UNIVERSITY OF A ARHUS

Department of MAthematics

ISSN: 1397-4076

Projective Geometries in dense matroids

by Jim Geelen and Kasper Kabell

PROJECTIVE GEOMETRIES IN DENSE MATROIDS

JIM GEELEN AND KASPER KABELL

Abstract

We prove that, given integers $l, q \geq 2$ and n there exists an integer α such that, if M is a simple matroid with no $l+2$-point line minor and at least $\alpha q^{r(M)}$ elements, then M contains a $\operatorname{PG}\left(n-1, q^{\prime}\right)$-minor, for some prime-power $q^{\prime}>q$.

1. Introduction

For a matroid M we let $\epsilon(M)$ denote the number of points of M; that is $\epsilon(M)=$ $|E(\operatorname{si}(M))|$. We prove the following theorem.

Theorem 1.1. Let \mathcal{M} be a minor-closed class of matroids. Then either
(1) $\varepsilon(M) \leq r(M)^{c \mathcal{M}}$ for each $M \in \mathcal{M}$,
(2) there is a prime-power q such that $\varepsilon(M) \leq c_{\mathcal{M}} q^{r(M)}$ for each $M \in \mathcal{M}$, and \mathcal{M} contains all $\mathrm{GF}(q)$-representable matroids, or
(3) \mathcal{M} contains arbitrarily long lines.

Here $c_{\mathcal{M}}$ is an integer constant depending on \mathcal{M}. This result is motivated by the following beautiful conjecture of Kung [4].

Conjecture 1.2 (Kung's Growth Rate Conjecture). Let \mathcal{M} be a minor-closed class of matroids. Then either
(1) $\varepsilon(M) \leq c_{\mathcal{M}} r(M)$ for each $M \in \mathcal{M}$,
(2) $\varepsilon(M) \leq c_{\mathcal{M}} r(M)^{2}$ for each $M \in \mathcal{M}$ and \mathcal{M} contains all graphic matroids,
(3) there is a prime-power q such that $\varepsilon(M) \leq \frac{q^{r(M)}-1}{q-1}$ for each $M \in \mathcal{M}$ with sufficiently high rank, and \mathcal{M} contains all $\mathrm{GF}(q)$-representable matroids, or
(4) \mathcal{M} contains arbitrarily long lines.

For a prime-power q, a simple $\operatorname{GF}(q)$-representable matroid M of rank- r has at most $\frac{q^{r}-1}{q-1}$ elements, as M is isomorphic to a restriction of $\mathrm{PG}(r-1, q)$, which has precisely that many elements. Kung [4] showed that this bound extends from the class of GF(q)-representable matroids to the class of matroids with no $U_{2, q+2}$-minor. For any integer l we let $\mathcal{U}(l)$ denote the class of matroids with no $U_{2, l+2}$-minor.

Theorem 1.3. Let $l \geq 2$ be an integer, and let $M \in \mathcal{U}(l)$ be a rank-r matroid. Then

$$
\varepsilon(M) \leq \frac{l^{r}-1}{l-1} .
$$

If q is not a prime-power, the bound is not exact. As an immediate consequence of Theorem 1.1, we get an asymptotic improvement on the bound in that case:

[^0]Corollary 1.4. Let $l \geq 2$ be an integer and let q be the largest prime-power with $q \leq l$. There exists a constant c, such that if $M \in \mathcal{U}(l)$ is a rank-r matroid,

$$
\varepsilon(M) \leq c q^{r} .
$$

Kung's conjecture, if true, would imply that the exact bound is $\frac{q^{r}-1}{q-1}$ for sufficiently large r (this easily fails if $r=2$ and $l>q$). This conjecture has only been verified in the first non-prime-power case $l=6$, see [2].

We use the notation of Oxley [5], with the exception that we denote the simplification of a matroid M by $\operatorname{si}(M)$. For a subset $A \subseteq E(M)$, we write $\varepsilon_{M}(A)=\varepsilon(M \mid A)$.

2. Long Lines

Theorem 1.1 is implied by the following two results.
Theorem 2.1. Let l and q be integers with $l \geq q \geq 2$, and let n be a positive integer. There exists an integer α such that, if $M \in \mathcal{U}(l)$ satisfies $\varepsilon(M) \geq \alpha q^{r(M)}$, then M contains $a \mathrm{PG}\left(n-1, q^{\prime}\right)$-minor, for some prime-power $q^{\prime}>q$.

Using the same techniques, we prove the following theorem. For binary matroids it was proved independently by Sauer [6] and Shelah [7].
Theorem 2.2. Let l and n be positive integers. There exists integers a, m such that, if $M \in \mathcal{U}(l)$ satisfies $\varepsilon(M)>\operatorname{ar}(M)^{m}$, then M contains a $\operatorname{PG}\left(n-1, q^{\prime}\right)$-minor, for some prime-power q^{\prime}.

Note that a may be omitted in the statement of the theorem, since the constant can be compensated for by raising the exponent; we keep the constant to facilitate the proof.

Let M be a matroid. A line L of M is a rank- 2 flat of M. The length of L is the number of points on L, that is $\varepsilon_{M}(L)$. We call a line L of M long if it has length at least 3. For $e \in E(M)$ denote by $\delta_{M}(e)$ the number of long lines in M containing e. For an integer $q \geq 2$, we say that a line L is q-long, if L has length at least $q+2$.
Lemma 2.3. Let $l \geq q \geq 2$. If $M \in \mathcal{U}(l)$ is minor minimal with $\varepsilon(M) \geq \lambda q^{r(M)}$, then

$$
\delta_{M}(e) \geq \frac{\lambda}{2 l} q^{r(M)} \quad \text { for each } e \in E(M)
$$

and the number of q-long lines of M is at least $\frac{\lambda}{l+1} q^{r(M)}$.
Proof. Note that, by the minor minimality, M is simple. Consider $e \in E(M)$. Let δ^{+} denote the number of q-long lines through e, and let $\delta^{-}=\delta_{M}(e)-\delta^{+}$be the number of long lines through e of length at most $q+1$.

When contracting e, each line L containing e becomes a point, and so $|L|-2$ points on L other than e are lost. The number of points destroyed is

$$
\varepsilon(M)-\varepsilon(M / e) \leq 1+\delta^{-}(q-1)+\delta^{+}(l-1) .
$$

By the minimality of M, we have

$$
\varepsilon(M)-\varepsilon(M / e)>\lambda q^{r(M)}-\lambda q^{r(M)-1}=\lambda(q-1) q^{r(M)-1} .
$$

The above inequalities together yield

$$
\begin{equation*}
\delta^{-}(q-1)+\delta^{+}(l-1) \geq \lambda(q-1) q^{r(M)-1} \tag{2.1}
\end{equation*}
$$

In particular, inequality 2.1 gives

$$
\delta_{M}(e)=\delta^{-}+\delta^{+} \geq \lambda \frac{q-1}{l-1} q^{r(M)-1}
$$

which easily implies the first claim of the lemma.

Again, by the minimality of M,

$$
\begin{equation*}
\delta^{-}+\delta^{+} \leq \varepsilon(M / e)<\lambda q^{r(M)-1} . \tag{2.2}
\end{equation*}
$$

Now notice that if $\delta^{+}=0$, then the inequalities 2.1 and 2.2 contradict. So we must have $\delta^{+}>0$. Since this holds for all $e \in E(M)$ and since lines have at most $l+1$ elements, the number of q-long lines of M is at least $\varepsilon(M) /(l+1)$. This gives the second claim.

Lemma 2.4. Let $l \geq q \geq 2$. Let $M \in \mathcal{U}(l)$ and let e be a non-loop element of M. If $A \subseteq E(M)-e$ satisfies $\varepsilon_{M}(A) \geq \lambda q^{r_{M}(A)}$, then there exists $X \subseteq A$ such that $e \notin \mathrm{cl}_{M}(X)$ and $\varepsilon_{M}(X) \geq \frac{\lambda}{l} q^{r_{M}(X)}$.

Proof. We may assume that A is minimal with $\varepsilon_{M}(A) \geq \lambda q^{r_{M}(A)}$. This implies, that $M \mid A$ is simple. We can also assume, that $E(M)=A \cup e$. Assume that A spans e, as otherwise we are done.

Choose a flat W not containing e, with $r_{M}(W)=r(M)-2$. Let $H_{0}, H_{1}, \ldots, H_{m}$ be the hyperplanes of M containing W. It is easily seen, that the sets $H_{i}-W$ are a disjoint cover of $E(M)-W$. Also, $\operatorname{si}(M / W) \simeq U_{2, m+1}$ and since $M \in \mathcal{U}(l)$, we have $m \leq l$.

Assume that $e \in H_{0}$. By the minimality of $A,\left|H_{0} \cap A\right|<\lambda q^{r(M)-1}$ and so

$$
\left|A-H_{0}\right|>\lambda(q-1) q^{r(M)-1} .
$$

Since the sets H_{1}, \ldots, H_{m} cover $E(M)-H_{0}$, there exists a $k \in\{1, \ldots, m\}$ with

$$
\left|H_{k} \cap A\right| \geq \frac{1}{m}\left|A-H_{0}\right|>\frac{\lambda}{l}(q-1) q^{r(M)-1}
$$

Taking $X=H_{k} \cap A$, we have the desired result.

3. Pyramids

We now define some intermediate structures that we shall build on our way to constructing a projective geometry.

Definition 3.1. If $\left\{b_{1}, \ldots, b_{n}\right\}$ is a basis of a matroid M and, for each $i \in\{2, \ldots, n\}$ the point b_{i} is on a long line with each point of $\mathrm{cl}_{M}\left(\left\{b_{1}, \ldots, b_{i-1}\right\}\right)$, then we call $\left(M ; b_{1}, \ldots, b_{n}\right)$ a pyramid; the elements b_{1}, \ldots, b_{n} are called joints. A pyramid is q-strong if each pair of joints spans a q-long line.

Definition 3.2. Let M be a matroid with a basis $B \cup\left\{b_{1}, \ldots, b_{n}\right\}$. We call ($M, B ; b_{1}, \ldots, b_{n}$) an (n, λ, q)-prepyramid if

- $F=\mathrm{cl}_{M}(B)$ satisfies $\varepsilon_{M}(F) \geq \lambda q^{r_{M}(F)}$ and
- for each $i=1, \ldots, n, b_{i}$ is on a long line with every point of $c l_{M}\left(B \cup\left\{b_{1}, \ldots, b_{i-1}\right\}\right)$.

Note that any pyramid is 1 -strong. A prepyramid is a pyramid "on top of" a dense flat.
Lemma 3.3. If $n \geq 0, \lambda \geq 1$ and $l \geq q \geq 2$ are integers and $M \in \mathcal{U}(l)$ satisfies $\varepsilon(M) \geq$ $\lambda l^{2 n} q^{r(M)}$, then M has an (n, λ, q)-prepyramid as a minor.

Proof. The proof is by induction on n. The case $n=0$ is trivial, so suppose $n>0$ and that the result holds for $n-1$. We may assume that M is minor minimal with $\varepsilon(M) \geq \lambda l^{2 n} q^{r(M)}$. In particular M is simple.

Choose an element $b_{n} \in E(M)$, and let $A \subseteq E(M)-b_{n}$ be the set of elements on long lines through b_{n}. By Lemma 2.3,

$$
|A| \geq 2 \delta_{M}\left(b_{n}\right) \geq \frac{\lambda l^{2 n}}{l} q^{r(M)} .
$$

By Lemma 2.4, there exists a set $X \subseteq A$ with $b_{n} \notin \mathrm{cl}_{M}(X)$ and

$$
|X| \geq \frac{\lambda l^{2 n}}{l^{2}} q^{r_{M}(X)}=\lambda l^{2(n-1)} q^{r_{M}(X)}
$$

By the induction hypothesis $M \mid X$ has a minor, which is an ($n-1, \lambda, q$)-prepyramid. Thus, M has an (n, λ, q)-prepyramid, as required.

4. Getting a strong Pyramid

For a matroid M, we call sets $A_{1}, \ldots, A_{n} \subseteq E(M)$ skew if $r_{M}\left(\cup_{i} A_{i}\right)=\sum_{i} r_{M}\left(A_{i}\right)$. This is analogous to subspaces of a vector-space forming a direct sum.

We shall need a limit on the total number of lines of a matroid in $\mathcal{U}(l)$. Let $m_{l}(n)$ denote the maximum number of lines of a rank- n matroid in $\mathcal{U}(l)$. From Theorem 1.3 we easily get the following crude upper bound

$$
m_{l}(n) \leq\binom{\frac{l^{n}-1}{l-1}}{2}
$$

Lemma 4.1. There exists an integer-valued function $\theta_{1}(s, \lambda, l)$ such that the following holds: If $l \geq q \geq 2$ and s, λ are positive integers, and $M \in \mathcal{U}(l)$ satisfies $\varepsilon(M) \geq \theta_{1}(s, \lambda, l) q^{r(M)}$, then either

- M has a minor N with s skew q-long lines or
- M has a minor N with a non-loop element $e \in E(N)$ such that the number of q-long lines through e in N is at least $\lambda q^{r(N)}$.
Proof. Define $\theta_{1}(1, \lambda, l)=1$ and for $s \geq 2$,

$$
\theta_{1}(s, \lambda, l)=(l+1) 4(s-1) m_{l}(2 s-1) \lambda .
$$

We may assume that M is minor minimal with $\varepsilon(M) \geq \theta_{1}(s, \lambda, l) q^{r(M)}$. Let \mathcal{L} denote the collection of q-long lines in M. By Lemma 2.3,

$$
|\mathcal{L}| \geq \frac{\theta_{1}(s, \lambda, l)}{l+1} q^{r(M)}
$$

In the case $s=1$ we are now done, since $|\mathcal{L}|>0$, so assume $s \geq 2$ in the following.
If \mathcal{L} contains s skew lines, then we are done, so assume this is not the case. Pick a maximal set of skew lines from \mathcal{L} and let F be the flat spanned by these lines in M. Let $t=r_{M}(F) \leq 2(s-1)$. Let $\mathcal{L}^{\prime} \subseteq \mathcal{L}$ be the lines not contained in F. Then, by the definition of $\theta_{1}(s, \lambda, l)$,

$$
\left|\mathcal{L}^{\prime}\right| \geq|\mathcal{L}|-m_{l}(t) \geq \frac{1}{2}|\mathcal{L}| .
$$

Let B be a basis of F in M. For each $L \in \mathcal{L}^{\prime}$ pick $B_{L} \subseteq B$ with $\left|B_{L}\right|=t-1$, such that B_{L} and L are skew (this can be done by expanding a basis of L to a basis of $L \cup F$ using elements of B). By a majority argument, there is a subcollection $\mathcal{L}^{\prime \prime} \subseteq \mathcal{L}^{\prime}$ with the sets $B_{L}=B_{0}$ identical for $L \in \mathcal{L}^{\prime \prime}$ and such that

$$
\left|\mathcal{L}^{\prime \prime}\right| \geq \frac{1}{t}\left|\mathcal{L}^{\prime}\right| .
$$

Let e be the single element in $B-B_{0}$ and let $N=M / B_{0}$. Then each line $L \in \mathcal{L}^{\prime \prime}$ spans a q-long line through e in N. Two lines $L_{1}, L_{2} \in \mathcal{L}^{\prime \prime}$ give rise to the same line in N if $\operatorname{cl}_{M}\left(B_{0} \cup L_{1}\right)=\operatorname{cl}_{M}\left(B_{0} \cup L_{2}\right)$. Hence, the number of q-long lines through e in N is at least

$$
\frac{\left|\mathcal{L}^{\prime \prime}\right|}{m_{l}(t+1)} .
$$

By concatenating the inequalities, we get the desired result.

We now use the previous lemma to construct a strong pyramid. This is done in exactly the same way as a prepyramid was constructed in Lemma 3.3.

Lemma 4.2. There exists an integer-valued function $\theta(s, n, l)$ such that the following holds: If $l \geq q \geq 2$ and s, n are positive integers, and $M \in \mathcal{U}(l)$ satisfies $\varepsilon(M) \geq \theta(s, n, l) q^{r(M)}$, then either

- M has a minor N with s skew q-long lines or
- M has a rank-n minor N, such that N is a q-strong pyramid.

Proof. Let $\theta(s, 1, l)=1$, and for $n \geq 2$ define θ recursively by

$$
\theta(s, n, l)=\theta_{1}(s, l \theta(s, n-1, l), l)
$$

The proof is by induction on n, the case $n=1$ being trivial. Suppose $n \geq 2$ and that M does not have a minor with s skew q-long lines.

By Lemma 4.1, M has a minor M^{\prime} with a non-loop element b_{n}, such that the number of q-long lines through b_{n} is at least

$$
l \theta(s, n-1, l) q^{r\left(M^{\prime}\right)} .
$$

Let $A \subseteq E\left(M^{\prime}\right)-b_{n}$ be the set of elements on q-long lines through b_{n}. Lemma 2.4 gives a set $X \subseteq A$ with $b_{n} \notin \mathrm{cl}_{M^{\prime}}(X)$, such that

$$
\varepsilon_{M^{\prime}}(X) \geq \theta(s, n-1, l) q^{r_{M^{\prime}}(X)} .
$$

By induction, $M^{\prime} \mid X$ has a minor, which is a q-strong rank- $(n-1)$ pyramid. Thus M^{\prime} has a q-strong rank- n pyramid-minor.

Lemma 4.3. If $l \geq q \geq 2$ and n, λ are positive integers with $\left.\lambda \geq \theta\binom{n}{2}, n, l\right)$ and $\left(M, B ; b_{1}, \ldots, b_{n}\right)$ is an (n, λ, q)-prepyramid, where $M \in \mathcal{U}(l)$, then M has a rank-n q strong pyramid as a minor.

Proof. Let $F=\operatorname{cl}_{M}(B)$. We may assume that M does not have a rank- $n q$-strong pyramid minor. Then, by Lemma $4.2, M \mid F$ has a contraction-minor $M \mid F / Y$ containing $\binom{n}{2}$ skew q-long lines. Let $M^{\prime}=M / Y, F^{\prime}=F-\operatorname{cl}_{M}(Y)$, and let \mathcal{L} be a collection of $\binom{n}{2}$ skew q-long lines in $M^{\prime} \mid F^{\prime}$. Note that $M^{\prime} \mid \mathrm{cl}_{M^{\prime}}\left(\left\{b_{1}, \ldots, b_{n}\right\}\right)$ is a pyramid and that for each $i \in\{1, \ldots, n\}$ and $e \in F^{\prime}$, the pair $\left\{b_{i}, e\right\}$ spans a long line in M^{\prime}. It is now straightforward to construct a q-strong pyramid by contracting one of the lines in \mathcal{L} onto each pair of joints in $\left\{b_{1}, \ldots, b_{n}\right\}$.

5. Projective geometries

Let $\left(M ; b_{1}, \ldots, b_{n}\right)$ be a pyramid, and, for each i, let $H_{i}=\operatorname{cl}_{M}\left(\left\{b_{1}, \ldots, b_{i}\right\}\right)$. We call $\left(M ; b_{1}, \ldots, b_{n}\right)$ modular if for each i, if $x, y \in H_{i}-H_{i-1}$ with $r_{M}(\{x, y\})=2$, then the line through x and y intersects H_{i-1} in a point.

The first step towards getting a projective geometry minor of a pyramid, will be to find a modular pyramid.

Lemma 5.1. If $l \geq 2$ and q, m are positive integers, and $M \in \mathcal{U}(l)$ is a q-strong pyramid with $r(M) \geq m l\binom{m}{2}$, then M has a rank-m modular q-strong pyramid minor N.

Proof. Let m be a fixed positive integer. To each pyramid in $\mathcal{U}(l),\left(N ; a_{1}, \ldots, a_{n}\right)$ of rank $n \geq m$, we assign a vector

$$
Q\left(N ; a_{1}, \ldots, a_{n}\right)=\left(\varepsilon_{N}\left(H_{2}\right), \ldots, \varepsilon_{N}\left(H_{m-1}\right)\right) \in \mathbb{Z}^{m-2}
$$

where $H_{k}=\operatorname{cl}_{N}\left(\left\{a_{1}, \ldots, a_{k}\right\}\right)$. By Theorem 1.3, the number of values that $Q(N)$ can attain is bounded by

$$
\prod_{k=2}^{m-1} \frac{l^{k}-1}{l-1} \leq \prod_{k=2}^{m-1} l^{k} \leq l^{\binom{m}{2}}
$$

We shall also consider the lexicographic ordering on \mathbb{Z}^{m-2} defined by: $\left(a_{1}, \ldots, a_{m-2}\right)<_{L E X}$ $\left(b_{1}, \ldots, b_{m-2}\right)$ if there is a $k \in\{1, \ldots, m-2\}$, such that $a_{i}=b_{i}$ for $i=1, \ldots, k-1$ and $a_{k}<b_{k}$. This is a total order.

Let $\left(N ; a_{1}, \ldots, a_{n}\right)$ with $n \geq 2 m$ be a pyramid in $\mathcal{U}(l)$, and let $H_{k}=\operatorname{cl}_{N}\left(\left\{a_{1}, \ldots, a_{k}\right\}\right)$. Assume that the pyramid $\left(N \mid H_{m} ; a_{1}, \ldots, a_{m}\right)$ is not modular. We now describe an operation, that gives a minor of N, with an increased value of $Q(\cdot)$ in the above order. There exists an $i \leq m$ and an element $y \in H_{i}-H_{i-1}$, such that $\varepsilon_{N / y}\left(\mathrm{cl}_{N / y}\left(\left\{a_{1}, \ldots, a_{i-1}\right\}\right)\right)>\varepsilon_{N}\left(H_{i-1}\right)$. Choose $k \in\{2, \ldots, i-1\}$ minimal, with

$$
\varepsilon_{N / y}\left(\mathrm{cl}_{N / y}\left(\left\{a_{1}, \ldots, a_{k}\right\}\right)\right)>\varepsilon_{N}\left(H_{k}\right)
$$

Now let $B^{\prime}=\left(a_{1}, \ldots, a_{k}, a_{i+1}, \ldots, a_{n}\right)$ and define

$$
N^{\prime}=N / y \mid \mathrm{cl}_{N / y}\left(B^{\prime}\right)
$$

By construction, $\left(N^{\prime} ; B^{\prime}\right)$ is a pyramid, which is easily verified. It has a higher value in the order $Q\left(N ; a_{1}, \ldots, a_{n}\right)<_{L E X} Q\left(N^{\prime} ; B^{\prime}\right)$, and rank $r\left(N^{\prime}\right) \geq r(N)-m$. Also, since N is q-strong, N^{\prime} is q-strong.

Now, let $M \in \mathcal{U}(l)$ be a pyramid, with $r(M) \geq m l\binom{m}{2}$. By the bound on the number of possible values of $Q(\cdot)$, the process of repeating the above operation must terminate with a rank- m modular pyramid minor.

The projective geometries $\operatorname{PG}(n-1, q)$ are examples of projective spaces. We shall not define this concept in general, only state that a matroid is a projective space if every line has at least three points, and every pair of coplanar lines intersect.

The following theorem is the finite case of what is known as The Fundamental Theorem of Projective Geometry (see [3, p.27,28] for a detailed account of the theorem and [1, cpt.VII] for a proof). The result does not hold in rank 3 .

Theorem 5.2. Every finite projective space of rank $n \geq 4$ is isomorphic to $\operatorname{PG}\left(n-1, q^{\prime}\right)$ for some prime-power q^{\prime}.

In the next lemma we use the theorem to identify a projective geometry in a modular pyramid.
Lemma 5.3. There exists an integer-valued function $\psi(n, l)$ such that the following holds: If $l \geq 2, n \geq 4$ and q are positive integers, and $M \in \mathcal{U}(l)$ is a modular q-strong pyramid with $r(M) \geq \psi(n, l)$, then M has a $\operatorname{PG}\left(n-1, q^{\prime}\right)$-restriction for some prime-power $q^{\prime}>q$.
Proof. Define $\psi(n, l)=(l-1)(n-1)+2$. Let $\left(M ; b_{1}, \ldots, b_{r}\right)$ be a modular pyramid, where $r=r(M) \geq \psi(n, l)$. Assume that M is simple. Let $H_{i}=\operatorname{cl}_{M}\left(\left\{b_{1}, \ldots, b_{i}\right\}\right)$, for $i=1, \ldots, r$.

Notice first, that every line $L \subseteq H_{r-1}$ has length at least 3, since otherwise, looking at the plane spanned by L and b_{r}, we find a contradiction to the modularity of M.

Define numbers m_{2}, \ldots, m_{r-1}, by $m_{i}=\min \left\{|L|: L \subseteq H_{i}\right\}$, where the minimum is over all lines of M contained in H_{i}. This sequence is clearly descending,

$$
l+1 \geq m_{2} \geq m_{3} \geq \cdots \geq m_{r-1} \geq 3
$$

Since $r-2 \geq(l-1)(n-1)$, by a majority argument there exists k, such that $m_{k}=m_{k+n-2}$; let $m=m_{k}$. Choose a line $L_{*} \subseteq H_{k}$ with $\left|L_{*}\right|=m$, and let $p_{1}, p_{2} \in L_{*}$ be different elements. Let $p_{3}=b_{k+1}, \ldots, p_{n}=\bar{b}_{k+n-2}$. We define the minor $N=M \mid \operatorname{cl}_{M}\left(\left\{p_{1}, \ldots, p_{n}\right\}\right)$. By construction, N is a modular pyramid. Let $F_{i}=\operatorname{cl}_{N}\left(\left\{p_{1}, \ldots, p_{i}\right\}\right)$ for each i.

We claim that every line in N has length m. Clearly, there are no shorter lines. Suppose the claim fails and let i be minimal, such that there is a line $L \subseteq F_{i}$ with $|L|>m$. We must have $i>2$, since $F_{2}=L_{*}$ has length m. Choose an element $x \in F_{i}-F_{i-1}$, not on L. Now, by modularity each element in L is on a line through x that intersects F_{i-1} in a point. This gives $|L|$ colinear points in F_{i-1}, contradicting the minimality of i.

Observe, that as M is a q-strong pyramid, $m \geq q+2$, since N contains the line spanned by b_{k+1} and b_{k+2} which is a q-long line of M.

To prove that N is a projective space, we show that coplanar lines intersect. Let L_{1} and L_{2} be coplanar lines of N and let $P=\operatorname{cl}_{N}\left(L_{1} \cup L_{2}\right)$. Let i be minimal with $P \subseteq F_{i}$. If L_{1} is contained in F_{i-1}, then L_{2} must intersect L_{1} by the modularity of N. Similarly if L_{2} is contained in F_{i-1}. Suppose $L_{1}, L_{2} \nsubseteq F_{i-1}$, and assume that L_{1} and L_{2} do not intersect. Let $x \in L_{2}-F_{i-1}$. Each point on L_{1} is on a line through x than intersects F_{i-1} in a point. These, together with the point of intersection of L_{2} and F_{i-1} account for $m+1$ points of $P \cap F_{i-1}$, a contradiction.

Finally by Theorem 5.2, N is isomorphic to $\operatorname{PG}\left(n-1, q^{\prime}\right)$, and we must have $m=$ $q^{\prime}+1$.

Theorem 2.1 is now proved by applying Lemmas 3.3, 4.3, 5.1 and 5.3 in succession. The bound α in the theorem, depending on n and l becomes:

$$
\alpha=\lambda l^{2 n^{\prime}}
$$

$$
\text { where } \quad \lambda=\theta\left(\binom{n^{\prime}}{2}, n^{\prime}, l\right), \quad n^{\prime}=m l\binom{m}{2} \quad \text { and } \quad m=\psi(\max (n, 4), l)
$$

6. Proof of the polynomial Result

We now turn to Theorem 2.2. To prove the theorem, by the previous results, we just need to get a large pyramid. This is done in the same way that we obtained a prepyramid in Lemma 3.3, the proof of which rested on Lemmas 2.3 and 2.4. The arguments are the same, only the calculations differ. The following result parallels Lemma 2.4.

Lemma 6.1. Let $l \geq 2$ and let λ and n be positive integers. Let $M \in \mathcal{U}(l)$ and let e be a non-loop element of M. If $A \subseteq E(M)-e$ satisfies $\varepsilon_{M}(A)>\lambda r_{M}(A)^{n}$, then there exists $X \subseteq A$ such that $e \notin \operatorname{cl}_{M}(X)$ and $\varepsilon_{M}(X)>\frac{\lambda n}{l} r_{M}(X)^{n-1}$.
Proof. The proof mimics the proof of Lemma 2.4. We may assume that A is minimal with $\varepsilon_{M}(A)>\lambda r_{M}(A)^{n}$, implying that $M \mid A$ is simple. We also assume, that $E(M)=A \cup e$. Assume that A spans e, as otherwise we are done.

Choose a flat W not containing e, with $r_{M}(W)=r-2$, and let $H_{0}, H_{1}, \ldots, H_{m}$ be the hyperplanes of M containing W. Then $\operatorname{si}(M / e) \simeq U_{2, m+1}$ and so $m \leq l$, since $M \in \mathcal{U}(l)$.

We may assume $e \in H_{0}$. By the minimality of $A,\left|H_{0} \cap A\right| \leq \lambda(r-1)^{n}$ and thus

$$
\left|A-H_{0}\right|>\lambda\left(r^{n}-(r-1)^{n}\right) \geq \lambda n(r-1)^{n-1},
$$

where we have used the inequality $(x+1)^{n}-x^{n} \geq n x^{n-1}$ for a non-negative number x. Since the sets H_{1}, \ldots, H_{m} cover $E(M)-H_{0}$, by a majority argument we have

$$
\left|H_{i} \cap A\right| \geq \frac{1}{m}\left|A-H_{0}\right|>\frac{\lambda n}{l}(r-1)^{n-1}
$$

for some i, and we are done with $X=H_{i} \cap A$.
In the following lemma a pyramid is constructed.
Lemma 6.2. There exists an integer-valued function $\phi(n, l)$ such that the following holds: If $l \geq 2$ and n are positive integers, and $M \in \mathcal{U}(l)$ has $\varepsilon(M)>\phi(n, l) r(M)^{2(n-1)}$, then M has a rank-n pyramid minor.

Proof. Let $\phi(1, l)=1$, and for $n \geq 2$ define

$$
\phi(n, l)=\frac{l^{2} \phi(n-1, l)}{4 n-6} .
$$

The proof is by induction on n. The case $n=1$ is trivial, so assume $n \geq 2$, and that the result holds for $n-1$. We write $\phi=\phi(n, l)$ for brevity.

Let $r=r(M)$, and let $k=2(n-1)$. We may assume that M is minimal with $\varepsilon(M)>\phi r^{k}$. Choose an element e of M. Then $\varepsilon(M / e) \leq \phi(r-1)^{k}$ and

$$
\varepsilon(M)-\varepsilon(M / e)>\phi\left(r^{k}-(r-1)^{k}\right) \geq \phi r^{k-1} .
$$

When contracting $e,|L|-2$ points other that e are lost from each line L containing e. Hence $\varepsilon(M)-\varepsilon(M / e) \leq 1+(l-1) \delta_{M}(e)$ and

$$
(l-1) \delta_{M}(e) \geq \phi r^{k-1}
$$

Let $A \subseteq E(M)-e$ be the set of points on long lines through e. Then $|A| \geq 2 \delta_{M}(e)>$ $\frac{2 \phi}{l} r^{k-1}$. The previous lemma now gives a set $X \subseteq A$, with $e \notin \mathrm{cl}_{M}(X)$ and

$$
|X|>\frac{2 \phi(k-1)}{l^{2}} r_{M}(X)^{k-2}=\phi(n-1, l) r_{M}(X)^{2(n-2)} .
$$

Applying the induction hypothesis to $M \mid X$ we get a minor of $M \mid X$ that is a rank- $(n-1)$ pyramid. Thus, M has a rank- n pyramid minor.

When $l \geq 2$, Theorem 2.2 now follows from Lemmas 6.2, 5.1 and 5.3. For the case $l=1$, note that a simple matroid M in $\mathcal{U}(1)$ has no circuits, and thus $|E(M)|=r(M)$. So, taking $a=m=1$, the condition of the theorem is never satisfied.

References

1. R. Baer, Linear algebra and projective geometry, Academic Press, New York, 1952.
2. J. Bonin and J. P. S. Kung, The number of points in a combinatorial geometry with no 8-point-line minors, in Mathematical essays in honor of Gian-Carlo Rota, B. Sagan and R. Stanley, eds., Birkhäuser Boston, Boston, MA, 1998, 271-284.
3. P. Dembowski, Finite geometries, Springer-Verlag, New York, 1968.
4. J. P. S. Kung, Extremal matroid theory, in Graph structure theory, N. Robertson and P.D. Seymour, eds., Amer. Math. Soc., Providence, Rhode Island, 1993, 21-61.
5. J. G. Oxley, Matroid Theory, Oxford University Press, New York, 1992.
6. N. Sauer, On the density of families of sets, J. Combin. Theory, Ser. A 13 (1972), 145-147.
7. S. Shelah, A combinatorial problem: stability and order for models and theories in infinitary languages, Pacific J. Math. 41 (1972), 247-261.

Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada

Department of Mathematical Sciences, University of Aarhus, Aarhus, Denmark

[^0]: Date: November 9, 2005.
 1991 Mathematics Subject Classification. 05B35.
 Key words and phrases. matroids, growth rate, projective geometries.
 This research was partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

