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GEOMETRY OF B ×B-ORBIT CLOSURES IN EQUIVARIANT
EMBEDDINGS

XUHUA HE AND JESPER FUNCH THOMSEN

Abstract. Let X denote an equivariant embedding of a connected reductive
group G over an algebraically closed field k. Let B denote a Borel subgroup
of G and let Z denote a B × B-orbit closure in X. When the characteristic
of k is positive and X is projective we prove that Z is globally F -regular. As
a consequence, Z is normal and Cohen-Macaulay for arbitrary X and arbitrary
characteristics. Moreover, in characteristic zero it follows that Z has rational
singularities. This extends earlier results by the second author and M. Brion.

1. Introduction

Let G denote a connected and reductive linear algebraic group over an alge-
braically closed field k. Let B denote a Borel subgroup of G. An (equivariant)
embedding X of G is a normal G×G-variety which contains an open subset which is
G×G-equivariantly isomorphic to G. Here we think of G as a G×G-variety through
left and right translation. In this paper we study the geometry of B × B-orbit clo-
sures in X. Examples of such varieties include all toric varieties, all (generalized)
Schubert varieties and all large Schubert varieties (see [B-P]).

The geometry of B × B-orbit closures within equivariant embeddings has been
the subject of several earlier papers. In [B] it was realized that such orbit closures
were mostly singular with singular locus of codimension 2. In the special case of
the wonderful compactification of a semisimple group G of adjoint type, this was
later strengthened in [B-P], where it was proved that closures of orbits of the form
BgB, for g ∈ G, are normal and Cohen-Macaulay. Closures of this form are called
large Schubert varieties. Using the concept of global F -regularity the latter result
was generalized to arbitrary X and G in [B-T]. For arbitrary B × B-orbit closures
it seems that normality and Cohen-Macaulayness is only known for the wonderful
compactifications [B2, Rem.1]. In the present paper we show that all B × B-orbit
closures for arbitrary X and G will be normal and Cohen-Macaulay. Moreover, when
the field k has characteristic 0 we will show that such orbit closures have rational
singularities. As in [B-T] the main technical tool will be that of global F -regularity.

Global F -regularity was introduced by K. Smith in [S2]. By definition a projective
variety Z over a field of positive characteristic is globally F -regular if every ideal of
some homogeneous coordinate ring of Z is tightly closed. Any globally F -regular va-
riety will be normal and Cohen-Macaulay. Moreover, every homogeneous coordinate
ring of Z will share the same properties. Another consequence is that the higher
cohomology groups of nef line bundles on Z will be zero. Known classes of globally
F -regular varieties include projective toric varieties [S2], (generalized) Schubert va-
rieties [L-P-T] and projective large Schubert varieties [B-T]. In this paper we prove
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that every B × B-orbit closure in a projective embedding X of a reductive group
G is globally F -regular. Notice that varieties of this form include the mentioned
classes above.

The paper is organized as follows. In Section 2 we introduce notation. In Section
3 we give a short introduction to Frobenius splitting, canonical Frobenius splitting
and global F -regularity. In section 4 we present the main technical result (Propo-
sition 4.1) which relates the mentioned concepts from Section 3. In section 5 we
describe the G × G-orbit closures in a toroidal embedding. Section 6 describes the
decomposition of the closure of a B × B-orbit into the union of some B × B-orbits
for toroidal embeddings. This is a generalization of Springer’s result in [Sp] on the
wonderful compactification. As a by-product of this description we obtain, that any
Frobenius splitting of a toroidal embedding X which compatibly Frobenius splits
the boundary components and the large Schubert varieties of codimension 1, will
automatically compatibly Frobenius split all B × B-orbit closures in X. This is
used in Section 7 to conclude that all B ×B-orbit closures in a toroidal embedding
are simultaneous canonical Frobenius split. In section 8 we prove that any B × B-
orbit closure in a projective embedding (over a field of positive characteristic) is
globally F -regular. The proof of this proceeds by reducing to the case when X is
toroidal and then using the results of the previous sections. Finally in Section 9 we
treat the characteristic 0 case by descending the results from Section 8 to positive
characteristic.

2. Notation

Throughout this paper G will denote a connected reductive linear algebraic group
over an algebraically closed field k. The associated semisimple and connected group
of adjoint type will be denoted by Gad. The associated canonical morphism is
denoted by πad : G → Gad. We will fix a maximal torus T and a Borel subgroup
B ⊃ T of G.

The set of roots determined by T will be denoted by R and we define the subset
of positive roots R+ of R to be the set of roots α ∈ R such that the α-weight space
of the Lie algebra of B is nonzero. The set ∆ = {α1, . . . , αl} of simple positive roots
will be indexed by I = {1, . . . , l}. For each subset J ⊂ I we let PJ ⊃ B denote the
corresponding parabolic subgroup of G. The associated Levi subgroup containing T
will be denoted by LJ while we use the notation UJ to denote the unipotent radical
of PJ . The notation U−

J and L−
J will be used for the equivalent subgroups in the

parabolic subgroup P−
J opposite to PJ . When J is empty we simple denote P−

J

by B− and UJ by U . The semisimple group of adjoint type associated with LJ is
denoted by GJ .

To each root α ∈ R there is an associated reflection sα in the Weyl group W =
NG(T )/T . The reflection associated with the simple root αi is called simple and will
be simply written as si. We may then write each element w in W as a product of
simple reflection and the minimal number of factors in such a product is the length
of w and will be denoted by l(w). The unique element of maximal length will be
denoted by w0. For J ⊂ I, we denote by WJ the subgroup of the Weyl group W
generated by the simple reflections si for, i ∈ J , and by W J the set of minimal length
coset representatives of W/WJ . The element in WJ of longest length is denoted by
wJ

0 . For an element w ∈ W we let ẇ denote a representative for w in the normalizer
of T . Moreover, we define R(w) = {α ∈ R+ : wα ∈ R+}, and denote by Uw the
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subgroup of B generated by the root subgroups Uα for α ∈ R(w). Then we let Bw

denote the subgroup TUw of B.
By a variety over k we mean a reduced and separated scheme of finite type over

k. In particular, a variety need not be irreducible.

3. Generalities on Frobenius splitting

Let X be a scheme of finite type over an algebraically closed field k of positive
characteristic p > 0. The absolute Frobenius morphism F : X → X on X is the
morphism of schemes which on the level of points is the identity map and where the
associated map of sheaves

F ] : OX → F∗OX ,

is the p-th power map. A Frobenius splitting of X is an OX-linear morphism

s : F∗OX → OX ,

such that the composition s ◦ F ] is the identity map.

3.1. Compatibly split subschemes. Let Y denote a closed subscheme of X with
sheaf of ideals IY . A Frobenius splitting s of X is said to compatibly Frobenius split
Y if s(IY ) ⊂ IY . In this case there exists an induced Frobenius splitting of Y . When
Y is compatibly Frobenius split by s then any irreducible component of Y will also
be compatibly Frobenius split by s. Moreover, if Y ′ is another (by s) compatibly
Frobenius split closed subscheme then the scheme theoretic intersection Y ∩ Y ′ will
also be compatibly Frobenius split by s.

3.2. Push-forward. Let f : X → X ′ denote a morphism of schemes of finite type
over k. Assume that X admits a Frobenius splitting s which compatibly splits a
closed subscheme Y . If the induced map f ] : OX′ → f∗OX , is an isomorphism, then
s induces by push-forward a Frobenius splitting of X ′ which compatibly Frobenius
splits the scheme theoretic image of Y .

3.3. Stable Frobenius splitting along divisors. LetD denote an effective Cartier
divisor on X and let sD denote the canonical section of the associated line bundle
OX(D). Then X is said to admit a stable Frobenius splitting along D if there exists
a positive integer e and an OX-linear morphism

s : F e
∗OX(D) → OX ,

such that s(sD) = 1. Notice that in this case the composition of s with the canonical
map OX → F e

∗OX(D), defined by sD, is a Frobenius splitting of X. If D′ is another
effective divisor then it is known (see e.g. [B-T, Lemma 3.1]) that X is stably
Frobenius split along the sum D+D′ if and only if X is stably Frobenius split along
both D and D′.

WhenX admits a stable Frobenius splitting s alongD and Y is a closed subscheme
of X, then we say that s compatibly Frobenius splits Y if s

(
F e
∗
(
IY ⊗OX(D)

))
⊂ IY

and, moreover, none of the components of Y are contained in the support of D.
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3.4. Canonical Frobenius splitting. Let now G be a connected reductive linear
algebraic group. Fix a Borel subgroup B and a maximal torus T ⊂ B of G. When
X is a B-variety there is an induced action of B on the set of OX-linear maps
HomOX

(F∗OX ,OX). More precisely, when b ∈ B and f ∈ OX(V ), for V open in X,
then we define b · f to be the function on bV defined by (b · f)(v) = f(b−1v). Then
for s : F∗OX → OX we define (b ? s) : F∗OX → OX by

(b ? s)(f) = b · s(b−1 · f).

We regard HomOX
(F∗OX ,OX) as a k-vectorspace by letting z ∈ k act on s : F∗OX →

OX as
(z.s)(f) = z

1/ps(f).

We may then define the following important concept : a Frobenius splitting s of X
is said to be (B, T )-canonical if :

• t ? s = s, ∀t ∈ T .
• Let α ∈ ∆ and let xα : k → G be the associated homomorphism of algebraic

groups satisfying txα(z)t−1 = xα(α(t)z), t ∈ T . Then

xα(z) ? s =

p−1∑
i=1

zi.si,α , for all z ∈ k,

for certain fixed si,α ∈ HomOX
(F∗OX ,OX).

When X is a B-variety we define the variety G×B X to be the quotient of G×X
by the B-action defined by b.(g, x) = (gb−1, bx) for b ∈ B, g ∈ G and x ∈ X. With
this notation we have the following crucial result connected with canonical Frobenius
splittings (see e.g. [B-K, 4.1.E(4)])

Proposition 3.1. Let X be a variety admitting a (B, T )-canonical Frobenius split-
ting s. Then the variety G×B X admits a (B, T )-canonical Frobenius splitting such
that BẇB ×B X is compatibly Frobenius split for all w ∈ W and such that G×B Y
is compatibly Frobenius split for all B-stable subvarieties of X which are compatibly
Frobenius split by s.

3.5. Strong F -regularity. A general reference for this subsection is [H-H]. Let K
be a field of positive characteristic p > 0 and let R denote a commutative K-algebra
essentially of finite type, i.e. equal to some localization of a finitely generated K-
algebra. We say that R is strongly F -regular if for each s ∈ R, not contained in
a minimal prime of R, there exists a positive integer e such that the R-linear map
F e

s : R → F e
∗R, r 7→ rpe

s, is split. When R is strongly F -regular then R is normal
and Cohen-Macaulay. Moreover, all ideals in R will be tightly closed and thus R
will be F -rational, i.e. every parameter ideal is tightly closed.

The ring R is strongly F -regular if and only if all of its localized rings are strongly
F -regular. Thus, we define a scheme X of finite type over K to be strongly F -regular
if all of its local rings OX,x, for x ∈ X, are strongly F -regular. Then the affine scheme
Spec(R) (when R is a finitely generated K-algebra) is strongly F -regular precisely
when R is strongly F -regular.

3.6. Global F -regularity. Consider an irreducible projective variety X over k.
For an ample line bundle L on X we define the associated section ring to be

R = R(X,L) :=
⊕
n∈Z

Γ(X,Ln).



5

We then say that X is globally F -regular if the ring R(X,L) is strongly F -regular for
some (or equivalently, any) ample invertible sheaf L on X. Global F -regularity was
introduced by K. Smith in [S2]. WhenX is globally F -regular thenX is also strongly
F -regular. In particular, globally F -regular varieties are normal, Cohen-Macaulay
and locally F -rational.

The following important result by Smith [S2, Theorem 3.10] connects global F -
regularity, Frobenius splitting and strong F -regularity.

Theorem 3.2. If X is an irreducible projective variety over k then the following
are equivalent:

(1) X is globally F -regular.
(2) X is stably Frobenius split along an ample effective Cartier divisor D and

the (affine) complement X \D is strongly F -regular.
(3) X is stably Frobenius split along every effective Cartier divisor.

The connection between (1) and (3) in this theorem leads to the following result
which can be found in [L-P-T].

Corollary 3.3. Let f : X̃ → X be a morphism of projective varieties. If the
connected map f ] : OX → f∗OX̃ is an isomorphism and X̃ is globally F -regular then
X is also globally F -regular.

4. Some criteria for globally F-regularity

Throughout this section we assume that k has positive characteristic. The follow-
ing result connects canonical Frobenius splitting and global F -regularity.

Proposition 4.1. Let Y be an irreducible projective B-variety. Let y ∈ Y and
w ∈ W . Define Y ′ = Y −B · y and assume that

(1) Bw · y = B · y and B · y is dense in Y .
(2) Y admits a (B, T )-canonical Frobenius splitting which compatibly splits the

subvariety Y ′.
(3) Y is strongly F -regular.

Write w = si1si2 · · · sin as a reduced product of simple reflections and define

Z = P1 ×B P2 ×B · · · ×B Pn ×B Y,

where Pj = B∪BṡijB is a minimal parabolic subgroup. Then Z is globally F -regular.

Proof. Let L denote an ample line bundle on Z. Since Y is strongly F -regular, Y
is normal. Moreover the Picard group of B is trivial. Thus we may consider L as
a B-linearized line bundle. In particular, B acts linearly on the finite dimensional
vector space H0(Z,L) of global sections of L and we may thus find a nonzero global
section s which is B-invariant up to scalars.

Let z = [ṡi1 , . . . , ṡin , y] ∈ Z. Then by assumption (1) the orbit B · z is dense in Z
with complement equal to the union of the subsets

Zi = P1 ×B · · · ×B B ×B · · · ×B Pn ×B Y, i = 1, . . . , n,

Z ′
j = P1 ×B P2 ×B · · · ×B Pn ×B Y

′
j , j = 1, . . . ,m,

where Zi is defined by substituting B with Pi in the definition of Z and Y ′
j , j =

1, . . . ,m, denotes the components of Y ′. As the support supp(s) of s is B-stable
and of codimension 1 in Z it follows that supp(s) is contained in Z − B · z, i.e in
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the union of Zi, i = 1, . . . , n and Z ′
j, j = 1, . . . ,m. In particular, we may choose

nonnegative integers ni and mj such that the zero divisor of s in Z equals

Z(s) =
n∑

i=1

niZi +
m∑

j=1

mjZ
′
j.

By assumption (2) and Proposition 3.1 the variety Z admits a Frobenius splitting
which compatibly Frobenius splits Z ′

j, j = 1, . . . ,m and Zi, i = 1, . . . , n. Let Y 0

denote the (B-invariant) nonsingular locus in Y . As Y is normal the complement
Y − Y 0 is of codimension ≥ 2. Now define

Z0 = P1 ×B P2 ×B · · · ×B Pn ×B Y
0.

Then Z0 is a smooth variety which admits a Frobenius splitting compatibly splitting
the divisors Zi ∩ Z0, i = 1, . . . , n and the subvarieties Z ′

j ∩ Z0, j = 1, . . . ,m. As

Z0 is smooth this implies (see e.g. [L-P-T, Lemma 1.1]) that Z0 admits a stable
Frobenius splitting along the effective Cartier divisor :

n∑
i=1

(Zi ∩ Z0) +
m∑

j=1

δj(Z
′
j ∩ Z0),

where δj = 0 if Z ′
j is not a divisor and else δj = 1. As a consequence, Z0 admits a

stable Frobenius splitting along
n∑

i=1

ni(Zi ∩ Z0) +
m∑

j=1

mj(Z
′
j ∩ Z0).

In other words, Z0 is stably Frobenius split along the Cartier divisor defined by
the restriction of s to Z0. Thus the morphism

OZ0 → F e
∗OZ0(Z(s) ∩ Z0),

defined by the restriction of s to Z0 splits for some sufficiently large integer e.
As Y is normal so is Z. Moreover, Z − Z0 has codimension ≥ 2 and thus i∗i

∗M

for any line bundle M on Z where i denotes the inclusion map of Z0 in Z. Ap-
plying the functor i∗ to the stable splitting above we find that Z admits a stable
Frobenius splitting along the effective Cartier divisor defined by s. Moreover, as Y
is strongly F -regular also Z and hence Z − supp(s) is strongly F -regular (see e.g.
[L-S, Lemma 4.1]). This proves that Z is globally F -regular and ends the proof. �

For convenience of the reader we include the following result (see [R, Lemma 2.11])
which we will use in the proof of the next proposition.

Lemma 4.2. Let f : X → Y denote a projective morphism of irreducible varieties
and let X ′ denote a closed irreducible subvariety of X. Consider the image Y ′ =
f(X ′) as a closed subvariety of Y . Let L denote an ample line bundle on Y and
assume

(1) f∗OX = OY .
(2) Hi(X, f∗Ln) = Hi(X ′, f∗Ln) = 0 for i > 0 and n >> 0.
(3) The restriction map H0(X, f ∗Ln) → H0(X ′, f∗Ln) = 0 is surjective for

n >> 0.

Then the induced map f ′ : X ′ → Y ′ is a rational morphism, i.e. f ′∗OX′ = OY ′ and
Rif ′∗OX′ = 0, i > 0.
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Proposition 4.3. Let X denote an irreducible G-variety and let Y denote a closed
irreducible B-subvariety of X. Assume that X admits a (B, T )-canonical Frobenius
splitting which compatibly splits Y . Let P1, . . . , Pn denote a collection of minimal
parabolic subgroups of G. Then the natural map

f : Z = P1 ×B · · · ×B Pn ×B Y → (P1 · · ·Pn) · Y ⊂ X,

is a rational morphism, i.e. Rif∗OZ = 0, i > 0, f∗OZ = Of(Z).

Proof. Define ZX = P1×B · · ·×B Pn×B X. As X is a G-variety we may identify ZX

with the product Z(P1, . . . , Pn)×X, where Z(P1, . . . , Pn) denotes the Bott-Samelson
variety P1 ×B · · · ×B Pn/B. We define g : ZX → X to be the associated projection
map. As Z(P1, . . . , Pn) is an irreducible projective variety we have g∗OZX

= OX .
Let ZX,i, i = 1, . . . , n, denote the Cartier divisor

ZX,i = P1 ×B · · · ×B B ×B · · · ×B Pn ×B X,

in ZX , where Pi in the definition of ZX is substituted by B. Then, by Proposition 3.1,
the variety ZX admits a Frobenius splitting s which compatibly splits the subvariety
Z and the divisors ZX,i, i = 1, . . . , n. Thus by [L-P-T, Lem.1.1] the Frobenius
splitting s : F∗OZX

→ OZX
maps through the morphism

F∗OZX
→ F∗

(
OZX

( n∑
i=1

ZX,i

))
defined by the product of the canonical sections of the Cartier divisors ZX,i, i =
1, . . . , n. Thus we may regard s as a stable Frobenius splitting of X along

∑n
i=1 ZX,i

which compatibly splits Z. By [T, Lem.4.3, Lem.4.4] we conclude that ZX admits
a stable Frobenius splitting along any divisor of the form

n∑
i=1

niZX,i,

with ni being positive integers, which compatibly Frobenius splits Z.
Let L denote any ample line bundle on X. Choose ni, i = 1, . . . , n, such that the

line bundle

L′
m = g∗Lpm ⊗ OZX

( n∑
i=1

niZX,i

)
is ample on ZX for all m > 0 (that this is possible follows e.g. from [L-T, Lem.6.1]).
By [T, Lem.4.8] there exists, for some m, an embedding of abelian groups

Hj
(
ZX , IZ ⊗ g∗L

)
⊆ Hj

(
ZX , IZ ⊗ L′

m

)
,

for all j. So by [B-K, Thm.1.2.8] and the ampleness of L′
m it follows that Hj

(
ZX , IZ⊗

g∗L
)

is zero for j > 0. Similarly (with Z substituted with ZX) we may conclude

that Hj
(
ZX , g

∗L
)

is zero for j > 0. Together these two latter statements imply that

Hj
(
Z, g∗L

)
is also zero for j > 0.

Applying Lemma 4.2 now ends the proof. �

Combining the two propositions above with Corollary 3.3 we find

Theorem 4.4. Let X denote an irreducible G-variety and let Y be a closed irre-
ducible B-subvariety of X. Assume that X admits a (B, T )-canonical Frobenius
splitting which compatibly splits Y . Let y ∈ Y and w ∈ W and assume that the
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triple (Y, y, w) satisfies the assumptions in Proposition 4.1. Then (BẇB)Y is glob-
ally F -regular.

5. The G×G-orbit closures in toroidal embeddings

Consider G as a G × G-variety by left and right translation. An equivariant G-
embedding (or simply a G-embedding) is a normal G × G-variety X containing an
open subset which is G×G-equivariantly isomorphic to G.

5.1. Wonderful compactifications. When G = Gad is of adjoint type there ex-
ists a distinguished equivariant embedding X of G which is called the wonderful
compactification (see e.g. [B-K, 6.1]).

The boundary X − G of X is a union of irreducible divisors Xi, i ∈ I, which
intersect transversally. For a subset J ⊂ I we denote the intersection ∩j∈JXj by
XJ . Then Y := XI is the unique closed G×G-orbit in X. As a G×G-variety Y
is isomorphic to G/B × G/B.

5.2. Toroidal embeddings. An embedding X of a reductive group G is called
toroidal if the canonical map πad : G → Gad admits an extension π : X → X into
the wonderful compactification X of the group Gad of adjoint type.

5.3. The G×G-orbits. For the rest of this section we assume that X is a toroidal
embedding of G. The boundary X −G is of pure codimension 1 (see [H, Prop.3.1]).
Let X1, . . . , Xn denote the boundary divisors. Then by [B-K, Prop.6.2.3] any G×G-
orbit closure in X is the intersection of the Xi’s which contain it. Now set

I = {K ⊂ {1, 2, · · · , n} | ∩i∈KXi is nonempty and irreducible}.
For K ∈ I, set XK = ∩i∈KXi. Then (XK)K∈I are the closures of G × G-orbits

in X. When X is the wonderful compactification of Gad then I = P(I), where P(I)
denotes the set of subsets of I. Moreover, the G × G-equivariant map π : X → X
induces a map p : I → P(I) such that π(XK) = Xp(K).

Remark 5.1. Actually the condition that ∩i∈KXi is irreducible in the definition of
I is redundant. Whenever ∩i∈KXi is nonempty then this set is also irreducible. This
follows by the 1-1 correspondence between the (G×G)-orbits in X and the T -orbits
in the toric variety X ′

0 introduced in the subsection below (see [B-K, Prop.6.2.3(ii)]).
In fact, any intersection of T -stable irreducible closed subvarieties in a toric variety
is irreducible (see e.g. [F, Sect.5.1]).

5.4. The base points. Let X ′ denote the closure of T within X and let similarly
X′ denote the closure of Tad = πad(T ) within X. Let X0 denote the complement
of the union of the closures BṡiB−, i = 1, . . . , l, within X. Then X0 is an open
B × B−-stable subset of X. Moreover, if we let X ′

0 denote the intersection of X ′

and X0 then the map
U × U− ×X ′

0 → X0,

(u, v, x) 7→ (u, v)z.

is an isomorphism (see [B-K, Prop.6.2.3(i)]). With similar definitions for X we also
obtain an isomorphism

U × U− ×X′
0 → X0.

The above defined subsets are related in the way that π−1(X′
0) = X ′

0 and conse-
quently also π−1(X0) = X0.



9

The set X′
0 is a toric variety (with respect to Tad). In particular, it contains

finitely many T ×T -orbits. The T ×T -orbits are classified by the set P(I) of subsets
of I. We may choose representatives hJ , J ⊂ I, for these orbits such that hJ is
invariant under the groups U−

I−J × UI−J , diag(LI−J) and Z(LI−J) × Z(LI−J) (see
e.g. [Sp, 1.1]). Such a representative hJ is then uniquely determined.

EachG×G-orbit in X intersects X′
0 in a unique T×T -orbit (see [B-K, Prop.6.2.3(ii)]).

In particular, the elements hJ are also representatives for the G × G-orbits in X.
Moreover, (G×G) · hJ is the open dense G×G-orbit in XJ .

Now for the toroidal embedding X and K ∈ I, we may pick a point hK in the open
G × G-orbit of XK which maps to hp(K). Then (hK)K∈I is a set of representatives
of the G×G-orbits in X. Notice that hK ∈ π−1(X ′

0) ⊂ X ′
0.

5.5. The structure of G×G-orbit closures. The following result should be well
known but, as we have not been able to find a reference to it, we include a proof.

Lemma 5.2. Let H denote a linear algebraic over the field k and let Y denote
a homogeneous H-variety. Let y ∈ Y and let py : H → Y denote the associated
orbit map. Let Hy denote the stabilizer group scheme of y. Then Y ' H/Hy as
homogeneous H-varieties. Moreover, if Hy is a normal subgroup scheme of H then
Y may be given a structure of a linear algebraic group such that py is a morphism
of algebraic groups.

Proof. By [D-G, Prop.III.3.5.2.] it follows that we may identify H/Hy with a locally
closed subscheme Y ′ of Y . As Y is a homogeneous H-variety we conclude that
Y = Y ′. In particular, H/Hy is a variety.

Consider now the case when Hy is a normal subgroup scheme of H. Then by [D-G,
Prop.III.3.5.6] the quotient H/Hy is an affine group scheme. Thus the isomorphism
Y ' H/Hy induces a desired algebraic group structure on Y . �

Proposition 5.3. Let X be a toroidal embedding. Let K ∈ I, J = p(K) and
h = hK. Then

(1) h is invariant under the groups U−
I−J × UI−J and diag(LI−J).

(2) We simply write (LI−J × {1}) · h as LI−J · h. The closure LI−J · h in X is
LI−J ×LI−J-equivariantly isomorphic to a toroidal equivariant embedding of
a quotient LI−J/HI−J of LI−J by some (not necessarily reduced) subgroup
HI−J of the (scheme theoretical) center of LI−J .

(3) The natural morphism

φK : (G×G)×P−
I−J×PI−J

LI−J · h→ XK ,

is a birational and bijective G × G-equivariant morphism. Moreover, when
the characteristic of k is positive then φK is an isomorphism.

(4) For v ∈ W I−J and w ∈ W define [K, v, w] := (Bv̇,Bẇ) · h. Then

(G×G) · h =
⊔

v∈W I−J ,w∈W

[K, v, w].

Proof. The statements holds if X = X (see [Sp, 1.1]).
Now let V = π−1(hJ) ⊂ π−1(X′

0) = X ′
0. Let U1 ' Ga be a 1-dimensional

additive subgroup in G×G normalized by T × T which acts trivially on hJ . Then
U1 · h ⊂ V ⊂ X ′

0. By [B-K, Prop.6.2.3(ii)] the G × G-orbit of h intersects X ′
0 in

a single T × T -orbit. Hence, U1 · h ⊂ (T × T ) · h and thus U1 leaves (T × T ) · h
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invariant. But (T × T ) · h ' (k∗)n, for some n, and any action of Ga on (k∗)n is
trivial. In particular, U1 leaves h invariant. This proves that h is invariant under
U−

I−J × UI−J and the semisimple part of diag(LJ). Now (1) follows as any element
in the toric variety X ′ is invariant under diag(T ).

We identify X0 with U × U− × X ′
0 and simply write (T × {1}) · h as T · h.

Then (U ∩ LI−J) × (U− ∩ LI−J) × (T · h ∩X ′
0) is a closed irreducible subset of X0

contained in LI−Jh and of the same dimension as LI−Jh. Hence LI−J · h ∩ X0 '
(U ∩LI−J)× (U− ∩LI−J)× (T · h∩X ′

0). As X ′ = T is a toric variety every T -orbit
closure in X ′ is normal. Hence LI−J · h ∩ X0 is normal. As a consequence, every
intersection of the form LI−J · h ∩ xX0, for x ∈ LI−J , is also normal.

We claim that the union ∪x∈LI−J
xX0 contains LI−J · h. To see this it suffices to

prove that the union ∪x∈LI−J
xX0 contains the wonderful compactification GI−J =

LI−J · hJ (see [Sp, 1.1] for this equality) of GI−J . But X0 contains (by definition) the
corresponding open subset (GI−J)0 of GI−J and, moreover, GI−J is covered by the
LI−J -translates of the subset (GI−J)0. This proves the claim and as a consequence
LI−J · h is normal.

As π(h) = hJ it follows that the scheme theoretic LI−J -stabilizer (LI−J)h of
h is a closed subgroup scheme of the LI−J -stabilizer of hJ . The latter stabilizer
coincides with the scheme theoretic center of LI−J . So applying Lemma 5.2 we
conclude that LI−J · h is isomorphic to the reductive group LI−J/(LI−J)h. As a
consequence, LI−J · h is an equivariant embedding of LI−J/(LI−J)h. Moreover the
map π induces a morphism π : LI−J · h → LI−J · hJ ' GI−J , so LI−J · h is even a
toroidal embedding of LI−J/(LI−J)h. This proves statement (2).

Consider the commutative diagram

(G×G)×P−
I−J×PI−J

LI−J · h
φK //

��

XK

��
(G×G)×P−

I−J×PI−J
LI−J · hJ

φJ // XJ

,

where all the maps are the natural ones. As φJ is an isomorphism it follows that
φK is injective. As φK is a projective morphism this implies that φK is finite.
Moreover, as LI−J · h is closed in XK and invariant under P−

I−J × PI−J the image of
φK is closed. Therefore φK is surjective and hence bijective. Moreover, due to the
identification LI−Jh∩X0 ' (U ∩LI−J)× (U− ∩LI−J)× (T · h∩X ′

0) it follows that
φK is birational. This proves the first part of statement (3). When the characteristic
is positive then XK is Frobenius split (see e.g. [B-K, Thm.6.2.7]) and thus weakly
normal (see e.g. [B-K, Thm.1.2.5]). It follows that φK is an isomorphism which
ends the proof of statement (3).

By statement (1) and the Bruhat decomposition it easily follows that the union
of [K, v, w], for v ∈ W I−J , w ∈ W , equals (G × G) · h. Moreover, when X = X
then by [Sp, Lemma 1.3(i)] this union is disjoint (notice that our notation is slightly
different from the notation used in [Sp] : the subset [J, v, w] in [Sp] corresponds to
[I−J, x, w] in the present paper). As π([K, v, w]) equals the associated B×B-orbit
[J, v, w] in X this proves statement (4) in general. �

Remark 5.4. Statement (3) in Proposition 5.3 above is also correct in character-
istic 0. This follows from Theorem 9.1 which proves that XK is normal and thus,
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by Zariski’s main theorem, that φK is an isomorphism. A result similar to (3) for
some special (i.e. regular) embeddings has earlier been obtained in [B, Sect.2.1].

6. B ×B-orbit closures

In this section we will study inclusions between B×B-orbit closures in a toroidal
embeddingX ofG. We will state a precise description of when a B×B-orbit [K, v, w]
is contained in the closure of another B × B-orbit [K ′, v′, w′]. This generalizes
the corresponding results of T. Springer for X = X given in [Sp, Sect.2]. As
a consequence we will be able to prove that any B × B-orbit closure Z in X of
codimension ≥ 2 is a component of an intersection of B × B-orbit closures distinct
from Z. By standard Frobenius splitting techniques this will enable us to prove that
each B ×B-orbit closure admits a canonical Frobenius splitting.

6.1. Inclusions between B × B-orbit closures. Let K ∈ I and J = p(K). Let
BJ = B∩LI−J and B′ = (wI−J

0 w0)B(wI−J
0 w0)

−1. Define πJ : B → BJ by πJ(bu) = b,
for b ∈ BJ and u ∈ UI−J , and π′J : B′ → BJ by π′J(bu) = b, for b ∈ BJ and u ∈ U−

I−J .
By Proposition 5.3(1) the base point hK is invariant under diag(BJ). In particular,
we may define a B′ ×B action on G×G×BJ · hK by

(b1, b2)(g1, g2, z) = (g1b
−1
1 , g2b

−1
2 , (π′J(b1), πJ(b2))z),

for b1 ∈ B′, b2 ∈ B, g1, g2 ∈ G and z ∈ BJ · hK . The associated quotient is denoted
by (G×G)×B′×B BJ · hK . The map G×G× BJ · hK → X, (g1, g2, z) 7→ (g1, g2)z,
induces a projective surjective morphism

pK : (G×G)×B′×B BJ · hK → XK .

which can be used to prove

Lemma 6.1. Let v, v′, w, w′ ∈ W . Assume that vwI−J
0 ≤ v′wI−J

0 and w′ ≤ w in the
Bruhat order on W . Then

(Bv̇′, Bẇ′) · (BJ · hK) ⊂ (Bv̇,Bẇ) · (BJ · hK).

Proof. By restricting the map pK above we obtain a projective and surjective map

(Bv̇B′ ×BẇB)×B′×B BJ · hK → (Bv̇,Bẇ) · (BJ · hK).

For the above statement to be true it thus suffices to have Bv′B′ ⊂ BvB′ and
Bw′B ⊂ BwB, which is clearly satisfied under the stated conditions. �

Notice that when v ∈ W I−J then the set (Bv̇,Bẇ) · (BJ · hK), in Lemma 6.1,
coincides with the orbit [K, v, w].

Proposition 6.2. Let K,K ′ ∈ I, v ∈ W I−p(K), v′ ∈ W I−p(K′) and w,w′ ∈ W .
Then [K ′, v′, w′] is contained in [K, v, w] if and only if K ⊂ K ′ and there exists
u ∈ WI−p(K′) and u′ ∈ WI−p(K) ∩W I−p(K′) such that vu′u−1 ≤ v′, w′u ≤ wu′.

Proof. Notice [K, v, w] ⊂ π−1(π([K, v, w]))∩XK . Thus if [K ′, v′, w′] ⊂ [K, v, w], then

K ⊂ K ′ and [p(K ′), v′, w′] ⊂ [p(K), v, w]. By [Sp, 2.4], there exists u ∈ WI−p(K′)

and u′ ∈ WI−p(K) ∩W I−p(K′) such that vu′u−1 ≤ v′, w′u ≤ wu′.

On the other hand, assume that v′ ∈ W I−p(K′), w′ ∈ W , u ∈ WI−p(K′) and

u′ ∈ WI−p(K) ∩ W I−p(K′) such that vu′u−1 ≤ v′, w′u ≤ wu′. Assume, moreover,
that K ⊂ K ′. By the one to one correspondence between the set of G×G-orbits in
X and the set of T -orbits in X ′

0 [B-K, Prop.6.2.3(ii)], it follows that hK′ ∈ T · hK .
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Thus (ẋ, ẋ)hK′ ∈ T · hK for all x ∈ WI−p(K) by Proposition 5.3(i). Therefore, with
J ′ = p(K ′), we find by use of Lemma 6.1,

[K ′, v′, w′] = (Bv̇′u̇, Bẇ′u̇) · hK′ ⊂ (Bv̇u̇′, Bẇu̇′) · (BJ ′ · hK′).

As u′ ∈ W I−J ′ we have u′BJ ′ ⊂ Bu′. Thus the right hand side of the above inclusion
is contained in

(Bv̇B,Bẇ) · ((u′, u′)hK′) ⊂ (Bv̇,Bẇ) · (BJ · hK) = [K, v, w],

which ends the proof. �

We may reformulate the above proposition to a slightly simpler version.

Proposition 6.3. Let K,K ′ ∈ I, v ∈ W I−p(K), v′ ∈ W I−p(K′) and w,w′ ∈ W . Then
[K ′, v′, w′] ⊂ [K, v, w] if and only if K ′ ⊃ K and there exists u ∈ WI−p(K) such that
vu ≤ v′, w′ ≤ wu.

Proof. If [K ′, v′, w′] ⊂ [K, v, w], then in X we have

[I, v′, w′] ⊂ [p(K ′), v′, w′] ⊂ [p(K), v, w].

By Proposition 6.2 there exists u ∈ WI−p(K) such that vu ≤ v′, w′ ≤ wu. On the
other hand, assume that K ′ ⊃ K and there exists u ∈ WI−p(K) such that vu ≤ v′,

w′ ≤ wu. Write u as u = u1u2 for u1 ∈ WI−p(K) ∩W I−p(K′) and u2 ∈ WI−p(K′). By
[He, Cor.3.4], there exists u′2 ≤ u2 such that w′(u′2)

−1 ≤ wu1. Moreover, vu1u
′
2 ≤

vu1u2 ≤ v′. Hence by Proposition 6.2, [K ′, v′, w′] ⊂ [K, v, w] and the proposition is
proved. �

For later reference we state the following easy consequences of the above propo-
sitions.

Corollary 6.4. Let K,K ′ ∈ I, v ∈ W I−p(K), v′ ∈ W I−p(K′) and w,w′ ∈ W .

(1) If [K ′, v′, w′] ⊂ [K, v, w] then v ≤ v′.

(2) [K, v, w′] ⊂ [K ′, v, w] if and only if w′ ≤ w and K ′ ⊂ K.

6.2. Intersection of B ×B-orbit closures. In this section we will prove.

Proposition 6.5. Let Z 6= X denote a B × B-orbit closure in X. If Z has codi-
mension 1 in X the Z is either a boundary divisor Xi, 1 ≤ i ≤ n, of X or else
Z coincides with the closure of a codimension 1 Bruhat cell Bṡiẇ0B, 1 ≤ i ≤ l,
within X. If the codimension of Z is ≥ 2 then there exist B × B-orbit closures
Z1 6= Z and Z2 6= Z in X such that Z is a component of the intersection Z1 ∩ Z2.

The proof of Proposition 6.5 will depend on the following 4 lemmas.

Lemma 6.6. Let w ∈ W be an element of length l(w) < l(w0)−1. Then there exist

elements w′ and w′′ distinct from w such that [∅, 1, w] is an irreducible component

of [∅, 1, w′] ∩ [∅, 1, w′′].

Proof. Choose simple reflections si and sj such that l(wsi) = l(sjw) = l(w)+1. If wsi

and sjw are distinct then the statement follows by setting w′ = wsi and w′′ = sjw.
If wsi = sjw, then we choose a simple reflection sk such that l(wsisk) = l(wsi)+1 =
l(w) + 2. Then k 6= i. As wsisk = sjwsk, we conclude that l(wsk) = l(w) + 1. The
statement follows by setting w′ = wsi and w′′ = wsk. �
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Lemma 6.7. For K ∈ I and w ∈ W , [K, 1, w] is an irreducible component of

[∅, 1, w] ∩ [K, 1, w0].

Proof. By Proposition 6.3, [K, 1, w] ⊂ [∅, 1, w] ∩ [K, 1, w0]. As X is a finite union

of B × B-orbits each irreducible component of the intersection [∅, 1, w] ∩ [K, 1, w]
will be the closure of a B × B-orbit in X. Assume that K ′ ∈ I, v ∈ W I−p(K′) and
w′ ∈ W satisfy

[K, 1, w] ⊂ [K ′, v, w′] ⊂ [∅, 1, w] ∩ [K, 1, w0].

Then by Corollary 6.4(1) we have v = 1. Moreover, Proposition 6.3 implies that
K ′ = K. Then Corollary 6.4(2) shows that w′ = w, which ends the proof. �

Lemma 6.8. Let v, v′ ∈ W I−p(K) with v = siv
′ for some i ∈ I and l(v) = l(v′) + 1.

Then [K, v, w0] is an irreducible component of [K, v′, w0] ∩ [∅, 1, w0v−1].

Proof. By Proposition 6.3 we easily conclude [K, v, w0] ⊂ [∅, 1, w0v−1] and [K, v, w0] ⊂
[K, v′, w0]. Assume that w ∈ W I−p(K) and w′ ∈ W satisfy

[K, v, w0] ⊂ [K,w,w′] ⊂ [K, v′, w0] ∩ [∅, 1, w0v−1].

Then by Corollary 6.4 (i), v′ ≤ w ≤ v. So w = v′ or w = v. Moreover, by
Proposition 6.3 there exists u ∈ WI−p(K) such that wu ≤ v and w0 ≤ w′u. As

v ∈ W I−p(K) we conclude that u = 1 and w′ = w0. Then, by Proposition 6.3, there
exists u′ ∈ W such that u′ ≤ w and w0 ≤ w0v

−1u′. Thus u′ = v and w must then
be equal to v. The lemma is proved. �

Lemma 6.9. We keep the assumptions on v and v′ from the previous Lemma 6.8.
Then for w ∈ W , [K, v, w] is an irreducible component of [K, v, w0] ∩ [K, v′, w].

Proof. By Proposition 6.3 we have [K, v, w] ⊂ [K, v, w0] ∩ [K, v′, w]. Assume that

u ∈ W I−p(K) and w′ ∈ W satisfy [K, v, w] ⊂ [K, u,w′] ⊂ [K, v, w0]∩ [K, v′, w]. Then,
by Corollary 6.4(i), u = v and hence by Corollary 6.4(ii) we have w ≤ w′. Moreover,
by Proposition 6.3 there exists u′ ∈ WI−p(K) such that v′u′ ≤ v and w′ ≤ wu′. We
conclude that u = 1 and as a consequence that w′ = w. �

We can now prove Proposition 6.5.

Proof. Let K ∈ I, v ∈ W I−p(K) and w ∈ W such that Z = [K, v, w]. Notice that by

Proposition 6.3 the closure [∅, 1, w0] contains all B ×B-orbit closures and hence it
will be equal to X.

We first consider the situation when w 6= w0 : if there exists a simple reflection
si such that l(siv) = l(v) − 1 then by Lemma 6.9 we may use Z1 = [K, v, w0] and

Z2 = [K, siv, w] (notice that this makes sense as siv ∈ W I−p(K)). So we may assume

that v = 1. If now K 6= ∅ then by Lemma 6.7 we may use Z1 = [∅, 1, w] and

Z2 = [K, 1, w0]. So we may assume that Z = [∅, 1, w]. If l(w) < l(w0)− 1 then we

may apply Lemma 6.6 to define Z1 and Z2. This leaves us with the cases [∅, 1, siw0],
i = 1, . . . , l, which are equal to the closures of the Bruhat cells Bṡiẇ0B ⊆ G
within X.

Next assume that w = w0 : if there exists a simple reflection si such that
l(siv) = l(v) − 1 then by Lemma 6.8 we may use Z1 = [K, siv, w0] and Z2 =

[∅, 1, w0v−1]. So we may assume that v = 1. As Z 6= X we have that Z = [K, 1, w0]
with K a nonempty set. If there exist i, j ∈ K with i 6= j then we may use
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Z1 = [K − {i}, 1, w0] and Z2 = [K − {j}, 1, w0] (Notice that by Remark 5.1 we have
that K − {i} and K − {j} are both elements of I). This leaves us with the case
where K = {i}, for some 1 ≤ i ≤ n, in which case Z coincides with the boundary
divisor Xi. �

7. Frobenius splitting of B ×B-orbit closures

Let X denote an equivariant embedding of the reductive group G over a field of
positive characteristic p > 0. As above the boundary divisors of X will be denoted
by X1, . . . , Xn. Moreover, we will use the notation Di, i = 1, . . . , l, to denote the
closures of the Bruhat cells Bṡiẇ0B, i = 1, . . . , l, within X.

Proposition 7.1. The equivariant embedding X admits a (B×B, T ×T )-canonical
Frobenius splitting which compatibly splits the closure of all B ×B-orbits.

Proof. First of all X admits a (B×B, T ×T )-canonical Frobenius splitting s which
compatibly splits all boundary component Xj, j = 1, . . . , n, and the subvarieties Di,
i = 1, . . . , l (see [B-K, Thm.6.2.7]).

Consider, for a moment, the case when X is toroidal. We claim that s compatibly
Frobenius splits all B × B-orbit closures. If this is not the case, then there exists
a B × B-orbit closure Z of maximal dimension which is not compatibly Frobenius
split by s. By Proposition 6.5 the codimension of Z must be ≥ 2. In particular,
we can find orbit closures Z1 6= Z and Z2 6= Z such that Z is a component of the
intersection Z1 ∩Z2. By the maximality assumption on Z the orbit closures Z1 and
Z2 will be compatibly Frobenius split by s. But then every component of Z1 ∩ Z2,
and thus Z, will also be compatibly Frobenius split by s, which is a contradiction.
This ends the proof when X is toroidal.

For an arbitrary embedding X we may find a toroidal embedding X ′ of G and a
birational projective morphism f : X ′ → X extending the identity map onG (see e.g.
[B-K, Prop.6.2.5]). Now X ′ admits a (B × B, T × T )-canonical Frobenius splitting
s′ which compatibly Frobenius splits all B × B-orbit closures. By Zariski’s main
theorem the map f ] : OX′ → f∗OX induced by f is an isomorphism. In particular,
s′ induces by push forward a (B × B, T × T )-canonical Frobenius splitting s of X.
Moreover, the image in X of every B × B-orbit closure in X ′ will be compatibly
Frobenius split by s. But any B × B-orbit closure in X is the image of a similar
orbit closure in X ′. This ends the proof. �

7.1. Cohomology vanishing. As a direct consequence of Proposition 7.1 we con-
clude the following vanishing result (see e.g. [B-K, Thm.1.2.8]).

Proposition 7.2. Let X be a projective equivariant embedding of G. Let Z denote
a B ×B-orbit closures in X and let L denote an ample line bundle on Z. Then

Hi
(
Z,L

)
= 0, i > 0.

Moreover, if Z ′ ⊂ Z is another B ×B-orbit closure then the restriction map

H0
(
Z,L

)
→ H0

(
Z ′,LZ′

)
,

is surjective.

Later (Corollary 8.5) we will see that the vanishing part of Propositione 7.2 re-
mains true when the line bundle L is only assumed to be nef, i.e. when L ⊗ M is
an ample line bundle for every ample line bundle M.
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8. Global F -regularity of B ×B-orbit closures

We are now ready to state and prove the main result of the paper.

Theorem 8.1. Let X denote a projective equivariant embedding of a reductive group
G over a field of positive characteristic p > 0. Let Z denote a B × B-orbit closure
in X. Then Z is globally F -regular.

We will divide the proof of Theorem 8.1 into 2 parts. The first part concerns the
case when X is toroidal.

Lemma 8.2. Let X be a projective toroidal embedding. Then any B × B-orbit
closure [K, v, w] in X is globally F -regular.

Proof. Keep the notation of Section 6.1. As a consequence of Proposition 7.1, X
admits a (B′×B, T×T )-canonical Frobenius splitting s which compatibly Frobenius
splits every B′ ×B-orbit closure.

Let Y = (B′ ×B)hK and Y ′ = Y −(B′×B)hK . Then s induces a (B′×B, T×T )-
canonical Frobenius splitting sY of Y which compatibly Frobenius splits Y ′. Notice
that by Proposition 5.3(1), Y = BJ · hK . Thus by Proposition 5.3(2), Y is the
closure of the Borel subgroup BJ of LI−J within some equivariant embedding of
LI−J . Hence, Y is a large Schubert variety for some equivariant embedding of LI−J

and, as such, Y is globally F -regular [B-T, Thm.4.3]. Define v′ = w
I−p(K)
0 w0v. Then

(B′ × B)(v′,w) contains the group BJ × {1} (notice that the set of positive roots on
the first coordinate is defined with respect to B′) and thus by Proposition 5.3(1)

(B′ ×B)hK = (BJ × {1})hK = (B′ ×B)(v′,w)hK .

The above statements proves that the triple (Y, hK , (v
′, w)) satisfies the require-

ments of Proposition 4.1. Now Theorem 4.4 shows that the closed subvariety

(B′v̇′B′, BẇB)BJ · hK = (ẇI−J
0 ẇ0, 1)[K, v, w],

is globally F -regular. Thus also [K, v, w] must be globally F -regular. �

8.1. The general case. Let X denote an arbitrary equivariant projective embed-
ding of G. To handle the proof of Theorem 8.1 for X we start by the following
construction : Consider the natural G×G-equivariant embedding

f : G→ X ×X.

and let Y denote the normalization of the closure of the image of f . Then Y is
a projective equivariant toroidal embedding of G. We let φ : Y → X denote the
associated G×G-equivariant projective morphism to X. Then

Lemma 8.3. Let Z ′ denote the closure of a B×B-orbit within Y and let Z denote
its image φ(Z ′) within X. Then the induced morphism φ′ : Z ′ → Z is a rational
morphism.

Proof. We will prove this using Lemma 4.2. Notice first of all that φ is birational
and X is normal, so by Zariski’s main theorem we have φ∗OY = OX . Let now L

denote a very ample line bundle on X. Then by Lemma 8.2 and [S2, Cor.4.3],

Hi
(
Y, φ∗L

)
= Hi

(
Z ′, φ∗L

)
= 0, i > 0,

as φ∗L is globally generated and thus nef.
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Let D̃i, i = 1, . . . , l, denote the closures B−ṡiẇ0B− in X. Then the divisor
D̃ =

∑l
i=1 D̃i is ample [B-K, Prop.6.1.11]. Let M = OX(D̃) denote the associated

line bundle and let M′ = φ∗M be its pull back to Y . Let s denote the canonical
section of M and let s′ denote its pull back to Y . Let V denote an irreducible
component of the support of s′. If V is contained in the boundary of Y then the
support of s′ will contain a closed G×G-orbit. In particular, also the support ∪iD̃i

of s will contain a closed G×G-orbit. As the latter is not the case we conclude that
each component of the support of s′ will intersect G. Moreover, the support of s′

is B− × B−-stable. As a consequence, we conclude that the divisor of zeroes of s′

equals
l∑

i=1

niD̃
′
i,

for some positive integers ni and with D̃′
i, i = 1, . . . , l, denoting the closureB−ṡiẇoB−

in Y .
Let Yj, j = 1, . . . , n, denote the boundary components in Y and letD′

i, i = 1, . . . , l,
denote the closures Bṡiẇ0B in Y . Let Y 0 denote the smooth locus of Y . Then Y 0

admits a Frobenius splitting which compatibly Frobenius splits the Cartier divisors
Y 0 ∩Yj, j = 1, . . . , n, and D′

i ∩Y 0 and D̃′
i ∩Y 0, i = 1, . . . , l [B-K, Thm.6.2.7]. As in

the proof of Proposition 4.3 we conclude that Y 0 admits a stable Frobenius splitting
along the effective divisor

div(s′) ∩ Y 0 =
l∑

i=1

ni(D̃
′
i ∩ Y 0),

which compatibly Frobenius splits D′
i ∩ Y 0, i = 1, . . . , l, and Yj ∩ Y 0, j = 1, . . . , n.

Let ψ0 denote such a stable Frobenius splitting; i.e. let e be an integer such that ψ0

is a splitting of the morphism

OY 0 → F e
∗M

′
|Y 0 ,

defined by the restriction of s′ to Y 0. Let now i : Y 0 → Y denote the inclusion
morphism. Applying the functor i∗ to the above split morphism and using that Y
is normal, we find that the morphism

OY → F e
∗M

′,

defined by s′ has an induced splitting ψ. Then ψ defines a stable Frobenius splitting
along div(s′) which compatibly Frobenius splits D′

i, i = 1, . . . , l, and Yj, j = 1, . . . , n
(as the compatibility can be checked on the open dense subsets Y 0).

We now claim that Z ′ is not contained in any D̃′
i. To see this assume that Z ′ is

contained in D̃′
i for some i. As Z ′ is B×B-invariant and as D̃′

i is B−×B−-invariant
it follows that (B−B,B−B)Z ′ is contained in D̃′

i. But then also (G,G)Z ′ must be

contained in D̃′
i. We conclude that D̃′

i contains a closed G × G-orbit which is a
contradiction. Hence, Z ′ is not contained in the support of s′. As in the proof
of Proposition 7.1 we may then use Proposition 6.5 to show that Z ′ is compatibly
Frobenius split by the stable Frobenius splitting ψ. By [T, Lem.4.8] it follows that
we have an embedding

H1
(
Y, IZ′ ⊗ φ∗L

)
⊂ H1

(
Y, IZ′ ⊗ φ∗Lpe ⊗M′)
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of abelian groups, where IZ′ denotes the sheaf of ideals associated to Z ′. But Lpe
�M

is ample onX×X and, as the map Y → X×X is finite, we conclude that φ∗Lpe⊗M′

is ample on Y . Applying [B-K, Thm.1.2.8] it follows that H1
(
Y, IZ′ ⊗ φ∗L

)
is zero.

As all the requirement in Lemma 4.2 are now satisfied this ends the proof. �

We may now prove Theorem 8.1

Proof. By Corollary 3.3 and Lemma 8.3 we may assume that X is toroidal. Now
apply Lemma 8.2. �

8.2. Applications. As the main application of Theorem 8.1 we find.

Corollary 8.4. Let X denote an equivariant embedding of a reductive group G over
a field of positive characteristic. Then every B × B-orbit closure in X is strongly
F -regular. In particular, every B×B-orbit closure is normal, Cohen-Macaulay and
locally F -rational.

Proof. As in the proof of [B-T, Cor.4.2] we may reduce to the case when X is
projective. Then by Theorem 8.1 every B × B-orbit closure is globally F -regular
and thus strongly F -regular. This ends the proof. �

We also obtain the following strengthening of Proposition 7.2.

Corollary 8.5. Let X denote a projective equivariant embedding of a reductive group
G over a field of positive characteristic. Let Z denote the closure of a B × B-orbit
and let L be a nef line bundle on Z. Then the cohomology Hi

(
Z,L

)
vanishes for

i > 0.

Proof. Just apply [S2, Cor.4.3]. �

9. The characteristic 0 case

Let X denote a scheme of finite type over a field K of characteristic 0. Then there
exists a finitely generated Z-algebra A and a flat scheme XA of finite type over A,
such that the base change of XA to K may be naturally identified with X. Moreover,
when m ⊂ A is a maximal ideal we may form the base change Xk(m) of XA to the
finite field k(m) = A/m. We then say that the scheme X is of strongly F -regular
type (resp. F -rational type) if Xk(m) is strongly F -regular (resp. F -rational) for all
maximal ideals m in a dense open subset of Spec(A).

Any scheme X of strongly F -regular type will also be of F -rational type. Thus,
by [S, Thm.4.3], schemes of strongly F -regular type will have rational singularities,
in particular, they will be normal and Cohen-Macaulay.

In the proof of the next result we will use the following observation (see e.g.
[H-H3, Thm.5.5(e)]: let k(m) denote an algebraic closure of the field k(m). If the
base change Xk(m) is strongly F -regular then also Xk(m) is strongly F -regular.

We can now prove the characteristic 0 version of Corollary 8.4.

Theorem 9.1. Let X denote an equivariant embedding of a reductive group G over
an algebraically closed field k of characteristic 0. Then every B×B-orbit closure in
X is of strongly F -regular type. In particular, every B × B-orbit closure in X has
rational singularities.
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Proof. We may assume that there exists a split Z-form GZ of G over which B is
defined by a closed subscheme BZ. Let Z denote a B × B-orbit closure in X. The
complete data consisting of the G × G-action on X, the open embedding G ⊂ X,
the B × B-stability of Z, the closed embedding Z ⊂ X and the irreducibility of
X and Z may all be descended to some finitely generated Z-algebra A (see e.g.
[H-H2, Sect.2] for this kind of technique). This means that there exists schemes
GA := GZ×Spec(Z) Spec(A), BA := BZ×Spec(Z) Spec(A), XA and ZA flat and of finite
type over Spec(A) satisfying, that for every maximal ideal m ⊆ A the associated
base changes Gk(m), Bk(m), Xk(m) and Zk(m), to an algebraic closure k(m) of the field

k(m) = A/m, share the same structure; i.e. Gk(m) is a reductive linear algebraic group,
Xk(m) is an irreducible Gk(m)×Gk(m)-variety containing Gk(m) as an open subset and
Zk(m) is an irreducible Bk(m) × Bk(m)-stable subvariety of Xk(m). As X is normal

we may even assume that Xk(m) is normal (see [H-H2, Thm.2.3.17]). In particular,
Xk(m) is then an equivariant embedding of the reductive group Gk(m). Moreover, by
the finiteness of the number of Bk(m)×Bk(m)-orbits in Xk(m) we conclude that Zk(m)

is the closure of such an orbit.
Applying Corollary 8.4 and the observation above, we conclude that Z is of

strongly F -regular type and thus also of F -rational type. Finally, as mentioned
above, the latter statement implies that Z has rational singularities. �

We may now generalize Corollary 8.5 to arbitrary characteristics.

Corollary 9.2. Let X denote a projective equivariant embedding of a reductive group
G over a field of arbitrary characteristic. Let Z denote the closure of a B×B-orbit
and let L be a nef line bundle on Z. Then the cohomology Hi

(
Z,L

)
vanishes for

i > 0.

Proof. Apply Corollary 8.5 and [S2, Cor.5.5]. �

For a discussion of other kinds of vanishing results for varieties of globally F -
regular type we refer to [S2, Sect.5].
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