
U N I V E R S I T Y OF A A R H U S
D E P A R T M E N T OF M A T H E M A T I C S

ISSN: 1397–4076

ON THE CLOSURE OF STEINBERG FIBERS IN THE

WONDERFUL COMPACTIFICATION

by Xuhua He and Jesper Funch Thomsen

Preprint Series No.: 8 June 2005
2005/06/08

Ny Munkegade, Bldg. 530 http://www.imf.au.dk
DK-8000 Aarhus C, Denmark institut@imf.au.dk



ON THE CLOSURE OF STEINBERG FIBERS IN THE
WONDERFUL COMPACTIFICATION

XUHUA HE AND JESPER FUNCH THOMSEN

Abstract. By a case-free approach we give a precise description of the closure
of Steinberg fibers within the wonderful compactification of a not necessarily con-
nected semisimple algebraic group. For connected groups this description was
earlier obtained by the first author.

1. Introduction

Let G be a connected, simple algebraic group over an algebraically closed field k.
Let T denote a maximal torus of G and let W denote the associated Weyl group.
Fix a set of simple reflection si, i ∈ I, in W . For each subset J ⊂ I we let WJ

denote the subgroup of W generated by si for i ∈ J , and W J be the set of minimal
length coset representatives of W/WJ .

The wonderful compactification X of G (see e.g. [DP], [Str]), is a smooth projec-
tive (G×G)-variety containing G as an open subset. The G×G-orbits ZJ of X are
indexed by the subsets J of I. We fix certain base points hJ of ZJ (see 1.2 for the pre-
cise definition of hJ) and define for each w ∈ W J a subset Zw

J = diag(G)(Bw, 1)hJ

of ZJ , where diag(G) denotes the diagonal in G × G. Then Zw
J is a locally closed

subvariety of X and X =
⊔

J⊂I,w∈W J Zw
J (see [L3]). The subset Zw

J of X is called a
G-stable piece.

The G-stable pieces were first introduced by Lusztig to study the G-orbits and
parabolic character sheaves. However, his original definition was based on some
inductive method. The (equivalent) definition that we used above was due to the
first author in [H1]. What we need in this paper is that the dimension of Zw

J is
equal to dim(G) − l(w) − |I − J |, where l(w) is the length of w and |I − J | is the
cardinality of the set I−J . More properties about the G-stable pieces can be found
in [L3] and [H2]. The G-stable pieces were also used by Evens and Lu in [EL] to
study the Poisson structure and symplectic leaves.

Let F be a Steinberg fiber in G, i.e. the set of elements whose semisimple part
lies in a fixed conjugacy class. Some examples are the unipotent variety and the
regular semisimple conjugacy classes. It is of some interest to study the closure of
F in X.

In [L3], Lusztig gave an explicit description for the closure of the unipotent variety
in the group compactification when G = PGL2 or PGL3. In [Spr2], Springer studied
the closure of arbitrary Steinberg fiber for any connected, simple algebraic group
and obtained some partial results. Based on their result, the first author got an
explicit description of the closure using the G-stable pieces in [H1]. For w ∈ W let
supp(w) denote the minimal subset of I such that w is contained in WJ . The precise
statement of [H1] is as follows.
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2 XUHUA HE AND JESPER FUNCH THOMSEN

Theorem. Let F be a Steinberg fibers of G and F̄ be its closure in X. Then

F̄ − F =
⊔
J⊂I

⊔
w∈W J

supp(w)=I

Zw
J .

As a consequence, the boundary of the closure is independent of the choice of
the Steinberg fibers. More generally, the second author has proved in [T] that the
boundary of the closure of F within any equivariant embedding of G is independent
of the choice of F .

The proof in [H1] was based on a case-by-case checking. The main purpose of this
paper is to generalize the result to the disconnected group case with a more con-
ceptual (and easier) proof. We will also prove some properties about the “nilpotent
cone” of X.

We thank Lusztig and Springer for some useful discussions and comments. We
also thank Jantzen for pointing out the results by Mohrdieck.

2. Wonderful compactifications and G-stable pieces

2.1. Let G denote a connected semisimple linear algebraic group of adjoint type
over an algebraically closed field k. Let B be a Borel subgroup of G, B− be the
opposite Borel subgroup and T = B ∩B−. Let R denote the set of roots defined by
T and let R+ denote the set of positive roots defined by B. Let (αi)i∈I be the set
of simple roots. For i ∈ I, we denote by ωi and si the fundamental weight and the
simple reflection corresponding to αi.

We denote by W the Weyl group associated to T . For any subset J of I, let WJ

be the subgroup of W generated by {sj | j ∈ J} and W J be the set of minimal
length coset representatives of W/WJ .

For J ⊂ I, let PJ ⊃ B be the standard parabolic subgroup defined by J and
P−

J ⊃ B− be the opposite of PJ . Set LJ = PJ ∩ P−
J . Then LJ is a Levi subgroup of

PJ and P−
J . The semisimple quotient of LJ of adjoint type will be denoted by GJ .

We denote by πPJ
(resp. πP−J

) the projection of PJ (resp. P−
J ) onto GJ .

2.2. Assume that G is of adjoint type and let X denote the wonderful compactifi-
cation of G. It is known that X is an irreducible, smooth projective (G×G)-variety
with finitely many G × G-orbits ZJ indexed by the subsets J of I. As a (G × G)-
variety the orbit ZJ is uniquely isomorphic to (G×G)×P−J ×PJ

GJ , where P−
J × PJ

acts on the right on G × G and on the left on GJ by (q, p) · z = πP−J
(q)zπPJ

(p)−1.

Let hJ be the image of (1, 1, 1) in ZJ under this isomorphism.
We denote by diag(G) the image of the diagonal embedding of G in G× G. For

J ⊂ I and w ∈ W J , set Zw
J = diag(G)(Bw, 1)hJ . Then Zw

J is a locally closed
subvariety of X and X =

⊔
J⊂I,w∈W J Zw

J (see [L3]). We call Zw
J a G-stable piece.

3. Preliminaries on disconnected groups

In this section G denotes a connected semisimple linear algebraic group over an
algebraically closed field k. We assume furthermore thatG is either simply connected
or of adjoint type.
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3.1. Let Ĝ be a possibly disconnected linear algebraic group with identity com-
ponent G. An element g ∈ G1 is called quasi-semisimple if g normalizes a Borel
subgroup of G and a maximal torus contained in the Borel subgroup (see [Ste2, 9]).
We have the following properties.

(a) If g is semisimple, then it is quasi-semisimple. See [Ste2, 7.5, 7.6].
(b) Let g ∈ G1 be a quasi-semisimple element and T1 be a maximal torus of

ZG(g)0, where ZG(g)0 is the identity component of {x ∈ G | xg = gx}. Then any
quasi-semisimple element in gG is G-conjugate to some element of gT1. See [L1,
1.14].

(c) g is quasi-semisimple if and only if the G-conjugacy class of g is closed in
G1. The if-part was due to [Spa, 1.15(f)], the only-if-part was due to Lusztig in an
unpublished note (see [H1, 4.1]).

3.2. Let G1 be a connected component of Ĝ. By the conjugacy of Borel subgroups
and maximal tori we may find an element g0 ∈ G1 such that g0B = B and g0T =
T . Let δ be the automorphism of G given by conjugation with g0. The induced
automorphism of T is then independent of the choice of g0. Consequently, also the
induced automorphism of the weight lattice Λ(R) of the root systemR is independent
of the choice of g0. By abuse of notation we denote the latter automorphism by δ.
Then R, R+ and the set of simple roots (αi)i∈I are all invariant under δ. Thus δ
generates a finite group of permutations of R and I and orbits under this action will
be called δ-orbits.

For each simple root α choose an associated root homomorphism xα : k → G.
By substituting g0 with g0t, for some t ∈ T , we may obtain that g0 satisfies the
relation g0xα(z)g−1

0 = xδ(α)(z) for all simple roots α and z ∈ k. In the following
we will assume that xα and g0 has been fixed in this way. In particular, the order
of δ regarded as an automorphism of G coincides with the order of δ regarded as a
permutation of I.

Note that if G1 = G, then δ acts as the identity map on the weight lattice Λ(R)
and thus also on R and I.

3.3. Let T δ be the set of fixed points of the map δ : T → T . It is easily seen that T δ

is a torus of rank equal to the number l of δ-orbits in I. Moreover, T δ is easily seen
to contain regular semisimple elements and consequently ZG(T δ) = T . Thus any
maximal torus of ZG(g0)

0 containing T δ is contained in T ∩ZG(g0) = T δ. Therefore
T δ is a maximal torus of ZG(g0)

0. By 3.1(b), any quasi-semisimple element in G1 is
G-conjugate to some element in T δg0.

Let Spec(k[G1]G) = G1//G be the quotient of G1 by the group G acting by
conjugation. By invariant theory we may identify G1//G with the set of closed
G-orbits within G1. Furthermore, by 3.1(c) we may identify the latter set with
the set of conjugacy classes of quasi-semisimple elements. The quotient morphism
St : G1 → G1//G then sends g ∈ G1 to the unique G-conjugacy class of a quasi-
semisimple element contained in the closure of the G-conjugacy class of g. If G1 = G,
then St is just the Steinberg morphism of G. Hence for arbitrary G1, we call St the
Steinberg morphism of G1 and the fibers the Steinberg fibers of G1.

To each g ∈ G1 we may consider the automorphism of G induced by conjugation
with g. By [Ste2, 7.2] this automorphism fixes some Borel subgroup of G and hence
g is G-conjugate to some element of G1 fixing B. In particular, g is G-conjugate
to an element of the form bg0 for some b ∈ B. Write b = tu where t ∈ T and u is
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an element of the unipotent radical U of B. It is then easily seen that there exists
an element t1 ∈ T , such that t1tg0t

−1
1 ∈ T δg0. Hence, g is G-conjugate to some

element in T δUg0, i.e. we may assume that t ∈ T δ. Notice now that the quasi-
semisimple element tg0 is contained in the closure of the G-conjugacy class of tug0.
In particular, the the image St(g) = St(tug0) of the Steinberg morphism at g is the
G-conjugacy class of tg0. We conclude that any Steinberg fiber of G1 is of the form
∪g∈Gg(tUg0)g

−1 for some t ∈ T δ. In particular, any Steinberg fiber is irreducible.

3.4. From now on assume that G is a simple linear algebraic group (of adjoint

type) and that Ĝ and G1 has been fixed as above. The wonderful compactification
Xδ of G1 is the (G × G)-variety which as a variety is isomorphic to the wonderful
compactification X of G and where the G × G-action is twisted by the morphism
G × G → G × G, (g, h) 7→ (g, δ(h)) for g, h ∈ G. The G × G-orbits in Xδ then
coincide with the associated orbits in X and we let ZJ,δ denote the orbit coinciding
with Zδ(J). Accordingly we let hJ,δ denote the point in ZJ,δ identified with the base
point hδ(J) of Zδ(J). We consider G1 = Gg0 as an open subset of Xδ by identifying

gg0, g ∈ G, with (g, 1)hI,δ. For J ⊂ I and w ∈ W δ(J), set Zw
J,δ = diag(G)(Bw, 1)hJ,δ.

Then

Xδ =
⊔
J⊂I

⊔
w∈W δ(J)

Zw
J,δ.

We call (Zw
J,δ)J⊂I,w∈W δ(J) the G-stable pieces of Xδ. More details can be found in

[H2, 2.4].

3.5. Let Gsc be the connected, simply connected group associated to G. Denote
by Λδ

+ the δ-stable dominant weights of Gsc. Let C1, C2, . . . , Cl be the δ-orbits on I.
Set ωCk

=
∑

i∈Ck
ωi, where ωi is the fundamental weight of Gsc associated to i ∈ I.

For any dominant weight λ with λ =
∑

i∈I aiωi, set I(λ) = {i ∈ I | ai 6= 0}. For
w ∈ W , let supp(w) be the set of i ∈ I such that wωi 6= ωi and let suppδ(w) =
∪k>0δ

k(supp(w)). Notice that when λ ∈ Λ+ is a dominant weight and w ∈ W then
wλ 6= λ if and only if I(λ)∩supp(w) 6= ∅. The following characterization of supp(w)
is also useful.

Lemma 3.6. Let w ∈ W and i ∈ I. Fix a reduced expression w = si1 ....sin of w as
a product of simple reflections. Then i = ij for some j if and only if i ∈ supp(w).

Proof. The only-if-part is clear. Consider the if-part. If in 6= i, then we are
done by induction in n. Hence, we may assume that in = i. But then wαi is a
negative root. Thus 1 = 〈ωi, α

∨
i 〉 = 〈wωi, (wαi)

∨〉 and, in particular, we cannot have
wωi = ωi.

3.7. By [Ste2, 9.16] the automorphism δ of G may be lifted to an automorphism
of Gsc which we denote by σ. For any dominant weight λ ∈ Λ+ let H(λ) denote
the dual Weyl module for Gsc with lowest weight −λ. We then define δH(λ) to be
the Gsc-module which as a vector space is H(λ) and with Gsc-action twisted by the
automorphism σ of Gsc. Notice that up to a nonzero constant there exists a unique
Gsc-isomorphism δH(λ) ' H(δ(λ)). In particular, when λ ∈ Λδ

+ is δ-invariant there
exists a Gsc-equivariant isomorphism fλ : H(λ) → δH(λ). Now fix such an fλ for
the rest of the paper.
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4. The “nilpotent cone” of X

4.1. For any dominant weight λ there exists (see [DS]) aG×G-equivariant morphism

ρλ : X → P
(
End(H(λ))

)
which extends the morphism G → P

(
End(H(λ))

)
defined by g 7→ g[Idλ], where g

acts by the left action and where [Idλ] denotes the class representing the identity
map on H(λ). By the definition of Xδ we obtain a G×G-equivariant morphism

Xδ → P
(
Homk(

δH(λ),H(λ))
)
.

Applying fλ, for λ ∈ Λδ
+, this induces a map ρλ,δ : Xδ → P

(
End(H(λ))

)
.

4.2. An element in P
(
End(H(λ))

)
is said to be nilpotent if it may be represented

by a nilpotent endomorphism of H(λ). For λ ∈ Λδ
+ we let

N (λ)δ = {z ∈ Xδ | ρλ,δ(z) is nilpotent},
and call N (λ)δ the nilpotent cone of Xδ associated to the dominant weight λ. In
4.4, we will give an explicit description of N (λ)δ.

4.3. Define ht to be the height map on the root lattice, i.e., the linear map on the
root lattice which maps all the simple roots to 1.

Now assume that λ ∈ Λ+. Choose a basis v1, ..., vm for H(λ) consisting of T -
eigenvectors with eigenvalues λ1, ..., λm and satisfying ht(λj +λ) ≥ ht(λi +λ) when-
ever j ≤ i. Then B is upper triangular with respect to this basis.

Let AJ be a representative of ρλ(hJ) in End(H(λ)). Then when λj + λ is a linear
combination of the simple roots in J we have thatAJvj ∈ k×vj. If λj+λ is not a linear
combination of the simple roots in J then AJvj = 0. Assuming that λ is δ-invariant
we obtain, by the definitions in 4.1, a similar description for a representative AJ,δ

of ρλ,δ(hJ,δ) : if λj + λ is a linear combination of the simple roots in J then we have
that AJ,δvj ∈ k×fλ(vj); otherwise AJ,δvj = 0. Notice that we regard fλ(vj) as an
element of H(λ) and as such fλ(vj) is a T -eigenvector of weight δ(λj).

We now obtain.

Proposition 4.4. Let λ ∈ Λδ
+, then

N (λ)δ =
⊔
J⊂I

⊔
w∈W δ(J)

I(λ)∩supp(w) 6=∅

Zw
J,δ.

Proof. Let w ∈ W δ(J). Assume that wλ 6= λ. Note that if x is a linear combination
of the simple roots in J with nonnegative coefficients, then ht(wδ(x)) > ht(x).
Hence, ht

(
wδ(−λ+x)+λ

)
= ht(wδ(x))+ht(−wλ+λ) > ht(x). Therefore, (w, 1)hJ,δ

is represented by a strictly upper triangular matrix with respect to the chosen basis
in 4.3 above. As a consequence for any b ∈ B, (bw, 1)hJ,δ is also represented by a
strictly upper triangular matrix. So (Bw, 1)hJ,δ ⊂ N (λ)δ. Since N (λ)δ is G-stable,
then Zw

J,δ = diag(G)(Bw, 1)hJ,δ ⊂ N (λ)δ.
Now assume that wλ = λ. Let b ∈ B and z = (bw, 1)hJ,δ. Denote by A a

representative of ρλ,δ(z) in End(H(λ)). Let V be the subspace of H(λ) spanned by
v1, . . . , vm−1. Then Avm ∈ k×vm + V and AV ⊂ V . Hence, Anvm 6= 0 for all n ∈ N.
Thus z /∈ N (λ)δ.
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Corollary 4.5. Let λ, µ ∈ Λδ
+, then

N (λ+ µ)δ = N (λ)δ ∪N (µ)δ.

Proof. This follows from the relation I(λ+ µ) = I(λ) ∪ I(µ).

5. A compactification of simply connected group

5.1. Consider the morphism ψi : Gsc → P
(
End(H(ωi)) ⊕ k

)
defined by g 7→

[(g·IH(ωi), 1)], where IH(ωi) denotes the identity map on H(ωi) and g acts on End(H(ωi))
by the left action. Let furthermore i : Gsc → X denote the the natural Gsc × Gsc-
equivariant morphism and consider the product map

ε =
(
i,

∏
i∈I

ψi

)
: Gsc → X ×

∏
i∈I

P
(
End(H(ωi)⊕ k),

Let Xsc denote the closure of ε(Gsc). Then Xsc is an Gsc × Gsc-equivariant variety
containing Gsc as an open subset. Notice that unlike X the variety Xsc need not be
smooth and in general it is not even normal. Still Xsc is closely related to X as seen
by the following result.

Lemma 5.2. The projection morphism π : Xsc → X defines a bijection between
Xsc −Gsc and X −G. In particular, π is a finite morphism.

Proof. As π is dominant and projective it follows that π is surjective. Let x
denote an element of Xsc and consider its image ψi(x) = [(fi, ai)]. Notice that the
Gsc×Gsc-invariant homogeneous polynomial function on P

(
End(H(ωi))⊕k

)
defined

by [(f, a)] 7→ det(f) − adimk(H(ωi)), vanishes on Gsc and hence also on Xsc. As a
consequence we have a commutative diagram

Xsc

π

��

ε // X ×
∏

i∈I

(
P
(
End(H(ωi)⊕ k)− P(0⊕ k)

))
��

X
idX×

Q
i∈I ρωi // X ×

∏
i∈I P

(
End(H(ωi))

)
where the right vertical morphism is the defined via the natural projection maps
P
(
End(H(ωi))⊕ k

)
−P(0⊕ k) → P

(
End(H(ωi))

)
. Assume now that x is an element

of the boundary Xsc − Gsc. As the dimension of Gsc and Xsc coincide the (G, 1)-
stabilizer of x has strictly positive dimension. In particular, the image [(fi, ai)] has
the same property. Thus, the endomorphism fi is not invertible and thus ai = 0.
This proves that

Xsc −Gsc ⊂ X ×
l0∏

i=1

P
(
End(H(ωi))

and hence π maps Xsc−Gsc injectively to the boundary X−G. This proves the first
assertion. That π is a finite morphism now follows as π is quasifinite and projective.

5.3. Let λ be any dominant weight and consider the map

ψλ : Gsc → P
(
End(H(λ))⊕ k

)
defined by g 7→ [(g · IH(λ), 1)], where IH(λ) denotes the identity map on H(λ). Let
Xλ

sc denote the closure of the image of the product map

(ε, λ) : Gsc → Xsc × P
(
End(H(λ))⊕ k

)
.
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Then the projection map from Xλ
sc to Xsc is an isomorphism. In particular, we

obtain an extension Xsc → P
(
End(H(λ))⊕ k

)
of the morphism ψλ to Xsc which we

also denote by ψλ. As in the proof of Lemma 5.2 we may prove that

ψλ(Xsc) ⊂
(
P
(
End(H(λ))⊕ k

)
− P

(
0⊕ k

))
and that the induced map Xsc → P

(
End(H(λ))

)
is compatibly with π : Xsc → X

and the map ρλ : X → P
(
End(H(λ))

)
.

5.4. The variety Xsc is a compactification of Gsc with the Gsc×Gsc action defined in
the natural way. Let Xsc,δ be the Gsc×Gsc-variety which as a variety is isomorphic to
Xsc and where the Gsc×Gsc-action is twisted by the morphism Gsc×Gsc → Gsc×Gsc,
(g, h) 7→ (g, σ(g)) for g, h ∈ Gsc.

Let Gscσ be the connected component (Gsc, σ) of the disconnected group Gsco〈σ〉.
Then Xsc,δ is a compactification of Gscσ and the morphism Gscσ → G1 extends to
a finite morphism Xsc,δ → Xδ. Notice that by Lemma 5.2 we may identify the
boundaries of Xsc,δ and Xδ and we may therefore also regard Zw

J,δ, for J 6= I, as
subsets of Xsc,δ.

5.5. Let Tri denote the trace function on End(H(ωCi
)). To each ai ∈ k we may

associate a global section (Tri, ai) of the line bundle Oi(1) := OP(End(H(ωCi
))⊕k)(1)

on P
(
End(H(ωCi

)) ⊕ k
)
. The pull back of (Tri, ai) to Xsc,δ is then a global section

f δ
i,ai

of a line bundle on Xsc,δ. In the following, we will study the common zero set

Z(a1, . . . , al) of the sections f δ
i,ai

, for varying ai ∈ k. By choosing a trivialization of

the pull back of Oi(1) to Gscσ we may think of f δ
i,ai

as a function on Gscσ, and by

abuse of notation we also denote this function by f δ
i,ai

. Notice that the function f δ
i,ai

on Gscσ is determined up to a nonzero constant.

6. A generalization of a result by Mohrdieck

The following section gives a presentation of a results by Mohrdieck [M]. The
original results by Mohrdieck assumes the characteristic of k to be different from
2 and not to divide the order of σ. However, only small modifications of the ap-
proach by Mohrdieck is needed in order to obtain the characteristic independent
Corollary 6.6.

6.1. Let Tsc (resp. Bsc) denote the inverse image of T (resp. B) under the canonical
map Gsc → G. Then Tsc is a σ-stable maximal torus of Gsc and we let T σ

sc denote the
set of σ-invariant elements within Tsc. We identify Tsc with (k∗)l0 in such a way that
value of the fundamental weight ωi on (t1, . . . , tl0) is equal to ti. Then (t1, . . . , tl0)
is an element of T σ

sc exactly when ti = tj for i and j in the same δ-orbit in I. The
δ-invariant elements Λ(R)δ of the character group Λ(R) of Tsc is freely generated by
the characters ωCi

, i = 1, . . . , l and defines a quotient torus T ′ ' (k∗)l of Tsc. The
induced map

T σ
sc → T ′ ' (k∗)l

is then given by
(t1, . . . , tl0) 7→ (s1, . . . , sl),

where si = t
|Ci|
j for any j ∈ Ci. Consider the set (Tsc/T

σ
sc)

σ of σ-invariant elements
in Tsc/T

σ
sc. Then (Tsc/T

σ
sc)

σ is a finite group which acts on T σ
sc by letting tT σ

sc act
on s ∈ T σ

sc by tsσ(t−1). It is easily seen that the effect of the action of (Tsc/T
σ
sc)

σ
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on a element (t1, . . . , tl0) ∈ Tsc is that the coordinates of (t1, . . . , tl0) within a single
δ-orbit of I is multiplied with a |Ci|-th root of 1. In particular, we obtain

Lemma 6.2. The morphism T σ
sc → T ′ respects the action of (Tsc/T

σ
sc)

σ on T σ
sc and the

induced map η : T σ
sc/(Tsc/T

σ
sc)

σ → T ′ is bijective. Moreover, the group of σ-invariant
elements W σ within the Weyl group W acts naturally on both T σ

sc/(Tsc/T
σ
sc)

σ and T ′

and under these actions η is W σ-equivariant.

6.3. For a root α we let α′ ∈ Λ(R) denote the sum of the roots within the δ-orbit
of α. When Gsc is not of type A2n we then let R′ ⊂ Λ(R) consists of the elements
α′ for α ∈ R. If Gsc is of type A2n we instead let R′ be the union of the element
α′ for α ∈ R satisfying 〈δ(α), α∨〉 = 0, and 2α′ for α ∈ R satisfying 〈δ(α), α∨〉 6= 0
and α 6= δ(α). The set R′ together with the σ-invariant Weyl group W σ defines an
irreducible root system (cf. [M, Sect. 2]). We let G′ denote the associated connected
and simply connected linear algebraic group. As the weight lattice of R′ coincides
with the δ-invariant elements in Λ(R) we may consider T ′ as a maximal torus of G′.
The set of positive roots in R defines in a natural way a choice of positive roots in
R′. The associated Borel subgroup of G′ containing T ′ will be denoted by B′.

6.4. Let λ ∈ Λδ
+ be a δ-invariant dominant weight. We may then regard λ as a

dominant T ′-weight. The associated dual Weyl G′-module is denoted by H′(λ). Let
χ′i denote the G′-character associated to the G′-module H′(ωCi

). The following result
is then essentially due to Jantzen (cf. proof of Prop. 3.15 in [M]).

Theorem 6.5. There exists a nonzero constant ci ∈ k∗ such that χ′i(t
′) = cif

δ
i,0(tσ)

for all t ∈ Tsc and with t′ denoting the image of t under the natural quotient map
T → T ′.

Proof. Chose t0 ∈ T such that the composition σ′ := int(t0) ◦ σ of σ with
the interior automorphism of Gsc defined by t0, is a graph automorphism of Gsc

of the form considered in Section 9 of [J]. Applying [J, Satz 9] we obtain that
χ′i(t

′) = cif
δ
i,0(tt0σ) for t ∈ Tsc and some nonzero constant ci. We claim that t′0 is a

central element in G′ which will prove the statement. To see this notice that by [J,
Sect. 9] the element σ′ satisfies σ′(x′α(z)) = x′δ(α)(z) for α simple and some specific

chosen root homomorphisms x′α : k → Gsc defined from a Chevalley basis of the
Lie algebra of Gsc. Similarly σ satisfies by 3.2 that σ(xα(z)) = xδ(α)(z) for z ∈ k.
Fix nonzero constants cα such that xα(z) = x′α(cαz). Then cδ(α)δ(α)(t0) = cα for all
simple roots α and hence

∏
α∈Ci

α(t0) = 1 for all i = 1, . . . , l. In particular, for each
α′ ∈ R′ we have α′(t0) = 1 and hence t′0 is central in G′.

Notice that f δ
i,0 is an Gsc-invariant function on Gscσ. Hence f δ

i,0 induces a mor-

phism Gscσ//Gsc → k which we denote by f̄ δ
i,0.

Corollary 6.6. The product morphism
∏l

i=1 f̄
δ
i,0 : Gscσ//Gsc → Al is bijective.

Proof. By the considerations in 3.3 we first of all have an injective morphism

g∗ : k[Gscσ]Gsc → k[T σ
sc]

N ,

where N := W σ o (Tsc/T
σ
sc)

σ denotes the semidirect product of the finite groups W σ

and (Tsc/T
σ
sc)

σ. Furthermore, by the considerations in 6.1 above we also have an
injective morphism

f ∗ : k[T ′]W
σ → k[T σ

sc]
N .
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By [Ste2, Lemma 7.3] the ring k[T ′]W
σ

is a polynomial ring generated by the re-
striction of χ′1, . . . , χ

′
l to T ′. In particular, Theorem 6.5 implies that the image of g∗

contains the image of f ∗ and thus there exists an induced injective map

h∗ : k[T ′]W
σ → k[Gscσ]Gsc .

such that g∗ ◦ h∗ = f ∗. By the description of the map T σ
sc → T ′ the map f ∗ is

integral and hence the same is true for h∗ and g∗. Consider now that induced map
of affine varieties

T σ
sc/N

f
��

g // Gscσ//G

hwwooooooooooo

Al ' T ′/W σ

By Lemma 6.2 the morphism f is bijective. Hence, g is injective. As g∗ is injective
and integral we conclude that g, and thus also h, is bijective. Finally notice that by
definition h is the product of cif̄

δ
i,0, i = 1, . . . , l, for certain nonzero constants ci.

Remark. 1. For connected groups this corollary is just an easy consequence of a
classical result by Steinberg [Ste1, Thm.6.1]. For disconnected groups and charac-
teristics of k different from 2 and not dividing the order of σ the corollary is a con-
sequence of a result by Mohrdieck [M, Thm.3.16]. In fact, the result by Mohrdieck,

with the mentioned restrictions on the characteristic, shows that the map
∏l

i=1 f̄
δ
i,0

is even an isomorphism. It is not clear to us whether this remains valid for arbitrary
characteristics.

2. In fact, one can show that N = NG(T σ
scσ)/T σ

sc, where NG(T σ
scσ) = {g ∈ G |

gT σ
scσg

−1 = T σ
scσ}. The finite group N plays a similar role for the disconnected

group as the Weyl group for the connected group.

7. Steinberg fibers and trace maps

Lemma 7.1. The intersection of Z(a1, . . . , al) with the boundary Xsc−Gsc of Xsc is
independent of a1, . . . , al. Moreover, the intersection Z(a1, . . . , al)∩Gscσ is a single
Steinberg fiber.

Proof. Similar to the proof of Lemma 5.2 it may be seen that x is an element of
Xsc − Gsc exactly when the image ψλ(x) is of the form [(f, 0)]. Thus, the section
f δ

i,ai
coincides with f δ

i,0 on the boundary of Xsc. This proves the first statement. The
latter statement follows by 6.6.

Lemma 7.2. Let J ( I, w ∈ W δ(J) and b ∈ B. If f δ
i,0((bw, 1)hJ,δ) = 0, then either

(1) wωCi
6= ωCi

or (2) Ci ⊂ J and wαj = αj for all j ∈ Ci.

Proof. Assume that wωCi
= ωCi

. Then the diagonal entry of the representative A
of ρωCi

,δ((bw, 1)hJ,δ) associated to the lowest weight space is nonzero. In particular,

the relation f δ
i,0((bw, 1)hJ,δ)) = 0 cannot be satisfied unless there exists a weight

x− ωCi
of H(ωCi

) satisfying that x =
∑

j∈J ajαj, with aj ∈ N ∪ {0}, is nonzero and

wδ(x) = x.
Let K ⊆ J denote the set of j ∈ J such that aj 6= 0. As x − ωCi

is a weight of
H(ωCi

) we know that Ci∩K is nonempty. Now
∑

j∈K ajwαδ(j) =
∑

j∈K ajαj and thus∑
j∈K aj(ht(wαδ(j)) − ht(αj)) = 0. As w ∈ W δ(J) we conclude that ht(wαδ(j)) > 1

and consequently wαδ(j) is a simple root for all j ∈ K. By the assumption wωCi
= ωCi
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we know that wαδ(j) = αδ(j) for each j ∈ Ci ∩ K. In particular, when j ∈ Ci ∩ K
then aδ(j) = aj. Hence, Ci ∩K is invariant under δ and as Ci is a single δ-orbit we
have Ci ∩K = Ci. This ends the proof.

Lemma 7.3. Let J ( I. Then

Z(a1, . . . , al) ∩ ZJ,δ =
⊔

w∈W δ(J)

suppδ(w)=I

Zw
J,δ.

Proof. By Lemma 7.1 it is enough to consider the case when all ai are zero. By 4.4,⊔
J⊂I

⊔
w∈W δ(J),suppδ(w)=I Z

w
J,δ = ∩iN (ωCi

)δ ⊂ Z(0, . . . , 0). For z ∈ Z(0, . . . , 0) ∩ ZJ,δ,

we have that z = (g, g)(bw, 1)hJ,δ for some g ∈ G, b ∈ B, J ⊂ I and w ∈ W δ(J).
Then f δ

i,0((bw, 1)hJ,δ)) = 0 for all i. It suffices to prove that suppδ(w) = I.
If w = 1, then by Lemma 7.2, Ci ⊂ J for each δ-orbit Ci. Thus I = J , which

contradicts our assumption. Now assume that w 6= 1 and that suppδ(w) 6= I.
Then there exist simple roots αi and αj with n = −〈αj, α

∨
i 〉 6= 0 satisfying that

i ∈ suppδ(w) and j /∈ suppδ(w). Let Ci and Cj denote the associated δ-orbits of αi

and αj. As suppδ(w) is δ-stable it follows that Ci ⊂ suppδ(w) and Cj ⊂ I−suppδ(w).
Now there exists m ∈ N, such that δm(i) ∈ supp(w) and thus wωδm(i) 6= ωδm(i).

Hence redefining, if necessary, αi and αj we may assume that wωi 6= ωi. Consider
then the relation αj = 2ωj − nωi − λ with λ denoting a dominant weight. Now
Lemma 7.2 implies that wαj = αj and wωj = ωj and thus w(nωi + λ) = nωi + λ.
As both ωi and λ are dominant we conclude that wωi = ωi which is a contradiction.

Now we will prove the main theorem.

Theorem 7.4. Let F be a Steinberg fiber of G1 and F̄ its closure in Xδ. Then

F̄ − F =
⊔
J⊂I

⊔
w∈W δ(J)

suppδ(w)=I

Zw
J,δ

which also coincides with the set Z(a1, . . . , al) ∩ (X −G) for all a1, . . . , al.

Proof. By Lemma 7.1 the set F (a1, . . . , al) := Z(a1, . . . , al) ∩ Gscσ is a sin-
gle Steinberg fiber. In particular, F (a1, . . . , al) is by 3.3 irreducible. Let C be
an irreducible component of Z(a1, . . . , al). By Krull’s principal ideal theorem,
dim(C) > dim(Gsc)− l. Note that

dim(Zw
J,δ) = dim(G1)− l(w)− |I − J | < dim(Gsc)− l,

for J 6= I and w ∈ W δ(J) with suppδ(w) = I. By Lemma 7.3,

dim
(
C ∩ (Xsc,δ −Gscσ)

)
< dim(Gsc)− l ≤ dim(C).

Hence C ∩Gscσ is dense in C and since C ∩Gscσ ⊂ F (a1, . . . , al), we conclude that
C is contained in the closure of F (a1, . . . , al). Thus the closure of F (a1, . . . , al) is
Z(a1, . . . , al). In particular, Z(a1, . . . , al) is irreducible.

Let F be a Steinberg fiber ofG1. Then F = π(F (a1, . . . , al)) for some a1, . . . , al ∈ k.
Hence F̄ = π(Z(a1, . . . , al)). The statement now follows from Lemma 7.3 and
Lemma 5.2.

Remark. 1. We call an element w ∈ W a δ-twisted Coxeter element if l(w) = l and
suppδ(w) = I. (The notation of twisted Coxeter elements was first introduced by
Springer in [Spr1]. Our definition is slightly different from his.)
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It follows easily from the theorem that Zw
I−{i},δ are the irreducible components of

F̄−F , where i ∈ I and w runs over all δ-twisted Coxeter elements that are contained
in W I−{δ(i)}.

2. By the proof of Theorem 7.4 we may also deduce that the closure of a Stein-
berg fiber F within Xsc,δ coincides with Z(a1, . . . , al) for certain uniquely deter-
mined a1, . . . , al depending on F . This result may be considered as an extension of
Corollary 6.6 to the compactification Xsc,δ of Gscσ. More precisely, notice that the
statement of Corollary 6.6 is equivalent to saying that a Steinberg fiber F of Gscσ is
the common zero set of the functions f δ

i,ai
for uniquely determined a1, . . . , al. Here

we think of f δ
i,ai

as regular functions on Gscσ as explained in 5.5. When generalizing

to Xsc,δ the only difference is that we have to regard f δ
i,ai

as sections of certain line
bundles on Xsc,δ.

Similar to [H1, 4.6], we have the following consequence.

Corollary 7.5. Assume that G1 is defined and split over Fq, then for any Steinberg
fiber F of G1, the number of Fq-rational points of F̄ − F is(∑

w∈W

ql(w)
)( ∑

suppδ(w)=I

ql(w0w)+L(w0w)
)
,

where w0 is the maximal element of W and for w ∈ W , l(w) is its length and L(w)
is the number of simple roots α satisfying wα < 0.
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