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Abstract

The Gröbner walk is an algorithm for conversion between Gröbner bases
for different term orders. It is based on the polyhedral geometry of the
Gröbner fan and involves tracking a line between cones representing the ini-
tial and target term order. An important parameter is explicit numerical
perturbation of this line. This usually involves both time and space demand-
ing arithmetic of integers much larger than the input numbers. In this paper
we show how the explicit line may be replaced by a formal line using Rob-
biano’s characterization of group orders on Qn. This gives rise to the generic
Gröbner walk involving only Gröbner basis conversion over facets and com-
putations with marked polynomials. The infinite precision integer arithmetic
is replaced by term order comparisons between (small) integral vectors. This
makes it possible to compute with infinitesimal numbers and perturbations
in a consistent way without introducing unnecessary long integers. The pro-
posed technique is closely related to the lexicographic (symbolic) perturbation
method used in optimization and computational geometry.

1 Introduction

Let R = k[x1, . . . , xn] denote the polynomial ring in n variables over a field k.
Gröbner basis computations in R tend to be very expensive for certain term orders
(like the lexicographic order). Therefore it often pays to compute Gröbner bases
for “easier” term orders and convert them into Gröbner bases for the desired term
order. For zero-dimensional ideals this can be accomplished by the FGLM-algorithm
[6]. For general ideals the Gröbner walk algorithm [3] can be applied.

Let ≺1 and ≺2 be term orders on R. The usual Gröbner walk proceeds from the
reduced Gröbner basis G for I over ≺1 by tracking a line ω(t) = (1− t)ω0 + tτ0, 0 ≤
t ≤ 1, where ω0 and τ0 are vectors in the respective Gröbner cones C≺1
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C≺2
(I) of I. At t = 0 the Gröbner basis is known. The line ω(t) is tracked through

the Gröbner fan of I and Gröbner bases are computed at common faces of successive
Gröbner cones. At t = 1 we reach the reduced Gröbner basis for I over ≺2.

The efficiency of the Gröbner walk rests on clever choices of ω0 and τ0. A choice
of ω0 and τ0 on low dimensional faces of Gröbner cones may lead to very heavy
Gröbner basis calculations along ω(t). Often (but not always) it pays to choose ω0

and τ0 generically inside C≺1
(I) and C≺2

(I) and ensure that ω(t) only intersects
common faces of low codimension on its way to the target term order ≺2.

The initial reduced Gröbner basis G over ≺1 makes it possible to compute an
interior point in C≺1

(I). Computing an interior point in the target cone C≺2
(I) is

considerably more difficult, since we do not know the reduced Gröbner basis over ≺2

in advance. Tran [11] approached this problem using general degree bounds on poly-
nomials in Gröbner bases. The general degree bounds in Tran’s approach may lead
to integral weight vectors with 10, 000-digit entries in representing a lexicographic
interior point in the case of polynomials of degree 10 in 10 variables.

In this paper we give an algorithm where the line ω(t) is replaced by a (formal)
line Ω(t) between suitably chosen perturbations given by ≺1 and ≺2 and I. It turns
out that the numerical dependence on I disappears in our algorithm and that Ω(t)
may be viewed as a line which can be used for all ideals in the Gröbner walk from
≺1 to ≺2. The formal line has the property that its initial and target points are
always in the interior of the Gröbner cones. Furthermore the common faces that
Ω(t) intersect are all facets.

Tracking Ω(t) gives a “Buchberger-like” Gröbner walk algorithm, where one only
needs to compute with marked polynomials and term orders. On smaller examples
the algorithm can easily be carried out by hand (cf. §5). The preliminary computa-
tional experience with a few larger examples seems quite promising (cf. §6).

An understanding of our algorithm requires a firm grip on the usual Gröbner
walk algorithm. Therefore §2 and §3 recalls and proves fundamental results for the
usual Gröbner walk using which we transition to the generic Gröbner walk in §4.

The basic technique we propose to avoid explicit perturbation is not quite new.
The key idea of implicit (symbolic) perturbation was proposed by Charnes in 1952
to make Dantzig’s simplex method for linear programming finite. The method is
now known as the lexicographic perturbation method, see [2, page 34], and used by
many reliable implementations of the simplex method. In computational geometry,
similar symbolic perturbation schemes are used to treat input data points in Rn as
if they were in general position, see [5, page 14].
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2 Preliminaries

In this section we recall the basics of convex polyhedral cones. We emphasize a cru-
cial result from the theory of group orders (Lemma 2.1) and recall the construction
of the (restricted) Gröbner fan.

2.1 Cones and fans

A convex polyhedral cone is a set

C(v1, . . . , vr) = R≥0v1 + · · ·+ R≥0vr ⊆ Rn

where v1, . . . , vr ∈ Rn. In the following a cone will refer to a convex polyhedral
cone. The dual of a cone C ⊆ Rn is

C∨ = {ω ∈ Rn | 〈ω, v〉 ≥ 0, for every v ∈ C}.

The dual of a cone is a cone and the intersection of two cones is a cone. The
dimension of a cone is the dimension of the linear subspace it spans. For a vector
u ∈ Rn we let u⊥ = {x ∈ Rn | 〈u, x〉 = 0}. A face F ⊆ C of a cone C is a subset
F = u⊥ ∩ C, where u ∈ C∨. Faces of codimension one in C are called facets .

A collection F of cones and their faces is called a fan if for every C1, C2 ∈ F we
have C1 ∩ C2 ∈ F and C1 ∩ C2 is a common face of C1 and C2.

2.2 Rational group orders on Qn

Let (A, +) be an abelian group. Recall that a group order ≺ on A is a total
order ≺ on A such that

x ≺ y =⇒ x + z ≺ y + z

for every x, y, z ∈ A.
Let ω = (ω1, . . . , ωn) ⊂ Qn be a Q-vector space basis for Qn. Then we get a

group order ≺ω on Qn given by u ≺ω v if and only if

(〈ω1, u〉, . . . , 〈ωn, u〉) <lex (〈ω1, v〉, . . . , 〈ωn, v〉),

where <lex refers to the lexicographic order on Qn. We call such a group order
rational . To describe arbitrary group orders on Qn similarly, one needs a more
general setup including real vectors (see [9]). To ease the exposition we will restrict
ourselves to rational group orders. A group order refers to a rational group order in
the following. For a rational ǫ > 0 we put

ωǫ = ω1 + ǫω2 + · · ·+ ǫn−1ωn.

The following well known lemma plays a key role in the generic Gröbner walk.

Lemma 2.1 Let ω = (ω1, . . . , ωn) ⊂ Qn be a Q-basis. Suppose that F ⊂ Qn is a
finite set of non-zero vectors with 0 ≺ω v for v ∈ F . Then there exists 0 < δ ∈ Q

such that 〈ωǫ, v〉 > 0 for every v ∈ F and ǫ ∈ Q with 0 < ǫ < δ.
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Proof. We prove this by induction on n. The case n = 1 is clear. For n > 1 we may
find 0 < δ0 ∈ Q such that

〈ωn−1 + ǫωn, v〉 > 0

for every v ∈ F with 〈ωn−1, v〉 > 0 and ǫ ∈ Q with 0 < ǫ < δ0. Therefore 0 ≺ω′ v
for ω′ = (ω1, . . . , ωn−2, ωn−1 + ǫωn) for every v ∈ F if 0 < ǫ < δ0.

By induction there exists 0 < δ1 ∈ Q such that 〈ω′ǫ, v〉 > 0 for every v ∈ F and
ǫ ∈ Q with 0 < ǫ < δ1. Putting δ = min(δ0, δ1) we get 〈ωǫ, v〉 > 0 for every v ∈ F
and ǫ ∈ Q with 0 < ǫ < δ. �

A group order ≺ on Qn is called a term order if 0 ≺ v for every v ∈ Nn. This is
equivalent to 0 ≺ ei where ei denotes the i-th canonical basis vector for i = 1, . . . , n.
As a consequence of Lemma 2.1 we get the following corollary.

Corollary 2.2 Let F ⊂ Qn be a finite set of positive vectors for the group order ≺
i.e. v ≻ 0 for every v ∈ F . Then there exists ω ∈ Qn such that

〈ω, v〉 > 0

for every v ∈ F . If ≺ is a term order, we may assume that ω has positive coordinates.

2.3 The Gröbner fan

Let R = k[x1, . . . , xn] denote the ring of polynomials in n variables over a field
k. It is convenient to view R as the semigroup ring k[Nn]. We briefly recall the
construction of the (restricted) Gröbner fan (cf. [8]) for an arbitrary ideal in R.

Fix a group order ≺ on Qn. For a polynomial f =
∑

v∈Nn avx
v ∈ R we let

supp(f) = {v ∈ Nn | av 6= 0} and in≺(f) = aux
u, where u = max≺ supp(f). For

a vector ω ∈ Rn we let inω(f) denote the sum of terms avx
v in f maximizing the

ω-weight 〈ω, v〉. We call f ω-homogeneous if f = inω(f). To an ideal I ⊆ R we
associate the ideals in≺(I) = 〈in≺(f) | f ∈ I \ {0}〉 and inω(I) = 〈inω(f) | f ∈ I〉.
These ideals may be viewed as deformations of the original ideal I. The initial ideal
in≺(I) is generated by monomials. This does not hold for inω(I) in general (unless
ω is chosen generically).

Now define
∂≺(f) = {u− u′ | u′ ∈ supp(f) \ {u}} ⊂ Zn,

where aux
u = in≺(f). For a finite set F ⊆ R of polynomials we let

∂≺(F ) =
⋃

f∈F

∂≺(f)

and

C≺(F ) = C(∂≺(F ))∨ ∩Rn
≥0

= {ω ∈ Rn
≥0
| 〈ω, v〉 ≥ 0, v ∈ ∂≺(f), f ∈ F}.

Notice that dim C≺(F ) = n by Corollary 2.2 and that

C≺(F ) = {ω ∈ Rn
≥0
| in≺(inω(f)) = in≺(f) for every f ∈ F}.
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A Gröbner basis for I over ≺ is a finite set of polynomials G = {g1, . . . , gr} ⊆ I
such that

〈in≺(g1), . . . , in≺(gr)〉 = in≺(I).

The Gröbner basis G is called minimal if none of g1, . . . , gr can be left out and
reduced if the coefficient of in≺(gi) is 1 and in≺(gi) does not divide any of the
terms in gj for i 6= j and i, j = 1, . . . , r. A reduced Gröbner basis is uniquely
determined. Minimal Gröbner bases exist for arbitrary group orders. However,
Gröbner bases over arbitrary group orders do not necessarily generate the ideal (as
opposed to Gröbner bases over term orders). Similarly, the reduced Gröbner basis
is only guaranteed to exist for term orders.

To define the Gröbner fan we now specialize to the case where ≺ is a term order.
The Gröbner cone C≺(I) of an ideal I over ≺ is defined as C≺(G), where G is the
reduced Gröbner basis of I over ≺. The Gröbner fan of I is defined as the set of
cones C≺(I) along with their faces, where ≺ runs through all term orders. This
is a finite collection of cones [10, Theorem 1.2] and one may prove that it is a fan
(Propositions 2.3 and 2.4 in [10] give a proof assuming non-negative weight vectors).
The following proposition shows that C≺(I) is the largest cone among C≺(G), where
G is a Gröbner basis for I over ≺.

Proposition 2.3 Let G be a (not necessarily reduced) Gröbner basis for I over ≺.
Then

C≺(G) ⊆ C≺(I).

Proof. Transforming G into a minimal Gröbner basis G′ by omitting certain polyno-
mials in G clearly leads to an inclusion C≺(G) ⊆ C≺(G′). Transforming G′ into
the reduced Gröbner basis proceeds by a sequence of reduction steps: suppose
that fi, fj ∈ G′ and that a term xv in fj is divisible by in≺(fi). Then fj is re-
placed by f ′j = fj− (xv/ in≺(fi))fi. This reduction may introduce “new” monomials
which are not present in fj . More precisely if w ∈ supp(f ′j), then w ∈ supp(fj)
or w = v − u + u′, where aux

u = in≺(fi) and u′ ∈ supp(fi). In the latter case
we get w′ − w = (w′ − v) + (u − u′), where aw′xw′

= in≺(fj). Let G′′ denote the
Gröbner basis obtained by replacing fj with f ′j . Then C(∂≺(G′)) ⊇ C(∂≺(G′′)) and
thereby C≺(G′) ⊆ C≺(G′′). Since the reduced Gröbner basis is obtained using a
finite number of these reduction steps we have proved the inclusion. �

For a specific term order one may have infinitely many cones given by different
minimal Gröbner bases. As an example consider the ideal I = 〈x, y〉 ⊂ k[x, y]. If n
is a positive natural number then Gn = {x− yn, y} is a minimal Gröbner basis for
I over the lexicographic order ≺ with x ≻ y. In this case

C≺(I) ) C≺(G1) ) C≺(G2) ) · · · .

3 The Gröbner walk

We outline the basic idea of the Gröbner walk [3] and give a new lifting step using
reduction modulo the known Gröbner basis.
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Let ≺1 and ≺2 be term orders and I an ideal in R. Suppose that we know the
reduced Gröbner basis G for I over ≺1. If

ω ∈ C≺1
(I) ∩ C≺2

(I)

lies on the common face of the two Gröbner cones, then Gω = {inω(g) | g ∈ G} is
the reduced Gröbner basis for inω(I) over ≺. Now a “lifting” of Gω to a Gröbner
basis for I over ≺2 is required. The procedure for this is based on Proposition 3.2
below. It involves a Gröbner basis computation for inω(I) over ≺2. The point is
that if F = C≺1

(I)∩C≺2
(I) is a high dimensional face (like a facet) and ω is in the

relative interior of F , the ideal inω(I) is close to a monomial ideal and this Gröbner
basis computation becomes very easy.

Given a term order ≺ and a vector ω ∈ Rn
≥0

we define the new term order ≺ω

by u ≺ω v if and only if 〈u, ω〉 < 〈v, ω〉 or 〈u, ω〉 = 〈v, ω〉 and u ≺ v. We record the
following well known lemma.

Lemma 3.1 [10, Proposition 1.8] Let I ⊆ R be any ideal and ω ∈ Rn
≥0

. Then

in≺(inω(I)) = in≺ω
(I).

The lifting step (Proposition 3.2(ii) below) in the following proposition is different
from the lifting step in the usual Gröbner walk [10, Subroutine 3.7].

Proposition 3.2 Let I ⊆ R be an ideal and ≺1,≺2 term orders on R. Suppose that
G is the reduced Gröbner basis for I over ≺1. If ω ∈ C≺1

(I) ∩ C≺2
(I), then

(i) The reduced Gröbner basis for inω(I) over ≺1 is Gω = {inω(g) | g ∈ G}.

(ii) If H is the reduced Gröbner basis for inω(I) over ≺2, then

{f − fG | f ∈ H}

is a minimal Gröbner basis for I over ≺2ω. Here fG is the unique remainder
obtained by dividing f modulo G.

(iii) The reduced Gröbner basis for I over ≺2ω coincides with the reduced Gröbner
basis for I over ≺2.

Proof. Given a term order ≺ and a vector ω ∈ C≺(I), the reduced Gröbner bases for
I over ≺ and ≺ω agree. This proves (iii) and (i) taking Lemma 3.1 into consideration.
Suppose that f is an ω-homogeneous polynomial (cf. §2.3) in inω(I). Using the
division algorithm in computing the unique remainder fG, we keep reducing terms
with the same ω-weight as the terms in f = inω(f). Since in≺1

(inω(g)) = in≺1
(g)

for g ∈ G and fGω = 0, we see that all terms in fG will have ω-weight strictly less
than the terms in f . Therefore

inω(f) = inω(f − fG).
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Now suppose that {f1, . . . , fs} is the reduced Gröbner basis for inω(I) over ≺2. In
particular we get that fi is ω-homogeneous for i = 1, . . . , s. Then

in≺2ω(I) = in≺2
(inω(I)) = 〈in≺2

(f1), . . . , in≺2
(fs)〉

= 〈in≺2
(inω(f1)), . . . , in≺2

(inω(fs))〉

= 〈in≺2
(inω(f1 − fG

1
)), . . . , in≺2

(inω(fs − fG
s ))〉

= 〈in≺2ω(f1 − fG
1

), . . . , in≺2ω(fs − fG
s )〉.

This proves that {f1− fG
1

, . . . , fs− fG
s } ⊆ I is a (minimal) Gröbner basis for I over

≺2ω. �

Proposition 3.2 may be turned into a Gröbner basis conversion algorithm as
shown in the following section.

3.1 Conversion along a line

A natural approach to Gröbner basis conversion is to trace the line between vectors
in different Gröbner cones and update Gröbner bases successively using Proposition
3.2. This process is called the Gröbner walk [3]. A good reference for this procedure
is [4, §4], which inspired the following. We sketch the first step of the Gröbner
walk. The succeeding steps of the Gröbner walk are similar. Suppose that ω0 ∈
C≺1

(I), τ0 ∈ C≺2
(I) and that G is the reduced Gröbner basis for I over ≺1. Here

≺1 and ≺2 are rational term orders (cf. §2.2) given by Q-bases ω = (ω1, . . . , ωn) and
τ = (τ1, . . . , τn) respectively. Then we consider the line

ω(t) = (1− t)ω0 + tτ0, 0 ≤ t ≤ 1

in the Gröbner fan of I from ω0 to τ0. Initially we know the reduced Gröbner basis
at ω(0) = ω0 (being G). Consider the “last” ω′ = ω(t′) in C≺1

(I) = C≺1
(G). To be

more precise t′ satisfies

1. 0 ≤ t′ < 1

2. ω(t) ∈ C≺1
(I) for t ∈ [0, t′] and ω(t′ + ǫ) 6∈ C≺1

(I) for every ǫ > 0.

If no such t′ exists then G is the reduced Gröbner basis over ≺2. If t′ exists ω(t′)
is on a proper face of C≺1

(I) and v ∈ ∂(G) exists with 〈ω(t′ + ǫ), v〉 < 0 for ǫ > 0.
This implies that 〈τ0, v〉 < 〈ω0, v〉 and hence 〈τ0, v〉 < 0.

This indicates the procedure for finding t′ given G. For v ∈ ∂(G) satisfying
〈τ0, v〉 < 0 we solve 〈ω(t), v〉 = 0 for t giving

tv =
〈ω0, v〉

〈ω0, v〉 − 〈τ0, v〉
.

Then t′ is the minimal among these tv. In this case ω′ = ω(t′) lies on a proper face
F of C≺1

(I) and clearly
ω′ ∈ C≺2ω′

(I).

Now we use ≺2ω′ as the term order ≺2 in Proposition 3.2. The point is that we
only need the target term order ≺2 to compute a Gröbner basis for inω′(I) (not the
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notational beast ≺2ω′). The reason for this is that the Buchberger algorithm in this
case solely works with ω′-homogeneous polynomials and ties are broken with ≺2.

To prove that we actually enter a new Gröbner cone we need to show that t′ > 0
(cf. [4], §5, (5.3) Lemma). In the initial step it may happen that t′ = 0. But if this
is the case we may assume (in the following step of the Gröbner walk) that G is the
reduced Gröbner basis over ≺= ≺2ω′ . Since τ0 ∈ C≺2

(I) is non-zero we may use τ0

as the first vector in a Q-basis representing ≺2. In this case assume that t′ = 0.
This means that we can find v ∈ ∂(G) with 〈ω′, v〉 = 0 and 〈τ0, v〉 < 0 contradicting
that G is a Gröbner basis over ≺.

We have outlined the procedure for tracking the line ω(t) through the Gröbner
fan detecting when ω(t) leaves a cone. The salient point of the generic Gröbner
walk is that this calculation can be done formally by choosing certain generically
perturbed ω0 and τ0 given by ≺1 and ≺2.

Here are the steps of the usual Gröbner walk algorithm with the modified lifting
step. Recall that a marked polynomial is a polynomial with a distinguished term,
which is the initial term with respect to a term order ≺. For a marked polynomial
f , ∂(f) is defined in the natural way (cf. the definition of ∂≺(f) in §2.3). A marked
Gröbner basis over a term order ≺ is a Gröbner basis over ≺ with all initial terms
(with respect to ≺) marked. For a marked Gröbner basis we let ∂(G) = ∪f∈G∂(f).

INPUT: Marked reduced Gröbner basis G for I over a term order ≺1, a term order
≺2 along with ω0 ∈ C≺1

(I) and τ0 ∈ C≺2
(I).

OUTPUT: Reduced Gröbner basis for I over ≺2.

(i) t = −∞.

(ii) Compute last t. If t = ∞ output G and halt.

(iii) Compute generators inω(G) = {inω(g) | g ∈ G} for inω(I) as

inω(g) = auxu +
∑

v∈Sg

avx
v,

where Sg = {v ∈ supp(g) \ {u} | tu−v = t} and aux
u is the marked term of

g ∈ G.

(iv) Compute reduced Gröbner basis H for inω(I) over ≺2 and mark H according
to ≺2.

(v) Let
H ′ = {f − fG | f ∈ H}.

Use marking of H to mark H ′.

(vi) Autoreduce H ′ and put G = H ′.

(vii) Repeat from (ii).
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Compute last t:

1. Let V := {v ∈ ∂(G) | 〈ω0, v〉 ≥ 0 and 〈τ0, v〉 < 0 and t ≤ tv}, where

tv =
〈ω0, v〉

〈ω0, v〉 − 〈τ0, v〉
.

2. If V = ∅, put t = ∞ and return.

3. Let t := min{tv|v ∈ V } and return.

4 The generic Gröbner walk

In this section we show how certain generic choices of ω0 and τ0 from §3 lead to the
generic Gröbner walk algorithm. The crucial point is that step (3) of the procedure
Compute last t can be carried out formally using ω0 and τ0 from well defined
perturbations given the term orders ≺1 and ≺2.

For an ideal I ⊆ R we let ∂(I) ⊆ Qn denote the union of ∂≺(G), where G runs
through the finitely many reduced Gröbner bases for I. Let ≺1 and ≺2 be two term
orders given by Q-bases ω = (ω1, . . . , ωn) and τ = (τ1, . . . , τn) of Qn respectively.
Observe that ωη and τη are in the interior of the Gröbner cones C≺1

(I) and C≺2
(I)

respectively for sufficiently small positive η. This follows from Lemma 2.1. Now
define

C≺1,≺2
= {v ∈ Rn | 0 ≺1 v and v ≺2 0}.

Here ≺1,≺2 are extended to group orders on Rn using ω and τ .

Example 4.1 Suppose that ≺1 is degree (reverse) lexicographic order and ≺2 lex-
icographic order with y ≺1,2 x. Then choosing ω = ((1, 1), (0,−1)) and τ =
((1, 0), (0, 1)), we get 0 ≺1 v imples (0, 0) <lex (v1 + v2,−v2) and v ≺2 0 implies
(v1, v2) <lex (0, 0). Intersecting the regions yielded gives (see Figure 1)

C≺1,≺2
= {(x, y) ∈ R2 | x + y > 0, x < 0}.

To fully understand the choice of δ and ǫ in the following we encourage the reader
to compare with the computations in (∗) and (∗∗) below. Define

Mτ = {〈τi, u〉v | i = 1, . . . , n; u, v ∈ ∂(I)}.

Corollary 2.2 shows that there exists sufficiently small positive δ such that

u ≺1 v ⇐⇒ 〈ωδ, u〉 < 〈ωδ, v〉 (1)

for u, v ∈ Mτ . Suppose that δ satisfies (1). Now put

Nδ = {〈ωδ, u〉v | u, v ∈ ∂(I)}.
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Figure 1: C≺1,≺2
for ≺1=degrevlex and ≺2=lex

Again by Corollary 2.2 we know that there exists sufficiently small positive ǫ such
that

u ≺2 v ⇐⇒ 〈τǫ, u〉 < 〈τǫ, v〉 (2)

for u, v ∈ Nδ. Suppose now that we pick δ according to (1) and ǫ according to (2).
If v ∈ ∂(I) ∩ C≺1,≺2

we put

tv =
〈ωδ, v〉

〈ωδ, v〉 − 〈τǫ, v〉
=

1

1−
〈τǫ, v〉

〈ωδ, v〉

.

If u, v ∈ ∂(I) ∩ C≺1,≺2
then 〈ωδ, u〉, 〈ωδ, v〉 > 0 and

tu < tv ⇐⇒ (∗)

〈τǫ, u〉

〈ωδ, u〉
<
〈τǫ, v〉

〈ωδ, v〉
⇐⇒

〈τǫ, 〈ωδ, v〉u〉 < 〈τǫ, 〈ωδ, u〉v〉 ⇐⇒

〈ωδ, v〉u ≺2 〈ωδ, u〉v

To evaluate ≺2 above we see that

〈τi, 〈ωδ, v〉u〉 < 〈τi, 〈ωδ, u〉v〉 ⇐⇒ (∗∗)

〈ωδ, 〈τi, u〉v〉 < 〈ωδ, 〈τi, v〉u〉 ⇐⇒

〈τi, u〉v ≺1 〈τi, v〉u
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for i = 1, . . . , n. Let T denote the matrix whose rows are τ1, . . . , τn. By choosing δ
and ǫ generically as above it follows that

tu < tv ⇐⇒ Tuvt ≺1 Tvut

where ≺1 above refers to the lexicographic extension of ≺1 on Zn to Zn × · · · × Zn.
Here, Tuvt and Tvut are n× n matrices and we need to compare their rows. Notice
that the comparison between tu and tv does not involve δ and ǫ but only the term
orders ≺1 and ≺2. This leads us to define the facet preorder ≺ by

u ≺ v ⇐⇒ tu < tv ⇐⇒ Tuvt ≺1 Tvut (3)

for u, v ∈ ∂(I) ∩ C≺1,≺2
.

Example 4.2 Continuing the setup in Example 4.1, if u = (u1, u2) and v = (v1, v2),
then

T =

(

1 0
0 1

)

and the facet preorder ≺ is given by

u ≺ v ⇐⇒ (u1v ≺1 v1u) ∨ ((u1v = v1u) ∧ (u2v ≺1 v2u)).

If tu = tv then Tuvt = Tvut and uvt = vut since T is an invertible matrix. The
identity uvt = vut implies that u and v are collinear. Since u and v lie in the same
half space, u is a positive multiple of v.

This has the nice consequence that the line ω(t) between ωδ and τǫ intersects
the cones in the Gröbner fan in dimension ≥ n− 1. Consider the typical situation,
where v ∈ C = C(v, v1, . . . , vm) is chosen to minimize tv as in the Gröbner walk.
Then ω(tv) is on a proper face F of C∨. Since tv = tu implies that u is a positive
multiple of v for u ∈ {v1, . . . , vm}, we conclude that dim F = n− 1 i.e. F is a facet.

The facet preorder ≺ defined in (3) may be inserted in the classical Gröbner
walk algorithm giving the generic Gröbner walk algorithm completely removing the
numerical dependence on the line ω(t). Below, −∞(∞) denotes a vector strictly
smaller (larger) than the vectors in ∂(I) ∩ C≺1,≺2

.

INPUT: Marked reduced Gröbner basis G for I over a term order ≺1 and a term
order ≺2 (the facet preorder ≺ is given as in (3) using ≺1 and ≺2).

OUTPUT: Reduced Gröbner basis for I over ≺2.

(i) w = −∞.

(ii) Compute last w. If w = ∞ output G and halt.

(iii) Compute generators inω(G) = {inω(g) | g ∈ G} for inω(I) as

inω(g) = auxu +
∑

v∈Sg

avx
v,

where Sg = {v ∈ supp(g)\{u} | u−v ≺ w, w ≺ u−v} and aux
u is the marked

term of g ∈ G.
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(iv) Compute reduced Gröbner basis H for inω(I) over ≺2 and mark H according
to ≺2.

(v) Let

H ′ = {f − fG | f ∈ H}.

Use marking of H to mark H ′.

(vi) Autoreduce H ′ and put G = H ′.

(vii) Repeat from (ii).

Compute last w:

1. Let V := {v ∈ ∂(G) ∩ C≺1,≺2
| w ≺ v}.

2. If V = ∅, put w = ∞ and return.

3. Let w := min≺{v|v ∈ V } and return.

4.1 Variations on the generic Gröbner walk

Several variations on the generic Gröbner walk are possible. In many cases
generators for an ideal are given which form a natural Gröbner basis with respect
to a specific weight vector. This happens for example in implicitization problems
with polynomials y1 − f1, . . . , ym − fm, where fi are polynomials in x1, . . . , xn for
i = 1, . . . , m. These polynomials form a Gröbner basis over a vector ω assigning
zero weights to x1, . . . , xn and positive weights to y1, . . . , ym. In this case one only
needs to work with ω and perturbations τǫ of the target vector. One may also
truncate the facet preorder ≺ (to get a face preorder) using only parts (ω1, . . . , ωp)
and (τ1, . . . , τq) of the Q-bases ω and τ . This leads to an analogue of the perturbation
degree (p, q)-walk defined in [1].

5 An introductory example

We illustrate the generic Gröbner walk by a detailed example in the two dimen-
sional case. For a given polynomial f ∈ R we let LG(f) = f − fG, where G is a
marked Gröbner basis (markings are underlined). Let ≺1 denote degree (reverse)
lexicographic order and ≺2 lexicographic order with y ≺1,2 x. The facet preorder ≺
is given as in Example 4.2. Consider the ideal

I = 〈x2 − y3, x3 − y2 − x〉 ⊂ Q[x, y].

Initially we put

G = {y3 − x2, x3 − y2 − x},
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where the initial terms over ≺1 are marked. Clearly G is the reduced Gröbner basis
for I over ≺1. The Gröbner cone is given by

C≺1
(I) = C({(−2, 3)} ∪ {(3,−2)})∨ ∩R2

≥0
.

In this case (3,−2) 6∈ C≺1,≺2
and V = {(−2, 3)}. So the first facet ideal is 〈y3 −

x2, x3〉. The reduced Gröbner basis for this ideal over ≺2 is {x2 − y3, xy3, y6} and
the lifting step is given by

LG(x2 − y3) = x2 − y3

LG(xy3) = xy3 − y2 − x

LG(y6) = y6 − xy2 − x2.

Our new marked reduced Gröbner basis is

G = {x2 − y3, xy3 − y2 − x, y6 − xy2 − y3}.

Since w = (−2, 3) ≺ (−1, 4) it follows that V = {(−1, 4)} and the next facet ideal
is 〈x2, xy3, y6 − xy2〉 with reduced Gröbner basis {x2, xy2 − y6, y7} over ≺2. Since

LG(x2) = x2 − y3

LG(xy2 − y6) = xy2 − y6 + y3

LG(y7) = y7 − y4 − y2 − x

our new marked reduced Gröbner basis is

G = {x2 − y3, xy2 − y6 + y3, y7 − y4 − y2 − x}.

Since w = (−1, 4) ≺ (−1, 7) we get V = {(−1, 7)} and the next facet ideal is
〈x2, xy2, y7 − x〉 with reduced Gröbner basis (y9, x− y7) over ≺2. Here

LG(y9) = y9 − 2y6 − y4 + y3

LG(x− y7) = x− y7 + y4 + y2.

The new marked reduced Gröbner basis is

G = {y9 − 2y6 − y4 + y3, x− y7 + y4 + y2}.

Since V = ∅ in this case, the generic Gröbner walk halts and G is the reduced
Gröbner basis for I over ≺2.

6 Preliminary computational experience

In this section we report briefly on computations using an experimental implemen-
tation gw of the generic Gröbner walk converting from degree reverse lexicographic
order to lexicographic order. We have used C++ with tools from the standard
template library (a polynomial is for example implemented using the associative
container map from integer vectors sorted by the term order to elements of the
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field). This is certainly not optimal for larger computations, where the bucket rep-
resentation of polynomials [12] should be used. Our field is the rational numbers
implemented using the GMP package [7]. We work with polynomials with ratio-
nal coefficients and not normalized integral coefficients (here a further improvement
is available). More experienced computer algebra programmers are encouraged to
work out effective implementations of our algorithm. The few results given here
only serve to illustrate that a rather naive implementation shows promise.

We have selected three examples from [11]. The timings below are for a 1GHz
Pentium (3 year old Dell notebook) with 500MB running Red Hat 9 Linux. Tran
reported timings from a 233MHz Intel processor with 144MB running Red Hat 5
Linux with his deterministic Gröbner walk algorithm. Needless to say it is difficult
if not impossible to compare timings across different computer architectures and
implementations. We are slightly optimistic though. It seems that the term order
comparisons in the generic Gröbner walk algorithm matches up with the explicit
rational arithmetic in Tran’s implementation (we do not expect the rational vectors
in Tran’s implementation to become large on these relatively small examples).

Example 6.1 ([11], Example 3.2) Target order ≺ is lexicographic with x ≻ y ≻
z ≻ w.

8w2 + 5wx− 4wy + 2wz + 3w + 5x2 + 2xy − 7xz

− 7x + 7y2 − 8yz − 7y + 7z2 − 8z + 8,

3w2 − 5wx− 3wy − 6wz + 9w + 4x2 + 2xy − 2xz

+ 7x + 9y2 + 6yz + 5y + 7z2 + 7z + 5,

− 2w2 + 9wx + 9wy − 7wz − 4w + 8x2 + 9xy − 3xz

+ 8x + 6y2 − 7yz + 4y − 6z2 + 8z + 2,

7w2 + 5wx + 3xy − 5wz − 5w + 2x2 + 9xy − 7xz + 4x

− 4y2 − 5yz + 6y − 4z2 − 9z + 2.

Time for conversion: gw: 0.50s (Tran: 5.33s).

Example 6.2 ([11], Example 3.3) Target order ≺ is lexicographic with x ≻ y ≻
z.

16 + 3x3 + 16x2z + 14x2y3,

6 + y3z + 17x2z2 + 7xy2z2 + 13x3z2.

Time for conversion: gw: 21.84s (Tran: 91.07s).

Example 6.3 ([11], Example 3.4) Target order ≺ is lexicographic with x ≻ y ≻
z.

15 + 10x2y2 + 13yz + 14xy2z + 8x2yz2 + 11xy3z2,

5 + 4xy + 8y2,

16x3 + 19y + 4x2y.

Time for conversion: gw: 0.09s (Tran: 0.93s).
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