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KHINTCHINE’S THEOREM AND TRANSFERENCE PRINCIPLE

FOR STAR BODIES

M. M. DODSON AND S. KRISTENSEN

Abstract. Analogues of Khintchine’s Theorem in simultaneous Diophantine ap-
proximation in the plane are proved with the classical height replaced by fairly gen-
eral planar distance functions or equivalently star bodies. Khintchine’s transference
principle is discussed for distance functions and a direct proof for the multiplicative
version is given. A transference principle is also established for a different distance
function.

1. Introduction

A star body S in Euclidean space Rn is defined as an open set containing the origin
and for which given any x ∈ Rn, there exists a t0 ∈ (0,∞] such that for t < t0, tx ∈ S
and for t > t0, tx /∈ S (see [8]). To such sets, one can associate a continuous distance
function F : Rn → [0,∞) such that for any x ∈ Rn and any t ≥ 0, F (tx) = tF (x).
The open star body S may be expressed as the set of points satisfying F (x) < 1.
Conversely, we can associate an open star body to any distance function by this
relation. Some authors consider only star bodies symmetric about the origin, but this
restriction is not needed here and we consider the more general case. However, we
restrict ourselves principally to the planar case (n = 2), as in higher dimensions the
number of cases to be considered proliferates and geometry becomes very complicated.

Examples of planar distance functions include the height on R2 given by |(x1, x2)|∞
= max{|x1| , |x2|}, where the associated star body is a square. Another example is

the function given by (x1, x2) 7→
√
|x1| |x2| where the associated star body is bounded

by the hyperbola x2 = 1/x1 and its mirror image x2 = −1/x1. Such symmetric star
bodies and their relationship to lattices have been studied extensively. We refer to [8]
for an excellent introduction.

In this paper, we study the relationship between planar star bodies and metric
Diophantine approximation. Let F : R2 → [0,∞) be a distance function and let
ψ : N → (0,∞) be a function with qψ(q) non-increasing. For convenience we study
the set

W (F ;ψ) =
{
x ∈ T2 : F (x− p/q) < ψ(q) for some p ∈ Z2

for infinitely many q ∈ N
}

=

∞⋂

N=1

∞⋃

q=N

⋃

p∈Z2

{
x ∈ T2 : F (qx− p) < qψ(q)

}
, (1)

where T2 denotes the two-torus {(x1, x2) ∈ R2 : 0 ≤ x1, x2 < 1}. When F is the height
|·|∞, W (F ;ψ) is the set of simultaneously ψ-approximable points. When F is the

function (x1, x2) 7→
√
|x1| |x2|, W (F ;ψ) is the set of multiplicatively ψ-approximable
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2 M. M. DODSON AND S. KRISTENSEN

points. In both of these special cases, we can restrict p to those points with 0 ≤ |p| < q
without loss of generality. As we shall see, such restrictions are not natural in the
general case.

Let |E| denote the Lebesgue measure of E ⊆ R2. Khintchine’s Theorem (see e.g.
[7]), which asserts that when qψ(q) is decreasing,

|W (|·|∞ ;ψ)| =

{
0 if

∑∞
q=1 q

2ψ(q)2 <∞,

1 if
∑∞

q=1 q
2ψ(q)2 = ∞,

(2)

was extended by Gallagher [12] who established a general theorem implying (2) and
the following:

∣∣∣W ((x1, x2) 7→
√
|x1| |x2|;ψ)

∣∣∣ =
{

0 if
∑∞

q=1 q
2ψ(q)2 log(q−1ψ(q)−1) <∞,

1 if
∑∞

q=1 q
2ψ(q)2 log(q−1ψ(q)−1) = ∞.

(3)

Evidently both these results are of Khintchine type, where the measure of a set of
points ψ-approximable by a distance function is either null or full, according to the
convergence or divergence of an ‘area’ series.

The above results suggest that a general Khintchine-type theorem might exist for
star bodies. While Gallagher’s result implies Khintchine type theorems for a number
of star bodies, only convex star bodies and star bodies of the general shape as the
ones in (3) are covered. The technical requirement for Gallagher’s result (property P)
is that given a point (p1, p2) inside the star body S, the entire rectangle with vertices
(0, 0), (p1, 0), (p1, p2) and (0, p2) must be a subset of S.

It would also seem that a growth condition on the size of the unbounded parts
of the star body would influence the breaking point (i.e., when the sum converges
or diverges). In an earlier paper [9], the first author found a measure zero result of
the above type under a technical covering condition. This work was subsequently
generalised to systems of linear forms [10]. However, the specific star bodies to which
these results can easily be applied are only minor generalisations of the examples
above.

Some recent results in Diophantine approximation on manifolds due to Bernik,
Kleinbock and Margulis [4, 14] suggest that there might be a connection between
distance functions and Diophantine approximation and that a general Khintchine-
type theorem might exist for general star bodies. In Section 2 below, we will prove
Khintchine type theorems for a large class of distance functions. The results depend
critically on the intrinsic arithmetic properties of the distance functions as well as
their geometric properties. We shall state the results once we have the notational
apparatus in place.

A tantalising result due to Aliev and Gruber [1] is in a certain sense dual to the
problem studied in this paper and measures the set of lattices which have points
inside a given star body of infinite volume. They show that given a star body S ⊆ Rn

of infinite volume, almost all lattices have n linearly independent primitive points
inside S.

Associated with the sets W (|·|∞ ;ψ) and W ((x1, x2) 7→
√
|x1| |x2|;ψ) are two trans-

ference principles, which relate the simultaneous Diophantine approximation of the
coordinates of x ∈ Rn to the linear forms q · x, where x ∈ Rn and q ∈ Zn. Let
〈x〉 = x − kx ∈ [1/2, 1/2)n, where kx ∈ Zn denotes the symmetrised distance from
x ∈ Rn to the nearest point in the integer lattice Zn. The following Transference Prin-
ciple (see [18]; a different formulation is in [7, Chapter V, Theorem IV]) relates the
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properties of simultaneous Diophantine approximation, associated with the height,
and those of the dual inner product form.

Khintchine’s Transference Principle. Let n ∈ N and let x ∈ (R \ Q)n. The
following two conditions are equivalent:

(i) For some ε > 0, there are infinitely many q ∈ Zn such that

|〈q · x〉| ≤ |q|−n−ε .

(ii) For some ε′ > 0, there are infinitely many p ∈ Z such that

‖qx‖ ≤ |q|−(1+ε′)/n .

Note that if condition (i) is true for some ε > 0, it is automatically satisfied for all
ε̂ < ε, and similarly for condition (ii).

There is an analogous multiplicative version for multiplicative Diophantine approx-
imation and the inner product form. Sprindžuk [18, page 69] states it without proof
(an n-th is root missing from the left hand side of his inequality (9)). Dyson [11]
deduces it from a more general form of Khintchine’s Transference Principle and [19]
gives a contrapositive form using a method of A. Baker [2].

Theorem 1.1. Let n ∈ N and x = (x1, . . . , xn) ∈ (R \ Q)n. The following two
conditions are equivalent

(i) For some ε > 0, there are infinitely many q ∈ Zn such that

|〈q · x〉| ≤

(
n∏

i=1

max(|qi| , 1)

)−1−ε

. (4)

(ii) For some ε′ > 0, there are infinitely many p ∈ Z such that

(
n∏

i=1

|〈pxi〉|

)1/n

≤ |p|−(1+ε′)/n . (5)

In Section 3, we shall give a direct proof of Theorem 1.1 which also gives a proce-
dure for proving transference principles for other symmetric distance functions than

(x1, . . . , xn) 7→ (
∏
|xi|)

1/n. We will also outline an application to a distance function
not covered by previous results. In this case, the assumption that the star bodies are
symmetric about the origin is critical.

We will use the Vinogradov notation. That is, for two real numbers x, y, we will
write x≪ y if there exists a constant C > 0 such that x ≤ Cy. If x≪ y and y ≪ x,
we will write x ≍ y.

2. Khintchine type theorems

We will treat two separate classes of distance functions, for which the theorems are
of a different nature. We make the appropriate definitions and state the results before
going on to prove the main theorems. In the final part of this section, we will discuss
the remaining distance functions and conjectures about the corresponding Khintchine
type theorems.
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2.1. Notation, definitions and statement of results. Let F : R2 → [0,∞) be a
distance function. We define the skeleton of F to be the set

skel(F ) = F−1(0). (6)

It is easy to see, that the skeleton of a distance function consists of the origin together
with a (possibly infinite and possibly zero) number of half-lines starting at the origin.
For each such line, the star body has an unbounded component. If there are no such
lines, the star body is bounded. Note that Gallagher’s property P is only of interest
when any half-lines in the skeleton lie on one of the coordinate axes.

Let L be a half-line from the skeleton of F . We will call L significant if the
component around it carries an infinite amount of mass of the star body, i.e., if for
any M > 0,

∣∣{x ∈ R2 : F (x) < 1
}
∩
{
x ∈ R2 : dist(x, L) < M

}∣∣ = ∞.

Note that the existence of a significant line in the skeleton of the star body immediately
implies that the measure of the star body is infinite. Conversely, if the measure of an
unbounded star body with only finitely many half-lines in its skeleton is infinite, then
the skeleton contains a significant line.

When the skeleton of F contains an irrationally sloped significant line, we prove
the following result, generalising a result by the second author [15].

Theorem 2.1. Let F : R2 → [0,∞) be a distance function corresponding to an
unbounded star body and let ψ : N → (0,∞) be some function. Suppose that that at
least one of the (half-)lines in skel(F ) is significant with an irrational slope. Suppose
further that for each ε > 0, the width w(r) = w(r; ε) > 0 of this unbounded component
of F−1([0, ε)) containing this line is non-increasing as the distance r from the origin
increases. Then, for almost all x ∈ R2 and any q ∈ N, there are infinitely many
p ∈ Z2 such that

F (x− p) < ψ(q), (7)

whence

|W (F ;ψ)| = 1.

Thus the existence of an irrational significant line implies the stronger conclusion
that for almost all x ∈ R2 and for any ε, there are infinitely many p ∈ Z2 for which
F (x− p) < ε. Note that it is possible for a star body to be unbounded while having
no significant lines in the skeleton. We will return to this case and others like it
later. While the irrationality of the slope makes the result plausible, the result is not
always true and a monotonicity condition is critical in the proof. The proof is not
straightforward and uses recent work of Bugeaud on a variant of the usual form of
Diophantine approximation [6].

In the case when the skeleton of F consists of finitely many half-lines whose slopes
are rational numbers (or in the degenerate case when the skeleton is just the origin),
we will need additional definitions. Let F be such a distance function, let n be the
number of lines in the skeleton of F and suppose that the slopes of these are si/ri
for some integers si, ri, i = 1, . . . , n. We see that if we take the union of the sets
{x ∈ R2 : F (x) < ρ} + p where p ∈ Z2, we get a pattern which repeats itself with
period ŝ = lcm(s1, . . . , sn) in the direction of the first coordinate axis and with period
r̂ = lcm(r1, . . . , rn) in the direction of the second axis. We call such a rectangle RF a
fundamental rectangle for F .
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Let ε > 0 and define the function DF of ε by

DF (ε) =

∣∣∣
(⋃

p∈Z2{x ∈ R2 : F (x) < ε}+ p
)
∩RF

∣∣∣
|RF |

. (8)

When the star body is bounded, the appropriate definition of the above quantity is

DF (ε) =
∣∣{x ∈ R2 : F (x) < ε

}∣∣ . (9)

We can now state our second Khintchine type theorem.

Theorem 2.2. Let F : R2 → R be a distance function such that skel(F ) consists of
finitely many lines, each with a rational slope. Let ψ : N → (0,∞) be a function such
that DF (qψ(q)) is decreasing. Then

|W (F ;ψ)| =

{
0 whenever

∑∞
q=1DF (qψ(q)) <∞,

1 whenever
∑∞

q=1DF (qψ(q)) = ∞.

Note that Theorem 2.2 covers (2), (3) and a number of additional cases, including
all distance functions corresponding to bounded star bodies as well as all the cases
covered by Gallagher’s result [12]. Note also, that |RF | depends only on the distance
function, and so the series in the statement of Theorem 2.2 could be replaced by
volume sums, as is the case in [12].

2.2. The irrational case. In this section, we prove Theorem 2.1. Let q ∈ N be fixed.
Let

L = {(x, αx) : x ∈ [0,∞)}

denote a line through the origin in skel(F ) with irrational slope α = tan θ. Suppose
that α > 1, as the other case may be treated analogously by interchanging the axes.
Identify each L with its canonical projection into the unit square, which is in turn
identified with the two-torus T2. Since L has irrational slope, it follows from Kro-
necker’s Theorem (see e.g. [13, Proposition 1.5.1]) that each of these geodesics is dense
in T2. However, this is not sufficient to imply Theorem 2.1 for significant lines.

Consider a fixed but arbitrary horizontal line H = {(x, y0) : 0 ≤ x < 1}, where
0 ≤ y0 < 1, through the unit square T2; H will be identified with the circle T1 (one
dimensional torus). Consider the geodesic

L =
{( y

α
, y
)

: y ∈ [0,∞)
}
.

The point ((y0 + n)/α, y0 + n) = (y0/α, y0) + n(1/α, 1) on L is at distance

rn =
(
(y0 + n)/α)2 + (y0 + n)2

)1/2
= (y0 + n) cosec θ (10)

from the origin and projects to the point
({

y0 + n

α

}
, {y0 + n}

)
=

({
y0 + n

α

}
, y0

)
∈ T2.

As the slope of L is irrational, the geodesic intersects the horizontal line H first at
the point (x0, y0), where since α > 1,

x0 = x0(α) =
y0

α
< 1

and thereafter at the distinct points (T nx0, y0), where n = 1, 2, . . . and the map
T : T1 → T1 can be regarded as a rotation of the circle by the irrational angle α and

T nx0 := xn = {x0 + nα−1}.
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Let Ln be the directed segment which meets

(T nx0, y0) = (xn, y0) = ({x0 + nα−1}, y0)

from below. The distance rn along the irrational line segments L0, L1, . . . from the
origin to the point (xn, y0) = ({x0 + nα−1}, y0) is given by (10).

Suppose L a significant line. Assume for the sake of simplicity that the star body
is approximately symmetric about significant lines, that is, for any point (x, y) on a
significant line L, the distance from (x, y) to the upper part of the boundary F−1(ψ(q))
is comparable to the distance from the lower part. More precisely, denote by w± =
w±(r, ψ(q)) the perpendicular distances of the point (x, y) ∈ L, where r2 = x2 + y2,
from the upper (+) and lower (−) boundaries ∂F−1([0, ψ(q))) of the starbody, so
that the width w = w(r, ψ(q)) of the ψ(q)-neighbourhood at (xn, y0) is given by
w = w+ + w−. Writing w+

n = w+((y0 + n) cosec θ, ψ(q)) and similarly for w−n and wn,
we have

wn = w+
n + w−n ,

where w+
n ≍ w−n ≍ wn.

H = T1
(y0 − ρ0, y0 + ρ0) (y1 + α−1 − ρ1, y1 + α−1 + ρ1)

Figure 1. Two consecutive intervals In and In+1

Let In be the interval formed by the intersection of H and the ψ(q)-neighbourhood
of the segment Ln and its continuation through (xn, y0) (see Figure 1). Then the
length |In| of the interval In satisfies

wn cosec θ ≪ |In| ≪ wn cosec θ,

that is, wn ≍ |In|. Inscribe an interval centred at (xn, y0) with radius

σn = K min{w+
n , w

−
n }.

where K is a sufficiently small positive constant chosen so that

Ĩn :=
{
x ∈ T1 :

∥∥x−
{
x0 − nα−1

}∥∥ < σn
}
⊆ In, (11)

where ‖x‖ denotes the distance to nearest integer (this is possible by the assumption

of approximate symmetry of the star body). Then σn ≍ wn and |Ĩn| ≍ |In|. We show
that given q ∈ N, almost all (x, y0) ∈ H lie in the interval Ĩn ⊆ In for infinitely many
n.
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Consider the ‘limsup’ set E(y0) of points x such that the point (x, y0) falls into

infinitely many of the intervals Ĩn in H . Now
∑

n

∣∣∣Ĩn
∣∣∣ ≍

∑

n

|In|

and ∑

n

|In| ≍
∑

n

σn ≍
∑

n

w(rn, ψ(q)) ≍
∑

n

w((y + n) cosec θ, ψ(q)).

But
∑

n

|In| ≍

∫
w(u cosec θ, ψ(q))du ≍

∫
w(v, ψ(q))dv = ∞,

since by assumption w(u, ψ(q)) is non-increasing and since the line L is significant.
Thus ∑

n

∣∣∣Ĩn
∣∣∣ = ∞. (12)

We now show that E(y0) has full measure. By [3] it suffices to prove local ubiquity
of the points x0 + {n/α}, n = 1, 2, . . . relative to an appropriate function λ. This
relies on the so-called Three Distances Theorem due to Sós [17] and to a certain
extent follows the methods used by Bugeaud in [6] (see also [16] for an approach using
continued fractions).

Let λ : (0,∞) → (0,∞) be a function decreasing to zero and let (Nr) be a strictly
increasing sequence of natural numbers. The set of points R = {zn : n ∈ N} in the
metric space T1 is said to be locally ubiquitous relative to λ and (Nr) if there is a
constant κ > 0 such that for any interval I = (c − ρ, c + ρ) with ρ sufficiently small
and any r ≥ r0(I),

µ

(
I ∩

⋃

Nr≤n<Nr+1

(zn − λ(Nr), zn + λ(Nr))

)
≥ 2κρ.

This quantitative version of the local density of the points in R is the appropriate
specialisation of the definition of local ubiquity in [3].

Lemma 2.3. Let R = {{x0 +nα−1} : n ∈ N}. The system (R, n) is locally ubiquitous
relative to the function λ(N) = 3/(Nr+1), where Nr ≤ N < Nr+1 for an appropriately
chosen strictly increasing sequence of natural numbers (Nr).

Proof. As in the proof of [6, Proposition 1], we find that by the Three Distances
Theorem, for any N ∈ N, the sequence of points

{x0 + α−1}, {x0 + 2α−1}, . . . , {x0 +Nα−1}

partition the circle T1 into N + 1 intervals with lengths from a set of cardinality at
most three, where {x} denotes the fractional part of x. The largest of these distances
may be seen to be less than or equal to 3/(N +1) for infinitely many positive integers
N . Call this sequence (Nr). Hence, for any N ∈ [Nr, Nr+1], the intervals centred at
the points {α−1}, . . . , {Nα−1} of length 3/(Nr + 1) cover the circle. Therefore the
system is locally ubiquitous relative to λ and (Nr). �

Consider the family of intervals Ĩn. The centres of these intervals form a ubiquitous
system relative to λ and it is an easy consequence of [3, Theorem 2] that the divergence
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of the sum
∑

n |Ĩn| implies that the limsup set E(y0) has full measure. It follows that
for any fixed y0 ∈ [0, 1), for almost there exist infinitely many p ∈ Z2 such that

F ((x, y0)− p) < ψ(q).

Let χE(y) denote the characteristic function of E(y). Theorem 2.1 now follows from
Fubini’s theorem, since

∫∫

[0,1)2
χE(y)(x, y)dxdy =

∫ 1

0

∫ 1

0

χE(y)(x, y)dxdy =

∫ 1

0

1 dy = 1,

whence a fortiori, for any q ∈ N,
∣∣{(x, y) ∈ T2 : F ((x, y)− p) < ψ(q) for infinitely many p ∈ Z2

}∣∣ = 1.

In the more general case, i.e., when the star body is not assumed to be approx-
imately symmetric about significant lines, the above argument can be extended by
changing the resonant points in the ubiquitous system to the centres of the intervals
In. These do not have to be as regularly spaced as the resonant points considered in
the special case, but this difficulty can be resolved by adding an additional term to
the ubiquity function λ in Lemma 2.3. In this case, the ubiquity function should be

λ(N) = 3/(Nr + 1) + max{w+
Nr
, w−Nr

}.

If necessary, we may take a smaller star body inside the original one for which
max{w+

Nr
, w−Nr

} is not dominating the main term, but for which the corresponding
line remains significant. The details are left to the interested reader.

Note that if the unbounded starbody has no significant lines (so that F−1([0, ε))
has finite volume), then given q ∈ N, the set of points (x, y) ∈ T2 for which

F ((x, y)− p) < ψ(q)

for infinitely many p ∈ Z2 is null by the Borel–Cantelli lemma. The question of the
measure of the set of (x, y) for which

F

(
(x, y)−

p

q

)
< ψ(q)

holds for infinitely many p/q is open.

2.3. The rational case. For completeness, we first deal with the degenerate case
when the skeleton consists solely of the origin, corresponding to F being a gauge
function [8].

Lemma 2.4. Let S ⊆ R2 be a bounded star body with corresponding distance function
F . Then

|W (F ;ψ)| =

{
0 if

∑∞
q=1DF (qψ(q)) <∞,

1 if
∑∞

q=1DF (qψ(q)) = ∞.

Proof. By the final corollary of [8, Section IV.2], there are constants c, C > 0 such
that for any x ∈ R2,

c |x|∞ ≤ F (x) ≤ C |x|∞ , (13)

whence

W

(
|·|∞ ;

ψ

C

)
⊆W (F ;ψ) ⊆W

(
|·|∞ ;

ψ

c

)
.

Applying (2) immediately gives the result. �
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We now suppose that the skeleton of the star body contains a half-line and prove
the two cases of Theorem 2.2 separately. First, for any q ∈ N and any ε > 0, we define
the resonant neighbourhood

Bq(F, ε) =
⋃

p∈Z2

{
x ∈ T2 : F (x− p/q) < ε

}
. (14)

The measure of the resonant neighbourhood is closely related to DF (ε). Note first
that ∣∣∣1qRF ∩ Bq(F, ε)

∣∣∣ =
ŝr̂

q2
DF (qε), (15)

as is seen by scaling the set to be estimated by q and using homogeneity of the distance
function.

To obtain the measure of Bq(F, ε), we tile R2 by disjoint translates of 1
q
RF . Inside

each of these disjoint sets, we find a translated copy of 1
q
RF ∩Bq(F, ε), and the union

of these sets cover Bq(F, ε). Hence, to estimate the measure of Bq(F, ε), it suffices
to count the maximal (resp. minimal) number of disjoint translates of 1

q
RF that can

fit inside (resp. are needed to cover) the unit square, and multiply the result by the
estimate from (15). In this way, we get

[q
r̂

] [q
ŝ

] ŝr̂
q2
DF (qε) ≤ |Bq(F, ε)| ≤

(q
ŝ

+ 1
)(q

r̂
+ 1
) ŝ r̂
q2
DF (qε),

whence
|Bq(F, ε)| ≍ DF (qε). (16)

Applying the Borel–Cantelli Lemma [5, Lemma 3.14] to the resonant neighbour-
hoods with the measure estimate (16) yields a condition for |W (F ;ψ)| to be zero.
Indeed, whenever

∞∑

q=1

DF (qψ(q)) <∞, (17)

W (F ;ψ) must be null. We have shown:

Lemma 2.5. Let ψ : Z → (0,∞) be some decreasing function and let F : R2 → R be
a distance function such that the lines in skel(F ) all have rational slopes. Let DF (ε)
be defined as above. Suppose that

∞∑

q=1

DF (qψ(q)) <∞.

Then |W (F ;ψ)| = 0.

We now aim to obtain the corresponding divergence result, i.e., when the series (17)
diverges, we expect the measure of W (F ;ψ) to be full. Suppose first that the central

part of the star body carries the bulk of the mass, i.e., there is a distance function F̃
such that

(i) F̃ determines a bounded star body.

(ii) F (x) ≤ F̃ (x) for all x (or equivalently, the star body defined by F̃ is a subset of
the one defined by F by [8, Corollary, p. 107]).

(iii) D eF (ε) ≍ DF (ε) for ε > 0 small enough.

In this case, W (F̃ ;ψ) ⊆ W (F ;ψ), so the conclusion of Theorem 2.2 is ensured by
Lemma 2.4. We have shown
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Lemma 2.6. Let F be a distance function and suppose that skel(F ) consists of lines

with rational slopes. Suppose further that there is a distance function F̃ satisfying
(i)–(iii) above. Then Theorem 2.2 holds for this distance function.

Suppose now that the central part of the star body does not carry the bulk of
the mass, so that there is a cusp which includes an infinite amount of the mass.
We will construct a subset of W (F ;ψ), which is better behaved but which still has
full measure. In brief, we will truncate the star body in such a way that only the
unbounded component which carries most of the mass will remain. Subsequently,
we will take the limsup set of these truncated sets, for which we can calculate the
measure. For convenience we denote by F ∗ε the distance function associated with the
star body {dist(x, L) < w(ε)} ∩ {F (x) < ε}.

Lemma 2.7. Let F be a distance function as in the statement of Theorem 2.2. Then
there exists a function w : (0,∞) → (0,∞) with w(ε) tending to zero as ε tends to
zero together with a (half-)line L ∈ skel(F ) such that

DF ∗

ε
(1) ≍ DF (ε), (18)

and so that the intersection between any line perpendicular to L and the star body
associated to F ∗ε is a line segment.

Remark: We have to choose an entire family of distance functions rather than just
a single one. This is to preserve the scaling properties of the original star body. This
takes us away from the problem of approximation with respect to distance functions,
but as we shall see, only the shape of the sets studied are of importance for the
remainder of the proof.

Proof. We choose the line in skel(F ) about which a significant proportion of the mass
is concentrated. Such a line must exist, since there are only finitely many lines in
skel(F ). By truncating the star body about this line, it is now straightforward to
choose the function w in such a way that (18) holds. To ensure that the second
property holds, we choose w as small as possible. For at least one of the lines in the
skel(F ), we will have both properties satisfied. Indeed, otherwise most of the mass
would be concentrated in the cental part of the star body associated to F . �

Lemma 2.8. Let F ′1, F
′
2 : R2 → R be distance functions with skel(F ′1) = skel(F ′2) = L,

a (half-)line. Let δ1, δ2 > 0. Let v ∈ R2 be a unit vector in the direction of L and let
v⊥ be a unit normal to L. Let t1, t2 ∈ R. The measure

∣∣{x ∈ RF ′

1
: F ′1(x) < δ1} ∩ {x ∈ RF ′

2
: F ′2(x+ t1v + t2v

⊥) < δ2}
∣∣

decreases as |ti| increases and the other coordinate is fixed.

Proof. We define the characteristic functions χ1 and χ2 of {x ∈ RF ′

1
: F ′1(x) < δ1} and

{x ∈ RF ′

2
: F ′2(x) < δ2} respectively. Clearly, for fixed t1, the function χ1(x)χ2(x +

t1v + t2v
⊥) is the characteristic function of an interval in the t2 coordinate, and so

decreasing in |t2| and analogously for fixed t2. Hence,
∣∣{x ∈ RF ′

1
: F ′1(x) < δ1} ∩ {x ∈ RF ′

2
: F ′2(x+ t1v + t2v

⊥) < δ2}
∣∣

=

∫

R2

χ1(x)χ2(x+ t1v + t2v
⊥)dx

also decreases with |ti| when the other coordinate is fixed. �
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We will now estimate the overlap between two resonant neighbourhoods in terms
of the measure of the star bodies defined in Lemma 2.7. To ease notation, let B∗q be
defined as Bq(F, ψ(q)) in (14) under the additional restriction that (p1r̂, q) = (p2ŝ, q) =
1. Furthermore, let

A∗q =
{
x ∈ T2 : F ∗qψ(q)(x) < 1

}
,

where F ∗qψ(q) is the distance function from Lemma 2.7.

Lemma 2.9. Let q, q′ ∈ N. Then

∣∣B∗q ∩B∗q′
∣∣ ≤

∣∣A∗q
∣∣ ∣∣A∗q′

∣∣ ≍ DF (qψ(q))DF (q′ψ(q′)).

Proof. The last asymptotic equality follows at once from Lemma 2.7. We concentrate
on the first inequality. First, we note that

B∗q ⊆
⋃ Aq +

(
k1r̂
k2ŝ

)

q
,

where the union is taken over all integers k1, k2 with 0 ≤ k1r̂ ≤ q and 0 ≤ l1r̂ such
that (q, k1r̂) = (q, k2ŝ) = 1. Hence

B∗q ∩B
∗
q′ ⊆

⋃
(
Aq +

(
k1r̂
k2ŝ

)

q
∩
Aq′ +

(
l1r̂
l2ŝ

)

q′

)
,

where the union is taken over all integers k1, k2, l1, l2 with 0 ≤ k1r̂, k2ŝ ≤ q and
0 ≤ l1r̂, l2ŝ ≤ q′ such that (q, k1r̂) = (q, k2ŝ) = (q′, l1r̂) = (q′, l2ŝ) = 1. Consequently,

∣∣B∗q ∩ B∗q′
∣∣ ≤

∑
∣∣∣∣∣
Aq +

(
k1r̂
k2ŝ

)

q
∩
Aq′ +

(
l1r̂
l2ŝ

)

q′

∣∣∣∣∣

=
∑∣∣∣∣

Aq
q
∩

(
Aq′

q′
+

1

qq′

(
(l1q − k1q

′)r̂

(l2q − k2q′)ŝ

))∣∣∣∣ ,
(19)

where the summation range is as above. Under the summation conditions, there are
at most (q, q′)2 repeated summands in the sums in (19). Hence, on changing the
summation ranges, we get

∣∣B∗q ∩ B∗q′
∣∣ ≤

∑

(j1,j2)∈Z2

∣∣∣∣
Aq
q
∩

(
Aq′

q′
+

(q, q′)

qq′

(
j1r̂

j2ŝ

))∣∣∣∣ . (20)

Consider now the function

f(t1, t2) =

∣∣∣∣
Aq
q
∩

(
Aq′

q′
+

(q, q′)

qq′

(
t1r̂

t2ŝ

))∣∣∣∣ .

As a consequence of Lemma 2.8, this function decreases as |ti| increases (i = 1, 2).
Conseqently,

∫ 1

0

∫ 1

0

f(t1, t2)dt1dt2 ≥ f(1, 1).
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Using this and translation invariance of Lebesgue measure in (20), we obtain

∣∣B∗q ∩B∗q′
∣∣ ≤ (q, q′)2

∑

(j1,j2)∈Z2

∫∫

[0,1)2+(j1,j2)

f(t1, t2)dt1dt2

= (q, q′)2

∫∫

R2

∣∣∣∣
Aq
q
∩

(
Aq′

q′
+

(q, q′)

qq′

(
t1r̂

t2ŝ

))∣∣∣∣ dt1dt2

=

∫∫

Aq

|Aq′| dt1dt2

= |Aq| |Aq′| .

This completes the proof. �

The following estimate uses elementary number theory and summation by parts
(see [7, Chapter VII, Lemma 7]).

Lemma 2.10. Let ω(q) be monotonely decreasing and positive. Let φ(q) denote the
Euler φ-function of q. Then

N∑

q=1

(
φ(q)

q

)2

ω(q) ≫

N∑

q=2

ω(q).

The above lemma will be useful because of the following:

Lemma 2.11. Suppose that q ∈ N satisfies (q, r̂) = (q, ŝ) = 1. Then,

∣∣B∗q
∣∣≫

(
φ(q)

q

)2

DF (qψ(q)).

Proof. This follows from the definition of B∗q . Indeed, the number of sets under the
union in the definition is ≍ (φ(q)/q)2, as is easily seen by counting the number of
(p1, p2) satisfying the co-primality condition. The co-primality condition and the fact
that DF (qψ(q)) is non-increasing implies that the disjoint components are dominant.

�

Note that Lemma 2.10 and Lemma 2.11 together with the divergence assumption
imply that ∑

q≥1
(q,r̂)=(q,ŝ)=1

∣∣B∗q
∣∣ = ∞. (21)

Indeed, the set of q ∈ N with (q, r̂) = (q, ŝ) = 1 contains the arithmetic progression
{r̂ŝn+ 1}∞n=0, and so has positive density. On noting that the terms of the series are
decreasing over the full range of q, (21) follows by a simple change of variables.

Lemma 2.12. Let F : R2 → [0,∞) be a distance function such that the lines in
skel(F ) have rational slopes. Let ψ : N → [0,∞) be a function such that DF (qψ(q))
is non-increasing and suppose that

∞∑

q=1

DF (qψ(q)) = ∞.

Then |W (F ;ψ)| = 1.
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Proof. Denote by
∑N

q,q′ the sum over all q, q′ ∈ Z such that 1 ≤ q, q′ ≤ N , (q, r̂) =

(q, ŝ) = 1, (q′, r̂) = (q′, ŝ) = 1, and similarly by
∑N

q the sum over all q ∈ Z such that

1 ≤ q ≤ N , (q, r̂) = (q, ŝ) = 1. Applying a quasi-independent divergence case of the
Borel–Cantelli Lemma (see Lemma 5 in [18]), we see that

|W (F ;ψ)| ≥ lim sup
N→∞

(∑N
q

∣∣B∗q
∣∣
)2

∑N
q,q′

∣∣B∗q ∩ B∗q′
∣∣

≫ lim sup
N→∞

(
∑N

q

(
φ(q)

q

)2

|Bq(F, ψ(q))|

)2

∑N
q,q′ |Aq| |Aq′ |

≫ lim sup
N→∞

(∑N
q DF (qψ(q))

)2

(∑N
q DF (qψ(q))

)2 ≫ 1

by Lemmas 2.9, 2.11 and 2.10. As W ∗(F ;ψ) ⊆W (F ;ψ), we clearly have |W (F ;ψ)| ≥
c > 0 for some c > 0.

We now apply an ‘inflation’ argument taken from [7, Chapter VII]. Let η : N → (0, 1]
be a function which decreases to zero so slowly that

∑
qDF (qη(q)ψ(q)) = ∞. Such

a function can be found as follows. First, define a strictly inreasing sequence qj such
that

∑
qj≤q<qj+1

DF (qψ(q)) > 1 for any j ∈ N. Subsequently, define a sequence of

positive real numbers ηj by the equation

DF (ηjqj+1ψ(qj+1)) = 1
j
DF (qj+1ψ(qj+1)).

Such numbers exist by continuity of the distance function and since qψ(q) is non-
increasing. Finally, let

η(q) = ηj, qj ≤ q < qj+1.

In is now immediate that
∞∑

q=1

DF (qη(q)ψ(q)) =

∞∑

j=1

∑

qj≤q<qj+1

DF (qη(q)ψ(q))

≥

∞∑

j=1

∑

qj≤q<qj+1

DF (ηjqj+1ψ(qj+1)) >

∞∑

j=1

1

j
= ∞.

Let the function ψη : N → [0,∞) be defined by ψη(q) = η(q)ψ(q). Going through
the above argument with ψη in place of ψ, we easily find that |W (F ;ψη)| > c > 0.
Let x0 ∈ W (F ;ψη) be a point of metric density for W (F ;ψη) and let ε ∈ (0, 1) be
arbitrary. By Lebesgue’s Density Theorem, there is an n0 ∈ N and a box H centred
at x0 of measure |H| = 1/n0 such that

|W (F ;ψη) ∩H|

|H|
= n0 |W (F ;ψη) ∩H| ≥ 1− ε.

Thus |n0(W (F ;ψη) ∩H)| ≥ 1− ε, so there is a set U ∈ T2 of measure at least 1− ε
such that every point x ∈ U is of the form x = n0x

′ + p, p ∈ Z2, x′ ∈ W (F ;ψη). We
claim that U ⊆W (F ;n0ψη). Indeed, let x ∈ U . Then

F

(
x−

p′

q

)
= F

(
n0x

′ + p−
p′

q

)
= n0F

(
x′ −

qp− p′

n0q

)
.
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As p′ ∈ Z2 varies freely, ratio (p′−pq)/n0q varies freely over the lattice 1/n0qZ
2 which

contains 1/qZ2. Hence, as x′ ∈W (F ;ψη), for infinitely many q ∈ Z there is a p′ ∈ Z2

such that

F (x− p′/q) < n0η(q)ψ(q).

But there exists Q such that q ≥ Q implies that η(q) ≤ n−1
0 , whence

F (x− p′/q) < ψ(q)

for infinitely many q and so x ∈W (F ;ψ). Hence

|W (F ;ψ)| ≥ |U | ≥ 1− ε

and since ε was arbitrary, we are done. �

Combining Lemmas 2.4, 2.5 and 2.12 proves Theorem 2.2.

2.4. Missing cases. Despite having dealt with a very large class of distance functions
in the preceding two sections, there are still two cases not covered by our results.
The first is when skel(F ) consists of infinitely many rationally sloped lines, when the
notion of a fundamental region makes little sense. We conjecture that this case may be
treated analogously with the irrational case. This should be possible as the resonant
sets will induce geodesics on the torus winding around arbitrarily many times.

The second is when each irrationally sloped lines of skel(F ) is insignificant. We
conjecture that these may be removed from the star body without affecting the cor-
responding Khintchine type result, which reduces to the rational case. While these
conjectures seem reasonable to us, we have not yet been able to prove them.

3. Transference principles

In the rational case, it makes sense to talk about transference principles. We will
give a direct proof of Theorem 1.1 and then give a description of how this method
may be extended to other star bodies where the skeleton consists of lines with rational
slopes. We prove the theorem in arbitrary dimension, as this causes no loss of clarity.
In addition to the proof of Theorem 1.1, we illustrate the versatility of our method
by sketching a proof of a transference principle for a distance function not covered by
any previous results.

We first prove some preliminary equivalences.

Proposition 3.1. Let the distance function F : Rn → [0,∞) be given by

F (x) = F (x1, . . . , xn) =

(
n∏

i=1

|xi|

)1/n

and define the distance function Hν : Rn → [0,∞) by

Hν(x) = max {ν1 |x1| , . . . , νn |xn|} , (22)

where ν = (ν1, . . . , νn) ∈ (0,∞)n. Then for each λ > 0, F (x) ≤ λ if and only if
Hν(x) ≤ λ for some ν with ν1 · · · νn = 1.

Both functions in Proposition 3.1 are distance functions which are symmetric about
the origin (a planar configuration is shown in Figure 2).
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Figure 2. The star body corresponding to F for n = 2 with some
parametrising boxes.

Proof. To begin, assume that |x1| · · · |xn| ≤ λn. We will find ν1, . . . , νn with the
required properties. For i = 1, . . . , n− 1, let νi = λ/ |xi| and let νn = 1/(ν1 · · · νn−1).
We only need to prove that νn |xn| ≤ λ. But this is the case, since by assumption

νn |xn| =
|x1| · · · |xn|

λn−1
≤

λn

λn−1
= λ.

Then converse is even easier, since

|x1| · · · |xn| = ν1 |x1| · · ·νn |xn| ≤ λn

by assumption. �

Proposition 3.2. Let µ, λ > 0. The following are equivalent:

(i) There is an integer solution q ∈ Zn \ {0} to

|〈q · x〉| ≤ λ,

(
n∏

i=1

max(|qi| , 1)

)1/n

≤ µ. (23)

(ii) There is an integer solution p ∈ Z \ {0} to

(
n∏

i=1

|〈pxi〉|

)1/n

≤ nλ, |p| ≤ nµλ(1−n)/n. (24)
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Proof. Using Proposition 3.1, we may encode solutions to these equations in matrices
as follows. Define the matrices

A =




λ−1x1 ν1µ
−1 . . . 0

...
...

. . .
...

λ−1xn 0 . . . νnµ
−1

λ−1 0 · · · 0



,

A∗ =




λ −µν−1
1 x1 · · · −µν−1

n xn

0 µν−1
1 . . . 0

...
...

. . .
...

0 0 · · · µν−1
n



. (25)

If (23) has a non-trivial integer solution q = (q1, . . . , qn), then for some choice of
ν1, . . . , νn with ν1 · · · νn = 1, then the inequality

|q̃A|∞ ≤ 1 (26)

has a non-trivial integer solution q̃ = (q1, . . . , qn, p). This follows on considering each
coordinate of q̃A and applying Proposition 3.1.

As can be verified by calculation, when (ã, b̃) ∈ Zn+1 × Zn+1, the linear form

Φ(ã, b̃) = ãA · b̃A∗ = a1b2 + · · ·+ anbn+1 + an+1b1 ∈ Z

when x̃, ỹ are integer vectors. By (26) and [7, Chapter V, Theorem I], there is an
integer solution to

|p̃A∗| ≤ n |det(A∗)|1/n = nµλ1/n,

since ν−1
1 · · · ν−1

n = (ν1 · · · νn)
−1 = 1. Again by Proposition 3.1, (24) has a non-trivial

integer solution. By the same method we find that if (24) has a non-trivial solution,
then (23) has a non-trivial solution. �

Proof of Theorem 1.1. Assume that condition (i) of the theorem holds. Let q(j) be
the sequence of solutions to inequality (4) and order these such that j′ > j implies
that F+(q(j′)) ≥ F+(q(j)), where

F+(x) =

(
n∏

j=1

max{1, |xj|}

)1/n

.

Furthermore, since equality holds at most finitely often, and since there are infinitely
many solutions, F+(q(j)) tends to infinity as j tends to infinity. Now for each j ∈ N,
define numbers

µj = F+(q(j)), λj = µ−1−ε
j .

With these coefficients, (23) has q(j) as a solution for each j ∈ N. By Proposition
3.2, (24) has a non-trivial integer solution p(j) for each j ∈ N. Let j be fixed but
arbitrary. For ease of notation, we drop the index in the following.

From (24),

F (〈pa〉) ≤ nλ, |p| ≤ nµλ(1−n)/n.
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Let ε′ ∈ (0, ε) be fixed but arbitrary. To prove that there is a solution to (5) of
condition (ii), the λ and µ are eliminated. The second inequality immediately implies
that

|p|−(1+ε′)/n ≥
(
nµλ(1−n)/n

)−(1+ε′)/n

=
(
n−(1/n)−(ε′/n)−1µ−(1/n)−(ε′/n)λ−(1/n2)+(1/)n−(ε′/n2)+(ε′/n)−1

)
nλ. (27)

Hence, if we can prove that ε′ and j may be chosen so that the term in the brackets is
greater than or equal to 1, this implies that we have a solution to inequality (5). We
insert the definition of λ in (27) to see that this is equivalent to the condition that

n−(1/n)−(ε′/n)−1µ−(2/n)−(2ε′/n)+(1/n2)+(ε′/n2)+1+(ε/n2)−(ε/n)+(εε′/n2)−(εε′/n)+ε ≥ 1.

Using the fact that µ is increasing and unbounded as a function of j and on choosing
ε′ sufficiently small, it is straightforward to verify the claim.

To prove the first implication, we need to show that this produces infinitely many
solutions to inequality (5). But again, this follows from Proposition 3.2. Indeed,
assume that we have only solutions p to (24) with bounded height. Then there are
only solutions q with bounded F (q), and hence only finitely many solutions.

The converse implication is proved analogously by interchanging the two inequalities
in the above. �

The above proof can be generalised to other star bodies than the multiplicative one.
Indeed, we have only used the fact that solutions to the relevant inequalities may be
encoded in matrix form (25), parametrised by the numbers νi. This parametrisation in
turn depends only on exhibiting an appropriate cover of the star body corresponding
to F . In the case studied above, the star body is covered by boxes with sides parallel
to the coordinate axes (see figure 2). We now give an example when this is not the
case. For convenience, we restrict ourselves to the planar case.

The ‘union jack’ star body is obtained by taking a union of the multiplicative star
body and a rotation of it through π/4. The associated distance function is given by

F ′(x, y) = min

{
|xy| ,

|x2 − y2|

2

}1/2

.

A plot of the star body is given in figure 3. For this distance function, the above
argument gives the following transference principle.

Theorem 3.3. Let (x, y) ∈ (R \Q)2. The following two conditions are equivalent

(i) For some ε > 0, there are infinitely many q1, q2 ∈ Z such that

|〈q1x+ q2y〉| ≤ min
{

max{|q1| , 1}max{|q2| , 1},

√
2

2
max{|q1 + q2| , 1}max{|q1 − q2| , 1}

}−1−ε
.

(ii) For some ε′ > 0, there are infinitely many p ∈ Z such that

F ′ (〈(px, py)〉) ≤ |p|−(1+ε′)/2 .
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Figure 3. The ‘union jack’ star body

The proof is essentially the same, except that instead of matrices A and A∗ from
(25), we use four matrices

Ã =



λ−1x ν1µ

−1 0
λ−1y 0 ν2µ

−1

λ−1 0 0


 , Ã′ =



λ−1x

√
2

2
ν ′1µ

−1 −
√

2
2
ν ′2µ

−1

−λ−1y
√

2
2
ν ′1µ

−1
√

2
2
ν2µ

−1

λ−1 0 0


 ,

˜̃A =



λ −µν−1

1 x −µν−1
2 y

0 µν−1
1 0

0 0 µν−1
2


 , ˜̃A′ =



λ −

√
2

2
µν ′1

−1(x− y)
√

2
2
µν ′2

−1(x+ y)

0
√

2
2
µν ′1

−1
√

2
2
µν ′2

−1

0 −
√

2
2
µν ′1

−1
√

2
2
µν ′2

−1


 ,

parametrised by ν1, ν2, ν
′
1, ν

′
2 > 0, where ν1ν2 = ν ′1ν

′
2 = 1. It is easily checked that

these matrices encode solutions to the inequalities corresponding to (23) and (24) in
the present setting and so provide an analogue of Proposition 3.2, i.e., we now look
at integer solutions to

min
{∣∣∣q̃Ã

∣∣∣
∞
,
∣∣∣q̃Ã′

∣∣∣
∞

}
≤ 1,

and similarly to

min
{∣∣∣p̃ ˜̃A

∣∣∣
∞
,
∣∣∣q̃ ˜̃A′

∣∣∣
∞

}
≤ 1.

The proof of Theorem 3.3 is now analogous to that of Theorem 1.1. We leave details
to the reader.

Clearly, this approach can be generalised to other star bodies, where the parametri-
sation depends on the distance function, and so the above proof can be seen as a recipe
for proving transference principles. However, apart from the minor variations of stan-
dard known cases of simultaneous (height), dual (inner product) and multiplicative
approximation (see e.g. [9, 11]), it does not appear that there is a simple general
transference principle for arbitrary distance functions.
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