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The suspended free loop space of a
symmetric space

Marcel Bökstedt & Iver Ottosen

Abstract

Let M be one of the projective spaces CPn, HPn for n ≥ 2 or the Cayley
projective plane OP2, and let ΛM denote the free loop space on M . Using
Morse theory methods, we prove that the suspension spectrum of (ΛM)+ is
homotopy equivalent to the suspension spectrum of M+ wedge a family of
Thom spaces of explicit vector bundles over the tangent sphere bundle of M .
MSC: 58E05; 53C35; 55P35; 55P42

1 Introduction

It has been known at least since Bott and Samelson [1] that it is possible to study
the homotopy theory of the free loop space of a symmetric space using tools from
differential geometry and Lie group theory. One particularly nice continuation of
these ideas is the work by Ziller [16]. He computes the integral homology of ΛM
for rank one symmetric spaces, and gives results and techniques that apply to all
symmetric spaces.

In [4] we approached the cohomology of a free loop space H∗(ΛM ; Z/2) from a
totally different angle. We used methods of cosimplicial spaces to set up a spec-
tral sequence which for simply connected M converges to this cohomology. In or-
der to compute the E2-page of the spectral sequence we needed a version of non-
commutative homology, related to André-Quillen homology of a ring. All of this is
pure homotopy theory. There is nothing in the methods that needs or uses that M
is a smooth manifold. The simplest non trivial case of the spectral sequence is when
M is a space such that H∗(M ; Z/2) is a truncated polynomial algebra. In [3] we
used this approach to compute H∗(ΛM ; Z/2) as a module over the Steenrod algebra
for such spaces.

These calculations led to a strange observation. In each case we considered, the
cohomology splits as a sum of finite dimensional modules. Moreover, we recognized
the pieces as cohomology of spaces closely related to Thom spaces of iterated Whit-
ney sums of the tangent bundle on M . We conjectured that the observed splitting
was induced by an actual splitting of the suspension spectrum of ΛM for these
spaces.

The class of simply connected spaces such that H∗(M ; Z/2) is a truncated poly-
nomial algebra is quite limited. The complex and quaternionic projective spaces,
together with the Cayley projective plane are not the only examples, but clearly
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stick out as the most interesting ones. And these are exactly the compact, simply
connected, globally symmetric spaces of rank one.

The main results of this paper is that we can prove splittings of suspension
spectra of ΛM+ for these rank one symmetric spaces. These theorems are given in
section 6. For example:

Theorem 6.1. Let p : S(τ) → CPn be the unit sphere bundle of the tangent
bundle τ on CPn. Let ξm be the vector bundle (p∗(τ))⊕(m−1) ⊕ ε on S(τ), where ε is
a one dimensional trivial bundle. Then, there is a homotopy equivalence of spaces

Σ((ΛCPn)+) ' Σ(CPn
+) ∨

∨
m≥1

ΣTh(ξm).

The proof is based on Ziller’s methods. He does not quite formulate it in this
way, but he essentially proves that for a general globally symmetric space, there
is a splitting of the homology H∗(ΛM ; Z/2). The main part of this paper consists
of enhancing this argument to the point where we can prove our conjecture on
splittings of the suspension spectra. In the tradition of Bott and Samelson, Ziller
used a mixture of differential geometry and Morse theory. The extra ingredient we
have added to this brew is a pinch of homotopy theory.

The result we obtain is clearly stronger than Ziller’s splitting of homology groups.
For instance, it follows that there are also splittings for other homology theories. It
also follows that the splitting is compatible with the action of cohomology opera-
tions.

Previously, various splitting results have been proved, for instance for the free
loop space of a suspended space. It is not clear to us that this splitting is related to
our splitting.

The proof is not completely formal. At one point, we need a construction, which
can only be performed if a certain obstruction vanishes. This obstruction lies in
the cokernel of the map of representation rings induced by a certain inclusion of Lie
groups. By calculation, this obstruction vanishes in the cases we consider.

We intend to try to extend this result to other symmetric spaces. In this case
there is no a priori guarantee that the corresponding obstructions vanish.

In Section 2 we collect some background material on equivariant differential
topology and symmetric spaces.

In section 3 we recall how Morse theory is applied to free loop spaces. There is
little original here.

In section 4 we reformulate and extend the method Bott and Samelson introduced
for using the action of the isometry group to construct interesting subspaces of the
free loop space. These spaces can be identified as homogeneous spaces. Much of
this must have been known to Ziller.

Section 5 contains the main new toy. We give methods to equivariantly split off
the top cell of the homogeneous spaces constructed in section 4. This splitting is
often only possible in the stable situation, that is after passing to the suspension
spectrum. In all cases, we can only construct the splittings if certain obstructions
vanish. Then we show how we can use such splittings to obtain stable splittings of
free loop spaces.
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In section 6, we apply the theory of the previous sections to the special cases of
projective spaces and to the Cayley projective plane. We show that for these spaces
the conditions of section 5 are satisfied, and we obtain splittings. We also identify
the summands of the splittings. They are essentially Thom spaces of bundles over
the total space of the unit sphere tangent bundle over M .

Finally, in section 7 we check that the splitting we obtain here agree with splitting
conjectured in [3].

It is a pleasure to thank J. Tornehave for many discussions, which have helped
the paper substantially.

2 Technical Recollections

We collect some background material on equivariant differential topology and dif-
ferential geometry of symmetric spaces, which we will need later.

2.1 Equivariant differential topology

We list a few basic facts about smooth actions of compact Lie groups on manifolds.
The tangent bundle of a smooth manifold M is denoted τ(M).

Theorem 2.1. Let H be a compact Lie group with a smooth and free right action on
a manifold M . Then the orbit space M/H has the structure of a smooth manifold,
such that the quotient map M →M/H is a submersion.

Proof. By [6], I.3.21 we find that the action is proper since H is compact. But then
it follows from [6], I.5.2 that the orbit space is a smooth manifold, and that the
quotient map is a submersion.

Theorem 2.2. Let G be a compact Lie group with a closed subgroup H. Assume
that M is a left H-manifold and let p : G ×H M → G/H denote the canonical
projection p([g, x]) = gH. Then there is an isomorphism of G-vector bundles

τ(G×H M) ∼= p∗(τ(G/H))⊕ (G×H τ(M)).

Proof. We have that M
ig−−−→ G ×H M

p−−→ G/H, where ig(x) = [g, x], is a fiber
bundle associated to the principal H-bundle G → G/H. Since a fiber bundle is
locally trivial, there exists an open neighborhood U of gH in G/H and a diffeomor-
phism p−1(U) ∼= U ×M which preserves the fiber. So locally our fiber bundle is
isomorphic to a product bundle M → U ×M → U and therefore we have an exact
sequence for all g ∈ G and x ∈M as follows:

0 // Tx(M)
(ig)∗

// T[g,x](G×H M)
p∗

// TgH(G/H) // 0.

In particular p is a submersion. This implies that the map into the pullback

φ : τ(G×H M)→ p∗(τ(G/H))
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is surjective. So φ has constant rank and we have a short exact sequence of G-vector
bundles

0 // ξ // τ(G×H M) // p∗(τ(G/H)) // 0,

where ξ = ker(φ). Note that the dimension of ξ equals the dimension of M .
For a compact Lie group G any smooth G-equivariant vector bundle has an in-

variant inner product ([5] VI.2.1). So the short exact sequences of G-vector bundles
splits, and we obtain an isomorphism of G-vector bundles

τ(G×H M) ∼= p∗(τ(G/H))⊕ ξ.

We only have to identify ξ.
There is a map ψ : G× τ(M) → τ(G×H M) given by ψ(g, vx) = (ig)∗(vx). By

the identity igh ◦ (h−1·) = ig for h ∈ H we have (igh)∗ ◦ (h−1·)∗ = (ig)∗ so ψ factors
through G×H τ(M) and we obtain a map over G×H M :

ψ : G×H τ(M)→ τ(G×H M).

The image of ψ is contained in ξ and the dimension of its domain vector bundle
equals the dimension of ξ. By the exact sequence of tangent spaces above, ψ is
injective and the result follows.

Theorem 2.3. If a compact Lie group G acts smoothly on a manifold M , then the
orbit Gx ⊂ M is a submanifold of M for each x ∈ M , and the map αx : G/Gx →
Gx; gGx 7→ gx is a diffeomorphism, where Gx denotes the isotropy group.

Proof. This is proposition I.5.4 of [6].

Theorem 2.4. Let H be a compact Lie group which acts smoothly on a manifold
M with a fixed point x ∈M .

1. The tangent space TxM is an H-representation and there is an equivariant
diffeomorphism φ : TxM →M onto an open neighborhood of x in M such that
φ(0) = x.

2. If H is a closed subgroup of another compact Lie group G, then we can consider
the G-equivariant section

s : G/H→ G×H M ; s(gH) = [g, x].

The image s(G/H) is a submanifold of G×H M whose normal bundle is G-
equivariantly isomorphic to the vector bundle

G×H TxM → G/H.

Proof. For the first part, see [6] I.5.6, especially the reference to Bochner.
For the second part, first note that because of theorem 2.1, the three orbit spaces

mentioned in the statement are smooth manifolds. Then consider the left action

G× (G×H M)→ G×H M,
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and the point [e, x] ∈ G×H M . The isotropy group of this point is G[e,x] = H. Ac-
cording to [6] I.5.4 we get that s is an embedding and that s(G/H) is a submanifold
which is G diffeomorphic to G/H.

We must find the normal bundle of s(G/H). The map φ of part 1. induces a
G-equivariant map

G×H TxM → G×H M

This map is a diffeomorphism on its image, and the image is an open neighborhood
of s(G/H). The normal bundle only depends on an open neighborhood of s(G/H),
and the result follows.

2.2 Differential geometry of symmetric spaces

There are several good expositions of the theory of symmetric spaces, for example
in [10] or in [15].

In section 3 we are going to study the Morse theory of closed curves on symmetric
spaces. This will lead us to questions on closed geodesic curves on symmetric spaces,
and conjugated points on such curves. So as a preliminary and motivating step, we
will say a little about this subject.

In section 6 we are going to study symmetric spaces of rank 1. We start this
paragraph by discussing these, especially the projective Cayley plane. There does
not seem to be a reference to the projective Cayley plane that covers all the prop-
erties we need, so we have to collect results from several sources. A part of this
section is written in expository style, but we give proofs or precise references for the
results we actually need in section 6.

Assume that the Lie group G is the identity component of the isometry group of
a complete Riemannian manifold M . Let x ∈M with isotropy group K = Gx. The
group K acts on S(TxM) and we let H denote the isotropy group for this action at
a fixed vector v ∈ S(TxM).

The set of unit speed geodesics γ with γ(0) = x is in one to one correspondence
with the unit sphere S(TxM). The correspondence is given by γ 7→ γ′(0). If γ′(0) = v
we see that H is the group that fixes γ pointwise.

Lemma 2.5. Assume that γ is a geodesics on M with γ(0) = x and γ′(0) = v ∈
S(TxM). Let Kt = {g ∈ K|gγ(t) = γ(t)} for t > 0.

1. If dimKt > dimH, then γ(t) is conjugated to γ(0) along γ.

2. If K acts transitively on S(TxM) and if dim(Kt) = dim(H), then γ(t) is not
conjugated to γ(0) along γ.

Proof. Let expx : TxM →M denote the exponential map. Recall from [12] theorem
18.1 that the point γ(t) = expx(tv) is conjugated to γ(0) along γ if and only if tv
is a critical point for expx. Also recall Gauss lemma: The image of the tangential
map

(expx)∗ : Ttv(St(TxM))→ Texp(tv)M

is orthogonal to the tangent vector γ′(t). Here St(TxM) denotes the set of tangent
vectors at x of length t. We explain how the lemma follows from these two remarks.
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To prove the first statement we only use the first remark. Note that the following
composite is a constant map, so it induces the trivial map of tangent spaces.

Kt/H ⊂ K/H � � // St(TxM)
expx // M.

Because of theorem 2.3, the differential of the map Kt/H ⊂ K/H ↪→ St(TxM) is
injective. It follows that if dimKt > dimH, we obtain a non-trivial element in the
kernel of the differential of the exponential map, so γ(tv) is conjugated to γ(0).

We now consider the second statement of the theorem. If γ(t) is conjugated
to γ(0), the differential at tv of the exponential map expx : TxM → M has a
non trivial kernel. Write a nontrivial element in this kernel as w + s(tv), where
w ∈ Ttv(St(TxM)). By Gauss lemma it follows that s = 0, so that w 6= 0. We

conclude that the differential at tv of the composite St(TxM) ⊂ TxM
expx−−−−→M has

a non-trivial kernel. If K acts transitively on the unit tangent sphere, by theorem
2.3 the action induces a diffeomorphism K/H → S(TxM). A non-trivial element
of the kernel of the differential defines a 1-parameter subgroup of K/H which fixes
γ(t) (using 2.3 again), so dim(Kt) > dim(H).

Remark 2.6. In a symmetric space, the relation between the isometry group and
Jacobi vector fields is even better, since the symmetry group is big. We will see a
version of this improved correspondence in section 4, especially proposition 4.5 and
theorem 4.6.

Definition 2.7. A Riemannian manifold M is isotropic, if the isometry group of M
acts transitively on the total space of the unit sphere bundle of the tangent bundle.

The isotropy condition is quite constraining. It is equivalent to the condition that
M is an Euclidean space or a symmetric space of rank 1, and it is also equivalent
to the condition that the group G acts transitively on pairs of points with a fixed
distance. These equivalences are proved in [15] corollary 8.12.9.

According to [15] 8.12.2 this class includes spheres, complex and quaternionic
projective spaces and the Cayley projective plane, but no other compact, simply
connected spaces.

The purpose of the following short general discussion is not to cover all rank 1
spaces simultaneously, but rather an attempt to explain the facts we will need in
6.3 about the most exotic of these spaces, the Cayley projective plane.

Let M be a compact globally symmetric space of rank 1 and dimension m. Since
it is compact, it has a finite diameter. By compactness, there exists two points on
M with distance equal to the diameter. By the Hopf-Rinow theorem, these two
points are joined by a minimal geodesic of length equal to the diameter of M .

Define the antipodal set of x ∈ M by Ax = {y ∈ M |d(x, y) = diam(M)}.
according to [10] Ch. IX §5, the isotropy group K = Gx acts transitively on Ax so
Ax is a compact submanifold of M , diffeomorphic to K/K1 where K1 is the isotropy
group of a some point y ∈ Ax (cf. theorem 2.3).

Lemma 2.8. A closed geodesic γ(t) on M has length 2mL for some positive integer
m. The point γ(L) is a point with maximal distance from γ(0), so that diam(M) = L.
There are at most three conjugacy classes of isotropy groups of pairs of points in M ,
namely H ⊂ K1 ⊂ K.
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1. If t is not an integer multiple of L, then γ(t) is not conjugated to γ(0) along
γ.

2. γ(2kL) is conjugated to γ(0) along γ for any integer k (and γ(2kL) = γ(0)).

3. If H has positive codimension in K1, then for every integer k the point γ((2k+
1)L) is conjugated to γ(0) along γ.

Proof. There exist a simple closed geodesics, and the simply closed geodesics are all
of the same length 2L by [10] proposition IX.5.3. Because G acts transitively on
geodesics, all closed geodesics will run through a simple closed geodesics an integral
number of times. This shows that since any two points are connected by a minimal
geodesic, the diameter of M is at most L.

The exponential map is a diffeomorphism from the open ball in the tangent space
BL(x) = {v ∈ TxM ||x| < L} onto the open set M \ Ax according to [10] theorem
IX.5.4. In particular, this shows that the diameter of M is exactly L.

Since the exponential map is equivariant, it follows that the isotropy subgroup
of K fixing a point in in BL(x) \ {x} is exactly H.

Since K acts transitively on the unit tangent sphere at x ∈M , lemma 2.5 tells us
that a point γ(t) cannot be conjugated to γ(0) unless either t = 2kL or t = (2k+1)L
for some integer k.

The isotropy group of γ(2kL) = γ(0) is K, and lemma 2.5 tells us that these
points are conjugated to γ(0).

Finally, the points γ((2k+1)L) are conjugated to γ(0) if and only if the dimension
of the isotropy group of γ(L) is bigger than the dimension of H. So, they are all
conjugate, or none of them is. And by lemma 2.5, they are conjugated if and only
if the dimension of K1 is strictly greater than the dimension of H.

Remark 2.9. Actually, we will always have that dim(K1) > dim(H).

We now specialize this to the Cayley projective plane OP2. The exotic Lie group
F4 contains Spin(9) as a subgroup. The homogeneous quotient OP2 ∼= F4/Spin(9)
is an symmetric space of rank 1. This is shown in [15] theorem 8.12.2. The isotropy
group Spin(9) acts on the tangent space TxOP2. This is a real 16 dimensional
representation.

Remark 2.10. We won’t need to determine which representation of Spin(9) this is.
But one can show that it is the spinor representation R9 of Spin(9) (as claimed in
[15], proof of theorem 8.12.2).

What we will need are the following facts.

Theorem 2.11. A minimal closed geodesic γ on OP2 has exactly two points γ(L)
and γ(2L) conjugated to γ(0). Let K2 be the isotropy group of γ(0), and K1 be the
subgroup of K2 which fixes the point γ(L). There are group isomorphism φ1 : K1 →
Spin(8) and φ2 : K2 → Spin(9) so that the composite

Spin(8)
φ1

// K1 ⊂ K2

φ−1
2 // Spin(9)

is the standard inclusion.
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Proof. The calculations of isotropy groups is given in [2] Ch. 1, §5, (3). The model
for OP2 used in this article is Freudenthals model, see also [8]. Points in OP2 are
identified with projections in a Jordan algebra of 3× 3 matrices over the octonions.
They identify this space with the unique symmetric space of type F4/Spin(9) ([2]
Ch. 3, §10, at the end of the paragraph).

They pick three points E1, E2, E3 with the property that E1 +E2 +E3 = 1. They
compute that the group fixing E1 is Spin(9). The group fixing E1 and E2 actually
fixes all three of them since E1 + E2 + E3 = 1 is invariant under the action of the
isotropy group F4. In Ch. 1, §5, (3) they compute this group to be Spin(8), and
that the inclusion map of this in Spin(9) is the standard inclusion. The fact that
this is the standard inclusion is important to us. This was certainly also known to
Freudenthal. A more detailed argument for that infinitesimally the inclusion of root
systems is the correct one is given in [8] 4.12. But this information determines the
inclusion.

It follows from lemma 2.8 that there are at most two points conjugated to γ(0).
Recall that dim(Spin(n)) = n(n−1)/2. Since S(Tx(OP2)) ∼= Spin(9)/H we have that
dim(OP2)− 1 = dim(Spin(9))− dim(H) such that dim(H) = 21. Thus, dim(K1) =
dim(Spin(8)) = 28 > dim(H), and by lemma 2.8 we conclude that both γ(L) and
γ(2L) are conjugated to γ(0).

Remark 2.12. We are actually not going to need the following results, so we state
them without proof. The group H is isomorphic to Spin(7). The inclusion H ⊂
K1 is not standard. It is the composite of the usual inclusion with the “triality”
automorphism of Spin(8);

Spin(7) ⊂ Spin(8)
θ−−→ Spin(8).

The inclusion H ⊂ K2 is the composite

Spin(7) ⊂ Spin(8)
θ−−→ Spin(8) ⊂ Spin(9).

The space K1/H is the unit sphere in the standard representation of Spin(7), and
the space K2/H is the unit sphere in the tangent representation of Spin(7) at [e] ∈
F4/Spin(9). As we mentioned above, the Spin(9) representation f4/spin(9) is the
spin representation.

3 Morse theory and geodesics on symmetric spaces

In this section we collect various results. The Morse theory on free loop spaces is a
variation on Morse theory of based loop spaces, developed by Bott, Samelson and
later Klingenberg. The specialization of this theory to the particularly agreeable
case of symmetric spaces is mostly due to Bott, Samelson and Ziller.

3.1 Morse theory of the free loop space

There is a version of Morse theory for the free loop space on a compact Riemannian
manifold. In this subsection, we use Klingenberg’s book [11] as a standard reference.
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In particular, we define the free loop space on a Riemannian manifold M as
the space of absolutely continuous maps γ : S1 → M , such the the norm of the
derivative |γ′| is in L2(S1,R). This space is homotopy equivalent to the space of
smooth maps (or to the space of continuous maps). For details, see [11] §1.1 and
§1.2.

The energy functional E is a C∞-function on ΛM , and its critical points are the
geodesic curves. For a discussion of this in the Hilbert manifold setting, see [11] §1.3.
The simplest situation is when the critical points satisfy the Morse non-degeneracy
condition. However, we will be looking at cases where the metric on M has a positive
dimensional Lie group as symmetries. In this case, the symmetry gives the critical
points a strong tendency not to be isolated.

In this situations, sometimes the critical points form critical smooth submanifolds
of ΛM . Let N be one of these critical submanifolds. We will assume that we are in
the special case where the adjoint S1 ×N → M of the inclusion map i : N ↪→ ΛM
possess a subdivision 0 = t0 < t1 < · · · < tk = 1 such that [tj−1, tj] × N →
M is smooth for j = 0, 1, . . . , k. That is, each loop is assumed to be piecewise
differentiable. By continuity of the derivative, all points in the same component of
the critical manifold will have the same energy.

The inclusion of N induces a tangent map i∗ : Tγ(N) → Tγ(ΛM). The tangent
vector space Tγ(ΛM) can be considered as the space of L2-vector fields along γ.
Integration along γ induces an inner product on Tγ(ΛM), eventually induced from
the metric on M .

There is a “normal bundle” ξ defined on each component N . The fiber of ξ at
γ ∈ N is the vector space of periodic vector fields along γ.

Assume that the critical manifolds satisfy the Bott non-degeneracy condition.
This says that the null space of the Hessian of the energy functional is exactly the
tangent directions of N , that is, the image of i∗. The metric on Tγ(ΛM) induces
a splitting (of vector bundles over N) ξ ∼= ξ− ⊕ ξ+. The Hessian of the energy
function is positive definite on ξ+, and negative definite on ξ−. The bundle ξ+ is
infinite dimensional, but ξ− is a finite dimensional vector bundle.

Let ΛkM be the subspace of loops of energy less than or equal to k. Assume
that the critical points of level k form a critical manifold N , and that there are no
critical values except k in the interval (k−ε, k+ε) where ε > 0. Also assume that all
the critical points in E−1([k− ε, k+ ε]) are situated on a connected, non-degenerate
critical manifold N . This manifold will then be isolated.

The main statement of Morse theory on the free loop space is [11] 2.4.10:

Theorem 3.1. There is a homotopy equivalence

Λk+εM ' Λk−εM ∪σ D(ξ−)

for some gluing map σ : S(ξ−)→ Λk−εM .

Of course, we can handle the case of several isolated critical manifolds in the same
fashion. Assume that k is the only critical value of E in the interval (k − ε, k + ε).
Suppose that the critical point with critical value k is a union of non degenerate
critical manifolds Nν , each with a negative bundle ξ−ν . Then we have a homotopy
equivalence

Λk+εM ' Λk−εM ∪σν D(ξ−ν ).
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We will need more precise information about the gluing map. Let η be a vector
bundle over N . We let Do(η) denote the open unit disk bundle and s : N → Do(η)
the 0-section. Assume that f : Do(η) → ΛM is a continuous map, such that
f ◦s = i and such that the adjoint S1×Do(η)→M is smooth in the Do(η) direction
and piecewise smooth in the S1 direction (with respect to some subdivision of the
subdivision as we used for the inclusion map i).

The energy functional induces a differentiable map E ◦ f : Do(η)→ R such that
each point on N is a critical point.

Lemma 3.2. Assume that the dimension of η equals the dimension of the negative
bundle ξ−. Assume also that the Hessian of E ◦ f is negative definite on each fiber
of Do(η)→ N . Then, there is a homotopy equivalence

Th(η) ' Λk+εM/Λk−εM.

Proof. By assumption, N is a non-degenerate critical manifold for the function E◦f .
For γ ∈ N we consider the restriction f | : Do(η)γ → ΛM to the fiber over γ. The
differential of this restriction is an injective map f |∗ : ηγ → TγΛM . These maps
combine to an inclusion of vector bundles η ⊂ ξ. The composition with projection
onto the negative bundle has trivial kernel, since the Hessian of E ◦ f is positive
definite on ξ+, but negative definite on η. Since we are assuming that η and ξ− have
the same dimension, this composite is an isomorphism of vector bundles.

By the proof of 2.4.11. in [11] one has a homotopy equivalence

Th(ξ−) ' Λk+εM/Λk−εM

and by the isomorphism above we have Th(η) ∼= Th(ξ−).

3.2 The free loop space of globally symmetric spaces

From now on, let M be a compact globally symmetric space. Due to the existence
of a large isometry group I(M), Morse theory has some very special properties in
this situation.

In [16] a space of closed geodesic curves on M is constructed. The construction
builds on [1]. We recall the construction, and make some comments on it. Ziller
computes the critical submanifolds, and the “negative” bundles over them. He
shows that the energy functional satisfies the Bott-Morse non-degeneracy condition
on these manifolds.

Let γ : [0, a] → M be a geodesic parametrized by arc length which is also a
closed curve. It turns out ([16] page 5) that the tangent vectors at the endpoint
agree, γ′(0) = γ′(a), so that γ is actually a periodic geodesic.

The critical submanifolds are determined by geodesic loops γ : [0, 1] → M . Let
G = I0(M) be the identity component of the isometry group and let H ⊂ G be
the subgroup that fixes γ pointwise. Then the orbit Gγ is diffeomorphic to G/H
(theorem 2.3).

In [16] the following theorem is proved (Theorem 2):

Theorem 3.3. Let M be a globally symmetric space. The manifold Gγ is a non-
degenerate critical manifold in ΛM .
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Obviously every critical point of E is contained in one of these critical manifolds,
so we can apply theorem 3.1 to each isolated critical point of the energy functional on
ΛM . It follows that ΛM has a filtration, with filtration quotients the Thom spaces
of the negative bundles Th(ξ−). The filtration is indexed by the value of the energy
functional on the components of the critical sets. If there are several components
of the same energy level, we chose an order of those, so that we can reindex our
filtration by the natural numbers, and the filtration quotients are exactly Th(ξ−).

This means that we have the following:

Theorem 3.4. Let M be a compact globally symmetric space. There is a filtration

· · · ⊆ F ν ⊆ F ν′ ⊆ · · · ⊆ ΛM

indexed by the G-equivalence classes of geodesic loops. These equivalence classes
are ordered in such a way that the energy is weakly increasing. For two consecutive
steps F ν′ ⊆ F ν in the filtration, there is a homotopy equivalence F ν/F ν′ ' Th(ξ−ν )
where ξ−ν is the negative bundle over the critical submanifold indexed by ν.

4 The Bott-Samelson map

This paragraph is a reformulation of [16] §3.1. We intend to analyze closer how F ν

is built out of F ν/F ν′ and Th(ξ−ν ). The tool is the construction of a subspace of
broken closed geodesics inside F ν . The construction is due to Bott and Samelson
[1].

4.1 Bott-Samelson K-cycles

In [1] I 4.4 the so called K-cycles are defined as follows:

Definition 4.1. Let G be a compact Lie group with a closed subgroup H. Let
K• = (K1, . . . ,Km) be an m-tuple of closed subgroups such that H ⊂ Ki ⊂ G for
1 ≤ i ≤ m. Define a right action of Hm = H×· · ·×H on K1×· · ·×Km as follows:

(c1, . . . , cm) ∗ (a1, . . . , am) = (c1a1, a
−1
1 c2a2, a

−1
2 c3a3, . . . , a

−1
m−1cmam).

The K-cycle is the associated orbit space

E(K•;H) = (K1 × · · · ×Km)/Hm.

Lemma 4.2. With the above notation one has

1. The space E(K•;H) is a smooth manifold.

2. The group K1 acts from the left on this manifold, by the following formula:

k · [c1, c2, . . . , cm] = [kc1, c2, . . . , cm].
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3. There is an inductive formula

E(K1, . . . ,Km;H) ∼= K1 ×H E(K2, . . . ,Km;H)

where the right action of H on K1 is by right multiplication and the left action
of H on E(K2, . . . ,Km;H) is via 2. In particular, there is a fiber bundle
E(K1, . . . ,Km;H)→ K1/H with fiber E(K2, . . . ,Km;H).

4. The fiber bundle has a section

s : K1/H→ E(K1, . . . ,Km;H) ; kH 7→ [k, e, . . . , e].

Proof. An easy computation shows that the action from definition 4.1 is free. The
group Hm is compact. Use theorem 2.1.

One easily checks that the action in 2. is well-defined. In 3. one checks that the
identity on K1× · · ·×Km induces maps in both directions. Finally, (kh, e, . . . , e) =
(k, e, . . . , e) ∗ (h, . . . , h) for h in H, which shows that the section in 4. is well-
defined.

Now assume that M is a compact smooth Riemannian manifold. Then the
identity component of the isometry group G = I0(M) is compact. For a point p in
M we write Gp = {g ∈ G|gp = p} for the isotropy group. By [6] I.3.5 one has that
Gp is a closed subgroup of G.

Let γ : [0, 1] → M be a geodesic loop. Choose 0 < t1 < t2 < · · · < tm < 1 such
that γ(t1), . . . , γ(tm) are the points conjugate to γ(0) along γ.

Definition 4.3. Define the following closed subgroups of G:

K = Gγ(0), Ki = Gγ(0) ∩Gγ(ti) for 1 ≤ i ≤ m, H =
⋂
t∈[0,1]

Gγ(t).

Furthermore, let Γ(G, γ) denote the smooth manifold

E(G,K•;H) = E(G,K1,K2, . . . ,Km;H),

and Γ(γ) the fiber E(K•;H).

We will now introduce the Bott-Samelson map. Note that our formula is different
from the one in [16] page 14. We have an extra G factor. Furthermore, Ziller’s
formula has a minor error. It is not compatible with the action which he defines a
few lines before.

Definition 4.4. B̃Sγ : G×K1 × · · · ×Km → ΛM is the map given by

B̃Sγ(g, c1, . . . , cm)(t) =



gγ(t) , 0 ≤ t ≤ t1

gc1γ(t) , t1 ≤ t ≤ t2
...

...

gc1 . . . cm−1γ(t) , tm−1 ≤ t ≤ tm

gc1 . . . cm−1cmγ(t) , tm ≤ t ≤ 1.
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Note that the geodesic pieces fit together such that B̃Sγ takes values in ΛM as
stated.

Proposition 4.5. The map B̃Sγ is constant on Hm+1-orbits so it induces a map

BSγ : Γ(G, γ)→ ΛM

which is called the Bott-Samelson map. This map is G-equivariant where G acts
from the left on Γ(G, γ) via Lemma 4.2, 2. and from the left on ΛM by (g, η) 7→ gη.

Proof. This follows by an easy direct computation.

By the previous lemma, we have a fiber bundle Γ(G, γ)→ G/H with fiber Γ(γ).
The fiber is mapped to piece wise geodesic loops with the same initial point γ(0)
as γ by the Bott-Samelson cycle map. The section s : G/H → Γ(G, γ) defines a
submanifold of Γ(G, γ). The image of this submanifold under the Bott-Samelson
map is Gγ, that is the critical submanifold containing γ.

Any other curve in the image of the map is not a geodesic, but a broken geodesic.
In particular, the other critical points for the energy functional is the image of the
translates of γ itself. Note that all closed curves in the image of BSγ will have the
same energy.

4.2 The deformation and the normal bundle

We can deform the map BSγ a little, as done in [16] §3, or [1] §10. We fix a suitably
small positive number ε. In dependence of this number, we change the curves in the
vicinity of a a corner γ(ti). Bott and Samelson replace the curve between γ(ti − ε)
and γ(ti + ε) with the unique shortest geodesic between them. This exists, because
we did chose ε small enough.

We obtain a new map
BSγ : Γ(G, γ)→ ΛM.

It agrees with BSγ on the geodesics, that is on the image of the section s.
Bott and Samelson do not discuss the parametrization of the curve we obtain,

since they are interested in the length functional L. We use the energy functional
E, so the parametrization matters to us. We parametrize all the curves proportional
to arc length.

If x ∈ Γ(G, γ) \ s(G/H), then BSγ(x) will be a closed curve with strictly lower
energy than γ. Moreover, the length functional composed with BSγ restricted to
Γ(γ) takes on a non-degenerate maximum at [e, . . . , e].

Because of the relation E(γ) = 1
2
L2(γ)/Vol(S1), which is valid for the curves in

the image of BSγ since they are parametrized proportional to arc length, one also
has a non-degenerate maximum for the energy functional.

A formula on page 14 of [16] states that

λ(c) =
∑

dimKi/H, (1)

where λ(c) is Ziller’s notation for the dimension of the negative bundle. We have
used our notation on the right hand side. By this formula we have:
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Theorem 4.6. The dimension of Γ(γ) agrees with the dimension of the negative
bundle.

We can now prove an addendum to Theorem 3.4.

Theorem 4.7. Let M be a compact symmetric space. For two consecutive steps
F ν′ ⊂ F ν in the filtration of ΛM and γ ∈ ν, we have a diagram which commutes up
to homotopy

Γ(G, γ) c //

BSγ

��

Th(ξ−ν )

'
��

F ν′ // F ν // F ν/F ν′

The map c is the Thom collapse map that belongs to the embedding of the critical
manifold of geodesic loops G/H ↪→ Γ(G, γ).

Proof. It follows from 4.6 and the statement that the energy function has a non-
degenerate maximum, that we can apply lemma 3.2

To get further, we want to determine the normal bundle of G/H in Γ(G, γ). We
now return to the general setting from Definition 4.1. The point e = [e, . . . , e] ∈
E(K•;H) is a fixed point of the left action of H via Lemma 4.2, 2. In particular,
the tangent space of E(K•;H) at this point is an H representation.

Theorem 4.8. Let h, ki be the Lie algebras of the groups H,Ki respectively. Con-
sider these as H-representations with the adjoint action. The H representation
V := TeE(K•;H) is equivalent to the H-representation

k1/h⊕ k2/h⊕ · · · ⊕ km/h.

The normal bundle of s(G/H) ⊂ E(G,K•;H) is the bundle G×H V → G/H.

Proof. We prove the first statement by induction on m. If m = 1, we ask for
the tangent space at [e] of K/H. Let K̃ be K considered as a manifold with the
conjugation left action of H. The map K̃→ K/H given by k 7→ kH is H equivariant.
The differential of this map at the unit element e ∈ K̃ is surjective. Since e ∈ K̃ is
a fixed point, the source of the differential is a K-representation. By definition, it is
exactly k, with the adjoint representation. The kernel of the differential is h. This
finishes the proof of the induction start m = 1.

The induction step is a consequence of the following general argument: Let K
be a compact Lie group with a closed subgroup H. Suppose that H act smoothly
from the left on a manifold M . Assume that x ∈M is an H fixed point. The orbit
space K×HM is a left H space and [e, x] is a fixed point for this action. By 2.2 the
tangent H-representation at [e, x] is isomorphic to k/h⊕ Tx(M).

This finishes the proof of the first statement of the theorem. The second state-
ment follows from theorem 2.4.
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5 Splitting fixed points

5.1 Definition and relation to Thom spaces

We now consider the following general situation. Let H be a compact Lie group
which acts from the left on a based space X (such that the base point is a fixed
point). Assume that x ∈ X is a fixed point different from the basepoint. Also
assume that there is an H-invariant open neighborhood Ux of x such that Ux is
diffeomorphic to a manifold and the restriction of the action map H × Ux → Ux is
smooth.

This assumption is satisfied if X = M+ where M is a smooth manifold with a
differentiable action of H and a fixed point x ∈ M by theorem 2.4.1. This is our
main example. But we want to keep the option of changing the topology of M away
from the fixed point.

The tangent space TxX makes sense, and is a representation of the group H.
Again by 2.4.1 there is a neighborhood of x which is equivariantly diffeomorphic to
TxX. Collapsing to this neighborhood defines an H-equivariant map from X to the
one point compactification of the tangent space:

cx : X → (TxX)+.

Definition 5.1. We say that the fixed point x is split up to m-fold suspension if
the suspended map Σmcx is a surjective retraction in the H-equivariant category.
That is, there is a map s : Σm(TxX)+ → ΣmX such that (Σmcx) ◦ s is equivariantly
homotopic to the identity.

We say that the fixed point x is stably split, if there is a finite dimensional H-
representation V and the equivariant map V + ∧ cx is a surjective retraction in the
H-equivariant category.

The main example that we will consider is E(K•;H) with the left H action
specified by 2. in lemma 4.2, and where x = e = [e, . . . , e]. We are going to
give conditions on the groups Ki and H that ensures that e splits stably or up to
suspension.

Now assume that H-acts smoothly from the left on the manifold M , and that
H ⊂ G is an inclusion of Lie groups. Then, G ×H M is a left H space with
the action h(g,m) = (hg,m). If x ∈ M is a fixed point for the action of H, it
defines an embedding G/H ↪→ G ×H M . Let ν(G/H) be the associated normal
bundle. By theorem 2.4.2 this normal bundle is the same as the vector bundle
G×H (TxM)→ G/H.

Lemma 5.2. Suppose that the fixed point x ∈ M is m-fold suspension split. Then,
the m-fold suspension Σmcx of the Thom collapse map

cx : (G×H M)+ → Th(ν(G/H))

is split up to homotopy.

Proof. The Thom collapse map can be identified with the map

(G×H M)+ → G+ ∧H (TxM)+.
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Suppose that s : Σm(TxM)+ → ΣmM+ is a suspension splitting. Then we can split
the suspension of the collapse map by

Σm(G+ ∧H (TxM)+) ∼= G+ ∧H Σm(TxM)+

Id∧s−−−−→ G+ ∧H (ΣmM+) ∼= Σm(G+ ∧H M+) ∼= Σm(G×H M)+ .

This proves the lemma.

There is a corresponding statement in the stable case. But to prove it, we need
the following neat result about representations of compact Lie groups.

Theorem 5.3. Let G be a compact Lie group with a closed subgroup H. Suppose
that V is a finite dimensional representation of H. There is a finite dimensional
representation W of G, such that V is a subrepresentation of the restriction of W
to H.

For a proof of this, see for instance [7], corollary 4.7.2. The main ingredient of
this proof is the Peter-Weyl theorem. Since representations of compact Lie groups
are semisimple, we can actually find a finite dimensional H-representation V ′ such
that V ⊕ V ′ is the restriction of a G-representation.

Here is a stable splitting result. Assume that H acts smoothly on the manifold
M .

Lemma 5.4. Assume that the fixed point x ∈ M is stably split. Then there exist a
natural number m such that the suspension of the collapse map

Σmc : Σm(G×H M)+ → ΣmTh(ν(G/H))

is split up to homotopy.

Proof. Let s : V + ∧ (TxM)+ → V + ∧M+ be a splitting. Pick a finite dimensional
H-representation W (using theorem 5.3), such that W ⊕ V is the restriction of a
G-representation. Then

W+ ∧ V + ∧ s : W+ ∧ V + ∧ (TxM)+ → W+ ∧ V + ∧M+

is also a splitting which gives a map

G+ ∧H (W ⊕ V )+ ∧ (TxM)+ → G+ ∧H (W ⊕ V )+ ∧M+. (2)

On the other hand, if X is any pointed space with an action of H, we have a
homeomorphism

G+ ∧H ((W ⊕ V )+ ∧X)→ (W ⊕ V )+ ∧ (G+ ∧H X)

(g, v, x) 7→ (gv, g, x).
(3)

Non-equivariantly we have Sm ∼= (W ⊕ V )+ for some m. Applying the homeomor-
phism (2) to the source and to the target of the map (1) gives us a splitting

ΣmTh(ν(G/H)) ∼= ΣmG+ ∧H Tx(M)+ −→ ΣmG+ ∧H M+
∼= Σm(G×H M)+.

This proves the lemma.
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5.2 Existence of splittings

Here is an elementary example of a fixed point which is 1-fold split.

Example 5.5. Let V be a finite dimensional real inner product space, and let H
be a closed subgroup of the group of orthogonal transformations of V . We have
an action H × S(V ) → S(V ) where S(V ) denotes the unit sphere of V . Assume
that x ∈ S(V ) is a fixed point. Then, x splits up to suspension by the following
argument:

The collapse map takes the form cx : S(V )+ → (TxS(V ))+ and we have a
homotopy equivalence (TxS(V ))+ ' S(V ). So up to homotopy, the collapse map is
part of a cofibration sequence

S0 x // S(V )+
c̃x // S(V ).

Here the first map sends the non-basepoint of S0 to the point x ∈ S(V ) and the last
S(V ) has x as basepoint. We claim that the map Σ(c̃x) is an equivariant retraction.

To see this, we note that one can identify it with the quotient map

q : S(V ⊕ ε)/{±(0, 1)} → S(V ⊕ ε)/{(ax, b) | a2 + b2 = 1, a ≥ 0},

where ε denotes the trivial one dimensional H-representation. Consider the following
quotient map:

p : S(V ⊕ ε)→ S(V ⊕ ε)/{±(0, 1)}.
The composite q ◦ p of the two maps is a quotient map given by dividing out a
contractible subspace (actually, an interval). Since the inclusion of the subspace is
an equivariant cofibration, this composite is an equivariant homotopy equivalence.
Composing the homotopy inverse of this homotopy equivalence with the map p, we
get a homotopy left inverse of q and thus also of Σc̃x as required.

Here is a more general, stable result.

Lemma 5.6. Let G be a compact Lie group with a closed subgroup H and let W be
a finite dimensional representation of H.

1. Assume that [e] ∈ (G/H)+ is stably split. If the class [W ] is contained in the
image of the restriction map RO(G) → RO(H) of real representation rings,
then the H fixed point [(e, 0)] ∈ G+ ∧H W+ is stably split.

2. Assume that [e] ∈ (G/H)+ is m-fold suspension split. If the H-representation
T[e](G/H)⊕W ⊕ εm extends to a G-representation, then [(e, 0)] ∈ G+∧HW

+

is m-fold suspension split.

Proof. 1. The condition on W says that there are G-representations U,U ′ so
that after restricting the action to the subgroup H we have an isomorphism of
H-representations W ⊕ U ∼= U ′.

The point [e] ∈ (G/H)+ is stably split so there exist an H-representation V and
a splitting s of the map V + ∧ c[e] : V + ∧ (G/H)+ → V + ∧ (T[e](G/H))+. For any
manifold M and vector space E one has an isomorphism for x ∈M as follows:

T[x,0](M+ ∧ E+) ∼= Tx(M)⊕ E. (4)
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By this isomorphism and the map s∧W+ ∧U+ one gets an H-equivariant splitting
of the map

V + ∧ (G/H)+ ∧W+ ∧ U+
V +∧c[e,0,0]

// V + ∧ (T[e,0,0]((G/H)+ ∧W+ ∧ U+))+ .

This splitting will become useful in a while.
Consider the composite of the following two G-homeomorphisms:

θ : (G+ ∧H W+) ∧ U+
∼=
φ

// G+ ∧H (W+ ∧ U+) ∼=
ψ

// (G/H)+ ∧W+ ∧ U+ .

Here φ is given by φ([[g, w], u]) = [g, [w, g−1u]] and the map ψ exists since W ⊕U is
actually the restriction of a G-representation. Note that we may consider θ a local
diffeomorphism near the point p = [e, 0, 0].

We have a homotopy commutative diagram, where horizontal maps are homeo-
morphisms:

V + ∧ (G+ ∧H W+) ∧ U+ V +∧θ //

V +∧cp
��

V + ∧ (G/H)+ ∧W+ ∧ U+

V +∧cθ(p)

��

V + ∧ Tp((G+ ∧H W+) ∧ U+)+ V +∧dpθ
// V + ∧ Tθ(p)((G/H)+ ∧W+ ∧ U+)+ .

The right vertical map has a splitting s ∧W+ ∧ U+ as remarked above. So the left
vertical map also has a splitting. Using (4) on the lower left corner of the diagram,
the result follows.

2. The m-fold suspension case is proved in the same way, using εm in place of
U .

We can now prove the main result on existence of splittings.

Theorem 5.7. Let G be a compact Lie group, and H ⊂ G a closed subgroup. Let
H act on a manifold M with a fixed point x.

1. If the H fixed points [e] ∈ G/H and x ∈ M are both stably split then the H
fixed point [e, x] ∈ G×H M is also stably split.

2. If x ∈ M and [e] ∈ G/H are both m-fold suspension split, and if the H-
representation Tx(M)⊕εm extends to a G-representation, then [e, x] ∈ G×HM
is also m-fold suspension split.

Proof. 1. Let W = TxM be the tangent representation of H. The collapse map
M+ → W+ is a diffeomorphism in a neighborhood of x, so we have a diagram

G+ ∧H M+
Id∧Hcx //

c[e,x]

��

G+ ∧H W+

c[e,0]

��

(T[e,x](G×H M))+ ∼= // (T[e,0](G+ ∧H W+))+
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The right vertical map is stably split by lemma 5.6. The upper horizontal map is
stably split, since cx is by assumption. It follows that the left vertical map is stably
split.

2. If cx is m-fold suspension split, we see that the right and upper maps are split
in the diagram.

Sm ∧G+ ∧H M+
//

��

Sm ∧G+ ∧H W

��

Sm ∧ (T[e,x](G×H M))+ ∼= // Sm ∧ (T[e,0](G+ ∧H W+))+

The result follows.

5.3 Relations to stable equivariant framings

A slightly different approach to the existence of stable splittings is to construct them
from stable framings. In the non-equivariant case, it is known that the existence of
a stable splitting of the collapse map M+ → (TxM)+ is equivalent to the existence
of a stable fiber homotopy trivialization of the tangent sphere bundle. We use an
equivariant version of this idea.

Assume that the compact Lie group H acts smoothly on the compact manifold
M . If V is a representation of H and X is an H-space, let εV (X) denote the trivial
H-vector bundle prX : X × V → X.

Definition 5.8. We say that M is stably framed if there are H- representations V
and W , such that there is an equivalence of H-vector bundles

τ(M)⊕ εV (M) ∼= εW (M).

Lemma 5.9. If M is stably framed, and x ∈ M is any fixed point, then x is stably
split.

Proof. There is an equivariant embedding M ↪→ U into some H- representation
as in [5] theorem VI.4.2. Since M is stably framed, after possibly replacing the
embedding by the composite M ↪→ U ⊂ U ⊕W we can assume that the normal
bundle ν(M) of M in U is a trivial bundle ν(M) ∼= εV (M). The Thom collapse map
U+ → Th(ν(M)) gives us a map

V + ∧ (TxM)+ ∼= (V ⊕ TxM)+ ∼= U+ −→ Th(ν(M)) ∼= Th(εV (M)) ∼= V + ∧M+.

This map defines the required splitting for the fixed point x.

Suppose that H is a closed subgroup of another compact Lie group K.

Lemma 5.10. Assume that K/H is stably framed as an H-space. Also suppose
that M is stably framed as an H-space, such that τ(M)⊕ εV (M) ∼= εW (M). Assume
finally that the element [W ]− [V ] ∈ RO(H) is contained in the image of the natural
restriction map RO(K)→ RO(H). Then K×H M is stably framed as an H-space,
where the action of H is given as the restriction of the K-action.
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Proof. For an H-space X we consider the K-space I(X) = K ×H X. Similarly,
for an H-vector bundle ξ over X, we consider the K-vector bundle I(ξ) = K×H ξ
over I(X). Let π : M → ∗ be the map to a point. Then εV (M) = π∗(εV (∗)). The
tangent bundle of M is an H-vector bundle, so we can consider the K-vector bundle
I(τ(M)) = K ×H τ(M) → K ×H M . The representations V and W determine H-
equivariant vector bundles I(εV (∗)) = K×HV → K/H and I(εW (∗)) = K×HW →
K/H.

Our assumption on τ(M) says that as H-vector bundles,

(K×H τ(M))⊕ (K×H εV (M)) ∼= (K×H εW (M)).

But
K×H εV (M) = I(εV (M)) = I(π∗(εV (∗))) = I(π)∗(I(εV (∗)))

and similarly for W , so we obtain

I(τ(M))⊕ I(π)∗(I(εV (∗))) ∼= I(π)∗(I(εW (∗))). (5)

We use theorem 5.3 to replace V with a representation which is the restriction
of a K-representation. The condition on [W ] − [V ] ∈ RO(H) still holds, and it
implies that there are K-representations U1 and U2, such that V ⊕ U1

∼= W ⊕ U2

as H-representations. Replacing V and W by V ⊕ U1 and W ⊕ U2, we can assume
that both V and W are restrictions of K-representations. But then, I(εV (∗)) and
I(εW (∗)) are trivial as H-vector bundles, and even as a K-vector bundles. Explicitly,
a trivialization for I(εV (∗)) is given by K×HV → K/H×V where [g, v] 7→ ([g], gv).

It now follows from equation (5) that I(τ(M)) is stably framed.
Finally, we use theorem 2.2 and write

τ(K×H M) ∼= I(τ(M))⊕ I(π)∗(τ(K/H)).

A pullback of a framed bundle is framed. So we see that I(π)∗(τ(K/H)) is sta-
bly framed. Since both summands are stably framed H-vector bundles, we have
equivariantly stably framed the tangent bundle of K×H M .

Remark 5.11. The condition on the representations V , W in the lemma is needed
as the following example shows: Let H = C2 = 〈T 〉 be the cyclic group of order two
inside K = S1 and let H act on R2 by T · (x, y) = (−x, y). Let M ⊂ R2 be the
unit sphere. Then M is stably H-framed, but H acts non-orientably on M , so that
K ×H M is not orientable. This means that it cannot be even non-equivariantly
stably framed.

Remark 5.12. Homogeneous spaces K/H are not always stably framed. For instance,
most projective spaces like

RPn =
O(n+ 1)

O(n)×O(1)
, CPn =

U(n+ 1)

U(n)× U(1)
, HPn =

Sp(n+ 1)

Sp(n)× Sp(1)

have non trivial Stiefel Whitney classes, cf. [13], especially corollary 11.15. So they
cannot even be non-equivariantly stably framed.
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5.4 Application to the Bott-Samelson map

Theorem 5.13. Let H ⊂ Ki ⊂ G be compact Lie groups, 1 ≤ i ≤ m. The
normal bundle ν(G/H) of s(G/H) in E(G,K•;H) is the same as the vector bundle
G ×H V → G/H, where V = ⊕1≤i≤mki/h. We have an associated Thom collapse
map c : E(G,K•;H)+ → Th(ν(G/H)). Assume that Ki/H is stably framed as
an H-manifold for each i. Define H-representations Vi for 2 ≤ i ≤ m by Vi =
⊕i≤t≤m(kt/h).

1. Assume that for each i, 1 ≤ i ≤ m − 1, the stable class [Vi+1] ∈ RO(H) is
in the image of the restriction map RO(Ki) → RO(H). Then, there is some
integer n such that the n-fold suspended collapse map Σnc splits.

2. Assume the further condition that there is a number k such that [e] ∈ Ki/H
is k fold suspension split and such that the H-representation Vi+1⊕ εk extends
to a representation of Ki for 1 ≤ i ≤ m − 1. Then, the k-fold suspension of
the collapse map Σkc splits.

Proof. The statement about the normal bundle of s(G/H) is part of the conclusion
of theorem 4.8.

1. Consider E[i] = E(Ki,Ki+1, . . . ,Km;H). We claim that E[i] is stably framed
as an H-space for 1 ≤ i ≤ m. The argument is by downwards induction. For
i = m we have that E[m] = Km/H, which is stably framed by assumption. Assume
inductively that E[i+1] is stably framed. This means that there are representations
W and U of H, such that we have an isomorphism of H-vector bundles

τ(E[i+ 1])⊕ εW (E[i+ 1]) ∼= εU(E[i+ 1])

Since e ∈ E[i + 1] is a fixed point, we can restrict this bundle equivalence to e,
and get an isomorphism of H-representations TeE[i + 1] ⊕W ∼= U . But the fixed
point representation at e is exactly Vi+1, according to theorem 4.8, so we obtain the
relation

[U ]− [W ] = [Vi+1] ∈ RO(H).

By our other assumption, [U ] − [W ] ∈ Im(RO(Ki) → RO(H)). Since Ki/H is
assumed to be stably framed as an H-manifold, We can apply lemma 5.10 to this
situation, and get that E[i] = Ki ×H E[i + 1] is indeed stably framed as an H-
manifold.

We now know that E[1] is stably framed, so e ∈ E[1] is stably split by lemma
5.9. The result follows from lemma 5.4.

2. The unstable case is treated in essentially the same way. We use the second
part of theorem 5.7 to show inductively that e ∈ E[i] is m-fold suspension split.
Then the claim follows from lemma 5.2.

Before we apply this result to the filtration of the free loop space, we show a
technical lemma, which we need in the 1-fold suspension split case.

Lemma 5.14. Let B be a connected CW complex with a connected sub complex A
and let i : A → B denote the inclusion map. Let q be the quotient map given by

A+
i+−→ B+

q−→ B/A. Suppose that Σq : Σ(B+) → Σ(B/A) is a surjective retraction
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up to homotopy with a right inverse up to homotopy Σ(B/A) → Σ(B+). Then
Σ(B+) is homotopy equivalent to Σ(B/A) ∨ Σ(A+).

Proof. Chose a 0-cell a0 ∈ A ⊂ B as base point. Let fA : A+ → A be the based map
which is the identity outside the disjoint basepoint +. Let q̄ : B → B/A denote the
quotient map. There is a commutative diagram

Σ(A+)
Σi+

//

ΣfA

��

Σ(B+)
Σq

//

ΣfB

��

Σ(B/A)

ΣA
Σi // ΣB

Σq̄
// Σ(B/A)

The bottom line is a cofibration sequence. It splits by the composite map (ΣfB)◦s :
ΣB/A→ ΣB. In particular there is an isomorphism

H∗(Σi ∨ (ΣfB) ◦ s) : H∗(ΣA ∨ ΣB/A)→ H∗(ΣB).

Since Σi ∨ (ΣfB) ◦ s is a homology equivalence between simply connected spaces,
it is a homotopy equivalence. So ΣB ' ΣA ∨ ΣB/A, and obviously ΣB ∨ S1 '
ΣA ∨ S1 ∨ ΣB/A.

We finish the proof of the lemma by noting that for every connected, based CW
complex (X, x0) there are two homotopy equivalences

Σ(X) ∨ S1 '←−− S(X) ∪S0 D1 '−−→ Σ(X+)

which are the quotient maps for the two contractible subspaces I × x0 and D1

respectively. (Here S(X) denotes the unreduced suspension of X).

Now we return to closed geodesics on a symmetric space. For each closed geodesic
γ , we consider the isotropy group of the geodesic H(γ). For each point γ(ti)
1 ≤ i ≤ m conjugated to γ(0) along γ we consider the group Ki(γ) of isometries
fixing both γ(0) and γ(ti).

Theorem 5.15. Let M be a connected, compact globally symmetric space. Assume
that all non-trivial critical submanifolds have positive dimensional negative bundles,
that is, the manifold of constant paths is the set of all critical points of index 0.
Assume also that Ki(γ)/H(γ) is stably framed as an H(γ)-manifold for each closed
geodesic γ.

1. If for each closed geodesic the groups Ki(γ) and H(γ) satisfy the condition
in 1. of theorem 5.13, then we have a splitting of suspension spectra up to
homotopy

Σ∞(ΛM+) ' Σ∞M+ ∨
∨
ν

Σ∞Th(ξ−ν ).

2. If there is a k ≥ 1 such that for each closed geodesic the groups Ki(γ) and
H(γ) satisfy both the condition in 1. and the condition in 2. of theorem 5.13
for this k ≥ 1, we have a splitting up to homotopy

Σk(ΛM+) ' ΣkM+ ∨
∨
ν

ΣkTh(ξ−ν ).
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Proof. We prove 2. The proof of 1. is similar but easier. Consider the filtration of
theorem 3.4. According to theorem 4.7, if ν ′ and ν are two consecutive steps in the
filtration, we have a diagram

Σk(Γ(G, γ)+) Σkc //

ΣkBS

��

ΣkTh(ξ−ν )

f ∼=
��

ΣkF ν′ // ΣkF ν
Σkq

// ΣkF ν/F ν′ .

By the conclusion of theorem 5.13, e ∈ Γ(G, γ) is k-fold suspension split. So we
have a splitting of Σkc, say s : ΣkTh(ξ−ν ) → Σk(Γ(G, γ)+). But then the map Σkq

is a split surjection up to homotopy, with right inverse ΣkBS ◦ s ◦ f−1.
Each space Th(ξ−ν ) is connected, M is connected, so by induction, using the

assumption that there are no critical manifolds of index 0, we see that each space
F ν is connected. Using lemma 5.14 we see inductively that we have a splitting up
to suspension

Σk(Λe+εM)+ ' ΣkM+ ∨
∨

E(ν)<e+ε

ΣkTh(ξ−ν ).

Passing to the direct limit preserves homotopy equivalences.

6 Rank one symmetric spaces

We will now assume that M is isotropic, so that the isometry group of M acts
transitively on the total space of the unit sphere bundle of the tangent bundle.

The isotropy condition is quite constraining. It is equivalent to requiring that the
symmetric space has rank one. According to [15] 8.12.2 this class includes spheres,
complex and quaternionic projective spaces and the Cayley projective plane, but no
other compact, simply connected spaces.

Because of the isotropy condition, the simple geodesics form one critical sub-
manifold N1, all with the same energy e. The other critical submanifolds will all
have energy n2e for some natural number n, and consist of geodesics Nn obtained
by running through a simple geodesic exactly n times.

Let G be the isometry group of M . Since we are assuming isotropy, it acts
transitively on set of pairs (p, v) where p ∈M , and v ∈ TpM . It follows that G acts
transitively on the simple geodesics. Such a geodesic has no self intersections (since
the tangent vector field along γ is the restriction of a Killing vector field on M). So
the space of simple geodesics can be identified as a homogeneous space G/H where
H is the subgroup of G that fixes γ pointwise.

In particular, all geodesics are closed, and all simple closed geodesics have the
same length. Let us normalize the metric on M , so that they have length one. We
see that we can also think of the space of simple geodesics as the unit sphere bundle
of the tangent bundle of M .

We take a close look at the three non-sphere types of compact, simply connected,
globally symmetric spaces. We will consider all representations as representations
over the real numbers. The dimension of a representation will thus mean its dimen-
sion over R.
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6.1 The complex projective spaces

If M = CPn, we can explicitly compute the groups mentioned above. The unitary
group U(n+ 1) acts on CPn by isometries. A complication is that this action is not
effective, the kernel consists of the matrices in U(n+1) of the form zI for z ∈ U(1).
These matrices form the center of the unitary group D = Dn+1 = Z(U(n + 1)) ∼=
U(1). Every isometry of CPn is induced by a unitary matrix, so that the group of
isometries is the projective unitary group G = PU(n+ 1) = U(n+ 1)/D.

Let e1, . . . , en+1 denote the standard basis for Cn+1. Consider the point p =
[en+1] ∈ CPn. The isotropy group under the U(n+ 1) action of this point is U(n+
1)p = U(n) × U(1). We obtain the isotropy group at the point under the action
of the isometry group by factoring out D. This isotropy group is K2 = Gp =
(U(n)× U(1))/D ∼= U(n), where the name of the group is chosen to be compatible
with the notation of section 5.

Consider a second point q = [en] ∈ CPn. The subgroup of U(n+1) that preserves
both p and q is U(n+1)p∩U(n+1)q = U(n− 1)×U(1)×U(1). The corresponding
group of isometries is K1 = U(n− 1)× U(1)× U(1)/D ∼= U(n− 1)× U(1).

Let γ be a geodesic passing through [en+1] and [en]. An isometry preserving this
geodesic is the same as an isometry preserving both the point [en+1] and the unit
tangent vector of the geodesic at that point. So, if we look at the corresponding
unitary transformation A ∈ U(n+ 1), we get that there is a complex number λ, so
that Aen = λen, and Aen+1 = λen+1. Thus the subgroup of G that fixes γ pointwise
is H = U(n− 1)×D2/Dn+1

∼= U(n− 1).
After doing the identifications H ∼= U(n − 1), K1

∼= U(n − 1) × U(1) and
K2
∼= U(n) the inclusion maps of H in K1 respectively K2 are given by the maps

An−1 7→ (An−1, 1) , An−1 7→
(
An−1 0

0 1

)
.

On a simple geodesic γ, the only points conjugated to γ(0) is γ(1/2) and γ(1).
We choose our coordinate system such that γ(0) = [en+1] and γ(1/2) = [en] ([9]
example 2.110). If γm is a geodesic which runs through a simple geodesicm times, the
conjugate points of γm(0) are γm(i/2m), where 1 ≤ i ≤ 2m. But γm(k/2m) = [en+1]
if k is even, and γm(k/2m) = [en] if k is odd. So the groups corresponding to γm
are given as follows:

K(γm)i =

{
K1 if i is odd

K2 if i is even
, 1 ≤ i ≤ 2m− 1.

The associated K-cycle is

Γ(G, γm) = E(G,K1,K2,K1, . . . ,K2,K1;H).

This manifold contains a copy of G/H by the section which maps gH to [g, e, . . . , e].
This section is the inclusion of a submanifold of Γ(G, γm) with normal bundle νm.
There is an associated Pontryagin-Thom collapse map c : Γ(G, γm)+ → Th(νm).

We claim that [e] is a suspension split fixed point for the action of H on
both K1/H and K2/H. Notice that W1 = T[e](K1/H) is a trivial 1-dimensional
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H-representation. The H-representation W2 = T[e](K2/H) is the adjoint action of
U(n − 1) on the quotient u(n)/u(n − 1) (compare with the proof of 4.8). Since
U(n)/U(n − 1) ∼= S2n−1 the representation W2 is the standard 2n − 2-dimensional
U(n− 1)-representation with a trivial 1-dimensional representation added. In both
case we have that Ki/H is homeomorphic to (ki/h)+ as an H-space.

The H-representations W1 and W2⊕ ε both extend to representations of K2. So,
in order to check the conditions of theorem 5.13 for arbitrary Ki it is enough to see
that the H-representations

(W1 ⊕W2)
⊕j ⊕W1 , W2 ⊕ (W1 ⊕W2)

⊕j ⊕W1 , j ≥ 0

extends to K2 representations. But W1 ⊕W2 extends to a representation of K2
∼=

U(n), namely the standard 2n-dimensional representation of U(n). Since W1 is just
the trivial representation, it can also be extended. We have now checked most of
the conditions for theorem 5.15.

Theorem 6.1. Let p : S(τ)→ CPn be the unit sphere bundle of the tangent bundle
τ on CPn. Let ξm be the vector bundle (p∗(τ))⊕(m−1) ⊕ ε on S(τ), where ε is a one
dimensional trivial bundle. Then, there is a homotopy equivalence of spaces

Σ((ΛCPn)+) ' Σ(CPn
+) ∨

∨
m≥1

ΣTh(ξm).

Proof. Before we apply theorem 5.15, we have to check that all local minima for
the energy function are constant paths. We know all critical points for the energy
function by lemma 2.8. The index of one of these points is given by equation (1).
By the calculations above, dim(K1)− dim(H) = 1, so it follows that the index of a
critical point which is not a constant path is greater or equal to 1.

We need to identify the negative bundles ξ−ν with the bundles ξm. Both bundles
are bundles over the same space, namely S(τ) ∼= G/H.

We have identified the negative bundle corresponding to γm with the bundle over
G/H induced by V = (W1 ⊕W2)

⊕(m−1) ⊕W1. So it suffices to see that the bundle
η on G/H induced by W1 ⊕W2 agrees with p∗(τ).

Under the identifications given by the transitive action of G on S(τ) and CPn,
the projection p correspond to the standard identification map G/H → G/K2, or
equivalently to the map

U(n+ 1)/(U(n− 1)×D)→ U(n+ 1)/(U(n)×D).

The bundle η is isomorphic to the pullback under this map of the bundle η̄ on
CPn ∼= U(n+ 1)/(U(n)×D) induced by the standard representation of U(n). But
the bundle induced by the standard representation is isomorphic to the tangent
bundle over CPn, with fibers given by

T[w]CPn = {v ∈ Cn+1 | 〈v, w〉 = 0}.

An isomorphism is given by the bundle map

U(n+ 1)×(U(n)×U(1)) Cn → τ(CPn) ; [g, v] 7→ ([gen+1], g(v, 0)).

This identifies the bundle η as the pullback p∗(η̄) ∼= p∗(τ), which finishes the proof
of the theorem.
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6.2 The quaternionic projective spaces

The quaternionic projective space is the homogeneous space

HPn ∼= Sp(n+ 1)/(Sp(n)× Sp(1)).

In this case, the quotient group Sp(n + 1)/{±I} is the actual group of isometries.
The group acts isotropically, and as in the complex case we get that the isotropy
group of the geodesic γ starting at [en+1] in the direction en is

H = Sp(n− 1)× Sp(1)/{±I}.

The isotropy group of the point [en+1] is

K2 = Sp(n)× Sp(1)/{±I},

and the isotropy group of the pair of conjugated points [en], [en+1] is

K1 = Sp(n− 1)× Sp(1)× Sp(1)/{±I}.

The inclusion maps H ⊂ K1 and H ⊂ K2 are given as follows:

(A1, A2) 7→ (A1, A2, A2) , (A1, A2) 7→ (

(
A1 0
0 I

)
, A2)

Any closed geodesic will be obtained from a simple closed geodesic by running
through it m times. As in the complex case, the isotropy groups associated to the
conjugated points will alternate between K1 and K2.

The quotient spaces

K1/H ∼= Sp(n− 1)× Sp(1)× Sp(1)/(Sp(n− 1)× Sp(1)) ∼= Sp(1),

K2/H ∼= Sp(n)× Sp(1)/(Sp(n− 1)× Sp(1)) ∼= Sp(n)/Sp(n− 1) ∼= S4n−1

are equivariantly unit spheres in H-representations. So by example 5.5 the points
[e] ∈ K1/H and [e] ∈ K2/H are suspension split. We look closer at these represen-
tations.

The H-representation W1 = T[e](K1/H) ∼= sp(1) is induced from the adjoint
representation of Sp(1) under the projection map

H = Sp(n− 1)× Sp(1)/{±I} p2−−−→ Sp(1)/{±I}.

That is, it is the representation by conjugation of the unit quaternions on the 3-
dimensional vector space of purely imaginary quaternions H̃.

The H representation W2 = T[e](K2/H) ∼= sp(n)/sp(n − 1) is equivalent to the

representation of H ∼= Sp(n− 1)× Sp(1)/{±I} on Hn−1 ⊕ H̃, given by

(An−1, B1)(vn−1, w1) = (An−1vn−1B
−1
1 , B1w1B

−1
1 ).

This representation splits as a sum of two representation, one of them being given
by the adjoint representation of the Sp(1) factor in H.
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The representation W1 extends to a K1
∼= Sp(n− 1)× Sp(1)× Sp(1)/{±I} and

to a K2
∼= Sp(n) × Sp(1)/{±I} representation, by projecting the groups onto the

last factor Sp(1), and composing with the adjoint representation.
The representation W2 does not itself extend, but if you add a trivial 1-dimen-

sional representation to it, it does. Put

Hn = Hn−1 ⊕H = Hn−1 ⊕ H̃⊕ ε ∼= W2 ⊕ ε.

Theorem 6.2. Let p : S(τ)→ HPn be the unit sphere bundle of the tangent bundle
τ on HPn. Let η be the 3-dimensional bundle on HPn ∼= S4n+3/Sp(1) induced by the
adjoint representation of Sp(1). Let ξm be the vector bundle p∗(τ⊕(m−1) ⊕ η⊕m) on
S(τ). Then there is a homotopy equivalence of spectra

Σ∞(ΛHPn
+) ∼= Σ∞(HPn) ∨

∨
m≥1

Σ∞−m+1Th(ξm).

Proof. We easily check the conditions of theorem 5.15 (compare to theorem 6.1) so
we only have to see that there is a bundle equivalence between ξm and the pullback
of the bundle induced by (W2 ⊕ ε)⊕(m−1) ⊕W⊕m

1 .
Both these bundles are induced from bundles on HPn, so it is sufficient to check

the isomorphism on the appropriate bundles there.
But the bundle W1 is by definition η, so we only need to show that the bundle

induced by W2⊕ ε on HPn is the tangent bundle. We already identified W2⊕ ε with
the standard representation Hn. And now we can give an isomorphism as a bundle
map

Sp(n+ 1)×Sp(n)×Sp(1) Hn → τ(HPn) ; [g, v] 7→ ([gen+1], g(v, 0))

6.3 The Cayley projective plane

Now we consider the Cayley projective plane OP2. Recall from 2.2 that OP2 is a
symmetric space of rank 1. The isometry group F4 acts isotropically. The isotropy
group of a point x is K = Spin(9), the isotropy group of a geodesic γ is denoted by
H. We saw in theorem 2.11 that the isotropy groups of pairs of conjugate points
(γ(0), γ(t)) on γ alternate between K1 = Spin(8) and K2

∼= K = Spin(9). Let W1

and W2 denote the H-representations T[e](K1/H) and T[e](K2/H) respectively. Note
that [e] ∈ Ki/H is not a fixed point under the Ki-action, so a priory we don’t even
know that Wi extends to a Ki-representation.

Lemma 6.3. The action of H on W2 ⊕ ε can be extended to an action of K2, and
thus to an action of the subgroup K1. The class [W1] ∈ RO(H) is in the image of the
restriction map RO(K)→ RO(H), and thus in the image of RO(K1)→ RO(H).

Proof. Even if the action of H on W2 does not itself extend to an action of K2, it
does in the stable sense. To see this, note that W2 is the fixed point representation
of the tangent vector in Tx(OP2) corresponding to the geodesic γ. This means that
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the sum W2⊕ ε is the tangent space H-representation Tx(OP2), which by definition
is the restriction of a representation of K2.

The chain of inclusions of Lie groups H ⊂ K1 ⊂ K2 defines a short exact
sequence of H-representations.

0 // T[e](K1/H) // T[e](K2/H) // T[e](K2/K1) // 0

It follows that W2
∼= W1 ⊕ T[e](K2/K1) as H-representations. So we have to prove

that
[T[e](K2/K1)] ∈ image(RO(K2)→ RO(H))

By definition, [T[e](K2/K1)] is the restriction of a K1-representation, so we have to
show that

[T[e](K2/K1)] ∈ image(RO(K2)→ RO(K1))

However, according to 2.11, we can identify K1 with Spin(8) and K with Spin(9)
in such a way that the inclusion K1 ⊂ K corresponds to the standard inclusion
Spin(8) ⊂ Spin(9). Under this isomorphism, the representation T[e](K2/K1) corre-
sponds to T[e](Spin(9)/Spin(8)) which is just the standard 8-dimensional represen-
tation ρ8 of Spin(8). The lemma follows from the fact that the restriction of the
standard Spin(9)-representation ρ9 to Spin(8) is ρ8 ⊕ ε.

Remark 6.4. In the proof of lemma 6.3 we intentionally avoid the discussion of
precisely which H = Spin(7) representations we are dealing with. This would involve
a treatment of triality, which we do not want to bring up here.

Theorem 6.5. Let p : S(τ)→ OP2 be the unit sphere bundle of the tangent bundle
τ on OP2. Let η be the 7-dimensional vector bundle induced from W1 on OP2 ∼=
F4/Spin(9). Let ξm be the vector bundle p∗(τ⊕(m−1) ⊕ η⊕m) on S(τ(OP2)). Then
there is a homotopy equivalence of spectra

Σ∞(ΛOP2
+) ' Σ∞(OP2

+) ∨
∨
m≥1

Σ∞−m+1Th(ξm).

Proof. This is analogous the proof of theorem 6.2. We have to check that the bundle
induced byW2⊕ε agrees with the tangent bundle. It is sufficient to check that the K2

representations on the tangent space Tγ(0)(OP2) agrees with the K2-representation
W2 ⊕ ε. But actually, it is well known that the tangent representation of Spin(9)
acting as the isometry group fixing a point on OP2 is exactly the sum of a trivial
representation and the spinor representation of Spin(9).

7 Comparison with earlier results

We want to compare the results of this paper with the results of [3], which motivated
it. We first recall some notation used in [3].

Let X be either CPn, HPn or OP2. Let τ be the tangent bundle over X and let
qτ = τ ⊕ · · · ⊕ τ denote the q-fold Whitney sum. We define Cq(X) to be the cofiber
of the cofibration

Th(qτ)→ Th((q + 1)τ).
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The cohomology of X is a truncated polynomial ring. The generator has degree
r(X), where r(X) = 2, 4, 8 respectively. In [3], we proved the following theorem:

Theorem 7.1. There is an isomorphism of modules over the mod two Steenrod
algebra

H∗(ΛX; Z/2) ∼= H∗
(
X+ ∨

∨
q≥0

Σ(r(X)−2)(q+1)Cq(X); Z/2
)
.

To reinterpret this in terms of the bundles considered in this paper, we need
the following rewriting: Let X be a space and ξ1, ξ2 vector bundles over X. Let
D(ξi) → X, S(ξi) → X, Th(ξi) be the corresponding disk bundle, sphere bundle,
and Thom space. Let ε denote a trivial line bundle.

Theorem 7.2. Let C(ξ1, ξ2) be the cofiber of the map Th(ξ1) → Th(ξ1 ⊕ ξ2) given
by inclusion of ξ1 and the zero section of ξ2. Let p : S(ξ2) → X be the projection
map for the sphere bundle of ξ2. Then there is a homotopy equivalence

C(ξ1, ξ2) ' Th(p∗(ξ1 ⊕ ε)).

Proof. There is a diagram of cofibrations

S(ξ1)+
//

��

D(ξ1)+
//

��

Th(ξ1)

��

S(ξ1 ⊕ ξ2)+
//

��

D(ξ1 ⊕ ξ2)+
//

��

Th(ξ1 ⊕ ξ2)

��

S(ξ1 ⊕ ξ2)/S(ξ1) // D(ξ1 ⊕ ξ2)/D(ξ1) // C(ξ1, ξ2)

The inclusion D(ξ1) → D(ξ1 ⊕ ξ2) is a homotopy equivalence, so its cofiber is
contractible. Thus by extending the above diagram to the right, we get a homotopy
equivalence C(ξ1, ξ2) ' ΣS(ξ1 ⊕ ξ2)/S(ξ1). Next, consider the inclusion

S(ξ1) ↪−−−→ S(ξ1 ⊕ ξ2) ' S(ξ1)×X D(ξ2) ∪D(ξ1)×X S(ξ2).

Since S(ξ1) ↪→ S(ξ1) ×X D(ξ2) is a homotopy equivalence we have that the cofiber
of the map f : S(ξ1)×X S(ξ2)→ D(ξ1)×X S(ξ2) is homotopy equivalent to S(ξ1 ⊕
ξ2)/S(ξ1).

But S(p∗(ξ1)) ' S(ξ1) ×X S(ξ2) and D(p∗(ξ2)) ' D(ξ1) ×X S(ξ2) such that
Th(p∗(ξ1)) is the cofiber of f . The result follows.

We use this result to rewrite theorem 7.1.

Theorem 7.3. The cohomology H∗(ΛX; Z/2) is as module over the mod two Steen-
rod algebra isomorphic to the spectrum cohomology

H∗
(
X+ ∨

∨
m≥1

Σ−m+1Th(p∗((m− 1)τ ⊕mεr(X)−1); Z/2
)
.

Proof. This follows from applying theorem 7.2 to ξ1 = qτ and ξ2 = τ , rewriting the
Thom space a little, and finally substituting m = q + 1.
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We now check that this agrees with the results obtained in section 6.

Remark 7.4. The case X = CPn, r(X) = 2, follows directly from theorem 6.1 after
identifying the bundle ξm.

Remark 7.5. In the case X = HPn, r(X) = 4 theorem 6.2 says that if η is the
bundle induced from the adjoint representation of S3 on HPn, then H∗(ΛHPn; Z/2)
is isomorphic as a module over the Steenrod algebra to

H∗(X; Z/2)⊕
⊕
m≥1

H̃∗(Σ−m+1Th(p∗((m− 1)τ ⊕mη); Z/2).

So it is sufficient to see that there is an isomorphism of modules over the Steenrod
algebra

H∗(Th(p∗((m− 1)τ)⊕mp∗(η)); Z/2) ∼= H∗(Th(p∗((m− 1)τ)⊕mε3); Z/2).

According to [13], is is sufficient to see that the Stiefel Whitney classes of p∗(η)
vanish. By naturality, it is sufficient to see that the Stiefel Whitney classes

wj(η) ∈ H∗(HPn; Z/2)

vanish. But if j ≤ 3, the group Hj(HPn) vanishes, so wj(η) = 0. If j > 3, the class
wj(η) vanish, since the bundle η is 3 dimensional.

Remark 7.6. As in remark 7.5 we see from theorem 6.5 that in order to check the
part of theorem 7.3 involving the Cayley projective plane, it is sufficient to see, that
the Stiefel Whitney classes of the bundle η over S(τ) are trivial. The bundle is
7-dimensional so wj(η) = 0 for j ≥ 8. On the other hand, wj ∈ Hj(S(τ); Z/2) = 0
for 1 ≤ j ≤ 7, so all Stiefel Whitney classes are indeed trivial.
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