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EQUIDISTRIBUTION OF GEODESICS ON HOMOLOGY CLASSES

AND ANALOGUES FOR FREE GROUPS

YIANNIS N. PETRIDIS AND MORTEN S. RISAGER

Abstract. We investigate how often geodesics have homology in a fixed set of the
homology lattice of a compact Riemann surface. We prove that closed geodesics
are equidistributed on a random set of homology classes and certain arithmetic
sets. We explain the analogues for free groups, conjugacy classes and discrete
logarithms, in particular, we investigate the density of conjugacy classes with
relatively prime discrete logarithms.

1. Introduction

Let M be a compact Riemann surface of genus g > 1 and let π(T ) denote the
number of prime closed geodesics γ on M whose length lγ is at most T . Huber [9]
and Selberg [23] proved the prime geodesic theorem

(1.1) π(T ) ∼ eT

T
, as T →∞.

In this paper we investigate how the prime geodesics are distributed among the
homology classes β ∈ Z2g

ψ≃H1(M,Z). If ψ̃ : Γ → H1(M,Z) is the map of the

fundamental group to the first homology group, we let φ = ψ−1 ◦ ψ̃. For a set
A ⊆ Z2g we will consider to what extend

(1.2) πA(T ) = #{{γ}|γ prime lγ ≤ T, φ(γ) ∈ A}
depends on the set A. We recall that to every conjugacy class {γ} ⊂ Γ corresponds
a unique closed oriented geodesic on M of lenght lγ . We will say that the prime
geodesics are equidistributed on a set A ⊆ Z2g if

(1.3)
πA(T )

π(T )
→ d(A), as T →∞,

where d(A) is the natural density of A in Z2g. This only makes sense if the natural
density d(A)

(1.4) d(A) = lim
T→∞

#{α ∈ A, |αi| ≤ T, i = 1, . . . , 2g}
#{α ∈ Z2g, |αi| ≤ T, i = 1, . . . , 2g}

exists. Our main result is the following theorem:

Theorem 1.1. The prime geodesics on a compact Riemann surface of genus g > 1
are equidistributed on a random set.
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2 YIANNIS N. PETRIDIS AND MORTEN S. RISAGER

For a precise definition in terms of probability of the notion of random set see
the introduction to Theorem 2.14. We note that a random set has natural density
1/2. To prove Theorem 1.1 we need to exhibit cancellation in certain exponential
sums related to the random set (See Definition 2.6). This kind of cancellation can
be verified also for certain individual sets. We get the following result:

Theorem 1.2. The prime geodesics on a compact Riemann surface of genus g > 1
are equidistributed on

(i) Finite sets.
(ii) Shifted sublattices ~a+ L of Z2g, where ~a ∈ Z2g and L ⊂ Z2g is a lattice.
(iii) The set of lattice points with coprime coordinates.

Remark 1.3. The natural density is zero for the first type of sets (finite), 1/vol(Z2g/L)
for the second type of sets, and ζ(2g)−1 for (iii) by Cesaro’s classic result [5]. In
all cases where we can prove equidistribution we can get error terms for the rate of
convergence in 1.3 but to improve readability we have chosen not make this point
explicit in the proofs.

Remark 1.4. The proof of Theorems 1.1 and 1.2 uses the Selberg trace formula with
characters as used in [18]. We combine this approach with ideas from [25], where
the stationary phase argument used in [18] is simplified to make more transparent
the dependence on the homology class. This idea seems to go a back at least to
[20]. As an intermediate step toward proving Theorems 1.1 and 1.2 we get strong
improvements on average of the local limit theorem of Sharp [24] (see Theorem 2.10).
We need also one new ingredient (Corollary 4.5, Lemma 4.4), which tells us that
certain averages over A of appropriate functions converge to the density of A.

Remark 1.5. For sets containing exactly one element α the counting function πα(T )
was studied by Adachi and Sunada [2, 1] and Phillips and Sarnak [18], as well as
many others. Phillips and Sarnak found the full asymptotic expansion with leading
term

(1.5) πα(T ) ∼ (g − 1)g
eT

T g+1
, as T →∞.

In particular the leading term, in contrast to the lower order terms, does not depend
on α. The dependence on α in the lower order terms has been considered in [12, 25],
but the results are not strong enough to handle equidistribution for sets of positive
density by simply summing up asymptotics. Equation (1.5) is a much stronger
statement than Theorem 1.2 (i), since one cannot recover the main term in (1.5)
from Theorem 1.2 (i). For sets of positive natural density Theorems 1.1 and 1.2
gives precise information about the asymptotic behaviour of πA(T ). Theorem 1.2
(ii) follows also from the Chebotarev density theorem for closed geodesics (see [22,
15, 26]) in the case of abelian covers. The error terms obtained in this way do not
seem to be good enough to take linear combinations (inclusion exclusion) to get
Theorem 1.2 (iii). The general set A in Theorem 1.1 carries no group like structure
and seems out of reach using variants of the Chebotarev density theorem.

Theorems 1.1 and 1.2 have analogues for free groups (and other hyperbolic groups).
Let now Γ = F (A1, . . . , Ak), k ≥ 2 be the free group on k generators. The words
γ ∈ Γ can be counted according to their word length wl (γ) and one finds (see
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[16, 19]) that the function Π(m) counting conjugacy classes {γ} in Γ with length at
most m satisfies

(1.6) Π(m) ∼ q

q − 1

qm

m
, as m→∞,

which is the analogue of (1.1). Here q = 2k − 1. We define discrete logarithms on
the generators

(1.7)
logj : Γ → Z

Ai 7→ δij .

The above definition extends to Γ by requiring that logj is an additive homomor-
phism. Hence logj counts the number of occurrences (with signs) of the generator
Aj. We let

(1.8)
Φ : Γ → Z

k

γ 7→ (log1(γ), . . . , logk(γ)).

This is the map to the abelianization of Γ exactly as φ, and it is well-defined on
conjugacy classes. We therefore think of the images of Φ as analogous to homology
classes in M (they are homology classes for a certain graph constructed in 3.1). We
investigate how conjugacy classes of the free group are distributed in the lattice Zk.
For B ⊆ Z

k we consider

(1.9) ΠB(m) = #{{γ} ∈ {Γ}|wl ({γ}) ≤ m,Φ({γ}) ∈ B},
where {Γ} is the set of conjugacy classes of Γ. We will say that the conjugacy classes
are equidistributed on a set B ⊆ Zk if

(1.10)
1

2

(

ΠB(m)

Π(m)
+

ΠB(m+ 1)

Π(m+ 1)

)

→ d(B), as m→∞.

As in 1.3 this only makes sense if the natural density d(B) exist. The fact that we
look at averages over m and m+ 1 turns out to be natural. See Remark 1.8 below.

Theorem 1.6. The free group elements are equidistributed on random sets and

(i) Finite sets.
(ii) Shifted sublattices ~a+ L of Zk, where ~a ∈ Zk and L ⊂ Zk is a lattice.
(iii) The set of lattice points with coprime coordinates.

Remark 1.7. The main idea in the proof of Theorem 1.6 is to analyze the relevant
counting functions

(1.11)
∑

γ∈Γ
wl(γ)≤m

χ(γ),

(the sum only runs over cyclically reduced words) where χ is a character on Γ, using
an identity due to Ihara. This identity gives an expression for the generating function
for χ(γ) as a rational function. This enables us to give asymptotic expansions with
an error term for (1.11). We integrate over the character variety to pick up a specific
homology class. The identity for the Ihara zeta function is analogous to the Selberg
trace formula as encoded in the Selberg zeta function.

We obtain a new proof of the local limit theorem for free groups of Sharp [24] using
the spectral theory of a simple graph, rather than the thermodynamic formalism
and subshifts of finite type. We also obtain strong improvements on average. (See
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Theorems 3.7 and 3.10.) The comment about error terms from Remark 1.3 applies
also in the case of free groups.

Remark 1.8. In Theorem 1.6 we cannot in general get a limit without averaging
for m and m + 1. If B = {~v, vi ≡ ai (mod li) , i = 1, . . . , k}, where all the moduli
l1, . . . , lk are even the limits over the subsequence with m even and the subsequence
with m odd exist and are computed in Section 3.5 and they do not coincide. If at
least one modulus is odd we do not need to average, i.e. in that case

lim
m→∞

ΠB(m)

Π(m)
=

1

l1 · · · lk
.

Remark 1.9. Theorem 1.6 (ii) for moduli l1 prime and l2 = · · · = lk = 1 was
first proved (in a slightly different formulation) by I. Rivin, [19], using graphs, and
Theorem 1.6 (i) follows also from [24]. Our proofs are more elementary than [19] in
the following sense: (a) we use a simpler graph, in fact one with a single vertex, (b)
the analysis is simpler, since we have the Ihara zeta function identity, and we do not
use asymptotics of special functions, like Chebychev polynomials, used in [19].

Remark 1.10. An element γ0 ∈ Γ is called a test element if every endomorphism
of Γ fixing γ0 is an automorphism of Γ. The property of being a test element has
been studied extensively. We refer to [11] for further explanations and references.
The property of being a test element can be characterized by relative primality of
discrete logarithms. Recently Kapovich, Schupp, and Shpilrain [11] used Theorem
1.6 (iii) to prove that the property of being a test element in the free group on two
generators is neither generic nor negligible in the sense of Gromov ([6], [7]). In fact,
this was the application that initiated our interest in the present work. This seems
to be the first known non-trivial example of an interesting property in the free group
on two generators which is neither generic nor negligible.

2. Counting closed geodesics on Riemann surfaces

Let M be a smooth compact Riemann surface of genus g > 1 without boundary.
Any such Riemann surface may be realized as Γ\H where H is the upper half-plane
and the fundamental group Γ is isomorphic to a discrete subgroup of PSL2(R). There
exists a fundamental set of generators {a1, . . . , ag, b1, . . . , bg} = {C1, . . . , C2g} ⊂ Γ
satisfying the relation

(2.1) [a1, b1] · · · [ag, bg] = 1.

There exists a basis ω1, . . . ω2g of harmonic 1-forms, dual to C1, . . . C2g, i.e.

(2.2)

∫

Ci

ωj = δij.

The first homology group H1(M,Z) can be identified as

(2.3) H1(M,Z) ∼=
{ 2g
∑

j=1

njCj, nj ∈ Z

}

∼= Z
2g.

For γ ∈ Γ with homology
∑

j njCj we write φ(γ) = (n1, . . . , n2g) ∈ Z2g. For γ ∈ Γ

and ǫ ∈ R2g/Z2g we consider unitary characters

(2.4)
χǫ(·) : Γ → S1

γ 7→ e2πi〈φ(γ),ǫ〉.
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We consider the set of square-integrable χǫ-automorphic functions, i.e. the set of
f : H → C such that

(2.5) f(γz) = χǫ(γ)f(z)

and

(2.6)

∫

F

|f(z)|2 dµ(z) <∞,

where F is a fundamental domain for Γ\H. Let Lǫ denote the Laplacian defined
as the closure of −y2(∂2

x + ∂2
y) defined on smooth compactly supported functions

satisfying (2.5) and (2.6). The Laplacian is self-adjoint and its spectrum consists of
a countable set of eigenvalues 0 ≤ λ0(ǫ) ≤ λ1(ǫ) ≤ . . .. By the maximum principle
0 is an eigenvalue if and only if ǫ = 0. The behaviour of λ0(ǫ) for ǫ small is of
fundamental importance to our investigation.

Proposition 2.1. [18, Lemma 2.1, 2.2] Let λ0(ǫ) be the first eigenvalue of Lǫ of a
surface M with g > 1. Then

(i) λ0(ǫ) is real analytic in ǫ near ǫ = 0.
(ii) ǫ = 0 is a critical point for λ0(ǫ).
(iii) at ǫ = 0 the Hessian H = {aij} is positive definite and satisfies

aij =
∂2λ0(ǫ)

∂ǫi∂ǫj

∣

∣

∣

∣

ǫ=0

=
2π

g − 1
〈ωi, ωj〉 ,

and det(〈ωi, ωj〉) = 1.

We use this information about the smallest eigenvalue to count closed primitive
geodesics on M with certain homological restrictions. The prime geodesics on M
are in 1-1 correspondence with the primitive conjugacy classes of Γ. Hence by an
abuse of notation we want to count geodesics {γ} with a given homology class
φ({γ}) = α. Here {γ} is the conjugacy class of γ in Γ. The main tool is the Selberg
trace formula for L(ǫ) (see [23, 8, 27]). This relates the eigenvalues {λi(ǫ)}∞i=0 to the
length spectrum of the surface, i.e. the set of lengths of the closed geodesics. Here
lγ is the length of the corresponding geodesic. We define – following [18, (2.26),
(2.29)] –

Rα(T ) =
∑′

{γ},lγ≤T
φ(γ)=α

lγ
sinh (lγ/2)

.

The ′ on the sum means that we only sum over prime geodesics.
It is custumary to introduce sj(ǫ) subject to λj(ǫ) = sj(ǫ)(1− sj(ǫ)), ℜ(sj(ǫ)) ≥

1/2, ℑ(sj(ǫ)) ≥ 0. Hence λ0(ǫ) close to zero corresponds to s0(ǫ) close to 1. It is
straightforward to translate Proposition 2.1 into statements about s0(ǫ). The trace
formula gives estimates for

Rχ(T ) =
∑′

{γ},lγ≤T

χ(γ)lγ
sinh (lγ/2)

.

Let χαǫ = exp(2πi 〈α, ǫ〉). The orthogonality of characters, i.e.
∫

R2g/Z2g

χǫ(γ)χαǫ dǫ = δφ(γ)=α

allows to integrate the trace formula over R2g/Z2g to get the following result:
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Lemma 2.2. [18, (2.37)] For all ε sufficiently small there exists a ν < 1/2 such that
for all α ∈ Z2g

(2.7) Rα(T ) = 2eT/2
∫

B(ε)

e(s0(ǫ)−1)T

s0(ǫ)− 1/2
χαǫ dǫ+O(eνT ).

Here B(ε) is the open ball at zero with radius ε and the implied constant depends
only on M .

Remark 2.3. We remark that there is a factor 2 missing in the formula [18, (2.37)].
This is due to the fact that in the trace formula [18, (2.27)] one should take the
eigenvalue parameters ±rj(θ), and the contribution of the smallest λ0(θ) should be
counted twice. A small typo in [18, (2.44)] gives an extra factor 1/2 so [18] still get
the correct asymptotics (1.5).

Phillips and Sarnak used a stationary phase argument on the integral (2.7) to
find the asymptotic behaviour of Rα(T ). The asymptotic formula 1.5 follows. Since
we want to consider closed geodesics whose homology lies in more general sets than
singletons, we consider

RA(T ) =
∑

{γ},lγ≤T
φ(γ)∈A

lγ
sinh (lγ/2)

.

where A is any subset of Z
2g. The following lemma shows that in a certain sense a

geodesic of ‘small’ lenght cannot have ‘large’ homology:

Lemma 2.4. There exist a constant c > 0 such that for all γ ∈ Γ

|ni| ≤ clγ

where φ(γ) = (n1, . . . , n2g)

Proof. This follows from e.g. Lemma 2.1 in [17] where in the present case the relevant
modular symbol is formed using the cohomology class ωi. �

It follows from Lemma 2.4 that

RA(T ) =
∑

α∈A
|αi|≤cT

Rα(T ).

We can therefore conclude from Lemma 2.2 that

(2.8) RA(T ) = 2eT/2
∫

B(ε)

e(s0(ǫ)−1)T

s0(ǫ)− 1/2

∑

α∈A
|αi|≤cT

χαǫ dǫ+O(T 2geνT ).

Equation (2.8) shows already the main exponential sum supported on the set A. To
find the asymptotic behaviour of RA(T ) we shall use a technique based on change of
variable as in [24, 20]. This has the advantage over the stationary phase argument
used in [18] that it allows us to look at several homology classes simultaneously. For
this argument to work we need the following lemma:

Lemma 2.5. Let

ρ2 =
2π

(g − 1)
and M = {〈ωi, ωj〉}.
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(i) For every ǫ0 ∈ R2g

e(s0(ǫ0/ρ
√
T )−1)T → e−〈ǫ0,Mǫ0〉/2

as T →∞.
(ii) There exists δ > 0 such that for all ‖ǫ‖ < δρ

√
T .

∣

∣

∣
e(s0(ǫ/ρ

√
T )−1)T − e−〈ǫ,Mǫ〉/2

∣

∣

∣
≤ 2e−〈ǫ,Mǫ〉/4.

(iii) There exist constants δ, C > 0 such that for all T > 0, ‖ǫ‖ < δT 1/16,
∣

∣

∣
e(s0(ǫ/ρ

√
T )−1)T − e−〈ǫ,Mǫ〉/2

∣

∣

∣
≤ C

1

T 1/2
.

Proof. Consider the function f(ǫ) = es0(ǫ)−1. Since λ0(ǫ) = s0(ǫ)(1− s0(ǫ)) it is easy
to derive from Lemma 2.1 that at ǫ = 0 we have ∇f = 0 and that the Hessian of
f at ǫ = 0 is −ρ2M . Since s0(ǫ) is even, any odd number of derivatives of s0(ǫ) at
ǫ = 0 must vanish. Hence by Taylor’s theorem we have

f(ǫ) = 1− 〈ǫ, ρ2Mǫ〉
2

+O(‖ǫ‖4).

All the claims now follow from Proposition 4.1 in the Appendix if we put D = ρ2M ,
r = ρ, ν = 2 and b = 1/2. �

We shall now see how to use this to find an expansion for the integral in (2.8) By
a change of variable we get

(2.9)
ρ2gT gRA(T )

4eT/2
=

∫

B(ερ
√
T )

e(s0(ǫ/ρ
√
T )−1)T

2s0(ǫ/ρ
√
T )− 1

∑

α∈A
|αi|≤cT

χα
ǫ/ρ

√
T
dǫ+O(T 3ge(ν−1/2)T ).

The identity

(2.10)

∫

R2g

e−〈ǫ,Mǫ〉/2χα
ǫ/ρ

√
T
dǫ = (2π)ge

− 4π2

ρ2 〈α,M−1α〉/2T

can be easily checked using the Fourier transform. Since −〈ǫ,Mǫ〉 /2+(ερ
√
T )2/4 ≪

−〈ǫ,Mǫ〉 /4 when ǫ ∈ B(ερ
√
T )c we conclude

∣

∣

∣

∣

eρ
2ε2T/4

∫

R2g\B(ερ
√
T )

e−〈ǫ,Mǫ〉/2χα
ǫ/ρ

√
T
dǫ

∣

∣

∣

∣

≪
∫

R2g\B(ερ
√
T )

e−〈ǫ,Mǫ〉/4dǫ ≤ C.

Therefore the part of the integral (2.10) outside B(ερ
√
T ) is of exponential decay

in T . It follows that up to an error term of exponential decay

(2.11)
ρ2gT gRA(T )

4eT/2
−
∑

α∈A
|αi|≤cT

(2π)ge
− 4π2

ρ2 〈α,M−1α〉/2T

equals

(2.12)

∫

B(ερ
√
T )

(

e(s0(ǫ/ρ
√
T )−1)T

2s0(ǫ/ρ
√
T )− 1

− e−〈ǫ,Mǫ〉/2

)

∑

α∈A
|αi|≤cT

χα
ǫ/ρ

√
T
dǫ.

In order to be able to say something meaningful about this expression we need to see
some cancellation in the character sum. We therefore make the following definition:
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Definition 2.6. A set A ⊂ Z2g is said to have property [C] if, for some 0 ≤ ε < g
there exist constants c, ι > 0 such that for T−2g < |ǫ1| , . . . , |ǫ2g| < cT ι

(2.13)
∑

α∈A
|αi|≤cT

χα
ǫ/ρ

√
T

= O(f(ǫ)T g+ε),

where the implied constant may depend on ε, A, c, and M . If furthermore f(ǫ)
satisfies

(2.14)

∫

T−2g<|ǫ1|,...,|ǫ2g |<cT ι

|f(ǫ)|
∣

∣

∣
e(s0(ǫ/ρ

√
T )−1)T − e−〈ǫ,Mǫ〉/2

∣

∣

∣
dǫ = o(T−ε)

and

(2.15)

∫

T−2g<|ǫ1|,...,|ǫ2g|<cT ι

|f(ǫ)| ‖ǫ‖2
∣

∣

∣
e(s0(ǫ/ρ

√
T )−1)T

∣

∣

∣
dǫ = o(T 1−ε)

as T →∞ the set A is said to have property [GC].

Remark 2.7. We think of ‘[C]’ as ‘cancellation’ (ε = g is the trivial estimate on
the exponential sum), and ‘[GC]’ as ‘good cancellation’. Note that when a set
has positive natural density the sum contains asymptotically a constant times T 2g

terms, so property [C] requires some bound towards ‘square root’ cancellation. The
requirement that we stay away from a (shrinking) neighborhood of the hypersurfaces
ǫi = 0 seems inevitable since we cannot expect good cancellation at any hypersurface
ǫi = 0. Below we shall verify this condition for various sets, one of these being the
full set A = Z2g. Using this it is easy to see that the set of sets of property [C] resp.
[GC] is an algebra i.e. it is closed under addition and complements. Whether or not
it is a σ-algebra (reducing the conditions to tautologies) remains open.

Before giving examples of sets with property [C] resp. [GC] we state and prove
the main reason why we care about such sets.

Theorem 2.8. Assume that A ⊆ Z2g has property [GC], and that A has asymptotic
density d(A). Then

πA(T )

π(T )
→ d(A) as T →∞.

Lemma 2.9. Let σ2 = (2π(g−1))−1. Assume that A ⊆ Zg has property [GC]. Then

T gRA(T )

4eT/2
−
∑

α∈A
|αi|≤cT

1

(2πσ2)g
e−〈α,M−1α〉/2σ2T = o(T g).

Proof. The claim follows from showing that (2.12) is o(T g). Using the definition of
property [GC] we may safely assume ι ≤ 1/2. If ι < 1/2 we start by splitting the
integral (2.12) in two:

(2.16)

∫

‖ǫ‖≤cT ι

+

∫

cT ι≤‖ǫ‖≤ερT 1/2

.

We start by estimating the second integral. Since s0(ǫ) is even with s0(0) = 1 we
have

(2.17)
∣

∣(2s0(ǫ)− 1)−1 − 1
∣

∣ ≤ C ‖ǫ‖2
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when ‖ǫ‖ ≤ ε. Hence the part of the integrand of (2.12) outside the sum is bounded
absolutely by

∣

∣

∣
e(s0(ǫ/ρ

√
T )−1)T − e−〈ǫ,Mǫ〉/2

∣

∣

∣
+ C

∣

∣

∣
e(s0(ǫ/ρ

√
T )−1)T

∣

∣

∣
‖ǫ‖2 T−1.

By Lemma 2.5 (ii) this is O(e−〈ǫ,Mǫ〉/4 ‖ǫ‖2 T−1), and, since ‖ǫ‖ ≥ cT ι, the in-

tegrand (outside the sum) is O(e−c(M)T 2ι
) where c(M) is some constant depend-

ing on M . Hence, using the trivial estimate on the sum O(T 2g), the integral is

O(T 2ge−c(M)T 2ι
T g), which decays exponentially.

We now address the first integral in (2.16). This we also split in two integrals:
∫

‖ǫ‖≤cT ι

∃i,|ǫi|≤T−2g

+

∫

‖ǫ‖≤cT ι

T−2g<|ǫi|≤cT ι

.

To estimate the first we bound the integrand by an absolute constant times T 2g

coming from the trivial estimate on the exponential sum. We then use the fact that
the volume of the integration domain is O(T (2g−1)/2T−2g). Hence this integral is
O(T (2g−1)/2). Hence also o(T g).

To estimate the second we use (2.17) to conclude that
∣

∣

∣

∣

∫

‖ǫ‖≤cT ι

T−2g<|ǫi|≤cT ι

∣

∣

∣

∣

≤ CT−1

∫

T−2g<|ǫi|≤cT ι

‖ǫ‖2
∣

∣

∣
e(s0(ǫ/ρ

√
T )−1)T

∣

∣

∣

∣

∣

∣

∑

α∈A
|αi|≤cT

χα
ǫ/ρ

√
T

∣

∣

∣
dǫ

+

∫

T−2g<|ǫi|≤cT ι

∣

∣

∣
e(s0(ǫ/ρ

√
T )−1)T − e−〈ǫ,Mǫ〉/2

∣

∣

∣

∣

∣

∣

∑

α∈A
|αi|≤cT

χα
ǫ/ρ

√
T

∣

∣

∣
dǫ.

The assumption that A has property [GC] implies that both these terms are o(T g).
This completes the proof. �

To prove Theorem 2.8 we will prove a result which is closely related to the main
result in [25] (i.e. a local limit theorem). The following theorem improves the error
terms of [25, Theorem 1] on average by a square root.

Theorem 2.10. Let σ2 = (2π(g − 1))−1. Assume that A ⊆ Zg has property [GC]
and that A has natural density. Then

T gπA(T )

eT/T
−
∑

α∈A
|αi|≤cT

1

(2πσ2)g
e−〈α,M−1α〉/2σ2T = o(T g).

We notice that by Gauß-Bonnet the variance σ2 equals half the volume of the
surface.

Proof. We have

πA(T ) =

∫ T

0

sinh (s/2)

s
dRA(s) =

∫ T

0

e(s/2)

2s
dRA(s) +O(1).

Integrating the integral by parts we find

(2.18) πA(T ) =
eT/2

2T
RA(T )−

∫ T

0

1

4s
es/2RA(s) ds−

∫ T

0

1

2s2
es/2RA(s)ds+O(1).
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Using RA(s) = O(es/2), which follows from Lemma 2.9, we easily find that the last
integral is O(eT/T 2). We claim that

(2.19)

∫ T

0

1

s
es/2RA(s) ds =

eT/2

T
RA(T ) + o(eT /T )

from which it follows that

πA(T ) =
eT/2

4T
RA(T ) + o(eT/T ).

Substituting this into Lemma 2.9 we get exactly the statement of Theorem 2.10.
To prove the claim we notice that by Lemma 2.9 and Corollary 4.5 we have

RA(T ) = 4d(A)eT/2 + o(eT/2), so there exist a positive function g(T ) decreasing to
zero as T →∞ such that

(2.20)
∣

∣RA(T )− 4d(A)eT/2
∣

∣ ≤ g(T )eT/2.

Consider now
∫ T

1

es/2

s
RA(s)ds− eT/2

T
RA(T )

=

∫ T

1

es/2

s

(

RA(s)− 4d(A)es/2
)

ds+ 4d(A)

∫ T

1

es

s
ds− eT/2

T
RA(T )

The second term is 4d(A)eT/T +O(eT/T 2) and using (2.20) we find

=

∫ T

1

es/2

s

(

RA(s)− 4d(A)es/2
)

ds+ o(eT/T ).

We split the integral into an integral from 1 to T/2 and from T/2 to T and use the
bound (2.20):
∣

∣

∣

∣

∣

∫ T/2

1

es/2

s

(

RA(s)− 4d(A)es/2
)

ds

∣

∣

∣

∣

∣

≤ g(1)

∫ T/2

1

es

s
ds = O(eT/2/T ) = o(eT/T ),

∣

∣

∣

∣

∫ T

T/2

es/2

s

(

RA(s)− 4d(A)es/2
)

ds

∣

∣

∣

∣

≤ g(T/2)

∫ T

T/2

es

s
ds = O(g(T/2)eT/T ) = o(eT/T ).

This concludes the proof of the claim (2.19). �

Proof of Theorem 2.8. It follows easily from Theorem 2.10, (1.1) and Corollary 4.5.
�

We have now shown why the properties in Definition 2.6 are relevant: prime
geodesics are equidistributed on sets satisfying property [GC]. But we still need to
see that there are sets with this property. There are three cases we consider: Finite
sets (which from this point of view should be considered the trivial case: Phillips and
Sarnak [18] get much stronger results), highly arithmetic sets (essentially arithmetic
progressions) and random sets.

Proposition 2.11. Finite sets have property [GC].

Proof. This follows directly from the definition with ε = 0 quoting Lemma 2.5
(ii). �

To handle the arithmetic sets we need the following simple lemma:
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Lemma 2.12. There exist a c > 0 such that for every ε > 0

∫

T−2g≤|ǫ1|,...,|ǫ2g|≤cT 1/16

∣

∣

∣
e(s0(ǫ/ρ

√
T )−1)T − e−〈ǫ,Mǫ〉/2

∣

∣

∣

|ǫ1| · · · |ǫ2g|
dǫ = o(T−1/2+ε)

and
∫

T−2g<|ǫ1|,...,|ǫ2g|<cT 1/16

‖ǫ‖2
∣

∣

∣
e(s0(ǫ/ρ

√
T )−1)T

∣

∣

∣

|ǫ1| · · · |ǫ2g|
dǫ = o(T ε)

as T →∞.

Proof. To evaluate the first integral we use Lemma 2.5 (iii) to conclude that there
exist c = δ such that the integrand is

O

(

T−1/2

|ǫ1| · · · |ǫ2g|

)

.

The integral is therefore O(T−1/2(log T )2g) which is o(T−1/2+ε).
To evaluate the second integral we use Lemma 2.5 (ii) from which we easily find

that the numerator of the integral is bounded, and the whole integral is therefore
O((logT )2g) which is o(T ε).

�

This allows us to prove the following (where α ≡ β (mod l) denotes that for all
i = 1, . . . , 2g we have αi ≡ βi (mod li)):

Theorem 2.13. Let l ∈ N2g, β ∈ Z2g. The sets

Al(β) = {α ∈ Z
2g|α ≡ β (mod l)}

Arp = {α ∈ Z
2g| gcd(α1, . . . α2g) = 1}

have property [GC].

Proof. Consider first any arithmetic progression B = {b + kl|l ∈ Z}. We use
|sin(πx)| ≥ 2{x}, where {x} is the distance between x and the closest integer,
to conclude that for any T ′, T ′′ > 0

∣

∣

∣

∑

a∈B
−T ′≤a≤T ′′

e2πiax/ρ
√
T
∣

∣

∣
≤ 2
∣

∣e2πilx/ρ
√
T − 1

∣

∣

≤ 1
∣

∣

∣
sin(πlx/ρ

√
T )
∣

∣

∣

≤ ρ
√
T

|2lx| ,

where we have assumed that |x| /ρ
√
T < 1/(2l).

We may safely assume that in Lemma 2.12 the constant c < 1/2. Then

(2.21)
∣

∣

∣

∑

α∈Al(β)
|αi|≤cT

χα
ǫ/ρ

√
T

∣

∣

∣
=

∣

∣

∣

∣

2g
∏

j=1

∑

αj≡βj(lj)
|aj |≤cT

e2πiαjǫj/ρ
√
T

∣

∣

∣

∣

≤ 2−2g ρ2gT g

|l1 · · · l2g| |ǫ1 . . . ǫ2g|

when ‖ǫ‖ ≤ δρ
√
T . Hence Al(β) has property [C] and it follows from Lemma 2.12

that for some c > 0 and ι = 1/16 it also has property [GC].
To see that Arp has the claimed properties we use the inclusion-exclusion principle:

relative primality means we take all 2g-tuples, take off the ones with common divisor
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of the entries a prime number, add the ones with common divisor a product of
distinct primes and so on. This gives

(2.22)
∑

α∈Arp

|αi|≤cT

χα
ǫ/ρ

√
T

=
∞
∑

l=0

(−1)l
∑

p1,...,pl

∑

α∈Ap1···pl
|αi|≤cT

χα
ǫ/ρ

√
T
.

Here the second sum on the right is over different primes and

Ap1···pl
= A(p1···pl,...,p1···pl)(~0)\{~0}.

We note that for every T all sums are finite. Hence by (2.22) – noticing that we
have the same bound when we exclude zero – we have

∣

∣

∣

∣

∑

α∈Arp,
li|αi|≤T

χα
ǫ/ρ

√
T

∣

∣

∣

∣

≤
∞
∑

l=0

∑

p1,...,pl

2−2gρ2gT g

(p1 · · · pl)2g |ǫ1 . . . ǫ2g|

=
4−gρ2gT g

|ǫ1 . . . ǫ2g|
∏

p

(1 + p−2g) =
4−gρ2gT g

|ǫ1 . . . ǫ2g|
∏

p

1− p−4g

1− p−2g

=
4−gρ2gT gζ(2g)

|ǫ1 . . . ǫ2g| ζ(4g)
.

Hence Arp has property [C] with any c, ι and Lemma 2.12 gives property [GC] for
some c > 0 and ι = 1/16. �

We now turn to the last type of sets that we can prove have property [GC]:
random sets. We set up just enough notation for our result to be intelligible. For
further details we refer to [10].

Let (Ω,A ,P) be the product (over α ∈ Z2g) probability space of (Ωα,Aα,Pα),
where Ωα is the unit interval [0, 1], Aα is the σ-field of Lebesgue measurable sets,
and Pα is the Lebesgue measure. For ω ∈ Ω we define a set A(ω) ⊆ Z

2g by

α ∈ A(ω) if and only if ωα ∈ [0, 1/2[.

Let (Wα) be a sequence of independent random variables equidistributed on [0, 1]
(a Steinhaus sequence). We say that a random set ⊂ Z2g has property P , if {W ∈
Ω|A(W ) has property P} ⊆ A and

P({W ∈ Ω|A(W ) has property P}) = 1,

i.e. if a set whose coefficients are included or excluded at random will have property
P with probability 1.

Theorem 2.14. A random set has property [GC].

Proof. Consider the following random trigonometric polynomial in 2g variables of
degree at most 2gcT

fα(t) =
∑

|αi|≤cT
ǫα(W )e2πi〈α,t〉,

where

ǫα(W ) =

{

1, if Wα ∈ [0, 1/2[,

−1, if Wα ∈ [1/2, 1[
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is the Rademacher sequence derived from W . This is a subnormal sequence [10,
p. 67], and we may therefore apply [10, Theorem 3, p. 70] to conclude that for some
absolute constant C

P

(

sup
t
|fα(t)| ≥ C

(

2g
∑

|αi|≤cT
log(2gcT )

)1/2
)

≤ (2gcT )−2e−2g.

Hence by the Borel-Cantelli lemma ([10, p. 7])

P

(

sup
t
|fα(t)| = O

(

(

∑

|αi|≤cT
log(2gcT )

)1/2
)

as T →∞
)

= 1

and hence for every ε > 0

(2.23) P

(

sup
t

∣

∣

∣

∣

∑

|αi|≤cT
ǫα(W )e2πi〈α,t〉

∣

∣

∣

∣

= O(T g+ε) as T →∞
)

= 1.

Since for a random set A(W )

(2.24)
∑

α∈A(W )
|αi|≤cT

χα
ǫ/ρ

√
T

=
∑

α∈Z
2g

|αi|≤cT

(

ǫα(W )

2
+

1

2

)

e2πi〈α,ǫ/ρ
√
T〉,

we conclude from (2.23), Lemma 2.5 (iii) that, with probability 1, the set A(W ) has
property [GC]. �

We note that from (2.23) and (2.24) with t = 0 it follows that a random set
has natural density equal to 1/2 (in particular the natural density exists). Hence
Theorem 1.1 follows from Theorem 2.14 and Theorem 2.8.

3. Densities in free groups

Let Γ = F (A1, . . . , Ak), k ≥ 2 be the free group on k generators and set q = 2k−1.
We consider the set Γc of cyclically reduced words in Γ, i.e. words such that the
first letter multiplied with the last letter is not the identity. These words γ can be
counted according to their word length wl (γ) and one finds (see [16, 19]) that the
number of cyclically reduced words of word length m equals

(3.1) #{γ ∈ Γc|wl (γ) = m} = qm + 1 + (k − 1) (1 + (−1)m) .

We note that an element γ ∈ Γ and the corresponding cyclically reduced element
has the same value for any discrete logarithm and therefore for the vector of discrete
logarithms Φ(g), as in (1.8).

We want to consider conjugacy classes of Γ of length l({γ}) ≤ m instead of
cyclically reduced words of word length less than m. The length of a conjugacy
class is the cyclically reduced length of any representative of the conjugacy class,
which is also the minimal length of the representatives of the conjugacy class. There
is a m to 1 correspondence between the set of cyclically reduced words of word length
m and the set of conjugacy classes of Γ of length m, taking a cyclically reduced word
to its conjugacy class in Γ. The map Φ factorizes though this correspondence and
it follows that for any set B ⊂ Z

k

(3.2)
#{γ ∈ Γc|wl (γ) = m,Φ(γ) ∈ B} = m#{{γ} ∈ {Γ}|l({γ}) = m,Φ({γ}) ∈ B}.
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Using partial summation we find

#{{γ} ∈ {Γ} | l({γ}) ≤ m,Φ({γ}) ∈ B}(3.3)

= m−1#{γ ∈ Γc|wl (γ) ≤ m,Φ(γ) ∈ B}

+

∫ m

1

t−2#{γ ∈ Γc|wl (γ) ≤ t,Φ(γ) ∈ B}dt.

We use (3.1) to bound the integral by
∫ m

1

t−2 q
t+1

q − 1
dt,

which is easily seen to be O(m−2qm) by partial integration.
Hence

#{{γ} ∈ {Γ}|l({γ}) ≤ m,Φ({γ}) ∈ B}(3.4)

= m−1#{γ ∈ Γc|wl (γ) ≤ m,Φ(γ) ∈ B}+O(m−2qm).

We can, therefore, freely move back and forth between counting problems for con-
jugacy classes and counting problems for cyclically reduced words. Using (3.4) and
(3.1) we get

Π(m) ∼ q

q − 1

qm

m
as m→∞.

3.1. A graph identity. We can now explain how to estimate counting functions
related to cyclically reduced words using spectral perturbations of the adjacency
operator of a graph: for any unitary character χ on Γ we have the following identity
(see [16])

(3.5)

∞
∑

m=1

nΓ,χ(m)um =
2(k − 1)u2

(1− u2)
+

uA(Γ, χ)− 2(2k − 1)u2

1− uA(Γ, χ) + (2k − 1)u2
,

where

(3.6) nΓ,χ(m) =
∑

γ∈Γc

wl(γ)=m

χ(γ)

and

(3.7) A(Γ, χ) =
k
∑

i=1

(χ(Ai) + χ(Ai)
−1)

is the twisted adjacency operator of the graph to the right of Figure 2. The power
series (3.5) is convergent up to the first pole of the left-hand side.

This identity is the main analytic tool we use to prove Theorems 1.6. It is a
particular case of the Ihara trace formula which relates geometric data (lengths of
paths) to spectral data (eigenvalues of the adjacency operator) for a finite regular
graph. In [16] we showed how one can interpret additive characters on free groups
as multiplicative characters on a singleton graph and it is this identification that
gives (3.5). We refer to [16] for further details. We have (assuming for a moment
that λ1 6= λ2)

1

1− uA(Γ, χ) + (2k − 1)u2
=

1

2k − 1

1

λ1 − λ2

(

1

u− λ1
− 1

u− λ2

)

,
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iq−1/2

1−1 −q−1 q−1

λ1

λ2

Figure 1. The trajectories of the eigenvalues as A moves away from 2k.

Figure 2. The graph and its two-cover, n = 4.

where λi = λi(χ,Γ) are the roots of 1− uA(Γ, χ) + (2k − 1)u2. We note that

(3.8) λ1 + λ2 = A(Γ, χ)/(2k − 1), λ1λ2 = 1/(2k − 1).

We have

λ1 =
A(Γ, χ) +

√

A(Γ, χ)2 − 4(2k − 1)

2(2k − 1)
,(3.9)

λ2 =
A(Γ, χ)−

√

A(Γ, χ)2 − 4(2k − 1)

2(2k − 1)
.

Remark 3.1. We note that if A(Γ, χ)2−4(2k−1) > 0 and A > 0 then λ1 is a strictly
increasing function of A(Γ, χ), while λ2 is a strictly decreasing function of A(Γ, χ).
As A(Γ, χ) varies in [2

√
2k − 1, 2k] and attains its maximal value 2k we have

1√
2k − 1

≤ λ1 ≤ 1,
1√

2k − 1
≥ λ2 ≥

1

(2k − 1)
,

with the numbers on the right achieved for the trivial character.
When |A(Γ, χ)| < 2

√
2k − 1 we have |λ1| = |λ2| = 1/

√
2k − 1.

When A(Γ, χ)2−4(2k−1) > 0 and A < 0 then λ2 is a strictly increasing function
of A(Γ, χ), while λ1 is a strictly decreasing function of A(Γ, χ). As A(Γ, χ) varies in
[−2k,−2

√
2k − 1] and attains its minimal value −2k we have

− 1

2k − 1
≥ λ1 ≥ − 1√

2k − 1
, −1 ≤ λ2 ≤ − 1√

2k − 1
,

with the numbers on the left achieved at the infimum of A = −2k.

Remark 3.2. The λj, j = 1, 2 are not the eigenvalues of the Laplace operator ∆(χ) =
A(χ)− (q+ 1)I. The relation is as follows: The resolvent of ∆ is (∆(χ)− µ)−1 and
has poles at the eigenvalues of ∆(χ). Simple algebra shows that 1− uA(χ) + qu2 =
−u(∆ − (u − 1)(qu − 1)/u). When χ = 1, we have A = q + 1, ∆ = 0 and the
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corresponding u’s in the resolvent are 1 and 1/q. When χ = −1 (i.e. χ(Ai) = −1),
we have A = −(q + 1), ∆ = −2(q + 1) and the corresponding u’s are −1 and −1/q.
Now recall that for χ = 1 and a general finite graph the eigenvalue q+1 of A occurs
and the eigenvalue −(q + 1) of A occurs iff the graph is bipartite, see [21, p. 67]. In
our case the eigenvalue −(q + 1) occurs when χ = −1. In this case the character
has order 2 and gives a double covering of the graph in Fig. 2, which is bipartite.
It consists of two vertices, joined by 2k edges, see Fig.2. Its spectrum contains
Spec(A(χ)) for χ = −1. The adjacency operator is

(

0 2k
2k 0

)

with eigenvectors (1, 1) and (1,−1) with eigenvalues 2k, −2k respectively.

3.2. Detecting words with a given homology. We now explain how to use the
orthogonality relations to count words with a given homology. Using

2(k − 1)u2

(1− u2)
= (k − 1)

∞
∑

m=1

(

1 + (−1)k
)

uk,

and
1

u− λ
= −

∞
∑

m=0

λ−(m+1)um,

we find from (3.5) the following generalization of (3.1)

(3.10) nΓ,χ(m) = λ−m2 + λ−m1 + (k − 1)
(

1 + (−1)m+1
)

.

The same expression holds when λ1 = λ2, which can be seen by plugging A =
2
√

2k − 1 into (3.5).
Consider now Φ : Γc → Zk with Φ(γ) = (log1(γ), . . . , logk(γ)). For β ∈ Zk we let

(3.11) nΓ,β(m) = #{γ ∈ Γc|wl (γ) = m,Φ(γ) = β}.
Consider the unitary character

χǫ(γ) = e2πi〈Φ(γ),ǫ〉,

where ǫ ∈ R
k/Zk and 〈·, ·〉 is the inner product between Z

k and its dual R
k/Zk. For

β ∈ Zk we define the unitary character

χβǫ = e2πi〈β,ǫ〉.

Then by the orthogonality relation for abelian groups we have:

(3.12)

∫

Rk/Zk

χǫ(γ)χ
β
ǫ dǫ = δΦ(γ)=β .

It follows that

(3.13) nΓ,β(m) =

∫

Rk/Zk

nΓ,ǫ(m)χβǫ dǫ,

where we use the notation nΓ,ǫ := nΓ,χǫ. We shall also write A(ǫ) := A(Γ, χǫ),
λi(ǫ) := λi(χǫ), and qi(ǫ) := λi(ǫ)

−1, and q = q2(0) = (2k− 1). The equations (3.10)
and (3.8) give

(3.14)
nΓ,β(m)

qm
=

∫

Rk/Zk

(λ1(ǫ)
m + λ2(ǫ)

m)χβǫ dǫ+O(q−m).
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It is easy to check that

A(ǫ) = 2
k
∑

j=1

cos(2πǫj).

Clearly there is a symmetry A(ǫ+ (1/2, . . . , 1/2)) = −A(ǫ) from which we conclude
that

(3.15) λ2(ǫ+ (1/2, . . . , 1/2)) = −λ1(ǫ).

Using this and χβǫ+(1/2,...,1/2) = (−1)β1+...+βkχβǫ we see that

(3.16)
nΓ,β(m)

qm
= (1 + (−1)m+β1+...+βk)

∫

Rk/Zk

λ1(ǫ)
mχβǫ dǫ+O(q−m).

We now have the following analogue of Lemma 2.5:

Lemma 3.3. Let

ρ2 =
4π2

k − 1
.

(i) For every ǫ0 ∈ Rk

λ1(ǫ0/ρ
√
m)m → e−〈ǫ0,ǫ0〉/2

as m→∞.
(ii) There exists δ > 0 such that for all ‖ǫ‖ < δρ

√
m.

∣

∣λ1(ǫ/ρ
√
m)m − e−〈ǫ,ǫ〉/2

∣

∣ ≤ 2e−〈ǫ,ǫ〉/4.

(iii) There exist constants δ, C > 0 such that for all m ∈ N, ‖ǫ‖ < δm1/16,

∣

∣λ1(ǫ/ρ
√
m)m − e−〈ǫ,ǫ〉/2

∣

∣ ≤ C
1

m1/2
.

Proof. The function A(ǫ) is clearly even in each ǫj and symmetric in the ǫj ’s. It
follows that λ1(ǫ) is even (compare (3.9)). Therefore all odd derivatives of the
smooth function λ1(ǫ) vanish at zero, as do all mixed second derivatives. Also
∂iiλ1|ǫ=0 = −ρ2 as can easily be checked by differentiating (3.9). Hence Taylor’s
theorem implies that Proposition 4.1 can be used and setting D = ρ2I, ν = 2,
b = 1/2 and r = ρ gives the desired conclusion. �

3.2.1. Elements with a given word length. We let I(v) = [−v/2, v/2]k. Using (3.16)
and performing the change of variables ǫ→ ǫ/ρ

√
m in (3.16) we find that

ρkmk/2nΓ,α(m)

qm
= sβ,m

∫

I(ρ
√
m)

χβ
ǫ/ρ

√
m
λ1(ǫ/ρ

√
m)

m
dǫ+O(q−mmk/2),

where sβ,m = 1 + (−1)m+β1+···+βk . Using the Fourier transform of the Gaussian
density function

(2π)k/2e−2π2〈β,β〉/ρ2m =

∫

Rk

χβ
ǫ/ρ

√
m
e−〈ǫ,ǫ〉/2dǫ,
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we can split the relevant integral into three parts to conclude that

ρkmk/2nΓ,β(m)

qm
− sβ,m(2π)k/2e−2π2〈β,β〉/ρ2m

=sβ,m

∫

B(δρ
√
m)

χβ
ǫ/ρ

√
m

(

λ1(ǫ/ρ
√
m)

m − e−〈ǫ,ǫ〉/2
)

dǫ

+ sβ,m

∫

I(ρ
√
m)\B(δρ

√
m)

χβ
ǫ/ρ

√
m
λ1(ǫ/ρ

√
m)

m
dǫ(3.17)

− sβ,m

∫

Rk\B(δρ
√
m)

χβ
ǫ/ρ

√
m
e−〈ǫ,ǫ〉/2dǫ+O(q−m/2mk/2)

=sβ,m(A1(m, β) + A2(m, β) + A3(m, β)) +O(q−mmk/2).

Lemma 3.4. There exists a d > 0, depending only on k and δ, such that

A2(m, β) = O(q−dm)

A3(m, β) = O(q−dm).

The implied constants are independent of β.

Proof. For ǫ bounded away from the identity in R
k/Zk, λ1(ǫ) is bounded away from

1, which is the maximum of λ1. Hence there exists d1 > 0 (depending on δ) such
that λ1(ǫ) < q−d1 for ǫ ∈ I(1)\B(δ). We, therefore, have |A2(m, β)| ≤ Cq−d1mmk/2.
Choosing d = d1/2 does the job.

Since −〈ǫ, ǫ〉 /2 + (δρ
√
m)2/4 ≤ −〈ǫ, ǫ〉 /4 when ǫ ∈ B(δρ

√
m)c, we conclude

∣

∣

∣
eρ

2δ2m/4A3(m, β)
∣

∣

∣
≤ 4

∫

Rk\B(δρ
√
m)

e−〈ǫ,ǫ〉/4 ≤ C,

from which the result easily follows. �

We have the following lemma.

Lemma 3.5. There exist d > 0 which depends only on k such that

ρkmk/2nΓ,β(m)

qm
− sβ,m(2π)k/2e−〈β,β〉(k−1)/2m = sβ,mA1(m, β) +O(q−dm),

where the implied constants is independent on β.

Proof. This follows directly from (3.17) and Lemma 3.4. �

3.2.2. Elements with word length less than a given length. We now let

NΓ(m) = #{γ ∈ Γc|wl (γ) ≤ m},
NΓ,β(m) = #{γ ∈ Γc|wl (γ) ≤ m,Φ(γ) = β}.

We aim at proving a result for NΓ,β(m) analogous to Lemma 3.5. We note that from
(3.1) we get

(3.18) NΓ(m) =
qm+1

q − 1
+O(m).
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We shall write β ∼ m if β ∈ Zk andm ∈ N has the same parity, i.e. if m+β1+. . .+βk
is even. Using (3.16) we find that

(3.19) NΓ,β(m) = 2

∫

Rk/Zk

∑

n≤m
n∼β

qnλ1(ǫ)
nχβǫ dǫ+O(m).

Writing

δβ =

{

1, if β1 + . . .+ βk is odd,

0, otherwise,

we have

(3.20)
∑

n≤m
n∼β

qnλ1(ǫ)
n =

(qλ1(ǫ))
2

h

m−δβ
2

i

+2+δβ − (qλ1(ǫ))
2−δβ

(qλ1(ǫ))2 − 1
.

Inserting this in (3.19) we find that

NΓ,β(m) = 2
q
2

h

m−δβ
2

i

+2+δβ

q2 − 1

∫

Rk/Zk

χβǫ gβ(ǫ,m)λ1(ǫ)
mdǫ+O(m),

where

gβ(ǫ,m) =
q2 − 1

(qλ1(ǫ))2 − 1
λ1(ǫ)

2
h

m−δβ
2

i

+2+δβ−m.

Clearly gβ(ǫ,m) is uniformly bounded in Rk/Zk, independently of β, it satisfies
gβ(0, m) = 1, and close to zero we have gβ(ǫ,m) − 1 = O(〈ǫ, ǫ〉), where the implied
constant does not depend on m or β.

We simplify by taking average over two successive m. It is easy to check that

(3.21)
1

2

(

NΓ,β(m)

qm+1/(q − 1)
+
NΓ,β(m+ 1)

qm+2/(q − 1)

)

=

∫

Rk/Zk

χβǫ hβ(ǫ,m)λ1(ǫ)
mdǫ+O(q−mm),

where

hβ(ǫ,m) =











qgβ(m, ǫ) + λ1(ǫ)gβ(m+ 1, ǫ)

q + 1
, if m ∼ β,

gβ(m, ǫ) + qλ1(ǫ)gβ(m+ 1, ǫ)

q + 1
, otherwise.

The function hβ(m, ǫ) inherits its properties from those of gβ(m, ǫ): It is uniformly
bounded in Rk/Zk independent of β, it satisfies hβ(0, m) = 1, and close to zero
hβ(ǫ,m)− 1 = O(〈ǫ, ǫ〉) where the implied constant does not depend on m or β.

We now use the same techniques that lead to Lemma 3.5. We start by doing the
change of variables ǫ→ ǫ/ρ

√
m to get (up to an error O(mk/2+1q−m))

ρkmk/21

2

(

NΓ,β(m)

qm+1/(q − 1)
+
NΓ,β(m+ 1)

qm+2/(q − 1)

)

=

∫

I(ρ
√
m)

χβ
ǫ/ρ

√
m
hβ(ǫ/ρ

√
m,m)λ1(ǫ/ρ

√
m)

m
dǫ.



20 YIANNIS N. PETRIDIS AND MORTEN S. RISAGER

In analogy with (3.17) we get

ρkmk/2 1

2

(

NΓ,β(m)

qm+1/(q − 1)
+
NΓ,β(m+ 1)

qm+2/(q − 1)

)

− (2π)k/2e−2π2〈β,β〉/ρ2m

=

∫

B(δρ
√
m)

χβ
ǫ/ρ

√
m

(

hβ(ǫ/ρ
√
m,m)λ1(ǫ/ρ

√
m)

m − e−〈ǫ,ǫ〉/2
)

dǫ

+

∫

I(ρ
√
m)\B(δρ

√
m)

χβ
ǫ/ρ

√
m
hβ(ǫ/ρ

√
m,m)λ1(ǫ/ρ

√
m)

m
dǫ(3.22)

−
∫

Rk\B(δρ
√
m)

χβ
ǫ/ρ

√
m
e−〈ǫ,ǫ〉/2dǫ+O(q−m/2mk/2+1)

=B1(m, β) +B2(m, β) +B3(m, β) +O(q−mmk/2+1).

With this notation we have

Lemma 3.6. There exist d > 0 which depends only on k such that

ρkmk/2 1

2

( NΓ,β(m)

qm+1/(q − 1)
+
NΓ,β(m+ 1)

qm+2/(q − 1)

)

− (2π)k/2e−〈β,β〉(k−1)/2m

= B1(m, β) +O(q−dm),

where the implied constant is independent on β.

Proof. Using that h(ǫ/ρ
√
m) is uniformly bounded the proof of Lemma 3.4 can be

copied almost word by word to prove B2(m, β), B3(m, β) = O(q−dm). �

3.3. A local limit theorem. We can now state and prove a local limit theorem, i.e.
a theorem that gives information (uniform in β) about the asymptotic probability for
an element to satisfy Φ(γ) = β. To be more precise we have the following theorem:

Theorem 3.7. Let σ2 = (k − 1)−1. Then

sup
β∈Zk

∣

∣

∣

∣

mk/2nΓ,β(m)

qm
− sm,β

(2πσ2)k/2
e−〈β,β〉/2σ

2m

∣

∣

∣

∣

= o(1)

and

sup
β∈Zk

∣

∣

∣

∣

∣

mk/2

2

(

NΓ,β(m)

qm+1/(q − 1)
+
NΓ,β(m+ 1)

qm+2/(q − 1)

)

− e−〈β,β〉/2σ
2m

(2πσ2)k/2

∣

∣

∣

∣

∣

= o(1).

Proof. We ignore the oscillation and possible cancellation due to χβǫ . Using

sup
β
|A1(m, β)| ≤

∫

B(δρ
√
m)

∣

∣λ1(ǫ/σ
√
m)

m − e−〈ǫ,ǫ〉/2
∣

∣ dǫ

the first claim follows from Lemma 3.5, Lemma 3.3 (i) and (ii) and the dominated
convergence theorem.

By Lemma 3.3 (i) and the decay properties of hβ(ǫ,m) close to zero we have (using
the triangle inequality)

∣

∣hβ(ǫ/ρ
√
m)λ1(ǫ/ρ

√
m)m − e−〈ǫ,ǫ〉/2

∣

∣ ≤ C
‖ǫ‖2

ρ2m
e−〈ǫ,ǫ〉/4 +

∣

∣λ1(ǫ/σ
√
m)

m − e−〈ǫ,ǫ〉/2
∣

∣ ,

when ‖ǫ‖ < δρ
√
m. The right-hand-side is independent of β. Hence

sup
β
|B1(m, β)| ≤

∫

B(δρ
√
m)

(

C
‖ǫ‖2

ρ2m
e−〈ǫ,ǫ〉/4 +

∣

∣λ1(ǫ/σ
√
m)

m − e−〈ǫ,ǫ〉/2
∣

∣

)

dǫ.
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The integrand on the right converges pointwise to zero by Lemma 3.3 (i). Using
Lemma 3.3 (ii) we see that it can be bounded from above by C ′ ‖ǫ‖2 e−〈ǫ,ǫ〉/4 +
2e−〈ǫ,ǫ〉/4 which is integrable on Rk. The bounded convergence theorem now gives
supβ |B1(m, β)| → 0 and quoting Lemma 3.6 we conclude the theorem.

�

Remark 3.8. The statement in the Theorem 3.7 concerning nΓ,β(m) was also proved
by R. Sharp [24, proposition 3]. A related but weaker result was proved by I. Rivin
[19, Theorem 5.1]. We emphasize that these papers have a different value for σ2.
This is due to an erroneous calculation in [19]. The left hand side of [19, Eq. (22)]
should read

1− 1

2n(c+
√
c2 − 1)

(

c

k
+

c2

(c2 − 1)1/2k

)

〈θ, θ〉+ o

(

1

n

)

.

Once this is corrected the values of the variances agree.

3.4. Densities of discrete logarithms in a given set. In this section we define
a class of sets B for which we can study the density of discrete logarithms in B.
We need to consider sets for which we can see cancellation in an exponential sum
supported in B. To be precise:

Definition 3.9. A set B ⊂ Z
k is said to have property (C) if, for some 0 ≤ ε < k/2

there exist constants c, ι > 0 such that for m−k < |ǫ1| , . . . , |ǫk| < cmι :

(3.23)
∑

β∈B,δa=δ
|βi|≤m

χβ
ǫ/ρ

√
m

= O(fδ(ǫ)m
k/2+ε), δ = 0, 1,

where the implied constant may depend on ε, B, c, δ and k. If furthermore fδ(ǫ)
satisfies

∫

m−k<|ǫ1|,...,|ǫk|<cmι

|fδ(ǫ)|
∣

∣λ1(ǫ/ρ
√
m)m − e〈ǫ,ǫ〉/2

∣

∣ dǫ = o(m−ε)

and
∫

m−k<|ǫ1|,...,|ǫk|<cmι

|fδ(ǫ)| ‖ǫ‖2
∣

∣λ1(ǫ/ρ
√
m)m

∣

∣ dǫ = o(m1−ε)

as m→∞ the set B is said to have property (GC).

Obviously Definition 3.9 is analogous to Definition 2.6, as it also quantifies a
certain form of cancellation in an exponential sum. The sets with Property (C)
resp. Property (GC) also form an algebra. In fact Remark 2.7 applies here also.

Theorem 3.10. Let σ2 = (k − 1)−1. Assume that B ⊂ Zk has property (GC).
Then

∑

β∈B
|βi|≤m

(

mk/2

2

(

NΓ,β(m)

qm+1/(q − 1)
+
NΓ,β(m+ 1)

qm+2/(q − 1)

)

− 1

(2πσ2)k/2
e−〈β,β〉/2σ

2m

)

= o(mk/2).

Before proving it we state and prove a corollary which is the main reason why
property (GC) is interesting:
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Corollary 3.11. Assume that B ⊂ Zk has property (GC) and assume that B has
natural density d(B). Then

1

2

(

NΓ,B(m)

NΓ(m)
+
NΓ,B(m+ 1)

NΓ(m+ 1)

)

→ d(B)

as m→∞.

Proof. Theorem 3.10, (3.18) and Corollary 4.5. We also notice that |βi| ≤ m for
cyclically reduced words of length m, as all discrete logarithms are less than the
length. So

NΓ,B(m) =
∑

β∈B
|βi|≤m

NΓ,β(m)

and

1

2

(

NΓ,B(m)

NΓ(m)
+
NΓ,B(m+ 1)

NΓ(m+ 1)

)

−
∑

β∈B
|βi|≤m

1

2

(

NΓ,β(m)

NΓ(m)
+
NΓ,β(m+ 1)

NΓ(m+ 1)

)

→ 0,

as m→∞, because it is bounded by
∑

‖β‖=m+1

nΓ,β(m+ 1)

NΓ(m+ 1)
,

which tends to 0 by Theorem 3.7. �

Proof of Theorem 3.10: Using the definition of Property (GC) we may safely assume
ι ≤ 1/2. Quoting Lemma 3.6 we see that the theorem would follow from

∑

β∈B
|βi|≤m

B1(m, β) +O(q−dmmk) = o(mk/2).

Hence we need the following estimate:
∑

β∈B
|βi|≤m

∫

B(δρ
√
m)

χβ
ǫ/ρ

√
m

(

hβ(ǫ/ρ
√
m,m)λ1(ǫ/ρ

√
m)

m − e−〈ǫ,ǫ〉/2
)

dǫ = o(mk/2).

After this point the proof is, mutatis mutandis, a repetition of the proof of Lemma
2.9. The only new issue is that we need to split the sum into two sums, according
to the value of δβ. We shall not repeat the details. �

Theorem 1.6 follows now from Corollary 3.11, Corollary 4.5, the discussion about
partial summation leading up to Section 3.1 and the following result:

Theorem 3.12. The following sets have Property (GC):

(i) Random sets.
(ii) Finite sets.
(iii) Sets whose coordinates are arithmetic progressions.
(iv) The set k-tuples whose coordinates are coprime integers.

Proof. The proof of these claims is, mutatis mutandis, identical to the proofs of
Proposition 2.11, Theorem 2.13 and Theorem 2.14. Again the only real difference
is that we have to take into account splitting according to the value of δβ. The only
place where this is non-trivial is in the case of arithmetic progressions. Here we
notice that the set {γ ∈ Bl(α)|δβ = 1} (resp. δβ = 0) is the disjoint union of the
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2k−1 sets {β ∈ Bl1,...,lk(ν)|νi ≡ ηi (mod 2)} with ηi ∈ {0, 1} and η1 + . . . + ηk odd
(resp. even). But these sets are all either empty or sets of progressions with moduli
li (when (2, li) 6= 1) or 2li (when (2, li) = 1) using the chinese remainder theorem.
Using this observation the rest is straightforward, and we omit the details. �

3.5. A more direct proof for arithmetic progressions. In this section we prove
a slightly more precise version of Theorem 1.6 (ii).

Theorem 3.13. Let

NΓ,a1,...,ak
(m) = # {γ ∈ Γc|wl (γ) ≤ m, logi(γ) ≡ ai (mod li) , i = 1, . . . , k}

(a) If 2 6 |(l1, l2, . . . , lk) we have

NΓ,a1,...ak
(m)

#{γ ∈ Γc|wl (γ) ≤ m} →
1

l1l2 · · · lk
as m→∞.

(b) If the lj, j = 1, . . . , k are all even, then

1

2

(

NΓ,a1,...,ak
(m)

#{γ ∈ Γc|wl (γ) ≤ m} +
NΓ,a1,...,ak

(m+ 1)

#{γ ∈ Γc|wl (γ) ≤ m+ 1}

)

→ 1

l1l2 · · · lk
as m→∞.

For notational simplicity we restrict ourselves to the case k = 2. The generaliza-
tion to k > 2 is straightforward. Consider the abelian group Z/ljZ. Consider the
set of additive unitary characters on Z/ljZ. These are parametrized by g ∈ Z/ljZ
writing

χg,lj(a) = exp

(

2πiga

lj

)

.

The orthogonality relation for representations of finite groups (which in this simple
example is easy to verify directly) gives

(3.24)
1

lj

∑

g∈Z/ljZ

χg,lj (a)χg,lj(aj) =

{

1, if a ≡ aj (mod lj)

0, otherwise.

Putting a = log1(γ) enables us to see - using characters - if log1(γ) lies in a specific
arithmetic progression. Multiplying two such identities (or using the orthogonality
relation for Z/l1Z× Z/l2Z) we find
(3.25)

1

l1l2

∑

g∈Z/l1Z

g′∈Z/l2Z

χg,l1(a1)χg′,l2(a2)χg,g′,l1,l2(γ) =

{

1, if logj(γ) ≡ aj (mod lj) , j = 1, 2

0, otherwise.

Here

χg,g′,l1,l2(γ) = χg,l1(log1(γ))χg′,l2(log2(γ)))

= exp

(

2πi

(

g log1(γ)

l1
+
g′ log2(γ)

l2

))

,

which is a unitary character on Γ. We note that

A(Γ, χg,g′,l1.l2) = 2 cos

(

2πg

l1

)

+ 2 cos

(

2πg′

l2

)

,
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which is clearly less than or equal to 2k. We sum over wl (γ) ≤ m in (3.10) to get

∑

γ∈Γc

wl(γ)≤m

χ(γ) =
λ
−(m+1)
2 − λ−1

2

λ−1
2 − 1

+
λ
−(m+1)
1 − λ−1

1

λ−1
1 − 1

+ (k − 1)
(

m−
(

1 + (−1)m+1
)

/2
)

.

As m→∞ we have

(3.26)
∑

γ∈Γc

wl(γ)≤m

χ(γ) =
λ
−(m+1)
1

λ−1
1 − 1

+
λ
−(m+1)
2

λ−1
2 − 1

+O(m),

as long as 1 is not an eigenvalue. By Remark 3.1, when χ2 6= 1,

lim
m→∞

λ−mj /(2k − 1)m = 0.

We now distinguish two cases:
(a) The only character with χ2 = 1 is the trivial character 1. We conclude from

(3.25) that

(3.27)

#

{

γ ∈ Γc

∣

∣

∣

∣

wl (γ) ≤ m,
log1(γ) ≡ a1 (mod l1)
log2(γ) ≡ a2 (mod l2)

}

#{γ ∈ Γc|wl (γ) ≤ m} → 1

l1l2
as m→∞.

(b) There exist another real character χ. This happens if both lj are even and
g = l1/2, g′ = l2/2. In particular

χg,g′,l1,l2(a1, a2) = eπi(a1+a2) =

{

1, if a1 + a2 is even,

−1, if a1 + a2 is odd.

In this case we sum the contribution from the real characters and recall that from
(3.7) and Remark 3.1 we have that the second real character gives eigenvalues
−1/(2k − 1) and −1. Using (3.6) we get

nΓ,1(m) = (2k − 1)m + 1m +O(1), nΓ,χ = (−(2k − 1))m + (−1)m +O(1).

Using (3.11) and (3.25) we get

nΓ,a1,a2(m) =
1

l1l2
(2k − 1)m

(

1 + (−1)mχ(a1, a2)
)

+O(dm),

where d = sup(|λ1|−1, |λ2|−1) < q for the nonreal characters. We sum for m =
1, . . . , l. Depending of the value of χ(a1, a2) we sum either over the odd or the even
exponents of (2k − 1)j. For instance, assuming that χ(a1, a2) = 1, we get for l = 2s

NΓ,a1,a2(l) =
2

l1l2

∑

m=2m′≤2s

qm +O(dl) =
2

l1l2
q2 q

l − 1

q2 − 1
+O(dl),

while for l = 2s+ 1 we get (up to an error of type O(dl))

NΓ,a1,a2(l) =
2

l1l2

∑

2m′≤2s+1

q2m′

=
2

l1l2

∑

m′≤s
q2m′

=
2

l1l2
q2 q

2s − 1

q2 − 1
=

2

l1l2

q

q2 − 1
(ql − 1).

We note that

#{γ ∈ Γc|wl (γ) ≤ l} =
∑

m≤l
qm +O(l) =

q

q − 1
ql +O(l).
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Finally, as l →∞,

NΓ,a1,a2(l)

#{γ ∈ Γc|wl (γ) ≤ l} +
NΓ,a1,a2(l + 1)

#{γ ∈ Γc|wl (γ) ≤ l + 1}

→ 2

l1l2

(

q2/(q2 − 1)

q/(q − 1)
+
q/(q2 − 1)

q/(q − 1)

)

=
2

l1l2
.

The case χ(a1 + a2) = −1 is similar. This proves the second part of Theorem 3.13.
We note that the subsequence of odd and even m’s do not have the same limit.

4. Appendix

In this appendix we state and prove some general results which we have been
unable to find in the existing literature.

The first two parts of the following proposition have, however, appeared previously
in e.g [24, 25] but we recall them for convenience.

Proposition 4.1. Let f : Rk → R be a function for which there exists ν > 0 such
that

f(ǫ) = 1− 〈ǫ,Dǫ〉
2

+O(‖ǫ‖2+ν),

as ‖ǫ‖ → 0, where D is a positive definite k × k matrix. Let r > 0 be a constant.

(i) For every ǫ0 ∈ Rk we have

f(ǫ0/r
√
m)m → exp(−〈ǫ,Dǫ〉 /2r2),

as m→∞.
(ii) There exist a δ > 0 such that for all m ∈ N

∣

∣

∣
f(ǫ/r

√
m)m − e−〈ǫ,Dǫ〉/2r

2

∣

∣

∣
< 2e−〈ǫ,Dǫ〉/4r

2

whenever ‖ǫ‖ < δr
√
m.

(iii) For every 0 ≤ b ≤ ν/2 there exist constants δ, C > 0 such that for all m ∈ N,
‖ǫ‖ ≤ δmb/(4+2ν),

∣

∣

∣
f(ǫ/r

√
m)m − e−〈ǫ,Dǫ〉/2r

2

∣

∣

∣
≤ C/mmin(1−ε,ν/2−b).

Proof. We have

f(ǫ0/r
√
m) = 1− 〈ǫ0, Dǫ0〉

2mr2
+O(

∥

∥ǫ0/
√
m
∥

∥

2+ν
).

and therefore for m sufficiently large

(4.1) f(ǫ0/r
√
m)m =

(

1− 〈ǫ0, Dǫ0〉
2mr2

)m

+R(ǫ0, m),

where

(4.2) |R(ǫ0, m)| ≤
m
∑

k=1

(

m

k

)

Ck ‖ǫ0‖(2+ν)k

m(1+ν/2)k
=

(

1 +
C ‖ǫ0‖2+ν

m1+ν/2

)m

− 1

The first result now follows from

(4.3) lim
m→∞

(1− x/mc)m =

{

e−x if c = 1

1 if c > 1
.
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For the second result we can choose δ sufficiently small such that for ‖ǫ‖ < δ

f(ǫ)− 1 ≤ −1
4
〈ǫ,Dǫ〉 .

Using (1 − x/m)m < e−x we find that for ‖ǫ‖ < δr
√
m we have |f(ǫ/r

√
m)m| ≤

e−〈ǫ,Dǫ〉/4r
2

from which (ii) easily follows.
To prove (iii) we need to consider the rate af convergence in (4.3). We first

consider c = 1. We use the Taylor series of log(1− u) to see that

x+m log(1− x/m) → 0

as m→∞. In fact it is O(x2/m):

x−m

∞
∑

j=1

xj

mjj
= −

∞
∑

j=2

xj

mj−1j
= O(x

∞
∑

1

(x/m)j) = O

(

x
|x/m|

1− |x/m|

)

.

Since (eu − 1)/u → 1 as u → 0, we have eu − 1 = O(u) for u going to zero. We

assume that |x| ≤ δ′m1/2. Hence |x|2 /m can be made small by making δ′ small, and
we have:

ex+m log(1−x/m) − 1 = O(x+m log(1− |x/m|)) = O(x2/m).

By multiplying with e−x we get

(1− x/m)m − e−x = O(e−xx2/m)

which holds for all |x| ≤ δ′m1/2. We note that e−xx2/m ≤ m−1+ε when 0 ≤ x ≤ mε/2

and e−xx2/m = O(m−L) for any positive L when mε/2 ≤ x ≤ m1/2.
Hence for any ε > 0 there exist Cε such that when 0 ≤ x ≤ δ′m1/2

∣

∣(1− x/m)m − e−x
∣

∣ ≤ Cεm
−1+ε.

For the case c > 1 we have m log(1 − x/mc) → 0 and, in fact, m log(1 − x/mc) =
O(x/mc−1) by the same argument as before. So when |x| < δ′mc−1

(1− x/mc)m − 1 = em log(1−x/mc) − 1 = O(m log(1− x/mc)) = O(x/mc−1).

Hence there exist a constant B > 0 such that if we fix b ≤ c − 1 and restrict x in
the set |x| ≤ δ′mb we have

(1− x/mc)m − 1 ≤ Bm1+b−c.

Using (4.1) we have

f(ǫ/r
√
m)m =

(

1− 〈ǫ,Dǫ〉
2mr2

)m

+R(ǫ,m)

whenever ‖ǫ‖ ≤ δr
√
m. We take c = 1 + ν/2 in (4.2). Let b ≤ c− 1 = ν/2. Hence

there exist a constant C > 0 such that if we let

〈ǫ, ǫ〉 ≤ δ′′m1/2 and 〈ǫ, ǫ〉2+ν ≤ δ′′mb

then
∣

∣

∣
f(ǫ/r

√
m)m − e−〈ǫ,Dǫ〉/2r

2

∣

∣

∣
≤ Cmax(mε−1, m−ν/2+b).

This completes the proof. �
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Lemma 4.2. Let f : R → R be differentiable with continuous, bounded derivative,
non-increasing for x > 0, even and integrable. Assume that

lim
x→±∞

xf(x) = 0.

Let B ⊂ Z have density d(B). Then

lim
x→∞

∑

t∈B,|t|≤x

1√
x
f

(

t√
x

)

= d(B)

∫

R

f(u) du.

Proof. Fix ǫ > 0. Choose x0 such that for t > x0 we have

2(d(B)− ǫ)t < |B ∩ [−t, t]| < 2(d(B) + ǫ)t.

To simplify notation b will always denote an element of B. We use summation by
parts to get:
∑

|b|≤x

1√
x
f

(

b√
x

)

=
∑

0≤b≤x

1√
x
f

(

b√
x

)

+
∑

0≥b≥−x

1√
x
f

(

b√
x

)

= |B ∩ [0, x]| 1√
x
f(
√
x)−

∫ x

0

|B ∩ [0, t]|1
x
f ′(t/

√
x) dt

+ |B ∩ [−x, 0]| 1√
x
f(−

√
x)−

∫ x

0

|B ∩ [−t, 0]|−1

x
f ′(−t/

√
x) dt

= |B ∩ [−x, x]| 1√
x
f(
√
x)−

∫ x

0

|B ∩ [−t, t]|1
x
f ′(t/

√
x) dt,

where we also used that f is even and f ′ is odd.

lim sup
∑

|b|≤x

1√
x
f(b/

√
x) ≤ lim sup

|B ∩ [−x, x]|
x

√
xf(

√
x)

+ lim sup

(

−
∫ x

x0

2t(d(B) + ǫ)
1

x
f ′(t/

√
x) dt

)

+ lim sup

∫ x0

0

|B ∩ [−t, t]|1
x
f ′(t/

√
x) dt.

where we have used the fact that f ′ ≤ 0. The first term on the right tends to 0, by
the existence of the density and the conditions on f . The third term tends to 0, as
f ′ is bounded, B is discrete and [0, x0] is a finite interval. The second term can be
analyzed as follows: We do integration by parts.

−
∫ x

x0

2t

x
f ′(t/

√
x) dt = −

[

−f
(

t√
x

)

2t√
x

]x

x0

+

∫ x

x0

f

(

t√
x

)

2√
x
dt

=

(

2
√
xf(

√
x)− f(x0/

√
x)

2x0√
x

)

+

∫

√
x

x0/
√
x

2f(u) du.

The first term tends to 0 and the second to the integral
∫∞
0

2f(u) du =
∫∞
−∞ f(u) du.

This proves that

lim sup
∑

|b|≤x

1√
x
f(b/

√
x) ≤ (d(B) + ǫ)

∫

R

f(u) du

for every ǫ. We let ǫ tend to 0 and we work similarly with lim inf.
�
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Remark 4.3. A similar result holds for any 0 < c < 1:

1

xc

∑

0≤a≤x
f(a/xc) → d(B)

∫ ∞

0

f(u) du.

Lemma 4.2 is a special case of Lemma 4.4 below. We included it only because it is
easier to follow the proof in one dimension.

Lemma 4.4. Let f : Rk → R be integrable, differentiable, with continuous partial
derivatives, even in each variable, with fi ≤ 0, fij ≥ 0 for i 6= j, fijk ≤ 0 for distinct
i, j, k etc on the higher partial derivatives in the set {t ∈ R

k, ti ≥ 0}. Let B have
natural density d(B). Then

lim
x→∞

∑

t∈B,|ti|≤x

1

xk/2
f(t1/

√
x, . . . , tk/

√
x) = d(B)

∫

Rk

f(u1, . . . , uk) du1 . . . duk.

Proof. As usual we denote [s] the greatest integer part of s and by {s} its fractional
part. Fix ǫ > 0. We use the norm |t| = max |tj|. Choose x0 such that for |t| > x0

we have

2k(d(B)− ǫ)t1 · · · tk <
∣

∣

∣

∣

B ∩
∏

i

[−ti, ti]
∣

∣

∣

∣

< 2k(d(B) + ǫ)t1 · · · tk.

To simplify notation b will denote an element of B. We use summation by parts [13,
Th. 1.6, p 24] to get

∑

|bi|≤x

1

xk/2
f(b/

√
x)

=
∑

~a∈{0,1}k

(−1)
P

ai

∫

|ti|≤x

∣

∣

∣

∣

B ∩
∏

i

[−ti, ti]
∣

∣

∣

∣

k
∏

i=1

∂

∂ti

ai
(

1

xk/2
f(t/

√
x)

)

dt.

In this equation it is understood that for ~a = ~0 there is no integration and we
substitute ti = x. Also ∂ai/∂ti means no derivative in ti if ai = 0. We split the
integration in |t| ≤ x0 and |t| > x0. The conditions on the partial derivatives of f
imply that

∑

|bj |≤x

1

xk/2
f(b/

√
x)

=
∑

~a∈{0,1}k

(−1)
P

ai

∫

|tj |≤x0

∣

∣

∣

∣

B ∩
∏

i

[−ti, ti]
∣

∣

∣

∣

|
k
∏

i=1

∂

∂ti

ai
(

1

xk/2
f(t/

√
x)

)

dt

+
∑

~a∈{0,1}k

(−1)
P

ai

∫

x0≤|tj |≤x

∣

∣

∣

∣

B ∩
∏

i

[−ti, ti]
∣

∣

∣

∣

k
∏

i=1

∂

∂ti

ai
(

1

xk/2
f(t/

√
x)

)

dt

≤
∑

~a∈{0,1}k

(−1)
P

ai

∫

|tj |≤x0

∣

∣

∣

∣

B ∩
∏

i

[−ti, ti]
∣

∣

∣

∣

k
∏

i=1

∂

∂ti

ai
(

1

xk/2
f(t/

√
x)

)

dt
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+ (d(B) + ǫ)
∑

~a∈{0,1}k

(−1)
P

ai

∫

x>|t|>x0

∏

i

(2[ti])
k
∏

i=1

∂

∂ti

ai
(

1

xk/2
f(t/

√
x)

)

dt

+ (d(B) + ǫ)
∑

~a∈{0,1}k

(−1)
P

ai

∫

x>|t|>x0

∏

i

(2{ti})
k
∏

i=1

∂

∂ti

ai
(

1

xk/2
f(t/

√
x)

)

dt

We note that the third term can be written by the change of variables u = t/
√
x as

(d(B) + ǫ)
∑

~a∈{0,1}k

(−1)
P

ai

∫

√
x>|u|>x0/

√
x

∏

i

(2{ui})
1

x
P

aj/2

k
∏

i=1

∂

∂ui

ai

(f(u)) du

and this is the integral of an integrable function. If
∑

aj > 0 it tends to 0. The
term with ai = 0, i = 1, . . . , k together with the second term can be combined so
that we use the summation by parts formula backwards.

∑

|bj |≤x

1

xk/2
f(b/

√
x)

=
∑

~a∈{0,1}k

(−1)
P

ai

∫

|tj |≤x0

∣

∣

∣

∣

B ∩
∏

i

[−ti, ti]
∣

∣

∣

∣

k
∏

i=1

∂

∂ti

ai
(

1

xk/2
f(t/

√
x)

)

dt

+ (d(B) + ǫ)
∑

x0<|b|≤x

1

xk/2
f(b/

√
x) +O(1/x1/2).

The second term is a Riemann sum for the integral
∫

x0<|t|≤x

1

xk/2
f(t/

√
x) dt.

The conditions on the function f guarantee that the Riemann sum approximates
the integral with an error O(x−k/2 max |f(t)|). We take lim sup on the inequality, as
x → ∞. The first term on the right tends to 0, as it is an integral over a compact
set. We end up with

lim sup
∑

|bj |≤x

1

xk/2
f(b/

√
x) ≤ (d(B) + ǫ) lim sup

∑

x0<|b|≤x

1

xk/2
f(b/

√
x)

= (d(B) + ǫ) lim

∫

x0<|t|≤x

1

xk/2
f(t/

√
x) dt

= (d(B) + ǫ) lim

∫

[x0/
√
x,
√
x]k

2kf(u) du

= (d(B) + ǫ)

∫

Rk

f(u) du.

We let ǫ tend to 0 and we work similarly with lim inf.
�

We have the following corollary:
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Corollary 4.5. Let M be a positive definite matrix of determinant 1. Assume that
B ⊂ Zk has natural density d(B). Then

∑

β∈B
|βi|≤m

1

(2πσ2m)k/2
e−〈β,M−1β〉/2σ2m → d(B),

as m→∞.
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