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Abstract

In 2000 T. Satoh gave the firstp–adic point countingalgorithm for elliptic
curves over finite fields.Satoh’s algorithmwas followed by theSSTalgorithm and
furthermore by theAGM and MSSTalgorithms for characteristic two only. All
four algorithms are important toElliptic Curve Cryptography.

In this paper we present a general framework forp–adic point counting and
we apply it toelliptic curves on Legendre form. We show how theλ–modular
polynomialcan be used for lifting the curve and Frobenius isogeny to character-
istic zero and we show how the associatedmultiplier gives the action of the lifted
Frobeniusisogeny on the invariant differential. The result is a pointcounting al-
gorithm which is simpler and more practical than known algorithms for general
elliptic curves. The algorithm extends the MSST algorithm to odd characteristics.

Keywords: Point Counting, Elliptic Curves, Legendre Form,Cryptography,
λ–modular form.

Thanks: J.P. Hansen, N. Lauritzen, P. Gaudry, T. Satoh, B. Skjernaa.

1 Introduction

In 2000 T. Satoh gave the firstp–adic point counting algorithm for ordinary elliptic
curves over finite fields of characteristic at least five ([16]). Satoh’s Algorithmwas
soon extended to characteristic two and three ([22, 5, 4]). Later Satoh’s algorithm
was improved by T. Satoh, B. Skjernaa and Y. Taguchi (SST, [18, 17]). Motivated
by applications to cryptography the characteristic two case has been intensely studied
and improved. This has resulted in the Arithmetic–Geometric Mean algorithm (AGM,
[8, 15]) and Modified SST algorithm (MSST, [6]).

In this paper we give a presentation of the basic framework bywhich p–adic point
counting algorithms can be explained. Ap–adic point counting algorithm consists of
two parts: Alifting part where the elliptic curve andp’th power Frobenius isogeny is
lifted to characteristic zero and anorm partwhere trace of theq’th power Frobenius
isogeny and the number of points on the curve is determined bya norm computation.
The input to the norm computation is the action of the lifted Frobenius on the invariant
differential.

We apply the basic framework forp–adic point counting to ordinaryelliptic curves
on Legendre form, i.e. elliptic curves on the formEλ

�
Fq : y2 � x�x � 1� �x � λ�. We

find that the lifting part can be done using theλ–modular polynomial. Furthermore we
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find that the norm part is especially simple because the action of the liftedp’th power
Frobenius isogeny on the invariant differential is given bythe associatedmultiplier.

The resultingp–adic point counting algorithm for Legendre elliptic curves is sim-
pler and more practical in odd characteristic than known algorithms for general elliptic
curves. The algorithm may be seen as extending the MSST algorithm to odd char-
acteristics. We include examples and data from experimentsin characteristic two to
nineteen.

Keywords: p–adic point counting, Elliptic Curves, Legendre Form,λ–modular
form, λ–Modular Polynomial, Elliptic Curve Cryptography, Satoh’s algorithm, AGM,
SST, MSST.

The paper is organized as follows.
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2 Background Material

This section contains the basic framework forp–adic point counting, Elliptic curves on
Legendre form and theλ–modular polynomial. We assume that the reader is familiar
with elliptic curves at least to the level of Silverman’s book ([20, p.1-188]). We also
assume the reader is familiar with thep–adic numbers and unramified extensions (See
Appendix A.1, [14] or [5]).

In the followingp will denote a prime andFq the finite field withq � pn elements. We
let Qp denote thep–adic numbers andZp the ring ofp–adic integers. We letQq denote
an unramified field extension ofQp of degreen andZq the associated ring of integers.

Elements ofZq can be approximated by elements ofZq
�
piZq. The precision of the

approximation is given byi. As i grows the approximation improves. The elements of
Zq

�
piZq can be represented by polynomials of degree at mostn � 1 with coefficients
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in Z
�
piZ. This means that thep–adic integers are very practical for calculations on a

computer.
The surjectivereduction modulo pmorphismZq � Fq with kernelpZq links char-

acteristic 0 and characteristicp. If x � Zq maps tox � Fq thenx is called thereduction
modulop of x andx is called alift of x. We can lift other objects from characteristicp
to to characteristic 0 as well: Thep’th power Frobenius mapΣ : Fq � Fq can be lifted
to theFrobenius SubstitutionΣ : Qq � Qq. The Frobenius SubstitutionΣ is the unique
element in the Galois group GalQq�Qp satisfying

Σ�x� � xp modp

for all x � Zq.

2.1 The Basic Framework forp–adic Point Counting

In this section we present the basic framework by which thep–adic point counting
algorithms can be understood.

Let E
�
Fq denote an ordinary elliptic curve, i.e. an elliptic curve with non–trivial

p–torsion subgroup. LetFrq : E � E theq’th power Frobenius isogeny. We define the
trace of theq’th power Frobenius isogeny by

Tr�Frq� � Frq �
�
Frq

where
�
Frq is the dual ofFrq. The trace is in fact an integer. The number ofFq–rational

points on the elliptic curve is related to the trace by

#E �Fq� � q� 1� Tr�Frq� � (1)

So it is enough for point counting to determine the trace. This can be done using the
invariant differential.

Let ω denote the invariant differential onE. We see that

Fr
�
q �ω� �

�
Frq

�
�ω� � �Frq �

�
Frq�

� �ω� � Tr �Frq�ω �

Thus the action of theq’th power Frobenius and its dual on the invariant differential
leads to information on the trace, but only modulop since we are working in charac-
teristic p. To overcome this difficulty we lift the situation to characteristic 0.

In practice we lift thep’th power Frobenius isogenyFrp : E � ΣE to the unramified
extensionQq of the p–adic numbersQp

1. Then we use the following Theorem.

Theorem 2.1 LetE
�
Fq denote an ordinary elliptic curve,Frp : E � ΣE the p’th power

Frobenius isogeny andFrq : E � E the q’th power Frobenius isogeny. Assume E
�
Qq

is an elliptic curve reducing toE
�
Fq modulo p and thatFrp : E � ΣE is an isogeny

defined overQq and reducing toFrp modulo p. Letω denote the invariant differentials
on E. Note thatωΣ is the invariant differential onΣE.

There is a unique M� Qq satisfying

Fr
�
p �ωΣ� � 1

M
ω �

1SinceE is ordinary the lift of thep’th power Frobenius isogeny exists and is unique up to isomorphism
overQq (Theory ofcanonical lift [12, 13]). How this lift is found in practice is the content ofthe algorithms
by Satoh, Skjernaa, Gaudry, Harley and Vercauteren.
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Furthermore pM� Z
�
q and the action of

�
Frp on the invariant differentialω is given by

�
Frp

�
�ω� � �pM�ωΣ �

Finally the trace of the q’th power Frobenius isogeny is given by

Tr�Frq� � NQq�Qp �
1
M

� � NQq�Qp �pM�

whereNQq�Qp : Qq � Qp denotes the norm.

PROOF Appendix A.2.

The result is an integer. The formulation and proof of Theorem 2.1 is due to the
author. The idea to use the norm computation was first described in the paper [18] by
T.Satoh, B. Skjernaa and Y. Taguchi.

A p–adic point counting algorithm based on the above Theorem can be divided into
two parts. Alifting part where thep’th power Frobenius isogeny is lifted to charac-
teristic zero and anorm partwhere the trace of theq’th power Frobenius isogeny is
determined by a norm computation.

We will be needing the following Lemma by Skjernaa [22] for the lifting part of
our algorithm.

Lemma 2.2 Let E
�
Fq be an elliptic curve with j�E� �� Fp2. Assume that E

�
Qq and

E��Qq are elliptic curves reducing toE andΣE modulo p. Assume furthermore that
there exists a p-isogeny E� E� defined overQq. Then the p–isogeny reduces to� the
p’th power Frobenius isogenyE � ΣE modulo p.

2.2 Legendre Elliptic Curves

We begin this section by restating a definition and a Proposition from Silverman [20,
p. 53-55].

Definition 2.3 A Weierstrass equation is inLegendre formif it can be written as

y2 � x�x� 1� �x� λ�
We note that a Weierstrass equation in characteristic two isnot smooth. Thus an

elliptic curve on Legendre form is always defined over a field of odd or zero charac-
teristics. We also note that [20, Theorem V.4.1] gives an easy way to determine if an
elliptic curve on Legendre form is ordinary.

Let F denote a field with char�F� �� 2.

Proposition 2.4 Two elliptic curves Eλ
�
F : y2 � x�x� 1� �x� λ� and Eµ

�
F : y2 � x�x�

1� �x � µ� on Legendre form are isomorphic over the algebraic closureF of F if and
only if

λ � �µ� 1
µ
�1� µ� 1

1� µ
� µ
µ� 1

� µ� 1
µ

�

Elliptic curves on Legendre form over finite fields have recently been studied in the
paper [2] by Auer and Top. We will be using the following Lemmaextracted from the
proof of [2, Prop.2.2]..

Lemma 2.5 AssumeEλ
�
Fq : y2 � x�x�1� �x�λ� is an elliptic curve on Legendre form.

Then j�Eλ� � Fp2 if and only ifλ � Fp2.
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2.3 Theλ–modular polynomial

In this section we use the concept ofmodular formsto justify the existence and proper-
ties of theλ–modular polynomialΩp. For an introduction to modular forms see Lang
[10] or Schoeneberg [19].

It is well known that to every lattice in the complex plane there is an associated
elliptic curve on Weierstrass form (Silverman [20, ChapterVI]). An elliptic curve on
Weierstrass form can obviously be brought onto Legendre form by moving its 2–torsion
points using some fixed algorithm (Silverman [20, Prop III.1.7]). So to everyτ in the
upper complex half planeH we have a latticeZ � τZ in the complex plane and an
associated elliptic curveEλ �τ� : y2 � x�x � 1� �x � λ�τ�� on Legendre form. Thus we
have just defined a functionλ : H � C. This function is rigorously defined and studied
in [1, p.277-282] and [3, Chapter 4]. It is shown thatλ is a modular form for the
congruence subgroup modulo two.

Let p denote a fixed odd prime. Defineµ : H � C by µ�τ� � λ �pτ�. Using the
theory of Riemann Surfaces it can be shown that there exists aunique, monic and
irreducible polynomialΩp �X �Y� � C�X� �Y� with �λ �µ� as root, i.e.

Ωp�λ �µ� � 0�

Furthermore it can be shown thatΩp is a symmetric polynomial inX andY with integer
coefficients. The polynomialΩp has degreep� 1 in each variable and it satisfies the
Kronecker relation

Ωp�X �Y� � �X �Yp� �Xp �Y� modp (2)

We callΩp theλ–modular polynomial.
Theλ–modular polynomialΩp can be calculated in practice for “small” values of

p. See [3, p.133] for a discussion of this. F.ex.

Ω3�X �Y� � �Y � X�4 � 128YX�1�Y� �1� X� �2�Y� X � 2YX�
We will need the fact that the set ofp–isogenies between elliptic curves on Legen-

dre form (modulo isomorphism) is the affine curve given by theλ–modular polynomial
Ωp. We state this as a Theorem.

Theorem 2.6 Let Eµ
�
C : y2 � x�x � 1� �x � µ� and Eλ

�
C : y2 � x�x � 1� �x � λ� be

elliptic curves on Legendre form.
There exists a p–isogenyψp : Eµ � Eλ if and only if the set�µ� 1

µ �1�µ� 1
1�µ � µ

µ�1 � µ�1
µ

�
contains a root of the equation

Ωp�X �λ� � 0 (3)

If µ is a root then there is an isogenyψp : Eµ � Eλ defined overQ�λ �µ�.
PROOF (cf. [3, Chapter 4]).

So far the above definitions and properties are analogous to the theory of the modu-
lar form j and thej–modular polynomialΦp used in Satoh’s algorithm. Now we state
a Lemma that, as far as the author knows, has no analogue when dealing with j and
Φp.

Lemma 2.7 Let Eµ
�
C : y2 � x�x�1� �x�µ� and Eλ

�
C : y2 � x�x�1� �x�λ� be elliptic

curves on Legendre form withΩp�µ�λ� � 0. Let ψp : Eµ � Eλ denote a p–isogeny as
in Theorem 2.6. Letωµ (resp.ωλ) denote the invariant differential on Eµ (resp. Eλ).
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The action ofψp on the invariant differential is given by

ψ
�
p �ωµ� � 1

Mp
ωλ

where Mp satisfies

pM2
p
� µ�1� µ�

λ �1� λ�
dλ
dµ

with dλ
dµ

� �
dΩp
dX �µ�λ�

dΩp
dY �µ�λ� .

PROOF (cf. [3, Chapter 4]).

Remark 2.8 There exists modular forms k and u satisfyingλ�τ� � k2 �τ� = u8 �τ�. They
also induce modular polynomials having properties as abovecorresponding to the el-
liptic curves Ek : y2 � x�x� 1� �x� k2� and Eu : y2 � x�x� 1� �x� u8�. The associated
k– and u–modular polynomials are even simpler than theλ–modular polynomial. F.ex.
for p � 3 the u–modular polynomial is

X4 �Y4 � 2XY�1� X2Y2�

3 Point Counting on Legendre Elliptic Curves

In this section we deploy the framework forp–adic point counting to ordinary elliptic
curves on Legendre form. We assume odd characteristics and deal with the case of
characteristic two in a remark. We give pseudo code for the algorithm and references
for some of the more general and technical aspects of the algorithm. We also give
examples and data from experiments.

3.1 The Algorithm

Let p denote an odd prime andq � pn a power ofp. Let Eλ
�
Fq : y2 � x�x� 1� �x� λ�

denote an ordinary elliptic curve on Legendre form withλ �� Fp2. Let Frp : Eλ � EΣλ
denote thep’th power Frobenius isogeny.

Lifting Part
We will now see that thep’th power Frobenius isogeny can be lifted to character-

istic zero by solving an equation involving theλ–modular polynomialΩp � Z �X �Y� of
Section 2.3.

Using the Kronecker relation (2) we see that

Ωp�Σλ �λ� � 0 and
dΩp

dX
�Σλ �λ� �� 0 and

dΩp

dY
�Σλ �λ� � 0

This implies, as pointed out by Vercauteren in [4], that there is a uniqueλ � Zq satis-
fying

Ωp�Σλ �λ� � 0 and λ � λ modp� (4)

Then the Legendre elliptic curveEλ
�
Qq : y2 � x�x� 1� �x� λ� reduces toEλ

�
Fq mod-

ulo p and furthermore from Theorem 2.6 we know there is ap–isogenyEλ � EΣλ.
According to Lemma 2.2 we may assume that this is a lift of thep–th power Frobenius
isogeny. We denote the liftedp’th power Frobenius by Frp : Eλ � EΣλ.
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Norm Part
We determine the action of the liftedp’th power Frobenius isogeny on the invariant

differential and the trace of theq’th power Frobenius isogeny.
Let ω andωΣ denote the invariant differentials onEλ andEΣλ. According to Lemma

2.7 the action of Frp on the invariant differentialωΣ is given by Fr
�
p�ωΣ � � 1

Mp
ω where

�pMp�2 � �p
Σλ�1� Σλ�

λ �1� λ�
dΩp

�
dX �Σλ �λ�

dΩp
�
dY �Σλ �λ�

It follows from Theorem 2.1 that

Tr�Frq� � NQq�Qp �
1

Mp
� � NQq�Qp �pMp� �

The number ofFq–rational points onEλ can be found from the relation #Eλ
�

q� 1 � Tr �Frq�. In practice we only need to determine Tr�Frq� modulo pN, where
N � �

logp �4�q� 1��. This follows from the inequality�Tr �Frq� � � 2�q (Hasse-Weil).

Pseudo code
We summarize the above by giving a pseudo code algorithm.

Algorithm 1: �����	�
�����
In : λ � Fq �Fp2

Out : The number ofFq–rational points ofEλ : y2 � x�x� 1� �x� λ�.
External: �����������, ��� ������, ������ ���, ���������
begin

N � �
logp�4�q� 1��;

λ � ������������Ωp �λ �N� 1�;
t2 � ��������� ��pdΩp�dX �Σλ �λ�

dΩp�dY �Σλ �λ� �N�;
t � ��������� �t2 ������� ��� �λ� �N�;
if t  2�q then

t � t � pN;

return q� 1� t;

end

The algorithm����������� solves the modular equation, i.e.�����������
determines aλ satisfying

Ωp�Σλ �λ� � 0 modpN!1 and λ � λ modp

the algorithm��� ������ gives thep–adic norm of elements inZq, i.e.

t2 � NQq�Qp

"
�p

dΩp
�
dX �λ �Σλ�

dΩp
�
dY�λ �Σλ� # modpN �

The algorithm������ ��� calculates the trace modulop of theq’th power Frobenius
isogeny onEλ as described in Corollary A.15. The algorithm��������� calculates
the square root modulopN.
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The algorithms����������� and��������� are essential top–adic point count-
ing so they have been given a lot of attention and different versions are at hand. There-
fore we content ourselves to giving the references [18, 17, 6, 7, 11]. The algorithm��������� can based on Newton iterations together with a trick. The trick is to
calculate the inverse of the square root first, because then we avoid inversions.

Remark on characteristic two
We end this section by relating our algorithm to the MSST algorithm in characteris-

tic two. In characteristic two a Weierstrass equation on Legendre form is not a smooth
curve and therefore not an elliptic curve. Instead (See [2])we should consider ordinary
elliptic curves on the form

Ea6

�
Fq : y2 � xy� x3 � a6

In [6] Gaudry describes the MSST algorithm which is an algorithm for point count-
ing on ordinary elliptic curves on the form

Ea2 �a6

�
Fq : y2 � xy� x3 � a2x� a6

The MSST algorithm can be described in the same way as Algorithm 3.1. It uses the
k–modular polynomial2 for the lifting part and the associated multiplier for the norm
part.

3.2 Examples

Example 3.1 Our setup is p� 3, n� 7, Fq
� Fp �x�� �x7 � x6 � 2x5 � x4 � x3� 1� and

Zq
� Zp �x�� �x7 � x6 � 2x5 � x4 � x3 � 1�. We letα � �x� � Fq andα � �x� � Zq. We

study the elliptic curve

Eλ
�
Fq : Y2 � X �X � 1� �X � λ�

with λ � 2α3 � α2 � α� 2. From [3, p.105] we find

Ω3�X �Y� � �X �Y�4 � 128XY�1� X� �1�Y� �2� X �Y � 2XY�
The calculations of the algorithm gives

N � 5

λ � 399α6� 633α5� 3α4 � 116α3� 121α2� 55α� 29 modpN!1

t2 � 157 modpN

Tr�Frq� � 20

#Eλ �Fq� � 2168

Example 3.2 In the Tables below we give some timings for our implementation3 . We
used a 600MHz Thinkpad X20 laptop running Linux version 2.4.18-14. The implemen-
tation was done in C++ using the gcc compiler and the libraries NTL4 and Gnu MP5.

2k is a modular form satisfyingk2 � λ. See [3, Chapter 4]
3In characteristic two we are using the MSST algorithm without any special optimizations for character-

istic two. In odd characteristic the dominant step of the norm computation is the Teichmuller lift which is
not needed in characteristic two. This explains the big increase when going from characteristic two to three.

4Number Theory Library. http://www.shoup.net.
5http://www.swox.com/gmp/.
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We used the descriptions in [17] for the����������� and��� ������ algorithms.
We remark that asymptotically faster algorithms have been proposed ([7, 11]).

Theλ–modular polynomials where found in [3, p.127ff+Exercise 4.6.4a]. The size
of the fieldFq is given by the number of “bits”, where q� 2bits.

p 50bits 100bits 150bits 200bits 300bits 500bits
2 0.04s 0.275s 0.915s 1.995s 6.56s 17.415s
3 0.04s 0.16s 0.54s 1.02s 3.31s 14.14s
5 0.03s 0.1s 0.3s 0.62s 2.21s 7.88s
7 0.02s 0.1s 0.23s 0.62s 1.64s 8.25s
11 0.02s 0.13s 0.27s 0.51s 1.84s 9.14s
13 0.02s 0.09s 0.3s 0.56s 2.05s 8.9s
17 0.03s 0.11s 0.36s 0.68s 2.48s 6.83s
19 0.04s 0.12s 0.41s 0.78s 2.89s 7.8s

Table 1: Lifting part

p 50bits 100bits 150bits 200bits 300bits 500bits
2 0.04s 0.15s 0.49s 0.665s 2.085s 4.67s
3 0.08s 0.31s 0.94s 1.565s 4.795s 20.085s
5 0.065s 0.235s 0.63s 1.17s 3.31s 10.335s
7 0.03s 0.25s 0.45s 1.2s 2.215s 9.44s
11 0.03s 0.175s 0.48s 0.755s 2.315s 9.525s
13 0.04s 0.185s 0.52s 0.78s 2.41s 9.535s
17 0.04s 0.2s 0.6s 0.89s 2.69s 6.11s
19 0.045s 0.225s 0.65s 0.975s 2.93s 6.61s

Table 2: Norm part

The tables shows that the algorithm is practical for cryptographic applications.

3.3 Final Remarks

In this paper we have given the basic framework forp–adic point counting and applied
this to elliptic curves on Legendre form. This results in an efficient algorithm for point
counting on these curves using theλ–modular polynomial. It would be interesting to
be able to compute theλ–modular polynomial for higher values ofp than described in
the literature ([3, p. 133]) and thus extending the values ofp for which the algorithm
is practical.

Even though theCanonical Liftmay be avoided in the explanation of manyp–adic
point counting algorithms it lies beneath all of them. So it would be interesting to have
a better understanding of it. F.ex. it would be interesting to have elementary proofs for
the existence and uniqueness of the canonical lift for ordinary elliptic curves.

9



A Appendix

A.1 The p–Adic Numbers and Unramified Extensions

In this section we provide the reader with an introduction tothe p–adic numbers, un-
ramified extensions and the Frobenius substitution. The presentation is very much
inspired by the excellent treatment in Neukirch [14].

Let p denote a prime.

A.1.1 The p–Adic Numbers

Everyx � Q � �0�
can be written uniquely asx � u

v pi whereu�v � Z � �p� andi � Z.
We define

vp�x� :� i �

Furthermore we letvp�0� :� ∞. We callvp : Q � Z
� �∞

�
the p–adic valuationof Q.

It has the following properties

1. vp�x� � ∞ � x � 0.

2. vp�xy� � vp�x� � vp�y�.
3. vp�x� y� � min�vp�x� �vp �y�

�
, with equality ifvp�x� �� vp�y�.

The p–adic absolute value���p : Q � R is defined by

�x�p � p�vp �x� �
It is a called anon–archimedian absolute valuesince it satisfies

1. �x�p � 0 for all x � Q with equality iff x � 0.

2. �xy�p � �x�p �y�p for all x�y � Q.

3. �x� y�p � max� �x�p � �y�p� with equality if �x�p �� �y�p.

Imitating the construction ofR as the completion ofQ with respect to the ordinary
absolute value�� � on Q we can define thep–adic numbersQp as the completion ofQ
with respect to thep–adic absolute value���p.

To be more explicit letR denote the set of Cauchy sequences inQ with respect to���p andN the set of null sequences, i.e. sequences converging to 0.R is a ring andN a
maximal ideal inR. Let

Qp :� R
�
N

ThenQp is a field withQ � Qp since every elementx � Q can be viewed as the constant
sequence�x�n � R. The p–adic valuation and absolute value are extended to elements
x � �xi � � Qp by

vp�x� � lim
i�∞

vp�xi ��x�p � lim
i�∞

�xi �p
Note that�x�p � p�vp �x� for all x � Qp. As for the field of real numbers one proves

Proposition A.1 The fieldQp is complete with respect to�� �p andQ is a dense subset.
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Let Zp :� �x � Qp � �x�p � 1
�
. This easily seen to be a ring and the closure ofZ in

Qp with respect to�� �p. The elements ofZp are calledp–adic integers. We note that
the set of units isZ

�
p
� �x � Zp � �x�p � 1

�
and thatpZp

� �x � Zp � �x�p � 1
�
. We

also note thatvp�x� � max�i � N � x � piZp
�

for all x � Zp. So a number is small with
respect to���p if it is divisible by a high power ofp.

Proposition A.2
Z
�
pnZ � Zp

�
pnZp

for all n � 1.

PROOF The injectivity of the canonical map is clear. The surjectivity follows from
the following argument: Letx � Zp be given. SinceZp is the closure ofZ there exists
a � Z such that�x� a�p � p�n. I.e. x� a � pnZp.

The surjectivereduction modulo pmorphismZp � Fp with kernelpZp links char-
acteristic 0 and characteristicp. If x � Zp maps tox � Fp thenx is called thereduction
modulop of x andx is called alift of x.

Lemma A.3 A series∑i xi in Qp is convergent ifflim i�∞ �xi �p � 0.

PROOF

� : Well known.

� : if M  N then

� M

∑
i�0

xi �
N

∑
i�0

xi �p � � M

∑
i�N!1

xi �p � max
N!1� i�M

� �xi �p�
So �∑N

i�0xi �N is a Cauchy sequence inQp and therefore convergent.

Corollary A.4 Every element z� Zp has a unique expression as aTaylor seriesin p

z� ∞

∑
i�0

ai p
i

with ai � �0�1� � � � �p� 1
�
.

Every element z� Qp has a unique expression as aLaurent seriesin p

z�
∞

∑
i��N

ai p
i

with ai � �0�1� � � � �p� 1
�
.

Proposition A.2 and Corollary A.4 are essential for the practical understanding of
Zp. An element∑∞

i�0ai pi � Zq as above is approximated by the element∑N�1
i�0 ai pi �

Z
�
pNZ. Notice that the part we throw away hasp–adic norm at mostp�N. So the

greater theN the better the approximation. Furthermore the ringZ
�
pNZ is very easy

to implement on a computer. The reader should compare this tothe situation when we
represent the real number system on a computer. We can only handle a finite number
of decimals so we cut off from a certain point. But the more decimals we use the better
the approximation.

11



A.1.2 Unramified Extensions

Proposition A.5 Let Qp � K be a finite field extension of degree n. Then�� �p on Qp

may be extended uniquely to a non–archimedian absolute value on K. The extension is
given by the formula �α �p � n

�
NK�Qp �α� ��α � K

Furthermore K is complete with respect to���p.

PROOF [14, Prop.II.4.8].

For a finite field extensionQp � K we define

OK :� �x � K � �x�p � 1
�

O
�
K :� �x � OK � �x�p � 1

�

MK :� �x � OK � �x�p � 1
�

ΓK :� OK
�
MK

We note thatO
�
K is the set of units inOK andMK is a maximal ideal inOK . ΓK is a

field and sinceFp � Zp
�
pZp we have a field extension

Fp � ΓK �

Definition A.6 A finite field extensionQp � K of degree n isunramifiedif the field
extensionFp � ΓK (is separable and) has degree n.

Proposition A.7 Every unramified extension K ofQp of degree n is on the form

K � Qp �x�� � f �x��
where f � Z �x� is a monic polynomial of degree n and the reductionf � Fp �x� is irre-
ducible. FurthermoreOK � Zp �x�� � f �x��, MK

� �p� andΓK � Fp �x�� � f �x��.
Conversely a finite extension ofQp on the above form is unramified.

PROOF SinceFp � ΓK is a separable field extension of degreen there exists a monic,
irreducible polynomialf � Fp �x� of degreen such that

ΓK
� Fp �x�� � f �x��

Let f � Z �x� denote a monic lift off , i.e. f is monic and reduces tof mod p. A small
exercise shows that thatf � Qp �x� is irreducible.

SinceOK
�
MK � Fp �x�� � f �x�� there existsθ � OK such thatf �θ� � MK . By Hensel’s

Lemma ([14, II.4.6]) there existsψ � OK such thatf �ψ� � 0 andψ � φ modMK .
SinceQp � Qp �x�� � f �x�� has degreen we find thatK � Qp �ψ� � Qp �x�� � f �x��.

Everyx � OK � �0�
can now be written

pnx � n�1

∑
i�0

aiψi

with n � 0, ai � Zp and at least oneai � Z
�
p. Assumen  0. Reducing modp we see

that

0 � n�1

∑
i�0

aiψi

But sinceψ is a root of the irreducible polynomialf � Fp �x� of degreen all the ai ’s
must be zero (Contradiction). I.e.n � 0.
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If x � MK a similar argument shows thatx � �p�.
Corollary A.8 There exists (up to isomorphism) exactly one unramified extension of
Qp of degree n. It is denoted byQq where q� pn. The corresponding ring of integers
is denoted byZq.

PROOF LetK andL be unramified extension ofQp of degreen. Since every every finite
field of degreeq � pn is uniquely determined we know thatΓL � ΓK � Fp �x�� � f �x��
for some monic, irreducible polynomialf � Fp �x� of degreen. If f � Z �x� is a monic
lift of f of degreen then it follows directly from the proof of Proposition A.7 that

K � Qq �x�� � f �x�� � L

For the rest of this section we assumeQq is given as in Proposition A.7 by a poly-
nomial f � Z �x� monic of degreen and with irreducible reduction modulop and we let
α � x� � f � � Qq.

Corollary A.9
Zq

�
pnZq � �Z�

pnZ� �x�� � f �x��
for all n � 1.

The surjectivereduction modulo pmorphismZq � Fq with kernelpZq links char-
acteristic 0 and characteristicp. If x � Zq maps tox � Fq thenx is called thereduction
modulop of x andx is called alift of x.

Corollary A.10 Every element z� Zq has a unique expression as aTaylor seriesin p

z�
∞

∑
i�0

�
n�1

∑
j�0

ai � jα j �pi

with ai � j � �0�1� � � � �p� 1
�
.

Every element z� Qp has a unique expression as aLaurent seriesin p

z� ∞

∑
i��N

�
n�1

∑
j�0

ai � jα j �pi

with ai � j � �0�1� � � � �p� 1
�
.

Corollary A.9 and A.10 are essential for the practical understanding ofZq. An ele-
ment∑∞

i�0 �∑n�1
j�0 ai � jα j �pi � Zq as above is approximated by the element∑N�1

i�0 �∑n�1
j�0 ai � jα j �pi �

�Z�
pNZ� �x�� � f �x��. Notice that the part we throw away hasp–adic norm at mostp�N.

So the greater theN the better the approximation. Furthermore the ring�Z�
pNZ� �x�� � f �x��

is very easy to implement on a computer. The reader should compare this to the situ-
ation when we represent the real number system on a computer.We can only handle
a finite number of decimals so we cut off from a certain point. But the more decimals
we use the better the approximation.
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A.1.3 The Frobenius Substitution

Corollary A.11 Let Σ : Fq � Fq denote the p’th power Frobenius. The Galois group
GalQq�Qp is cyclic of degree n generated by the unique elementΣ : Qq � Qq making
the following diagram commutative

Zq

��

Σ
// Zq

��
Fq

Σ
// Fq �

(The vertical map is reduction mod p).

Definition A.12 Σ is called theFrobenius substitution.

PROOF WriteQq
� Qp �x�� � f �x�� with f as in the Proposition. ThenFq

� Fp �x�� � f �x��.
Let θ � X � � f � and θ � X � � f �. The roots of f are θ �Σ �θ� � � � � �Σn�1 �θ�. It fol-
lows from Hensel’s Lemma that for eachi � 1 there exists a uniqueψi � Zq such that

f �ψi � � 0 andψi � Σi �θ� modp. We defineΣ � GalQq�Qp by

Σ : Qq � Qq

θ � ψ1

Then sincef �Σi �θ�� � Σi f �θ� � 0 andΣi �θ� � θpi
we see thatΣi �θ� � ψi . It follows

that Gal�Qq
�
Qp� �� Σ  and the diagram is commutative.

A.2 Proof of the Main Theorem of p–adic Point Counting

Theorem A.13 Let E
�
Fq denote an ordinary elliptic curve,Frp : E � ΣE the p’th

power Frobenius isogeny andFrq : E � E the q’th power Frobenius isogeny. Assume
E
�
Qq is an elliptic curve reducing toE

�
Fq modulo p and thatFrp : E � ΣE is an

isogeny defined overQq and reducing toFrp modulo p. Letω and ωΣ denote the
invariant differentials on E andΣE.

There is a unique M� Qq satisfying

Fr
�
p�ωΣ� � 1

M
ω

Furthermore pM� Z
�
q and the action of

�
Frp on the invariant differentialω is given by

�
Frp

�
�ω� � �pM�ωΣ �

Finally the trace of the q’th power Frobenius isogeny is given by

Tr�Frq� � NQq�Qp �
1
M

� � NQq�Qp �pM� (5)

whereNQq�Qp : Qq � Qp denotes the norm.

PROOF An elliptic curve is a genus 1 curve and therefore the associated Qq–vector
space of holomorphic differentials is 1–dimensional. Thisimplies that the set consist-
ing of the invariant differential is a basis. So the existence and uniqueness ofM � Qq

is clear (The action of Fr
�
p is not zero since characteristic 0).
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The action of
�
Frp on the invariant differential is given by the following calculation

where we use the fact that Frp is a p–isogeny (degrees are invariant under reduction
([21, Prop. II.4.4])).

pωΣ � �Frp �
�
Frp�

� �ωΣ � �
�
Frp

�
�Fr

�
p�ωΣ�� � 1

M

�
Frp

�
�ω�

Since the elliptic curveE and the isogeny Frp is defined overQq we can apply the
Frobenius substitution to them. Thus we are able to draw the following commutative
diagram where the vertical arrows denote reduction modulop.

E

��

Frp
//

Frq

++ΣE

��

ΣFrp

// � � �
Σn�2Frp

// Σn�1E

��

Σn�1Frp

// E

��

E

Frq

33
Frp

// ΣE
Frp

// � � �
Frp

// Σn�1
E

Frp
// E

The isogeny Frq is the composition of the liftedp’th power Frobenius isogenies. We
see that it reduces to theq’th power Frobenius isogeny modulop. The action of Frq on
the invariant differential can be found by the following calculation where we use the
fact that the Galois group for the field extensionQq

�
Qp is generated by the Frobenius

substitution.

Fr
�
q �ω� � Fr

�
p � ΣFr

�
p � � � � � �Σn�1Fr

�
p� �ω� � 1

M
� 1
ΣM

� � � 1
Σn�1M

ω � NQq�Qp �
1
M

�ω

In the same way we find that
�
Fr
�
q �ω� � NQq�Qp �pM�. Therefore

Tr�Frq�ω � �Frq �
�
Frq�

�
ω �

"
NQq�Qp �

1
M

� � NQq�Qp �pM�# ω

Combining [20, Prop V.2.3] and [21, Prop II.4.4] we see that Tr�Frq� � Tr�Frq� and so
Equation (5) follows.

A small argument using Equation (5) shows1
M � Zq. So reducing modulop we find

Fr
�
p�ωΣ � � � 1

M �ω. SinceFrp is inseparable it follows from [20, II.4.2.c] that� 1
M � � 0

and thus1
M � pZq. An argument as before shows thatpM � Zq and using the fact that�

Frp is separable (E is ordinary) it follows that�pM� �� 0 and thuspM � Z
�
q.

A.3 The Hasse–Witt Matrix

In point counting we are often able to find the square of the trace of theq’th power
Frobenius isogeny. In order to extract the trace itself by Newton iterations we need the
trace modulop. In odd characteristic we can find this by using the Hasse–Witt matrix
as stated in Manin [9]. In point counting this is an often mentioned but never clearly
stated fact. So we think its time to give an elementary proof.The proof is an extension
of the simple caseq � p for elliptic curves as found in Manin [9].

Let p denote an odd prime andq � pn.
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Proposition A.14 Let E
�
Fq : y2 � f �x� denote an elliptic curve on Weierstrass form

andFrq : E � E the q’th power Frobenius isogeny. Let ap�1 denote the xp�1 coefficient

of f �x� p�1
2 . Then

Tr�Frq� � NFq�Fp �ap�1� modp

PROOF We see that

1� q� Tr�Frq� � #E �Fq� � 1� q� ∑
α�Fq

"
f �α�

p #
where the brackets denote the Legendre symbol. So Tr�Frq� � �∑α�Fq f �α� q�1

2 modp.

If we write f �x� q�1
2 � ∑

3q�1
2

i�0 bixi we see that∑α�Fq f �α� q�1
2 � ∑

3q�1
2

i�0 bi ∑α�Fq αi . Using
the fact thatF

�
q is cyclic it is easy to see

∑
α�Fq

αi � 0 �i �� 0 modq� 1� and ∑
α�Fq

αm�q�1� � �1 �m� 1� �

So
Tr�Frq� � bq�1 modp

Now we findbq�1. We see that

f �x� q�1
2 � n�1

∏
i�0

� f �x� p�1
2 �pi

If f �x� p�1
2 � ∑

3 p�1
2

j�0 a jx j then � f �x� p�1
2 �pi � ∑

3 p�1
2

j�0 api

j x jpi
. Since the only solution of

m0 � m1p� � � � � mn�1pn�1 � q� 1

with 0 � mi � 3 p�1
2 is �mi

� p� 1
�

i it follows that

bq�1
� n�1

∏
i�0

api

p�1
� NFq�Fp �ap�1�

Corollary A.15 LetEλ
�
Fq : y2 � x�x� 1� �x� λ� denote an elliptic curve on Legendre

form. Then
Tr�Frq� � ��1�mHp�λ� modp

where Hp�t � � ∑m
i�0

�
m
i �2

t i and m� p�1
2 .

PROOF Use Silverman [20, Proof of V.4.1.b].
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