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Abstract

Let Rν 3 ξ → Σess(ξ) denote the bottom of the essential spectrum for the fiber
Hamiltonians of the translation invariant massive Nelson model, which describes
a ν-dimensional electron linearly coupled to a scalar massive radiation field. We
prove that, away from a locally finite set, Σess is an analytic function of total
momentum.
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1 The model and the result

Let hph := L2(Rν
k) and F = Γ(hph) denote the bosonic Fock space constructed from

hph. We write p = −i∇x for the momentum operator in K := L2(Rν
x). The translation

invariant Nelson Hamiltonian describing a ν-dimensional electron (or positron) linearly
coupled to a massive scalar radiation field has the form

H := Ω(p) ⊗ 1F + 1K ⊗ dΓ(ω) + V , on K ⊗ F ,

where

V :=

∫
Rν

{
e−ik·xv(k)1K ⊗ a∗(k) + eik·x v(k)1K ⊗ a(k)

}
dk .

We assume that the form factor v satisfies

v ∈ L2(Rν
k), v real valued, v 6= 0 a.e. and ∀O ∈ O(ν) : v(Ok) = v(k) a.e. , (1.1)
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which implies a UV-cutoff. Here O(ν) denotes the orthogonal group. The physically
interesting choices for the dispersion relations Ω and ω are Ω(η) = η2/2M , Ω(η) =√

η2 + M2 and ω(k) =
√

k2 + m2, where M, m > 0 are the electron and boson masses.
We will however work with general forms of both Ω and ω. As for ω, this is partly
motivated by the similarity with the Polaron model, cf. [5, 11], where ω is not explicitly
known. We make no attempt here to say anything about the Polaron model.

The operator H commutes with the total momentum p⊗1F +1K⊗dΓ(k) and hence
fibers as H ∼

∮
Rν H(ξ)dξ, where the fiber Hamiltonians H(ξ), ξ ∈ Rν , are operators on

F given by

H(ξ) = H0(ξ) + Φ(v) where H0(ξ) = dΓ(ω) + Ω(ξ − dΓ(k)) (1.2)

and the interaction is

Φ(v) =

∫
Rν

{
v(k) a∗(k) + v(k) a(k)

}
dk . (1.3)

We formulate precise assumptions on Ω and ω, which are satisfied by the examples
mentioned above. We use the standard notation 〈t〉 := (1 + t2)1/2.

Condition 1. (The particle dispersion relation) Let Ω ∈ C∞(Rν). There exists
sΩ ∈ {0, 1, 2} such that

i) There exists C > 0 such that Ω(η) ≥ C−1〈η〉sΩ − C.

ii) For any multi-index α there exists Cα such that |∂αΩ(η)| ≤ Cα〈η〉sΩ−|α|.

iii) Ω is rotation invariant, i.e., Ω(Oη) = Ω(η), for all O ∈ O(ν).

iv) The function η → Ω(η) is real analytic.

Condition 2. (The photon dispersion relation) Let ω ∈ C∞(Rν) satisfy

i) There exists m > 0, the photon mass, such that infk∈Rν ω(k) = ω(0) = m.

ii) ω(k) →∞, in the limit |k| → ∞.

iii) There exist sω ≥ 0, Cω > 0, and for any multi-index α with |α| ≥ 1, a Cα such
that ω(k) ≥ C−1

ω 〈k〉sω − Cω and |∂α
k ω(k)| ≤ Cα〈k〉sω−|α|.

iv) ω is rotation invariant, i.e., ω(Oη) = ω(η), for all O ∈ O(ν).

v) ω is real analytic.

vi) ω is strictly subadditive, i.e. ω(k1) + ω(k2) > ω(k1 + k2) for all k1, k2 ∈ Rν.

Remarks: 1) The assumption that the photons are massive is essential.
2) One could weaken the assumption v ∈ L2(Rν) by taking instead v/

√
ω ∈ L2(Rν).

This is a weaker ultraviolet condition, which still allows for the construction of the
Hamiltonian. See [2].
3) The subadditivity assumption is discussed at the end of this section.
4) Condition 2 vi) follows from subadditivity ω(k1) + ω(k2) ≥ ω(k1 + k2) together with
Condition 2 i), iv), and v).
5) The assumptions (1.1), Condition 1 ii), Condition 2 i), ii), and iii) can be relaxed,
cf. [10].
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We introduce the bottom of the spectrum and essential spectrum as functions of
total momentum

Σ0(ξ) := inf σ
(
H(ξ)

)
and Σess(ξ) := inf σess

(
H(ξ)

)
.

The energy of a system of n non-interacting bosons, with momenta k ∈ Rnν , k = (k1,
. . . , kn), and one interacting electron with momentum ξ−k(n), where k(n) = k1+· · ·+kn,
is

Σ
(n)
0 (ξ; k) := Σ0

(
ξ − k(n)

)
+

n∑
j=1

ω(kj) (1.4)

and the smallest of such energies

Σ
(n)
0 (ξ) := inf

k∈Rnν
Σ

(n)
0 (ξ; k) , (1.5)

which is a threshold energy for the model. Due to the assumption of strict subadditivity
of ω, Condition 2 vi), we have

Σ
(n)
0 (ξ) < Σ

(n′)
0 (ξ) , for n < n′ . (1.6)

The function Σess can be expressed in terms of Σ0

Σess(ξ) = Σ
(1)
0 (ξ) . (1.7)

This is the content of the HVZ theorem, see [9, Theorem 1.2 and Corollary 1.4] and [11,
Section 4]. Write I0 := {ξ ∈ Rν |Σ0(ξ) < Σess(ξ)} (ξ’s with an isolated groundstate)

and for ξ ∈ Rν : I(1)
0 (ξ) := {k ∈ Rν : ξ − k ∈ I0}.

We recall that H(ξ) is self-adjoint on D = D(H0(ξ)), which is independent of ξ.

The functions ξ → Σ0(ξ), Σess(ξ), Σ
(n)
0 (ξ) are Lipschitz continuous, rotation invariant,

and go to infinity at infinity. For a treatment of the second quantization formalism
used in the formulation of the model see [1] or the brief overviews given in [4] and [9].
See also the recent monograph [12] by Spohn, for up to date material on models of
non-relativistic QED.

The authors talk at the QMATH9 meeting, was devoted to an overview of results
for the spectral functions introduced above. Drawing mostly on work of Fröhlich [6, 7],
Spohn [11], and the author [9]. One of these results, [9, Theorem 1.9] (Theorem 1.11 in
the mp arc version), states that R 3 t → Σess(t~u) is a real analytic function away from
a closed countable set, under the additional assumption that ω is also convex. Here ~u is
an arbitrary unit vector. This prompted the following question from Heinz Siedentop:
”Is this optimal?”. Here is the answer:

Theorem 1.1. Fix a unit vector ~u ∈ Rν. Suppose (1.1) and Conditions 1 and 2. Then
there exists a locally finite set S ⊂ R such that R\S 3 t → Σess(t~u) is analytic. For any
connected component I = (a, b) of R\S we have either: Σess is constant on I, or there

exists an analytic function I 3 t → θ(t) ∈ I(1)
0 (t~u) such that for t ∈ I

Σess

(
t~u

)
= Σ

(1)
0

(
t~u; θ(t)~u

)
and ∇Σess

(
t~u

)
= ∇ω

(
θ(t)~u

)
.

In the latter case, there furthermore exist integers 1 ≤ p, q < ∞ such that the functions
(a, a + δ) 3 t → θ(a + (t− a)p)) and (b− δ, b) 3 t → θ(b− (b− t)q) extend analytically
through a respectively b. (Here δ is chosen such that a + δp, b− δq ∈ I.)
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Remarks: 1) The positivity part of (1.1) is an input to a Perron-Frobenius argument,
see [7, Section 2.4] and [9, Section 3.3], which ensures that the groundstate of each
H(ξ) is non-degenerate. This, together with analytic perturbation theory, implies that
ξ → Σ0(ξ) is analytic in I0, see [7, Theorem 3.6]. This is in fact the information we
need to make the proof of Theorem 1.1 work. Hence the conclusion of the theorem
remains true also for the uncoupled system (v ≡ 0) although (1.1) is not satisfied in
this case.
2) If subadditivity of ω is not assumed we are faced with two problems: I) We would
need to understand the breakup of degenerate critical points of the function k →
Σ

(n)
0 (ξ; k) for any n, not just n = 1. This is a much more difficult problem (but

probably doable). II) The crossing of thresholds Σ
(n)
0 (ξ) may be associated with the

disappearance of the groundstate Σ0(ξ) into the essential spectrum. The strategy of
the proof below would require that Σ0(ξ) (suitably reparameterized as in Theorem 1.1)
continues analytically into the essential spectrum. This is beyond current technology.

In Section 2 below, we study analytic functions of two complex variables which are
of the form of f(x− y)+ g(y), cf. the definition (1.4) of Σ

(1)
0 (·; ·). In Section 3 we apply

the results of Section 2 to prove Theorem 1.1. In Appendix A we recall basic properties
of Riemannian covering spaces.

2 A complex function of two variables

We write (Rp, πp) for the p’th Riemannian cover over C\{0}. See Appendix A.
For z ∈ C and r > 0 we introduce the notation

D(z, r) := {z′ ∈ C : |z − z′| < r} , D′(z, r) := D(z, r)\{z} ,

D′
p(r) := π−1

p (D′(0, r)) ⊂ Rp .

We furthermore use the abbreviations D(r) ≡ D(0, r) and D′(r) = D′(0, r).
Fix x0, y0 ∈ C and r0 > 0. Let f, g be analytic in D(x0 − y0, 2r0) and D(y0, r0)

respectively. We define:

H(x, y) := f(x − y) + g(y) for (x, y) ∈ D := D(x0, r0) × D(y0, r0) .

The function H is an analytic function of two variables in the polydisc D.
We suppose that y → H(x0, y) has a critical point at y = y0, that is:

(∂yH)(x0, y0) = 0 . (2.1)

The aim of this section is to catalogue the breakup of the critical point, counting
multiplicity, when x0 is replaced by an x near x0. We wish to determine the sets

Θ(x) := {y ∈ D(y0, ry) : (∂yH)(x, y) = 0} , (2.2)

for x ∈ D′(x0, rx) and rx, ry small enough.
We write f and g as convergent power series in the discs D(x0−y0, 2r0) and D(y0, r0)

respectively

f(z) =
∞∑

k=0

fk(z − (x0 − y0))
k and g(z) =

∞∑
k=0

gk(y − y0)
k . (2.3)
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We can without loss of generality assume f0 = g0 = 0, and (2.1) implies f1 = g1, and
hence we can in addition assume f1 = g1 = 0. (The critical points are independent of
f0, f1, g0 and g1). To summarize

f0 = f1 = g0 = g1 = 0 . (2.4)

For a function h, analytic in an open set U ⊂ C, we recall that h has a zero of order
k at z0 if (z−z0)

−kh is analytic near z0, and (z−z0)
−k−1h is singular at z0. Equivalently

h has a zero of order k at z0 if ∂`h
∂z` (z0) = 0, for 0 ≤ ` < k, and ∂kh

∂zk (z0) 6= 0. We will use
the following notation for roots of unity. For k ≥ 1, we write the k solutions of αk = 1
as

αk
` := ei2π`/k, for ` ∈ {1, . . . , k} . (2.5)

By the p’th root of a complex non-zero constant C ∼ (|C|, arg(C)), where 0 ≤ arg(C) <
2π, we understand

C1/p := |C|1/p ei arg C/p . (2.6)

In the following we write κH for the order of the zero y0 for the analytic function
(∂yH)(x0, ·), κg for the order of the zero y0 of y → g(y), and κf for the order of the
zero x0 − y0 of z → f(z) (recall (2.4)). We furthermore abbreviate

F :=
∂

κf f
∂z

κf (x0 − y0)

(κf − 1)!
= κffκf

, G :=
∂κg g
∂zκg (y0)

(κg − 1)!
= κggκg ,

M :=
(∂κH+1

y H)(x0, y0)

κH !
= (κH + 1)((−1)κH+1fκH+1 + gκH+1) 6= 0 .

(2.7)

Proposition 2.1. Let f, g, x0, y0 and r0 be as above, with κg, κf , κH < ∞. Then there
exist 0 < rx, ry ≤ r0, such that for x ∈ D′(x0, rx) the set of solutions Θ(x) ⊂ D′(y0, ry)
consists of precisely κH distinct points, all of which are zeroes of order 1 for (∂yH)(x, ·).
We have the following description of Θ(x):

I The case κg ≤ κH : There are analytic functions θ` : D(rx) → D(ry), ` ∈
{1, . . . , κg − 2}, and θ : D′

κH−κg+2(rx) → D′(ry), such that Θ(x) = y0 +

(
⋃κg−2

`=1 {θ`(x− x0)}) ∪ θ(π−1
κH−κg+2({x− x0})). We have the asymptotics

θ`(x) =
α

κg−1
`

α
κg−1
` − 1

x + O
(
|x|2

)
, ` ∈ {1, . . . , κg − 2} ,

θ(x) = CIx
1/(κH−κg+2) + O

(
|x|−2/(κH−κg+2)

)
where CI = [−(κg − 1)G/M ]1/(κH−κg+2).

II The case κg = κH +1: Here κf ≥ κg and we write κf−1 = pκH +q and d = (q, κH)
(the greatest common divisor), where p ≥ 1, 0 ≤ q < κH . There exists d analytic
functions θ` : D′

κH/d(rx) → D′(ry) such that Θ(x) = y0 +
⋃d

`=1 θ`(π
−1
κH/d({x−x0})).

We have two possible asymptotics: If κf = κg (and hence q = 0, d = κH , and
D′

1(rx) ≡ D′(rx)) then

θ`(x) =
CIIα

κH
`

CIIα
κH
` − 1

x + O
(
|x|2

)
, ` ∈ {1, . . . , κH} ,
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where CII = ((−1)κHF/G)1/κH 6= 1. If κf > κg then

θ`(x) = C ′
II αd

` πκH/d(x)p
(
x

1
κH/d

) q
d + O

(
|x|κf /κH

)
, ` ∈ {1, . . . , d} ,

where C ′
II = (F/G)1/κH .

III The case κg > κH + 1: Write κg − 1 = pκH + q and d = (κH , q), where p ≥ 1
and 0 ≤ q < κH . There are d analytic functions θ` : D′

κH/d(rx) → D′(ry) such

that Θ(x) = y0 +
⋃d

`=1 θ`(π
−1
κH/d,x0

({x − x0})). We have the asymptotics, with

CIII = (−G/M)1/κH and ` ∈ {1, . . . , d},

θ`(x) = πκH/d(x) + CIII αd
` πκH/d(x)p

(
x

1
κH/d

) q
d + O

(
|x|κg/κH

)
.

If q = 0 and hence d = κH in II and III, then the maps θ`, a priori defined on D′
1(rx) ≡

D′(0, rx), extend to analytic maps from D(0, rx) by the prescription θ`(0) := y0. (Note
the convention (0, p) = p for p 6= 0.)

Remarks: 1) If κf = ∞, then H(x, y) = g(y), and θ(x) ≡ y0 is the solution to
(2.1). If κg = ∞ then g = 0 and θ(x) = x is the solution to (2.1). If κH = ∞ then
H(x0, y) ≡ H(x0, y0) and hence g(y) = H(x0, y0)− f(x− y).
2) If κH = 1 We get an analytic solution x → θ(x) of (2.1) from the implicit function
theorem, cf. [8, Theorem I.B.4]. Proposition 2.1 II and III then states the possible
asymptotics.
3) A particular consequence is that degenerate critical points are isolated.
4) In the proof we handle the error term by a fixed point argument. This implies the
following important observation. If x0, y0 ∈ R and f and g are real analytic. Then a
branch R\{x0} 3 x → θ(x) ∈ Θ(x) is real valued if and only if θ(x) is real to leading
order (the order needed to uniquely determine θ.)

Proof. The plan of the proof is as follows. First we identify enough terms in an asymp-
totic expansion θ(x) = θ̃(x) + z(x) of the critical points so that we can separate them.
Secondly we use a fixed point argument to show that the remainder, x → z(x), vanishes
at a faster rate than the leading order term θ̃. Note that it is a general result that for
x close to x0, ∂yH(x, ·) has precisely κH zeroes counting their orders. See [8, Lemma
1.B.3]. Our task is to account for those κH zeroes. We remark that we could have simply
postulated the form of the leading order terms θ̃, but at the cost of transparency.

We can assume without loss of generality that x0 = y0 = 0. We wish to solve, for a
fixed x in a neighbourhood of 0,

(∂yH)(x, y) = 0 . (2.8)

We begin by collecting some facts. Compute

∀` : (∂`
yH)(0, 0) = (−1)` ∂

`f

∂y`
(0) +

∂`g

∂y`
(0) . (2.9)

We thus find from (2.1) and (2.3), recall (2.4), that

∀ ` ≤ κH : (−1)`+1f` = g` , (2.10)
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and from the definition of κg that

∀ ` < min{κH + 1, κg} : f` = g` = 0 . (2.11)

Below we will use the following notation for remainders in expansions. Let h be an
analytic function in a disc D(z0, rh) with expansion h(z) =

∑∞
k=0 hk(z− z0)

k. We write
for z ∈ D(z0, rh)

R`
h(z) :=

∞∑
k=`+1

k hk (z − z0)
k−`−1 . (2.12)

Note that R`
h are bounded analytic functions in D(z0, rh/2).

We separate into the three cases I, II, and III.
Case I (κg ≤ κH): Expand the left-hand side of (2.8), using (2.10), (2.11), and the

notation (2.12):

(∂yH)(x, y) =

κH+1∑
`=κg

`
[
− f` (x− y)`−1 + g` y`−1

]
− RκH+1

f (x− y) (x− y)κH+1 + RκH+1
g (y) yκH+1

=

κH∑
`=κg

` g`

[
y`−1 − (y − x)`−1

]
(2.13)

+ M yκH + (κH + 1) fκH+1((x− y)κH − yκH )

− RκH+1
f (x− y) (x− y)κH+1 + RκH+1

g (y) yκH+1 .

First we look for solutions to (2.8) with asymptotics θ(x) ∼ |x|. That is, the leading
order term should solve yκg−1 − (y − x)κg−1 = 0, i.e. if we put y = βx then β should
solve (β/(β − 1))κg−1 = 1. This gives the following κg − 2 solutions for β

β` =
α

κg−1
`

α
κg−1
` − 1

, for ` ∈ {1, κg − 2} . (2.14)

Note that α
κg−1
κg−1 = 1 does not give rise to a solution. We thus find in this case θ̃`(x) =

β`x. Recall the notation αk
` from (2.5).

Secondly we look for solutions to (2.8) with asymptotics θ(x) ∼ |x|ρ for some 0 <
ρ < 1. Expanding the terms (y − x)`−1 in binomial series we identify the highest order
terms and are led to require (κg − 1)Gxyκg−2 + MyκH = 0. This gives the equation
yκH−κg+2 = −[(κg − 1)G/M ]x. (We note that the κg − 2 zero solutions are the ones
we identified in the first step above.) We use the map RpI

3 x → x1/pI introduced in
(A.3), pI = κH − κg + 2, to express the solution

θ(x) = CIx
1/pI , where CI = [−(κg − 1)G/M ]1/pI . (2.15)

Case II (κg = κH + 1): We expand again

(∂yH)(x, y) = −F (x− y)κf−1 + G yκg−1

− R
κf+1

f (x− y) (x− y)κf + Rκg+1
g (y) yκg . (2.16)
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First we consider the case κf = κg = κH + 1. This is similar to the first step above.
We look for solutions with the asymptotics θ(x) ∼ |x|, and put θ̃(x) = βx. We get
the equation (−1)κH+1F (β − 1)κH + GβκH = 0. This leads us to consider the equation
(β/(β − 1))κH = (−1)κHF/G, which has κH solutions

β` =
CIIα

κH
`

CIIα
κH
` − 1

, for ` ∈ {1, . . . , κH} . (2.17)

Here CII := ((−1)κHF/G)1/κH . We note that since (−1)κH+1F + G = M 6= 0, cf. (2.7),
we must have 0 < arg(CII) < 2π/κH . This observation ensures that we avoid any
singularity in the case |F | = |G|.

Secondly we assume κf > κg and look for solutions to (2.8) with asymptotics θ(x) ∼
|x|ρ, for some ρ > 1. This leads to the equation

−F xκf−1 + G yκg−1 = 0 .

(Here M = G.) Let κf − 1 = pκH + q and d = (q, κH) as in the statement of the
proposition. We express the solutions as d analytic maps from RκH/d to C\{0}

θ̃`(x) = C ′
II αd

` πκH/d(x)p (x1/(κH/d))q/d , C ′
II = (F/G)1/κH . (2.18)

Case III (κg > κH + 1): Here we must have κf = κH + 1. We write down the
expansion

(∂yH)(x, y) = M (y − x)κH + G yκg−1

− RκH+2
f (x− y) (x− y)κH+1 + Rκg+1

g (y) yκg .

Here the asymptotics is the same to leading order, namely y ∼ x. Write θ̃(x) = x + θ̂,
and look for θ̂ with the asymptotics θ̂ ∼ |x|ρ, ρ > 1. This gives the equation for θ̂

M θ̂κH + G xκg−1 = 0 ,

As above let κg − 1 = pκH + q and d = (q, κH) . We express the solutions as d analytic
maps from RκH/d to C\{0}, with CIII = (−G/M)1/κH ,

θ̃`(x) = πκH/d(x) + CIII αd
` πκH/d(x)p (x1/(κH/d))q/d . (2.19)

We have now determined the leading order term in all cases. We proceed to show
by a fixed point argument that indeed there is a zero of order 1 near each of the terms
identified above. We introduce function spaces

Zp(ρ, C) :=
{

z ∈ C(D′
p(rx) ; C) | |z(x)| ≤ C |x|ρ

}
,

equipped with sup-norm. If p = 1 we identify D′
1(rx) ≡ D′(rx). We now describe the

procedure which we follow below, so as to cut short the individual arguments. First
we write the actual branch of critical points as a sum θ(x) = θ̃(x) + z(x), where θ̃ is
the leading order term as derived above and z is an element of a suitable Zp. We plug
this into an expansion of (∂yH)(x, y) and identify leading order terms. These are of
two types. One is linear in z and the others are independent of z. The term linear in
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z is used to construct maps T on Zp, by (Tz)(x) = z(x)− (∂yH)(x, θ̃(x) + z(x))/h(x),
if hz is the term linear in z. The remaining leading order terms now become leading
order terms for Tz and their decay determine the decay of the remainder and hence ρ.
The constant C is chosen such that T maps Zp into itself. Finally, since terms in Tz
depending on z are of higher order, we can choose rx small enough such that T becomes
a contraction. Its unique fixed point z0 is the desired correction to the leading order
contribution found above. Note that a fixed point satisfies (∂yH)(x, θ̃(x) + z0(x)) = 0.

Case I: Write θ`(x) = β`x + z(x), cf. (2.14), and look for z vanishing faster than |x|
at 0. The leading order term linear in z in (2.13) is

(κg − 1) G
[
(β`x)κg−2 − ((β` − 1)x)κg−2

]
z = (κg − 1) G γ` xκg−2 z

A computation yields γ` := β
κg−2
` − (β` − 1)κg−2 6= 0. Define maps on Z1(2, C)

(T`z)(x) := z(x) − (∂yH)(x, β`x + z(x))

(κg − 1)Gγ`xκg−2
.

The contributions to T`z which scale as |x|2 (the slowest appearing rate) are

−
(κg + 1)gκg+1

[
β

κg

` − (β` − 1)κg
]

(κg − 1)Gγ`

x2 , for κg < κH ,

− MβκH
` + (κH + 1)fκH+1[(1− β`)

κH − βκH
` ]

(κg − 1)Gγ`

x2 , for κg = κH .

We now choose C large enough such that the norm of the coefficients above are less
than C. Choosing rx sufficiently small turns T` into contractions on Z1(2, C).

Now write θ(x) = CIx
1/pI +z(x) where z ∈ ZpI

(κg/pI , C). The term in (2.13) which
is linear in z and of leading order is[

(κg − 2) (κg − 1) G πpI
(x) (CIx

1/pI )κg−3 + κH M (CIx
1/pI )κH−1

]
z

= pI M CκH−1
I (x1/pI )κH−1 z ,

where we used (A.4). Note that the coefficient is non-zero. Define a map

(Tz)(x) := z(x) − (∂yH)(πpI
(x), CIx

1/pI + z(x))

pIM(CIx1/pI )κH−1
.

We wish to show that T : ZpI
(κg/pI , C) → ZpI

(κg/pI , C) if C is large enough. Let
C(κg) = fκg+1 if κg < κH and C(κg) = gκH+1 if κg = κH . The term in Tz which vanish
to lowest order is

(κg + 1) C(κg) πpI
(x) (CIx

1/pI )κg−1

pIM(CIx1/pI )κH−1
= O

(
|x|

2
pI

)
,

Choosing C and rx as above finishes case I.
Case II: Consider the case κf = κg = κH + 1. Let θ̃`(x) = β`x, where β` is as in

(2.17). We define maps on Z1(2, C)

(T`z)(x) := z − (∂yH)(x, β`x + z(x))

(κg − 1) A` xκg−2
,
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which is well defined since

A` := (−1)κH+1 F (β` − 1)κH−1 + G βκH−1
`

= −G (β` − 1)κH β−1
` CκH−1

II

(
CII − (ακH

` )κH−1
)
6= 0 .

Here we used (2.17), the definition of CII , and that 0 < arg(CII) < 2π/κH . The leading
order contributions to T`z are

[(κg − 1) A`]
−1

(
R

κf+1

f (1− β`)
κg + Rκg+1

g β
κg

`

)
x2 = O(|x|2) .

As above this estimate suffice.
Next we turn to the case κf > κg. Let θ̃` be as in (2.18) and define maps on

ZκH/d(κf/κH , C)

by

(T`z)(x) := z −
(∂yH)(πκH/d(x), θ̃`(x) + z(x))

(κg − 1)Gθ̃`(x)κg−2
.

Let ρII := min{2κf − κg − 1, κf + κg − 2}. The leading order terms in T`z are

−
(κf − 1)FπκH/d(x)κf−2θ̃`(x)−R

κf+1

f πκH/d(x)κf

(κg − 1)Gθ̃`(x)κg−2
= O

(
|x|ρII

)
.

Since 2κf −κg−1 ≥ κf and κf +κg−2 ≥ κf , we have ρII ≥ κf and conclude, as above,
case II.

Case III: Let θ̃` be as in (2.19) and write θ(x) = θ̃`(x) + z(x), where we take z from
ZκH/d(κg/κH , C). We define maps

(T`z)(x) := z −
(∂yH)(πκH/d(x), θ̃`(x) + z(x))

κHM [θ̃`(x)− πκH/d(x)]

Let ρIII := min{2κg − κH − 2, κH + κg − 1}. The leading order terms in T`z are

(κg − 1)GπκH/d(x)κg−2θ̃`(x) + R
κg+1
g πκH/d(x)κg

κHM [θ̃`(x)− πκH/d(x)]
= O

(
|x|ρIII

)
.

Since 2κg − κH − 2 ≥ κg and κg + κH − 1 ≥ κg, we conclude, as above, case III.
Finally we address analyticity of the a priori continuous solutions found above. Maps

from D′(rx) are analytic by the analytic implicit function theorem [8, Theorem I.B.4],
and maps from Riemanian covers are locally analytic by the same argument, and hence
analytic. That the maps above defined on D′(rx) extend to analytic functions on the
whole disc D(rx) follows from [3, Theorem V.1.2]. �

3 The essential spectrum

In this section we use Proposition 2.1 to prove Theorem 1.1.
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Let ~u ∈ Rν be a unit vector. We introduce

σ(t) := Σ0(t~u) and σ(1)(t; s) := σ(t − s) + ω(s) ,

where we abuse notation and identify ω(s) ≡ ω(s~u). We furthermore write

σ(1)(t) := inf
s∈R

σ(1)(t; s)

and I(1)
0 (t) := {s ∈ R | s~u ∈ I(1)

0 (t~u)}.
We begin with three lemmata and a proposition. The first lemma is a special case

of [9, Section 3.2].

Lemma 3.1. Assume v ∈ L2(Rν) and Conditions 1 i), ii) and 2 i), ii), vi). Let ξ ∈ Rν

and k ∈ Rν. If Σ
(1)
0 (ξ; k) < Σ

(2)
0 (ξ), then k ∈ I(1)

0 (ξ).

Using this lemma, cf. (1.6), we find that

Σess(ξ) = min{E | (ξ, E) ∈ T (1)
0 } , (3.1)

where T (1)
0 is the set of thresholds coming from one-photon excitations of the ground

state. It is defined by

T (1)
0 :=

{
(ξ, E) ∈ Rν+1 | ∃k ∈ Rν : E = Σ

(1)
0 (ξ; k) and (ξ; k) ∈ Crit

(1)
0

}
,

Crit
(1)
0 :=

{
(ξ, k) ∈ R2ν | k ∈ I(1)

0 (ξ) and ∇kΣ
(1)
0 (ξ; k) = 0

}
.

There are obvious extensions to higher photon number, which must be included in (3.1),
if ω is not subadditive.

The next lemma is the key to the applicability of Proposition 2.1

Lemma 3.2. Let (ξ, k) ∈ Crit
(1)
0 , such that ξ 6= 0 and ∇ω(k) 6= 0. Then there exists

θ ∈ R such that k = θξ.

Proof. Let ξ 6= 0 and k ∈ Rν be a critical point ∇kΣ
(1)
0 (ξ; k) = 0. Then

∇Σ0(ξ − k) = ∇ω(k) (3.2)

Write ∇ω(k) = c1k and ∇Σ0(ξ−k) = c2(ξ−k), using rotation invariance. Here c1 6= 0.
From (3.2) we find cξ = (1 + c)k, where c = c2/c1. Since ξ 6= 0, we conclude the result.

�

We write in the following, for r ≥ 0, B(r) = {k ∈ Rν | |k| = r}. For a unit vector ~u
and radii r1, r2 ≥ 0 we write for t ∈ R

Ct ≡ Ct(r1, r2; ~u) := {k ∈ B(r1) | t ~u − k ∈ B(r2)} .

We leave the proof of the following lemma to the reader. (Draw a picture.) It deals
with the stability of critical points which are not covered by Lemma 3.2.

Lemma 3.3. Let r1, r2 ≥ 0, ~u ∈ Rν be a unit vector, and assume ν ≥ 2. Suppose
t0 ∈ R and Ct0 6= ∅. There exists a neighbourhood U of t0, such that:

i) If Ct0 6⊂ {−r1~u, +r1~u} and t ∈ U , then Ct 6= ∅.
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ii) If Ct0 ⊂ {−r1~u, +r1~u} , then Ct0 = {k0}. Let σ = ~u·k0(t0−~u·k0) ∈ {−r1r2, 0, +r1r2}
(σ = 0 iff either r1 or r2 equals 0) and t ∈ U\{t0}. If σ(t− t0) > 0 then Ct 6= ∅,
and if σ(t− t0) ≤ 0, then Ct = ∅.

Proposition 3.4. Let t0 ∈ R be such that σ(1)(t0) < Σ
(2)
0 (t0~u). There exist 0 < δ ≤ 1

and an analytic function Uδ\{t0} 3 t → θ(t), where Uδ = (t0 − δ, t0 + δ), such that
σ(1)(t) = σ(1)(t; θ(t)), for t ∈ Uδ\{t0}. Furthermore, there exist integers 1 ≤ p`, pr < ∞,
such that the functions (t0 − δ, t0) 3 t → θ(t0 − (t0 − t)p`) and (t0, t0 + δ) 3 t →
θ(t0 + (t− t0)

pr) extend analytically through t0.

Remark: The reason for only studying σ(1) where it is smaller than Σ
(2)
0 , is the need

for having global minima of s → σ(1)(t; s) in I(1)
0 (t), cf. Lemma 3.1. This may not be

true in general. If ν = 1, 2 or ω is convex, this consideration is unnecessary. See [9,
Theorem 1.5 i)] and Lemma 3.2

Proof. Pick δ̃ > 0 such that σ(1)(t) < Σ
(2)
0 (t~u), for |t − t0| ≤ δ̃. For t ∈ Uδ̃, let

Gt = {s ∈ R|σ(1)(t; s) = σ(1)(t)} be the set of global minima for s → σ(1)(t; s). We recall
from [9, Proof of Theorem 1.9 (Theorem 1.11 in the mp arc version)] (an application
of Lemma 3.1) that the sets Gt are finite, and all s ∈ Gt are zeros of finite order for the

analytic function I(1)
0 (t) 3 s → ∂sσ

(1)(t; s).

Secondly we remark that for any t̃ > 0 and σ̄ ∈ R, the set {(t, s) ∈ R2 | |t| ≤ t̃ and
σ(1)(t; s) ≤ σ̄} is compact. From this remark and the finiteness of the Gt’s we conclude
from Proposition 2.1 and a compactness argument that the set

S̃ := {t ∈ Uδ̃ | ∃s ∈ Gt, n ∈ N s.t. ∂2
sσ

(1)(t; s) = 0 and ∂nσ(t− s) 6= 0}

is locally finite. In particular, for t ∈ Uδ̃\S̃ the global minima s ∈ Gt are all either
simple zeroes of s → ∂sσ

(1)(t; s), or zeroes of infinite order for s → ∂σ(t− s).

Suppose first that t0 6∈ S̃. For s0 ∈ Gt0 which are simple zeroes of s → ∂sσ
(1)(t; s) we

obtain from the analytic implicit function theorem analytic solutions θ to ∂sσ
(1)(t; θ(t)) =

0, defined in a neighbourhood of t0. For s0 ∈ Gt0 which are zeroes of infinite order of
s → ∂σ(t0 − s) (and not already included in the first case), we take θ(t) ≡ s0 which
solves ∂sσ

(1)(t; θ(t)) = 0 near t0. See Remark 1), with κf = ∞, after Proposition 2.1.
We have thus for some 0 < δ′ < δ̃ constructed |Gt0| analytic functions θ` defined in
Uδ′ , such that Gt0 = {θ`(t0)} and Gt ⊂ {θ`(t)} (by continuity) for t ∈ Uδ′ . Hence
σ(1)(t) = min1≤`≤|Gt0 | σ

(1)(t; θ`(t)), for t ∈ Uδ′ .

If |Gt0| = 1 take δ = δ′ and θ = θ1. If |Gt0 | > 1 choose 0 < δ < δ′, `1, and `2 such
that the following choice works: θ(t) = θ`1(t), for t0 − δ < t < t0, and θ(t) = θ`2(t), for

t0 < t < t0 + δ. This proves the result if t0 6∈ S̃.

It remains to treat t0 ∈ S̃. Here we get from Proposition 2.1 a 0 < δ′ < δ̃ and two
families of analytic functions {θleft

` } and {θright
` } defined in (t0 − δ′, t0) and (t0, t0 + δ′)

respectively, which parameterize the critical points for t near t0, which comes from Gt0 .
Furthermore Gt ⊂ {θleft

` (t)}, t0 − δ′ < t < t0 and Gt ⊂ {θright
` (t)}, t0 < t < t0 + δ′. Note

that the number of branches to the left and to the right need not be the same, but both
are finite.
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We are finished if we can prove that, for ` 6= `′, the function σ(1)(t; θleft
` (t)) −

σ(1)(t; θleft
`′ (t)) is either identically zero, or it does not vanish on a sequence of t’s con-

verging to t0 from the left. Similarly for the right of t0. (If there is only one branch,
then it continues analytically through t0 and we are done).

In the following we work to the left of t0 and drop the superscript ’left’. The region
to the right of t0 can be treated similarly. There exists 1 ≤ p, p′ < ∞ and analytic
functions θ : Rp → C and θ′ : Rp′ → C such that θ` and θ`′ are branches of θ and θ′

respectively. See Proposition 2.1. That is, there exist 0 ≤ q < p and 0 ≤ q′ < p′ such
that

θ`(t) = θ(Rρ
p(t0 − t)) and θ`′(t) = θ′(Rρ′

p′(t0 − t)) ,

where ρ = π+2πq and ρ′ = π+2πq′. Recall notation from (A.1) and (A.2). Here we used
the canonical embedding R\{0} 3 r → (t, 0) ∈ Rp, for any p. Since z → θ(Rρ

p(Pp(z)))

and z → θ′(Rρ′

p′(Pp′(z))) are analytic and bounded functions from D′(r) (for some r > 0),
they extend to analytic functions on D(r). We can hence define an analytic function

h(z) = σ(1)(z; θ(Rρ
p(Pp((t0 − z)p′

))))− σ(1)(z; θ′(Rρ′

p′(Pp′((t0 − z)p))))

in D(r1/pp′
). The function h is either identically zero or has only isolated zeroes (one is

at t0). This now implies that σ(1)(t; θ`(t))− σ(1)(t; θ`′(t)) = h(t0 − (t0 − t)1/pp′
) is either

identically zero or has finitely many zeroes near t0. We can now choose 0 < δ < δ′ and
θ as above. This concludes the proof. �

Proof of Theorem 1.1: Proposition 3.4 covers the case ν = 1. In the following we assume
ν ≥ 2. It suffices to prove the theorem locally near any t0 ∈ R. For the global minima
at t ∈ R we write

Mt :=
{

k ∈ Rν | Σ(1)
0 (t~u; k) = Σ

(1)
0 (t~u)

}
and we introduce two subsets

M‖
t :=

{
k ∈ Mt | k ‖ ~u

}
and M0

t :=
{

k ∈ Mt | ∇ω(k) = 0
}

.

We begin with the following note. Let t0 ∈ R. If M‖
t0 = ∅ (M0

t0
= ∅) then there exists

a neighbourhood U 3 t0 such that for t ∈ U we have M‖
t = ∅ (M0

t = ∅).
Let t0 ∈ R. First consider the case M0

t0
= ∅. For t ∈ U , chosen as above, we have

Σess(t~u) = σ(1)(t), which by Proposition 3.4 concludes the proof.
We can now assume that M0

t0
6= ∅. By analyticity and rotation invariance, the set

of k’s such that ∇ω(k) = 0 is a set of concentric balls, with a locally finite set of radii.
If k ∈M0

t0
then Ok ∈M0

t0
for any O ∈ O(ν; ~u), where O(ν; ~u) := {O ∈ O(ν)|O~u = ~u}.

Let

M̃0
t =

{
k ∈ I(1)

0 (t) | (t~u, k) ∈ Crit
(1)
0 and ∇ω(k) = 0

}
,

σ̃(1)(t) := min
k∈ fM0

t

Σ
(1)
0 (t~u; k) ,

with the convention that σ̃(1)(t) = +∞ if M̃0
t = ∅. Then by Lemma 3.2

Σ
(1)
0 (t~u) = min{σ(1)(t), σ̃(1)(t)} .
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We work only to the left of t0, i.e. we take t ≤ t0. The case t ≥ t0 can be treated
similarly.

We proceed to find a δ > 0 such that σ(1) is either constant equal to Σ
(1)
0 (t0~u), for

t0 − δ < t ≤ t0 or it satisfies σ̃(1)(t) ≥ σ(1)(t) = Σ
(1)
0 (t~u), for t0 − δ < t ≤ t0. This

concludes the result, since both σ(1) and a constant function, suitably reparameterized,
continues analytically though t0. See Proposition 3.4.

First we consider the case where: A) Σ0 is not constant on the connected component
of I0 containing t0~u−k0, for any k0 ∈M0

t0
. B) For any k0 ∈M0

t0
we have (with r1 = |k0|

and r2 = |t0~u − k0|): Ct0(r1, r2; ~u) ⊂ {−r1~u, r1~u} and ~u · k0(t0 − ~u · k0) ≤ 0. Assuming
A) and B) we have by Lemma 3.3 ii) a δ > 0, such that

Ct(r1, r2; ~u) = ∅ , for t0 − δ < t < t0 . (3.3)

We proceed to argue that A) and B) implies Σ
(1)
0 (t~u) = σ(1)(t), for t < t0. It

suffices to find a δ > 0 such that M0
t = ∅, t0 − δ < t < t0. Suppose to the contrary

that there exists a sequence tn → t0, with tn < t0 and M0
tn 6= ∅. Let kn ∈ M0

tn . We
can assume, by possibly passing to a subsequence, that kn → k∞. Here we used that
ω(k) → ∞ as |k| → ∞. Clearly k∞ ∈ M0

t0
, and hence k∞ ∈ Ct0(r1, r2; ~u) for some

r1, r2. Since the possible r1’s and r2’s are isolated, we must have a n̄ such that ∀n > n̄:
kn ∈ Ctn(r1, r2; ~u). This contradicts (3.3).

For the remaining case we assume one of the following: C) There exists k0 ∈ M0
t0

such that Σ0 is constant on the connected component of I0 containing t0~u − k0. (The
converse of A) above.) D) There exists k0 ∈ M0

t0
such that either Ct0(r1, r2; ~u) 6⊂

{−r1~u, r1~u} or Ct0(r1, r2; ~u) ⊂ {−r1~u, r1~u} and ~u · k0(t0 − ~u · k0) > 0. Again r1 = |k0|
and r2 = |t0~u− k0|. (The converse of B) above.)

There exists δ > 0 such that: In the case C), for t0 − δ < t < t0, there exists

k ∈ M̃0
t with Σ

(1)
0 (t~u; k) = Σ

(1)
0 (t0~u). In case D) we have by Lemma 3.3 i) and ii), for

t0− δ < t < t0, likewise k ∈ M̃0
t with Σ

(1)
0 (t~u; k) = Σ

(1)
0 (t0~u). Hence, if either C) or D)

are satisfied we have σ̃(1)(t) ≤ Σ
(1)
0 (t0~u), for t0 − δ < t < t0.

In order to show the converse inequality σ̃(1)(t) ≥ Σ
(1)
0 (t0~u), we assume to the

contrary that there exists a sequence tn → t0 and kn ∈ M̃0
tn such that Σ

(1)
0 (tn~u; kn) <

Σ
(1)
0 (t0~u). As above we can assume kn → k∞ ∈M0

t0
. If Σ0 is constant on the connected

component of t0~u−k∞, then Σ
(1)
0 (tn~u; kn) = Σ

(1)
0 (t0~u) is a constant sequence for n large

enough, which is a contradiction. If Σ0 is not constant on the connected component of
t0~u − k∞, then |kn| = |k∞| and |tn~u − kn| = |t0~u − k∞|, for n large enough, and again

we conclude Σ
(1)
0 (tn~u; kn) = Σ

(1)
0 (t0~u) is a constant sequence, which is a contradiction.

�

A Riemannian covers

Let Rp = (0,∞) × R/2πZ, equipped with the product topology. We write z =
(|z|, arg(z)) for elements of Rp and introduce the p-cover (Rp, πp) of C\{0} by

πp : Rp → C\{0} where πp(z) := |z| ei arg(z) .
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Note that πp is locally a homeomorphism and thus provides a chart which turns Rp

into an analytic surface. If U ⊂ Rp is such that πp is 1-1 on U , write π−1
U for the inverse

homeomorphism from πp(U) to U .
We will use the concept of analytic functions to, from, and between cover spaces.

This is just special cases of what it means to be an analytic map between two analytic
surfaces, cf. [3, Sections IX.6 and IX.7]

Let V ⊂ C, Vp ⊂ Rp, and Vq ⊂ Rq be open sets, and f1 : V → Rp, f2 : Vp → Rq,
and f3 : Vq → C continuous maps.

We say f1 is analytic if for any z0 ∈ V there exists an open set U ⊂ V with z0 ∈ U ,
such that the map U 3 z → πp(f1(z)) is analytic in the usual sense.

We say f2 is analytic if for any z0 ∈ Vp there exists an open set Up ⊂ Vp with z0 ∈ Up

and πp : Up → C 1–1, such that πp(Up) 3 z → πq(f2(π
−1
Up

(z))) is analytic in the usual
sense.

We say f3 is analytic if for any z0 ∈ Vq there exists an open set Uq ⊂ Vq with z0 ∈ Uq

and πq : Uq → C 1–1, such that the map πq(Uq) 3 z → f3(π
−1
Uq

(z)) is analytic in the
usual sense.

With this definition it is easy to check that f2 ◦ f1, f3 ◦ f2 and f3 ◦ f2 ◦ f1 are
analytic maps. We give three examples which we use in Section 2. The first example is
Pp : C\{0} → Rp, defined by

Pp(z) := (|z|p, p arg(z)) . (A.1)

Second example: Let ρ ∈ R. We define a map Rρ
p : Rp → Rp by

Rρ
p(z) := (|z|, arg(z) + ρ mod 2πp) . (A.2)

The third example is the map Rp 3 z → z1/p ∈ C\{0} defined by

z1/p := |z|1/p ei arg(z)/p . (A.3)

The three examples above are all analytic and in addition bijections. We have

Pp(z
1/p) = (Pp(z))

1/p = z and (z1/p)p = πp(z) . (A.4)
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