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Abstract

The Gröbner fan of an ideal I ⊂ k[x1, . . . , xn], defined by Mora and Rob-
biano, is a complex of polyhedral cones in Rn. The maximal cones of the fan
are in bijection with the distinct monomial initial ideals of I as the term order
varies. If I is homogeneous the Gröbner fan is complete and is the normal
fan of the state polytope of I. In general the Gröbner fan is not complete
and therefore not the normal fan of a polytope. We may ask if the restricted

Gröbner fan, a subdivision of Rn
≥0, is regular i.e. the normal fan of a polyhe-

dron. The main result of this paper is an example of an ideal in Q[x1, . . . , x4]
whose restricted Gröbner fan is not regular.

1 Introduction

Let R = k[x1, . . . , xn] be the polynomial ring in n variables over a field k and let
I ⊂ R be an ideal. The Gröbner fan and the restricted Gröbner fan of I are n-
dimensional polyhedral fans defined in [11]. The main result of this paper is the
following.

Theorem 1 The restricted Gröbner fan of the two-dimensional ideal

I = 〈acd + a2c− ab, ad2 − c, ad4 + ac〉 ⊂ Q[a, b, c, d]

is not the normal fan of a polyhedron.

In contrast, when the ideal I is homogeneous its Gröbner fan and restricted
Gröbner fan are known to be normal fans of polyhedra, see Section 2.

We recall the definition of a fan in Rn. A polyhedron in Rn is a set of the form
{x ∈ Rn : Ax ≤ b} where A is a matrix and b is a vector. Bounded polyhedra are
called polytopes. If b = 0 the set is a polyhedral cone.
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Training Council (Forskeruddannelsesr̊adet, FUR) , Institute for Operations Research ETH, grants
DMS 0222452 and DMS 0100141 of the U.S. National Science Foundation and the American
Institute of Mathematics.

1



Definition 2 A collection C of polyhedra in Rn is a polyhedral complex if:

1. all proper faces of a polyhedron P ∈ C are in C, and

2. the intersection of any two polyhedra A, B ∈ C is a face of A and a face of B.

A polyhedral complex is a fan if it only consists of cones. A simple way to construct
a fan is by taking the normal fan of a polyhedron.

Definition 3 Let P ⊂ Rn be a polyhedron. All non-empty faces of P are of the

form

faceω(P ) = {p ∈ P : 〈ω, p〉 = maxq∈P 〈ω, q〉}

for some ω ∈ Rn. For a face F of P we define its normal cone

NP (F ) := {ω ∈ Rn : faceω(P ) = F}

with the closure being taken in the usual topology. The normal fan of P is the fan

consisting of the normal cones NP (F ) as F runs through all non-empty faces of P .

If the union of all cones in a fan is Rn, the fan is said to be complete. It is clear that
the normal fan of a polytope is complete. Not all fans arise as the normal fan of a
polyhedron. Those that do are called regular.

If the ideal I is homogeneous, its Gröbner fan is the normal fan of a polytope
known as the state polytope of I ([2], [12, Chapter 2]). In the general case, no
similar result exists as the Gröbner fan is not complete. However, we could ask if
the restricted Gröbner fan of I, a fan in Rn

≥0, is regular. Theorem 1 gives an example
of an ideal in Q[x1, . . . , x4] whose Gröbner fan and restricted Gröbner fan are not
regular.

The definitions of the Gröbner fan and the restricted Gröbner fan appear in
Section 2, and the proof of Theorem 1 is given in Section 3. For the reader unfamiliar
with Gröbner fans we provide the necessary background in Section 2. It is interesting
to consider what happens if we homogenize the example ideal I and project its state
polytope back into R4. In Section 4 we will point out why the normal fan of this
projection is not the Gröbner fan of I. In particular we conclude for this example
that the third variant of the Gröbner fan, the extended Gröbner fan defined in [11],
does not agree with the restricted fan in the positive orthant.

An interesting corollary of the restricted Gröbner fan being regular would be an
easy proof that the memoryless reverse search algorithm ([1]) can be used for enu-
merating the maximal cones in the fan by exploiting the structure of the underlying
polyhedron. In light of Theorem 1 the fact that the reverse search method can be
used requires a non-trivial proof which will appear in [5].
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2 The Gröbner fan of an ideal

For α ∈ Nn we use the notation xα := xα1

1 . . . xαn

n . By a term order on R we mean a
total ordering on the monomials in R such that:

1. For all α ∈ Nn\{0} : 1 < xα and

2. For α, β, γ ∈ Nn : xα < xβ ⇒ xαxγ < xβxγ .

Let ≺ be a term order. For a non-zero polynomial f ∈ R we define its initial term,
in≺(f), to be the unique maximal term of f with respect to ≺. In the same way
for ω ∈ Rn we define the initial form, inω(f), to be the sum of all terms of f whose
exponents maximize 〈·, ω〉. The initial ideals of an ideal I with respect to ≺ and ω

are defined as

in≺(I) = 〈in≺(f) : f ∈ I\{0}〉 and inω(I) = 〈inω(f) : f ∈ I\{0}〉.

Note that in≺(I) is a monomial ideal while inω(I) might not be. A monomial in
R\in≺(I) (with coefficient 1) is called a standard monomial of in≺(I).

Definition 4 Let I ⊂ R be an ideal and ≺ a term order on R. A generating set

G = {g1, . . . , gm} for I is called a Gröbner basis for I with respect to ≺ if

in≺(I) = 〈in≺(g1), . . . , in≺(gm)〉.

The Gröbner basis G is minimal if no polynomial can be left out. A minimal Gröbner

basis is reduced if the initial term of every g ∈ G has coefficient 1 and all other

monomials in g are standard monomials of in≺(I).

For a term order ≺ and an ideal I the reduced Gröbner basis is unique and depends
only on I and in≺(I). We denote it by G≺(I).

Given I a natural equivalence relation on Rn is the one induced by taking initial
ideals:

u ∼ v ⇔ inu(I) = inv(I).

We introduce the following notation for the closures of the equivalence classes:

C≺(I) = {u ∈ Rn : inu(I) = in≺(I)} and

Cv(I) = {u ∈ Rn : inu(I) = inv(I)}.

A well known fact is that for a fixed ideal I there are only finitely many sets C≺(I)
and they cover Rn

≥0, see [11]. Secondly, every initial ideal in≺(I) is of the form
inω(I) for some ω ∈ Rn

>0. Consequently, every C≺(I) is of the form Cω(I). A third
observation is that the equivalence classes are not convex in general since we allow
the vectors to be anywhere in Rn:

Example 5 Let I = 〈x1−1, x2−1〉. The ideal I has five initial ideals: 〈x1−1, x2−1〉,
〈x1, x2〉, 〈x1, x2 − 1〉, 〈x1 − 1, x2〉 and 〈1〉. In particular, for u = (−1, 3)T and
v = (3,−1)T we have inu(I) = inv(I) = 〈1〉 but in 1

2
(u+v)(I) = 〈x1, x2〉.
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Theorem 6 Let ≺ be a term order and v ∈ C≺(I) then for u ∈ Rn

inu(I) = inv(I) ⇐⇒ ∀g ∈ G≺(I) : inu(g) = inv(g).

This theorem is a little more general than Proposition 2.3 in [12] as it allows the
vectors to be negative. A proof will appear in [5]. Theorem 6 shows that the closures
of the equivalence classes are polyhedral cones since for fixed ≺ and fixed v each
g ∈ G≺(I) introduces the equality inu(g) = inv(g) which is equivalent to having u

satisfy a set of linear equations and strict linear inequalities. The closure is taken
by making the strict inequalities non-strict. Thus in particular, the set Cv(I) is a
convex polyhedral cone if it contains a strictly positive vector.

Definition 7 The Gröbner fan of an ideal I ⊂ R is the set of the closures of all

equivalence classes intersecting the positive orthant together with their proper faces.

This is a variation of the definitions appearing in the literature. The advantage
of this variant is that it gives well-defined and nice fans in the homogeneous and
non-homogeneous case simultaneously. By nice we mean that all cones in this fan
are closures of equivalence classes. It is not clear a priori that the Gröbner fan is
a polyhedral complex. The proof that the Gröbner fan is in fact a fan (polyhedral
complex) will be deferred to [5]. The support of the Gröbner fan of I is called the
Gröbner region of I.

For the purpose of this paper it is better to study the restricted Gröbner fan
as we will see soon. Using the definition we already have together with the no-
tion of common refinements of fans ([13]) it is straightforward to make a definition
equivalent to the original one in [11].

Definition 8 Let F and F ′ be two polyhedral fans in Rn. Their common refinement

is the polyhedral fan F ∧ F ′ := {C ∩ C ′}(C,C′)∈F×F ′.

Definition 9 (Definition 2.5 [11]) The restricted Gröbner fan of an ideal I ⊂ R

is the common refinement of the non-negative orthant Rn
≥0 with its proper faces and

the Gröbner fan of I.

The support of the restricted Gröbner fan is Rn
≥0.

A fundamental question to ask is the following: Is the Gröbner fan always the

normal fan of a polytope? The answer to this question is no since the Gröbner fan
is not always complete. Even if we ask for a polyhedron instead, the answer is still
no for trivial reasons as the following example shows.

Example 10 Let f = x1 + x2 + 1 and I = 〈f〉 ⊂ Q[x1, x2]. The picture to the left
shows the two maximal cones in the Gröbner fan of I. Any polyhedron having these
cones as normal cones will have at least a third normal cone (middle picture).
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To the right the restricted Gröbner fan is shown. In this example it is the normal
fan of an unbounded polyhedron.

Thus we rephrase the question for restricted Gröbner fans: Is the restricted

Gröbner fan of an ideal always the normal fan of a polyhedron?

We note that the Gröbner fan being regular is stronger than the restricted
Gröbner fan being so. This is because the normal fan of the Minkowski sum of
two polyhedra is the common refinement of their normal fans. The claim follows
since Rn

≥0 with its proper faces is the normal fan of Rn
≤0.

The above question is known to have a positive answer in the following three
special cases:

• If the ideal is homogeneous the answer is yes since the Gröbner fan is the
normal fan of the state polytope of I introduced by Bayer and Morrison in [2].
We should mention that in [10] it is shown that the Gröbner fan is not the
normal fan of the state polytope as it was defined in [2]. Instead we should use
the construction in [12, Chapter 2]. We take the Minkowski sum of the state
polytope with Rn

≤0 to get a polyhedron having the restricted Gröbner fan as
its normal fan.

• The Newton polytope, New(f), of a polynomial f is defined to be the convex
hull of the exponent vectors of the monomials in f . In the case of a principal

ideal I = 〈f〉 the Newton polytope New(f) will almost have the Gröbner fan
as its normal fan since two vectors u, v ∈ Rn pick out the same initial ideal of I

if and only if they are maximized on the same face of New(f). The only thing
that keeps New(f) from having the Gröbner fan of I as its normal fan is that
we have not included all equivalence classes in the Gröbner fan. However, the
normal fan of the Minkowski sum of New(f) and Rn

≤0 is the restricted Gröbner
fan.

• A third case where we have a similar result is for zero-dimensional ideals. The
construction of a polytope is similar but simpler than the construction in the
homogeneous case as there are only a finite number of standard monomials
for each initial ideal. We claim, without proof, that the following construction
works: For every term order ≺ construct the vector v≺ equal to the negative of
the sum of all exponent vectors of all standard monomials of in≺(I). Take the
convex hull of all v≺ as we vary the term order. The Minkowski sum of this
polytope with Rn

≥0 is a polyhedron whose normal fan is the restricted Gröbner
fan.

In contrast to the above, we have Theorem 1.

3 The proof

This section contains a proof of Theorem 1. We start by deducing a necessary
condition for a fan to be the normal fan of a polyhedron. We then show that the
restricted Gröbner fan of the ideal in the theorem violates this condition. Finally
we argue that the Gröbner fan has been computed correctly.
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3.1 A necessary condition

Let F be a fan in Rn. Suppose F is the normal fan of a polyhedron P ⊂ Rn. The
non-empty faces of P are in bijection with the cones in F by taking normal cones of
the faces. Adjacency is preserved in the sense that two vertices of an edge of P map
to cones in F having the normal fan of the edge as a common facet. Furthermore,
the edge is perpendicular to the shared facet. If a set of normals of the shared facets
in F are specified, then for every bounded edge the difference between its endpoints
can be expressed as some scalar times the specified normal of its normal cone. The
scalars are considered to be unknowns. Since the adjacency information of the
vertices of P is present in F , the bounded edge graph of P can be deduced from F .
A necessary condition for F to be the normal fan of P is that every combinatorial
cycle in the edge graph is a geometric cycle in space. This condition gives rise to a
feasible system of inequalities on the scalars dependent on F alone.

To be more specific about the inequality system, consider the adjacency graph
of the n-dimensional cones in F , or equivalently the edge graph of the supposed
polyhedron P . Let V = {1, . . . , m} denote the vertices and a subset E ⊂ {(i, j) ∈
V ×V : i < j} denote the edges in the graph. For each shared facet, choose a normal
vector d(i,j) ∈ Rn such that the ith cone is on the negative side of the hyperplane
with normal vector d(i,j) and the jth cone is on the positive side. The graph (V, E)
is considered to be undirected when we define its cycles. A vector f ∈ RE is called
a flow in (V, E) if

∀j ∈ V :
∑

(i,j)∈E

f(i,j) =
∑

(j,k)∈E

f(j,k).

In other words the flow entering j is the same as the flow leaving j. The set of flows
is a subspace of RE. We introduce a vector s ∈ RE

>0 of unknown scalars such that
the true vector from vertex i to vertex j is s(i,j)d(i,j). Each cycle in the graph can be
represented by a flow f ∈ RE being 0 on the edges not appearing in the cycle and
±1 elsewhere depending on the relative orientation of the cycle and the edge. For
such an f the condition that the cycle forms a loop in space can be expressed as:

∑

(i,j)∈E

f(i,j)s(i,j)d(i,j) = 0. (1)

Note that (1) is a system of n equations – one for each coordinate of d(i,j). If F

is the normal fan of a polyhedron P , there exist positive scalars s(i,j) satisfying (1)
for every flow f since the cycle flows span the vector space of flows. By linearity
this is equivalent to having the scalars satisfy (1) for a basis of the vector space of
flows rather than the entire space. In matrix form we may express the necessary
condition as the system

As = 0 and s(i,j) > 0 for all (i, j) ∈ E (2)

having a solution where A is a suitable nl × |E| matrix with l being the dimension
of the vector space of flows.
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Figure 1: The certificate subgraph.

3.2 The certificate

Proof of Theorem 1: The restricted Gröbner fan of the ideal

I = 〈acd + a2c− ab, ad2 − c, ad4 + ac〉 ⊂ Q[a, b, c, d]

has 81 full dimensional cones each corresponding to a monomial initial ideal. Their
adjacency graph (V, E) has 163 edges, with each edge having an edge direction equal
to a specified normal of the shared facet. We present a certificate that the fan is
not the normal fan of a polyhedron. Only the subgraph in Figure 1 is needed to
describe it. Two vectors are written for each edge in the subgraph. The vector to
the right is the edge direction d(i,j) and the vectors to the left describe four flows in
the subgraph.

Let V ′ be the set of vertices appearing in the subgraph and E ′ the edges. Let
f 1, f 2, f 3 and f 4 denote the flows above. Suppose the restricted Gröbner fan was
the normal fan of a polyhedron P . Equality system (1) implies

∀(r, t) ∈ {1, 2, 3, 4} × {1, 2, 3, 4} :
∑

(i,j)∈E′

f r
(i,j)s(i,j)d(i,j)t

= 0. (3)

In particular, the sum of the equations in (3) for (r, t) = (1, 1), (2, 2), (3, 3), (4, 4) is
zero. Therefore,

0 =
4

∑

r=1

∑

(i,j)∈E′

s(i,j)d(i,j)
r
f r

(i,j) =
∑

(i,j)∈E′

s(i,j)

4
∑

r=1

d(i,j)
r
f r

(i,j).
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5 (10, 2, 5, 3)

6 (14, 4, 11, 5)

15 (7, 6, 5, 3)

16 (7, 11, 8, 4)

17 (5, 2, 3, 3)

18 (4, 3, 5, 4)

19 (5, 1, 2, 2)

26 (7, 1, 2, 3)

27 (17, 1, 4, 9)

29 (10, 1, 2, 6)

30 (15, 1, 3, 11)

33 (3, 1, 2, 3)

44 (7, 5, 4, 4)

57 (7, 1, 2, 7)

58 (7, 1, 3, 8)

5 6 (3,1,2,1)

5 19 (8,4,5,3)

6 18 (2,1,2,1)

15 16 (6,8,6,3)

15 19 (5,3,3,2)

15 26 (9,2,3,3)

16 17 (8,15,11,5)

16 44 (5,7,5,3)

17 19 (4,1,2,2)

17 33 (6,1,3,4)

18 33 (4,1,3,4)

19 26 (10,1,3,4)

26 27 (18,2,5,9)

27 29 (13,1,3,7)

29 30 (8,1,2,5)

29 44 (9,3,3,5)

30 44 (6,5,4,4)

30 57 (13,1,3,11)

33 58 (6,1,3,7)

57 58 (10,1,3,11)

Figure 2: Representative weight vectors for cones in the certificate.

The local contribution at each edge except the edge (29,30) is zero because d(i,j) ·
(f 1

(i,j), f
2
(i,j), f

3
(i,j), f

4
(i,j))

T = 0 (check this in the picture). Consequently,

0 = s(29,30)d(29,30) · f(29,30) = 18s(29,30)

implying s(29,30) = 0. Hence the vertices 29 and 30 have the same coordinates which
contradicts that P is a polyhedron with the required edge graph. 2

Remark 11 Another way to argue is by observing that we have applied the trivial
direction of Farkas’ lemma to (3). With A′ being the 16 × 20 matrix representing
the equalities in (3) a variant of Farkas’ lemma says:

∃ y : yTA′ ≥ 0 and yTA′ 6= 0 ⇐⇒ 6 ∃ s > 0 : A′s = 0.

In our case y = (1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1)T where the four nonzero com-
ponents correspond to the equations (1, 1), (2, 2), (3, 3) and (4, 4).

3.3 Correctness of the subgraph

For completeness, a positive interior point in each of the 15 maximal cones of the
restricted Gröbner fan leading to the inconsistency is given in the top part of Figure
2. Further, a positive vector in the relative interior of every shared facet is given in
the bottom part.

To verify the correctness of the certificate the following procedure is suggested:
It is straightforward to check that the flows are flows and that the dot products of
flows and listed directions are 0 except for the edge (29,30). The question is how
to check the correctness of the edge subgraph and the listed directions. For each of
the listed edges (i, j) with i < j compute the corresponding reduced Gröbner bases
Gi and Gj and use Theorem 6 to compute their cones Ci and Cj . Check that the
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listed facet vector for the edge (i, j) is in the closure of both cones Ci and Cj and
that the listed direction vector non-strictly separates Ci and Cj with Cj being on
the non-negative side. Checking that the listed facet vector is in the relative interior
of a facet of Cr completes the verification. The non-straightforward part of this test
was implemented as a 230 line script in Singular [7]. The script itself is available on
the internet, see [9].

4 Further remarks

4.1 Homogenizing the ideal

In [11] a complete fan in Rn called the extended Gröbner fan is defined for any (not
necessarily homogeneous) ideal I ⊂ R. This is done by homogenizing the ideal with
a new variable. The extended Gröbner fan is defined as the Gröbner fan of the
homogenized ideal intersected with Rn. It is clear that the extended Gröbner fan
is regular as the Gröbner fan of the homogenized ideal is regular and the normal
fan of the projection of its polytope to Rn × {0} is the intersection of the Gröbner
fan of the homogenized ideal with Rn × {0}. Therefore our example shows that the
restricted Gröbner fan of an ideal and its extended Gröbner fan need not agree in
Rn

>0.
In our example the procedure works as follows. We homogenize the ideal I using

the variable “e” to get

hI =
〈

cd2 + ace,−c2e + c2d + abd, c2e + c3 − bce− bcd − abd + abc,−ce2 + ad2,

− c2e + acd− abe, c2e− bce + ac2 − abd, c2e + a2c, bce + a2b
〉

.

The Gröbner fan of the new ideal is a complete fan in R5. Intersecting this fan with
R4 × {0} we get the extended Gröbner fan, a regular fan that almost equals the
Gröbner fan of I in the positive orthant. The subgraph listed for I is valid for the
extended fan on all edges except the edge connecting vertex 57 and vertex 58. The
vector (10, 1, 3, 11)T listed as a relative interior facet vector in the Gröbner fan of I

is not in the boundary of the cone containing (7, 1, 2, 7)T in the extended fan.

4.2 A program for finding the example

A C++ program was written for finding non-regular Gröbner fans. The input for
the program is a set of generators for an ideal I and the output is either a coordi-
natization of a polyhedron with the restricted Gröbner fan as its normal fan or a
certificate for its non-existence. The program works in two steps.

• In step 1 it calls a software package being developed by the author for com-
puting Gröbner fans of polynomial ideals. This work will appear in [5]. The
package computes the maximal cones (n-dimensional) of the Gröbner fan of I

storing all facets (n− 1-dimensional). This is done using exhaustive search on
the graph whose vertices are the maximal cones of the fan, with two maximal
cones being connected if they share a facet. At each maximal cone the reduced
Gröbner basis is known, its facets are computed using linear programming and
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the Gröbner bases of its neighbors are computed using the local basis change
procedure in [3]. A specialized implementation for toric ideals was worked out
in [8].

• From the Gröbner fan computed above the inequality system (2) is deduced.
Linear programming methods are used for checking its feasibility. The result
is either positive scalars leading to a coordinatization of the vertices of the
polyhedron or a certificate for its non-existence.

The software libraries [6] and [4] were used for doing the arithmetic and solving
linear programming problems, respectively.

Knowing that we should avoid homogeneous, zero-dimensional and principal ide-
als, it was not hard to find the example when the C++ program had been written. A
practical issue is that we are restricted to ideals with not too complex Gröbner fans
as the entire edge graph must be handled by the LP-code. In looking for a 3-variable
example this seems to be an unfortunate restriction as nothing interesting happens
in the small manageable examples we have tried.
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