all α ∈ Σ.
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Theorem 4.4. (cf. [B-Ø2]) Let G be a connected semisimple Lie group such that
GC/G is ordered. For λ ∈ E and X ∈ C0

max∫
G

e−B(Aλ,Ad(g)X) dg = 2−2|Σ+|
∏

α∈Σ+

ρ(α̌)

∑
w∈WΠ0

ε(w)e−wλ(X)∏
α∈Σ+〈α, λ〉

∏
α∈Σ+〈α,X〉

.

5. The Θ-Bessel functions

By introducing the so-called Θ-spherical functions, in [P], Pasquale presents
an extension of the theory of Heckman-Opdam hypergeometric functions associ-
ated with root systems, so that it encloses Harish-Chandra’s theory of spherical
functions and the theory of spherical functions on non-compact causal symmetric
spaces. Using Pasquale’s results, we introduce a new class of Bessel functions
related to root systems, which we shall call the Θ-Bessel functions. The theory of
Θ-Bessel functions extends naturally the theory of Bessel functions discussed in
Section 3, and therefore it encloses the geometric case investigated in Section 2.
It also covers the theory of Bessel functions associated with non-compact causal
symmetric spaces.

The symbols R,R+, a, aC, A,A
+,WΠ,K , rα, λ(α̌) shall have the same meaning

as in Section 3. Recall thatR is supposed to satisfy the crystallographic condition.
Let Π = {α1, . . . , αN} be the system of simple roots associated with R+. Let

Θ ⊂ Π be an arbitrary subset of Π. The set 〈Θ〉 of elements in R, which can be
written as linear combinations of elements from Θ, is a subsystem of R. Its Weyl
group WΘ is generated by the reflections rαj

with αj ∈ Θ.
For a multiplicity function k ∈ K and λ ∈ a∗C we set

c+Θ(λ, k) =
∏

α∈〈Θ〉+

Γ(λ(α̌) + 1
2
kα

2
)

Γ(λ(α̌) + 1
2
kα

2
+ kα)

c−Θ(λ, k) =
∏

α∈R+\〈Θ〉+

Γ(−λ(α̌)− 1
2
kα

2
− kα + 1)

Γ(−λ(α̌)− 1
2
kα

2
+ 1)

c+,c
Θ (λ, k) =

∏
α∈R+\〈Θ〉+

Γ(λ(α̌) + 1
2
kα

2
)

Γ(λ(α̌) + 1
2
kα

2
+ kα)

with the conventions

c+∅ = c+,c
Π = 1, and c−Π = 1.

If Θ = Π, the function c+Π(λ, k) coincides with the c̃-function (3.5).
Let U be a connected and simply connected open subset of exp(ia) containing

the identity element. The function on A+U defined for generic λ ∈ a∗C by

ϕΘ(λ, k, a) = c−Θ(λ, k)
∑

w∈WΘ

c+Θ(wλ, k)Φ(wλ, k, a), a ∈ A+U,

is called the Θ-spherical function of spectral parameter λ (see page 12 for the
definition of Φ(λ, k, a)). We refer to [P] for more details on Θ-spherical functions.
As a linear combination of the Harish-Chandra series Φ(wλ, k, a), the Θ-spherical
function is by construction a solution of the hypergeometric system (3.3).
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Example 5.1. When Θ = Π, the ratio ϕΠ(λ, k, a)/c+Π(ρ(k), k) coincides with the
Heckman-Opdam hypergeometric function F (λ, k, a). In the geometric case, the
ratio coincides with Harish-Chandra’s spherical function.

Example 5.2. For non-compact causal symmetric spaces, recall that Π0 stands
for the fundamental system for the positive compact roots in Σ+

0 . If Θ = Π0, then
the ratio ϕΠ0(λ, k, a)/c

+
Π0

(ρ(k), k)c−Π0
(ρ(k), k) coincides with the spherical function

ϕλ(a) on G/H investigated in the previous section.

Recall that Z + denotes the set of positive integer-valued multiplicity func-
tions, and S is the set of zeros of c̃(ρ(k), k) = c+Π(ρ(k), k). Further, put d(Θ, k) =∑

α∈R+\〈Θ〉+ kα, and define

aΘ,+ := {H ∈ a | α(H) > 0 for all α ∈ R+ \ 〈Θ〉+}.

In [Ó-P, Theorem 5.1], Ólafsson and Pasquale give an explicit global formulas
for the Θ-spherical functions for k ∈ Z + by means of Opdam’s shift operators
G±(±`, k). Using our results on the shift operatorsG◦

±(±`, k) (see (3.9) and (3.10))
together with the explicit expressions of the Θ-spherical functions, we prove that
for X ∈ aΘ,+ and k ∈ Z +

ϕΘ

(λ
ε
, k, exp(εX)

)
conveges as ε→ 0.

Denote by F̃ ◦
Θ(λ, k,X) its limit. We shall call F̃ ◦

Θ the Θ-Bessel functions, which are
solutions for the Bessel system of differential equations (3.11). With the notations

of Section 3, we have F ◦(λ, k,X) = F̃ ◦
Π(λ, k,X)/c+Π(ρ(k), k) for X ∈ aΠ,+ and

k ∈ Z + \S. The above transition relation linking F ◦ to F̃ ◦
Π can be generalized by

linking the Θ-Bessel functions for arbitrary Θ to the Bessel functions F ◦.

Lemma 5.3. (cf. [B-Ø2]) There exists a WΘ-invariant tubular neighborhood uΘ

of aΘ,+ in aC such that for (λ, k,X) ∈ a∗C × (Z + \ S)× uΘ

F ◦(λ, k,X) =
(−1)d(Θ,k)

c+Π(ρ(k), k)

∑
w∈WΘ\WΠ

F̃ ◦
Θ(wλ, k,X).

Put d′(Θ, k) :=
∑

α∈〈Θ〉+ kα. The main result of this section is the following

explicit expression for the Θ-Bessel functions when k ∈ Z + and R is reduced.

Theorem 5.4. (cf. [B-Ø2]) Let k ∈ Z + and let R be a reduced root system.
There exists a differential operator D(k) ∈ C[aC]⊗ S(aC) such that

F̃ ◦
Θ(λ, k,X) = (−1)d′(Θ,k)+|R+| 2

P
α>0 1−2kα

D(k)
( ∑

w∈WΘ
ε(w)ewλ(X)

)
∏

α∈R+〈α,X〉2kα
∏

α∈R+〈α, λ〉2kα−1
,

for all (λ,X) ∈ a∗C × uΘ.

Explicit expression for D(k), which is given in terms of the Dunkl operators,
and more information on the proof can be found [B-Ø2].

As we mentioned above, this new class of Θ-Bessel functions encloses the Bessel
functions ψ(λ,X) associated with both, Riemannian symmetric spaces G/K and
non-compact causal symmetric spaces G/H. In order to obtain the expressions of
ψ(λ,X) from the above theorem, one needs to assume that kα = mα/2 ∈ N for all
α ∈ R(= 2Σ(g, a)). Here mα and Σ(g, a) have the same meaning as in Section 2
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and in Section 4. We close this section by giving the list of all possible symmetric
spaces G/K and G/H where mα ∈ 2N for all α ∈ Σ(g, a). This list has been
extracted from the classification due to Oshima and Sekiguchi in [Os-Se] and to

Hilgert and Ólafsson in [H-Ó].

Riemannian symmetric pairs with even multiplicity

g k Σ mα Comments

sl(n,C) su(n) An−1 2 n ≥ 2

so(2n+ 1,C) so(2n+ 1) Bn 2 n ≥ 2

sp(n,C) sp(n) Cn 2 n ≥ 3

so(2n,C) so(2n) Dn 2 n ≥ 4

so(2n+ 1, 1) so(2n+ 1) A1 2n n ≥ 3

su∗(2n) sp(n) An−1 4 n ≥ 2

(e6)C e6 E6 2

(e7)C e7 E7 2

(e8)C e8 E8 2

(f4)C f4 F4 2

(g2)C g2 G2 2

e6(−26) f4(−20) A2 8

Table I

Special isomorphisms of Riemannian
symmetric pairs with even multiplicity

g k

sp(1,C) ≈ sl(2,C) sp(1) ≈ su(2)

so(3,C) ≈ sl(2,C) so(3) ≈ su(2)

sp(2,C) ≈ so(5,C) sp(2) ≈ so(5)

so(6,C) ≈ sl(4,C) so(6) ≈ su(4)

so(3, 1) ≈ sl(2,C) so(3) ≈ su(2)

so(5, 1) ≈ su∗(4) so(5) ≈ sp(2)

Table II
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Non-compact causal symmetric pairs with even multiplicity

g h Σ mα Comments

sl(n,C) su(n− j, j) An−1 2 n ≥ 2, 1 ≤ j ≤ [n/2]

so(2n+ 1,C) so(2n− 1, 2) Bn 2 n ≥ 2

sp(n,C) sp(n,R) Cn 2 n ≥ 3

so(2n,C) so(2n− 2, 2) Dn 2 n ≥ 4

so(2n,C) so∗(2n) Dn 2 n ≥ 5

so(2n+ 1, 1) so(2n, 1) A1 2n n ≥ 3

su∗(2n) sp(n− j, j) An−1 4 n ≥ 2, 1 ≤ j ≤ [n/2]

(e6)C e6(−14) E6 2

(e7)C e7(−25) E7 2

e6(−26) f4(−20) A2 8

Table III

Special isomorphisms of non-compact causal
symmetric pairs with even multiplicity

g h

sp(1,C) ≈ sl(2,C) sp(1,R) ≈ su(1, 1)

so(3,C) ≈ sl(2,C) so(1, 2) ≈ su(1, 1)

sp(2,C) ≈ so(5,C) sp(2,R) ≈ so(3, 2)

so(6,C) ≈ sl(4,C) so(4, 2) ≈ su(2, 2)

so(6,C) ≈ sl(4,C) so∗(6) ≈ su(3, 1)

so(8,C) = so(8,C) so∗(8) ≈ so(2, 6)

so(3, 1) ≈ sl(2,C) so(2, 1) ≈ su(1, 1)

so(5, 1) ≈ su∗(4) so(4, 1) ≈ sp(1, 1)

Table IV

6. Fock spaces and Segal-Bargmann transforms associated with
Coxeter groups

In Section 3, Theorem 3.6, we proved that the Bessel functions can be written
as an avreage over the Weyl group of the Dunkl kernels. In this section we shall
give some applications for the Dunkl kernels in the theory of Hilbert spaces of
holomorphic functions and Segal-Bargmann transforms. This section can be read
independently from the previous sections.

Around 1928, in [Fo], Fock has introduced a Hilbert space of holomorphic func-
tions on CN which are square integrable with respect to the Gaussian measure
e−‖z‖

2
dz, where ‖z‖2 =

∑N
i=1 zizi. These spaces are nowadays known as the Fock

spaces. After Bargmann’s elegant paper [Ba], the Fock spaces have attracted much
interest and have played an important role in a number of developments, namely
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in physics and mathematical physics. The remarkable invention of Bargmann is
the construction of a unitary map from the Schrödinger model to the Fock model
intertwining the action of the Heisenberg group. This idea also appeared in the
work of Segal [Seg], done independently at about the same time. This intertwining
operator is the so-called Segal-Bargmann transform. For more details, we refer to
Bargmann’s paper [Ba] which is still the best introduction to this matter.

In this section, we will investigate a generalization of both, the Fock spaces
and the Segal-Bargmann transform, in the setting of Coxeter groups and Dunkl
operators. Furthermore, a branching decomposition of the generalized Fock spaces
will be given.

To simplify the presentation of our results, we will identify the N -dimensional
Euclidean spaces a and a∗ from the previous sections with RN . The setting of
this section is slightly more general than the one of Section 3 as following: First
we assume that R is a root system without the extra crystallographic condition,
and therefore the Weyl group WΠ will be replaced by an arbitrary Coxeter group.
Secondly, we will assume that the multiplicity functions k : R → C are positive-
real valued.

For α ∈ R, recall that the reflection rα is given by

rα(x) = x− 2
〈α, x〉
〈α, α〉

α α ∈ RN .

Henceforth, we will normalize R in the sense that 〈α, α〉 = 2. This simplifies
formulas, with no loss of generality for our purposes. We will use the same notation
〈·, ·〉 for the bilinear extension of the Euclidean scalar product to CN × CN .

A Coxeter group G is a finite subgroup of the orthogonal group O(N) generated
by the reflections {rα |α ∈ R}. As we mentioned above, Coxeter groups generalize
Weyl groups since there is not the additional crystallographic condition for R.

As usual, R+ denotes a choice of positive roots in R, and K is the set of
multiplicity functions k : R→ C.

According to the standard notations in Dunkl’s theory, we denote the Dunkl
operator by

Tξ(k)f(x) = ∂ξf(x) +
∑

α∈R+

kα〈α, ξ〉
f(x)− f(rαx)

〈α, x〉
, f ∈ C 1(RN),

instead of T ◦(ξ, k) in (3.6). For any orthonormal basis {ξi}N
i=1 of RN , set

∆kf(x) :=
N∑

i=1

Tξi
(k)2 = ∆f(x) + 2

∑
α∈R+

kα

{
〈∇f(x), α〉
〈α, x〉

− f(x)− f(rαx)

〈α, x〉2

}
,

where ∆ and ∇ denote the usual Laplacian and gradient, respectively. The re-
striction of ∆k to G-invariant functions coincides with ∆◦(k) in (3.7). For all i-th
basis vector ξi, we will use the abbreviation Tξi

(k) = Ti(k).
When k is a positive-integer valued multiplicity function, and G is a Weyl group,

we proved in Theorem 3.6 that the Dunkl system of differential equations admits
a solution, which is known as the Dunkl kernel. This result was also proved by
Opdam for positive-real valued multiplicity functions and for all Coxeter groups
G. The following theorem summarizes Opdam’s result where we write Ek(z, w)
instead of G◦(λ, k,X) in Theorem 3.6, based on the notations in Dunkl’s theory
(recall that G◦(λ, k,X) is symmetric under the interchange of λ and X).
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Theorem 6.1. (cf. [O3]) For k ≥ 0, there exists a unique meromorphic function
Ek on CN × CN characterized by:

(i) Tξ(k)Ek(z, w) = 〈ξ, w〉Ek(z, w); and
(ii) Ek(z, 0) = 1.

Moreover, this function satisfies
(iii) Ek is holomorphic on CN × CN ; and
(iv) Ek(g0 · z, g0 · w) = Ek(z, w) for all g0 ∈ G.

Remark 6.2. If k ≡ 0, we have E0(z, w) = e〈z,w〉 for z, w ∈ CN .

For k ≥ 0, let wk be the weight function on RN defined by

wk(x) :=
∏

α∈R+

|〈α, x〉|2kα .

Further, let

ck :=

∫
RN

e−〈x,x〉/2wk(x) dx,

which is called the Macdonald-Metha-Selberg integral. In [O3] Opdam gives a
closed form for ck for finite Coxeter groups. The following proposition is crucial
in Dunkl’s theory and its applications.

Proposition 6.3. (cf. [Du2]) Let z, w ∈ CN . For non-negative multiplicity func-
tion k∫

RN

Ek(x, z)Ek(x,w)e−〈x,x〉/2wk(x) dx = cke
(〈z,z〉+〈w,w〉)/2Ek(z, w). (6.1)

For z, w ∈ CN , define

Kk,w(z) = Kk(z, w) := Ek(z, w̄).

As k will be fixed, we will write K for Kk. By Theorem 6.1, one may check that K
is continuous and Kw is holomorphic for all w ∈ CN . Further K(z, w) = K(w, z).
Another crucial property is that K(z, w) is a positive definite kernel, i.e. for all
z(1), . . . , z(`) ∈ CN and a1, . . . a` ∈ C∑̀

i,j=1

aiajK(z(i), z(j)) ≥ 0.

These properties of K lead to the following result.

Theorem 6.4. (cf. [B-Ø3]) (i) There exists a Hilbert space Fk(CN) of holomor-
phic functions, such that K is its reproducing kernel.

(ii) The Hilbert space Fk(CN) contains the C-algebra P(CN) of polynomial
functions on CN as a dense subspace.

In particular, if we denote by 〈〈·, ·〉〉k the inner product in Fk(CN), then

〈〈p, q〉〉k = p(T (k))q(z̄)∣∣z=0
, ∀ p, q ∈ P(CN),

where p(T (k)) is the operator formed by replacing zi by Ti(z) for 1 ≤ i ≤ N.
If k ≡ 0, F0(CN) coincides with the classical Fock space. We shall call Fk(CN)

the Fock space associated with the Coxeter G.
The study of several generalizations of the classical Segal-Bargmann transform

has a long and rich history in many different settings [Ba, Seg, Ó-Ø, Hal, D-Ó-Z1,
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D-Ó-Z2, Z]. There are many ways of computing the integral kernel appearing in
the Segal-Bargmann transform and showing the unitarity of this transform. One
unifying tool is the restriction principle, i.e. polarization of a suitable restriction
map [Ø-Z, Ó-Ø]. We will use this idea to construct the Segal-Bargmann transform
associated with G. The main tool is the heat-kernel analysis for Coxeter groups
[R2].

For t > 0 and z, w ∈ CN , set

Γk(t, z, w) =
1

(2t)γk+N/2ck
e−(〈z,z〉+〈w,w〉)/4tEk

( z√
2t
,
w√
2t

)
.

The kernel Γk(t, z, w) was introduced in [R2] as a generalized heat kernel.
Let L 2(RN , wk) be the space of L 2-functions on RN with respect to the weight

function wk. The notation ‖ · ‖ will be set for the norm in L 2(RN , wk).
Let Rk be the restriction map Rk : Fk(CN) → L 2(RN , wk), given by

Rkf(x) := e−〈x,x〉/2f(x), x ∈ RN .

The map Rk is a closed, densely defined operator from Fk(CN) into L 2(RN , wk)
with dense image (see for instance [R1, Theorem 3.2]). Consider the adjoint R∗

k :
L 2(RN , wk) → Fk(CN) as a densely defined operator. Since K is the reproducing
kernel of Fk(CN), one can prove that for f ∈ L 2(RN , wk), the integral

RkR
∗
kf(y) = ck

∫
RN

f(x)Γk

(1

2
, x, y

)
wk(x) dx

converges absolutely for a.e. y ∈ RN . The function RkR∗
kf thus defined is in

L 2(RN , wk) and ‖RkR∗
k‖ ≤ ck. We can therefore define

√
RkR∗

k . Thus there

exists an isometry Bk so that R∗
k = Bk

√
RkR∗

k . Since Rk =
√

RkR∗
kB

∗
k and

Image(Rk) is dense, it follows that Bk is a unitary isomorphism. We shall call Bk

the Segal-Bargmann transform associated with G. Using the positivity of the heat
kernel Γ(t, x, y) as an operator [R2], we obtain the following integral representation
of the Segal-Bargmann transform Bk.

Theorem 6.5. (cf. [B-Ø3]) The unitary isomorphism Bk : L 2(RN , wk) →
Fk(CN) is given by

Bkf(z) = 2γk+N/2c
−1/2
k e−〈z,z〉/2

∫
RN

f(x)Ek(
√

2x,
√

2z)e−〈x,x〉wk(x) dx,

where γk :=
∑

α∈R+ kα.

Remark 6.6. (i) For the special case k ≡ 0

B0f(z) = (2/π)N/4

∫
RN

e−〈x,x〉+2〈x,z〉−〈z,z〉/2f(x) dx.

This compares well with the classical Segal-Bargmann transform (cf. [Fol, p. 40]).
(ii) When N = 1 and G = Z/2Z, Cholewinski [Ch] has investigated the Segal-

Bargmann transform only in the Hilbert space of even functions in Fk(C), by
employing another approach. Recently, in [Si-So] and always for N = 1 and G =
Z/2Z, Sifi and Soltani use Cholewinski’s method to obtain the Segal-Bargmann
transform for Fk(C). Recently, we learned about Soltani’s preprint [So] which
contains some results on Segal-Bargmann transform for Coxeter groups, using
Cholewinski’s approach.
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The Dunkl transform, which shares many properties with the classical Fourier
transform, was introduced in [Du2] and further studied in [J]. For our convenience,
we will write the Dunkl transform as

Dkf(ξ) = c−1
k 2−γk−N/2

∫
RN

f(x/2)Ek(−iξ, x)wk(x) dx, ξ ∈ RN .

Theorem 6.7. (cf. [B-Ø3]) The following diagram commutes

L 2(RN , wk)
Bk−−−→ Fk(CN)

Dk

y y(−i)∗

L 2(RN , wk)
Bk−−−→ Fk(CN)

where (−i)∗f(z) := f(−iz) for f ∈ Fk(CN).

The above theorem gives a simple alternative proof for the unitarity of the
transform Dk, which was proved earlier by Dunkl [Du2] using a different approach.
See also [J]. Our proof uses only the integral formula (6.1).

For ξ ∈ CN , denote by Mξ the operator Mξ(f)(z) := 〈z, ξ〉f(z). Define the
lowering and the raising operators on L 2(RN , wk) by

A−
ξ :=

1√
2
(M2ξ + Tξ(k)), A+

ξ :=
1√
2
(M2ξ − Tξ(k)).

These two operators were introduced by Rösler [R3] in connection with Rodrigues-
type formulas for the eigenfunctions of the Calogero-Moser systems. Next we will
see that these two operators, in the Fock model, are also the lowering and the
raising operators on Fk(CN) in a more natural way.

Below, we will exhibit some relationships between operators on L 2(RN , wk)

and on Fk(CN). For an operator O on L 2(RN , wk), we define the operator Ŏ on
Fk(CN) by

Ŏ = Bk ◦ O ◦B−1
k .

Further, as usual, [A,B] = AB −BA for A,B ∈ End(P(CN)).

Theorem 6.8. (cf. [B-Ø3]) The following properties hold:

(i) T̆ξ(k) = Tξ(k)−Mξ for ξ ∈ CN ;

(ii) [T̆ξ(k), T̆η(k)] = 0 for ξ, η ∈ CN ;

(iii) M̆2ξ = Tξ(k) +Mξ for ξ ∈ CN ;

(iv) [M̆2ξ, M̆2η] = 0 for ξ, η ∈ CN ;

(v) [T̆ξ(k), M̆2η] = 2〈ξ, η〉+ 2
∑

α∈R+ kα〈α, ξ〉〈α, η〉rα;

(vi) Ă−
ξ =

√
2Tξ(k), and Ă+

ξ =
√

2Mξ.

Notice that, as the Dunkl operators are homogeneous of degree −1 on polynomials,
and since Mξ are the multiplication operators, now obviously Ă−

ξ and Ă+
ξ are the

lowering and the raising operators on P(CN).

The above theorem, which is of independent interest, is mainly useful to obtain
the quantum Calogero-Moser (CM) rational system in the Fock model. We refer
to [B-Ø3] for more details on this matter.

Let

Lk := ∆− 2
∑

α∈R+

1

〈α, x〉2
kα(kα − rα),
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and consider the following gauge equivalent version

Hk := 1
4
w
−1/2
k (−Lk + 4〈x, x〉)w1/2

k = 1
4
(−∆k + 4〈x, x〉)

of the CM Hamiltonian with harmonic confinement and reflection terms.

Theorem 6.9. (cf. [B-Ø3]) Let {ξ1, . . . , ξN} be any orthonormal basis of CN . On
Fk(CN), the corresponding operator to the Hamiltonian Hk is given by

H̆k = (γk +N/2) +
N∑

i=1

ξi∂ξi
,

where γk =
∑

α∈R+ kα. Clearly, the study of the Hamiltonian Hk in the Fock model
is rather easy.

We close this section by describing the structure of a representation of the

universal covering group ˜SL(2,R) of SL(2,R) on P(CN). This representation,
together with the left regular action of the Coxeter group G, allows to obtain
the branching decomposition of the Fock space Fk(CN) under the action of G×

˜SL(2,R). Those readers who are familiar with the theory of Howe reductive dual
pairs [Ho1, Ho2] will find that our formulation can be thought of as an analogue
of this theory. Hecke’s formula for the Dunkl transform holds immediately from

our ˜SL(2,R)-representation.
Choose z1, z2, . . . , zN as the usual system of coordinates on CN . Let

E =
1

2

N∑
i=1

z2
i , F = −1

2
∆k, H = N/2 + γk +

N∑
i=1

zi∂zi
.

In the notation of Theorem 6.9, the operator H = H̆k. Then E (resp. F ) acts on
Fk(CN) as a creation (resp. annihilation) operator, and H acts on Fk(CN) as a
number operator. If P(CN) =

⊕∞
m=0 Pm(CN) is the natural grading on P(CN),

it is clear that E raises Pm(CN) to Pm+2(CN), F lowers Pm(CN) to Pm−2(CN),
and H multiplies (elementwise) Pm(CN) by the number (N/2+γk+m). In [Hec1],
Heckman showed the following commutation relations

[E,F ] = H, [E,H] = −2E, [F,H] = 2F. (6.2)

These are the commutation relations of a standard basis of the Lie algebra sl(2,R).
Equation (6.2) gives raise to a unitary representation ω of sl(2,R). The unitarty
of ω follows from the fact that E∗ = −F and H = H∗ (cf. [B-Ø3, Theorem 3.7]).
Notice also that H has discrete spectrum bounded below.

On P(CN), the representation ω can be described as

ω(sl(2,R)C) = sl
(2,0)
2 ⊕ sl

(1,1)
2 ⊕ sl

(0,2)
2 , (6.3)

where
sl

(2,0)
2 = Span{E}, sl

(1,1)
2 = Span{H}, sl

(0,2)
2 = Span{F}.

The decomposition (6.3) is an instance of the Cartan decomposition

sl(2,R)C = p+ ⊕ kC ⊕ p−

where sl
(2,0)
2 ' ω(p+), sl

(1,1)
2 ' ω(kC), and sl

(0,2)
2 ' ω(p−). Here k = u(1), the

Lie algebra of the compact group U(1). The integrated form of the Lie algebra
representation ω is an analogue of the metaplectic representation, or the oscillator



ON BESSEL FUNCTIONS AND DUNKL OPERATORS 31

representation, of the universal covering ˜SL(2,R) of the group SL(2,R). Notice
that if N/2+γk ∈ 1

2
Z\Z we obtain a unitary representation of the double covering

Mp(2,R) of SL(2,R), and if N/2+γk ∈ Z we obtain a representation of SL(2,R).
By applying the Segal-Bargmann transform, one obtains the Schrödinger picture

of this representation of ˜SL(2,R). However, for our purpose, its infinitesimal ac-
tion (6.3) is enough.

Since ω is a unitary representation, and the operator H, which is the generator
of k, has a positive spectrum, then the representation contains vectors v0 such
that ω(p−)v0 = 0 and ω(k)v0 = (m + N/2 + γk)v0 for some positive integer m.
The vector v0 is the so-called lowest weight vector for a representation, and the
number (m + N/2 + γk) is the lowest weight. The space of representation then
has an orthonormal basis consisting of vectors v` ∈ ω(p+)`v0. It is easy to check
that each vector v` is an eigenvector for ω(k) with eigenvalue (m+2`+N/2+γk).

Denote by Wm+N/2+γk
the unitary representation of ˜SL(2,R) with lowest weight

m+N/2 + γk.
For m ∈ N, set Hm(⊂ P(CN)) to be the space of harmonic homogeneous

polynomials of degree m, i.e. all functions p ∈ Pm(CN) such that ∆kp = 0. It is
clear that p ∈ Hm if and only if ω(k)p = (m+N/2 + γk)p and ω(p−)p = 0.

Now one of the key features in this formalism is the following branching de-
composition. We refer to [B-Ø3] for its proof, which was inspired by Sobolev’s
argument in the classical case [Sob]. The notation [m/2] stands for the integer
part of m/2.

Theorem 6.10. (cf. [B-Ø3]) The space Pm(CN) of homogeneous polynomials of
degree m has a unique decomposition of the form

Pm(CN) =

[m/2]∑⊕

µ=0

〈z, z〉µHm−2µ,

where Hm−2µ denotes the space of harmonic homogeneous polynomials of degree
m− 2µ. Moreover, each homogeneous polynomial p ∈ Pm(CN) can be written in
a unique way as

p(z) =

[m/2]∑
µ=0

Γ(N/2 +m− µ+ γk − 1)

4µΓ(µ+ 1)Γ(N/2 +m+ γk − 1)
〈z, z〉µhm−2µ(z),

where hm−2µ ∈ Hm−2µ and is given explicitly by

hm−2µ(z) =

[m/2]−µ∑
ν=0

(−1)νΓ(N/2 +m− 2µ− ν − 1 + γk)

4νΓ(ν + 1)Γ(N/2 +m− 2µ+ γk − 1)
〈z, z〉ν∆µ+ν

k p(z).

For g ∈ G, denote by π(g) the left regular action of G on Fk(CN)

π(g)f(z) = f(g−1z).

The actions of G and sl(2,R) on Fk(CN) commute.
We now summarize the consequences of all the above computations and discus-

sions in the light of Theorem 6.10.
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Theorem 6.11. (cf. [B-Ø3]) As a G × ˜SL(2,R)-module, the Fock space admits
the following multiplicity-free decomposition

Fk(CN) =
∞⊕

m=0

Hm ⊗Wm+N/2+γk
, (6.4)

where Wm+N/2+γk
is the ˜SL(2,R)-representation with lowest weight m+N/2+γk.

We also have the following separation of variables decomposition

P(CN) =

∞∑⊕

m=0

[m/2]∑⊕

µ=0

〈z, z〉µHm−2µ.

Remark 6.12. (i) Recall that the Fock space Fk(CN) was defined for non-negative
multiplicity functions k. Now, notice that the right hand side of (6.4) exists for
all γk > −N/2, where γk =

∑
α∈R+ kα, which implies that k = (kα)α∈R could

have negative-values up to a certain point. By analytic continuation, it follows
that the left hand side of (6.4), i.e. the Fock space Fk(CN), exists also for these
negative-valued multiplicity functions k.

(ii) The space Hm is a unitary representation of G, in general not irreducible.
It would be interesting to decompose it further.

As an application of the above demonstrated sl(2,R)-representation theory, we
obtain the Hecke’s formula for the Dunkl transform as following: Recall that
H = H̆k = Bk ◦

{
1
4
(−∆k + 4〈x, x〉)

}
◦B−1

k (see Theorem 6.8). Therefore{
1
4
(−∆k + 4〈x, x〉)

}
B−1

k (p) = (m+N/2 + γk)B
−1
k (p), ∀ p ∈ Pm(CN).

Further, in [B-Ø3, Corollary 4.6], we proved that the restriction of the inverse

transform B−1
k to Hm coincides with 2γk+N/2c

−1/2
k e−〈x,x〉, which implies that

e−〈x,x〉p, for p ∈ Hm, is an eigenvector for
{

1
4
(−∆k + 4〈x, x〉)

}
with eigenvalue

(m+N/2 + γk). On the other hand, by [B-Ø3, Corollary 4.14], the Dunkl trans-
form Dk can be written as

Dk = ei π
2
(γk+N/2)e−

π
8
(−∆k+4〈x,x〉),

whilst
{

1
4
(−∆k + 4〈x, x〉)

}
is the generator of the Lie algebra k ∼= so(2). Thus, for

p ∈ Hm

Dk(e
−〈x,x〉p) = ei π

2
(γk+N/2)e−

π
2
k(e−〈x,x〉p)

= ei π
2
(γk+N/2)e−i π

2
(m+N/2+γk)e−〈x,x〉p

= e−i π
2
me−〈x,x〉p,

and the following theorem has been established.

Theorem 6.13. (cf. [B-Ø3]) The following Hecke-type formula holds for the
Dunkl transform

Dk(e
−〈x,x〉p) = e−i π

2
me−〈x,x〉p, ∀ p ∈ Hm.
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