UNIVERSITY OF A ARHUS

Department of Mathematics

ISSN: 1397-4076

The ERDÖS-PÓSA PROPERTY FOR MATROID CIRCUITS

by Jim Geelen and Kasper Kabell

THE ERDÖS-PÓSA PROPERTY FOR MATROID CIRCUITS

JIM GEELEN AND KASPER KABELL

Abstract

The number of disjoint co-circuits in a matroid is bounded by its rank. There are, however, matroids with arbitrarily large rank that do not contain two disjoint co-circuits; consider, for example, $M\left(K_{n}\right)$ and $U_{n, 2 n}$. Also the bicircular matroids $B\left(K_{n}\right)$ have arbitrarily large rank and have no 3 disjoint co-circuits. We prove that for each k and n there exists a constant c such that, if M is a matroid with no $U_{n, 2 n^{-}}, M\left(K_{n}\right)$-, or $B\left(K_{n}\right)$-minor, then either M has k disjoint co-circuits or $r(M) \leq c$.

1. Introduction

We prove the following theorem.
Theorem 1.1. There exists a function $\gamma: \mathbb{N}^{3} \rightarrow \mathbb{N}$ such that, if M is a matroid with no $U_{a, 2 a}$-, $M\left(K_{n}\right)$-, or $B\left(K_{n}\right)$-minor and $r(M) \geq \gamma(k, a, n)$, then M has k disjoint co-circuits.

Here $M\left(K_{n}\right)$ is the cycle matroid of K_{n} and $B\left(K_{n}\right)$ is the bicircular matroid of K_{n} (to be defined below).

A circuit-cover of a graph G is a set $X \subseteq E(G)$ such that $G-X$ has no circuits. Thus the maximum number of (edge-) disjoint circuits in a graph is bounded by the minimum size of a circuit cover. This bound is not tight (consider K_{4}), but Erdös and Pósa in [3] proved that the maximum number of disjoint circuits is qualitatively related to the minimum size of a circuit cover.

Erdös-Pósa Theorem 1.2. There is a function $c: \mathbb{N} \rightarrow \mathbb{N}$ such that, if the size of a minimal circuit-cover of G is at least $c(k)$, then G has k disjoint circuits.

Let M be a matroid. A set $X \subseteq E(M)$ intersects each circuit of M if and only if $E(M)-X$ is independent. So, a minimal circuit-cover of M is a basis of M^{*}. The Erdös-Pósa Theorem was generalized to matroids by Geelen, Gerards, and Whittle [4] who proved:

Theorem 1.3. There exists a function $c: \mathbb{N}^{3} \rightarrow \mathbb{N}$ such that, if M is a matroid with no $U_{2, q+2^{-}}$or $M\left(K_{n}\right)$-minor and $r(M) \geq c(k, q, n)$, then M has k disjoint co-circuits.

The result does not extend to all matroids. A matroid is round if it has no two disjoint co-circuits. Equivalently, M is round if each co-circuit in M is a spanning set of M.

[^0]The matroid $U_{r, n}$, where $n \geq 2 r-1$ is round. Also, for any positive integer n, $M\left(K_{n}\right)$ is a round matroid. Generally, for a graph G, a co-circuit of $M(G)$ is a minimal edge-cut of G. If G is simple, then it is easily seen, that G has no two disjoint edge-cuts if and only if G is complete.
Let $G=(V, E)$ be a graph. Define a matroid $\tilde{B}(G)$ on $V \cup E$ where V is a basis of $\tilde{B}(G)$ and, for each edge $e=u v$ of G, place e freely on the line spanned by $\{u, v\}$. Now $B(G):=\tilde{B}(G) \backslash V$ is the bicircular matroid of G. A different characterization of $B(G)$ is the following, which gives rise to the name bicircular matroid. It is easily verified (see [8, Prop. 12.1.6]).
Remark 1.4. Let G be a graph. C is a circuit of $B(G)$ if and only if $G[C]$ is a subdivision of one of the graphs below.

The matroid $\tilde{B}\left(K_{n}\right)$ is also round, which is easily verified. The bicircular matroid $B\left(K_{n}\right)$ is not round, but it has no three disjoint co-circuits (for $n \neq 3$).

Our main theorem, Theorem 1.1, is a generalization of Theorem 1.3 and is, in some sense, best possible. Note that each of the classes

$$
\left\{M\left(K_{n}\right): n \geq 1\right\},\left\{B\left(K_{n}\right): n \geq 1\right\}, \text { and }\left\{U_{a, 2 a}: a \geq 1\right\}
$$

have unbounded rank but they have a bounded number of disjoint co-circuits.
We follow the notation of Oxley [8], and the reader is assumed familiar with standard matroid theory as described therein.

2. Covering number

We shall work with dense matroids in the proof. This section develops tools for measuring the size and density of a matroid.

A simple $\mathrm{GF}(q)$-representable rank-r matroid can be realized as a restriction of the projective geometry $\operatorname{PG}(r-1, q)$. Thus, it has at most $\frac{q^{r}-1}{q-1}$ elements. Kung [5] extended this bound to the class of matroids with no $U_{2, q+2}$-minor (the shortest line not representable over $\operatorname{GF}(q))$.

Theorem (Kung) 2.1. Let $q>1$ be an integer, and let M be a simple rank-r matroid with no $U_{2, q+2}-m i n o r$. Then

$$
|E(M)| \leq \frac{q^{r}-1}{q-1}
$$

Projective geometries show, that the bound is sharp if q is a prime-power. To bound the size of rank- r matroids, it is necessary to restrict the length of lines, or there can be arbitrarily many elements in a rank-2 matroid. As we shall be excluding a uniform matroid of higher rank, we need a new measure of size, for an analogue of Kung's Theorem to hold.
Definition 2.2. Let a be a positive integer. An a-covering of a matroid M is a collection $\left(X_{1}, \ldots, X_{m}\right)$ of subsets of $E(M)$, with $E(M)=\cup X_{i}$ and $r_{M}\left(X_{i}\right) \leq a$ for all i. The size of the covering is m. The a-covering number of $M, \tau_{a}(M)$ is the minimum size of an a-covering of M. If $r(M)=0$, then we define $\tau_{a}(M)=0$.

Note that for a matroid $M, \tau_{1}(M)=|E(\operatorname{si}(M))|$, where $\operatorname{si}(M)$ denotes the simplification of M. If M has non-zero rank $r(M) \leq a$, then $\tau_{a}(M)=1$. Our first lemma bounds $\tau_{a}(M)$ in the case $r(M)=a+1$.

Lemma 2.3. Let $b>a \geq 1$. If M is a matroid of rank $a+1$ with no $U_{a+1, b}$-minor, then

$$
\tau_{a}(M) \leq\binom{ b-1}{a}
$$

Proof. Let $X \subseteq E(M)$ be maximal with $M \mid X \simeq U_{a+1, l}$. Then $l \leq b-1$. For an $x \notin X$, by the maximality of X, there exists $Y \subseteq X$ with $|Y|=a$ such that $Y \cup x$ is dependent, and thus $x \in \operatorname{cl}_{M}(Y)$.

It follows that $\left(\mathrm{cl}_{M}(Y)|Y \subseteq X,|Y|=a)\right.$ is an a-covering of M. It has size $\binom{l}{a} \leq\binom{ b-1}{a}$.
Lemma 2.4. Let $b>a \geq 1$. If M is a matroid with no $U_{a+1, b}$-restriction, then

$$
\tau_{a}(M) \leq\binom{ b-1}{a} \tau_{a+1}(M)
$$

Proof. Let $\left(X^{1}, \ldots, X^{k}\right)$ be a minimal $(a+1)$-covering of M. By Lemma 2.3 each $M \mid X^{i}$ has an a-covering $\left(X_{1}^{i}, \ldots, X_{m_{i}}^{i}\right)$ of size $m_{i} \leq\binom{ b-1}{a}$. Combining these we get an a-covering $\left(X_{j}^{i} \mid j=1, \ldots, m_{i}, i=1, \ldots, k\right)$ of M. Thus $\tau_{a}(M) \leq \sum m_{i} \leq\binom{ b-1}{a} k$.

The next result extends Kung's Theorem. The bound we obtain is not sharp, though.

Lemma 2.5. Let $b>a \geq 1$. If M is a matroid of rank $r \geq a$ with no $U_{a+1, b}$-minor, then

$$
\tau_{a}(M) \leq\binom{ b-1}{a}^{r-a}
$$

Proof. The proof is by induction on r. The case $r=a$ is trivial since $(E(M))$ is an a-covering of size 1 .

Let $r>a$ and assume that the result holds for rank $r-1$. Let x be a non-loop element of M. Then $r(M / x)=r-1$ and by induction $\tau_{a}(M / x) \leq\binom{ b-1}{a}^{r-1-a}$.

Let $\left(X_{1}, \ldots, X_{k}\right)$ be a minimal a-covering of M / x, so $r_{M / x}\left(X_{i}\right) \leq a$ for all i. This implies $r_{M}\left(X_{i} \cup x\right) \leq a+1$, and so ($\left.X_{i} \cup x \mid i=1, \ldots, k\right)$ is an $(a+1)$-covering of M. We conclude $\tau_{a+1}(M) \leq \tau_{a}(M / x)$.

Finally, by Lemma 2.4 we have $\tau_{a}(M) \leq\binom{ b-1}{a} \tau_{a+1}(M)$ and combining inequalities we get the desired result.

Definition 2.6. Let a be a positive integer. The matroid M is called a-simple, if M is simple and M has no $U_{k, 2 k}$-restriction for $k=2,3, \ldots, a$.

Equivalently, M is a-simple if it is loop-less and has no $U_{k, 2 k}$-restriction for $k=1,2,3, \ldots, a$. This concept is just an abbreviation. We shall not define an " a-simplification" operation, since for $a \geq 2$ it would not be well-defined up to isomorphism. For a-simple matroids, the size is proportional to τ_{a} :

Lemma 2.7. There exists an integer-valued function $\sigma(a)$ such that, if $a \geq 1$ and M is a-simple, then $|E(M)| \leq \sigma(a) \tau_{a}(M)$.

Proof. Define σ by

$$
\sigma(a)=\prod_{k=2}^{a}\binom{2 k-1}{k-1}
$$

Since M has no $U_{k, 2 k}$-restriction for $k=2, \ldots, a$, Lemma 2.4 gives

$$
\tau_{k-1}(M) \leq\binom{ 2 k-1}{k-1} \tau_{k}(M), \quad k=2, \ldots, a
$$

Putting these together, we get $|E(M)|=\tau_{1}(M) \leq \sigma(a) \tau_{a}(M)$.
We shall need one more specialized result, which is completely similar to the previous Lemma.
Lemma 2.8. There exists an integer-valued function $\sigma_{2}(a, b)$ such that, if $b \geq a \geq 1$ and M is loop-less and has no $U_{k, b}$-restriction for $k=1, \ldots$, , then $|E(M)| \leq$ $\sigma_{2}(a, b) \tau_{a}(M)$.
Proof. Define σ_{2} by

$$
\sigma_{2}(a, b)=(b-1) \prod_{k=2}^{a}\binom{b-1}{k-1}
$$

Now use $|E(M)| \leq(b-1) \tau_{1}(M)$ and apply Lemma 2.4.

3. Approaching roundness

The first step in the proof of the main theorem is to show, that a matroid of large enough rank has either k disjoint co-circuits or a large minor which is "nearly round".

Definition 3.1. Let M be a matroid. The rank-deficiency of a set of elements $X \subseteq E(M)$ is $r_{M}^{-}(X)=r(M)-r_{M}(X)$. Denote by $\Gamma(M)$ the maximum rankdeficiency among the co-circuits of M. For $t \in \mathbb{N}$ we say that M is t-round if $\Gamma(M) \leq t$.

Notice that a matroid M is round if and only if $\Gamma(M)=0$, that is, M is 0 -round. The condition of being t-round is easily seen to be preserved under contractions. When we cannot obtain a t-round matroid, we shall sometimes work with the even weaker property: $\Gamma(M) \leq \frac{1}{2} r(M)$.
Lemma 3.2. Let $g: \mathbb{N} \rightarrow \mathbb{N}$ be a non-decreasing function. There exists a function $f_{g}: \mathbb{N} \rightarrow \mathbb{N}$ such that for any $k \in \mathbb{N}$, if M is a matroid with $r(M) \geq f_{g}(k)$, then either
(a) M has k disjoint co-circuits or
(b) M has a minor $N=M / Y$ with $r(N) \geq g(\Gamma(N))$.

Proof. Let g be given and define f_{g} as follows: $f_{g}(0)=f_{g}(1)=1$ and

$$
f_{g}(k)=g\left(f_{g}(k-1)\right), \quad k \geq 2
$$

The proof is by induction on k. If $r(M) \geq 1$, then M has a co-circuit, so the result holds for $k=0,1$. Now let $k \geq 2$ and $r(M) \geq f_{g}(k)=g\left(f_{g}(k-1)\right)$.

If $\Gamma(M) \geq f_{g}(k-1)$, then pick a co-circuit C of M with $r_{M}^{-}(C)=\Gamma(M)$. Then $r(M / C)=r_{M}^{-}(C) \geq f_{g}(k-1)$. If M / C has the desired contraction minor, then we are done. If not, then by induction M / C has $k-1$ disjoint co-circuits. These, together with C, give k disjoint co-circuits of M.

If $\Gamma(M) \leq f_{g}(k-1)$, then as g is non-decreasing, we have $r(M) \geq g(\Gamma(M))$.

4. Building density

The goal of this section is to prove, that a high-rank nearly round matroid with no $U_{a+1, b}$ minor contains a dense minor.
Lemma 4.1. Let $b>a \geq 1$. Let M be a matroid with no $U_{a+1, b}$-minor and let C be a co-circuit of M of minimal size. If C_{1}, \ldots, C_{k} are disjoint co-circuits of $M \backslash C$ with $\left|C_{1}\right| \leq \cdots \leq\left|C_{k}\right|$, then $\left|C_{i}\right| \geq|C| /\left(a\binom{b-1}{a}\right)$ for $i=a, \ldots, k$.
Proof. Let C and $C_{1} \ldots, C_{k}$ be given and let $i \in\{a, \ldots, k\}$.
C_{1} is co-dependent in $M \backslash C \backslash C_{i}$. So there exists a co-circuit $C_{1}^{\prime} \subseteq C_{1}$ of $M \backslash\left(C \cup C_{i}\right)$.
Now, C_{2} is co-dependent in $M \backslash C \backslash\left(C_{i} \cup C_{1}^{\prime}\right)$. So there is a co-circuit $C_{2}^{\prime} \subseteq C_{2}$ of $M \backslash\left(C \cup C_{i} \cup C_{1}^{\prime}\right)$.

Continuing in this fashion, for each $j=2, \ldots, a-1$ we pick a co-circuit $C_{j}^{\prime} \subseteq C_{j}$ of $M \backslash\left(C \cup C_{i} \cup C_{1}^{\prime} \cup \cdots \cup C_{j-1}^{\prime}\right)$.

Denote by F the set $E(M)-\left(C \cup C_{i} \cup C_{1}^{\prime} \cup \cdots \cup C_{a-1}^{\prime}\right)$. Deleting a co-circuit of a matroid drops its rank by 1 , so we get $r_{M}^{-}(F)=a+1$. Hence $N=M / F$ has rank $r(N)=a+1$. Since C is a co-circuit of N of minimal size, $E(N)-C$ must be a rank- a set of N of maximal size. We now have

$$
\begin{aligned}
|C| \leq|E(N)| & \leq \tau_{a}(N)|E(N)-C| \\
& =\tau_{a}(N)\left|C_{i} \cup C_{1}^{\prime} \cup \cdots \cup C_{a-1}^{\prime}\right| \\
& \leq\binom{ b-1}{a} a\left|C_{i}\right|
\end{aligned}
$$

using Lemma 2.3. The result now follows.
Lemma 4.2. There exists an integer-valued function $\kappa(\lambda, a, b)$ such that the following holds: Let $b>a \geq 1$ and $\lambda \in \mathbb{N}$. Let M be an a-simple matroid with no $U_{a+1, b}$-minor, satisfying $\Gamma(M) \leq \frac{1}{2} r(M)$. Let C be a minimal sized co-circuit of M. If $M \backslash C$ has $\kappa(\lambda, a, b)$ disjoint co-circuits, then $\tau_{a}(M)>\lambda r(M)$.
Proof. Let a, b and λ be given and define

$$
\kappa(\lambda, a, b)=\kappa=2 a\binom{b-1}{a} \sigma(a) \lambda+a-1 .
$$

Let M and C be given and let $C_{1}, \ldots, C_{\kappa}$ be disjoint co-circuits of $M \backslash C$ of nondecreasing size. Note that

$$
|C| \geq r_{M}(C) \geq r(M)-\Gamma(M) \geq r(M) / 2
$$

By Lemma 2.7 and the above lemma we have

$$
\begin{aligned}
\sigma(a) \tau_{a}(M) & \geq|E(M)| \\
& >\left|C_{a}\right|+\cdots+\left|C_{\kappa}\right| \geq(\kappa-a+1) \frac{r(M)}{2 a\binom{b-1}{a}}=\sigma(a) \lambda r(M)
\end{aligned}
$$

and the result follows.
For a matroid M denote by $\Theta(M)$ the maximum number of disjoint co-circuits in M. So, M is round if and only if $\Theta(M)=1$. The two parameters $\Gamma(M)$ and $\Theta(M)$ are related by

$$
\Theta(M) \leq \Gamma(M)+1
$$

This follows from the observation, that if C_{1}, \ldots, C_{k} are disjoint co-circuits of M, then $r\left(M \backslash\left(C_{1} \cup \cdots \cup C_{k}\right)\right) \leq r(M)-k$. Equality does not hold (consider $\left.U_{4,5}\right)$. The following result lists hereditary properties of the two parameters.

Lemma 4.3. Let M be a matroid and let $X, Y \subseteq E(M)$. Then
(i) $\Theta(M / Y) \leq \Theta(M)$ and $\Gamma(M / Y) \leq \Gamma(M)$.
(ii) $\Theta(M \backslash X) \geq \Theta(M)$ and $\Gamma(M \backslash X) \geq \Gamma(M)$, if X is co-independent.
(iii) $\Theta(M \backslash X)=\Theta(M)$ and $\Gamma(M \backslash X)=\Gamma(M)$, if for some number $a \in \mathbb{N}, X$ is minimal with respect to inclusion, such that $M \backslash X$ is a-simple.

Proof. Every co-circuit C of M / Y is a co-circuit of M. A short calculation shows that $r_{M / Y}^{-}(C) \leq r_{M}^{-}(C)$, so the first assertion of the lemma holds.

To prove the second and third assertions, it is enough to consider $X=\{x\}$, where x is not a co-loop of M. If C is a co-circuit in M, then $C-x$ contains a co-circuit in $M \backslash x$. Thus $\Theta(M \backslash x) \geq \Theta(M)$ and also $\Gamma(M \backslash x) \geq \Gamma(M)$.

We turn to the third assertion. Assume that $x \in W$, where $M \mid W \simeq U_{k, 2 k}$, for a $k \in \mathbb{N}$. If C is a co-circuit of $M \backslash x$, then $C=C^{\prime}-x$ for a co-circuit C^{\prime} of M, that is either C or $C \cup x$ is a co-circuit of M. We look at two cases:

- If $C \cap(W-x)=\emptyset$, then C is a co-circuit of M, since the complement of a co-circuit is closed and $x \in \mathrm{cl}_{M}(W-x)$.
- If $C \cap(W-x) \neq \emptyset$, then we must have $|(W-x)-C|<k$, since $M \mid(W-x) \simeq$ $U_{k, 2 k-1}$ and the complement of C is closed. Hence, $|C \cap(W-x)| \geq k$.
Note that the second case can happen at most once in a collection of disjoint cocircuits. So given a collection of disjoint co-circuits of $M \backslash x$, by adding x to at most one of them, we get a collection of disjoint co-circuits of M. Thus $\Theta(M) \geq \Theta(M \backslash x)$. Note also, that for a co-circuit C of $M \backslash x$, if $C \cup x$ is a co-circuit of M, then we are in the second case, and $r_{M}(C \cup x)=r_{M \backslash x}(C)$. Thus $\Gamma(M) \geq \Gamma(M \backslash x)$. Finally, since no co-circuit can contain a loop, deleting loops also preserves Θ and Γ.

Lemma 4.4. There exists an integer-valued function $\delta(\lambda, a, b)$ such that the following holds: Let $b>a \geq 1$ and $\lambda \in \mathbb{N}$. If M is a matroid with no $U_{a+1, b}-$ minor, such that $\Gamma(M) \leq \frac{1}{2} r(M)$ and $r(M) \geq \delta(\lambda, a, b)$, then M has a minor N with $\tau_{a}(N)>\lambda r(N)$.

Proof. Let a, b and λ be given and fixed, and let us define $\delta(\lambda, a, b)$. First, we define a sequence of functions $g_{n}: \mathbb{N} \rightarrow \mathbb{N}$. Let $g_{0}(m)=0$, and for $n \geq 1$ define g_{n} recursively by

$$
\begin{aligned}
g_{n}(m) & =\max \left(2 m, \delta_{n}\right), \\
\text { where } \delta_{n} & =2\left(f_{g_{n-1}}(\kappa(\lambda, a, b))+1\right) \in \mathbb{N} .
\end{aligned}
$$

Finally, let $\delta(\lambda, a, b)=\delta_{n_{0}}$, where $n_{0}=2 \sigma(a) \lambda$. The functions σ, κ and $f_{g_{n}}$ are defined in previous lemmas. We first prove a partial result.

Claim. Let $n \geq 0$. If M is a matroid with no $U_{a+1, b}$-minor, such that $r(M) \geq$ $g_{n}(\Gamma(M))$, then either

- M has a minor N with $\tau_{a}(N)>\lambda r(N)$ or
- there exists a sequence of matroids $M=M_{0}, M_{1}, \ldots, M_{n}$, such that for $i=$ $0, \ldots, n-1, M_{i+1}=M_{i} \backslash C_{i} / Y_{i}$, where C_{i} is a co-circuit of M_{i} that spans M_{i} / Y_{i}.

We prove the claim by induction on n. The case $n=0$ is trivial, so assume $n \geq 1$ and that the result holds for $n-1$.

Let $X \subseteq E(M)$ be minimal such that $M \backslash X$ is a-simple. Pick a co-circuit C_{0} of M with $\left|C_{0}-X\right|$ minimal. Note, that $C=C_{0}-X$ is a co-circuit of $M \backslash X$ of minimal size.

Choose a basis Z of M / C_{0} and let $M^{\prime}=M / Z$. Then C_{0} spans M^{\prime}, and since $r(M) \geq g_{n}(\Gamma(M))$,

$$
r\left(M^{\prime}\right)=r_{M}\left(C_{0}\right) \geq r(M)-\Gamma(M) \geq \frac{1}{2} r(M) \geq \frac{1}{2} \delta_{n} .
$$

Now $r\left(M^{\prime} \backslash C_{0}\right)=r\left(M^{\prime}\right)-1 \geq f_{g_{n-1}}(\kappa(\lambda, a, b))$, so by Lemma 3.2 one of the following holds:
(a) $M^{\prime} \backslash C_{0}$ has $\kappa(\lambda, a, b)$ disjoint co-circuits.
(b) $M^{\prime} \backslash C_{0}$ has a minor $M_{1}=M^{\prime} \backslash C_{0} / Y$ with $r\left(M_{1}\right) \geq g_{n-1}\left(\Gamma\left(M_{1}\right)\right)$.

Assume first that (a) holds. Since $M^{\prime} \backslash C_{0}=M \backslash C_{0} / Z$, by Lemma 4.3(i), $M \backslash C_{0}$ has $\kappa(\lambda, a, b)$ disjoint co-circuits. We claim, that $X-C_{0}$ is co-independent in $M \backslash C_{0}$. If not, then there exists a co-circuit $D \subseteq X \cup C_{0}$ of M with $D \cap\left(X-C_{0}\right) \neq \emptyset$, contradicting our choice of C_{0}. Now, by Lemma 4.3(ii),

$$
\Theta((M \backslash X) \backslash C)=\Theta\left(M \backslash\left(C_{0} \cup X\right)\right) \geq \Theta\left(M \backslash C_{0}\right) \geq \kappa(\lambda, a, b)
$$

The lemma also gives $\Gamma(M \backslash X) \leq \frac{1}{2} r(M \backslash X)$. We can now apply Lemma 4.2 to $N=M \backslash X$, and get the desired result.

Assume now that (b) holds. Letting $Y_{0}=Z \cup Y$, we have $M_{1}=M \backslash C_{0} / Y_{0}$ and C_{0} spans M / Y_{0}. Applying the induction hypothesis to M_{1} now gives the claim.

Let M be given as in the lemma, and note that $r(M) \geq g_{n}(\Gamma(M))$, where $n=$ $2 \sigma(a) \lambda$. By the claim, either we are done or there is a sequence $M=M_{0}, \ldots, M_{n}$, such that for $i=0, \ldots, n-1, M_{i+1}=M_{i} \backslash C_{i} / Y_{i}$, where C_{i} is a co-circuit of M_{i} that spans M_{i} / Y_{i}.

Let $M^{\prime}=M /\left(Y_{0} \cup \cdots \cup Y_{n-1}\right)$. Notice, that for $i=0, \ldots, n-1, C_{i}$ is a spanning co-circuit of $M^{\prime} \backslash\left(C_{0} \cup \cdots \cup C_{i-1}\right)$. Thus $r_{M^{\prime}}\left(C_{i}\right)=r-i$, where $r=r\left(M^{\prime}\right)$. For all i, choose a basis B_{i} for $M^{\prime} \mid C_{i}$, and define $N=M^{\prime} \mid\left(\cup B_{i}\right)$. Then

$$
|E(N)|=\sum_{i=0}^{n-1}(r-i)>\frac{n r}{2}
$$

We claim that N is a-simple. Suppose $N \mid W \simeq U_{k, 2 k}$ for a $W \subseteq E(N)$ and $k \in$ $\{1,2,3, \ldots\}$. Then $\left|W \cap B_{0}\right| \leq k$, as B_{0} is independent. So $\left|W \cap\left(E(N)-B_{0}\right)\right| \geq k$, and since $E(N)-B_{0}$ is closed, $W \cap B_{0}=\emptyset$. Repeat this argument in $N \backslash B_{0}$ to see, that $W \cap B_{1}=\emptyset$ etc. We end up with $W \subseteq B_{n-1}$, a contradiction.

Finally, by Lemma 2.7,

$$
\sigma(a) \tau_{a}(N) \geq|E(N)|>\frac{n r}{2}=\sigma(a) \lambda r(N)
$$

and the result follows.

5. Arranging circuits

We wish to identify some more concrete structure in a dense matroid. To do this, we need to be able to disentangle some of the many low-rank sets in the matroid.

For a matroid M, we call sets $A_{1}, \ldots, A_{n} \subseteq E(M)$ skew if $r_{M}\left(\cup_{i} A_{i}\right)=\sum_{i} r_{M}\left(A_{i}\right)$. This is analogous to subspaces of a vector-space forming a direct sum. The first
result of this section is a tool for finding sets in a matroid, that are close to being skew.

We define a function μ_{M} on collections of subsets of $E(M)$ as follows. For sets $A_{1}, \ldots, A_{n} \subseteq E(M)$, let

$$
\begin{aligned}
\mu_{M}\left(A_{1}, \ldots, A_{n}\right) & =r_{M}\left(\bigcup_{j} A_{j}\right)-\sum_{i}\left(r_{M}\left(\bigcup_{j} A_{j}\right)-r_{M}\left(\bigcup_{j \neq i} A_{j}\right)\right) \\
& \left.=r_{M}\left(\bigcup_{j} A_{j}\right)-\sum_{i} r_{M /\left(\cup_{j \neq i} A_{j}\right)}\left(A_{i}-\cup_{j \neq i} A_{j}\right)\right) .
\end{aligned}
$$

This function can be thought of as a generalized connectivity function. For $n=2$, μ_{M} equals the connectivity function $\lambda_{M}\left(A_{1}, A_{2}\right)=r_{M}\left(A_{1}\right)+r_{M}\left(A_{2}\right)-r_{M}\left(A_{1} \cup A_{2}\right)$. For $n \geq 2$ a recursive formula holds,

$$
\mu_{M}\left(A_{1}, \ldots, A_{n}\right)=\lambda_{M}\left(A_{1}, A_{2} \cup \cdots \cup A_{n}\right)+\mu_{M / A_{1}}\left(A_{2}, \ldots, A_{n}\right)
$$

The function μ_{M} measures in a way the rank of the "overlap" of the sets, though this may not be an actual set in the matroid. Notice, that $\mu_{M}\left(A_{1}, \ldots, A_{n}\right)=0$ if and only if A_{1}, \ldots, A_{n} are skew. More generally, if there is a set $W \subseteq E(M)$ such that $A_{1}-W, \ldots, A_{n}-W$ are skew in M / W, then $\mu_{M}\left(A_{1}, \ldots, A_{n}\right) \leq r_{M}(W)$.
Lemma 5.1. There exists an integer-valued function $\alpha_{1}(n, r, a, b)$ such that the following holds: Let $b>a \geq 1$, and let r and n be positive integers. If M is a matroid with no $U_{a+1, b}$-minor, and \mathcal{F} is a collection of rank-r subsets of $E(M)$ with $r_{M}\left(\cup_{X \in \mathcal{F}} X\right) \geq \alpha_{1}(n, r, a, b)$, then there exist $X_{1}, \ldots, X_{n} \in \mathcal{F}$ satisfying
(a) $X_{i} \nsubseteq \mathrm{cl}_{M}\left(\cup_{j \neq i} X_{j}\right)$ for $i=1, \ldots, n$ and
(b) $\mu_{M}\left(X_{1}, \ldots, X_{n}\right) \leq(r-1) a$.

Proof. For any positive integers n, c, k, we let $R(n, c, k)$ denote the following Ramsey number: The minimal R, such that if X is a set with $|X|=R$, then for any c-coloring of $[X]^{n}, X$ has a monochromatic subset of size k. Here $[X]^{n}$ denotes the set of all subsets of X of size n. By a monochromatic subset of X, we mean a subset $Y \subseteq X$ such that the sets in $[Y]^{n}$ all have the same color. This number exists by Ramsey's Theorem (see [9] or [1, 9.1.4]).

Let n, r, a, b be given and let us define $\alpha_{1}(n, r, a, b)$. First we define numbers s_{i}, l_{i} for $i=1, \ldots, r$. Let $s_{r}=0, l_{r}=n$, and for $i=r-1, r-2, \ldots, 1$ define recursively:

$$
s_{i}=s_{i+1}+l_{i+1}, \quad u_{i}=\binom{b-1}{a}^{r s_{i}-a}, \quad l_{i}=n\binom{u_{i}}{r-i} .
$$

Let $m=s_{1}+l_{1}$. So, we have $0=s_{r}<s_{r-1}<\cdots<s_{1}<m$. Next, define numbers k_{1}, \ldots, k_{m} as follows. Let $k_{m}=m$ and define recursively:

$$
k_{i-1}=R\left(i, r, k_{i}\right), \quad \text { for } i=m, m-1, \ldots, 2
$$

Finally, let $\alpha_{1}(n, r, a, b)=r k_{1}$.
In the following, for a set of subsets $\mathcal{X} \subseteq 2^{E(M)}$, we use the shorthand notation $r_{M}(\mathcal{X})=r_{M}\left(\cup_{X \in \mathcal{X}} X\right)$.

Let M and \mathcal{F} be given, with $r_{M}(\mathcal{F}) \geq \alpha_{1}(n, r, a, b)=r k_{1}$. We can choose sets $Y_{1}, \ldots, Y_{k_{1}} \in \mathcal{F}$, such that $Y_{i} \notin \operatorname{cl}_{M}\left(Y_{1} \cup \cdots \cup Y_{i-1}\right)$. Let $\mathcal{F}_{1}=\left\{Y_{1}, \ldots, Y_{k_{1}}\right\}$ and put $a_{0}=0, a_{1}=r$. We shall iteratively construct sequences:

$$
\mathcal{F}_{1} \supseteq \mathcal{F}_{2} \supseteq \cdots \supseteq \mathcal{F}_{m}, \quad a_{0}<a_{1}<a_{2}<\cdots<a_{m}
$$

such that for $i=1, \ldots, m,\left|\mathcal{F}_{i}\right|=k_{i}$, and if $\mathcal{F}^{\prime} \subseteq \mathcal{F}_{i}$ with $\left|\mathcal{F}^{\prime}\right|=i$, then $r_{M}\left(\mathcal{F}^{\prime}\right)=a_{i}$. This clearly holds for \mathcal{F}_{1}. Let $i \geq 2$, assume that \mathcal{F}_{i-1} and a_{i-1} satisfy the above, and let us find \mathcal{F}_{i} and a_{i}.

Note, that $r_{M}\left(\mathcal{F}^{\prime}\right) \in\left\{a_{i-1}+1, \ldots, a_{i-1}+r\right\}$, for $\mathcal{F}^{\prime} \subseteq \mathcal{F}_{i-1}$ with $\left|\mathcal{F}^{\prime}\right|=i$. This defines an r-coloring of $\left[\mathcal{F}_{i-1}\right]^{i}$. Since $\left|\mathcal{F}_{i-1}\right|=k_{i-1}=\bar{R}\left(i, r, k_{i}\right)$, there exists $\mathcal{F}_{i} \subseteq$ \mathcal{F}_{i-1} such that, every set in $\left[\mathcal{F}_{i}\right]^{i}$ has the same rank, and we let a_{i} be that number.

For $i=1, \ldots, m$ let $b_{i}=a_{i}-a_{i-1}$. Notice that, by submodularity, this gives a decreasing sequence $\left(a_{i+1}+a_{i-1} \leq a_{i}+a_{i}\right)$,

$$
r=b_{1} \geq b_{2} \geq \cdots \geq b_{m} \geq 1
$$

Hence, by definition of the pairs $\left(s_{i}, l_{i}\right)$, there exists an $r^{\prime} \in\{1, \ldots, r\}$, such that

$$
b_{s+1}=\cdots=b_{s+l}=r^{\prime}, \quad \text { where } s=s_{r^{\prime}} \text { and } l=l_{r^{\prime}} .
$$

If $r^{\prime}=r$, then we get $b_{1}=\cdots=b_{n}=r$. Thus, if we choose any n members $X_{1}, \ldots, X_{n} \in \mathcal{F}_{m}$, then they are skew and we are done.

Assume $r^{\prime}<r$. Choose s sets $Z_{1}, \ldots, Z_{s} \in \mathcal{F}_{m}$, and let $F=\cup_{i=1}^{s} Z_{i}$. Choose another l sets $X_{1}, \ldots, X_{l} \in \mathcal{F}_{m}-\left\{Z_{1}, \ldots, Z_{s}\right\}$. Since $b_{s+1}=b_{s+l}=r^{\prime}$, the sets $X_{1}-$ $F, \ldots, X_{l}-F$ are skew of rank r^{\prime} in M / F. For $i=1, \ldots, l$, choose an independent set $\bar{B}_{i} \subseteq X_{i}$ of size r^{\prime}, skew from F. Expand this set to a basis $B_{i} \cup \bar{B}_{i}$ of X_{i}, so $\left|B_{i}\right|=r_{0}=r-r^{\prime}$.

Let $M^{\prime}=M /\left(\cup_{i} \bar{B}_{i}\right)$ and $B=\cup_{i} B_{i}$. Then $B_{i} \subseteq \mathrm{cl}_{M^{\prime}}(F)$, and thus $r_{M^{\prime}}(B) \leq$ $r_{M^{\prime}}(F) \leq s r$. Let $\left(W_{1}, \ldots, W_{u}\right)$ be a minimal a-covering of $M^{\prime} \mid B$. By Lemma 2.5, we have

$$
u=\tau_{a}\left(M^{\prime} \mid B\right) \leq\binom{ b-1}{a}^{s r-a}=u_{r^{\prime}}
$$

For each B_{i}, we can find a set of indices $I_{i} \subseteq\{1, \ldots, u\}$ of size r_{0}, such that $B_{i} \subseteq \cup_{j \in I_{i}} W_{j}$. There are $\binom{u}{r_{0}} \leq\binom{ u_{r^{\prime}}}{r-r^{\prime}}$ possible choices for I_{i}, and $l=n\binom{u_{r^{\prime}}}{r-r^{\prime}}$. By a majority argument, there must exist $I \subseteq\{1, \ldots, u\}$, such that $I_{i}=I$ for all $i \in J$, where $J \subseteq\{1, \ldots, l\}$ has size n. By possibly re-ordering the $X_{i}^{\prime} s$ and the W_{j} 's we can assume, that $B_{1}, \ldots, B_{n} \subseteq W_{1} \cup \cdots \cup W_{r_{0}}$.

Let $W=W_{1} \cup \cdots \cup W_{r_{0}}$. Then the sets $X_{1}-W, \ldots, X_{n}-W$ are skew in M / W. It follows, that $\mu_{M}\left(X_{1} \ldots, X_{n}\right) \leq r_{M}(W) \leq a r_{0} \leq a(r-1)$, and we are done.

The next lemma shows how, by doing suitable contractions, a large collection of nearly (but not completely) skew circuits, can yield a set of nearly skew triangles containing a common element. The idea is to put points in the "overlap" by contracting some of the circuits. The overlap can then be contracted to a point.

Lemma 5.2. There exists an integer-valued function $\alpha_{2}(l, r, m)$ such that the following holds: Let $r \geq 2$ and l, m be positive integers. If $n \geq \alpha_{2}(l, r, m)$ and $C_{1} \ldots, C_{n}$ are rank-r circuits of a matroid M satisfying
(a) $1 \leq r_{M}\left(\cup_{j} C_{j}\right)-r_{M}\left(\cup_{j \neq i} C_{j}\right)<r$ for all i, and
(b) $\mu_{M}\left(C_{1}, \ldots, C_{n}\right) \leq m$,
then M has a minor $N=M / Y$ with an element $x \in E(N)$ and triangles D_{1}, \ldots, D_{l} of N, such that

- $x \in D_{i}$ for all i, and $r_{N}\left(\cup_{i} D_{i}\right)=l+1$,
- For all $i, D_{i}-x \subseteq C_{j}$ for some $j \in\{1, \ldots, n\}$.

Proof. Let l and m be fixed. For $r \geq 2$, define $\alpha_{2}(l, r, m)$ recursively as follows

$$
\begin{gathered}
\alpha_{2}(l, r, m)=2^{m}\left(q_{r}(r-1)+1\right), \\
q_{2}=l, \quad q_{r}=\alpha_{2}(l, r-1, r-2), \quad \text { for } r>2
\end{gathered}
$$

To facilitate induction, the lemma is proved from the following weaker assumptions:
Let $n \geq \alpha_{2}(l, r, m)$, and $C_{1} \ldots, C_{n}$ be circuits of M with $2 \leq r_{M}\left(C_{i}\right) \leq r$. Assume there is a set $F \subseteq E(M)$, such that
(a) $1 \leq r_{M}\left(\left(\cup_{j} C_{j}\right) \cup F\right)-r_{M}\left(\left(\cup_{j \neq i} C_{j}\right) \cup F\right)<r_{M}\left(C_{i}\right)-1$ for all i.
(b) $\mu_{M}\left(C_{1}, \ldots, C_{n}, F\right) \leq m$.

These assumptions are indeed weaker, since the phrasing in the lemma is the case $F=\emptyset$ and $r_{M}\left(C_{i}\right)=r$ for all i. The proof is by induction on r. Let $r=2$ or let $r>2$ and assume the result holds for $r-1$.

Let $c_{i}=r_{M}\left(\left(\cup_{j} C_{j}\right) \cup F\right)-r_{M}\left(\left(\cup_{j \neq i} C_{j}\right) \cup F\right)$ for each i. We first do an easy reduction. If not $c_{i}=1$ for all i, then for each i choose a set $Y_{i} \subseteq C_{i}$ of size $c_{i}-1$, which is skew from $\left(\cup_{j \neq i} C_{j}\right) \cup F$. We may then work with the circuits $C_{i}-Y_{i}$ of $M /\left(Y_{1} \cup \cdots \cup Y_{n}\right)$ instead. So without loss of generality, $c_{i}=1$ for all i.

Choose $z_{i} \in C_{i}-\operatorname{cl}_{M}\left(\cup_{j \neq i} C_{j}\right)$ for each i, and let $\bar{M}=M /\left\{z_{1}, \ldots, z_{n}\right\}$. Letting $W=\cup_{i}\left(C_{i}-z_{i}\right)$ we have

$$
r_{\bar{M}}(W)=r_{M}\left(\cup_{i} C_{i}\right)-r_{M}\left(\left\{z_{1}, \ldots, z_{n}\right\}\right)=\mu_{M}\left(C_{1}, \ldots, C_{n}, F\right) \leq m .
$$

Let B be a basis of $\bar{M} \mid W$ and choose a basis B_{i} of $\bar{M} \mid\left(C_{i}-z_{i}\right)$ for each i. Now expand B_{i} to a basis $B_{i} \cup X_{i}$ of $\bar{M} \mid W$ using elements of B. For all i we have chosen $X_{i} \subseteq B$ among the $2^{|B|} \leq 2^{m}$ subsets of B. Hence, there exists an $X_{0} \subseteq B$, such that $X_{i}=X_{0}$ for $i \in I$, where $|I|=n^{\prime} \geq n / 2^{m}$. Let $M_{1}=M / X_{0}$ and put $r^{\prime}=|B|-\left|X_{0}\right|+1$. Then $r_{M_{1}}\left(C_{i}\right)=r^{\prime}$ for all $i \in I$, and $\mu_{M_{1}}\left(C_{i}: i \in I\right)=r^{\prime}-1$. By possibly reordering the circuits, we can assume $I=\left\{1, \ldots, n^{\prime}\right\}$.

Pick an element of one circuit, $z \in C_{n^{\prime}}-\operatorname{cl}_{M_{1}}\left(\cup_{j<n^{\prime}} C_{j}\right)$ and let $M_{2}=M_{1} / z$. Define

$$
Z=\operatorname{cl}_{M_{2}}\left(C_{n^{\prime}}-z\right) \subseteq \operatorname{cl}_{M_{2}}\left(C_{i}\right), \quad \text { for } i=1, \ldots, n^{\prime}-1
$$

so $r_{M_{2}}(Z)=r^{\prime}-1$. Choose a non-loop element $x \in Z$ and elements $y_{i} \in C_{i}-Z$ for $i=1, \ldots, n^{\prime}-1$. Since $x \in \operatorname{cl}_{M_{2}}\left(C_{i}\right), C_{i} \cup x$ is connected, so there is a circuit C_{i}^{\prime} of M_{2} with

$$
\left\{x, y_{i}\right\} \subseteq C_{i}^{\prime} \subseteq C_{i} \cup x, \quad \text { and } \quad r_{M_{2}}\left(C_{i}^{\prime}\right) \in\left\{2, \ldots, r^{\prime}\right\}
$$

Notice that $C_{i}^{\prime} \nsubseteq \mathrm{cl}_{M_{2}}\left(\cup_{j \neq i, j<n^{\prime}} C_{j}^{\prime}\right)$, since $y_{i} \in C_{i}^{\prime}$.
By another majority argument, there exists $s \in\left\{2, \ldots, r^{\prime}\right\}$, such that $r_{M_{2}}\left(C_{i}^{\prime}\right)=s$ for $i \in J$, where $|J| \geq\left(n^{\prime}-1\right) /(r-1) \geq q_{r}$. We now have two cases:
$\underline{s=2}$: Since $q_{r} \geq q_{2}=l$ we can choose $J^{\prime} \subseteq J$ with $\left|J^{\prime}\right|=l$. We are now done with $\left\{D_{1}, \ldots, D_{l}\right\}=\left\{C_{i}^{\prime}: i \in J^{\prime}\right\}$ and $N=M_{2}$.
$\underline{2<s \leq r^{\prime}}:$ Let $M_{3}=M_{2} / x$ and let $\bar{C}_{i}=C_{i}^{\prime}-x$ for $i \in J$. Then \bar{C}_{i} is a rank- $(s-1)$ circuit of M_{3}, with $\bar{C}_{i} \subseteq C_{i}$. Letting $F^{\prime}=Z-x$ we have,

$$
\mu_{M_{3}}\left(\bar{C}_{i}: i \in J, F^{\prime}\right) \leq r_{M_{3}}\left(F^{\prime}\right)=r^{\prime}-2 \leq r-2 .
$$

As $|J| \geq \alpha_{2}(l, r-1, r-2)$ we get by induction the desired minor.
The following result is just a corollary to Lemmas 5.1 and 5.2, that we state for easier reference.

Lemma 5.3. There exists an integer-valued function $\alpha_{3}(s, l, a, b)$ such that the following holds: Let $b>a \geq 1$ and let s, l be positive integers. If M is a matroid with no $U_{a+1, b}$-minor, and \mathcal{C} is a set of circuits of M of rank at most $a+1$, with $r_{M}\left(\cup_{C \in \mathcal{C}} C\right) \geq \alpha_{3}(s, l, a, b)$, then either:
(i) There exist s skew circuits $C_{1}, \ldots, C_{s} \in \mathcal{C}$, or
(ii) M has a minor $N=M / Y$ with an element $x \in E(N)$ and triangles D_{1}, \ldots, D_{l} of N, such that

- $x \in D_{i}$ for all i, and $r_{N}\left(\cup_{i} D_{i}\right)=l+1$, and
- For all $i, D_{i}-x \subseteq C$ for some $C \in \mathcal{C}$.

Proof. Define $\alpha_{3}(s, l, a, b)=\alpha_{3}$ by

$$
\alpha_{3}=\sum_{r=1}^{a+1} \alpha_{1}\left(n_{r}, r, a, b\right), \quad \text { where } n_{r}=s+\alpha_{2}(l, r,(r-1) a),
$$

and let M, \mathcal{C} be given. By a majority argument, there exists a number $r \in$ $\{1, \ldots, a+1\}$ and $\mathcal{C}^{\prime} \subseteq \mathcal{C}$, such that $r_{M}(C)=r$ for all $C \in \mathcal{C}^{\prime}$, and $r_{M}\left(\cup_{C \in \mathcal{C}^{\prime}} C\right) \geq$ $\alpha_{1}\left(n_{r}, r, a, b\right)$.

Now, by Lemma 5.1, there are $C_{1}, \ldots, C_{n} \in \mathcal{C}^{\prime}$, where $n=n_{r}=s+\alpha_{2}(l, r,(r-1) a)$, satisfying

$$
c_{i}=r_{M}\left(\cup_{j} C_{j}\right)-r_{M}\left(\cup_{j \neq i} C_{j}\right) \geq 1
$$

for all i, and $\mu\left(C_{1}, \ldots, C_{n}\right) \leq(r-1) a$.
Let $I=\left\{i: c_{i}=r\right\}$ and $J=\left\{i: c_{i}<r\right\}$. If $|I| \geq s$, then case (i) holds, since the C_{i} with $i \in I$ are skew. Otherwise, $|J| \geq \alpha_{2}(l, r,(r-1) a)$, and the C_{i} with $i \in J$ still satisfy

$$
r_{M}\left(\cup_{j \in J} C_{j}\right)-r_{M}\left(\cup_{j \in J-\{i\}} C_{j}\right)<r .
$$

Lemma 5.2 now gives case (ii) of the result.

6. Nests

By a long line in a matroid, we mean a rank-2 flat, that contains at least 3 rank- 1 flats. So, a long line in a simple matroid is a rank-2 flat with at least 3 elements. Also, a line is long if and only if it contains a triangle. We need a lot of long lines to construct clique-like structures. We first aim to build an intermediate structure called a nest.

Definition 6.1. A matroid M is a nest if M has a basis $B=\left\{b_{1}, \ldots, b_{n}\right\}$ such that, for each pair of indices $i, j \in\{1, \ldots, n\}, i<j$, the set $\left\{b_{i}, b_{j}\right\}$ spans a long line in $M /\left\{b_{1}, \ldots, b_{i-1}\right\}$. The elements in B are called the joints of the nest M.

A clique $M\left(K_{n}\right)$ is a nest, which is easily checked, taking the set of edges incident to a fixed vertex of K_{n} as joints. The main result of this section is the following.

Lemma 6.2. There exists an integer-valued function $\nu(n, t, a, b)$ such that the following holds: Let $b>a \geq 1$ and let n, t be positive integers. If M is $a t$-round matroid with no $U_{a+1, b}$-minor and $r(M) \geq \nu(n, t, a, b)$, then M has a rank-n nest as a minor.

We obtain a nest by finding one joint at a time using the next lemma.

Lemma 6.3. There exists an integer-valued function $\nu_{1}(m, t, a, b)$ such that the following holds: Let $b>a \geq 1$ and m, t be positive integers. If M is a t-round matroid with no $U_{a+1, b}$-minor, $r(M) \geq \nu_{1}(m, t, a, b)$ and B is a basis of M, then M has a rank-m minor N, with a basis $B^{\prime} \subseteq B \cap E(N)$ and an element $b_{1} \in B^{\prime}$, such that $\left\{b_{1}, d\right\}$ spans a long line in N for each $d \in B^{\prime}-b_{1}$.

Let us start by seeing how this result is used to prove Lemma 6.2.
Proof of Lemma 6.2. Let t be fixed. Let $\nu(1, t, a, b)=1$ and for $n \geq 2$ define ν recursively by

$$
\nu(n, t, a, b)=\nu_{1}(\nu(n-1, t, a, b)+1, t, a, b) .
$$

To facilitate induction, we prove the stronger statement:
If M is a t-round matroid with no $U_{a+1, b}$-minor, $r(M) \geq \nu(n, t, a, b)$ and B is a basis of M, then M has a rank-n nest M / Y as a minor, with joints contained in B.
The proof is by induction on n. For $n=1$ the result is trivial, as any rank- 1 matroid is a nest. Let $n \geq 2$ and assume the result holds for $n-1$. Let M and B be given as above.

By Lemma $6.3, M$ has a minor N_{1} of $\operatorname{rank} \nu(n-1, t, a, b)+1$, with a basis $B_{1} \subseteq B$ and $b_{1} \in B_{1}$ such that $\left\{b_{1}, d\right\}$ spans a long line in N_{1} for $d \in B_{1}-b_{1}$. We can assume $N_{1}=M / Y_{1}$.

Let $N_{1}^{\prime}=N_{1} / b_{1}$. Since t-roundness is preserved under contractions, N_{1}^{\prime} is t-round. Now $r\left(N_{1}^{\prime}\right)=\nu(n-1, t, a, b)$ so by induction, N_{1}^{\prime} has a rank- $(n-1)$ nest $N_{2}=N_{1}^{\prime} / Y_{2}$ as a minor, with joints $B_{2} \subseteq B_{1}-b_{1}$.

Now, let $Y=Y_{1} \cup Y_{2}$ and $N=M / Y$, so we have $N_{2}=N / b_{1}$. Then N satisfies the following

- $b_{1} \cup B_{2} \subseteq B$ is a basis of N,
- For each $d \in B_{2},\left\{b_{1}, d\right\}$ spans a long line in N,
- $N / b_{1}=N_{2}$ is a nest with joints B_{2}.

Thus, N is a nest with joints $b_{1} \cup B_{2}$.
We shall consider coverings of matroids by connected sets. A loop is a trivial connected component of a matroid, that we wish to avoid counting. For a matroid M denote by $\tau_{a}^{c}(M)$ the minimum size of an a-covering $\left(X_{1}, \ldots, X_{m}\right)$ of $M \backslash\{$ loops $\}$, where X_{1}, \ldots, X_{m} are connected sets. Clearly $\tau_{a}^{c}(M) \geq \tau_{a}(M)$. Note also, that a loop-less rank- a matroid N has at most a connected components, so $\tau_{a}^{c}(N) \leq a$. Thus, we have in general for a matroid M :

$$
\tau_{a}(M) \leq \tau_{a}^{c}(M) \leq a \tau_{a}(M)
$$

We need a technical lemma before we prove Lemma 6.3.
Lemma 6.4. Let $b>a \geq 1$. Let M be a matroid with no $U_{a+1, b}$-minor, and let $e \in E(M)$. Let \mathcal{F} be the collection of all connected rank- $(a+1)$ sets in M containing e. If $n=r_{M}\left(\cup_{X \in \mathcal{F}} X\right)$, then

$$
\tau_{a}^{c}(M)-\tau_{a}^{c}(M / e) \leq a^{2}\binom{b-1}{a}^{n-a}+1
$$

Proof. If e is a loop, then the result is trivially true, so let e be a non-loop element. We may assume, in fact, that M is loop-less.

Let $\left(X_{1}, \ldots, X_{k}\right)$ be a minimal a-covering of $M / e \backslash\{$ loops $\}$ by connected sets. We shall construct an a-covering of M by connected sets. Consider the following cases:
(1) $e \notin \operatorname{cl}_{M}\left(X_{i}\right)$. Then X_{i} is connected already in M, and $r_{M}\left(X_{i}\right)=r_{M / e}\left(X_{i}\right) \leq$ a.
(2) $e \in \operatorname{cl}_{M}\left(X_{i}\right)$. In this case $X_{i} \cup e$ is connected in M, with rank $r_{M}\left(X_{i} \cup e\right)=$ $r_{M / e}\left(X_{i}\right)+1 \leq a+1$. Now either,
(2a) $r_{M}\left(X_{i} \cup e\right) \leq a$ or
(2b) $r_{M}\left(X_{i} \cup e\right)=a+1$.
We can assume, after possibly reordering the sets, that X_{1}, \ldots, X_{m} satisfy (2b), and X_{m+1}, \ldots, X_{k} satisfy (1) or (2a). For $i=1, \ldots, m$ we have

$$
\tau_{a}^{c}\left(M \mid\left(X_{i} \cup e\right)\right) \leq a \tau_{a}\left(M \mid\left(X_{i} \cup e\right)\right) \leq a\binom{b-1}{a}
$$

The elements of M destroyed when forming $M / e \backslash\{$ loops $\}$ is the connected set $\mathrm{cl}_{M}(\{e\})$. It is now clear, that we can get an a-covering of size s of M by connected sets, where

$$
\begin{aligned}
\tau_{a}^{c}(M) \leq s & \leq m a\binom{b-1}{a}+(k-m)+1 \\
& \leq m a\binom{b-1}{a}+\tau_{a}^{c}(M / e)+1 .
\end{aligned}
$$

If $m=0$, we are done, so assume $m \geq 1$. Define $M^{\prime}=(M / e) \mid\left(\cup_{i=1}^{m} X_{i}\right)$ and note, that $\left(X_{1}, \ldots, X_{m}\right)$ is a minimal a-covering of M^{\prime} by connected sets. Hence, by Lemma 2.5,

$$
m=\tau_{a}^{c}\left(M^{\prime}\right) \leq a \tau_{a}\left(M^{\prime}\right) \leq a\binom{b-1}{a}^{r\left(M^{\prime}\right)-a}
$$

Also, $r\left(M^{\prime}\right)=r_{M}\left(\cup_{i=1}^{m}\left(X_{i} \cup e\right)\right)-1 \leq n-1$, since $X_{i} \cup e \in \mathcal{F}$ for $i=1, \ldots, m$. Now, combining the inequalities gives the desired result.

Let M be a matroid, $k \in \mathbb{N}$ and let $B \subseteq E(M)$. We say that $B k$-dominates M, if for any element $x \in E(M)$ there is a set $W \subseteq B$ with $r_{M}(W) \leq k$, such that $x \in \mathrm{cl}_{M}(W)$. A k-dominating set clearly has to be spanning.

It is easily verified, that k-domination is preserved under contractions in the following sense: If $B, Y \subseteq E(M)$ and $B k$-dominates M, then $B-Y k$-dominates M / Y.

Proof of Lemma 6.3. Let m, t, a and b be given, and define the following constants,

$$
\begin{gathered}
r_{4}=\alpha_{3}(m+1, m, a, b), \quad l=m+r_{4}, \quad r_{3}=\alpha_{3}(2, l, a, b), \\
\lambda=a^{2}\binom{b-1}{a}^{r_{3}-a}+1, \quad r_{1}=\max (2 t, \delta(\lambda, a, b)),
\end{gathered}
$$

and let us define $\nu_{1}(m, t, a, b)=\nu_{1}=\sigma(a)\binom{b-1}{a}^{r_{1}-a}$. Let M and B be given. We start with a quick observation:

Claim A. It is enough to find a minor N^{\prime} of M, with an element $z \in E\left(N^{\prime}\right)$ and an m-set $B^{\prime} \subseteq B \cap E\left(N^{\prime}\right)$, such that $B^{\prime} \cup z$ is independent in N^{\prime} and $\{z, d\}$ spans a long line in N^{\prime} for each $d \in B^{\prime}$.

To see this, we may assume that $B^{\prime} \cup z$ is a basis of N^{\prime} (otherwise, we restrict to $\left.\mathrm{cl}_{N^{\prime}}\left(B^{\prime} \cup z\right)\right)$. Now choose $b_{1} \in B^{\prime}$ and an element y, such that $\left\{z, b_{1}, y\right\}$ is a triangle in N^{\prime}. Let $N=N^{\prime} / y$, and note, that z and b_{1} are parallel in N. So $\left\{b_{1}, d\right\}$ spans a long line in N for $d \in B^{\prime}-d$. Since B^{\prime} is a basis of N we are done.

Claim B. M has a t-round minor N_{1} with $r\left(N_{1}\right) \geq r_{1}$ and $B \subseteq E\left(N_{1}\right)$, such that $B(a+1)$-dominates N_{1}.

Let N_{1} be a minimal minor of M satisfying, that N_{1} is t-round and a-simple and $B \subseteq E\left(N_{1}\right)$. Such a minor exists, since we can choose $X \subseteq E(M)$ minimal, such that $M \backslash X$ is a-simple, and as B is independent we can take X with $X \cap B=\emptyset$. We then have $\Gamma(M \backslash X)=\Gamma(M) \leq t$.

To see that $B(a+1)$-dominates N_{1}, let $f \in E\left(N_{1}\right)-B . N_{1} / f$ is t-round, as N_{1} is t-round. Now $\left(N_{1} / f\right) \mid B$ cannot be a-simple: If it is, then we may choose $X \subseteq E\left(N_{1} / f\right)-B$ minimal, such that $N_{1} / f \backslash X$ is a-simple. But then $N_{1} / f \backslash X$ is t-round by Lemma 4.3, contradicting the minimality of $N_{1} . N_{1}$ is simple, so N_{1} / f is loop-less. Since $\left(N_{1} / f\right) \mid B$ is not a-simple, there must be a $W \subseteq B$, with

$$
\left(N_{1} / f\right) \mid W \simeq U_{k, 2 k}
$$

for a $k \in\{1, \ldots, a\}$. Then $r_{N_{1}}(W \cup f)=k+1$, and we must have $r_{N_{1}}(W)=k+1$. If not, then $N_{1} \mid W \simeq U_{k, 2 k}$, but N_{1} is a-simple. Thus, $f \in \operatorname{cl}_{N_{1}}(W)$, and $B(a+1)$ dominates N_{1}.

By Lemma 2.7, we have

$$
\sigma(a) \tau_{a}\left(N_{1}\right) \geq\left|E\left(N_{1}\right)\right| \geq|B|=r(M) \geq \nu_{1}
$$

and so, $\tau_{a}\left(N_{1}\right) \geq\binom{ b-1}{a}^{r_{1}-a}>1$. Clearly, $r\left(N_{1}\right)>a$, so we can apply Lemma 2.5, and get $r\left(N_{1}\right) \geq r_{1}$. This proves the claim.

Let N_{1} be given. By definition of r_{1}, we have $\Gamma\left(N_{1}\right) \leq t \leq \frac{1}{2} r\left(N_{1}\right)$ and $r\left(N_{1}\right) \geq$ $\delta(\lambda, a, b)$. Lemma 4.4 gives a dense minor N_{2} of N_{1} with $\tau_{a}\left(N_{2}\right)>\lambda r\left(N_{2}\right)$. We may assume, that $N_{2}=N_{1} / Y_{1} . N_{2}$ satisfies $\tau_{a}^{c}\left(N_{2}\right)>\lambda r\left(N_{2}\right)$. Let $Y_{2} \subseteq E\left(N_{2}\right)$ be maximal, with

$$
\tau_{a}^{c}\left(N_{2} / Y_{2}\right)>\lambda r\left(N_{2} / Y_{2}\right)
$$

and let $N_{3}=N_{2} / Y_{2}$. N_{3} must be loop-less, since Y_{2} is maximal. Pick an element $e \in E\left(N_{3}\right)$. Then,

$$
\tau_{a}^{c}\left(N_{3}\right)-\tau_{a}^{c}\left(N_{3} / e\right)>\lambda r\left(N_{3}\right)-\lambda r\left(N_{3} / e\right)=\lambda .
$$

Let \mathcal{F} denote the collection of all connected rank- $(a+1)$ sets in N_{3} containing e, and let $n=r_{N_{3}}\left(\cup_{X \in \mathcal{F}}\right)$. By Lemma 6.4, we then have $\lambda<a^{2}\binom{b-1}{a}^{n-a}+1$, and by definition of λ, this yields $n \geq r_{3}$.

Denote by \mathcal{C} the collection of all circuits of N_{3} of rank at most $a+1$ containing e. For each $X \in \mathcal{F}$ and non-loop $y \in X-e$, since X is connected, there exists a circuit $C \subseteq X$ containing e and y, so $C \in \mathcal{C}$. Hence, $r_{N_{3}}\left(\cup_{C \in \mathcal{C}} C\right) \geq n$.

Since $n \geq r_{3}=\alpha_{3}(2, l, a, b)$ we can apply Lemma 5.3. As no two circuits in \mathcal{C} are skew, we get case (ii): There is a minor $N_{4}=N_{3} / Y_{3}$, with $x \in E\left(N_{4}\right)$ and triangles D_{1}, \ldots, D_{l} of N_{4}, such that $x \in D_{i}$ and $r_{N_{4}}\left(\cup_{i} D_{i}\right)=l+1$. Pick an element $h_{i} \in D_{i}-x$ for $i=1 \ldots, l$.

Let $I=\left\{i: h_{i} \in B\right\}$. If $|I| \geq m$, then we can choose an m-set $B^{\prime} \subseteq\left\{h_{i}: h_{i} \in B\right\}$ and we are done by Claim A, taking $N^{\prime}=N_{4}$ and $z=x$. So, assume $|I| \leq m$. By possibly re-ordering the D_{i}, we may assume $h_{1}, \ldots, h_{r_{4}} \notin B$.

By the remark preceding the proof, $B \cap E\left(N_{4}\right)(a+1)$-dominates N_{4}. So, for each $i \in\left\{1, \ldots, r_{4}\right\}, h_{i}$ is in the closure of a subset of B of rank at most $a+1$. Choose a circuit C_{i} of N_{4} containing h_{i}, with $r_{N_{4}}\left(C_{i}\right) \leq a+1$ and $C_{i} \subseteq B \cup h_{i}$. Since $\left\{h_{1}, \ldots, h_{r_{4}}\right\}$ is independent, we have $r_{N_{4}}\left(\cup_{i} C_{i}\right) \geq r_{4}$. As $r_{4}=\alpha_{3}(m+1, m, a, b)$ we can apply Lemma 5.3 again, and we get one of two cases.

Consider case (i): There are $s=m+1$ skew circuits among $C_{1} \ldots, C_{r_{4}}$ in N_{4}. After possibly re-ordering we may assume C_{1}, \ldots, C_{s} are skew. By omitting one member of $\left\{C_{1}, \ldots, C_{s}\right\}$, we can obtain that $\{x\}$ is skew from the union of the rest. We assume that $C_{1}, \ldots, C_{m},\{x\}$ are skew sets in N_{4}.

For $i=1, \ldots, m$, pick an element $b_{i} \in C_{i}-h_{i}$, and let $K_{i}=C_{i}-\left\{h_{i}, b_{i}\right\}$. Define $N_{5}=N_{4} /\left(\cup_{i} K_{i}\right)$. Then h_{i} and b_{i} are parallel in N_{5}. Letting $B^{\prime}=\left\{b_{1}, \ldots, b_{m}\right\}$ we are done by Claim A, with $N^{\prime}=N_{5}$ and $z=x$.

Consider now case (ii): N_{4} has a minor N_{5}, with $z \in E\left(N_{5}\right)$ and triangles $D_{1}^{\prime}, \ldots, D_{m}^{\prime}$ in N_{5}, such that $z \in D_{i}^{\prime}$ and $r_{N_{5}}\left(\cup_{i} D_{i}^{\prime}\right)=m+1$. Also, for each i, $D_{i}^{\prime}-z \subseteq C_{j}$ for some j. Thus, $D_{i}^{\prime}-z \subseteq B \cup h_{j}$ and we can pick an element $b_{i} \in\left(D_{i}^{\prime}-z\right) \cap B$. Taking $B^{\prime}=\left\{b_{1}, \ldots, b_{m}\right\}$ and $N^{\prime}=N_{5}$, we are again done by Claim A.

7. Dowling Cliques

The goal of this section is to extract from nests a general kind of clique. In [2], Dowling introduced a class of combinatorial geometries (simple matroids). We use a special case of his construction, that we shall call a Dowling clique.

Definition 7.1. A Dowling clique is a matroid M, with $E(M)=B \cup X$, where $B=$ $\left\{b_{1}, \ldots, b_{n}\right\}$ is a basis of M, and $X=\left\{e_{i j}: 1 \leq i<j \leq n\right\}$ satisfies that $\left\{b_{i}, b_{j}, e_{i j}\right\}$ is a triangle, for all $i<j$. We call the elements in B the joints of M.

Notice, that Dowling cliques are Nests. We shall first go through yet another intermediate structure on our way to obtaining cliques.

Definition 7.2. Let $n \geq 1$. A matroid M is an n-storm, if its ground set is the disjoint union $E(M)=F \cup C_{1} \cup \cdots \cup C_{m}$, where $r_{M}(F)=n$ and each C_{i} is a size- $(n+1)$ independent co-circuit of M, with $F \subseteq \operatorname{cl}_{M}\left(C_{i}\right)$. We call the C_{i} clouds of M.

In an n-storm, the set F must be closed, since it is an intersection of hyperplanes. Note also, that C_{1}, \ldots, C_{m} are skew in M / F, and hence that $\mu_{M}\left(C_{1} \ldots, C_{m}\right)=n$.

We shall first see that nests contain storms as restrictions.
Lemma 7.3. Let m and n be positive integers. If M is a nest of rank at least $n+m$, then M has an n-storm N with m clouds as a minor.

Proof. Let M be a rank- r nest with joints $B=\left\{b_{1}, \ldots, b_{r}\right\}$, where $r=n+m$. For each pair $(i, j), 1 \leq i<j \leq r$, pick an element $e_{i j}$, such that $\left\{b_{i}, b_{j}, e_{i j}\right\}$ is a triangle of $M /\left\{b_{1}, \ldots, b_{i-1}\right\}$. We need two observations:
(1) $e_{1 k}, e_{2 k}, \ldots, e_{k-1, k} \notin \operatorname{cl}_{M}\left(B-b_{k}\right), \quad$ for $k=2, \ldots, r$.
(2) $\operatorname{cl}_{M}\left(\left\{b_{1}, \ldots, b_{i}, b_{k}\right\}\right)=\operatorname{cl}_{M}\left(\left\{e_{1 k}, \ldots, e_{i k}, b_{k}\right\}\right)$, for $i<k$.

To see that (1) holds, let i, k be given, with $1 \leq i<k$. By definition of $e_{i k}$ we have $e_{i k} \notin \operatorname{cl}_{M}\left(\left\{b_{1}, \ldots, b_{i}\right\}\right)$, but $e_{i k} \in \operatorname{cl}_{M}\left(\left\{b_{1}, \ldots, b_{i}, b_{k}\right\}\right)$. So the fundamental circuit of $e_{i k}$ in M with respect to the basis B, must contain b_{k}. Hence, $e_{i k} \notin \mathrm{cl}_{M}\left(B-b_{k}\right)$.

We prove (2) by induction on i with k fixed. The case $i=1$ is trivial, since $\left\{b_{1}, b_{k}, e_{1 k}\right\}$ is a circuit in M. Suppose $1<i<k$ and (2) holds for $i-1$. Again, by definition of $e_{i k}$ we have $e_{i k} \notin \operatorname{cl}_{M}\left(\left\{b_{1}, \ldots, b_{i-1}, b_{k}\right\}\right)$, but $e_{i k} \in \operatorname{cl}_{M}\left(\left\{b_{1}, \ldots, b_{i}, b_{k}\right\}\right)$. Thus,

$$
\begin{aligned}
\operatorname{cl}_{M}\left(\left\{b_{1}, \ldots, b_{i}, b_{k}\right\}\right) & =\operatorname{cl}_{M}\left(\left\{b_{1}, \ldots, b_{i-1}, b_{k}, e_{i k}\right\}\right) \\
& =\operatorname{cl}_{M}\left(\left\{e_{1 k}, \ldots, e_{i-1, k}, b_{k}, e_{i k}\right\}\right),
\end{aligned}
$$

where the induction hypothesis is used in the second step.
Let $S=\left\{b_{1}, \ldots, b_{n}\right\}$ and $F=\operatorname{cl}_{M}(S)$, and for each $k=n+1, \ldots, r$ define $C_{k}=\left\{e_{1 k}, \ldots, e_{n k}, b_{k}\right\}$.

Notice that by (1), $C_{k} \cap F=\emptyset$ for all k, and $C_{k} \cap C_{l}=\emptyset$ for $k \neq l$. From (2) we gather, that C_{k} is independent with $F \subseteq \operatorname{cl}_{M}\left(C_{k}\right)$ for all k. Define $N=$ $M \mid\left(F \cup C_{n+1} \cup \cdots \cup C_{r}\right)$. It is easily checked, that the C_{k} 's are co-circuits of N.

For $n=2$, the concept of an n-storm is similar to that of a "book", used by Kung in [6], and an analogue of one of his ideas is part of the proof of the following result.

Lemma 7.4. There exist integer-valued functions $\phi_{1}(n, a, b), \phi_{2}(n, a, b)$ such that the following holds: Let $b>a \geq 1$ and let n be a positive integer. If M is a $\phi_{1}(n, a, b)$ storm with $\phi_{2}(n, a, b)$ clouds, and M has no $U_{a+1, b}$-minor, then M contains a rank-n Dowling clique N as a minor.

Proof. Let n, a, b be given and let us define ϕ_{1} and ϕ_{2}. First, let $l=n a$. For $r=1, \ldots, a$, let $s_{r}=\alpha_{1}(n, r, a, b)$ and let $s=\sum_{r=1}^{a} s_{r}$. Define a sequence of numbers m_{0}, \ldots, m_{s} recursively as follows: let $m_{s}=l$, and

$$
m_{k}=\sigma_{2}\left(a, m_{k+1}\right)\binom{b-1}{a}^{s-a}+1, \quad \text { for } k=s-1, \ldots, 1,0
$$

Finally, let $\phi_{1}(n, a, b)=s$ and $\phi_{2}(n, a, b)=m_{0}$.
Let M be an s-storm with $m=m_{0}$ clouds. Denote the clouds by C_{1}, \ldots, C_{m} and their elements $C_{i}=\left\{e_{0}^{i}, e_{1}^{i}, \ldots, e_{s}^{i}\right\}$.

Define $M^{\prime}=M /\left\{e_{0}^{1}, e_{0}^{2}, \ldots, e_{0}^{m}\right\}$. So $r\left(M^{\prime}\right)=s$. Let $I_{0}=\{1, \ldots, m\}$. We wish to find a subcollection of the clouds, such that elements with the same index lie on a uniform restriction of M^{\prime}. We shall construct a sequence of subsets,

$$
I_{0} \supseteq I_{1} \supseteq \cdots \supseteq I_{s}, \quad \text { where }\left|I_{k}\right|=m_{k},
$$

such that for $k=1, \ldots, s, M^{\prime} \mid\left\{e_{k}^{i}: i \in I_{k}\right\} \simeq U_{r_{k}, m_{k}}$, for some number $r_{k} \in$ $\{1, \ldots, a\}$. Let $k \geq 1$, suppose I_{k-1} has been defined and let us see how to find I_{k}. Let $W=\left\{e_{k}^{i}: i \in I_{k-1}\right\}$ and suppose $M^{\prime} \mid W$ has no $U_{r, m_{k}}$-restriction for $r=1, \ldots, a$. Lemmas 2.8 and 2.5 then give

$$
m_{k-1}=|W| \leq \sigma_{2}\left(a, m_{k}\right) \tau_{a}\left(M^{\prime} \mid W\right) \leq \sigma_{2}\left(a, m_{k}\right)\binom{b-1}{a}^{s-a}
$$

contradicting our definition of m_{k-1}. So, take $U \subseteq W$ such that $M^{\prime} \mid U$ is isomorphic to $U_{r_{k}, m_{k}}$, and let $I_{k}=\left\{i: e_{k}^{i} \in U\right\}$.

After possibly re-ordering the clouds in M, we may assume that $I_{s}=\{1, \ldots, l\}$. Let then $L_{k}=\left\{e_{k}^{1}, \ldots, e_{k}^{l}\right\}$ for $k=1, \ldots, s$, so $M^{\prime} \mid L_{k} \simeq U_{r_{k}, l}$. Now, by a majority argument, there exist $r \in\{1, \ldots, a\}$, and a subset $J \subseteq\{1, \ldots, s\}$ with $|J| \geq s_{r}$, such
that $r_{k}=r$, for all $k \in J$. Define $\mathcal{L}=\left\{L_{k}: k \in J\right\}$. Since $C_{1}-e_{0}^{1}$ is independent in M^{\prime}, we have

$$
r_{M^{\prime}}\left(\cup_{L \in \mathcal{L}} L\right) \geq|\mathcal{L}|=|J| \geq s_{r}=\alpha_{1}(n, r, a, b)
$$

We now apply Lemma 5.1 and get a subcollection $\mathcal{L}^{\prime} \subseteq \mathcal{L}$ of size n, such that $L \nsubseteq \mathrm{cl}_{M^{\prime}}\left(\cup_{L^{\prime} \in \mathcal{L}^{\prime}-L} L^{\prime}\right)$, for each $L \in \mathcal{L}^{\prime}$. After possibly permuting the elements of each cloud, we can assume $\mathcal{L}^{\prime}=\left\{L_{1}, \ldots, L_{n}\right\}$. Let $D_{i}=\left\{e_{0}^{i}, e_{1}^{i}, \ldots, e_{n}^{i}\right\} \subseteq C_{i}$.

By our arrangement of the L_{k} 's, we can find a set $B \subseteq \cup_{k=1}^{n} L_{k}$ independent in M^{\prime}, such that $r_{M^{\prime}}\left(L_{k} \cup B\right)-r_{M^{\prime}}(B)=1$, for each $k \in\{1, \ldots, n\}$, and the sets $L_{1}-B, \ldots, L_{n}-B$ are skew in M^{\prime} / B.

Now $L_{k} \nsubseteq \mathrm{cl}_{M^{\prime}}(B)$, and since $M^{\prime} \mid L_{k}$ is rank- r uniform, we must have $\left|L_{k} \cap \mathrm{cl}_{M^{\prime}}(B)\right|$ $\leq r-1$. Define $I_{B} \subseteq\{1, \ldots, l\}$ by

$$
I_{B}=\left\{i: D_{i} \cap \mathrm{cl}_{M^{\prime}}(B) \neq \emptyset\right\}
$$

Then $B \subseteq \cup_{i \in I_{B}} D_{i}$ and $\left|I_{B}\right| \leq n(r-1) \leq n(a-1)=l-n$. Notice, that for $i \notin I_{B}$, D_{i} and B are skew in M^{\prime}. We may assume, again after re-ordering the clouds, that $\{1, \ldots, n\} \subseteq\{1, \ldots, l\}-I_{B}$. Let

$$
M_{1}=M /\left\{e_{0}^{i}: i \in I_{B}\right\} / B
$$

Then, by construction, the elements in $\left\{e_{k}^{i}: i=1, \ldots, n\right\}$ are in parallel in $M_{1} /\left\{e_{0}^{i}\right.$: $i=1, \ldots, n\}$, for each $k=1, \ldots, n$.

Let $p_{k}=e_{k}^{n}$, for $k=1, \ldots, n$, and define

$$
M_{2}=M_{1} / e_{0}^{n} \mid\left(D_{1} \cup \cdots \cup D_{n-1} \cup\left\{p_{1}, \ldots, p_{n}\right\}\right)
$$

Now, M_{2} is an n-storm with clouds D_{1}, \ldots, D_{n-1}. It satisfies, for each $i=1, \ldots, n-1$, and each $k=1, \ldots, n$, that p_{k} is on the line through e_{0}^{i} and e_{k}^{i}.

We shall make $\left\{p_{1}, \ldots, p_{n}\right\}$ the joints of a Dowling clique. Let

$$
N=M_{2} /\left\{e_{1}^{1}, e_{2}^{2}, \ldots, e_{n-1}^{n-1}\right\}
$$

Then $\left\{p_{1}, \ldots, p_{n}\right\}$ is a basis for N. Let (i, j) be given with $1 \leq i<j \leq n$. In N, e_{0}^{i} and p_{i} are parallel, so $e_{j}^{i} \in \operatorname{cl}_{N}\left(\left\{e_{0}^{i}, p_{j}\right\}\right)=\operatorname{cl}_{N}\left(\left\{p_{i}, p_{j}\right\}\right)$, and the set $\left\{p_{i}, p_{j}, e_{j}^{i}\right\}$ is a triangle in N. So, N has a rank- n Dowling clique restriction.

8. Cliques

We need Mader's Theorem [7] to extract graphic cliques.
Mader's Theorem 8.1. Let H be a graph. There exists $\lambda \in \mathbb{N}$ such that, if G is a simple graph with no H-minor, then $|E(G)| \leq \lambda|V(G)|$.

An easy corollary is the following matroid version of the theorem. We take H to be a complete graph, and write the contrapositive statement.
Corollary 8.2. There exists an integer-valued function $\theta(n)$ such that, if M is a graphic and simple matroid with $|E(M)|>\theta(n) r(M)$, then M has an $M\left(K_{n}\right)$-minor.

Let M be a matroid and B a basis of M, and let $X=E(M)-B$. We call M a Dowling matroid with joints B if each $x \in X$ is on a triangle with two elements of B, and any two elements of B span at most one element of X (again, this is only a special case of Dowling's combinatorial geometries). By the associated graph of (M, B) we mean the graph G on the vertex set B with edge set labeled by X, such that $x \in X$ labels $\left\{b_{1}, b_{2}\right\}$ if x is on the line through b_{1} and b_{2} in M.

We shall use the following lemma to recognize graphic matroids.

Lemma 8.3. Let M be a Dowling matroid with joints $B, X=E(M)-B$. If $B \cap \operatorname{cl}_{M}(X)=\emptyset$, then $M \mid X$ is graphic.

Proof. Let G be the associated graph of (M, B). We claim that $M(G)=M \mid X$. It suffices to prove, that each circuit of $M(G)$ is dependent in $M \mid X$, and that each independent set of $M(G)$ is independent in $M \mid X$.

Let C be a cycle of G with vertex set B^{\prime} and edge set X^{\prime}. Clearly $X^{\prime} \subseteq \operatorname{cl}_{M}\left(B^{\prime}\right)$ and by the assumption $B^{\prime} \cap \operatorname{cl}_{M}\left(X^{\prime}\right)=\emptyset$. Since B^{\prime} and X^{\prime} have equal size, X^{\prime} must be dependent in M.

Let T be a forest in G. We prove by induction on $|E(T)|$ that $E(T)$ is independent in M. Let e be a leaf edge in T and assume $E(T)-e$ is independent in M. Let b be a leaf of T incident on e. Then $E(T)-e \subseteq \operatorname{cl}_{M}(B-b)$, but $e \notin \mathrm{cl}_{M}(B-b)$, so $E(T)$ is independent in M.

In a similar fashion, using Remark 1.4, the following lemma is easily proved.
Lemma 8.4. Let M be a Dowling matroid with joints $B, X=E(M)-B$. Let G be the associated graph of (M, B). If for each cycle C in $G, E(C)$ is independent in M, then $M \mid X=B(G)($ in fact $M=\tilde{B}(G))$.

We are ready for the final step in the proof of the main theorem.
Lemma 8.5. There exists an integer-valued function $\psi(n)$ such that, if M is a Dowling clique with rank at least $\psi(n)$, then M contains an $M\left(K_{n}\right)$ - or $B\left(K_{n}\right)$ minor.

Proof. Let n be given, and define $\psi(n)=n l$, where $l=2 m \theta(n)+1$ and $m=2^{n} n!$. Let M be a Dowling clique and assume that $r(M)=n l$. Denote by B the joints of M and let $X=E(M)-B$.

Partition B into n sets, B_{1}, \ldots, B_{n} of equal size, $\left|B_{i}\right|=l$. We shall contract each B_{i} to a point. Let $M_{i}=M \mid \mathrm{cl}_{M}\left(B_{i}\right)$. Choose $Y_{i} \subseteq E\left(M_{i}\right) \cap X$ such that B_{i} is a set of parallel elements in M_{i} / Y_{i} (take the edges of a spanning tree in the associated graph of $\left.\left(M_{i}, B_{i}\right)\right)$. Define $M^{\prime}=M /\left(Y_{1} \cup \cdots \cup Y_{n}\right)$ and pick a $b_{i} \in B_{i}$ for $i=1, \ldots, n$. For each pair $i<j$, define

$$
X_{i j}=\left\{x \in X: x \in \operatorname{cl}_{M}(b, d), b \in B_{i}, d \in B_{j}\right\} .
$$

Note, that for each $x \in X_{i j},\left\{b_{i}, b_{j}, x\right\}$ is a triangle in M^{\prime}. We consider two cases.
(1). $\tau_{1}\left(M^{\prime} \mid X_{i j}\right)>m$, for all pairs $i<j$. Put $B^{\prime}=\left\{b_{1}, \ldots, b_{n}\right\}$. We shall choose a set $X^{\prime}=\left\{x_{i j}: 1 \leq i<j \leq n\right\}$, where $x_{i j} \in X_{i j}$, such that $M^{\prime} \mid\left(B^{\prime} \cup X^{\prime}\right)$ is the Dowling clique $\tilde{B}\left(K_{n}\right)$. Let $X^{\prime} \subseteq \cup X_{i j}$ be maximal, such that $\left|X^{\prime} \cap X_{i j}\right| \leq 1$ for all $i<j$, and the cycles in the associated graph of $M^{\prime} \mid\left(V^{\prime} \cup X^{\prime}\right)$ all have edge sets independent in M^{\prime}. We claim, that $X^{\prime} \cap X_{i j} \neq \emptyset$ for all $i<j$, and thus $M^{\prime} \mid\left(V^{\prime} \cup X^{\prime}\right) \simeq \tilde{B}\left(K_{n}\right)$ by Lemma 8.4.

Assume that $X^{\prime} \cap X_{i j}=\emptyset$ for some $i<j$. Let G be the associated graph of $M^{\prime} \mid\left(V^{\prime} \cup X^{\prime}\right)$. If $Z \subseteq X^{\prime}$ is the edge set of a path from b_{i} to b_{j} in G, then $r_{M^{\prime}}\left(\mathrm{cl}_{M^{\prime}}(Z) \cap X_{i j}\right) \leq 1$. There can be at most m such Z, since a simple graph on n vertices has no more than $2^{n} n!=m$ cycles. Thus, we can pick $x_{i j} \in X_{i j}$ skew from each such Z. So, the cycles created in the associated graph, when adding $x_{i j}$ to X^{\prime} all have edge sets independent in M^{\prime}, contradicting the maximality of X^{\prime}.
(2). $\tau_{1}\left(M^{\prime} \mid X_{i j}\right) \leq m$, for some pair $i<j$. As $\left|X_{i j}\right|=l^{2}$, there is a parallel class $P \subseteq X_{i j}$ of M^{\prime}, with $|P| \geq l^{2} / m$. Now, since $B \cap \mathrm{cl}_{M^{\prime}}(P)=\emptyset$, also $B \cap \mathrm{cl}_{M}(P)=\emptyset$,
and Lemma 8.3 gives, that $M \mid P$ is graphic. And $r(M \mid P) \leq\left|B_{i} \cup B_{j}\right|=2 l$. We have then

$$
|E(M \mid P)| \geq l^{2} / m>l 2 \theta(n) \geq \theta(n) r(M \mid P),
$$

and by Corollary 8.2, we get an $M\left(K_{n}\right)$-minor.
Finally, we restate and prove Theorem 1.1.
Theorem 8.6. There exists an integer-valued function $\gamma(k, a, n)$ such that, if M is a matroid with $r(M) \geq \gamma(k, a, n)$, then either M has k disjoint co-circuits or M has a minor isomorphic to $U_{a, 2 a}, M\left(K_{n}\right)$ or $B\left(K_{n}\right)$.
Proof. Let k, a, n be positive integers. If $a=1$, then we let $\gamma(k, a, n)=k$. If $a \geq 2$, then we define the following numbers: Put $a^{\prime}=a-1$ and $b=2 a$. Let $k=\psi(n)$ and let $m_{1}=\phi_{1}\left(k, a^{\prime}, b\right)$ and $m_{2}=\phi_{2}\left(k, a^{\prime}, b\right)$. Let $r=n+m$ and define $g: \mathbb{N} \rightarrow \mathbb{N}$ by $g(t)=\nu\left(r, t, a^{\prime}, b\right)$. Finally, $\gamma(k, a, n)=f_{g}(k)$.

Let M be given with $r(M) \geq \gamma(k, a, n)$. If $a=1$, the result is trivial, since in a matroid with no $U_{1,2}$-minor, every element is a loop or a co-loop.

If $a \geq 2$, then by Lemma 3.2, either M has k disjoint co-circuits or a minor N with $r(N) \geq g(\Gamma(N))$. Assume the second case. Also, if N has a $U_{a^{\prime}+1, b}$-minor we are done, so assume this is not the case. Applying Lemmas 6.2, 7.3, 7.4 and 8.5 in succession, we obtain an $M\left(K_{n}\right)$ - or a $B\left(K_{n}\right)$-minor of N.

References

1. R. Diestel, Graph Theory, Springer-Verlag, New York, 1997.
2. T. A. Dowling, A class of geometric lattices based on finite groups, J. Combin. Theory, Ser. B 14 (1973), 61-86.
3. P. Erdös and L. Pósa, On independent circuits contained in graphs, Canad. J. Math. 17 (1965), 347-352.
4. J. F. Geelen, A. M. H. Gerards, and G. P. Whittle, Disjoint cocircuits in matroids with large rank, J. Combin. Theory, Ser. B 87 (2003), 270-279.
5. J. P. S. Kung, Extremal matroid theory, in Graph structure theory, N. Robertson and P.D. Seymour, eds., Amer. Math. Soc., Providence, Rhode Island, 1993, 21-61.
6. J. P. S. Kung, The long-line graph of a combinatorial geometry. I. Excluding $M\left(K_{4}\right)$ and the ($q+2)$-point line as minors, Quart. J. Math. Oxford 39 (1988), 223-234.
7. W. Mader, Homomorphieeigenschaften und mittlere Kantendichte von Graphen, Math. Ann. 174 (1967), 265-268.
8. J. G. Oxley, Matroid Theory, Oxford University Press, New York, 1992.
9. F. P. Ramsey, On a problem for formal logic, Proc. London Math. Soc. (2) 30 (1930), 264-286.

Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada

Department of Mathematical Sciences, University of Aarhus, Aarhus, Denmark

[^0]: Date: January 2, 2006.
 1991 Mathematics Subject Classification. 05B35.
 Key words and phrases. matroids, Erdös-Pósa Property, Circuits, bicircular matroids.
 This research was partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

