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Abstract

We give a variant of the homogeneous Buchberger algorithm for positively graded
lattice ideals. Using this algorithm we solve the Sullivant computational commutative
algebra challenge1.

1 Introduction

Suppose that I is a homogeneous ideal in a polynomial ring R = k[x0, . . . ,xn] over a field k.
The usual homogeneous Buchberger algorithm builds a Gröbner basis for I by successively
constructing truncated Gröbner bases of increasing degrees. Suppose that I is saturated i.e.
I = Ī = {g ∈ R | (x0 · · ·xn)mg ∈ I,m � 0}. If we encounter a polynomial f divisible by a
variable in degree d of the homogeneous Buchberger algorithm, then we may conclude that f
reduces to zero modulo the already constructed truncated Gröbner basis in degree < d for I.
This simple observation also allows for detection of non-saturated ideals in some cases.

Sullivant’s challenge is about deciding if a specified set B of 145,512 binomials generate
the kernel P of the (toric) ring homomorphism ϕ : k[xi jk]→ k[ui j,vik,w jk] given by

ϕ(xi jk) = ui jvikw jk,

where 1 ≤ i, j,k ≤ 4. We give a version of the homogeneous Buchberger algorithm with a
Gebauer-Möller criterion specifically tailored to positively graded lattice ideals. Using an im-
plementation of this algorithm in the software package GLATWALK2 we deduce that the ideal J
generated by B is strictly contained in P by showing that J cannot be saturated. In fact, we
exhibit a specific binomial b of degree 14 in J̄ \ J.

I am grateful to B. Sturmfels for stimulating my interest in Sullivant’s computational com-
mutative algebra challenge. R. Hemmecke has made me aware that he and P. Malkin already
computed the full Gröbner basis of J using new algorithms in a new version of 4ti2 thereby
answering Sullivant’s challenge. In fact they prove that the “missing” binomials in Sullivant’s
challenge have degree 14 and form an orbit under the action of a certain symmetry group. I am
grateful to Hemmecke for verifying that b lies in this orbit.

1http://math.berkeley.edu/~seths/ccachallenge.html
2http://home.imf.au.dk/niels/GLATWALK
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2 Preliminaries
We let R = k[x1, . . . ,xn] denote the ring of polynomials over a field k. We assign degrees to the
variables by deg(x1) = a1, . . . ,deg(xn) = an, where a1, . . . ,an are positive integers. A monomial
xv ∈ R has degree deg(xv) = v1a1 + · · ·+ vnan, where v = (v1, . . . ,vn). This gives the (positive)
grading

R =⊕s≥0Rs,

where Rs = spank{xv | deg(xv) = s}. For a monomial order ≺ on R and a subset S ⊂ R we let
in≺(S) = {in≺( f ) | f ∈ S \ {0}}. A Gröbner basis for an ideal I ⊂ R is a finite subset G ⊂ I,
such that 〈in≺(G)〉= in≺(I).

2.1 Truncated Gröbner bases
For a homogeneous ideal I in R and d ∈ N we let

I<d =
⊕
s<d

Is.

A d-truncated Gröbner basis for I is a finite subset G<d ⊂ I<d , such that 〈in≺(G<d)〉<d =
in(I)<d i.e. we require only match of initial ideals up to degree d. Using the division algorithm
it is easy to show that f ∈ I<d reduces to zero modulo the polynomials in a d-truncated Gröbner
basis for I.

3 The homogeneous Buchberger algorithm with sat-reduction
We call an ideal I saturated if I = Ī = {g ∈ R | (x0 · · ·xn)mg ∈ I,m � 0}. This means that
m f ∈ I implies f ∈ I, where m is a monomial and f a polynomial in R. Let ≺ be a term
order on R. For a polynomial f ∈ R we let sat( f ) denote f divided by the greatest common
divisor of the monomials in f . We say that f sat-reduces to h modulo g if either h = sat( f ) and
deg(h) < deg( f ) or f reduces to h modulo g in the usual sense i.e. in≺(g) divides a term t in f
and

h = f − (t/ in≺(g))g.

Notice that if f sat-reduces to h modulo g and f ,g belongs to a saturated ideal I, then h ∈ I. A
remainder in the division algorithm of f modulo a set of polynomials G using sat-reduction in
each step is denoted f G(sat).

The S-polynomial of two homogeneous polynomials is homogeneous of degree no less than
the degrees of the polynomials. The (usual) reduction of a homogeneous polynomial of degree
d modulo a set of homogeneous polynomials gives a homogeneous polynomial of degree d.
These observations give the homogeneous Buchberger algorithm as explained in ([1], Theorem
11). We tailor the homogeneous Buchberger algorithm to the special case where input consists
of a set B = { f1, . . . , fr} ⊂ R of homogeneous polynomials generating a saturated ideal. This
has the consequence that reduction of a homogenous polynomial f of degree d divisible by
a variable xi is not necessary, since f /xi ∈ I<d reduces to zero using the already computed
d-truncated Gröbner basis G<d .

Algorithm 3.1 (Homogeneous Buchberger algorithm for saturated ideals)

INPUT: Term order≺. Homogeneous polynomials B = { f1, . . . , fr}⊂ R generating a saturated
homogeneous ideal I.
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OUTPUT: Homogeneous polynomials G = {g1, . . . ,gs} such that {g1, . . . ,gs} is a minimal
Gröbner basis over ≺ for the ideal generated by B.

(i) Spairs := /0; G := /0;

(ii) while (B 6= /0 or Spairs 6= /0) do

(a) Extract3 a polynomial f of minimal degree in B∪Spairs.

(b) Compute g := f G(sat), continue if the degree drops in a sat-reduction step in the
division algorithm;

(c) if (g = 0) continue;

(d) G := G∪{g};

(e) Append S-polynomials S(g,h) to Spairs for every h ∈ G\{g}.

Remark 3.2 After step (iid) in Algorithm 3.1, the polynomials of degree < d in G form a
minimal d-truncated Gröbner basis of I, where d is the minimal degree of the polynomials in
B∪Spairs.

An easy modification to algorithm (3.1) may detect if I is not saturated. If the sat-reduction
f G(sat) of f is non-zero and has lower degree than f , then we may deduce the existence of a
monomial xv and a polynomial g such that xvg ∈ I, but g 6∈ I.

Algorithm 3.3 (Homogeneous Buchberger algorithm with saturation check)

INPUT: Homogeneous polynomials B = { f1, . . . , fr} and a term order ≺.

OUTPUT: Homogeneous polynomials G = {g1, . . . ,gs} such that {g1, . . . ,gs} is a minimal
Gröbner basis over ≺ for the ideal I generated by B or proof that I is not saturated.

(i) Spairs := /0; G := /0;

(ii) while (B 6= /0 or Spairs 6= /0) do

(a) Extract a polynomial f of minimal degree d in B∪Spairs.

(b) g := f G(sat);

(c) if (g = 0) continue;

(d) if(deg(g) < d)

(i) OUTPUT f as proof that I is not saturated and HALT.

(e) G := G∪{g};

(f) Append S-polynomials S(g,h) to Spairs for every h ∈ G\{g}.

Example 3.4 We give a simple example illustrating algorithm (3.3).

(i) Consider the input B = {xz− y2,x4− y3} along with the reverse lexicographic term order
x≺ y≺ z.

(ii) The ideal I generated by B is homogeneous in the grading deg(x)= 3,deg(y)= 4,deg(z)=
5 and deg(xz− y2) = 8 < deg(x4− y3) = 12.

3This means that f is deleted from the relevant list after it is extracted
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(iii) After the first loop we have B = {y3− x4},G = {y2− xz} and Spairs = /0, where G is a
12-truncated Gröbner basis of I.

(iv) In the second loop we sat-reduce y3−x4 modulo y2−xz and get yz−x3. As deg(yz−x3) =
9 < deg(y3− x4) = 12, we conclude that I is not saturated.

(i) Now suppose that B = {y2− xz,yz− x3} in the same grading.

(ii) After the second loop we have

B = /0

G = {y2− xz,yz− x3}
Spairs = {yx3− z2x},

where G is a 13-truncated Gröbner basis of I.

(iii) Now yx3− z2x sat-reduces to z2− yx2 modulo G. We conclude that I is not saturated.

(i) Now proceed with B = {y2− xz,yz− x3,z2− yx2}.

(ii) After a few loops we have

B = /0

G = {y2− xz,yz− x3,z2− yx2}
Spairs = {y2x2− zx3},

where G is a 14-truncated Gröbner basis of I. Since y2x2− zx3 sat-reduces to zero, G is
the reduced Gröbner basis of I.

The number of S-pairs considered for reduction can be reduced drastically by using a ver-
sion of the Gebauer-Möller criterion in algorithms (3.1) and (3.3). The framework for properly
explaining the Gebauer-Möller criterion is in the context of Gröbner bases for modules (cf. [1],
§4).

3.1 The Gebauer-Möller criterion
Let e1, . . . ,em denote the canonical basis of the finitely generated free module F = Rm. A
monomial in F is an element xvei, where xv is a monomial in R. Every element in F is a k-
linear combination of monomials. By definition a monomial xαei divides a monomial xβ e j if
and only if i = j and xα divides xβ in R. We write this as xαei | xβ e j. A monomial order on F
is a total order ≺ on monomials in F satisfying

xαei ≺ xβ e j =⇒ xα+γei ≺ xβ+γe j

for every i, j = 1, . . . ,m and α,β ,γ ∈Nn. We let in≺( f ) denote the largest monomial in f . Now
the Gröbner basics for ideals in R can be generalized to submodules of F almost verbatim. For
a subset B ⊂ F we let in≺(B) denote the submodule generated by in≺( f ), where f ∈ B. A
Gröbner basis of a submodule M ⊂ F is a set of elements G = {m1, . . . ,mt} ⊂ M satisfying
in≺(M) = in≺(G). It is called minimal if in≺(mi) - in≺(m j) for i 6= j. We will use Gröbner
bases for submodules in reasoning about syzygies of monomial ideals. Consider a monomial
ideal

M = 〈xv1, . . . ,xvm〉 ⊂ R.
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The syzygies of M are the relations in M i.e. the kernel K of the natural surjection Rm → M.
Now consider the Zn-grading deg(xi) = ei on R. Then K is a homogeneous submodule of F in
the Zn-grading given by deg(ei) = vi. A natural set of homogeneous generators are

Si j = xvi∨v j−v je j− xvi∨v j−viei ∈ K

for 1 ≤ i < j ≤ m (see [2], Proposition 2.8). Define a monomial order ≺ (The Schreyer order)
on F by xαei ≺ xβ e j if and only if

α + vi < β + v j or α + vi = β + v j and i < j,

where < is any term order on R. Then we have the following

Proposition 3.5 The homogeneous generating set {Si j | 1 ≤ i < j ≤ m} is a Gröbner basis for
K over the Schreyer order ≺.

The Gröbner basis in Proposition 3.5 is rarely minimal. In view of Theorem 2.9.9 in [2],
it suffices to reduce the S-pairs corresponding to a minimal Gröbner basis of the syzygies (in
Buchberger’s algorithm). This procedure is in fact one of the Gebauer-Möller criteria for cut-
ting down on the number of S-pairs. The point is that this minimization is easy and quite fast
to perform in step (iie) of Algorithm 3.1. Suppose that we must update Spairs with a non-
zero polynomial g = gm, where G = {g1, . . . ,gm−1} in step (iie). We put xvi = in≺(gi) for
i = 1, . . . ,m. Consider the syzygies S1m, . . . ,Sm−1,m. In the Schreyer order we have in≺(S1m) =
xv1∨vm−vmem, . . . , in≺(Sm−1,m) = xvm−1∨vm−vmem. Thus the minimization can be done succes-
sively in step (iie) by throwing out superfluous monomials among

xv1∨vm−vm

...

xvm−1∨vm−vm.

This can be implemented as below (u ≤ v means that v− u ∈ Nn for u,v ∈ Nn), where (iia)
represents the usual criterion, where leading terms are relatively prime (cf. [2], Proposition
2.9.4).

Algorithm 3.6 updateSpairs:

(i) MinSyz := /0;

(ii) for each vi in {v1, . . . ,vm−1} do

(a) if (vm∧ vi = 0) continue;

(b) a = vi∨ vm− vm;

(c) if (w≤ a for some (w, p) ∈MinSyz) continue;

(d) Delete (w, p) ∈MinSyz if a≤ w;

(e) MinSyz := MinSyz∪{(a,S(gi,gm))};

(iii) for each (a, p) ∈MinSyz do

(a) Spairs := Spairs∪{p};
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4 Lattice ideals
Recall the decomposition of an integer vector v ∈ Zn into v = v+− v−, where v+,v− ∈ Nn

are vectors with disjoint support. For u,v ∈ Nn we let u ≤ v denote the partial order given by
v−u ∈ Nn. For a subset B ⊂ Zn we associate the ideal

IB = 〈xv+
− xv− | v ∈B〉 ⊂ R.

In the case where B = L is a lattice we call IL the lattice ideal associated to L . If u−v ∈L
for u,v ∈ Nn, then

xu− xv = xu−(u−v)+(x(u−v)+ − x(u−v)−) ∈ IL . (1)

The binomials BL = {xu− xv | u− v ∈L } ⊂ IL are stable under the fundamental operations
in Buchberger’s algorithm: forming S-polynomials and reducing modulo a subset of BL . This
means that starting with a generating set for IL in BL we end up with a Gröbner basis consist-
ing of binomials in BL . Reducing a monomial xw by an element of BL amounts to replacing
xw by xw−v, where v ∈L . Therefore if a binomial xu− xv ∈ IL , then u− v ∈L . This proves
that IL is saturated and algorithm (3.1) applies. The simple data structures in the specialization
of algorithm (3.1) to lattice ideals are very appealing. If f = xu− xv, then

sat( f ) = x(u−v)+ − x(u−v)−.

by (1). With this in mind we define

bin(w) = xw+
− xw−

for w ∈ Zn. Using this notation we have sat(bin(u),bin(v)) = bin(u− v). Similarly if v+ ≤ u+

we may reduce bin(u) by bin(v). This results in a binomial f with sat( f ) = bin(u− v). Notice
that replacing u by u− v if v+ ≤ u+ corresponds to sat-reduction of bin(u) by bin(v). We have
silently assumed that the initial term of bin(w) is xw+

for the term order in question. We will
keep this convention throughout.

Usually a generating set B for L as an abelian group is given. Computing the lattice ideal
IL ⊃ IB can be done using that

IL = ĪB.

If B contains a positive vector, then IB = IL ([3], Lemma 12.4). If L ∩Nn = {0}, IL may be
computed from IB using Gröbner basis computations for different reverse lexicographic term
orders ([3], Lemma 12.1).

With these conventions it is quite easy to convert algorithm (3.1) into a specialized algo-
rithm for lattice ideals representing binomials via integer vectors with additional structure (like
the degree of bin(v) and certain other (optimizing) features). We give the straightforward trans-
lation of algorithm (3.1) into the lattice case.

Algorithm 4.1 (Homogeneous Buchberger algorithm for lattice ideals)

INPUT: Term order≺. Integer vectors B = {v1, . . . ,vr}with respect to≺ such that 〈bin(v1), . . . ,
bin(vr)〉 is a positively graded lattice ideal IL .

OUTPUT: Integer vectors G = {w1, . . . ,ws} such that 〈bin(w1), . . . ,bin(ws)〉 is a minimal
Gröbner basis over ≺ for IL .

(i) Spairs := /0; G := /0;
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(ii) while (B 6= /0 or Spairs 6= /0) do

(a) Extract a binomial bin(v) of minimal degree in B∪Spairs.

(b) Compute the reduction bin(w) := bin(v)G(sat), continue if the degree drops in a sat-
reduction step in the division algorithm.

(c) if (bin(w) = 0) continue;

(d) G := G∪{bin(w)};

(e) updateSpairs

updateSpairs:

(i) MinSyz := /0;

(ii) for each bin(v) in G\{bin(w)} do

(a) if (w+∧ v+ = 0) continue;

(b) a = v+∨w+−w+;

(c) if (u≤ a for some (u, p) ∈MinSyz) continue;

(d) Delete (u, p) ∈MinSyz if a≤ u;

(e) MinSyz := MinSyz∪{(a,bin(u− v)};

(iii) for each (a,bin(u)) ∈MinSyz do

(a) Spairs := Spairs∪{bin(u)};

Similarly algorithm 3.3 translates into

Algorithm 4.2

INPUT: Term order ≺. Normalized integer vectors B = {v1, . . . ,vr} with respect to ≺, such
that 〈bin(v1), . . . ,bin(vr)〉 generates the ideal I.

OUTPUT: Integer vectors G = {w1, . . . ,ws} such that 〈bin(w1), . . . ,bin(ws)〉 is a minimal
Gröbner basis over ≺ for I or proof that I is not a lattice ideal.

(i) Spairs := /0; G := /0;

(ii) while (B 6= /0 or Spairs 6= /0) do

(a) Extract a binomial bin(v) of minimal degree d in B∪Spairs.

(b) bin(w) := bin(v)G(sat);

(c) if (bin(w) = 0) continue;

(d) if(deg(bin(w)) < d)

(i) OUTPUT bin(w) as proof that I is not a lattice ideal and HALT.

(e) G := G∪{bin(w)};

(f) updateSpairs
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5 The Sullivant challenge
Sullivant’s challenge4 is about deciding if the ideal J generated by a given set B of 145,512
binomials generate the kernel P of the toric ring homomorphism

k[xi jk]→ k[ui j,vik,w jk]

given by xi jk 7→ ui jvikw jk, where 1 ≤ i, j,k ≤ 4. The 145,512 binomials are constructed by
acting with a symmetry group on carefully selected binomials5. In this setting we need to
compute in the polynomial ring k[xi jk] in 64 variables! The ideal J is homogeneous in the
natural grading deg(x111) = · · ·= deg(x444) = 1. The strategy is applying algorithm (4.2) to J
using a reverse lexicographic order. If algorithm (4.2) finishes without halting in step (iid), then
Sullivant has proved that J must generate P. If not, algorithm (4.2) will halt with a binomial in
P\ J.

Running the gbasis command of GLATWALK with respect to the cost vector −e1 and the
grading e1 + · · ·+ e64 we compute a Gröbner basis of J after converting the binomials in the
two files6 7 containing J into integer vector format. After computing a 15-truncated Gröbner
basis, gbasis (in the incarnation of algorithm (4.2)) outputs the degree 14 binomial

x311x221x431x2
212x122x342x113x433x243x424x134x334x444

− x211x421x331x112x312x222x242x213x133x443x124x2
434x344

as a binomial in J̄ \ J proving that J does not generate P thereby answering Sullivant’s compu-
tational commutative algebra challenge. Running gbasis in the above setting is not a simple
computation. In fact the 15-truncated Gröbner basis of J contains more than 300,000 binomials
and the whole computation takes close to two days on most modern PCs.

Details and more information, including the relevant files for Sullivant’s challenge, are
located at http://home.imf.au.dk/niels/GLATWALK.
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