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Abstract

We study the solutions f : G → H of the quadratic functional equation
on G, where G and H are groups, H abelian. We show that any solution f
is a function on the quotient group [G, [G, G]]. By help of this we find suffi-
cient conditions on G for all solutions to satisfy Kannappan’s condition. We
use this to derive explicit formulas for the solutions on various groups like,
e.g., the (ax + b)-group and GL(n,R).

Keywords: Quadratic functional equation, Cauchy difference, Kannappan
condition, semidirect product.
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1 Introduction

A norm ‖ · ‖ on a vector space V stems from an inner product (·, ·) on V , i.e. ‖x‖2 =
(x, x) for all x ∈ V , if and only if it satisfies the parallelogram identity

‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2, x, y ∈ V. (1.1)

This is classical knowledge, going back to the theorem of Apollonius in Euclidean
geometry: The sum of the squares of the lengths of the two diagonals of a par-
allelogram is equal to the sum of the squares of the lengths of the four sides. A
special case of Apollonius’ theorem is Pythagoras’ theorem that asserts the same for
rectangles. Jordan and von Neumann [12] proved the result for vector spaces.

Generalizing the parallelogram identity from a vector space V to a group G we
are led to the quadratic functional equation

f(xy) + f(xy−1) = 2f(x) + 2f(y), x, y ∈ G, (1.2)

where f : G → H is to be determined. In the present paper we allow G to be any
group and the range space H of f to be any abelian group. The functional equation
(1.2) also turns up in discussions of other functional equations (See for example [2,
Lemma 2] and [20, Corollary III.8]).
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A generalization of (1.1), similar to (1.2), is

f(xy) + f(y−1x) = 2f(x) + 2f(y), x, y ∈ G. (1.3)

However the two functional equations (1.2) and (1.3) have the same solutions because
any solution f of one of them satisfies that f(xy) = f(yx) for all x, y ∈ G. This
is because the right hand side is symmetric in x and y (See Section 9 for a general
result). So (1.3) is not really a new generalization.

In [13] Kannappan listed a number of functional equations that are equivalent
to the quadratic functional equation if G is abelian or just if f satisfies Kannapan’s
condition f(xyz) = f(xzy), x, y, z ∈ G. Kannappan’s condition on f is equivalent
to f being a function on the abelian group G/[G, G].

To describe the existing results about the quadratic functional equation on groups
in a short way we introduce the following terminology:

Definition 1.1. Let G be a group and H be an abelian group. We will say that
a map f : G → H is a quadratic function if there exists a symmetric bimorphism
Q : G×G → H such that f(x) = Q(x, x) for all x ∈ G.

We choose the word function to avoid confusion with [15], [25] and [13] in which a
quadratic form or a quadratic functional by definition is any solution of the quadratic
functional equation.

There may be other solutions than the quadratic functions even for H = C. See
the remarks prior to Corollary 6.7 for an example.

The basic result for abelian groups is Theorem 1.2 below. It is due to Aczél
[1]. In [13, Result 1] it is mentioned that the assumption of G being abelian can be
replaced by Kannappan’s condition.

Theorem 1.2 (Aczél 1965). Let G be an abelian group and let H be an abelian
group in which every equation of the form 2x = h ∈ H has one and only one solution
x ∈ H. Then any solution f : G → H of the quadratic functional equation on G is
a quadratic function.

Motivated by the original situation (1.1) Kannappan studied in [13] the equation
(1.2) when G is the additive group of a linear space, to find out when solutions
arise from bilinear functionals. So there is not only the group structure to take
into account, but also the multiplication by scalars. It might here be mentioned
that Kurepa [15, Theorem 5], also inspired by the original equation (1.1), studied
when the square f(x) = d(x, e)2 of a right-invariant pseudometric d(·, ·) on a group
G (instead of the square of a norm on a vector space) solves (1.2). He found in
particular that such an f is a quadratic function. For literature about the vector
space situation we refer to [3], [13] and the recent monograph [7] and their references,
because we shall here discuss the pure group case, where the group may even be non-
abelian.

The quadratic functional equation was generalized by Chung, Ebanks, Ng and
Sahoo [5]. Their paper [5] derives formulas for the complex-valued solutions of
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the generalization, assuming Kannappan’s condition. Our paper does not impose
Kannappan’s condition in the general set-up, and we do not restrict ourselves to
complex-valued solutions, but on the other hand we study exclusively the quadratic
functional equation (1.2) and not any generalizations of it.

For any function f : G → H, where G is a group and H is an abelian group, we
introduce the Cauchy-difference Cf of f by

Cf(x, y) = f(xy)− f(x)− f(y), x, y ∈ G. (1.4)

The key to the studies on a non-abelian group G is the following observation: If
f : G → H is a solution of the quadratic equation (1.2), then its Cauchy-difference
Cf satisfies Jensen’s functional equation in each of its variables when the other
variable is fixed. That is why Hosszú [11] and Kurepa [14], [15] found relations
between solutions of the quadratic functional equation and their Cauchy-differences.
In [15, Theorem 1] Kurepa shows that any solution of the quadratic functional
equation is a quadratic function if G is generated by 2 elements and H has no
elements of order 2.

Corovei considered in [6, Lemma 4] the quadratic functional equation when G
was a P3-group and H a quadratically closed field of characteristic different from 2
and 3. He found that the quadratic functions are the only solutions.

Using Ng’s works [16], [17], [18] on Jensen’s functional equation Di-Lian Yang
[25] derived a number of basic formulas for the solutions of the quadratic functional
equation and applied them to solve the equation on free groups and on the general
linear group GLn(Z) over the integers. Like Ng, but in contrast to the other works
mentioned above, she imposed no assumptions on the range group H but that it
should be an abelian group. Her formulas can be used to derive results by Hosszú
[11] and Kurepa [14], [15].

The purpose of the present paper is to continue the investigations of the quadratic
functional equation on groups that are not necessarily abelian. We let the range
group H be any abelian group, even though many of our statements would simplify,
if we assumed, e.g., that H had no elements of order 2.

To formulate our results we introduce the following notation and terminology:
If x, y ∈ G we let [x, y] = xyx−1y−1. And if A and B are subsets of G we let [A, B]
denote the subgroup of G generated by the elements [a, b], where a ∈ A and b ∈ B.
Of particular interest are [G, G] and [G, [G, G]] which are normal subgroups of G.

Let G0 be a subgroup of G. A function f : G → H is said to be a function
on G/G0 if f(xx0) = f(x) for all x ∈ G and x0 ∈ G0. In that case we will not
distinguish between f : G → H and the function F : G/G0 → H defined on the
coset space G/G0 by F (xG0) = f(x), x ∈ G.

Building upon certain of the formulas derived in [25] we get the following results:

(a) We refine Aczél’s basic result for abelian groups (Theorem 1.2) by allowing any
abelian group as range group (Proposition 5.1 and Corollary 5.2).

(b) We generalize Corovei’s result [6, Lemma 4] on P3-groups, i.e. groups in which
each commutator has order ≤ 2: It suffices that each commutator has finite
order (see the remark after Proposition 5.3 for the precise statement).
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(c) Kurepa’s result for groups with 2 generators is extended: It suffices that the
quotient group G/(Z(G)[G, G]) is generated by 2 elements, and Kurepa’s as-
sumption about H having no elements of order 2 is removed (Corollary 6.7).

(d) We prove that any solution of the quadratic functional equation on a group G
is a function on the quotient group G/[G, [G, G]] (Theorem 3.2). This fact is
mentioned without proof in [25, Remark 4.4].

(e) We show that a solution of the quadratic equation on a product of groups satisfies
Kannappan’s condition if and only if its restriction to each of the subgroups
satisfies Kannappan’s condition (Corollary 6.3).

(f) We give sufficient conditions on the group G to ensure that all solutions of
the quadratic equation on it are quadratic functions. One such condition is
that [G, [G, G]] = [G, G], which is satisfied for certain non-abelian groups like
GL(n,R), n ≥ 2. (See Theorem 5.2 for details).

(g) We solve the quadratic functional equation on selected groups (mainly semidirect
products), that are of interest in other connections. Among the examples are
the (ax + b)-group, the Heisenberg group and GL(n,R), n ≥ 2, where we find
simple explicit formulas for the continuous solutions of the quadratic functional
equation (Section 8).

Throughout the present paper (except for Section 9) we let G denote a group
with neutral element e, and we let H denote an abelian group.

2 Formulas and preliminary results

This section contains results that will be needed later. We mention in particular the
indispensable Theorem 2.6.

Definition 2.1. We say that a map Φ : G×G× · · · ×G → H (n factors) is

1. a multimorphism, if it is a homomorphism in any of its variables when the
remaining n − 1 variables are fixed. If n = 2 a multimorphism is called a
bimorphism.

2. alternating, if Φ(xσ(1), . . . , xσ(n)) = sgn(σ)Φ(x1, . . . , xn) whenever σ is a per-
mutation of n elements and x1, . . . , xn ∈ G.

We recall ([25, formula (3)]) that the map Bf : G× G× G → H corresponding
to any f : G → H is for x, y, z ∈ G defined by

Bf (x, y, z) = f(xyz)− f(xy)− f(xz)− f(yz) + f(x) + f(y) + f(z) (2.1)

= Cf(xy, z)− Cf(x, z)− Cf(y, z).

The second line shows that Bf is the 2nd Cauchy-difference of f .
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We will often use the following easy result from [25] without explicit mentioning.
It allows us in many contexts to assume that f(e) = 0, which is the standard
normalization of f in the formulation of the results in [25].

Lemma 2.2. Let f : G → H be a solution of the quadratic functional equation
(1.2). Then 2f(e) = 0, and the decomposition f = (f−f(e))+f(e) splits f into two
solutions, such that the first one vanishes at the neutral element e, while the second
one is constant. Furthermore 2Bf−f(e) = 2Bf .

The following relations between solutions of (1.2) and Cauchy-differences are
easy to derive from [25].

Lemma 2.3. If f : G → H is a solution of the quadratic functional equation, then

(a) [f − f(e)](xn) = n2[f − f(e)](x) for all n ∈ Z and x ∈ G.

(b) 2f(x) = C(f − f(e))(x, x) for all x ∈ G.

(c) f is invariant under inner automorphisms, i.e. f(xy) = f(yx) for all x, y ∈ G.

(d) Cf is symmetric, i.e. Cf(x, y) = Cf(y, x) for all x, y ∈ G.

(e) Cf(·, y) is a solution of Jensen’s functional equation for each fixed y ∈ G, and
Cf(e, y) = f(e).

(f) If f is a quadratic function, say f(x) = Q(x, x), where Q : G × G → H is a
symmetric bimorphism, then 2Q = Cf .

Proof. (a) [25, formula (13)].
(b) If f(e) = 0, then (b) can be found as [25, formula (15)]. Using that, we get for
a general solution f that 2f(x) = 2(f(x)− f(e)) = C(f − f(e))(x, x) for all x ∈ G.
(c) follows from Proposition 9.1.
(d) follows from (c).
(e) is a simple computation (Details can be found in the proof of [25, formula (8)]).
(f) The identity f(xy) = Q(xy, xy) = Q(x, x) + Q(y, y) + 2Q(x, y) = f(x) + f(y) +
2Q(x, y) implies that 2Q(x, y) = f(xy)− f(x)− f(y) = Cf(x, y).

A frequently encountered condition on G is that it shall be 2-divisible, i.e. that
G = {x2 | x ∈ G}. A weaker condition is that G is generated by its squares, i.e. that
G = 〈G2〉, where 〈G2〉 denotes the subgroup of G generated by the set of squares
{x2 | x ∈ G}. Parnami and Vasudeva have in [19] a still weaker condition, viz. that
[G/〈G2〉] ≤ 2. To put their condition into perspective we observe the following: Let
G be a Lie group, and let Go denote the connected component of G containing the
identity element. As is well known 〈G2〉 ⊇ Go [Let exp : g → G be the exponential
map. Then U = exp(g) is a neighborhood of {e} consisting of squares. Hence
〈U〉 ⊆ 〈G2〉. But, U being a neighborhood of {e}, we have 〈U〉 ⊇ Go by [10,
Theorem 7.4]]. If G is connected then G = 〈G2〉, and if G has two components
then [G/〈G2〉] ≤ [G/Go] = 2. So the condition is automatically satisfied for any Lie
group with at most two connected components like GL(n,R). In this context we
note the following technical lemma that holds for any group G:
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Lemma 2.4. Assume that [G/〈G2〉] ≤ 2. If f : G → H is a solution of the quadratic
functional equation on G, then Cf(x, y) ∈ f(e) + 2H for all x, y ∈ G.

Proof. Possibly replacing f by f − f(e) we may assume that f(e) = 0 (note that
C(f − c) = Cf + c).

We shall prove that Cf(u, ξ) ∈ 2H and Cf(ξ, u) ∈ 2H for any ξ ∈ 〈G2〉 and
u ∈ G. By the symmetry of Cf (Lemma 2.3(d)) we need only prove the second
claim. Now Cf(·, u) is by Lemma 2.3(e) a solution of Jensen’s functional equation
on G such that Cf(e, u) = 0. By [16, formula (2.2)] we have that

Cf(xynz, u) = nCf(xyz, u)− (n− 1)Cf(xz, u) for all x, y, z ∈ G.

Using this formula with n = 2 we get by induction on k that Cf(x2
1x

2
2 · · ·x2

k, u) ∈ 2H.
We use below that any element ξ ∈ 〈G2〉 may be written in the form ξ =

x2
1x

2
2 · · ·x2

n where x1, x2, . . . , xn ∈ G.
If [G/〈G2〉] = 1 then G = 〈G2〉, so Cf(ξ, u) ∈ 2H for all ξ ∈ 〈G2〉 and u ∈ G.
We next write down the proof in the case of [G/〈G2〉] = 2, so we assume that

there exists an x0 ∈ G\〈G2〉 such that any element in G may be written in the form
xk

0ξ, where k ∈ {0, 1} and where ξ ∈ 〈G2〉.
It is left to prove that Cf(x0ξ, x0η) ∈ 2H for any ξ, η ∈ 〈G2〉. Now,

Cf(x0ξ, x0η) = f(x0ξ, x0η)− f(x0ξ)− f(x0η)

= f(x2
0(x

−1
0 ξx0)η)

− [Cf(x0, ξ) + f(x0) + f(ξ)]− [Cf(x0, η) + f(x0) + f(η)]

= f(x2
0(x

−1
0 ξx0)η)

− Cf(x0, ξ)− Cf(x0, η)− 2f(x0)− f(ξ)− f(η),

so modulo 2H we have that

Cf(x0ξ, x0η) = f(x2
0(x

−1
0 ξx0)η)− f(ξ)− f(η).

Noting that x−1
0 ξx0 ∈ 〈G2〉, because 〈G2〉 is normal, we see that it suffices to prove

that f(〈G2〉) ⊆ 2H. Any element in 〈G2〉 may be written in the form x2
1x

2
2 · · ·x2

n

where x1, x2, . . . , xn ∈ G, so we will establish f(〈G2〉) ⊆ 2H by induction on n =
1, 2, . . .. Since f(x2) = 4f(x) by Lemma 2.3(a) (this is n = 1) we find with a =
x2

1x
2
2 · · ·x2

n, computing modulo 2H, that

f(ax2
n+1) = f(a) + f(x2

n+1) + Cf(a, x2
n+1) = f(a) + 4f(xn+1) + 0 = f(a),

from which the induction step follows.

Lemma 2.5. If f : G → H is a solution of the quadratic functional equation, then

(a) Let Γ be a subgroup of G. If f is a function on G/Γ, then Cf is a function on
the coset space G/Γ×G/Γ.

6



(b) Assume that [G/〈G2〉] ≤ 2, and that H has the property that 2h = 0 implies h =
0. Then there exists exactly one map A : G×G → H such that Cf = 2A. The
map A is symmetric, and A(·, u) is a solution of Jensen’s functional equation
on G such that A(e, u) = 0 for each u ∈ G. Furthermore f(x) = A(x, x) for all
x ∈ G.

(c) Assume that f is a function on G/Γ, where Γ is a subgroup of G. Assume also
that f is a quadratic function, say f(x) = Q(x, x), where Q : G × G → H is
a symmetric bimorphism. Assume finally that H has the property that 2h = 0
implies h = 0. Then Q is a symmetric function on G/Γ×G/Γ.

Proof. (a) Due to the symmetry of Cf (Lemma 2.3(d)) we only need to verify that
Cf(x, yγ) = Cf(x, y) for all x, y ∈ G and γ ∈ Γ. And Cf(x, yγ) = f(xyγ)− f(x)−
f(yγ) = f(xy)− f(x)− f(y) = Cf(x, y).
(b) The only problem is to show that Cf(x, y) ∈ 2H = {2h | h ∈ H} for all x, y ∈ G,
the unique divisibility by 2 taking care of the rest. But this is done in Lemma 2.4.
(c) Immediate from (a) and Lemma 2.3(f).

In Theorem 2.6 we list pertinent basic properties of any solution f : G → H of
the quadratic functional equation and the corresponding map Bf : G×G×G → H.
These properties are consequences of [25, Theorem 2.1]. Of central interest for us is
the formula [25, formula (17)]:

f(xuvy) = f(xvuy) + 2Bf (u, v, yx), x, y, u, v ∈ G, (2.2)

because it deals with interchange of elements and hence with commutators. It is
derived in [25] under the hypothesis that f(e) = 0, but it remains true without this
assumption.

Theorem 2.6. If f : G → H is a solution of the quadratic functional equation, then

(a) f(x[y, z]) = f(x) + 2Bf (x, y, z) for all x, y, z ∈ G.

(b) 2Bf : G×G×G → H is a multimorphism.

(c) Bf : G×G×G → H is alternating.

(d) 2Bf (x, y, z) = 0 if any two of the elements x, y, z ∈ G commute.

(e) Bf (x, y, z) = f(e) if any two of the elements x, y, z ∈ G are equal.

Proof. We may in (a) and (b) assume that f(e) = 0, since Bf−f(e) = Bf + f(e), so
that 2Bf−f(e) = 2Bf , because 2f(e) = 0 Lemma 2.2.
(b) The multimorphism property is proved in [25, formula (16)].
(e) is immediate from [25, formula (20)].
(a) Put y = u−1v−1 in (2.2) and use (b) and (e).
(c) By [25, formula (22)] we have that Bf−f(e)(x, y, z) + Bf−f(e)(x, z, y) = 0 for all
x, y, z ∈ G. Substituting Bf−f(e)(x, y, z) = Bf (x, y, z)+f(e) we get that Bf (x, y, z)+
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Bf (x, z, y) = 0. Similarly arguments show that Bf (x, y, z)+Bf (z, y, x) = 0 and that
Bf (x, y, z) + Bf (y, x, z) = 0.
(d) Assume first that y and z commute. Using the definition (2.1) of Bf and (c)
we find that that Bf (x, y, z) = Bf (x, z, y) = −Bf (x, y, z), proving (d) in this case.
Similar arguments work if other elements commute, because Bf is alternating.

3 Solutions are functions on the quotient group

G/[G, [G, G]]

Given any function f on G we introduced in [21] the normal subgroup

Z(f) = {u ∈ G | f(xuy) = f(xyu) for all x, y ∈ G}

of G. The notation Z(f) reflects the fact that if an element u ∈ Z(f) occurs in an
argument for f then it may be moved around as though residing in the center Z(G)
of G, i.e. f(xuyz) = f(xyuz) for all x, y, z ∈ G.

Lemma 3.1. If f : G → H is a solution of the quadratic functional equation, then
[G, G] ⊆ Z(f). Furthermore 2Bf (x, y, z) = 0, if one of the elements x, y, z ∈ G
belongs to Z(f).

Proof. Consider the formula (2.2) with y = e, i.e.

f(xuv) = f(xvu) + 2Bf (u, v, x) for all x, u, v ∈ G. (3.1)

Any u ∈ [G, G] may be written in the form u =
∏n

i=1[ai, bi] where ai, bi ∈ G. We
see that the last term of (3.1) vanishes, because 2Bf is a homomorphism in its first
variable (Theorem 2.6(b)): 2Bf (u, v, x) =

∑n
i=1 2Bf ([ai, bi], v, x) = 0. It follows that

u ∈ Z(f).
If u ∈ Z(f), i.e. f(xuv) = f(xvu), then we get from (3.1) that 2Bf (u, v, x) = 0,

so the statement is true in the first variable. It follows for the two other variables,
because Bf is alternating (Theorem 2.6(c)).

Theorem 3.2. Any solution f : G → H of the quadratic functional equation (1.2)
is a function on the quotient group G/[G, [G, G]], i.e. f(xv) = f(x) for all x ∈ G
and v ∈ [G, [G, G]].

Proof. Any element v ∈ [G, [G, G]] is a product of factors of the form [y, u] and
[u, y], where y ∈ G and u ∈ [G, G]. Elements in [G, G] behave according to Lemma
3.1 as in the center of G when occurring in an argument of f , so moving u ∈ [G, G]
one position to the right, a factor of the form [y, u] = yuy−1u−1 may be replaced by
yy−1uu−1 = e without affecting the value of f . Similarly for the factors of the form
[u, y], where y ∈ G and u ∈ [G, G]. So each of the factors of v may be replaced by
e.

The result of Theorem 3.2 is mentioned without proof in [25, Remark 4.4], and
is also true for solutions of Jensen’s functional equation [22, Theorem 2.2(c)] (It is
derived in [22] for H = C, but the proof holds for any abelian range group H).
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4 Solutions are constant on the commutator

subgroup

The following Proposition 4.1 can be found as [25, Corollary 2.3] under the assump-
tion that f(e) = 0. We believe that our proof is simpler.

Proposition 4.1. If f : G → H is a solution of the quadratic functional equation
on a group G, then f = f(e) on [G, G].

Proof. From Theorem 2.6(a) and the fact that 2Bf is a multimorphism we get by
induction on n the formula

f(x[yn, zn][yn−1, zn−1] · · · [y1, z1]) = f(x) +
n∑

i=1

2Bf (x, yi, zi)

for x, yi, zi ∈ G, i = 1, 2, . . . , n.

The proposition is the special case of x = e, because Bf (e, yi, zi) = f(e) by the
defining identity (2.1), so 2Bf (e, yi, zi) = 2f(e) = 0.

If G is a connected semisimple Lie group like SL(n,R), SL(n,C), Sp(n) etc,
then [G, G] = G by [24, Corollary 3.18.10], so on such groups each solution f of
the quadratic functional equation is constant by Proposition 4.1. However, certain
groups are by their nature not connected, but have several components. To take
an example the pseudo-orthogonal group O(p, q) has 4 connected components when
p, q ≥ 1. The following Corollary 4.2 addresses that situation.

Corollary 4.2. If f : G → C is a solution of the quadratic functional equation on a
semisimple Lie group G with only finitely many connected components, then f = 0.

Proof. Let Go denote identity component of G. It is a normal subgroup of G by [10,
Theorem 7.1]. Then G/Go is a finite group, the order, say n, of which is the number
of connected components of G. Now [Go, Go] = Go by [24, Corollary 3.18.10], so

G/[G, G] ∼= (G/[Go, Go])/([G, G]/[Go, Go]) = (G/Go)/([G, G]/Go),

so G/[G, G] is a finite group the order of which divides n. Hence xn ∈ [G, G] for any
x ∈ G. By Proposition 4.1 and Lemma 2.3(a) we get 0 = f(xn) = n2f(x), so that
f(x) = 0.

5 Conditions for all solutions to be quadratic

functions

As is easy to check any quadratic function is a solution of (1.2). We shall in this
section give sufficient conditions on G to ensure the converse, i.e. that all solutions of
the quadratic functional equation are quadratic functions, at least for range groups
in which no element has order 2.

Our first result refines Aczél’s classical result (Theorem 1.2) by allowing any
abelian group H as range group.
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Proposition 5.1. Let f : G → H be a solution of the quadratic functional equation
satisfying Kannappan’s condition. Then

(a) 4f is a quadratic function. Indeed, 2C(f − f(e)) : G×G → H is a symmetric
biadditive map, and 2f(x) = C(f − f(e))(x, x) for all x ∈ G.

(b) If H has the property that 2h = 0 implies h = 0, then 2f is a quadratic function.

(c) If the map h 7→ 2h is a bijection of H onto H, then f is a quadratic function.

(d) Let 〈G2〉 denote the subgroup of G generated by the squares {x2 | x ∈ G}. If
[G/〈G2〉] ≤ 2, then 2f is a quadratic function.

(e) If H has the property that 2h = 0 implies h = 0 and if furthermore [G/〈G2〉] ≤ 2,
then f is a quadratic function.

Proof. (a) From Lemma 2.3(b) we recall the formula

2f(x) = C(f − f(e))(x, x) for all x ∈ G. (5.1)

C(f − f(e))(·, y) is a solution of Jensen’s functional equation (Lemma 2.3(e)) van-
ishing at e and satisfying Kannappan’s condition, so 2C(f − f(e))(·, y) is a homo-
morphism [2, Proof of Lemma 1]. The Cauchy difference C(f − f(e)) of f − f(e) is
symmetric by Lemma 2.3(d), so 2C(f−f(e)) : G×G → H is a symmetric biadditive
map. Multiplying (5.1) by 2 we get that 4f is a quadratic function as desired.
(b) is immediate from (a).
(c) follows immediately from (b).
(d) Since f satisfies Kannappan’s condition we may, possibly replacing G by G/[G, G],
assume that G is abelian. Actually in this replacement we use the fact that [G, G] ⊆
〈G2〉, which follows from the formula [x, y] = (xy)2y−2(yx−1y−1)2. Indeed,

G/〈G2〉 = (G/[G, G])/(〈G2〉/[G, G])

By [19, Theorem 6] Cf(·, ·) is a homomorphism in each variable, when G is abelian.
(e) According to Lemma 2.5(b) there exists a symmetric map A : G × G → H
such that f(x) = A(x, x) for all x ∈ G and Cf = 2A. By assumption f satisfies
Kannappan’s condition, so hence does Cf . Being a solution of Jensen’s equation
Cf is a homomorphism in each variable. Hence so is 2A. The unique divisibility by
2 implies that A is a homomorphism in each variable.

The assumption [G, [G, G]] = [G, G] of the following Corollary 5.2 is clearly
satisfied for abelian groups, so the corollary contains the classical result stated above
in Theorem 1.2. In Section 8 we give examples of important non-abelian groups, for
which the assumption holds. Let us here note that the condition holds on semisimple
Lie groups (that a Lie group is semisimple means by definition that its Lie algebra is
semisimple) with at most two connected components like SO(p, q) when 0 < p < p+q
(see [9, Lemma X.2.4]): Let Go be the connected component of the identity for such
a group G. It is a normal subgroup of G by [10, Theorem 7.1]. The possible other
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component must be of the form aGo for some a /∈ Go. It follows that a2 ∈ Go. Since
G has at most two connected components we see by small calculations that [G, G] ⊆
Go. And since Go is a connected semisimple Lie group, we have [Go, Go] = Go (see
[24, Corollary 3.18.10]). Now

[G, [G, G]] ⊇ [Go, [Go, Go]] = [Go, Go] = Go ⊇ [G, G]

implies that [G, [G, G]] = [G, G]. See also Corollary 4.2.

Corollary 5.2. Let f : G → H be a solution of the quadratic functional equation on
G. Let G satisfy that [G, [G, G]] = [G, G]. Then f satisfies Kannappan’s condition.
Furthermore

(a) 4f is a quadratic function. Indeed, 2C(f − f(e)) : G×G → H is a symmetric
biadditive map, and 2f(x) = C(f − f(e))(x, x) for all x ∈ G.

(b) If H has the property that 2h = 0 implies h = 0, then 2f is a quadratic function.

(c) If the map h 7→ 2h is a bijection of H onto H, then f is a quadratic function.

(d) If [G/〈G2〉] ≤ 2, then 2f is a quadratic function.

(e) If H has the property that 2h = 0 implies h = 0 and if furthermore [G/〈G2〉] ≤ 2,
then f is a quadratic function.

Proof. The condition [G, [G, G]] = [G, G] is equivalent to the quotient group
G/[G, [G, G]] being abelian. f is a function on G/[G, [G, G]] according to Theo-
rem 3.2, so by our assumption f is a function on the abelian group G/[G, [G, G]].
In particular f satisfies Kannappan’s condition, so that we may apply Proposition
5.1.

Proposition 5.3. If

(a) each commutator in G has finite order, or

(b) [G, G]/[G, [G, G]] is a torsion group, or

(c) G is a semi-direct product of a topological abelian group (the normal part) and
a semi-simple Lie group with at most finitely many connected components,

then any solution f : G → C of the quadratic equation (1.2) on G is a quadratic
function.

Proof. (a): Using Lemma 2.2 we get that f(e) = 0, because H = C. From Lemma
2.3 we get that f(x) = 1

2
Cf(x, x). The Cauchy-difference Cf of f is symmetric

by Lemma 2.3, so it suffices to prove that Cf(·, y) = 0 is additive for each y ∈ G.
Now Cf(·, y) is a solution of Jensen’s functional equation (Lemma 2.3) vanishing at
e ∈ G. By [22, Proposition 6.3(c)] we get the additivity.
(b) resp. (c): The same as for (a) except that the last reference shall be to [22,
Proposition 3.3(c)], resp. [22, Proposition 6.5(b)].

Proposition 5.3(a) covers for complex-valued solutions the case of a P3-group
that was studied by Corovei [6, Lemma 4].
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6 Kannappan’s condition and the 2nd Cauchy dif-

ference

There are close relations between Kannappan’s condition and the 2nd Cauchy differ-
ence Bf for a solution f of the quadratic functional equation. The present section
describes and exploits some of these relations. The key observation is the following
lemma.

Lemma 6.1. Let f : G → H be a solution of the quadratic functional equation on
a group G. Then f satisfies Kannapan’s condition if and only if 2Bf = 0.

Proof. Immediate from the formula (2.2) with y = e.

Earlier papers (see [25, Remark 3.3] for references) stated Lemma 6.1 in an
equivalent way, namely that 2Cf should be a bimorphism. The formulation of
Lemma 6.1 has certain advantages as for example demonstrated by our proof of
Corollary 6.2.

Corollary 6.2. Let f : G → H be a solution of the quadratic functional equation
on G. Let Gi, i ∈ I be subgroups of G. Assume that

(a) G is generated by the Gi, i ∈ I

(b) Gi and Gj commute when i 6= j

(c) For each i ∈ I the restriction of f to Gi satisfies Kannappan’s condition

Then f satisfies Kannappan’s condition on G.

Proof. Any 3 elements x, y, z ∈ G can be written in the form x = xi1xi2 · · ·xin ,
y = yi1yi2 · · · yin , z = zi1zi2 · · · zin , where xil , yil , zil ∈ Gil for l = 1, 2, . . . , n. Now

2Bf (x, y, z) = 2Bf (xi1xi2 · · ·xin , yi1yi2 · · · yin , zi1zi2 · · · zin).

Due to the multi-additivity of 2Bf (Theorem 2.6(b)) we get that 2Bf (x, y, z) is a
sum of terms of the form 2Bf (xik , yil , zim). Factors from subgroups with different
index commute by assumption. So if two of the indices in 2Bf (xik , yil , zim) are
different then this term is 0 by Theorem 2.6(d). Left are the terms of the form
2Bf (xik , yik , zik). But they are 0 by Lemma 6.1. Hence 2Bf (x, y, z) = 0 for all
x, y, z ∈ G, and the result is a consequence of Lemma 6.1.

The Examples 8.4 and 8.5 show that Corollary 6.2 can be applied to the Heisen-
berg groups H2n+1(R) and H2n+1(Z). The Gi will be copies of the non-abelian
groups H3(R) and H3(Z) respectively.

If {Gi | i ∈ I} is a non-void family of groups we let
∏

i∈I Gi denote the direct
product of the groups Gi. We let

∏∗
i∈I Gi denote the weak direct product of the

groups Gi, i.e. the subgroup of
∏

i∈I Gi of all (xi)i∈I such that xi = e for all but a
finite set of indices (this set varying with (xi)i∈I). If the index set I is finite, say
I = {1, 2, . . . , n}, then

∏
i∈I Gi =

∏∗
i∈I Gi = G1 ×G2 × · · · ×Gn.
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Corollary 6.3. Let G =
∏∗

i∈I Gi be the weak direct product of the subgroups Gi.
Let f : G → H be a solution of the quadratic functional equation on G. Then f
satisfies Kannappan’s condition on G if and only if the restriction of f to each of
the subgroups Gi, i ∈ I, satisfies Kannapan’s condition on that subgroup.

Proof. Immediate from Corollary 6.2.

Corollary 6.4. Let G =
∏

i∈I Gi be the direct product of the subgroups Gi. We
assume that each Gi is a topological group and that G has the product topology. We
let H be a Hausdorff topological group.

Let finally f : G → H be a continuous solution of the quadratic functional
equation on G.

Then f satisfies Kannappan’s condition on G if and only if the restriction of f
to each of the subgroups Gi, i ∈ I, satisfies Kannapan’s condition on that subgroup.

Proof. If f satisfies Kannappan’s condition on G, then it clearly does so on each
subgroup of G. Let us conversely assume that f |Gi satisfies Kannappan’s condition
for each i ∈ I. According to Corollary 6.3 f satisfies Kannappan’s condition on
the subgroup

∏∗
i∈I Gi of G. Combining that this subgroup is dense in G (by [10,

Theorem 6.2]) with the continuity of f we get that f satisfies Kannappan’s condition
on all of G.

Lemma 6.5. If f : G → H is a solution of the quadratic functional equation
on a group G, then 2Bf : G × G × G → H is actually a function on G/Z(f) ×
G/Z(f) × G/Z(f), i.e. 2Bf (xz1, yz2, zz3) = 2Bf (x, y, z) for all x, y, z ∈ G and all
z1, z2, z3 ∈ Z(f).

Proof. By Lemma 3.1 we see that 2Bf (x, y, z) = 0 for all x, y, z ∈ G such that
z ∈ Z(f). 2Bf being a homomorphism in its third variable we find that

2Bf (x, y, zz3) = 2Bf (x, y, z) + 2Bf (x, y, z3) = 2Bf (x, y, z) + 0 = 2Bf (x, y, z).

The result for the two other variables follows from the fact that Bf is alternating
(Theorem 2.6(c)).

By Lemma 3.1 we have that [G, G] ⊆ Z(f) for any solution f : G → H of the
quadratic functional equation on the group G. Since also Z(G) ⊆ Z(f) we get

Corollary 6.6. If f : G → H is a solution of the quadratic functional equation
on a group G, then 2Bf is an alternating multimorphism of G/(Z(G)[G, G]) ×
G/(Z(G)[G, G])×G/(Z(G)[G, G]) into H.

Corollary 6.7 below gives a transparent proof that Kannappan’s condition au-
tomatically holds if the group G is generated by 2 elements. It generalizes [15,
Theorem 1] and [25, Remark 3.3], that impose the stronger condition that G, and
not just G/(Z(G)[G, G]), is generated by 2 elements.
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The corresponding result is not valid in general for groups with 3 or more gen-
erators. Indeed, let G be the free group generated by 3 elements {a1, a2, a3} and
define f : G → C by

f(am1
s1

am2
s2
· · · aml

sl
) =

∑
1≤i<j<k≤l

mimjmkB(asi
, asj

, ask
),

where B(aσ(1), aσ(2), aσ(3)) = sgn (σ) for any permutation σ of three objects and 0
otherwise (see [25, Remark 3.3]). Then f is a solution of the quadratic functional
equation (1.2), which does not satisfy Kannappan’s condition. f is by the way an
example of a solution of (1.2) that is not a quadratic function.

Corollary 6.7. If the quotient group G/(Z(G)[G, G]) is generated by 2 elements,
in particular if so is G, then any solution of the quadratic functional equation on G
satisfies Kannappan’s condition.

Proof. Let a and b be generators of G/(Z(G)[G, G]). Then any element may be writ-
ten as a product of factors of the form ambn. 2Bf is an alternating multimorphism
of G/(Z(G)[G, G])×G/(Z(G)[G, G])×G/(Z(G)[G, G]) into H, so 2Bf (x, y, z) be-
comes for any x, y, z ∈ G a linear combination of the terms 2Bf (a, a, a), 2Bf (a, a, b),
2Bf (a, b, b) and 2Bf (b, b, b). But these terms vanish according to Theorem 2.6(e),
each containing at least 2 identical elements, and hence so does 2Bf (x, y, z). We
now refer to Lemma 6.1.

Corollary 6.7 is used in Example 8.5 (The Heisenberg group with integer entries).

7 On certain semi-direct products

Many important groups are semi-direct products. In the present short section we
study a special class of semi-direct products. The class contains examples like the
(ax + b)−group and GL(n,R) that are treated in detail in Section 8 below.

Let G = NK be the semi-direct product of a normal subgroup N and a subgroup
K. Thus N ∩K = {e}, and each element x ∈ G may in exactly one way be written
as x = nk, where n ∈ N and k ∈ K.

We have [G, N ] ⊆ N , because N is a normal subgroup of G. Assuming more,
namely equality [G, N ] = N , we get that N = [G, N ] = [G, [G, N ]] ⊆ [G, [G, G]]. Let
f : G → H be a solution of the quadratic functional equation on G. From Theorem
3.2 we read that f is a function on G/[G, [G, G]], so that f(xk) = f(kx) = f(k)
for all x ∈ [G, [G, G]] and k ∈ K. In particular f(nk) = f(k) for all n ∈ N and
k ∈ K. The restriction F of f to the subgroup K of G is of course a solution of the
quadratic functional equation on K. Conversely, if F is a solution of the quadratic
functional equation on K, then the function f defined by f(nk) = F (k) is a solution
of the quadratic functional equation on G, so we get all the solutions of the quadratic
functional equation on G from the solutions on K. Let πK : G → K denote the
homomorphism given by π(nk) = k for n ∈ N , k ∈ K. Then the solutions of the
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quadratic functional equation on G are the functions of the form F ◦ πK , where F
ranges over the solutions of the quadratic functional equation on K.

Let us furthermore take G to be a topological group, and let N and K be closed
subgroups of G. Equipping N and K with the topology from G we also assume that
the topology on G is the product topology from N and K (by the open mapping
theorem for groups [9, Corollary II.3.3] the last statement is automatically true if G is
a locally compact, second countable Hausdorff group), so that the map πK : G → K
is continuous. Still enforcing [G, N ] = N we find that the continuous solutions of
the quadratic functional equation on G are the functions of the form F ◦ πK , where
F ranges over the continuous solutions of the quadratic functional equation on K.

The group Rn ×s O(n) of rigid motions of Rn for n ≥ 2 is an example of a
semi-direct product such that [G, N ] = N . The Heisenberg group is an example
that does not satisfy this condition (see Example 8.4 for details).

Summing up we have

Proposition 7.1. Let G = NK be the semi-direct product of a normal subgroup
N and a subgroup K, and assume that [G, N ] = N . Let πK : G → K denote the
projection on K. Then

(a) The solutions of the quadratic functional equation on G are the functions of
the form F ◦ πK, where F ranges over the solutions of the quadratic functional
equation on K.
F satisfies Kannappan’s condition on K if and only if F ◦ πK satisfies Kannap-
pan’s condition on G.

(b) Assume furthermore that G is a topological group, N and K are closed subgroups
of G, and that the topology on G is the product topology from N and K. Then the
continuous solutions of the quadratic functional equation on G are the functions
of the form F ◦πK, where F ranges over the continuous solutions of the quadratic
functional equation on K.

Proposition 7.1 will be useful several times in the discussions of the specific
examples in Section 8.

8 Examples

We have already above encountered general examples of various types: The remarks
right after Proposition 5.1, Proposition 5.3 and Corollary 4.2. In this section we
discuss some specific examples.

Example 8.1. The (ax + b)−group

G =
{(

a b
0 1

)
| a ∈ R, a > 0, b ∈ R

}
is the semi-direct product of the subgroups
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N =
{(

1 b
0 1

) ∣∣∣ b ∈ R
}

and K =
{(

a 0
0 1

) ∣∣∣ a ∈ R, a > 0
}
∼= R

+,

N being the normal part. Since [G, N ] = N , we can apply Proposition 7.1.
In the notation of Proposition 7.1 we have that

πK

(
a b
0 1

)
= πK

( (
1 b
0 1

) (
a 0
0 1

) )
=

(
a 0
0 1

)
.

Any continuous solution f : G → C of the quadratic functional equation on G
has the form f = F ◦ πK , where F : K ∼= R

+ → C is a continuous solution of the
quadratic functional equation on R+, i.e.

F (ac) + F (ac−1) = 2F (a) + 2F (c), a, c > 0.

The continuous function Φ(x) := F (exp x), x ∈ R, satisfies

Φ(x + y) + Φ(x− y) = 2Φ(x) + 2Φ(y), x, y ∈ R.

It follows that Φ has the form Φ(x) = cx2 for some constant c ∈ C [7, Corollary
10.1], so that F (a) = c(log a)2 for a > 0.

We conclude that the continuous solutions of the quadratic functional equation
on the (ax + b)−group are the functions fc of the form

fc

(
a b
0 1

)
= c(log a)2,

(
a b
0 1

)
∈ G,

where c ranges over C.

Example 8.2. Let n ≥ 3. For any ring with unit 1 the subgroup En(R) of GL(n, R)
generated by the elementary matrices satisfies [En(R), En(R)] = En(R) (see [4]).
From now on we assume that R is a field or a commutative Euclidean ring. In those
cases En(R) = SL(n,R), so [SL(n, R), SL(n, R)] = SL(n, R).

According to [25, Corollary 2.3] the only solution of the quadratic functional
equation on SL(n,R) is f = 0.

We will consider the group G = GL(n, R). Decomposing the matrix A = {aij} ∈
GL(n, R) as follows

a11(det A)−1 a12 · · · a1n

a21(det A)−1 a22 · · · a2n
...

...
. . .

...
an1(det A)−1 an2 · · · ann




det A 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


we see that GL(n,R) is the semi-direct product of SL(n,R) (the normal part) and
the group U of units of the ring R.
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It follows from Proposition 7.1 that the solutions f : G → H of the quadratic
functional equation on GL(n,R) are the functions of the form f = φ ◦ det, where
φ : U → H ranges over the solutions of the quadratic functional equation on the
abelian group U .

For R = Z we have U = {±1} and so we get [25, Theorem 4.2] in the case of
n ≥ 3.

Example 8.3. We will find the continuous solutions f : G → C of the quadratic
functional equation on G = GL(n,R) for n ≥ 2. For n ≥ 3 we can apply the
results of the previous Example 8.2. Actually the crucial point in Example 8.2 is
that [SL(n, R), SL(n, R)] = SL(n, R), which is true for R = R, because SL(n,R) is
a connected semi-simple Lie group (see [24, Corollary 3.18.10]). So we may also take
n = 2. According to Example 8.2 the solutions of the quadratic functional equation
on G are the functions of the form f = φ ◦ det, where φ : U → C ranges over the
continuous solutions of the quadratic functional equation on the group U of units of
R, i.e. the multiplicative group R∗ of all non-zero real numbers.

The continuous quadratic forms on R∗ are the functions of the form φ(t) =
c(log |t|)2, t ∈ R∗, where c ∈ C is an arbitrary constant. This formula was on the
subgroup t > 0 derived in Example 8.1. To get it on the negative half-axis as well,
we first note that

0 = 2φ(1) = φ((−1)(−1)) + φ((−1)(−1)−1) = 2φ(−1) + 2φ(−1) = 4φ(−1),

so φ(−1) = 0. And then we get for any t > 0 that

2φ(−t) = φ(t(−1)) + φ(t(−1)−1) = 2φ(t) + 2φ(−1) = 2φ(t) + 0 = 2φ(t),

so φ(−t) = φ(t).
Combining the above we get that the continuous solutions of the quadratic func-

tional equation on GL(n,R) are the functions

f(x) = c(log | det x|)2, x ∈ GL(n,R),

where c ∈ C is an arbitrary constant.
This may be compared with the case of GL(n,Z), where f = 0 is the only

complex-valued quadratic form [25, Theorem 4.2].

Example 8.4. We will find all continuous solutions f : G → C of the quadratic
functional equation on the Heisenberg group G = H3(R), defined by

H3(R) =
{

(x, y, z) =

1 x z
0 1 y
0 0 1

 ∣∣∣ x, y, z ∈ R
}

,

but until further notice we consider solutions f : G → H, where H is any abelian
group.

The Heisenberg group is the semi-direct product of the abelian subgroups N =
{(0, y, z) | y, z ∈ R} and K = {(x, 0, 0) | x ∈ R}, but it does not satisfy the
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condition [G, N ] = N from Proposition 7.1. Indeed, [G, N ] = {(0, 0, z) | z ∈ R} 6=
N .

It is easy to check that e = (0, 0, 0), and that [G, G] = {(0, 0, z) ∈ G | z ∈
R}. Furthermore [G, [G, G]] = {e}, so [G, [G, G]] 6= [G, G]. Thus the condition of
Corollary 5.2 is not satisfied either.

Nevertheless, as we shall see, all solutions f : G → H of the quadratic functional
equation on G satisfy Kannappan’s condition. We find this surprising, because the
Heisenberg group provides a counter-example to the conjecture that all solutions of
Jensen’s functional equation are affine functions. This was observed in [8, Proposi-
tion 4.3] and [22, Example 5.1].

G is 2-divisible, and so in particular generated by its squares, because(x

2
,
y

2
,
z

2
− xy

8

)2

= (x, y, z) for all x, y, z ∈ G.

Furthermore we get by an easy calculation for any x′, y′, z′, x, y, z ∈ R that

(x′, y′, z′)(x, y, z)(x′, y′, z′)−1 = (x, y, z − xy′ + yx′). (8.1)

Let f : G → H be a solution of the quadratic functional equation. Since f is
invariant under inner automorphisms we have from (8.1) that

f(x, y, z) = f((x′, y′, z′)(x, y, z)(x′, y′, z′)−1)

= f(x, y, z − xy′ + yx′), for all x′, y′, z′, x, y, z ∈ R,

so that f(x, y, z) = f(x, y, 0) if (x, y) 6= (0, 0). The same conclusion holds if (x, y) =
(0, 0), because f by Theorem 4.1 is equal to f(e) = f(0, 0, 0) on [G, G] = {(0, 0, z) ∈
G | z ∈ R}. Thus f is a function on G/[G, G] which is an abelian group. In particular
f satisfies Kannappan’s condition. Via Proposition 5.1(e) we see that f is a quadratic
function, if H has the property that 2h = 0 implies h = 0. Assuming this we let
f(x) = Q(x, x), where Q : G×G → H is a symmetric bimorphism. f is a function
on G/[G, G], so Q is by Lemma 2.5 a map G/[G, G]×G/[G, G] → H. Thus we shall
find all symmetric bimorphisms of G/[G, G] ' (R2, +) into H.

We do this for H = C and f : G → C continuous. Since f is continuous, so
is Q : R2 × R2 → C. Now Q is bilinear, being continuous and biadditive. This
gives f(x, y, z) = f(x, y, 0) = Q((x, y), (x, y)) = ax2 + bxy + cy2 for some constants
a, b, c ∈ C.

Combining Corollary 6.2 with the result just obtained about H3(R) we get more
generally that any solution of the quadratic functional equation on the (2n + 1)-
dimensional Heisenberg group H2n+1(R) satisfies Kannappan’s condition.

Example 8.5. Let us consider the Heisenberg group G = H3(Z) with integer entries,
defined by

H3(Z) =
{

(x, y, z) =

1 x z
0 1 y
0 0 1

 ∣∣∣ x, y, z ∈ Z
}

.
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Here [G, G] = {(0, 0, k) | k ∈ Z}, so G/[G, G] ∼= Z
2. This group is generated

by two elements, so all solutions of the quadratic functional equation on G satisfy
Kannappan’s condition according to Corollary 6.7 (or [25, Remark 3.3]). Thus any
solution f is a function on G/[G, G]. We get that

f(m,n, k) = f((0, n, 0)(m, 0, 0)(0, 0, k)) = f((0, n, 0)(m, 0, 0))

= [f − f(e)]((0, n, 0)(m, 0, 0)) + f(e)

= C(f − f(e))((0, n, 0), (m, 0, 0))

+ [f − f(e)](0, n, 0) + [f − f(e)](m, 0, 0) + f(e)

= C(f − f(e))((0, 1, 0)n, (1, 0, 0)m)

+ [f − f(e)]((0, 1, 0)n) + [f − f(e)]((1, 0, 0)m) + f(e).

Here we use that the first term C(f − f(e))(·, ·) is a solution of Jensen’s functional
equation in each variable, vanishing at the neutral element, and that each such
solution g of Jensen’s equation has the property g(xl) = lg(x) for any l ∈ Z and
x ∈ G ([16, Formula (2.2)]). On the second and the third term we apply Lemma
2.3(e). We get

f(m, n, k) = nmC(f − f(e))((0, 1, 0), (1, 0, 0))

+ n2[f − f(e)]((0, 1, 0)) + m2[f − f(e)]((1, 0, 0)) + f(e).

Thus there exist h0, h1, h2, h3 ∈ H with 2h0 = 0 such that

f(m, n, k) = m2h1 + n2h2 + mnh3 + h0, m, n, k ∈ Z. (8.2)

Conversely, any map of H3(Z) into H of this form is a solution.
This result could alternatively have been derived from [25, Corollary 2.2].
We saw above that any solution of the quadratic functional equation on the

Heisenberg group H3(Z) with integer entries satisfies Kannappan’s condition. Com-
bining this with Corollary 6.2 we get more generally that any solution of the quadra-
tic functional equation on the Heisenberg group H2n+1(Z) = {(x, y, z) ∈ H2n+1(R) |
x, y, z ∈ Z} with integer entries satisfies Kannappan’s condition. This can be used to
derive a formula similar to (8.2) for the general solution of the quadratic functional
equation on H2n+1(Z).

9 The case of a symmetric right hand side

The results of this section have been noted in various special instances. For example
in [23, Proposition B.1] and [25, Remark 4.3].

Throughout this section we let G and H be two sets with binary operations
(x, y) 7→ xy and (a, b) 7→ a ∗ b respectively. We assume that the operation in G has
a unit e ∈ G, and that ∗ : H ×H → H has the cancellation properties that for all
a, b, c ∈ H we have a ∗ b = a ∗ c implies b = c and b ∗ a = c ∗ a implies b = c. These
assumptions are of course satisfied if G and H are groups. Finally σ : G → G is an
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involution, i.e. σ(σ(x)) = x and σ(xy) = σ(y)σ(x) for all x, y ∈ G and σ(e) = e. If
G is a group then σ could be σ(x) = x−1, x ∈ G, which is the involution met above
in this paper.

Proposition 9.1. Let f : G → H and F : G×G → H satisfy

f(xy) ∗ f(xσ(y)) = F (x, y) for all x, y ∈ G.

Then the two statements

(a) f(xy) = f(yx) for all x, y ∈ G, and f ◦ σ = f .

(b) F (x, y) = F (y, x) for all x, y ∈ G.

are equivalent.

Proof. Suppose that F (x, y) = F (y, x) for all x, y ∈ G. Then

f(xy) ∗ f(xσ(y)) = f(yx) ∗ f(yσ(x)) for all x, y ∈ G. (9.1)

Putting x = e in (9.1) we get from the assumption about left cancellation that
f ◦σ = f . Using this on the last term of (9.1) we get that f(yσ(x)) = f(σ(yσ(x))) =
f(xσ(y)), so that (9.1) reads

f(xy) ∗ f(xσ(y)) = f(yx) ∗ f(xσ(y)) for all x, y ∈ G. (9.2)

By right cancellation we get that f(xy) = f(yx).
Conversely, if (a) holds then we get for any x, y ∈ G that

F (x, y) = f(xy) ∗ f(xσ(y)) = f(yx) ∗ f(σ(xσ(y)))

= f(yx) ∗ f(yσ(x)) = F (y, x).

Proposition 9.2. Let f : G → H and F : G×G → H satisfy

f(xy) ∗ f(σ(y)x) = F (x, y) for all x, y ∈ G.

Then the two statements

(a) f(xy) = f(yx) for all x, y ∈ G, and f ◦ σ = f .

(b) F (x, y) = F (y, x) for all x, y ∈ G.

are equivalent.
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Proof. Suppose that F (x, y) = F (y, x) for all x, y ∈ G. For any x ∈ G we get

f(x) ∗ f(x) = f(xe) ∗ f(σ(e)x) = F (x, e) = F (e, x)

= f(ex) ∗ f(σ(x)e) = f(x) ∗ f(σ(x)),

which by left cancellation implies that f(x) = f(σ(x)) for all x ∈ G.
Next we find for any x, y ∈ G that

f(xy) ∗ f(σ(y)x) = F (x, y) = F (y, x) = f(yx) ∗ f(σ(x)y)

= f(yx) ∗ f(σ(σ(x)y)) = f(yx) ∗ f(σ(y)x),

which by right cancellation implies that f(xy) = f(yx) for all x, y ∈ G.
Conversely, if (a) holds then we get for any x, y ∈ G that

F (x, y) = f(xy) ∗ f(σ(y)x) = f(yx) ∗ f(σ(σ(y)x))

= f(yx) ∗ f(σ(x)y) = F (y, x).

Corollary 9.3. Let f : G → H and F : G × G → H and assume that F (x, y) =
F (y, x) for all x, y ∈ G. Then the pair {f, F} is a solution of

f(xy) ∗ f(xσ(y)) = F (x, y) for all x, y ∈ G,

if and only if {f, F} is a solution of

f(xy) ∗ f(σ(y)x) = F (x, y) for all x, y ∈ G.
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