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THE ERDÖS-PÓSA PROPERTY
FOR MATROID CIRCUITS

JIM GEELEN AND KASPER KABELL

Abstract. The number of disjoint co-circuits in a matroid is bounded by its rank.
There are, however, matroids with arbitrarily large rank that do not contain two
disjoint co-circuits; consider, for example, M(Kn) and Un,2n. Also the bicircular
matroids B(Kn) have arbitrarily large rank and have no 3 disjoint co-circuits. We
prove that for each k and n there exists a constant c such that, if M is a matroid
with no Un,2n-, M(Kn)-, or B(Kn)-minor, then either M has k disjoint co-circuits
or r(M) ≤ c.

1. Introduction

We prove the following theorem.

Theorem 1.1. There exists a function γ : N3 → N such that, if M is a matroid with
no Ua,2a-, M(Kn)-, or B(Kn)-minor and r(M) ≥ γ(k, a, n), then M has k disjoint
co-circuits.

Here M(Kn) is the cycle matroid of Kn and B(Kn) is the bicircular matroid of
Kn (to be defined below).

A circuit-cover of a graph G is a set X ⊆ E(G) such that G−X has no circuits.
Thus the maximum number of (edge-) disjoint circuits in a graph is bounded by the
minimum size of a circuit cover. This bound is not tight (consider K4), but Erdös
and Pósa in [3] proved that the maximum number of disjoint circuits is qualitatively
related to the minimum size of a circuit cover.

Erdös-Pósa Theorem 1.2. There is a function c : N → N such that, if the size of
a minimal circuit-cover of G is at least c(k), then G has k disjoint circuits.

Let M be a matroid. A set X ⊆ E(M) intersects each circuit of M if and only if
E(M)−X is independent. So, a minimal circuit-cover of M is a basis of M∗. The
Erdös-Pósa Theorem was generalized to matroids by Geelen, Gerards, and Whittle
[4] who proved:

Theorem 1.3. There exists a function c : N3 → N such that, if M is a matroid with
no U2,q+2- or M(Kn)-minor and r(M) ≥ c(k, q, n), then M has k disjoint co-circuits.

The result does not extend to all matroids. A matroid is round if it has no two
disjoint co-circuits. Equivalently, M is round if each co-circuit in M is a spanning
set of M .
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Key words and phrases. matroids, Erdös-Pósa Property, Circuits, bicircular matroids.
This research was partially supported by a grant from the Natural Sciences and Engineering

Research Council of Canada.
1



2 GEELEN AND KABELL

The matroid Ur,n, where n ≥ 2r − 1 is round. Also, for any positive integer n,
M(Kn) is a round matroid. Generally, for a graph G, a co-circuit of M(G) is a
minimal edge-cut of G. If G is simple, then it is easily seen, that G has no two
disjoint edge-cuts if and only if G is complete.

Let G = (V,E) be a graph. Define a matroid B̃(G) on V ∪ E where V is a basis
of B̃(G) and, for each edge e = uv of G, place e freely on the line spanned by {u, v}.
Now B(G) := B̃(G)\V is the bicircular matroid of G. A different characterization
of B(G) is the following, which gives rise to the name bicircular matroid. It is easily
verified (see [8, Prop. 12.1.6]).

Remark 1.4. Let G be a graph. C is a circuit of B(G) if and only if G[C] is a
subdivision of one of the graphs below.

The matroid B̃(Kn) is also round, which is easily verified. The bicircular matroid
B(Kn) is not round, but it has no three disjoint co-circuits (for n 6= 3).

Our main theorem, Theorem 1.1, is a generalization of Theorem 1.3 and is, in
some sense, best possible. Note that each of the classes

{M(Kn) : n ≥ 1} , {B(Kn) : n ≥ 1} , and {Ua,2a : a ≥ 1}
have unbounded rank but they have a bounded number of disjoint co-circuits.

We follow the notation of Oxley [8], and the reader is assumed familiar with
standard matroid theory as described therein.

2. Covering number

We shall work with dense matroids in the proof. This section develops tools for
measuring the size and density of a matroid.

A simple GF(q)-representable rank-r matroid can be realized as a restriction of
the projective geometry PG(r− 1, q). Thus, it has at most qr−1

q−1
elements. Kung [5]

extended this bound to the class of matroids with no U2,q+2-minor (the shortest line
not representable over GF(q)).

Theorem (Kung) 2.1. Let q > 1 be an integer, and let M be a simple rank-r
matroid with no U2,q+2-minor. Then

|E(M)| ≤ qr − 1

q − 1
.

Projective geometries show, that the bound is sharp if q is a prime-power. To
bound the size of rank-r matroids, it is necessary to restrict the length of lines, or
there can be arbitrarily many elements in a rank-2 matroid. As we shall be excluding
a uniform matroid of higher rank, we need a new measure of size, for an analogue
of Kung’s Theorem to hold.

Definition 2.2. Let a be a positive integer. An a-covering of a matroid M is a
collection (X1, . . . , Xm) of subsets of E(M), with E(M) = ∪Xi and rM(Xi) ≤ a for
all i. The size of the covering is m. The a-covering number of M , τa(M) is the
minimum size of an a-covering of M . If r(M) = 0, then we define τa(M) = 0.
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Note that for a matroid M , τ1(M) = |E(si(M))|, where si(M) denotes the simpli-
fication of M . If M has non-zero rank r(M) ≤ a, then τa(M) = 1. Our first lemma
bounds τa(M) in the case r(M) = a+ 1.

Lemma 2.3. Let b > a ≥ 1. If M is a matroid of rank a+ 1 with no Ua+1,b-minor,
then

τa(M) ≤
(
b− 1

a

)
.

Proof. Let X ⊆ E(M) be maximal with M |X ' Ua+1,l. Then l ≤ b − 1. For an
x /∈ X, by the maximality of X, there exists Y ⊆ X with |Y | = a such that Y ∪ x
is dependent, and thus x ∈ clM(Y ).

It follows that (clM(Y )|Y ⊆ X, |Y | = a) is an a-covering of M . It has size(
l
a

)
≤

(
b−1
a

)
. �

Lemma 2.4. Let b > a ≥ 1. If M is a matroid with no Ua+1,b-restriction, then

τa(M) ≤
(
b− 1

a

)
τa+1(M).

Proof. Let (X1, . . . , Xk) be a minimal (a + 1)-covering of M . By Lemma 2.3 each
M |X i has an a-covering (X i

1, . . . , X
i
mi

) of sizemi ≤
(

b−1
a

)
. Combining these we get an

a-covering (X i
j|j = 1, . . . ,mi, i = 1, . . . , k) of M . Thus τa(M) ≤

∑
mi ≤

(
b−1
a

)
k. �

The next result extends Kung’s Theorem. The bound we obtain is not sharp,
though.

Lemma 2.5. Let b > a ≥ 1. If M is a matroid of rank r ≥ a with no Ua+1,b-minor,
then

τa(M) ≤
(
b− 1

a

)r−a

.

Proof. The proof is by induction on r. The case r = a is trivial since (E(M)) is an
a-covering of size 1.

Let r > a and assume that the result holds for rank r − 1. Let x be a non-loop

element of M . Then r(M/x) = r − 1 and by induction τa(M/x) ≤
(

b−1
a

)r−1−a
.

Let (X1, . . . , Xk) be a minimal a-covering of M/x, so rM/x(Xi) ≤ a for all i. This
implies rM(Xi ∪x) ≤ a+ 1, and so (Xi ∪x|i = 1, . . . , k) is an (a+ 1)-covering of M .
We conclude τa+1(M) ≤ τa(M/x).

Finally, by Lemma 2.4 we have τa(M) ≤
(

b−1
a

)
τa+1(M) and combining inequalities

we get the desired result. �

Definition 2.6. Let a be a positive integer. The matroid M is called a-simple, if
M is simple and M has no Uk,2k-restriction for k = 2, 3, . . . , a.

Equivalently, M is a-simple if it is loop-less and has no Uk,2k-restriction for
k = 1, 2, 3, . . . , a. This concept is just an abbreviation. We shall not define an
“a-simplification” operation, since for a ≥ 2 it would not be well-defined up to
isomorphism. For a-simple matroids, the size is proportional to τa:

Lemma 2.7. There exists an integer-valued function σ(a) such that, if a ≥ 1 and
M is a-simple, then |E(M)| ≤ σ(a)τa(M).
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Proof. Define σ by

σ(a) =
a∏

k=2

(
2k − 1

k − 1

)
.

Since M has no Uk,2k-restriction for k = 2, . . . , a, Lemma 2.4 gives

τk−1(M) ≤
(

2k − 1

k − 1

)
τk(M), k = 2, . . . , a.

Putting these together, we get |E(M)| = τ1(M) ≤ σ(a)τa(M). �

We shall need one more specialized result, which is completely similar to the
previous Lemma.

Lemma 2.8. There exists an integer-valued function σ2(a, b) such that, if b ≥ a ≥ 1
and M is loop-less and has no Uk,b-restriction for k = 1, . . . , a, then |E(M)| ≤
σ2(a, b)τa(M).

Proof. Define σ2 by

σ2(a, b) = (b− 1)
a∏

k=2

(
b− 1

k − 1

)
.

Now use |E(M)| ≤ (b− 1)τ1(M) and apply Lemma 2.4. �

3. Approaching roundness

The first step in the proof of the main theorem is to show, that a matroid of
large enough rank has either k disjoint co-circuits or a large minor which is “nearly
round”.

Definition 3.1. Let M be a matroid. The rank-deficiency of a set of elements
X ⊆ E(M) is r−M(X) = r(M) − rM(X). Denote by Γ(M) the maximum rank-
deficiency among the co-circuits of M . For t ∈ N we say that M is t-round if
Γ(M) ≤ t.

Notice that a matroid M is round if and only if Γ(M) = 0, that is, M is 0-round.
The condition of being t-round is easily seen to be preserved under contractions.
When we cannot obtain a t-round matroid, we shall sometimes work with the even
weaker property: Γ(M) ≤ 1

2
r(M).

Lemma 3.2. Let g : N → N be a non-decreasing function. There exists a function
fg : N → N such that for any k ∈ N, if M is a matroid with r(M) ≥ fg(k), then
either

(a) M has k disjoint co-circuits or
(b) M has a minor N = M/Y with r(N) ≥ g(Γ(N)).

Proof. Let g be given and define fg as follows: fg(0) = fg(1) = 1 and

fg(k) = g(fg(k − 1)), k ≥ 2.

The proof is by induction on k. If r(M) ≥ 1, then M has a co-circuit, so the result
holds for k = 0, 1. Now let k ≥ 2 and r(M) ≥ fg(k) = g(fg(k − 1)).

If Γ(M) ≥ fg(k − 1), then pick a co-circuit C of M with r−M(C) = Γ(M). Then
r(M/C) = r−M(C) ≥ fg(k − 1). If M/C has the desired contraction minor, then
we are done. If not, then by induction M/C has k − 1 disjoint co-circuits. These,
together with C, give k disjoint co-circuits of M .

If Γ(M) ≤ fg(k − 1), then as g is non-decreasing, we have r(M) ≥ g(Γ(M)). �
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4. Building density

The goal of this section is to prove, that a high-rank nearly round matroid with
no Ua+1,b minor contains a dense minor.

Lemma 4.1. Let b > a ≥ 1. Let M be a matroid with no Ua+1,b-minor and let C
be a co-circuit of M of minimal size. If C1, . . . , Ck are disjoint co-circuits of M\C
with |C1| ≤ · · · ≤ |Ck|, then |Ci| ≥ |C| /(a

(
b−1
a

)
) for i = a, . . . , k.

Proof. Let C and C1 . . . , Ck be given and let i ∈ {a, . . . , k}.
C1 is co-dependent inM\C\Ci. So there exists a co-circuit C ′

1 ⊆ C1 ofM\(C∪Ci).
Now, C2 is co-dependent in M\C\(Ci ∪ C ′

1). So there is a co-circuit C ′
2 ⊆ C2 of

M\(C ∪ Ci ∪ C ′
1).

Continuing in this fashion, for each j = 2, . . . , a− 1 we pick a co-circuit C ′
j ⊆ Cj

of M\(C ∪ Ci ∪ C ′
1 ∪ · · · ∪ C ′

j−1).
Denote by F the set E(M)− (C ∪ Ci ∪ C ′

1 ∪ · · · ∪ C ′
a−1). Deleting a co-circuit of

a matroid drops its rank by 1, so we get r−M(F ) = a+ 1. Hence N = M/F has rank
r(N) = a + 1. Since C is a co-circuit of N of minimal size, E(N) − C must be a
rank-a set of N of maximal size. We now have

|C| ≤ |E(N)| ≤ τa(N) |E(N)− C|
= τa(N)

∣∣Ci ∪ C ′
1 ∪ · · · ∪ C ′

a−1

∣∣
≤

(
b− 1

a

)
a |Ci|

using Lemma 2.3. The result now follows. �

Lemma 4.2. There exists an integer-valued function κ(λ, a, b) such that the fol-
lowing holds: Let b > a ≥ 1 and λ ∈ N. Let M be an a-simple matroid with no
Ua+1,b-minor, satisfying Γ(M) ≤ 1

2
r(M). Let C be a minimal sized co-circuit of M .

If M\C has κ(λ, a, b) disjoint co-circuits, then τa(M) > λr(M).

Proof. Let a, b and λ be given and define

κ(λ, a, b) = κ = 2a

(
b− 1

a

)
σ(a)λ+ a− 1.

Let M and C be given and let C1, . . . , Cκ be disjoint co-circuits of M\C of non-
decreasing size. Note that

|C| ≥ rM(C) ≥ r(M)− Γ(M) ≥ r(M)/2.

By Lemma 2.7 and the above lemma we have

σ(a)τa(M) ≥ |E(M)|

> |Ca|+ · · ·+ |Cκ| ≥ (κ− a+ 1)
r(M)

2a
(

b−1
a

) = σ(a)λr(M),

and the result follows. �

For a matroid M denote by Θ(M) the maximum number of disjoint co-circuits in
M . So, M is round if and only if Θ(M) = 1. The two parameters Γ(M) and Θ(M)
are related by

Θ(M) ≤ Γ(M) + 1.
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This follows from the observation, that if C1, . . . , Ck are disjoint co-circuits of M ,
then r(M\(C1 ∪ · · · ∪Ck)) ≤ r(M)− k. Equality does not hold (consider U4,5). The
following result lists hereditary properties of the two parameters.

Lemma 4.3. Let M be a matroid and let X,Y ⊆ E(M). Then

(i) Θ(M/Y ) ≤ Θ(M) and Γ(M/Y ) ≤ Γ(M).
(ii) Θ(M\X) ≥ Θ(M) and Γ(M\X) ≥ Γ(M), if X is co-independent.
(iii) Θ(M\X) = Θ(M) and Γ(M\X) = Γ(M), if for some number a ∈ N, X is

minimal with respect to inclusion, such that M\X is a-simple.

Proof. Every co-circuit C of M/Y is a co-circuit of M . A short calculation shows
that r−M/Y (C) ≤ r−M(C), so the first assertion of the lemma holds.

To prove the second and third assertions, it is enough to consider X = {x}, where
x is not a co-loop of M . If C is a co-circuit in M , then C − x contains a co-circuit
in M\x. Thus Θ(M\x) ≥ Θ(M) and also Γ(M\x) ≥ Γ(M).

We turn to the third assertion. Assume that x ∈ W , where M |W ' Uk,2k, for a
k ∈ N. If C is a co-circuit of M\x, then C = C ′ − x for a co-circuit C ′ of M , that
is either C or C ∪ x is a co-circuit of M . We look at two cases:

• If C ∩ (W − x) = ∅, then C is a co-circuit of M , since the complement of a
co-circuit is closed and x ∈ clM(W − x).

• If C∩(W−x) 6= ∅, then we must have |(W − x)− C| < k, sinceM |(W−x) '
Uk,2k−1 and the complement of C is closed. Hence, |C ∩ (W − x)| ≥ k.

Note that the second case can happen at most once in a collection of disjoint co-
circuits. So given a collection of disjoint co-circuits of M\x, by adding x to at most
one of them, we get a collection of disjoint co-circuits of M . Thus Θ(M) ≥ Θ(M\x).
Note also, that for a co-circuit C of M\x, if C ∪ x is a co-circuit of M , then we
are in the second case, and rM(C ∪ x) = rM\x(C). Thus Γ(M) ≥ Γ(M\x). Finally,
since no co-circuit can contain a loop, deleting loops also preserves Θ and Γ. �

Lemma 4.4. There exists an integer-valued function δ(λ, a, b) such that the follow-
ing holds: Let b > a ≥ 1 and λ ∈ N. If M is a matroid with no Ua+1,b-minor,
such that Γ(M) ≤ 1

2
r(M) and r(M) ≥ δ(λ, a, b), then M has a minor N with

τa(N) > λr(N).

Proof. Let a, b and λ be given and fixed, and let us define δ(λ, a, b). First, we define
a sequence of functions gn : N → N. Let g0(m) = 0, and for n ≥ 1 define gn

recursively by

gn(m) = max(2m, δn),

where δn = 2(fgn−1(κ(λ, a, b)) + 1) ∈ N.

Finally, let δ(λ, a, b) = δn0 , where n0 = 2σ(a)λ. The functions σ, κ and fgn are
defined in previous lemmas. We first prove a partial result.

Claim. Let n ≥ 0. If M is a matroid with no Ua+1,b-minor, such that r(M) ≥
gn(Γ(M)), then either

• M has a minor N with τa(N) > λr(N) or
• there exists a sequence of matroids M = M0,M1, . . . ,Mn, such that for i =

0, . . . , n − 1, Mi+1 = Mi\Ci/Yi, where Ci is a co-circuit of Mi that spans
Mi/Yi.
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We prove the claim by induction on n. The case n = 0 is trivial, so assume n ≥ 1
and that the result holds for n− 1.

Let X ⊆ E(M) be minimal such that M\X is a-simple. Pick a co-circuit C0 of M
with |C0 −X| minimal. Note, that C = C0 −X is a co-circuit of M\X of minimal
size.

Choose a basis Z of M/C0 and let M ′ = M/Z. Then C0 spans M ′, and since
r(M) ≥ gn(Γ(M)),

r(M ′) = rM(C0) ≥ r(M)− Γ(M) ≥ 1
2
r(M) ≥ 1

2
δn.

Now r(M ′\C0) = r(M ′)−1 ≥ fgn−1(κ(λ, a, b)), so by Lemma 3.2 one of the following
holds:

(a) M ′\C0 has κ(λ, a, b) disjoint co-circuits.
(b) M ′\C0 has a minor M1 = M ′\C0/Y with r(M1) ≥ gn−1(Γ(M1)).

Assume first that (a) holds. Since M ′\C0 = M\C0/Z, by Lemma 4.3(i), M\C0

has κ(λ, a, b) disjoint co-circuits. We claim, that X−C0 is co-independent in M\C0.
If not, then there exists a co-circuit D ⊆ X ∪ C0 of M with D ∩ (X − C0) 6= ∅,
contradicting our choice of C0. Now, by Lemma 4.3(ii),

Θ((M\X)\C) = Θ(M\(C0 ∪X)) ≥ Θ(M\C0) ≥ κ(λ, a, b).

The lemma also gives Γ(M\X) ≤ 1
2
r(M\X). We can now apply Lemma 4.2 to

N = M\X, and get the desired result.
Assume now that (b) holds. Letting Y0 = Z ∪ Y , we have M1 = M\C0/Y0 and

C0 spans M/Y0. Applying the induction hypothesis to M1 now gives the claim.

Let M be given as in the lemma, and note that r(M) ≥ gn(Γ(M)), where n =
2σ(a)λ. By the claim, either we are done or there is a sequence M = M0, . . . ,Mn,
such that for i = 0, . . . , n− 1, Mi+1 = Mi\Ci/Yi, where Ci is a co-circuit of Mi that
spans Mi/Yi.

Let M ′ = M/(Y0 ∪ · · · ∪ Yn−1). Notice, that for i = 0, . . . , n− 1, Ci is a spanning
co-circuit of M ′\(C0 ∪ · · · ∪ Ci−1). Thus rM ′(Ci) = r − i, where r = r(M ′). For all
i, choose a basis Bi for M ′|Ci, and define N = M ′|(∪Bi). Then

|E(N)| =
n−1∑
i=0

(r − i) >
nr

2
.

We claim that N is a-simple. Suppose N |W ' Uk,2k for a W ⊆ E(N) and k ∈
{1, 2, 3, . . .}. Then |W ∩B0| ≤ k, as B0 is independent. So |W ∩ (E(N)−B0)| ≥ k,
and since E(N)−B0 is closed, W ∩B0 = ∅. Repeat this argument in N\B0 to see,
that W ∩B1 = ∅ etc. We end up with W ⊆ Bn−1, a contradiction.

Finally, by Lemma 2.7,

σ(a)τa(N) ≥ |E(N)| > nr

2
= σ(a)λr(N),

and the result follows. �

5. Arranging circuits

We wish to identify some more concrete structure in a dense matroid. To do this,
we need to be able to disentangle some of the many low-rank sets in the matroid.

For a matroid M , we call sets A1, . . . , An ⊆ E(M) skew if rM(∪iAi) =
∑

i rM(Ai).
This is analogous to subspaces of a vector-space forming a direct sum. The first
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result of this section is a tool for finding sets in a matroid, that are close to being
skew.

We define a function µM on collections of subsets of E(M) as follows. For sets
A1, . . . , An ⊆ E(M), let

µM(A1, . . . , An) = rM(
⋃
j

Aj)−
∑

i

(
rM(

⋃
j

Aj)− rM(
⋃
j 6=i

Aj)

)
= rM(

⋃
j

Aj)−
∑

i

rM/(∪j 6=iAj)(Ai − ∪j 6=iAj)).

This function can be thought of as a generalized connectivity function. For n = 2 ,
µM equals the connectivity function λM(A1, A2) = rM(A1)+ rM(A2)− rM(A1∪A2).
For n ≥ 2 a recursive formula holds,

µM(A1, . . . , An) = λM(A1, A2 ∪ · · · ∪ An) + µM/A1(A2, . . . , An).

The function µM measures in a way the rank of the “overlap” of the sets, though
this may not be an actual set in the matroid. Notice, that µM(A1, . . . , An) = 0 if
and only if A1, . . . , An are skew. More generally, if there is a set W ⊆ E(M) such
that A1 −W, . . . , An −W are skew in M/W , then µM(A1, . . . , An) ≤ rM(W ).

Lemma 5.1. There exists an integer-valued function α1(n, r, a, b) such that the fol-
lowing holds: Let b > a ≥ 1, and let r and n be positive integers. If M is a
matroid with no Ua+1,b-minor, and F is a collection of rank-r subsets of E(M) with
rM(∪X∈FX) ≥ α1(n, r, a, b), then there exist X1, . . . , Xn ∈ F satisfying

(a) Xi * clM(∪j 6=iXj) for i = 1, . . . , n and
(b) µM(X1, . . . , Xn) ≤ (r − 1)a.

Proof. For any positive integers n, c, k, we let R(n, c, k) denote the following Ramsey
number: The minimal R, such that ifX is a set with |X| = R, then for any c-coloring
of [X]n, X has a monochromatic subset of size k. Here [X]n denotes the set of all
subsets of X of size n. By a monochromatic subset of X, we mean a subset Y ⊆ X
such that the sets in [Y ]n all have the same color. This number exists by Ramsey’s
Theorem (see [9] or [1, 9.1.4]).

Let n, r, a, b be given and let us define α1(n, r, a, b). First we define numbers si, li
for i = 1, . . . , r. Let sr = 0, lr = n, and for i = r − 1, r − 2, . . . , 1 define recursively:

si = si+1 + li+1, ui =

(
b− 1

a

)rsi−a

, li = n

(
ui

r − i

)
.

Let m = s1 + l1. So, we have 0 = sr < sr−1 < · · · < s1 < m. Next, define numbers
k1, . . . , km as follows. Let km = m and define recursively:

ki−1 = R(i, r, ki), for i = m,m− 1, . . . , 2.

Finally, let α1(n, r, a, b) = rk1.
In the following, for a set of subsets X ⊆ 2E(M), we use the shorthand notation

rM(X ) = rM(∪X∈XX).

Let M and F be given, with rM(F) ≥ α1(n, r, a, b) = rk1. We can choose sets
Y1, . . . , Yk1 ∈ F , such that Yi /∈ clM(Y1 ∪ · · · ∪Yi−1). Let F1 = {Y1, . . . , Yk1} and put
a0 = 0, a1 = r. We shall iteratively construct sequences:

F1 ⊇ F2 ⊇ · · · ⊇ Fm, a0 < a1 < a2 < · · · < am,
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such that for i = 1, . . . ,m, |Fi| = ki, and if F ′ ⊆ Fi with |F ′| = i, then rM(F ′) = ai.
This clearly holds for F1. Let i ≥ 2, assume that Fi−1 and ai−1 satisfy the above,
and let us find Fi and ai.

Note, that rM(F ′) ∈ {ai−1 + 1, . . . , ai−1 + r}, for F ′ ⊆ Fi−1 with |F ′| = i. This
defines an r-coloring of [Fi−1]

i. Since |Fi−1| = ki−1 = R(i, r, ki), there exists Fi ⊆
Fi−1 such that, every set in [Fi]

i has the same rank, and we let ai be that number.
For i = 1, . . . ,m let bi = ai − ai−1. Notice that, by submodularity, this gives a

decreasing sequence (ai+1 + ai−1 ≤ ai + ai),

r = b1 ≥ b2 ≥ · · · ≥ bm ≥ 1.

Hence, by definition of the pairs (si, li), there exists an r′ ∈ {1, . . . , r}, such that

bs+1 = · · · = bs+l = r′, where s = sr′ and l = lr′ .

If r′ = r, then we get b1 = · · · = bn = r. Thus, if we choose any n members
X1, . . . , Xn ∈ Fm, then they are skew and we are done.

Assume r′ < r. Choose s sets Z1, . . . , Zs ∈ Fm, and let F = ∪s
i=1Zi. Choose

another l sets X1, . . . , Xl ∈ Fm−{Z1, . . . , Zs}. Since bs+1 = bs+l = r′, the sets X1−
F, . . . , Xl − F are skew of rank r′ in M/F . For i = 1, . . . , l, choose an independent
set Bi ⊆ Xi of size r′, skew from F . Expand this set to a basis Bi ∪ Bi of Xi, so
|Bi| = r0 = r − r′.

Let M ′ = M/(∪iBi) and B = ∪iBi. Then Bi ⊆ clM ′(F ), and thus rM ′(B) ≤
rM ′(F ) ≤ sr. Let (W1, . . . ,Wu) be a minimal a-covering of M ′|B. By Lemma 2.5,
we have

u = τa(M
′|B) ≤

(
b− 1

a

)sr−a

= ur′ .

For each Bi, we can find a set of indices Ii ⊆ {1, . . . , u} of size r0, such that
Bi ⊆ ∪j∈Ii

Wj. There are
(

u
r0

)
≤

(
ur′

r−r′

)
possible choices for Ii, and l = n

(
ur′

r−r′

)
.

By a majority argument, there must exist I ⊆ {1, . . . , u}, such that Ii = I for all
i ∈ J , where J ⊆ {1, . . . , l} has size n. By possibly re-ordering the Xi

′s and the
Wj

′s we can assume, that B1, . . . , Bn ⊆ W1 ∪ · · · ∪Wr0 .
Let W = W1 ∪ · · · ∪Wr0 . Then the sets X1 −W, . . . , Xn −W are skew in M/W .

It follows, that µM(X1 . . . , Xn) ≤ rM(W ) ≤ ar0 ≤ a(r − 1), and we are done. �

The next lemma shows how, by doing suitable contractions, a large collection
of nearly (but not completely) skew circuits, can yield a set of nearly skew trian-
gles containing a common element. The idea is to put points in the “overlap” by
contracting some of the circuits. The overlap can then be contracted to a point.

Lemma 5.2. There exists an integer-valued function α2(l, r,m) such that the follow-
ing holds: Let r ≥ 2 and l,m be positive integers. If n ≥ α2(l, r,m) and C1 . . . , Cn

are rank-r circuits of a matroid M satisfying

(a) 1 ≤ rM(∪jCj)− rM(∪j 6=iCj) < r for all i, and
(b) µM(C1, . . . , Cn) ≤ m,

then M has a minor N = M/Y with an element x ∈ E(N) and triangles D1, . . . , Dl

of N , such that

• x ∈ Di for all i, and rN(∪iDi) = l + 1,
• For all i, Di − x ⊆ Cj for some j ∈ {1, . . . , n}.
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Proof. Let l and m be fixed. For r ≥ 2, define α2(l, r,m) recursively as follows

α2(l, r,m) = 2m(qr(r − 1) + 1),

q2 = l, qr = α2(l, r − 1, r − 2), for r > 2.

To facilitate induction, the lemma is proved from the following weaker assumptions:

Let n ≥ α2(l, r,m), and C1 . . . , Cn be circuits of M with 2 ≤ rM(Ci) ≤ r. Assume
there is a set F ⊆ E(M), such that

(a) 1 ≤ rM((∪jCj) ∪ F )− rM((∪j 6=iCj) ∪ F ) < rM(Ci)− 1 for all i.
(b) µM(C1, . . . , Cn, F ) ≤ m.

These assumptions are indeed weaker, since the phrasing in the lemma is the case
F = ∅ and rM(Ci) = r for all i. The proof is by induction on r. Let r = 2 or let
r > 2 and assume the result holds for r − 1.

Let ci = rM((∪jCj) ∪ F ) − rM((∪j 6=iCj) ∪ F ) for each i. We first do an easy
reduction. If not ci = 1 for all i, then for each i choose a set Yi ⊆ Ci of size ci − 1,
which is skew from (∪j 6=iCj) ∪ F . We may then work with the circuits Ci − Yi of
M/(Y1 ∪ · · · ∪ Yn) instead. So without loss of generality, ci = 1 for all i.

Choose zi ∈ Ci − clM(∪j 6=iCj) for each i, and let M = M/ {z1, . . . , zn}. Letting
W = ∪i(Ci − zi) we have

rM(W ) = rM(∪iCi)− rM({z1, . . . , zn}) = µM(C1, . . . , Cn, F ) ≤ m.

Let B be a basis of M |W and choose a basis Bi of M |(Ci − zi) for each i. Now
expand Bi to a basis Bi ∪ Xi of M |W using elements of B. For all i we have
chosen Xi ⊆ B among the 2|B| ≤ 2m subsets of B. Hence, there exists an X0 ⊆ B,
such that Xi = X0 for i ∈ I, where |I| = n′ ≥ n/2m. Let M1 = M/X0 and put
r′ = |B| − |X0| + 1. Then rM1(Ci) = r′ for all i ∈ I, and µM1(Ci : i ∈ I) = r′ − 1.
By possibly reordering the circuits, we can assume I = {1, . . . , n′}.

Pick an element of one circuit, z ∈ Cn′−clM1(∪j<n′Cj) and let M2 = M1/z. Define

Z = clM2(Cn′ − z) ⊆ clM2(Ci), for i = 1, . . . , n′ − 1,

so rM2(Z) = r′ − 1. Choose a non-loop element x ∈ Z and elements yi ∈ Ci − Z for
i = 1, . . . , n′ − 1. Since x ∈ clM2(Ci), Ci ∪ x is connected, so there is a circuit C ′

i of
M2 with

{x, yi} ⊆ C ′
i ⊆ Ci ∪ x, and rM2(C

′
i) ∈ {2, . . . , r′} .

Notice that C ′
i * clM2(∪j 6=i,j<n′C

′
j), since yi ∈ C ′

i.
By another majority argument, there exists s ∈ {2, . . . , r′}, such that rM2(C

′
i) = s

for i ∈ J , where |J | ≥ (n′ − 1)/(r − 1) ≥ qr. We now have two cases:
s = 2 : Since qr ≥ q2 = l we can choose J ′ ⊆ J with |J ′| = l. We are now done

with {D1, . . . , Dl} = {C ′
i : i ∈ J ′} and N = M2.

2 < s ≤ r′ : LetM3 = M2/x and let Ci = C ′
i−x for i ∈ J . Then Ci is a rank-(s−1)

circuit of M3, with Ci ⊆ Ci. Letting F ′ = Z − x we have,

µM3(Ci : i ∈ J, F ′) ≤ rM3(F
′) = r′ − 2 ≤ r − 2.

As |J | ≥ α2(l, r − 1, r − 2) we get by induction the desired minor. �

The following result is just a corollary to Lemmas 5.1 and 5.2, that we state for
easier reference.
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Lemma 5.3. There exists an integer-valued function α3(s, l, a, b) such that the fol-
lowing holds: Let b > a ≥ 1 and let s, l be positive integers. If M is a matroid
with no Ua+1,b-minor, and C is a set of circuits of M of rank at most a + 1, with
rM(∪C∈CC) ≥ α3(s, l, a, b), then either:

(i) There exist s skew circuits C1, . . . , Cs ∈ C, or
(ii) M has a minor N = M/Y with an element x ∈ E(N) and triangles D1, . . . , Dl

of N , such that
• x ∈ Di for all i, and rN(∪iDi) = l + 1, and
• For all i, Di − x ⊆ C for some C ∈ C.

Proof. Define α3(s, l, a, b) = α3 by

α3 =
a+1∑
r=1

α1(nr, r, a, b), where nr = s+ α2(l, r, (r − 1)a),

and let M , C be given. By a majority argument, there exists a number r ∈
{1, . . . , a+ 1} and C ′ ⊆ C, such that rM(C) = r for all C ∈ C ′, and rM(∪C∈C′C) ≥
α1(nr, r, a, b).

Now, by Lemma 5.1, there are C1, . . . , Cn ∈ C ′, where n = nr = s+α2(l, r, (r−1)a),
satisfying

ci = rM(∪jCj)− rM(∪j 6=iCj) ≥ 1,

for all i, and µ(C1, . . . , Cn) ≤ (r − 1)a.
Let I = {i : ci = r} and J = {i : ci < r}. If |I| ≥ s, then case (i) holds, since the

Ci with i ∈ I are skew. Otherwise, |J | ≥ α2(l, r, (r − 1)a), and the Ci with i ∈ J
still satisfy

rM(∪j∈JCj)− rM(∪j∈J−{i}Cj) < r.

Lemma 5.2 now gives case (ii) of the result. �

6. Nests

By a long line in a matroid, we mean a rank-2 flat, that contains at least 3 rank-1
flats. So, a long line in a simple matroid is a rank-2 flat with at least 3 elements.
Also, a line is long if and only if it contains a triangle. We need a lot of long lines
to construct clique-like structures. We first aim to build an intermediate structure
called a nest.

Definition 6.1. A matroid M is a nest if M has a basis B = {b1, . . . , bn} such that,
for each pair of indices i, j ∈ {1, . . . , n}, i < j, the set {bi, bj} spans a long line in
M/ {b1, . . . , bi−1}. The elements in B are called the joints of the nest M .

A clique M(Kn) is a nest, which is easily checked, taking the set of edges incident
to a fixed vertex of Kn as joints. The main result of this section is the following.

Lemma 6.2. There exists an integer-valued function ν(n, t, a, b) such that the fol-
lowing holds: Let b > a ≥ 1 and let n, t be positive integers. If M is a t-round
matroid with no Ua+1,b-minor and r(M) ≥ ν(n, t, a, b), then M has a rank-n nest as
a minor.

We obtain a nest by finding one joint at a time using the next lemma.
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Lemma 6.3. There exists an integer-valued function ν1(m, t, a, b) such that the fol-
lowing holds: Let b > a ≥ 1 and m, t be positive integers. If M is a t-round matroid
with no Ua+1,b-minor, r(M) ≥ ν1(m, t, a, b) and B is a basis of M , then M has a
rank-m minor N , with a basis B′ ⊆ B ∩ E(N) and an element b1 ∈ B′, such that
{b1, d} spans a long line in N for each d ∈ B′ − b1.

Let us start by seeing how this result is used to prove Lemma 6.2.

Proof of Lemma 6.2. Let t be fixed. Let ν(1, t, a, b) = 1 and for n ≥ 2 define ν
recursively by

ν(n, t, a, b) = ν1(ν(n− 1, t, a, b) + 1, t, a, b).

To facilitate induction, we prove the stronger statement:

If M is a t-round matroid with no Ua+1,b-minor, r(M) ≥ ν(n, t, a, b) and B
is a basis of M , then M has a rank-n nest M/Y as a minor, with joints
contained in B.

The proof is by induction on n. For n = 1 the result is trivial, as any rank-1 matroid
is a nest. Let n ≥ 2 and assume the result holds for n− 1. Let M and B be given
as above.

By Lemma 6.3, M has a minor N1 of rank ν(n−1, t, a, b)+1, with a basis B1 ⊆ B
and b1 ∈ B1 such that {b1, d} spans a long line in N1 for d ∈ B1−b1. We can assume
N1 = M/Y1.

Let N ′
1 = N1/b1. Since t-roundness is preserved under contractions, N ′

1 is t-round.
Now r(N ′

1) = ν(n−1, t, a, b) so by induction, N ′
1 has a rank-(n−1) nest N2 = N ′

1/Y2

as a minor, with joints B2 ⊆ B1 − b1.
Now, let Y = Y1 ∪ Y2 and N = M/Y , so we have N2 = N/b1. Then N satisfies

the following

• b1 ∪B2 ⊆ B is a basis of N ,
• For each d ∈ B2, {b1, d} spans a long line in N ,
• N/b1 = N2 is a nest with joints B2.

Thus, N is a nest with joints b1 ∪B2. �

We shall consider coverings of matroids by connected sets. A loop is a trivial
connected component of a matroid, that we wish to avoid counting. For a matroid
M denote by τ c

a(M) the minimum size of an a-covering (X1, . . . , Xm) of M\ {loops},
where X1, . . . , Xm are connected sets. Clearly τ c

a(M) ≥ τa(M). Note also, that a
loop-less rank-a matroid N has at most a connected components, so τ c

a(N) ≤ a.
Thus, we have in general for a matroid M :

τa(M) ≤ τ c
a(M) ≤ aτa(M).

We need a technical lemma before we prove Lemma 6.3.

Lemma 6.4. Let b > a ≥ 1. Let M be a matroid with no Ua+1,b-minor, and let
e ∈ E(M). Let F be the collection of all connected rank-(a+1) sets in M containing
e. If n = rM(∪X∈FX), then

τ c
a(M)− τ c

a(M/e) ≤ a2

(
b− 1

a

)n−a

+ 1.

Proof. If e is a loop, then the result is trivially true, so let e be a non-loop element.
We may assume, in fact, that M is loop-less.
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Let (X1, . . . , Xk) be a minimal a-covering of M/e\ {loops} by connected sets. We
shall construct an a-covering of M by connected sets. Consider the following cases:

(1) e /∈ clM(Xi). Then Xi is connected already in M , and rM(Xi) = rM/e(Xi) ≤
a.

(2) e ∈ clM(Xi). In this case Xi ∪ e is connected in M , with rank rM(Xi ∪ e) =
rM/e(Xi) + 1 ≤ a+ 1. Now either,
(2a) rM(Xi ∪ e) ≤ a or
(2b) rM(Xi ∪ e) = a+ 1.

We can assume, after possibly reordering the sets, that X1, . . . , Xm satisfy (2b),
and Xm+1, . . . , Xk satisfy (1) or (2a). For i = 1, . . . ,m we have

τ c
a(M |(Xi ∪ e)) ≤ aτa(M |(Xi ∪ e)) ≤ a

(
b− 1

a

)
.

The elements of M destroyed when forming M/e\ {loops} is the connected set
clM({e}). It is now clear, that we can get an a-covering of size s of M by con-
nected sets, where

τ c
a(M) ≤ s ≤ ma

(
b− 1

a

)
+ (k −m) + 1

≤ ma

(
b− 1

a

)
+ τ c

a(M/e) + 1.

If m = 0, we are done, so assume m ≥ 1. Define M ′ = (M/e)|(∪m
i=1Xi) and

note, that (X1, . . . , Xm) is a minimal a-covering of M ′ by connected sets. Hence, by
Lemma 2.5,

m = τ c
a(M

′) ≤ aτa(M
′) ≤ a

(
b− 1

a

)r(M ′)−a

.

Also, r(M ′) = rM(∪m
i=1(Xi∪e))−1 ≤ n−1, since Xi∪e ∈ F for i = 1, . . . ,m. Now,

combining the inequalities gives the desired result. �

Let M be a matroid, k ∈ N and let B ⊆ E(M). We say that B k-dominates M ,
if for any element x ∈ E(M) there is a set W ⊆ B with rM(W ) ≤ k, such that
x ∈ clM(W ). A k-dominating set clearly has to be spanning.

It is easily verified, that k-domination is preserved under contractions in the
following sense: If B, Y ⊆ E(M) and B k-dominates M , then B − Y k-dominates
M/Y .

Proof of Lemma 6.3. Let m, t, a and b be given, and define the following constants,

r4 = α3(m+ 1,m, a, b), l = m+ r4, r3 = α3(2, l, a, b),

λ = a2

(
b− 1

a

)r3−a

+ 1, r1 = max(2t, δ(λ, a, b)),

and let us define ν1(m, t, a, b) = ν1 = σ(a)
(

b−1
a

)r1−a
. Let M and B be given. We

start with a quick observation:

Claim A. It is enough to find a minor N ′ of M , with an element z ∈ E(N ′) and
an m-set B′ ⊆ B ∩E(N ′), such that B′ ∪ z is independent in N ′ and {z, d} spans a
long line in N ′ for each d ∈ B′.
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To see this, we may assume that B′ ∪ z is a basis of N ′ (otherwise, we restrict to
clN ′(B′∪ z)). Now choose b1 ∈ B′ and an element y, such that {z, b1, y} is a triangle
in N ′. Let N = N ′/y, and note, that z and b1 are parallel in N . So {b1, d} spans a
long line in N for d ∈ B′ − d. Since B′ is a basis of N we are done.

Claim B. M has a t-round minor N1 with r(N1) ≥ r1 and B ⊆ E(N1), such that
B (a+ 1)-dominates N1.

Let N1 be a minimal minor of M satisfying, that N1 is t-round and a-simple and
B ⊆ E(N1). Such a minor exists, since we can choose X ⊆ E(M) minimal, such
that M\X is a-simple, and as B is independent we can take X with X ∩ B = ∅.
We then have Γ(M\X) = Γ(M) ≤ t.

To see that B (a + 1)-dominates N1, let f ∈ E(N1) − B. N1/f is t-round, as
N1 is t-round. Now (N1/f)|B cannot be a-simple: If it is, then we may choose
X ⊆ E(N1/f) − B minimal, such that N1/f\X is a-simple. But then N1/f\X is
t-round by Lemma 4.3, contradicting the minimality of N1. N1 is simple, so N1/f
is loop-less. Since (N1/f)|B is not a-simple, there must be a W ⊆ B, with

(N1/f)|W ' Uk,2k,

for a k ∈ {1, . . . , a}. Then rN1(W ∪ f) = k + 1, and we must have rN1(W ) = k + 1.
If not, then N1|W ' Uk,2k, but N1 is a-simple. Thus, f ∈ clN1(W ), and B (a + 1)-
dominates N1.

By Lemma 2.7, we have

σ(a)τa(N1) ≥ |E(N1)| ≥ |B| = r(M) ≥ ν1,

and so, τa(N1) ≥
(

b−1
a

)r1−a
> 1. Clearly, r(N1) > a, so we can apply Lemma 2.5,

and get r(N1) ≥ r1. This proves the claim.

Let N1 be given. By definition of r1, we have Γ(N1) ≤ t ≤ 1
2
r(N1) and r(N1) ≥

δ(λ, a, b). Lemma 4.4 gives a dense minor N2 of N1 with τa(N2) > λr(N2). We
may assume, that N2 = N1/Y1. N2 satisfies τ c

a(N2) > λr(N2). Let Y2 ⊆ E(N2) be
maximal, with

τ c
a(N2/Y2) > λr(N2/Y2),

and let N3 = N2/Y2. N3 must be loop-less, since Y2 is maximal. Pick an element
e ∈ E(N3). Then,

τ c
a(N3)− τ c

a(N3/e) > λr(N3)− λr(N3/e) = λ.

Let F denote the collection of all connected rank-(a + 1) sets in N3 containing e,

and let n = rN3(∪X∈F). By Lemma 6.4, we then have λ < a2
(

b−1
a

)n−a
+ 1, and by

definition of λ, this yields n ≥ r3.
Denote by C the collection of all circuits of N3 of rank at most a + 1 containing

e. For each X ∈ F and non-loop y ∈ X − e, since X is connected, there exists a
circuit C ⊆ X containing e and y, so C ∈ C. Hence, rN3(∪C∈CC) ≥ n.

Since n ≥ r3 = α3(2, l, a, b) we can apply Lemma 5.3. As no two circuits in C
are skew, we get case (ii): There is a minor N4 = N3/Y3, with x ∈ E(N4) and
triangles D1, . . . , Dl of N4, such that x ∈ Di and rN4(∪iDi) = l+1. Pick an element
hi ∈ Di − x for i = 1 . . . , l.

Let I = {i : hi ∈ B}. If |I| ≥ m, then we can choose an m-set B′ ⊆ {hi : hi ∈ B}
and we are done by Claim A, taking N ′ = N4 and z = x. So, assume |I| ≤ m. By
possibly re-ordering the Di, we may assume h1, . . . , hr4 /∈ B.
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By the remark preceding the proof, B∩E(N4) (a+1)-dominates N4. So, for each
i ∈ {1, . . . , r4}, hi is in the closure of a subset of B of rank at most a + 1. Choose
a circuit Ci of N4 containing hi, with rN4(Ci) ≤ a + 1 and Ci ⊆ B ∪ hi. Since
{h1, . . . , hr4} is independent, we have rN4(∪iCi) ≥ r4. As r4 = α3(m+ 1,m, a, b) we
can apply Lemma 5.3 again, and we get one of two cases.

Consider case (i): There are s = m + 1 skew circuits among C1 . . . , Cr4 in N4.
After possibly re-ordering we may assume C1, . . . , Cs are skew. By omitting one
member of {C1, . . . , Cs}, we can obtain that {x} is skew from the union of the rest.
We assume that C1, . . . , Cm, {x} are skew sets in N4.

For i = 1, . . . ,m, pick an element bi ∈ Ci − hi, and let Ki = Ci − {hi, bi}. Define
N5 = N4/(∪iKi). Then hi and bi are parallel in N5. Letting B′ = {b1, . . . , bm} we
are done by Claim A, with N ′ = N5 and z = x.

Consider now case (ii): N4 has a minor N5, with z ∈ E(N5) and triangles
D′

1, . . . , D
′
m in N5, such that z ∈ D′

i and rN5(∪iD
′
i) = m + 1. Also, for each i,

D′
i − z ⊆ Cj for some j. Thus, D′

i − z ⊆ B ∪ hj and we can pick an element
bi ∈ (D′

i − z) ∩ B. Taking B′ = {b1, . . . , bm} and N ′ = N5, we are again done by
Claim A. �

7. Dowling Cliques

The goal of this section is to extract from nests a general kind of clique. In [2],
Dowling introduced a class of combinatorial geometries (simple matroids). We use
a special case of his construction, that we shall call a Dowling clique.

Definition 7.1. A Dowling clique is a matroid M , with E(M) = B∪X, where B =
{b1, . . . , bn} is a basis of M , and X = {eij : 1 ≤ i < j ≤ n} satisfies that {bi, bj, eij}
is a triangle, for all i < j. We call the elements in B the joints of M .

Notice, that Dowling cliques are Nests. We shall first go through yet another
intermediate structure on our way to obtaining cliques.

Definition 7.2. Let n ≥ 1. A matroid M is an n-storm, if its ground set is the
disjoint union E(M) = F ∪ C1 ∪ · · · ∪ Cm, where rM(F ) = n and each Ci is a
size-(n + 1) independent co-circuit of M , with F ⊆ clM(Ci). We call the Ci clouds
of M .

In an n-storm, the set F must be closed, since it is an intersection of hyperplanes.
Note also, that C1, . . . , Cm are skew in M/F , and hence that µM(C1 . . . , Cm) = n.

We shall first see that nests contain storms as restrictions.

Lemma 7.3. Let m and n be positive integers. If M is a nest of rank at least n+m,
then M has an n-storm N with m clouds as a minor.

Proof. Let M be a rank-r nest with joints B = {b1, . . . , br}, where r = n +m. For
each pair (i, j), 1 ≤ i < j ≤ r, pick an element eij, such that {bi, bj, eij} is a triangle
of M/ {b1, . . . , bi−1}. We need two observations:

(1) e1k, e2k, . . . , ek−1,k /∈ clM(B − bk), for k = 2, . . . , r.

(2) clM({b1, . . . , bi, bk}) = clM({e1k, . . . , eik, bk}), for i < k.

To see that (1) holds, let i, k be given, with 1 ≤ i < k. By definition of eik we have
eik /∈ clM({b1, . . . , bi}), but eik ∈ clM({b1, . . . , bi, bk}). So the fundamental circuit of
eik in M with respect to the basis B, must contain bk. Hence, eik /∈ clM(B − bk).
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We prove (2) by induction on i with k fixed. The case i = 1 is trivial, since
{b1, bk, e1k} is a circuit in M . Suppose 1 < i < k and (2) holds for i− 1. Again, by
definition of eik we have eik /∈ clM({b1, . . . , bi−1, bk}), but eik ∈ clM({b1, . . . , bi, bk}).
Thus,

clM({b1, . . . , bi, bk}) = clM({b1, . . . , bi−1, bk, eik})
= clM({e1k, . . . , ei−1,k, bk, eik}),

where the induction hypothesis is used in the second step.

Let S = {b1, . . . , bn} and F = clM(S), and for each k = n + 1, . . . , r define
Ck = {e1k, . . . , enk, bk}.

Notice that by (1), Ck ∩ F = ∅ for all k, and Ck ∩ Cl = ∅ for k 6= l. From
(2) we gather, that Ck is independent with F ⊆ clM(Ck) for all k. Define N =
M |(F ∪Cn+1 ∪ · · · ∪Cr). It is easily checked, that the Ck’s are co-circuits of N . �

For n = 2, the concept of an n-storm is similar to that of a “book”, used by Kung
in [6], and an analogue of one of his ideas is part of the proof of the following result.

Lemma 7.4. There exist integer-valued functions φ1(n, a, b), φ2(n, a, b) such that the
following holds: Let b > a ≥ 1 and let n be a positive integer. If M is a φ1(n, a, b)-
storm with φ2(n, a, b) clouds, and M has no Ua+1,b-minor, then M contains a rank-n
Dowling clique N as a minor.

Proof. Let n, a, b be given and let us define φ1 and φ2. First, let l = na. For
r = 1, . . . , a, let sr = α1(n, r, a, b) and let s =

∑a
r=1 sr. Define a sequence of

numbers m0, . . . ,ms recursively as follows: let ms = l, and

mk = σ2(a,mk+1)

(
b− 1

a

)s−a

+ 1, for k = s− 1, . . . , 1, 0.

Finally, let φ1(n, a, b) = s and φ2(n, a, b) = m0.

Let M be an s-storm with m = m0 clouds. Denote the clouds by C1, . . . , Cm and
their elements Ci = {ei

0, e
i
1, . . . , e

i
s}.

Define M ′ = M/ {e10, e20, . . . , em
0 }. So r(M ′) = s. Let I0 = {1, . . . ,m}. We wish to

find a subcollection of the clouds, such that elements with the same index lie on a
uniform restriction of M ′. We shall construct a sequence of subsets,

I0 ⊇ I1 ⊇ · · · ⊇ Is, where |Ik| = mk,

such that for k = 1, . . . , s, M ′| {ei
k : i ∈ Ik} ' Urk,mk

, for some number rk ∈
{1, . . . , a}. Let k ≥ 1, suppose Ik−1 has been defined and let us see how to find Ik.
Let W = {ei

k : i ∈ Ik−1} and suppose M ′|W has no Ur,mk
-restriction for r = 1, . . . , a.

Lemmas 2.8 and 2.5 then give

mk−1 = |W | ≤ σ2(a,mk)τa(M
′|W ) ≤ σ2(a,mk)

(
b− 1

a

)s−a

,

contradicting our definition of mk−1. So, take U ⊆ W such that M ′|U is isomorphic
to Urk,mk

, and let Ik = {i : ei
k ∈ U}.

After possibly re-ordering the clouds in M , we may assume that Is = {1, . . . , l}.
Let then Lk =

{
e1k, . . . , e

l
k

}
for k = 1, . . . , s, so M ′|Lk ' Urk,l. Now, by a majority

argument, there exist r ∈ {1, . . . , a}, and a subset J ⊆ {1, . . . , s} with |J | ≥ sr, such
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that rk = r, for all k ∈ J . Define L = {Lk : k ∈ J}. Since C1 − e10 is independent in
M ′, we have

rM ′(∪L∈LL) ≥ |L| = |J | ≥ sr = α1(n, r, a, b).

We now apply Lemma 5.1 and get a subcollection L′ ⊆ L of size n, such that
L * clM ′(∪L′∈L′−LL

′), for each L ∈ L′. After possibly permuting the elements of
each cloud, we can assume L′ = {L1, . . . , Ln}. Let Di = {ei

0, e
i
1, . . . , e

i
n} ⊆ Ci.

By our arrangement of the Lk’s, we can find a set B ⊆ ∪n
k=1Lk independent in

M ′, such that rM ′(Lk ∪ B) − rM ′(B) = 1, for each k ∈ {1, . . . , n}, and the sets
L1 −B, . . . , Ln −B are skew in M ′/B.

Now Lk * clM ′(B), and sinceM ′|Lk is rank-r uniform, we must have |Lk ∩ clM ′(B)|
≤ r − 1. Define IB ⊆ {1, . . . , l} by

IB = {i : Di ∩ clM ′(B) 6= ∅} .
Then B ⊆ ∪i∈IB

Di and |IB| ≤ n(r − 1) ≤ n(a− 1) = l − n. Notice, that for i /∈ IB,
Di and B are skew in M ′. We may assume, again after re-ordering the clouds, that
{1, . . . , n} ⊆ {1, . . . , l} − IB. Let

M1 = M/
{
ei
0 : i ∈ IB

}
/B.

Then, by construction, the elements in {ei
k : i = 1, . . . , n} are in parallel in M1/{ei

0 :
i = 1, . . . , n}, for each k = 1, . . . , n.

Let pk = en
k , for k = 1, . . . , n, and define

M2 = M1/e
n
0 |(D1 ∪ · · · ∪Dn−1 ∪ {p1, . . . , pn}).

Now,M2 is an n-storm with cloudsD1, . . . , Dn−1. It satisfies, for each i = 1, . . . , n−1,
and each k = 1, . . . , n, that pk is on the line through ei

0 and ei
k.

We shall make {p1, . . . , pn} the joints of a Dowling clique. Let

N = M2/
{
e11, e

2
2, . . . , e

n−1
n−1

}
.

Then {p1, . . . , pn} is a basis for N . Let (i, j) be given with 1 ≤ i < j ≤ n. In N , ei
0

and pi are parallel, so ei
j ∈ clN({ei

0, pj}) = clN({pi, pj}), and the set
{
pi, pj, e

i
j

}
is a

triangle in N . So, N has a rank-n Dowling clique restriction. �

8. Cliques

We need Mader’s Theorem [7] to extract graphic cliques.

Mader’s Theorem 8.1. Let H be a graph. There exists λ ∈ N such that, if G is a
simple graph with no H-minor, then |E(G)| ≤ λ |V (G)|.

An easy corollary is the following matroid version of the theorem. We take H to
be a complete graph, and write the contrapositive statement.

Corollary 8.2. There exists an integer-valued function θ(n) such that, if M is a
graphic and simple matroid with |E(M)| > θ(n)r(M), then M has an M(Kn)-minor.

Let M be a matroid and B a basis of M , and let X = E(M)− B. We call M a
Dowling matroid with joints B if each x ∈ X is on a triangle with two elements of
B, and any two elements of B span at most one element of X (again, this is only
a special case of Dowling’s combinatorial geometries). By the associated graph of
(M,B) we mean the graph G on the vertex set B with edge set labeled by X, such
that x ∈ X labels {b1, b2} if x is on the line through b1 and b2 in M .

We shall use the following lemma to recognize graphic matroids.
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Lemma 8.3. Let M be a Dowling matroid with joints B, X = E(M) − B. If
B ∩ clM(X) = ∅, then M |X is graphic.

Proof. Let G be the associated graph of (M,B). We claim that M(G) = M |X. It
suffices to prove, that each circuit of M(G) is dependent in M |X, and that each
independent set of M(G) is independent in M |X.

Let C be a cycle of G with vertex set B′ and edge set X ′. Clearly X ′ ⊆ clM(B′)
and by the assumption B′ ∩ clM(X ′) = ∅. Since B′ and X ′ have equal size, X ′ must
be dependent in M .

Let T be a forest in G. We prove by induction on |E(T )| that E(T ) is independent
in M . Let e be a leaf edge in T and assume E(T ) − e is independent in M . Let b
be a leaf of T incident on e. Then E(T ) − e ⊆ clM(B − b), but e /∈ clM(B − b), so
E(T ) is independent in M . �

In a similar fashion, using Remark 1.4, the following lemma is easily proved.

Lemma 8.4. Let M be a Dowling matroid with joints B, X = E(M) − B. Let G
be the associated graph of (M,B). If for each cycle C in G, E(C) is independent in
M , then M |X = B(G) (in fact M = B̃(G)).

We are ready for the final step in the proof of the main theorem.

Lemma 8.5. There exists an integer-valued function ψ(n) such that, if M is a
Dowling clique with rank at least ψ(n), then M contains an M(Kn)- or B(Kn)-
minor.

Proof. Let n be given, and define ψ(n) = nl, where l = 2mθ(n) + 1 and m = 2nn!.
Let M be a Dowling clique and assume that r(M) = nl. Denote by B the joints of
M and let X = E(M)−B.

Partition B into n sets, B1, . . . , Bn of equal size, |Bi| = l. We shall contract each
Bi to a point. Let Mi = M | clM(Bi). Choose Yi ⊆ E(Mi)∩X such that Bi is a set of
parallel elements in Mi/Yi (take the edges of a spanning tree in the associated graph
of (Mi, Bi)). Define M ′ = M/(Y1 ∪ · · · ∪ Yn) and pick a bi ∈ Bi for i = 1, . . . , n. For
each pair i < j, define

Xij = {x ∈ X : x ∈ clM(b, d), b ∈ Bi, d ∈ Bj} .
Note, that for each x ∈ Xij, {bi, bj, x} is a triangle in M ′. We consider two cases.

(1). τ1(M
′|Xij) > m, for all pairs i < j. Put B′ = {b1, . . . , bn}. We shall choose

a set X ′ = {xij : 1 ≤ i < j ≤ n}, where xij ∈ Xij, such that M ′|(B′ ∪ X ′) is the

Dowling clique B̃(Kn). Let X ′ ⊆ ∪Xij be maximal, such that |X ′ ∩Xij| ≤ 1 for
all i < j, and the cycles in the associated graph of M ′|(V ′ ∪ X ′) all have edge
sets independent in M ′. We claim, that X ′ ∩ Xij 6= ∅ for all i < j, and thus

M ′|(V ′ ∪X ′) ' B̃(Kn) by Lemma 8.4.
Assume that X ′ ∩ Xij = ∅ for some i < j. Let G be the associated graph

of M ′|(V ′ ∪ X ′). If Z ⊆ X ′ is the edge set of a path from bi to bj in G, then
rM ′(clM ′(Z)∩Xij) ≤ 1. There can be at most m such Z, since a simple graph on n
vertices has no more than 2nn! = m cycles. Thus, we can pick xij ∈ Xij skew from
each such Z. So, the cycles created in the associated graph, when adding xij to X ′

all have edge sets independent in M ′, contradicting the maximality of X ′.
(2). τ1(M

′|Xij) ≤ m, for some pair i < j. As |Xij| = l2, there is a parallel class
P ⊆ Xij of M ′, with |P | ≥ l2/m. Now, since B ∩ clM ′(P ) = ∅, also B ∩ clM(P ) = ∅,
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and Lemma 8.3 gives, that M |P is graphic. And r(M |P ) ≤ |Bi ∪Bj| = 2l. We have
then

|E(M |P )| ≥ l2/m > l2θ(n) ≥ θ(n)r(M |P ),

and by Corollary 8.2, we get an M(Kn)-minor. �

Finally, we restate and prove Theorem 1.1.

Theorem 8.6. There exists an integer-valued function γ(k, a, n) such that, if M is
a matroid with r(M) ≥ γ(k, a, n), then either M has k disjoint co-circuits or M has
a minor isomorphic to Ua,2a, M(Kn) or B(Kn).

Proof. Let k, a, n be positive integers. If a = 1, then we let γ(k, a, n) = k. If a ≥ 2,
then we define the following numbers: Put a′ = a− 1 and b = 2a. Let k = ψ(n) and
let m1 = φ1(k, a

′, b) and m2 = φ2(k, a
′, b). Let r = n +m and define g : N → N by

g(t) = ν(r, t, a′, b). Finally, γ(k, a, n) = fg(k).
Let M be given with r(M) ≥ γ(k, a, n). If a = 1, the result is trivial, since in a

matroid with no U1,2-minor, every element is a loop or a co-loop.
If a ≥ 2, then by Lemma 3.2, either M has k disjoint co-circuits or a minor N

with r(N) ≥ g(Γ(N)). Assume the second case. Also, if N has a Ua′+1,b-minor we
are done, so assume this is not the case. Applying Lemmas 6.2, 7.3, 7.4 and 8.5 in
succession, we obtain an M(Kn)- or a B(Kn)-minor of N . �
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