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ON COMPACTIFICATIONS OF THE STEINBERG ZERO-FIBER

THOMAS HAAHR LYNDERUP AND JESPER FUNCH THOMSEN

Abstract. Let G be a connected semisimple linear algebraic group over an alge-
braically closed field k of positive characteristic and let X denote an equivariant
embedding of G. We define a distinguished Steinberg fiber N in G, called the zero-
fiber, and prove that the closure of N within X is normal and Cohen-Macaulay.
Furthermore, when X is smooth we prove that the closure of N is a local complete
intersection.

1. Introduction

LetG be a connected semisimple linear algebraic group over an algebraically closed
field k of positive characteristic. The set of elements in G with semisimple part
within a fixed G-conjugacy class is called a Steinberg fiber. Examples of Steinberg
fibers include the unipotent variety and the conjugacy class of a regular semisimple
element. Lately there has been some interest in describing the closure of Steinberg
fibers within equivariant embeddings of the group G (see [He], [H-T], [Spr], [T]).

In this paper we study the closure of a distinguished Steinberg fiber N called
the Steinberg zero-fiber (see Section 3 for the precise definition of N). We will
prove that the closure N̄ of N within any equivariant embedding X of G will be
normal and Cohen-Macaulay. Moreover, when X is smooth we will prove that N̄ is
a local complete intersection. These results will all be proved by Frobenius splitting
techniques. As a byproduct we find that N̄ has a canonical Frobenius splitting and
hence the set of global sections of any G-linearized line bundle on N̄ will admit a
good filtration.

The presentation in this paper is close to [T], but the setup is somehow opposite.
More precisely, in loc.cit. the group G was fixed to be of simply connected type
while the Steinberg fiber was arbitrary; in the present paper the Steinberg fiber is
fixed but the semisimple group G is of arbitrary type.

It is worth noticing (see [T]) that for a fixed equivariant embedding X of G the
boundary F − F of the closure of a Steinberg fiber F in G is independent of F .
This shows that the results obtained in this paper for the rather special Steinberg
zero-fiber will provide some knowledge about closures of Steinberg fibers in general.
E.g. the boundary F − F will always be Frobenius split (see Theorem 8.1). This
suggests, that the results in this paper may be generalized to arbitrary Steinberg
fibers. However, we give an example (see Example 8.2) showing that this is not
always the case.

2. Notation

Let G denote a connected semisimple linear algebraic group over an algebraically
closed field k. The associated groups of simply connected and adjoint type will be
denoted by Gsc and Gad respectively. Let T denote a maximal torus in G and let
B denote a Borel subgroup of G containing T . The associated maximal torus and
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2 THOMAS HAAHR LYNDERUP AND JESPER FUNCH THOMSEN

Borel subgroup in Gad (resp. Gsc) will be denoted by Tad and Bad (resp. Tsc and
Bsc).

The set of roots associated to T is denoted by R. We define the set of positive
roots R+ to be the nonzero T -weights of the Lie algebra of B. The set of simple
roots (αi)i∈I will be indexed by I and will have cardinality l. To each simple root
αi we let si denote the associated simple reflection in the Weyl group W defined by
T . The length of an element w in W is defined as the number of simple reflections
in a reduced expression of w. The unique element in W of maximal length will be
denoted by w0.

The weight lattice Λ(R) of the root system associated to G is identified with the
character group X∗(Tsc) of Tsc and contains the set of T -characters X∗(T ). We
let α∨i , i ∈ I, be the set of simple coroots and let 〈, 〉 denote the pairing between
coweights and weights in the root system R. A weight λ is then dominant if 〈λ, α∨i 〉
for all i ∈ I. The fundamental dominant weight associated to αi, i ∈ I, will be
denote by ωi.

For a dominant weight λ ∈ Λ(R) we let H(λ) denote the dual Weyl Gsc-module
with heighest weight λ, i.e. containing a B-semiinvariant element v+

λ of weight λ.
The Picard group of G/B may be identified with the weight lattice Λ(R) and we
let L(λ) denote the line bundle associated to λ ∈ Λ(R). The line bundle L(λ) has
a unique Gsc-linearization so we may regard the set of global sections of L(λ) as
a Gsc-module. We assume that the notation is chosen such that the set of global
sections of L(λ) is isomorphic to H(−w0λ). For λ, µ ∈ Λ(R) we denote by L(λ, µ)
the line bundle L(λ) � L(µ) on the variety G/B × G/B.

3. Steinberg fibers

The set of elements g in G with semisimple part gs in a fixed G-conjugacy class
is called a Steinberg fiber. Any Steinberg fiber is a closed irreducible subset of G
of codimension l (see [St, Thm.6.11]). Examples of Steinberg fibers include the
conjugacy classes of regular semisimple elements and the unipotent variety; i.e. the
set of elements with gs equal to the identity element e.

When G = Gsc is simply connected the Steinberg fibers may also be described
as genuine fibers of a morphism Gsc → kl. Here the i-th coordinate map is given
by the Gsc-character of the representation H(ωi). In this formulation the fiber Nsc

above (0, 0, . . . , 0) is called the Steinberg zero-fiber. When G is arbitrary we define
the Steinberg zero-fiber N of G to be the image of Nsc under the natural morphism
π : Gsc → G.

The structure of the Steinberg zero-fiber is very dependent on the characteristic
of k. In most cases N is just the conjugacy class of a regular semisimple element.
At the other extreme we can have that N coincides with the unipotent variety of G.

Remark 3.1. In the following cases the Steinberg zero-fiber and the unipotent va-
riety of G coincide :

Type An: when n = pm − 1 (m ∈ N) and p = char(k) > 0.
Type Cn: when n = 2m − 1 (m ∈ N) and char(k) = 2.
Type Dn: when n = 2m (m ∈ N) and char(k) = 2.
Type E6: when char(k) = 3.
Type E8: when char(k) = 31.
Type F4: when char(k) = 13.
Type G2: when char(k) = 7.
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4. Equivariant Embeddings

An equivariant embedding of G is a normal G × G-variety containing a G × G-
invariant open dense subset isomorphic to G in such a way that the induced G×G-
action on G is by left and right translation.

4.1. The wonderful compactification. When G = Gad is of adjoint type there
exists a distinguished equivariant embedding X of G called the wonderful com-
pactification (see e.g. [DC-S]). The wonderful compactification of G is a smooth
projective variety with finitely many G×G-obits OJ indexed by the subsets J of the
simple roots I. We let XJ denote the closure of OJ and assume that the index set is
chosen such that XJ ′ ∩XJ = XJ ′∩J for all J, J ′ ⊂ I. Then Y := X∅ is the unique
closed orbit in X. It is known that Y is isomorphic to G/B×G/B as a G×G-variety.

To each dominant element λ in the weight lattice Λ(R) we let

ρad
λ : G→ P(End(H(λ))),

denote the G × G-equivariant morphism defined by letting ρad
λ (e) be the element

in P(End(H(λ))) represented by the identity map on H(λ). Then it is known (see
[DC-S]) that ρad

λ extends to a morphism X → P(End(H(λ))) which we also denote
by ρad

λ .

Lemma 4.1. Let v+
λ (resp. u+

λ ) denote a nonzero B-stable element in H(λ) (resp.
H(λ)∗) of weight λ (resp. −w0λ). Identify End(H(λ)) with H(λ) � H(λ)∗. Then the
restriction of ρad

λ to Y ' G/B × G/B is given by

ρad
λ (gB, g′B) = (g, g′)[v+

λ � u+
λ ].

Proof. It suffices to prove that the only B×B-invariant element of the image of ρad
λ

is [v+
λ � u+

λ ]. So let x = [f ] denote a B × B-invariant element of the image of ρad
λ

represented by an element f ∈ End(H(λ)). Then f is B×B-semiinvariant and thus
when writing f as an element of H(λ) � H(λ)∗ it will be equal to v+

λ � v for some
B-semiinvariant element v of H(λ)∗.

Let L denote the unique simple submodule of H(λ) and let M denote the kernel
of the associated morphism H(λ)∗ → L∗. Assume that v is contained in M . Then
every G×G-translate of f is contained in the subset L�M consisting of nilpotent
endomorphisms. Now we apply [B-K, Lemma.6.1.4]. It follows that the closure C
of the T ×T -orbit through ρad

λ (e) will contain an element represented by a nilpotent
endomorphism. But clearly every element in C will be represented by a semisimple
endomorphism of H(λ). This is a contradiction.

As a consequence v is not contained in M and therefore its image in L∗ will be
a nonzero B-semiinvariant vector. As a consequence v must be a nonzero multiple
of u+

λ . �

4.2. Toroidal embeddings. Now letG be an arbitrary connected semisimple group.
An equivariant embeddingX of G is called toroidal if the natural map πad : G→ Gad

extends to a morphism X → X. In the present paper toroidal embeddings will play
a central role. This is due to the following fact (see [Rit, Prop.3])

Theorem 4.2. Let X be an arbitrary equivariant embedding of G. Then there exists
a smooth toroidal embedding X ′ of G and a birational projective morphism X ′ → X
extending the identity map on G.
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An important property of toroidal embeddings is that for each dominant weight
λ there exists a G×G-equivariant morphism

ρλ : X → P(End(H(λ)))

induced by ρad
λ . When X is a complete toroidal embedding of G and Y is a closed

G×G-orbit in X we may describe the restricted mapping Y → P(End(H(λ))) using
Lemma 4.1. Notice that Y maps surjectively to Y ' G/B × G/B and that Y is a
quotient of G×G. Consequently Y maps bijectively onto Y and hence Y must be
G×G-equivariantly isomorphic to G/B × G/B. Moreover

Lemma 4.3. Let X be a complete toroidal embedding of a connected semisimple
group G and let Y be a closed G × G-orbit in X. Then Y is G × G-equivariantly
isomorphic to G/B × G/B and

ρλ(gB, g
′B) 7→ (g, g′)[v+

λ � u+
λ ].

Consequently, the pull back of the ample generator Oλ(1) of the Picard group of
P(End(H(λ))) to Y is isomorphic to L(λ,−w0λ).

4.3. The dualizing sheaf of equivariant embeddings. Let X be a smooth equi-
variant embedding of G. As G is an affine variety the complement X − G of G is
of pure codimension 1 in X. Let X1, . . . , Xn denote the irreducible components of
X − G which are then divisors in X. Let Di, i = 1, . . . , l, denote the closures of
the Bruhat cells Bw0siB within X. Then also Di is a divisor in X. When X is the
wonderful compactification X of a group of adjoint type we will also denote Xj and
Di by Xj and Di respectively.

Proposition 4.4. [B-K, Prop.6.2.6] The canonical divisor of the smooth equivariant
embedding X is

KX = −2
∑
i∈I

Di −
n∑
j=1

Xj.

The line bundle L(Di) associated to the divisor Di is connected to the morphisms
ρλ as explained by

Lemma 4.5. Assume that X is a toroidal embedding. Then there exists an isomor-
phism

L(Di) ' ρ∗ωi
(Oωi

(1)),

such that ρ∗ωi
(u+

ωi
� v+

ωi
) is the canonical section of L(Di).

Proof. Consider first the case when X is the wonderful compactification of Gad.
Consider the pull back sad := (ρad

ωi
)∗(u+

ωi
� v+

ωi
) of the global section u+

ωi
� v+

ωi
of

Oωi
(1). Then the zero divisor (sad)0 of sad is B × B-invariant. Thus there exist

nonnegative integers ar and bj , for r, j = 1, . . . , l, such that

(sad)0 =
l∑

r=1

arDr +
l∑

j=1

bjXj.

If bj > 0 for some j then sad vanishes on Y which by Lemma 4.1 is a contradiction.

Hence, (sad)0 =
∑l

r=1 arDr. It is known (see e.g. [B-K, Prop. 6.1.11]) that the
restriction of L(Di) to Y is isomorphic to L(ωi,−w0ωi), so using using Lemma 4.3
it follows that ai = 1 and ar = 0 for r 6= i. This proves the statement when X is
the wonderful compactification of Gad.
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Consider now an arbitrary toroidal equivariant embedding X of G. Let s :=
ρ∗ωi

(u+
ωi

� v+
ωi

) be the pull back of the the global section u+
ωi

� v+
ωi

of Oωi
(1). Then

the zero divisor (s)0 of s is B × B-invariant and by the already proved case above
we conclude that

(s)0 = cDi +
n∑
j=1

djXj,

for certain nonnegative integers c > 0 and dj, j = 1, . . . , n. Assume dj > 0 for some
j. Then s vanishes on a G × G-stable subset and as s is the pull back of sad from
X to X, we conclude that sad also vanishes on a G×G-stable subset V . But then
sad vanishes on a closed G × G-orbit in the closure of V which can only be Y . As
above this is a contradiction and we conclude that (s)0 = cDi.

In order to prove that c = 1 we may assume that G = Gsc is simply connected
and that X = G. In this case the statement is well known (cf. proof of 6.1.11 in
[B-K]). �

4.4. Sections of the dualizing sheaf. Let again X be a smooth equivariant em-
bedding of G. For each i = 1, . . . , l, there exists a unique Gsc ×Gsc-linearization of
the line bundle L(Di). The set of global sections of L(Di) may then be regarded as
a Gsc ×Gsc-module. We claim

Proposition 4.6. There exists a Gsc ×Gsc-equivariant morphism

ψi : H(ωi)
∗ � H(ωi) → H0

(
X,L(Di)

)
,

such that ψi(u
+
ωi

� v+
ωj

) is the canonical section of L(Di).

Proof. When X is toroidal this follows by Lemma 4.5. For a general smooth em-
bedding X there exists by Zariski’s main theorem (cf. proof of Prop.6.2.6 [B-K]) an
open subset X ′ of X such that X ′ is a toroidal embedding of G and such that the
complement X−X ′ has codimension ≥ 2 in X. As the statement is invariant under
replacing X with X ′ the result now follows. �

4.4.1. The complete toroidal case. When X is a complete toroidal embedding of G
we may even give more structure to the map ψi given in Proposition 4.6. To this
end, let Y denote a closed G×G-orbit in X and consider the restriction map

i∗|Y : H0
(
X,L(Di)

)
→ H0

(
Y,L(Di)|Y

)
.

By Lemma 4.3 and Lemma 4.5 it follows that L(Di)|Y ' L(ωi,−w0ωi). Conse-
quently, there exists a Gsc ×Gsc-equivariant isomorphism

H0
(
Y,L(Di)|Y

)
' H(−w0ωi) � H(ωi).

By Lemma 4.3 the composition of i∗|Y with ψi is nonzero and hence we obtain a
commutative Gsc ×Gsc-equivariant diagram

H(ωi)
∗ � H(ωi)

��

ψi // H0(X,L(Di))

i∗|Y
��

H(−w0ωi) � H(ωi)
' // H(Y,L(Di)|Y )

where the left vertical map is defined by some nonzeroGsc-equivariant map H(ωi)
∗ →

H(−w0ωi). Notice that by Frobenius reciprocity the map H(ωi)
∗ → H(−w0ωi) is

defined uniquely up to a nonzero constant.
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5. Frobenius Splitting

In this section we collect a number of facts from the theory of Frobenius splitting.
The presentation will be sketchy only stating the results which we will need. For a
more thorough, and closely related, presentation we refer to [T].

5.1. Frobenius splitting. Let X denote a scheme of finite type over an alge-
braically closed field k of characteristic p > 0. The absolute Frobenius morphism on
X is the morphism F : X → X of schemes, which is the identity on the set of points
and where the associated map of sheaves

F ] : OX → F∗OX

is the p-th power map. We say that X is Frobenius split (or just F-split) if there
exists a morphism s ∈ HomOX

(F∗OX ,OX) such that the composition s ◦ F ] is the
identity map on OX .

5.2. Stable Frobenius splittings along divisors. Let D denote an effective
Cartier divisor on X with associated line bundle OX(D) and canonical section σD.
We say that X is stably Frobenius split along D if there exists a positive integer e
and a morphism

s ∈ HomOX
(F e

∗OX(D),OX),

such that s(σD) = 1. In this case we say that s is a stable Frobenius splitting of X
along D of degree e. Notice that X is Frobenius split exactly when there exists a
stable Frobenius splitting of X along the zero divisor D = 0.

Remark 5.1. Consider an element s ∈ HomOX
(F e

∗OX(D),OX). Then the condition
s(σD) = 1 on s for it to define a stable Frobenius splitting of X, may be checked on
any open dense subset of X.

5.3. Subdivisors. Let D′ ≤ D denote an effective Cartier subdivisor and let s be
a stable Frobenius splitting of X along D of degree e. The composition of s with
the map

F e
∗OX(D′) → F e

∗OX(D),

defined by the canonical section of the divisor D − D′, is then a stable Frobenius
splitting of X along D′ of degree e. Applying this to the case D′ = 0 it follows that
if X is stably Frobenius split along any effective divisor D then X is also Frobenius
split.

5.4. Compatibly split subschemes. Let Y denote a closed subscheme of X with
sheaf of ideals IY . When

s ∈ HomOX
(F e

∗OX(D),OX)

is a stable Frobenius splitting of X along D we say that s compatibly Frobenius splits
Y if the following conditions are satisfied

(1) The support of D does not contain any of the irreducible components of Y .
(2) s

(
F e
∗ (IY ⊗ OX(D))

)
⊆ IY .

When s compatibly Frobenius splits Y there exists an induced stable Frobenius
splitting of Y along D ∩ Y of degree e.
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Lemma 5.2. Let s denote a stable Frobenius splitting of X along D which com-
patibly Frobenius splits a closed subscheme Y of X. If D′ ≤ D then the induced
stable Frobenius splitting of X along D′, defined in Section 5.3, compatibly Frobe-
nius splits Y .

Lemma 5.3. Let D1 and D2 denote effective Cartier divisors. If s1 (resp. s2) is
a stable Frobenius splitting of X along D1 (resp. D2) of degree e1 (resp. e2) which
compatibly splits a closed subscheme Y of X, then there exists a stable Frobenius
splitting of X along D1 +D2 of degree e1 + e2 which compatibly splits Y .

Lemma 5.4. Let s denote a stable Frobenius splitting of X along an effective divi-
sor D. Then

(1) If s compatibly Frobenius splits a closed subscheme Y of X then Y is reduced
and each irreducible component of Y is also compatibly Frobenius split by s.

(2) Assume that s compatibly Frobenius splits closed subschemes Y1 and Y2 and
that the support of D does not contain any of the irreducible components of
the scheme theoretic intersection Y1∩Y2. Then s compatibly Frobenius splits
Y1 ∩ Y2.

The following statement relates stable Frobenius splitting along divisors to com-
patibly Frobenius splitting.

Lemma 5.5. Let D and D′ denote effective Cartier divisors and let s denote a
stable Frobenius splitting of X along (p − 1)D + D′ of degree 1. Then there exists
a stable Frobenius splitting of X along D′ of degree 1 which compatibly splits the
closed subscheme defined by D.

5.5. Cohomology and Frobenius splitting. The notion of Frobenius splitting is
particular useful in connection with proving higher cohomology vanishing for line
bundles. We will need

Lemma 5.6. Let s denote a stable Frobenius splitting of X along D of degree e and
let Y denote a closed compatibly Frobenius split subscheme of X. Then for every
line bundle L on X and every integer i there exists an inclusion

Hi(X, IY ⊗ L) ⊆ Hi(X, IY ⊗ Lpe ⊗ OX(D)),

of abelian groups. In particular, when X is projective, L is globally generated and
D is ample then the group Hi(X, IY ⊗ L) is zero for i > 0.

5.6. Push forward. Let f : X → X ′ denote a proper morphism of schemes and
assume that the induced map OX′ → f∗OX is an isomorphism. Then every Frobenius
splitting of X induces, by application of the functor f∗, a Frobenius splitting of X ′.
Moreover, when Y is a compatibly Frobenius split subscheme of X then the induced
Frobenius splitting of X ′ compatibly splits the scheme theoretic image f(Y ) (see
[M-R, Prop.4]). We will need the following connected statement.

Lemma 5.7. Let f : X → X ′ denote a morphism of projective schemes such that
OX′ → f∗OX is an isomorphism. Let Y be a closed subscheme of X and denote
by Y ′ the scheme theoretic image f(Y ). Assume that there exists a stable Frobenius
splitting of X along an ample divisor D which compatibly splits Y . Then f∗OY = OY ′

and Rif∗OY = 0 for i > 0.
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5.7. Frobenius splitting of smooth varieties. WhenX is a smooth variety there
exists a canonical OX-linear identification (see e.g. [B-K, §1.3.7])

F∗ω
1−p
X ' HomOX

(F∗OX ,OX).

Hence, a Frobenius splitting of X may be identified with a global section of ω1−p
X

with certain properties. A global section τ of ω1−p
X which corresponds to a Frobenius

splitting up to a nonzero constant will be called a Frobenius splitting section.

Lemma 5.8. Let τ be a Frobenius splitting section of a smooth variety X. Then
there exists a stable Frobenius splitting of X of degree 1 along the Cartier divisor
defined by τ . In particular, if τ = τ̃ p−1 is a (p− 1)-th power of a global section τ̃ of
ω−1
X , then X is Frobenius split compatibly with the zero divisor of τ̃ .

5.8. Frobenius splitting of G/B. The flag variety X = G/B is a smooth variety
with dualizing sheaf ωX = L(−2ρ) where ρ is a dominant weight defined as half of
the sum of the positive roots. Let St := H((p − 1)ρ) denote the Steinberg module
of Gsc and consider the multiplication map

mG/B : St⊗ St → H(2(p− 1)ρ) ' H0(G/B, ω1−p
G/B ).

The Steinberg module St is an irreducible selfdual Gsc-module and hence there exists
a unique (up to nonzero scalars) nondegenerate Gsc-invariant bilinear form

φG/B : St⊗ St → k.

Then (see [L-T, Thm.2.3])

Theorem 5.9. Let t be an element in St⊗St. Then φG/B(t) is a Frobenius splitting
section of G/B if and only if φG/B(t) is nonzero.

6. F-splitting of smooth equivariant embeddings

Let X denote a smooth equivariant embedding of G. Define S to be the Gsc×Gsc-
module

S =
l⊗

i=1

(
H(ωi)

∗ � H(ωi)
)⊗(p−1)

.

By Proposition 4.6 there exists a Gsc ×Gsc-equivariant morphism

ψX : S → H0
(
X,L

(
(p− 1)

l∑
i=1

Di

))
.

defined as the (p− 1)-th product of the ψi’s. Let σj denote the canonical section of
L(Xj), for j = 1, . . . , n, and define for s, t ∈ S the section

ΨX(s, t) = ψX(s)ψX(t)
n∏
i=1

σp−1
i ,

of the line bundle ω1−p
X on X. Notice that if X ′ is an equivariant embedding of G

which moreover is an open subset of X, then the restriction of ΨX(s, t) to X ′ is equal
to ΨX′(s, t). The main result Theorem 6.4 in this section describes when ΨX(s, t)
is a Frobenius splitting section of the smooth embedding X.
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6.1. F-splitting smooth complete toroidal embeddings. Consider a smooth
complete toroidal embedding X of G and choose a closed G × G-orbit Y in X.
By Lemma 4.3 we may identify Y with G/B × G/B and under this isomorphism the
restriction of L(Di) to Y corresponds to L(ωi,−w0ωi). In particular, restricting to
Y induces a map

i∗|Y : H0
(
X,L

(
2(p− 1)

l∑
i=1

Di

))
→ H0

(
Y, ω1−p

Y

)
.

This leads to the following result which also explains the standard way of Frobenius
splitting X (cf. proof of Thm.6.2.7 [B-K])

Lemma 6.1. Let X denote a smooth complete toroidal embedding of G and let Y
denote a closed G × G-orbit in X. Let s and t be elements of S. Then ΨX(s, t) is
a Frobenius splitting section of X if and only if the restriction of ψX(s)ψX(t) to Y
is a Frobenius splitting section of Y .

In order to control the restriction of ψX(s)ψX(t) to Y we use Section 4.4.1. It
follows that we have a commutative Gsc × Gsc-equivariant diagram with nonzero
maps

S
ψX //

η

��

H0
(
X,L

(
(p− 1)

∑l
i=1Di

))
i∗|Y

��

St � St
' // H0

(
Y, ω

(1−p)/2
Y

)
where St = H

(
(p− 1)ρ

)
denotes the Steinberg module of Gsc. Using the Gsc ×Gsc-

invariant form φG/B×G/B on St � St we may define a similar form on S by

φ : S ⊗ S → k,

s⊗ t 7→ φG/B×G/B(η(s)⊗ η(t))

Notice that S and the Gsc ×Gsc-invariant form φ is defined without the help of X.
In particular, S and φ does not depend on X. Now by Lemma 6.1 and Theorem 5.9
we find

Proposition 6.2. Let the notation be as above and let s and t be elements of S.
Then ΨX(s, t) is a Frobenius splitting section of X if and only if φ(s⊗ t) is nonzero.

6.2. Frobenius splitting G. By restricting the statement of Proposition 6.2 to G
we find

Corollary 6.3. Let s and t be elements of S. Then

ΨG(s, t) := ψG(s)ψG(t),

is a Frobenius splitting section of G if and only if φ(s⊗ t) is nonzero.

Proof. Choose a smooth complete toroidal embedding X of G and consider ΨX(s, t).
Remember that checking whether ΨX(s, t) is a Frobenius splitting section of X may
be done on the open subset G (see Remark 5.1). Now apply Proposition 6.2. �
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6.3. Frobenius splitting smooth equivariant embeddings. We can now prove
that main result of this section.

Theorem 6.4. Let X denote an arbitrary smooth embedding of G and let s and t
be elements of S. Then ΨX(s, t) is a Frobenius splitting section of X if and only if
φ(s⊗ t) is nonzero.

Proof. That ΨX(s, t) is a Frobenius splitting section may be checked on the open
subset G. Now apply Corollary 6.3. �

In the following statement ti, i = 1, . . . , l, denotes the identity map in End(H(ωi)
∗) '

H(ωi)
∗ � H(ωi). Notice that as an element of End(H(ωi))

∗ the element ti is just the
trace map on End(H(ωi)). We also fix a nonzero weight vector u−ωi

of H(ωi)
∗ of

weight −ωi.

Corollary 6.5. The global section

l∏
i=1

ψi(ti)
p−1

l∏
i=1

ψi(u
−
ωi

� v+
ωi

)p−1

n∏
j=1

σp−1
j ,

of ω1−p
x is a Frobenius splitting section of X.

Proof. It suffices by Theorem 6.4 to prove that

φ
( l⊗

i=1

t
⊗(p−1)
i ⊗

l⊗
i=1

(u−ωi
� v+

ωi
)⊗(p−1)

)
is nonzero. The image of

⊗l
i=1 t

⊗(p−1)
i in St � St coincides with a nonzero diag(G)-

invariant element v∆. Moreover, the image of the element
⊗l

i=1(u
−
ωi

� v+
ωi

)⊗(p−1) in
St � St equals v− � v+ for some nonzero weight vectors v+ and v− in St of weight
(p − 1)ρ and −(p − 1)ρ respectively. Thus, we have to show that φG/B×G/B

(
v∆ ⊗

(v− � v+)
)

is nonzero. But by weight consideration this is clearly the case. �

7. Consequences in the smooth case

In this section we collect a number of consequences of the results in Section 6 and
the following Lemma 7.1. Notice that when f is a global section of a line bundle L

on a variety X, then we may regard f as an element in the local rings OX,x at points
x ∈ X. This identification is unique up to units in OX,x. Using this identification
we may now state

Lemma 7.1. Let X denote a smooth variety with dualizing sheaf ωX and let L1, . . . ,
LN denote a collection of line bundles on X such that ⊗N

i=1Li ' ω−1
X . Let fi,

i = 1, . . . , N , denote a global section of Li and assume that
∏N

i=1 f
p−1
i , considered

as a global section of ω1−p
X , is a Frobenius splitting section of X. Choose a sequence

1 ≤ i1, . . . , ir ≤ N of pairwise distinct integers. Then

(1) The sequence fi1 , . . . , fir forms a regular sequence in the local ring OX,x at a
point x contained in the common zero set of fi1 , . . . , fir .

(2) The common zero set of fi1 , . . . , fir has pure codimension r.

Proof. As all statements are local we may assume that X is affine and that ωX and
L1, . . . ,LN are all trivial. Hence, the elements f1, . . . , fN are just regular global
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functions on X. Moreover, by assumption there exists a function τ : F∗k[X] → k[X]
such that τ

(
ap(f1 · · · fN)p−1

)
= a for all global regular functions a ∈ k[X].

Let x be a common zero of fi1 , . . . , fir and assume that we have a relation of

the form
∑j

s=1 asfis = 0 for certain elements as in OX,x. In particular, the product
apj(f1 · · · fN)p−1 is contained in the ideal (fpi1 , . . . , f

p
ij−1

) of OX,x and hence

aj = τ
(
apj(f1 · · · fN)p−1

)
∈ (fi1 , . . . , fij−1

).

This proves (1). Now (2) follows as a direct consequence of (1). �

We can now prove the first of our main results

Corollary 7.2. Let X be a smooth equivariant embedding of G and let N̄ denote
the closure of the Steinberg zero-fiber in X. Then

(1) N̄ coincides with the scheme theoretic intersection of the zero sets of ti,
i = 1, . . . , l. In particular, N̄ is a local complete intersection.

(2) N̄ is normal, Gorenstein and Cohen-Macaulay.
(3) The dualizing sheaf of N̄ is isomorphic to the restriction of the line bundle

LN̄ := L(−
∑l

i=1(w0, 1)Di −
∑n

j=1Xj) to N̄ .

Proof. Consider the Frobenius splitting section of X defined in Corollary 6.5. By
Lemma 5.8 and Lemma 5.4 the scheme theoretic intersection C of ti, i = 1, . . . , l, is
a reduced scheme. Moreover, by Lemma 7.1 each component of C has codimension
l and will intersect the open locus G (else, by Lemma 7.1, such a component would
have codimension ≥ l + 1). We conclude that C ∩ G is dense in C and that C is
a local complete intersection. But clearly (see remark above Corollary 6.5) C ∩ G
coincides with the Steinberg zero-fiber N , and thus C must be equal to the closure
N̄ . This proves (1).

To prove (2) it then suffices to show that N̄ is regular in codimension 1. Let Z
denote a component of the singular locus of N̄ . If Z ∩G 6= ∅ then the codimension
of Z is ≥ 2 as N is normal by [St, Thm.6.11]. So assume that Z is contained in
a boundary component Xj. Now, by Lemma 5.8 the scheme theoretic intersection
N̄ ∩Xj is reduced. Hence, as Xj is a Cartier divisor, every smooth point of N̄ ∩Xj

is also a smooth point of N̄ . In particular, Z is properly contained in a component
of N̄ ∩ Xj. But the variety N̄ ∩ Xj has pure codimension 1 in N̄ which ends the
proof of (2).

Statement (3) follows by (1) and the description of the dualizing sheaf of X in
Proposition 4.4. �

7.1. Stable Frobenius splittings along divisors.

Proposition 7.3. Let X be a smooth equivariant embedding of G. Then there exists
a stable Frobenius splitting of X along the divisor

(p− 1)
( n∑
j=1

Xj +
∑̀
i=1

(w0, 1)Di

)
of degree 1 which compatibly Frobenius splits the closure N̄ of the Steinberg zero-fiber.

Proof. Let τ denote the Frobenius splitting section of Corollary 6.5. By Lemma
5.8, Lemma 5.5 and Lemma 4.6 we know that τ defines a degree 1 stable Frobenius
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splitting of X along the divisor

(p− 1)
( n∑
j=1

Xj +
∑̀
i=1

(w0, 1)Di

)
,

which compatibly Frobenius splits the zero divisor of
∏l

i=1 ψi(ti). Now apply Lemma
5.4(2), Corollary 7.2 and Lemma 7.1. �

Corollary 7.4. Let X denote a projective smooth equivariant embedding of G. Then
there exists a stable Frobenius splitting of X along an ample divisor with support
X −G which compatibly Frobenius splits the subvariety N̄ .

Proof. By Proposition 7.3 and Lemma 5.2 there exists a stable Frobenius splitting
of X along the divisor

∑n
j=1Xj which compatibly splits N̄ . Applying Lemma 5.2

and Lemma 5.3 it suffices to show that there exist positive integers cj > 0 such that∑n
j=1 cjXj is ample. This follows from [B-T, Prop.4.1(2)]. �

This has the following implications for resolutions

Corollary 7.5. Let X be a projective equivariant embedding of G and let f : X ′ → X
be a projective resolution of X by a smooth projective equivariant G-embedding X ′.
Denote by N̄ ′ (resp. N̄) the closure of the Steinberg zero-fiber within X ′ (resp. X).
Then
(i) f∗OX′ = OX and Rif∗OX′ = 0 for i > 0. (cf. [Rit, pf. of Cor.2])
(ii) f∗ON̄ ′ = ON̄ and Rif∗ON̄ ′ = 0 for i > 0.

Proof. As X ′ is normal and f is birational it follows from Zariski’s main theorem
that f∗OX = OX′ . Hence, by Lemma 5.7 it suffices to prove that there exists a stable
Frobenius splitting of X along an ample divisor which compatibly Frobenius splits
N̄ . Now apply Corollary 7.4. �

8. Frobenius splitting N̄ for general embeddings

In this section X will denote an arbitrary equivariant embedding of G and N̄ will
denote the closure of the Steinberg zero-fiber in X.

Theorem 8.1. There exists a Frobenius splitting of X which simultaneously compat-
ibly splits the closed subvarieties N̄ , (w0, 1)Di, Xj, for i = 1, . . . , l and j = 1, . . . , n.

Proof. By Theorem 4.2 we may find a projective resolution f : X ′ → X by a smooth
toroidal embedding X ′ of G. By Zariski’s Main Theorem, f∗OX′ = OX . Thus, by
[M-R, Prop.4] (cf. section 5.6) we can reduce to the case where X is smooth. Now
apply Corollary 6.5, Lemma 5.8, Lemma 5.4, Lemma 4.6 and Corollary 7.2 in the
given order. �

Example 8.2. Consider the group G = PSL2(k) over a field k of positive character-
istic different from 2. Then the wonderful compactification X of G may be identified
with the projectivization of the set of 2× 2-matrices with entries in k. Denote the
homogeneous coordinates in X by a, b, c and d. Then the closure Ū of the unipotent
variety U of G within X, is defined by the polynomial f = (a + d)2 − 4(ad − bc).
Moreover, the boundary is defined by the polynomial g = (ad − bc). In particular,
the ideal generated by f and g is not reduced and, as a consequence, the boundary
X − G and the closure Ū cannot be compatibly Frobenius split at the same time.
When k has characteristic 2 the unipotent variety U coincides with the Steinberg
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zero-fiber. In this case the polynomial defining Ū is given by f = a + d and we do
not see a similar problem.

Remark 8.3. W. van der Kallen and T. Springer has informed us that they have
proved Theorem 8.1 in case X is the wonderful compactification of a group of adjoint
type. Their proof proceeds by descending the Frobenius splitting results in [T] to the
wonderful compactification.

We can also prove a vanishing result for line bundles on N̄ :

Proposition 8.4. Let X denote a projective equivariant G-embedding and let L

(resp. M) denote a globally generated line bundle on X (resp. N̄). Then

Hi(X,L) = Hi(N̄ ,M) = 0, i > 0.

Moreover, the restriction map

H0(X,L) → H0(N̄ ,L),

is surjective.

Proof. By Corollary 7.5 we may assume that X is smooth. Now apply Corollary 7.4
and the “in particular” part of Lemma 5.6. �

8.1. Canonical Frobenius splittings of X. A Frobenius splitting s : F∗OZ → OZ

of a B-variety Z is a T -invariant Frobenius splitting such that the action of a root
subgroup of G associated to the simple root αi, is of the form

xαi
(c)s =

p−1∑
j=1

cjsj,

for certain morphisms sj : F∗OZ → OZ and all c ∈ k.
As a subset of X the closure N̄ is invariant under the diagonal action of G. In

particular, N̄ is invariant under diag(B) and we claim

Lemma 8.5. The variety N̄ is canonical Frobenius split with respect to the action
of diag(B).

Proof. It suffices to prove thatX has a diag(B)-canonical splitting which compatibly
splits N̄ . Moreover, by Theorem 4.2 we may assume that X is smooth. By the
proof of Corollary 7.2 it then suffices to prove that the Frobenius splitting section
of Corollary 6.5 is canonical.

As ψ∗i (ti) and σj are diag(G)-invariant we may concentrate on the diag(T )-invariant
factors ψ∗i (u

−
ωi
⊗ v+

ωi
). The statement follows now as

xαj
(c).v+

ωi
= v+

ωi
,

xαj
(c).u−ωi

= u−ωi
+ cui,j ,

for certain elements ui,j ∈ H(−woωi)∗. �

As a consequence we have (see [B-K, Thm.4.2.13])

Proposition 8.6. Let L denote a Gsc-linearized line bundle on N̄ . Then the Gsc-
module H0(N̄ ,L) admits a good filtration, i.e. there exists a filtration by Gsc-modules

0 = M0 ⊆M1 ⊆M2 ⊆ · · · ⊆ H0(N̄ ,L),

such that H0(N̄ ,L) = ∪iM i and satisfying that the successive quotients M j+1/M j

are isomorphic to modules of the form H(λj) for certain dominant weights λj.
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9. Geometric properties of N̄

Let X be an arbitrary equivariant G-embedding. When X is smooth we have
seen that N̄ is normal and Cohen-Macaulay. In this section we will extend these
two properties to arbitrary equivariant embeddings.

The following result is due to G. Kempf although the version stated here is taken
from [B-P, §7] :

Lemma 9.1. Let f : Z ′ → Z denote a proper map of algebraic schemes satisfying
that f∗OZ′ ' OZ and Rif∗OZ′ = 0 for i > 0. If Z ′ is Cohen-Macaulay with dualizing
sheaf ωZ′ and if Rif∗ωZ′ = 0 for i > 0, then Z is Cohen-Macaulay with dualizing
sheaf f∗ωZ′.

We will also need the following result due to V. Mehta and W. van der Kallen
([M-vdK, Thm.1.1]):

Lemma 9.2. Let f : Z ′ → Z denote a proper morphism of schemes and let V ′

(resp. V ) denote a closed subscheme of Z ′ (resp. Z). By IV ′ we denote the sheaf of
ideals of V ′. Fix an integer i and assume

(1) f−1(V ) ⊆ V ′.
(2) Rif∗IV ′ vanishes outside V .
(3) V ′ is compatibly F-split in Z ′.

Then Rif∗IV ′ = 0.

We are ready to prove

Theorem 9.3. Let X denote an arbitrary equivariant G-embedding. Then the clo-
sure N̄ of the Steinberg zero-fiber in X is normal and Cohen-Macaulay.

Proof. Any equivariant embedding has an open cover by open equivariant subsets
of projective equivariant embeddings (see e.g. proof of [B-K] Corollary 6.2.8). This
reduces the statement to the case where X is projective. Choose a projective reso-
lution f : X ′ → X of X by a smooth equivariant embedding X ′. By Corollary 7.5
we know that f∗ON̄ ′ = ON̄ and applying Corollary 7.2 this implies that N̄ is normal.

In order to show that N̄ is Cohen-Macaulay we apply the above Lemma 9.1 and
Lemma 9.2. By Corollary 7.5 it suffices to prove that Rif∗ωN̄ ′ = 0, i > 0, where ωN̄ ′

is the dualizing sheaf of N̄ ′. By Corollary 7.2 the dualizing sheaf ωN̄ ′ is isomorphic
to the restriction of LN̄ ′ to N̄ ′. Let s′ denote the canonical section of the line
bundle L−1

N̄ ′ on X ′ and let V ′ denote the intersection of N̄ ′ with the zero divisor

of s′. Combining Proposition 7.3 and Lemma 5.5 we find that N̄ ′ is Frobenius split
compatibly with the closed subscheme V ′. Moreover, f : N̄ ′ → N̄ is an isomorphism
above the open subset N and

f−1(N̄ \N) ⊆ V ′.

Hence, by Lemma 9.2 we conclude Rif∗IV ′ = 0 for i > 0. But IV ′ is isomorphic to
the restriction of LN̄ ′ to N̄ ′. �
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