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A DILOGARITHMIC FORMULA

FOR THE

CHEEGER-CHERN-SIMONS CLASS

JOHAN L. DUPONT AND CHRISTIAN K. ZICKERT

Abstract. We present a simplification of Neumann’s formula in [8] for the uni-
versal Cheeger-Chern-Simons class of the second Chern polynomial. Our approach
is completely algebraic, and the final formula can be applied directly on a homol-
ogy class in the bar complex.

Introduction

In the famous papers [1] and [2], J. Cheeger, S. Chern, and J. Simons define
characteristic classes for flat G-bundles. Each such characteristic class is given
by a corresponding universal cohomology class in H∗(BGδ,C/Z), where δ denotes
discrete topology. The cohomology of the classifying space of a discrete group is
isomorphic to the Eilenberg-Maclane group cohomology, and it has been a long
standing problem to find explicit formulas for the universal classes directly in terms
of the bar complex. In [3] it is proved that the universal Cheeger-Chern-Simons
(C-C-S) class for the group SL(2,C) associated to the second Chern polynomial is
given up to a Q/Z indeterminacy by a dilogarithmic formula defined on the Bloch
group B(C). In particular, for a compact hyperbolic 3-manifold, the imaginary part
of the C-C-S class is just hyperbolic volume.

An element of B(C) is a formal sum of cross-ratios (see below), but the cross-ratio
alone does not seem to carry enough information to get rid of theQ/Z indeterminacy

on the real part. Neumann constructs in [8] an extended Bloch group B̂(C), where
elements, in addition to the cross-ratio, also contain information of two choices of
logarithms. It follows from Neumann’s article that this additional information is
exactly what is needed to remove the Q/Z indeterminacy. He shows that there is
an isomorphism

λ : H3(PSL(2,C)) ≈ B̂(C),

and furthermore that there is a natural extension of the dilogarithmic formula from
[3] to B̂(C) such that the composition of λ with the dilogarithm is exactly the uni-
versal C-C-S class. The isomorphism λ is defined by representing an element of
H3(PSL(2,C)) by a “quasi-simplicial complex” and the appropriate choices of loga-

rithms required to obtain an element in B̂(C) are found by some rather complicated
combinatorial topology.

We shall construct a map similar to Neumann’s using SL(2,C) instead of PSL(2,C).
The definition of this map uses only simple homological algebra, and we obtain a
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formula which enables us to calculate the universal C-C-S class directly from a rep-
resentative of a homology class in the bar complex. All geometry is replaced by
algebra which vastly simplifies the proofs.

We give a brief overview of the contents: In section 1 we review the basic theory of
the C-C-S classes, group homology, and the Bloch group. Many details are included
in order to make the paper self-contained. In section 2 we recall Neumann’s definition
of the extended Bloch group. This overlaps with Neumann’s paper but for the
sake of completeness, all details are included. In section 3, we construct a map

λ̂ : H3(SL(2,C)) → B̂(C), by describing a way of detecting the appropriate two
choices of logarithms directly from a tuple of group elements. The idea is that the
extra information can be found in C2\{0} rather than S2. In section 4 we show that

our map actually calculates the C-C-S class and show that λ̂ is surjective with kernel
of order 2. Finally, we show in the appendix that our definition of the extended Bloch
group agrees with that of Neumann.

1. Preliminaries

In this section we review some basic theory and introduce our terminology. Through-
out, F always denotes either R or C.

1.1. The Cheeger-Chern-Simons Classes. We here recall some facts about the
C-C-S classes that we shall need. For their construction and basic properties, we
refer to [1] or [2].

Let G be a Lie group with finitely many components and let Ik(G) denote the
group of invariant polynomials. Recall from classical Chern-Weil theory that there
is a natural homomorphism

W : Ik(G) → H2k(BG,F).

The C-C-S classes are defined from the following data:

(1) An invariant polynomial P ∈ Ik(G).
(2) A class u ∈ H2k(BG,Z) satisfying W (P ) = ru.

Let

Kk(G) =
{
(P, u) ∈ Ik(G)×H2k(BG,Z) |W (P ) = ru

}

Let Gδ denote the underlying discrete group of G. In the articles [1] and [2], the

authors describe a way of associating a cohomology class P̂ (u) in H2k−1(BGδ,F/Z)
to an element (P, u) in Kk(G). This association is natural in the following sense:

Theorem 1.1. Let φ : G → H be a Lie group homomorphisms between Lie groups

with finitely many components. The diagram below is commutative.

Kk(H)
φ∗

//

CCS

��

Kk(G)

CCS

��

H2k−1(BHδ,F/Z)
φ∗

//H2k−1(BGδ,F/Z)

Remark 1.2. In the following we shall only be interested in the C-C-S classes corre-
sponding to the second Chern polynomial and the first Pontrjagin polynomial. In
both cases u is just the corresponding Chern class or Pontrjagin class, and we simply
denote the associated C-C-S classes Ĉ2 and P̂1.
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1.2. The Homology of a Group. Let G be a group. For a right G-module A,
we let AG denote the group A ⊗Z[G] Z, where Z is regarded as a trivial G-module.
The homology of G is by definition the homology of the complex (P∗)G, where P∗ is
a projective resolution of Z by right G-modules.The following general construction
of a projective resolution is of particular interest to us: For X a set, let C∗(X) be
the acyclic complex of free abelian groups, which in dimension n is generated by
(n+ 1)-tuples of elements in X. The differential is given by

∂(x0, . . . , xn) =

n∑

i=0

(−1)i(x0, . . . , x̂i, . . . , xn)

In particular for X = G, the natural left G-action on C∗(G) thus gives a free
resolution of Z by G-modules (it is made into a right resolution in the standard
way). The complex C∗(G)G thus calculates the homology of G.

There is another description of this complex. Consider the complex B∗(G) of free
abelian groups, which in dimension n is generated by symbols [g1| · · · |gn] and with
differential given by

∂[g1| · · · |gn] = [g2| · · · |gn] +

n−1∑

i=1

(−1)i[g1| · · · |gigi+1| · · · |gn]

+ (−1)n[g1| · · · |gn−1].

This complex is isomorphic to C∗(G)G via the map

[g1| · · · |gn] 7→ (1, g1, g1g2, . . . , g1 . . . gn)

with inverse
(g0, . . . , gn) 7→ [g−1

0 g1| · · · |g
−1
n−1gn].

Hence, we can represent a homology class in Hn(G) either by a chain in Cn(G) or
by a cycle in Bn(G). These two ways of representing homology classes are called the
homogenous and the inhomogenous representation, respectively.

We will also be interested in certain subcomplexes of C∗(G). For g ∈ G there is
a map sg : C∗(G) → C∗(G) given by sg(g0, . . . , gn) = (g, g0, . . . , gn). We shall often
use

Lemma 1.3. Let D∗(G) be a G-subcomplex of C∗(G). Suppose that for each cycle

σ in D∗(G), there exists a point g(σ) in G such that sg(σ)σ is in Dn+1(G). Then

D∗(G) is acyclic and D∗(G)G calculates the homology of G.

Proof. Note that ∂sg(g0, . . . , gn) = (g0, . . . , gn)− sg(∂(g0, . . . , gn)). Let σ be a cycle
in D∗(G). Since ∂σ = 0 we have σ = ∂sg(σ)σ, that is, σ is a boundary. �

Let M be a left G-module. The cohomology H∗(G,M) is defined as the homology
of the complex HomZ[G](P∗,M), where P∗, this time, is a projective resolution of Z
by left G-modules. Regarding a divisible abelian group A as a trivial G-module, we
have by the universal coefficient theorem a natural isomorphism

Hn(G,A) = Hom(Hn(G), A).

It is well known that the homology of a group is isomorphic to the singular homology
of its classifying space, and since the abelian group F/Z is obviously divisible, we can
regard the C-C-S classes as homomorphisms from H3(G) to F/Z. It is an interesting
problem to try to find explicit formulas for the C-C-S classes directly in terms of the



4 JOHAN L. DUPONT AND CHRISTIAN K. ZICKERT

resolution C∗(G) (or some subcomplex). We shall investigate this in the following
sections.

1.3. The Bloch Group. In all the following, we let G denote the group SL(2,C).

Definition 1.4. The pre-Bloch group P(C) is an abelian group generated by sym-
bols [z], z ∈ C\{0, 1} subject to the relation

(1.1) [x]− [y] +
[y
x

]
−

[
1− x−1

1− y−1

]
+

[
1− x

1− y

]
= 0.

This relation is called the five term relation.

In [3] and [7] the five term relation is different, but this is because of the different
definition of the cross-ratio (see below).

Definition 1.5. The Bloch group B(C) is the kernel of the homomorphism

ν : P(C) → C∗ ∧C∗

defined on generators by [z] 7→ z ∧ (1− z).

There is an important interpretation of the pre-Bloch group in terms of a ho-
mology group. Let C 6=

∗ (S2) denote the subcomplex of C∗(S
2) consisting of tuples

of distinct elements. Recall that G = SL(2,C) acts on S2 = C ∪ {∞} by Möbius
transformations, that is (

a b
c d

)
z =

az + b

cz + d
.

This action is 3-transitive and four distinct points z0, . . . , z3 are determined up to the
action by the cross-ratio (in [3] and [7] the cross-ratio is defined to be the reciprocal
of (1.2)).

(1.2) z = [z0 : z1 : z2 : z3] :=
(z0 − z3)(z1 − z2)

(z0 − z2)(z1 − z3)
.

This means that C 6=
3 (S2)G is just the free abelian group on C\{0, 1}. Using (1.2),

one easily checks that the five term relation is equivalent to the relation

4∑

i=0

[[z0 : · · · : ẑi : · · · : z4]] = 0.

This means that the kernel of the cross-ratio map σ : C 6=
3 (S2) → P(C) is exactly

the boundaries. Since C 6=
2 (S2)G = Z by 3-transitivity, C 6=

3 (S2)/G consists entirely of
cycles, and σ induces an isomorphism

σ : H3(C
6=
∗ (S2)G) → P(C).

We have the following relations in the pre-Bloch group (see [7])

[x] =

[
1

1− x

]
=

[
1−

1

x

]
= −

[
1

x

]
= −

[
x

x− 1

]
= −[1− x].

If we extend the cross-ratio by setting [z0 : z1 : z2 : z3] = 0 if there are equals among
z0, . . . , z3, it follows from the above relations that σ can be extended toH3(C∗(S

2)G).
We omit the details. We can now define a map

λ : H3(G) → P(C)
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as the composition

H3(G) //H3(C∗(S
2)G)

σ //P(C)

where the left map is induced by

C3(G) → C3(S
2) , (g0, . . . , g3) 7→ (g0∞, g1∞, g2∞, g3∞).

In [7] it is shown that λ has image in the Bloch group, and that the following
sequence, which is essentially due to Bloch and Wigner, is exact.

(1.3) 0 //Q/Z //H3(G)
λ //B(C) // 0

Using the isomorphism Q/Z = lim
−→
Z/nZ = lim

−→
H3(Z/nZ), the left map is the limit

map induced by the maps Z/nZ→ G given by sending 1 to the matrix of a rotation
by 2π/n.

1.4. Rogers’ Dilogarithm. We here review a result in [3] relating the C-C-S class

P̂1 to a dilogarithm function via the Bloch group.
Rogers’ dilogarithm is the following function defined on the open interval (0, 1).

(1.4) L(z) = −
1

2
Log(z) Log

( 1

1− z

)
+ Li2(z)−

π2

6

Here Li2(z) = −
∫ z

0
Log(1−t)

t
is the classical dilogarithm function. Note that we have

subtracted π2

6
from the original Rogers’ dilogarithm. L is real analytic and satisfies

the functional equations

L(x) + L(1− x) = −
π2

6
,

(1.5) L(x)− L(y) + L
(y
x

)
− L

(1− x−1

1− y−1

)
+ L

(1− x

1− y

)
= 0 , y < x.

We can extend L (discontinously) to R by setting

(1.6) L(x) =

{
−L(1/x) for x > 1

−L( x
x−1

) for x < 0
, L(1) = 0, L(0) = −

π2

6

and define a map L : C3(SL(2,R)) → R by

(1.7) (g0, . . . , g3) → L([g0∞ : · · · : g3∞]).

This is clearly well defined (recall that cross-ratios are defined to be zero when
there are equals) since all cross-ratios are real. Also, a few calculations using the
functional equations show that the map takes boundaries to multiples of π2/6, that
is, it is a 3-cocycle modulo π2/6. The theorem below can be found in [3].

Theorem 1.6. 1
4π2L equals the Cheeger-Chern-Simons class P̂1 modulo 1/24.

There is a minus sign in [3], but this is because of the different definition of the
cross ratio.

Since the restriction of the second Chern polynomial to the Lie algebra of SL(2,R)
is minus the Pontrjagin polynomial, it follows from Theorem 1.1 that we have a
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commutative diagram

H3(SL(2,R))
−P̂1 //

��

R/Z
��

H3(SL(2,C))
Ĉ2 //C/Z.

By Theorem 1.6, P̂1 is (modulo 1/24) just a dilogarithm via the Bloch group. We

wish to find a similar expression for Ĉ2 by extending L to H3(SL(2,C)). This is
partially solved in [3] by constructing a homomorphism c : B(C) → C/Q such that

the composition below is 2Ĉ2.

H3(SL(2,C))
λ //B(C)

c //C/Q
We shall improve this by showing that there is a commutative diagram

H3(SL(2,C))
bλ //

��

B̂(C)
bL //

��

C/Z
��

H3(SL(2,C))/(Q/Z)
λ //B(C)

c //C/Q
so that the top composition is 2Ĉ2. Here B̂(C) is Neumann’s extended Bloch group

(see [8] or Section 2 below). In other words, Ĉ2 is a dilogarithm via the extended

Bloch group exactly as P̂1 is a dilogarithm via the Bloch group.

2. The Extended Bloch Group

In this section we review Neumann’s definition of the extended Bloch group. The
main reference is [8]. Our presentation resembles that of Neumann, but because of a
few minor deviations, we give all the details for completeness and to avoid confusion.

We shall use the conventions that the argument Arg z of a complex number always
denotes the main argument (−π < Arg z ≤ π) and the logarithm Log z always
denotes the logarithm having Arg z as imaginary part.

The idea is to construct a Riemann surface Ĉ covering C\{0, 1} and then construct

the extended pre-Bloch group P̂(C) as in Definition 1.4, with an appropriate lift of
the five term relation.

Let Ĉ denote the universal abelian cover of C\{0, 1}. There is a nice way of

representing points in Ĉ. Let Ccut denote C\{0, 1} cut open along each of the
intervals (−∞, 0) and (1,∞) so that each real number r outside of [0, 1] occurs
twice in Ccut. We shall denote these two occurences of r by r + 0i and r − 0i

respectively. It is now easy to see that Ĉ is isomorphic to the surface obtained fromCcut × 2Z× 2Z by the following identifications:

(x+ 0i, 2p, 2q) ∼ (x− 0i, 2p+ 2, 2q) for x ∈ (−∞, 0)

(x+ 0i, 2p, 2q) ∼ (x− 0i, 2p, 2q + 2) for x ∈ (1,∞).

This means that points in Ĉ are of the form (z, p, q) with z ∈ C\{0, 1} and p, q even

integers. Note that Ĉ can be regarded as the Riemann surface for the functionC\{0, 1} → C2 , z 7→
(
Log z,Log

( 1

1− z

))
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We shall show below that L can be extended holomorphically to be defined on Ĉ,
and then we shall simply define the extended five term relation to be the smallest
possible extension of the relation (1.5).

Consider the set

FT :=
{(
x, y,

y

x
,
1− x−1

1− y−1
,
1− x

1− y

)}
⊂ (C\{0, 1})5

of five-tuples involved in the five term relation. Also let

FT0 =
{
(x0, . . . , x4) ∈ FT | 0 < x1 < x0 < 1

}

be the set of five-tuples involved in the functional equation (1.5). Define F̂T ⊂Ĉ × · · · × Ĉ to be the component of the preimage of FT that contains all points(
(x0; 0, 0), . . . , (x4; 0, 0)

)
with (x0, . . . , x4) ∈ FT0.

Definition 2.1. The extended pre-Bloch group P̂(C) is the abelian group generated

by symbols [z; p, q], with (z; p, q) ∈ Ĉ, subject to the relation

4∑

i=0

(−1)i[xi; pi, qi] = 0 for ((x0; p0, q0), . . . , (x4; p4, q4)) ∈ F̂T.

This relation is called the extended five term relation.

Definition 2.2. The extended Bloch group B̂(C) is the kernel of the homomorphism
(which is well defined by 2.3 below):

ν̂ : P̂(C) → C ∧C
defined on generators by [z; p, q] 7→ (Log z + pπi) ∧ (−Log(1− z) + qπi).

Our definition of the Bloch group may look different from Neumann’s, but in the
appendix we show that our definition is equivalent to Neumann’s definition of the
more extended Bloch group ([8, Section 8]). We thus answer affirmatively a question
raised in [8, page 443], about the relation of this group to H3(SL(2,C)).

Proposition 2.3. The map ν̂ is well defined.

Proof. If we apply ν to an element
∑4

i=0(−1)i[xi; pi, qi] with (x0, . . . , x4) = (x, y,
. . . ) ∈ FT0, we obtain after simplification:

(
(q0 − p2 − q2 + p3 + q3) Log x

+ (p0 − q3 + q4) Log(1− x) + (−q1 + q2 − q3) Log y

+ (−p1 + p3 + q3 − p4 − q4) Log(1− y) + (p2 − p3 + p4) Log(x− y)
)
∧ πi.

An elementary linear algebra computation shows that this is zero if and only if
p2 = p1 − p0 , p3 = p1 − p0 + q1 − q0 , q3 = q2 − q1 , p4 = q1 − q0, and q4 = q2 − q1 −
p0. The proposition now follows by analytic continuation from Lemma 4.17 in the
appendix. �

We now extend L to Ĉ. First note that the expression in (1.4) is well defined for
all z ∈ C\{0, 1}, and that L in this way becomes holomorphic except at real points
outside the interval between 0 and 1.
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Define

(2.1) L̂(z; p, q) = L(z) +
πi

2

(
q Log(z)− pLog

( 1

1− z

))
.

Remark 2.4. Neumann calls this map R (probably for Rogers), but in fact Rogers

originally called his dilogarithm L. Also, the name L̂ is more consistent with our
convention that all extended groups and maps be labelled with a hat.

Proposition 2.5 (Neumann). 1
2π2 L̂ gives a well defined and holomorphic map Ĉ→C/Z. Also the extended five term relation is a functional equation so that 1

2π2 L̂ gives

a homomorphism P̂(C) → C/Z.

Proof. If we follow a closed path from z going anti-clockwise around 0, then L̂(z; p, q)

is replaced by L̂(z; p, q) − πiLog( 1
1−z

) − qπ2 = L̂(z; p+ 2, q) − qπ2. Similarly, if

we follow a closed path from z going clockwise around 1, L̂(z; p, q) is replaced by

L̂(z; p, q)− πiLog(z) + 2πiLog(z) + pπ2 = L̂(z; p, q + 2) + pπ2. This is because the
discontinuity of Li2 at a real number r bigger than one is 2πiLog r, which is easily

verified. Since we are assuming that p and q are even, it follows that 1
2π2 L̂ is well

defined and holomorphic as a map to C/Z.
To prove the second assertion, note that if ((z0; p0, q0), . . . , (z4; p4, q4)) is a point

in F̂T then by analytic continuation

4∑

i=0

(−1)i 1

2π2
L̂(xi; pi, qi) = 0

as required. �

2.1. Geometry of the Extended pre-Bloch Group. We first recall some geo-
metric properties of the cross-ratio. Let z0, z1, z2, z3 be four distinct ordered points
in C ∪ {∞}. Regarding C ∪ {∞} as the boundary of the standard compactifi-
cation of hyperbolic 3-space H3, the four points define a unique ideal hyperbolic
simplex [z0, . . . , z3] which is determined up to orientation preserving congruence by
the cross-ratio

(2.2) z = [z0 : z1 : z2 : z3] :=
(z0 − z3)(z1 − z2)

(z0 − z2)(z1 − z3)
.

Clearly z ∈ C\{0, 1} and since [0 : ∞ : 1 : z] = z, every z ∈ C\{0, 1} can be realized
as the cross-ratio of an ideal hyperbolic simplex. It is well known that z is real if and
only if the four points lie on a circle (that is circle or straight line) and in this case
the simplex is called flat. For non-flat simplices, the imaginary part of z is positive
if and only if the orientation of the simplex induced by the ordering of the zi’s agrees
with the orientation of H3. There is a nice geometric interpretation of the argument
of z. If the imaginary part of z is greater than or equal to zero then Arg z is the
dihedral angle of the simplex corresponding to the edge [z0z1]. Otherwise, that is if
the orientation disagrees with the orientation of H3, it is minus the dihedral angle.

It easily follows from (2.2) that an even permutation of the zi’s replaces z by one
of three so-called cross-ratio parameters.

z , z′ =
1

1− z
, z′′ = 1−

1

z
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In particular the dihedral angle corresponding to the edges [z1z2] and [z1z3] are
Arg(z′) and Arg(z′′) respectively, (or their negatives if the vertex ordering does not
agree with the orientation of H3). Since a product of two disjoint transpositions
clearly keeps the cross-ratio fixed, we see that the dihedral angles of opposite edges
are the same. Note that since zz′z′′ = −1 the sum of the dihedral angles is always π.
This is not surprising since a horosphere at an ideal vertex of a hyperbolic simplex
intersects the simplex in a euclidean triangle.

Definition 2.6. A combinatorial flattening of an ideal simplex with cross-ratio z is
a triple (w0, w1, w2) of complex numbers with w0 + w1 + w2 = 0, where w0 and w1

are choices of logarithms of z and z′. We call w0, w1, and w2 log-parameters.

Note that w2 − πi is a choice of logarithm of z′′. Because of the relation to the
dihedral angles, this explains the name combinatorial flattening. Note that the set

of combinatorial flattenings of ideal simplices is in bijective correspondence with Ĉ
by the map l given by

(2.3) l(w0, w1, w2) =
(
z;
w0 − Log z

πi
,
w1 − Log( 1

1−z
)

πi

)

where z = ew0 . This means that the extended pre-Bloch group can be regarded as
being generated by combinatorial flattenings of ideal simplices, whereas the Bloch
group can be regarded as being generated by congruence classes of ideal simplices.
Let us discuss the five term relation in this geometric setup.

Suppose (w0, w1, w2) is a combinatorial flattening of an ideal simplex [z0, . . . , z3].
Then we can assign log-parameters to each edge in such a way that w0 is assigned to
the edge [z0z1], w1 to the edge [z1z2] and w2 to the edge [z1z3]. The three remaining
edges are assigned the same log-parameter as their opposite edge, see Figure 1.
Let z0, . . . , z4 be five distinct points in C ∪ {∞} and let ∆i denote the simplices

z0 z1

z2z3 w0

w0

w1 w1

w3w3

Figure 1. Assignment of log-parameters to edges of an ideal simplex.

[z0, . . . , ẑi, . . . , z4]. Using (2.2), it is easy to see that the cross-ratios xi of ∆i can be
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expressed in terms of x := z0 and y := z1 as follows:

x0 = [z1 : z2 : z3 : z4] := x

x1 = [z0 : z2 : z3 : z4] := y

x2 = [z0 : z1 : z3 : z4] =
y

x

x3 = [z0 : z1 : z2 : z4] =
1− x−1

1− y−1

x4 = [z0 : z1 : z2 : z3] =
1− x

1− y

Suppose (wi
0, w

i
1, w

i
2) are combinatorial flattenings of the simplices ∆i. Then every

edge [zizj ] belongs to exactly three of the ∆i’s and is therefore assigned three log-
parameters.

Definition 2.7. Let (wi
0, w

i
1, w

i
2) be combinatorial flattenings of five simplices ∆i =

[z0, . . . , ẑi, . . . , z4]. The flattenings are said to satisfy the flattening condition if for
each edge the signed sum of the three assigned log-parameters is zero (the sign is
positive if and only if i is even).

It follows directly from the definition that the flattening condition is equivalent
to the following ten equations.

[z0z1] : w2
0 − w3

0 + w4
0 = 0 [z0z2] : −w1

0 − w3
2 + w4

2 = 0

[z1z2] : w0
0 − w3

1 + w4
1 = 0 [z1z3] : w0

2 + w2
1 + w4

2 = 0

[z2z3] : w0
1 − w1

1 + w4
0 = 0 [z2z4] : w0

2 − w1
2 − w3

0 = 0

[z3z4] : w0
0 − w1

0 + w2
0 = 0 [z3z0] : −w1

2 + w2
2 + w4

1 = 0

[z4z0] : −w1
1 + w2

1 − w3
1 = 0 [z4z1] : w0

1 − w2
2 − w3

2 = 0

Recall that combinatorial flattenings are in one to one correspondence with points

in Ĉ via the map l in (2.3).

Theorem 2.8 (Neumann). Flattenings (wi
0, w

i
1, w

i
2) satisfy the flattening condition

if and only if
∑4

i=0(−1)i[l(w0, w1, w2)] = 0 in P̂(C).

Proof. Let l(wi
0, w

i
1, w

i
2) = [xi; pi, qi]. By analytic continuation, it is enough to con-

sider (x0, . . . , x4) ∈ FT0. Using the definition of the map l, we see that the ten equa-
tions above are equivalent to ten similar equations in the pi’s and qi’s, and by linear
algebra, these are easily seen to be equivalent to the equations p2 = p1 − p0 , p3 =
p1− p0 + q1 − q0 , q3 = q2− q1 , p4 = q1− q0, and q4 = q2− q1− p0. By Lemma 4.17,
this is equivalent to

∑4
i=0(−1)i[xi; pi, qi] = 0. �

This means that the flattening condition is actually equivalent to the extended
five term relation.

3. Mappings via Configurations in C2

In this section we explore the idea that the extra information needed to remove
the Q/Z indeterminacy in Dupont’s formula for the C-C-S class Ĉ2 can be detected
by configurations in C2 instead of S2. Let h denote the Hopf map h : C2\{0} →
S2 = C ∪ {∞} given by

(z, w) 7→ z/w.
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We will show that for certain tuples (v0, . . . , v3) of points in C2, there is a natural
choice of combinatorial flattening of the ideal simplex [hv0, . . . , hv3]. This means

that such a tuple gives an element in P̂(C). We also describe a way of associating
such a tuple to a tuple of group elements in such a way that we obtain a map

λ̂ : H3(G) → P̂(C).

Recall from Section 1.3 that there is a map σ : C 6=
∗ (S2)G → P(C). We saw that

boundaries were mapped to zero and that the induced map

σ : H3(C
6=
∗ (S2)G) → P(C)

is an isomorphism. We shall elaborate on this and construct a G-complex Ch 6=
∗ (C2)

and a map σ̂ : Ch 6=
3 (C2)G → P̂(C) giving rise to a commutative diagram

(3.1)

H3(C
h 6=
∗ (C2)G)

bσ //

h

��

P̂(C)

��

H3(C
6=
∗ (S2)G)

σ //P(C).

We define the complex Ch 6=
∗ (C2) as the subcomplex of C∗(C2\{0}) consisting of

tuples mapping to different elements in S2 by the Hopf map h. It is easy to see that
the natural G-action on C2 is h-equivariant. This means that h induces a G-map
Ch 6=
∗ (C2) → C 6=

∗ (S2) and hence a map

h : H3(C
h 6=
∗ (C2)G) → H3(C

6=
∗ (S2)G).

3.1. Mapping to the Extended pre-Bloch Group. We now assign to each
4-tuple (v0, v1, v2, v3) ∈ Ch 6=

3 (C2) a combinatorial flattening of the ideal simplex
[hv0, hv1, hv2, hv3] in such a way that the combinatorial flattenings assigned to tu-
ples (v0, . . . , v̂i, . . . v4) satisfy the flattening condition. This will give us a map

σ̂ : H3(C
h 6=
∗ (C2)G) → P̂(C).

The key step is to observe that the cross-ratio parameters z and 1
1−z

of a simplex
[hv0, hv1, hv2, hv3] can be expressed in terms of determinants.

z := [hv0 : hv1 : hv2 : hv3] =

v1

0

v2

0

−
v1

3

v2

3

v1

0

v2

0

−
v1

2

v2

2

v1

1

v2

1

−
v1

2

v2

2

v1

1

v2

1

−
v1

3

v2

3

=
det(v0, v3) det(v1, v2)

det(v0, v2) det(v1, v3)

where the upper indices refer to first or second coordinate in C2, respectively. Sim-
ilarly,

1

1− z
= [hv1 : hv2 : hv0 : hv3] =

v1

1

v2

1

−
v1

3

v2

3

v1

1

v2

1

−
v1

0

v2

0

v1

2

v2

2

−
v1

0

v2

0

v1

2

v2

2

−
v1

3

v2

3

=
det(v1, v3) det(v0, v2)

det(v0, v1) det(v2, v3)

Since obviously hvi 6= hvj if and only if det(vi, vj) 6= 0, all these determinants are
non-zero. This suggests that we can assign a flattening to (v0, v1, v2, v3) by setting

w0 = Log det(v0, v3) + Log det(v1, v2)− Log det(v0, v2)− Log det(v1, v3)

w1 = Log det(v0, v2) + Log det(v1, v3)− Log det(v0, v1)− Log det(v2, v3)

w2 = Log det(v0, v1) + Log det(v2, v3)− Log det(v0, v3)− Log det(v1, v2)



12 JOHAN L. DUPONT AND CHRISTIAN K. ZICKERT

This defines a map σ̂ : Ch 6=
3 (C2) → P̂(C) by

(3.2) (v0, v1, v2, v3) 7→ [l(w0, w1, w2)].

Now suppose (w0
0, w

0
1, w

0
2), . . . , (w

4
0, w

4
1, w

4
2) are flattenings defined as above of sim-

plices [hv0, . . . , ĥvi, . . . , hv4]. We must check that these flattenings satisfy the flat-
tening condition. This is equivalent to checking that all the ten equations stated
below Definition 2.7 are satisfied. We check the first of these and leave the others
to the reader. Using the notation (v, w) := Log det(v, w) we have:

w2
0 = (v0, v4) + (v1, v3)− (v0, v3)− (v1, v4)

w3
0 = (v0, v4) + (v1, v2)− (v0, v2)− (v1, v4)

w4
0 = (v0, v3) + (v1, v2)− (v0, v2)− (v1, v3)

and it follows that the equation w2
0 − w3

0 + w4
0 = 0 is satisfied.

Having verified all the ten equations, it now follows from Theorem 2.8 that σ̂
sends boundaries to zero. Since σ̂ is obviously a G-map, we thus obtain a map

σ̂ : H3(C
h 6=
∗ (C2)G) → P̂(C).

It is clear that the diagram below is commutative.

(3.3)

H3(C
h 6=
∗ (C2)G)

bσ //

h

��

P̂(C)

��

H3(C
6=
∗ (S2)G)

σ //P(C)

Proposition 3.1. The image of σ̂ : H3(C
h 6=
∗ (C2)G) → P̂(C) is in B̂(C).

Proof. Define a map C 6=
2 (C2)G → C ∧C by

(v0, v1, v2) 7→ (v0, v1) ∧ (v0, v2)− (v0, v1) ∧ (v1, v2) + (v0, v2) ∧ (v1, v2)

where we still use the notation (v, w) := Log det(v, w). A straightforward (but quite
cumbersome) calculation shows that the diagram below is commutative.

Ch 6=
3 (C2)G

bσ //

∂

��

P̂(C)

bν

��

C 6=
2 (C2)G

//C ∧C
This means that cycles are mapped to B̂(C) as desired. �

3.2. The Map from H3(G). In this section we shall construct a map λ̂ : H3(G) →

P̂(C) via the group H3(C
h 6=
∗ (C2)G). To define this map explicitly we need to restrict

to a subcomplex of C∗(G).

Definition 3.2. A chain in C∗(G) is called good if all its tuples satisfy gi 6= ±gj ,
and v-good (v ∈ C2) if all its tuples satisfy det(giv, gjv) 6= 0. The G-complexes of
good and v-good chains are denoted Cgood

∗ (G) and Cv
∗ (G) respectively.
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By Lemma 1.3, Cgood
∗ (G) and Cv

∗ (G) are both acyclic, and therefore both calculate
the homology of G. We can therefore identify H3(G) with H3(C

good
∗ (G)G). Consider

the G-maps

Ψv : Cn(G) → Cn(C2) (g0, . . . , gn) 7→ (g0v, . . . , gnv)

conjg : Cn(G) → Cn(C2) (g0, . . . , gn) 7→ (gg0g
−1, . . . , ggng

−1).

Note that if σ is in Cv
∗ (G)G then conjg(σ) is in Cgv

∗ (G)G and we have

(3.4) Ψgv(conjg(σ)) = Ψv(σ).

It is clear that Ψv takes v-good chains to Ch 6=
n (C2).

Lemma 3.3. Let g1 6= ±g2 ∈ G. The subset

{v ∈ C2 | det(g1v, g2v) 6= 0} ⊂ C2

is open and dense.

For a good chain σ belonging to either Cgood
∗ (G) or Cgood

∗ (G)G consider the set

Sσ = {v ∈ C2 | σ is v-good}.

Since finite intersections of dense open subsets is dense open, it follows from Lemma
3.3 that Sσ is dense open. In other words, any good chain is also a v-good chain for
almost all v ∈ C2. The following is a simple consequence of (3.4).

Theorem 3.4. Let σ ∈ Cgood
∗ (G)G be a cycle. The cohomology class of Ψv(σ) is

independent of v ∈ Sσ.

We can now define a map H3(G) → H3(C
h 6=
∗ (C2)G) by

(3.5) [σ] 7→ [Ψv(σ)] , v ∈ Sσ.

Theorem 3.5. The diagram below is commutative.

H3(G)
Ψv //

��

H3(C
h 6=
∗ (C2)G)

h

((Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

H3(G)/Q/Z λ //P(C) H3(C
6=
∗ (S2)G)

σoo

Proof. The map in 3.5 obviously coincides with the map

(3.6) H3(G) ≈ H3(C
v
∗ (G)G)

Ψv //H3(C
h 6=
∗ (C2)G).

The theorem now follows from (3.6) with v =
(

1
0

)
, since h

(
1
0

)
= ∞. �

We can now define λ̂ as the composition

(3.7) H3(G) //H3(C
h 6=
∗ (C2)G)

bσ // B̂(C).



14 JOHAN L. DUPONT AND CHRISTIAN K. ZICKERT

4. Relation with the Cheeger-Chern-Simons Class

In this section we relate the maps constructed above to the Cheeger-Chern-Simons
class Ĉ2. Our goal is to prove

Theorem 4.1. − 1
2π2 L̂ ◦ λ̂ = 2Ĉ2.

Let H3(G)± denote the subgroups {x ∈ H3(G) | τx = ±x} where τ is the involu-
tion induced by complex conjugation. We shall refer to these subgroups as the real
and the imaginary parts of H3(G).

The following is easy.

Proposition 4.2. 1
2π2 L̂ ◦ λ̂ is equivariant under complex conjugation.

From Theorem 1.1, Ĉ2 is also equivariant under conjugation, and since H3(G)
is divisible by a result in [7], it is enough to study the real and imaginary parts
separately.

4.1. The Imaginary Part. It is well known that the volume of an ideal simplex
with cross-ratio z is given by

Vol(z) = Arg(1− z) Log |z| − Im

∫ 1

0

Log(1− tz)

t
dt.

Also, the five term relation (1.1) is a functional equation for Vol, which means that
Vol is well defined on the pre-Bloch group. We recall from [3]:

Theorem 4.3. Im Ĉ2 = − 1
4π2 Vol ◦λ.

Proposition 4.4. The imaginary part of L̂ : B̂(C) → C/
2π2Z gives volume.

Proof. Let τ =
∑

(−1)εi [zi; pi, qi] ∈ B(C). Since

Im L̂(z; p, q) =
1

2

(
Arg(z) Log |1− z| + Log |z|Arg(1− z)

)

− Im

∫ 1

0

Log(1− tz)

t
dt+

π

2
pLog |1− z|+

π

2
q Log |z|

we have

Vol(z)− Im L̂(z; p, q) =
1

2

(
Log |z|Arg(1− z)− Arg(z) Log |1− z|

)

−
π

2
pLog |1− z| −

π

2
q Log |z|.

Let φ denote the compositionC ∧C = R ∧R⊕ iR ∧ iR⊕R⊗ iR→ R⊗ iR→ iR
where the left map is projection and the right map is multiplication. A simple
calculation shows that

φ
(
ν([z; p, q])

)
= − Log |z|Arg(1− z) + Arg(z) Log |1− z|

+ pπ Log |1− z|+ qπ Log |z| = −2
(
Vol(z)− Im L̂(z; p, q)

)
.

Since ν(τ) = 0, we have Vol(τ) = Im L̂(τ) as desired. �
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4.2. The Real Part. Let GR = SL(2,R). The key step is the following theorem
by Dupont, Parry, and Sah (see [6] and [10]).

Theorem 4.5. The inclusion GR → G induces an isomorphism

H3(GR) ≈ H3(G)+.

This means that it is enough to study real cycles. The idea is that every homology

class in H3(GR) has a representative such that the image of L̂ ◦ λ̂ is the same as the
image of the cocycle L from (1.7).

Definition 4.6. An element
(

a b
c d

)
∈ GR is called positive if c is positive and non-

zero if c is non-zero. A chain in Bn(GR) is called positive if all its group elements
are positive.

If (g1, g2, g3) is a triple of positive elements that are so small (close to the identity)
that also g1g2, g2g3 and g1g2g3 are positive, we have

• (v0, v1, v2, v3) := (
(

1
0

)
, g1

(
1
0

)
, g1g2

(
1
0

)
, g1g2g3

(
1
0

)
) is in Ch 6=

3 (C2).
• det(vi, vj) > 0 for i 6= j.

This means that the log-parameters w0, w1, w2 associated to (v0, . . . , v3) are all pos-
itive, and l(w0, w1, w2) = (ew0 ; 0, 0). So if α is a positive representation of a class in
H3(GR) with all group elements sufficiently small then

(4.1)
1

2π2
L̂ ◦ λ̂(α) =

1

2π2
L(α).

As we shall see below, every homology class in H3(GR) can be represented by a
cycle with all group elements arbitrarily small. The following is essentially just an
application of barycentric subdivision, and we refer to [3] for a proof.

Lemma 4.7. Let H be a contractible Lie group and U a neighborhood of the identity.

Every cycle in B∗(H) is homologous to a cycle consisting of elements in U .

Let G̃R be the universal covering group of GR. Parry and Sah analyse the
Hochshild-Serre spectral sequence for the exact sequence

0 → Z→ G̃R → GR → 0

and obtain (see [9]):

Proposition 4.8. H3(G̃R) → H3(GR) is surjective.

Since GR is homotopy equivalent to a circle, G̃R is contractible, and by Lemma
4.7 and Proposition 4.8, every homology class in H3(GR) has a representative with
all group elements arbitrarily small.

We now show that every small cycle in B3(GR) is homologous to a small and
positive cycle.

Define an ordering of elements in GR by

g1 < g2 ⇐⇒ g−1
1 g2 is positive.

This ordering is neither total nor transitive, but as we shall see, this can be fixed.
The following is simple:

Lemma 4.9. For every natural number n there exists an open neighborhood Un of

the identitity in GR satisfying that any product of up to n positive elements in Un is

positive.
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Throughout we fix neighborhoods Un as above.

Definition 4.10. Let k ≤ n. A k-chain in Bk(GR) is called a Un-k-chain if all its
group elements are non-zero and lie in Un. A k-chain in Cn(GR) is called a Un-k-
chain if it maps to a Un-k-chain in Bn(GR). The set of Un-k-chains in Cn(GR) is
denoted Ck(GR)Un

.

Proposition 4.11. Let g0, . . . , gn be non-zero elements in Un. There exists a unique
permutation σ ∈ Sn+1 such that gσ(0) < · · · < gσ(n).

Proof. The restriction of the ordering to {g0, . . . , gn} is clearly transitive, and since(
a b
c d

)−1
=

(
d −b
−c a

)
, we have either gi < gj or gi > gj . This means that we can use the

bubble sort algorithm to sort the gi’s and thereby produce the desired permutation.
�

We thereby obtain GR-maps

Ψk : Ck(GR)Un
→ Ck(GR)Un

.

Proposition 4.12. Let τ be a Un-k-cycle, k ≤ n. Then ψ ◦ π(τ) and τ are homol-

ogous, that is, every Un-k-cycle is homologous to a positive Un-k-cycle.

Proof. By the uniqueness in Proposition 4.11, the maps Ψk give rise to a chain map in
dimensions up to n. By a standard argument, there exist GR-maps Sk : Ck(GR)Un

→
Ck+1(GR), k = 0, . . . , n such that

∂Sk + Sk−1∂ = Ψk − id.

This proves the assertion. �

Definition 4.13. An element in SL(2,R) is called small if it lies in U3.

Summing the above, we have proved

Proposition 4.14. Every homology class in H3(SL(2,R)) has an inhomogenous

representative consisting of small, positive elements.

Proof of Theorem 4.1. By equation (4.1), Proposition 4.4 and Theorems 4.3 and 1.6,

we have that − 1
2π2 L̂ ◦ λ̂− 2Ĉ2 has image in 1

12
Z/Z = Z/12Z. As mentioned earlier

H3(G) is divisible, which means that it has no finite quotient. Thus 2Ĉ2 = − 1
2π2 L̂◦ λ̂

as required. �

The rest of this section is devoted to a proof of Theorem 4.15 below, but in order
to prove this theorem, we need to recall some properties of Ĉ2 and the relationship

between B̂(C) and B(C).
Recall from (1.3) that Q/Z can be regarded as a subgroup of H3(SL(2,C)). The

restriction of Ĉ2 to this subgroup is just the inclusion of Q/Z in C/Z. In other
words, we have a commutative diagram

(4.2)

Q/Z �

�

//

i &&M

M

M

M

M

M

M

M

M

M

H3(SL(2,C))

Ĉ2

��C/Z.
For a proof of this see [5, Theorem 10.2 and the remarks on page 60].



Neumann shows in [8] that B̂(C) and B(C) are related by an exact sequence

(4.3) 0 //Q/Z bχ
// B̂(C) //B(C) // 0

where χ̂ is the map given by

χ̂(z) = [e2πiz; 0, 2]− [e2πiz; 0, 0].

Theorem 4.15. The map λ̂ : H3(SL(2,C)) → B̂(C) is surjective with kernel Z/2Z.

Proof. Suppose λ̂(α) = 0. By composing with the map to B(C), we see from (1.3)
that α is in Q/Z. By (4.2) and Theorem 4.1, we have

0 = −
1

2π2
L̂ ◦ λ̂(α) = 2Ĉ2(α) = 2α.

Hence, α is either zero or the unique element in Q/Z of order 2.

Let α ∈ B̂(C). A simple calculation shows that we have

−
1

2π2
L̂ ◦ χ̂ = i,

and using (4.2) we get a commutative diagram

(4.4)

Q/Z //

2bχ &&L

L

L

L

L

L

L

L

L

L

H3(SL(2,C))

bλ
��

B̂(C).

Let π denote the natural map B̂(C) → B(C), and let x be an element inH3(SL(2,C))
satisfying π(α) = λ(x). By (4.3), there exists z in Q/Z such that

λ̂(x)− α = χ̂(z),

and by (4.4), we have λ̂(x− 1
2
z) = α. �

Appendix

We conclude by proving that our definition of B̂(C) is equivalent to Neumann’s
definition of the more extended Bloch group EB(C). Recall the definition of FT
from Section 2. Neumann defines

FT+ := {(x0, . . . , x4) ∈ FT | Im xi > 0}

and defines F̂T (which we will denote F̂TNeu to avoid confusion) to be the component
of the preimage of FT that contains all points

(4.5)
(
(x0; p0, q0), (x1; p1, q1), (x2; p1 − p2, q2),

(x3; p1 − p0 + q1 − q0, q2 − q1), (x4; q1 − q0, q2 − q1 − p0)
)

with (x0, . . . , x4) ∈ FT+ and the pi’s and qi’s even integers. He then defines the
more extended Bloch group EB(C), as in Definition 2.1, to be the abelian group
generated by symbols [z; p, q], subject to the relation

4∑

i=0

(−1)i[xi; pi, qi] = 0 for
(
(x0; p0, q0), . . . , (x4; p4, q4)

)
∈ F̂TNeu.

17



Proposition 4.16. B̂(C) = EB(C).

This follows immediately from

Lemma 4.17. F̂TNeu = F̂T.

Proof. Let (x0, . . . , x4) be a fixed point in FT+ and let

P = ((x0; 0, 0), . . . , (x4; 0, 0)) ∈ F̂TNeu.

Consider the curve in F̂TNeu starting in P obtained by keeping x1 fixed and letting
x0 move along a closed curve in C−{0, 1, x1}. By a simple analysis of the five term
relation, we can examine exactly how the values of the pi’s and qi’s change when x0

moves around. This is indicated in Figure 2. We see that if x0 traverses a closed
curve going p0 times anticlockwise around the origin, followed by q0 times clockwise

around 1, followed by r times clockwise around x1, then the curve in F̂TNeu ends in
(
(x0; 2p0, 2q0), (x1; 0, 0), (x2;−2p0, 2p0 + 2r),

(x3;−2p0 − 2q0, 2p0 + 2r), (x4;−2q0, 2r)
)

If we start in this point and then follow the curve in F̂TNeu obtained by keeping x0

fixed and letting x1 traverse a curve going p1 times anticlockwise around the origin
followed by q1 times clockwise around 1, a similar study shows that we end up at
the point

Q =
(
(x0; 2p0, 2q0), (x1; 2p1, 2q1), (x2;−2p0 + 2p1, 2p0 + 2r),

(x3;−2p0 − 2q0 + 2p1 + 2q1, 2p0 − 2q1 + 2r), (x4;−2q0 + 2q1,−2q1 + 2r)
)

By letting q2 = 2r + 2p0 we see that Q is of the form (4.5). Since we can connect

P to a point in F̂T by first sliding x0 down to the interval (0, 1) and then doing the
same with x1, the lemma follows. �

O

x1

1

x0

p0

p2

p3
p4

q0

q2

q4

q3

Figure 2. The relevant values of pi and qi increase by 2 whenever x0

crosses the relevant line in the direction indicated by the arrows.

18



References

[1] J. Cheeger, J. Simons, Differential characters and geometric invariants, Springer Lecture
Notes in Mathematics 1167 (1985) 50–80

[2] S.-S. Chern, J. Simons, Characteristic forms and geometric invariants, Ann. of Math. (2) 99

(1974) 48–69
[3] J. Dupont, The dilogarithm as a characteristic class for flat bundles, J. Pure and Applied

Algebra 44 (1987) 137–164
[4] J. Dupont, Curvature and Characteristic Classes, Lecture Notes in Mathematics 640,

Springer-Verlag (1978)
[5] J. Dupont, Scissors Congruences, Group Homology and Characteristic classes, Nankai Tracts

in Mathematics 1, World Scientific (2001)
[6] J. Dupont, W. Parry, C.-H. Sah, Homology of classical Lie groups made discrete, II, J. Pure

and Applied Algebra 25 (1982), 215–260
[7] J. Dupont, C.-H. Sah, Scissors congruence, II, J. Pure and Applied Algebra 25 (1982) 159–195
[8] W. D. Neumann, Extended Bloch group and the Cheeger-Chern-Simons class, Geometry and

Topology 8 (2004) 413–474
[9] W. Parry, C.-H. Sah, Third homology of SL(2,R) made discrete, J. Pure and Applied Algebra

30 (1983) 181–209
[10] C.-H. Sah, Homology of Lie groups made discrete, III, J. Pure and Applied Algebra 56 (1989),

269–312

Department of Mathematics, University of Aarhus, DK-8000 Århus, Denmark
E-mail address, J. L. Dupont: dupont@imf.au.dk

Department of Mathematics, University of Aarhus, DK-8000 Århus, Denmark
E-mail address, C. K. Zickert: zickert@imf.au.dk

19


