UNIVERSITY OF AARHUS Department of Mathematics

ISSN: 1397-4076

B-COHOMOLOGY

by Henning Haahr Andersen and Tarik Rian

Preprint Series No.: 3

Ny Munkegade, Bldg. 1530 DK-8000 Aarhus C, Denmark February 2006 2006/02/03 http://www.imf.au.dk institut@imf.au.dk

B-COHOMOLOGY

HENNING HAAHR ANDERSEN AND TARIK RIAN

ABSTRACT. Let B be a Borel subgroup in a reductive algebraic group G over a field k. We study the cohomology $H^{\bullet}(B, \lambda)$ of 1-dimensional Bmodules λ . When char k = 0 there is an easy a well-known description of this cohomology whereas the corresponding problem in characteristic p > 0is wide open. We develop some new techniques which enable us to calculate all such cohomology in degrees at most 3 when p is larger than the Coxeter number for G. Our methods also apply to the corresponding question for quantum groups at roots of unity.

1. INTRODUCTION

Let G be a reductive algebraic group over an algebraically closed field k and denote by B a Borel subgroup in G. In this paper we shall study the Bcohomology $H^{\bullet}(B, -) = \operatorname{Ext}_{B}^{\bullet}(k, -)$, i.e. the derived functors of the B-fixed point functor $H^{0}(B, -)$.

We are especially interested in the *B*-cohomology of simple (i.e. 1-dimensional) *B*-modules. If *T* is a maximal torus contained in *B* then B = TU where *U* is the unipotent radical of *B*. Any character $\lambda \in X(T)$ of *T* extends uniquely to *B* (by $\lambda(U) = 1$). The corresponding 1-dimensional *B*-module is also denoted λ or sometimes k_{λ} . In particular, the trivial *B*-module *k* may also be written k_0 .

We want to compute $H^{\bullet}(B, \lambda)$ for each $\lambda \in X(T)$. When char k = 0 this is easy because we can compare with the corresponding *G*-cohomology and take advantage of the fact that $H^i(G, -) = 0$ for all i > 0 (*G* is reductive). Moreover, the Borel-Weil-Bott theorem describes completely the cohomology $H^{\bullet}(G/B, \lambda)$, see (2.3) below. But when char k = p > 0 this approach fails completely: There are non-vanishing higher *G*-cohomology and the Borel-Weil-Bott theorem is no longer true. In fact, the problem of determining $H^{\bullet}(B, \lambda)$ is in this case wide open. Our contribution in this paper is to give a couple of general results on the behaviour of $H^{\bullet}(B, \lambda)$ and to calculate $H^2(B, \lambda)$ and $H^3(B, \lambda)$ explicitly (for *p* larger than the Coxeter number for *G*).

Our results are based on a combination of several methods, see Section 3 below. The main ingredient is the spectral sequence relating *B*-cohomology to the cohomology for the first Frobenius kernel B_1 of *B*. We take advantage of the fact that the cohomology $H^{\bullet}(B_1, \lambda)$ was completely determined in [5].

Our approach works equally well for quantum groups. Let U_q denote the quantum group corresponding to G with parameter $q \in k^*$ and let B_q be a Borel

^{*}Supported in part by the Marie Curie Research Training Network "LIEGRITS", Contract No. MRTN-CT-2003-505078.

subalgebra in U_q . When q is not a root of unity we can determine $H^{\bullet}(B_q, \lambda)$ exactly as in the above characteristic 0 case. So we consider the case where q is an l-th root of unity. Then the problem of describing $H^{\bullet}(B_q, \lambda)$ is again wide open in general. But our methods allow us to obtain similar results as described above for B.

2. KNOWN RESULTS

2.1. Notation. First we fix some notation used throughout this paper. We have already introduced G, B, T and U above. We set X = X(T), the character group of T (and of B). Then we denote by $R \subset X$ the root system for (G, T) and we fix a set of positive roots $R^+ \subset R$ by requiring that the roots of B are in $-R^+$. The positive roots induce an ordering on X given by $\lambda \geq \mu$ if and only if $\lambda - \mu$ can be written as a sum of positive roots.

We let S denote the corresponding set of simple roots and W will be the Weyl group. A weight $\lambda \in X$ is called dominant if $\langle \lambda, \alpha^{\vee} \rangle \geq 0$ for all $\alpha \in S$. Here α^{\vee} denotes the coroot of α . For each root $\alpha \in R$ we let s_{α} denote the reflection associated to α . In addition to the usual action of W on X where $s_{\alpha}(\lambda) = \lambda - \langle \lambda, \alpha^{\vee} \rangle \alpha$ for all $\alpha \in R, \lambda \in X$ we also consider the so-called 'dot action' given by $w \cdot \lambda = w(\lambda + \rho) - \rho, w \in W, \lambda \in X$. As usual ρ denotes half the sum of the positive roots.

The set of dominant weights X^+ parametrizes the simple modules of G via highest weight. For $\lambda \in X^+$ we let $L(\lambda)$ be the simple G-module of highest weight λ . All modules we consider in this paper will be finite dimensional.

Finally, let h be the Coxeter number for G and let $ht : X \to \mathbb{Z}$ denote the height function on X which takes value 1 on all simple roots.

2.2. Characteristic zero. If M is a B-module then we have a spectral sequence

$$H^r(G, H^s(G/B, M)) \implies H^{r+s}(B, M).$$
 (2.1)

Here $H^{\bullet}(G/B, -)$ denotes the derived functors of induction from B to G or alternatively $H^{\bullet}(G/B, M)$ is the coherent sheaf cohomology of the vector bundle associated to M.

When char k = 0 we have $H^r(G, -) = 0$ for all r > 0 because G is reductive. Hence the above spectral sequence degenerates and gives us isomorphisms of B-modules

$$H^{r}(B, M) \simeq H^{0}(G, H^{r}(G/B, M))$$
 for all $r \ge 0.$ (2.2)

Now, suppose M is the 1-dimensional B-module determined by $\lambda \in X$. If we choose $w \in W$ such that $w(\lambda + \rho) \in X^+$ then the Borel-Weil-Bott theorem [9] (cf. also [11]) says

$$H^{r}(G/B,\lambda) \simeq \begin{cases} H^{0}(G/B, w \cdot \lambda) & \text{if } r = l(w), \\ 0 & \text{otherwise.} \end{cases}$$
(2.3)

Here l(w) denotes the length of w. Since the only dominant weight μ for which there is a non-trivial G-fixed point in $H^0(G/B, \mu)$ is $\mu = 0$ we conclude that (cf [3] Proposition 2.1)

$$H^{r}(B,\lambda) \simeq \begin{cases} k & \text{if } \lambda = w \cdot 0 \text{ for some } w \in W \text{ with } l(w) = r, \\ 0 & \text{otherwise.} \end{cases}$$
(2.4)

2.3. Characteristic p. For the rest of this section we assume char k = p > 0. As mentioned in the introduction the determination of $H^{\bullet}(B, \lambda)$ is wide open in this case. In the following subsections we summarize some known results.

2.4. The linkage principle. The strong linkage principle [2] implies that all composition factors of $H^r(G/B, \lambda)$ have highest weights in $W \cdot \lambda + p\mathbb{Z}R$. Moreover, it also gives that for each simple G-module $L(\mu)$ we have $H^{\bullet}(G, L(\mu)) = 0$ unless $\mu \in W \cdot 0 + p\mathbb{Z}R$. Hence the spectral sequence (2.1) shows that

$$H^{\bullet}(B,\lambda) = 0 \text{ unless } \lambda \in W \cdot 0 + p\mathbb{Z}R.$$
(2.5)

Remark 2.1. As observed in [3] the strong linkage principle implies also that we have the following characteristic p-analogue of (2.4)

$$H^{r}(B, w \cdot 0) \simeq \begin{cases} k & \text{if } r = l(w), \\ 0 & \text{otherwise.} \end{cases}$$
(2.6)

2.5. Let k[U] denote the coordinate ring of U. Tensoring the 'standard' injective resolution

$$k \to k[U] \to k[U] \otimes k[U] \to \cdots$$

of the trivial *B*-module k by a weight $\lambda \in X$ gives

$$H^{\bullet}(B,\lambda) = 0 \text{ unless } \lambda \le 0. \tag{2.7}$$

In fact, the weights of each term in the resulting resolution of the *B*-module λ has weights $\leq \lambda$. Hence there are no *T*-fixed points (and so certainly no *B*-fixed points either) unless $\lambda \leq 0$.

Remark 2.2. A little more careful argument (see e.g. [10], Lemma 2.3) shows that in fact we have

$$H^{i}(B,\lambda) = 0$$
 unless $\lambda \le 0$ and $i \le -\operatorname{ht}(\lambda)$. (2.8)

2.6. The first cohomology group. It is clear that $H^0(B, k) = k$ and that $H^0(B, \lambda) = 0$ for all $\lambda \neq 0$. The first cohomology group $H^1(B, \lambda)$ is also completely known, see [3]

$$H^{1}(B,\lambda) \simeq \begin{cases} k & \text{if } \lambda = -p^{r}\alpha \text{ for some } \alpha \in S, r \ge 0, \\ 0 & \text{otherwise.} \end{cases}$$
(2.9)

This may be deduced from the spectral sequence (2.1) by using that the G-socle of $H^1(\lambda) = H^1(G/B, \lambda)$ is known, see [1]. In particular, $H^0(G, H^1(G/B, \lambda)) = 0$ unless $\lambda = -p^r \alpha$ for some $\alpha \in S, r \geq 0$. **2.7. The second cohomology group.** One of the main results in [8] is a complete description of $H^2(B, \lambda)$. When p > h we shall recover this result below (see Section 5) so we do not give the statement here. One of the features is that for any λ its second *B*-cohomology group is at most 1-dimensional (as was the case for H^1 , see 2.6).

We emphasize that [8] describes $H^2(B, \lambda)$ for all p whereas we focus in this paper only on the case p > h.

2.8. SL_2 and SL_3 . The only Borel subgroup B for which the full story about $H^{\bullet}(B, \lambda)$ is known is the Borel subgroup of SL_2 . Since (in general) U is normal in B and T is reductive we have $H^i(B, \lambda) = H^i(U, k)_{-\lambda}$. Now, when U is 1-dimensional the cohomology $H^{\bullet}(U, k)$ is completely described in [13].

In the SL_3 case the cohomology $H^{\bullet}(B_q, \lambda)$ was calculated in [4]. Here B_q (cf. Section 7 below) denotes the Borel subalgebra of the quantum group corresponding to SL_3 and q is assumed to be a complex root of unity of odd order at least 3. Many of the calculations for this case can easily be carried over to the characteristic p situation giving a start for the determination of B-cohomology for $B < SL_3(k)$.

3. Methods

3.1. In this section we continue to assume that char k = p > 0. Even though the spectral sequence (2.1) is not so effective in characteristic p it has the following very useful variant.

Note that we may replace G by any parabolic subgroup P containing B. In particular, we shall explore the case where $P = P_{\alpha}$ is the minimal parabolic subgroup corresponding to $\alpha \in S$. Writing $H^i_{\alpha}(-)$ short for $H^i_{\alpha}(P_{\alpha}/B, -)$ we get in this way for all $i \geq 0$

$$H^{i}(B,\lambda) \simeq H^{i}(P_{\alpha}, H^{0}_{\alpha}(\lambda)) \text{ if } \langle \lambda, \alpha^{\vee} \rangle \ge 0,$$

$$(3.1)$$

$$H^{i+1}(B,\lambda) \simeq H^{i}(P_{\alpha}, H^{1}_{\alpha}(\lambda)) \text{ if } \langle \lambda, \alpha^{\vee} \rangle \le -2, \tag{3.2}$$

$$H^{i}(B,\lambda) = 0 \text{ if } \langle \lambda, \alpha^{\vee} \rangle = -1.$$
(3.3)

Note also that $H^i(P_\alpha, M) \simeq H^i(B, M)$ for all *i* when *M* is a P_α -module (this follows from the same spectral sequence argument by observing that for such *M* we have $H^0_\alpha(M) \simeq M$ and $H^1_\alpha(M) = 0$).

Recall that when $0 \leq \langle \lambda, \alpha^{\vee} \rangle < p$ then $H^0_{\alpha}(\lambda) \simeq H^1_{\alpha}(s_{\alpha} \cdot \lambda)$. Using this together with (3.1) and (3.2) we get that for all $i \geq 0$

$$H^{i}(B,\lambda) \simeq H^{i+1}(B, s_{\alpha} \cdot \lambda) \text{ whenever } 0 \le \langle \lambda, \alpha^{\vee} \rangle < p.$$
 (3.4)

3.2. Let B_1 denote the first Frobenius kernel in B. This means that B_1 is the subgroup scheme obtained as the kernel of the Frobenius homomorphism F on B. When M is a B-module we denote by $M^{(1)}$ the Frobenius twist of M, i.e. the same vector space M but with action composed with F. Similarly, if N is a B-module whose restriction to B_1 is trivial then $N^{(-1)}$ is the B-module such that $(N^{(-1)})^{(1)} = N$.

We have then for each B-module M the Lyndon-Hochschild-Serre spectral sequence

$$H^{r}(B, H^{s}(B_{1}, M)^{(-1)}) \implies H^{r+s}(B, M).$$
 (3.5)

3.3. Consider now the case where $M = \lambda$ for some $\lambda \in X$. If p is larger than h then the cohomology $H^{\bullet}(B_1, \lambda)$ is completely known for all $\lambda \in X$. By (2.5), we need only consider λ 's of the form $\lambda = w \cdot 0 + p\mu$ for some $w \in W$ and $\mu \in X$. Then we have (see [5])

$$H^{r}(B_{1}, w \cdot 0 + p\mu)^{(-1)} \simeq S^{(r-l(w))/2}(u^{*}) \otimes \mu.$$
 (3.6)

Here u^* denotes the dual of the Lie algebra u = Lie(U) with the adjoint *B*-action, S^r denotes the *r*-symmetric power, and we interpret S^r to be 0 whenever $r \notin \mathbb{N}$.

3.4. When we combine (3.6) and the spectral sequence (3.5) we obtain (cf. [4] Theorem 4.3.ii)

Proposition 3.1. Suppose p > h. Let $w \in W$, $\mu \in X$. Then we have for all i $H^{i}(B, w \cdot 0 + p\mu) \simeq H^{i-l(w)}(B, p\mu).$

This result reduces the problem of computing $H^{\bullet}(B, \lambda)$ to the case where $\lambda \in pX$.

Note also that this proposition reproves Remark 2.1 when p > h.

3.5. In order to effectively take advantage of the spectral sequence (3.5) we need by (3.6) to determine the *B*-cohomology of $S^n u^* \otimes \lambda$ for $\lambda \in X$. This we don't know how to do in general but the following short exact sequence will allow us to settle some cases.

Let $\alpha \in S$. Note that the line of weight α in u^* is a *B*-submodule and that the quotient $V_{\alpha} = u^*/\alpha$ is a P_{α} -module. This leads to an exact sequence of *B*-modules for each n > 0

$$0 \to S^{n-1}u^* \otimes \alpha \to S^n u^* \to S^n V_\alpha \to 0.$$
(3.7)

Tensoring by a weight $\lambda \in X$ we get

$$0 \to S^{n-1}u^* \otimes (\alpha + \lambda) \to S^n u^* \otimes \lambda \to S^n V_\alpha \otimes \lambda \to 0.$$
 (3.8)

This gives $H^i(B, S^n u^* \otimes \lambda) = 0$ unless $H^i(B, S^{n-1} u^* \otimes (\lambda + \alpha)) \neq 0$ or $H^i(B, S^n V_\alpha \otimes \lambda) \neq 0$.

As an easy consequence of (3.4) we get that if λ satisfies $0 \leq \langle \lambda, \alpha^{\vee} \rangle < p$ then we have for all i, n

$$H^{i}(B, S^{n}V_{\alpha} \otimes \lambda) \simeq H^{i+1}(B, S^{n}V_{\alpha} \otimes s_{\alpha} \cdot \lambda).$$
(3.9)

Lemma 3.2. Suppose p > h and let $\lambda \in X$. Then we have

$$H^{0}(B, V_{\alpha} \otimes -\lambda) = 0 \text{ unless } \lambda \in \{R^{+} \setminus \{\alpha\} \mid \lambda - \alpha \notin R^{+}\}.$$

Proof: Let L_{α} denote the Levi subgroup of P_{α} . Since V_{α} is a L_{α} -module and p > h we get from the linkage principle that $V_{\alpha} \simeq \oplus L_{\alpha}(\gamma)$ as L_{α} -modules. Here γ runs through those roots in $R^+ \setminus \{\alpha\}$ for which $\gamma + \alpha \notin R^+$ and $L_{\alpha}(\gamma)$ denotes the simple L_{α} -module of highest weight γ . Note that if $B_{\alpha} = B \cap L_{\alpha}$ then $H^0(B_{\alpha}, L_{\alpha}(\gamma) \otimes -\lambda) = 0$ unless $\lambda = s_{\alpha}(\gamma)$. Then the lemma follows.

4. B-cohomology of $S^n u^* \otimes \lambda$

In this and the following two sections we assume that $\operatorname{char} k = p > 0$.

As mentioned before, in order to calculate $H^2(B, \lambda)$ and $H^3(B, \lambda)$ explicitly, we need to compute some low degree cohomology of $S^n u^* \otimes \lambda$. This is what we do in this section.

4.1. Degree zero.

Proposition 4.1. Fix $n \in \mathbb{N}$ and $\lambda \in X$. Then

$$H^{0}(B, S^{n}u^{*} \otimes \lambda) \simeq \begin{cases} k & \text{if } n = -\operatorname{ht}(\lambda), \\ 0 & \text{otherwise.} \end{cases}$$

Proof: Since the weights of $S^n u^*$ are all ≥ 0 we can apply (2.7) to conclude that $H^0(B, S^n u^* \otimes \lambda) = 0$ unless $\lambda \leq 0$. So we may assume λ is not dominant. Choose then $\alpha \in S$ such that $\langle \lambda, \alpha^{\vee} \rangle < 0$. The exact sequence (3.8) gives

 $H^0(B, S^n u^* \otimes \lambda) \simeq H^0(S^{n-1} u^* \otimes (\alpha + \lambda)).$

Now an easy induction on n proves the proposition.

Remark 4.2. Proposition 4.1 remains true when $\operatorname{char} k = 0$.

4.2. Degree 1. First note that for each $\alpha, \beta \in S$ we have

$$\alpha + \beta \in \mathbb{R}^+$$
 if and only if $\langle \beta, \alpha^{\vee} \rangle < 0$.

Proposition 4.3. Assume p > h and let $\lambda \in X$. Then

$$H^{1}(B, u^{*} \otimes \lambda) \simeq \begin{cases} k & \text{if } \lambda = -\beta - p^{n} \alpha \text{ for } \alpha, \beta \in S \text{ and } n > 0, \\ k & \text{if } \lambda = -\beta - \alpha \text{ for } \alpha, \beta \in S \text{ with } \langle \beta, \alpha^{\vee} \rangle < 0, \\ k & \text{if } \lambda = -2\alpha \text{ for } \alpha \in S, \\ k^{2} & \text{if } \lambda = -\beta - \alpha \text{ for } \alpha, \beta \in S \text{ with } \langle \beta, \alpha^{\vee} \rangle = 0, \\ k & \text{if } \lambda = s_{\alpha}s_{\beta} \cdot 0 \text{ for } \alpha, \beta \in S \text{ with } \langle \beta, \alpha^{\vee} \rangle < 0, \\ 0 & \text{otherwise.} \end{cases}$$

Proof: We begin by checking each of the first five cases where the proposition claims that the cohomology is non-zero.

So consider first the case where $\lambda = -\beta - p^n \alpha$ for some $\alpha, \beta \in S, n > 0$. We have the following exact sequence

$$0 \to (\beta + \lambda) \to u^* \otimes \lambda \to V_\beta \otimes \lambda \to 0.$$
(4.1)

We note that $-\lambda$ is not a weight of V_{β} and that no weights of $V_{\beta} \otimes \lambda$ have the form $-p^m \gamma$ with $\gamma \in S$, $m \geq 0$. Hence (using (2.9)) we have

$$H^0(B, V_\beta \otimes \lambda) = H^1(B, V_\beta \otimes \lambda) = 0$$

This together with the long exact sequence arising from (4.1) give

$$H^1(B, u^* \otimes \lambda) \simeq H^1(B, -p^n \alpha) \simeq k.$$

Consider now $\lambda = -\beta - \alpha$ for some $\alpha, \beta \in S$ with $\alpha + \beta \in R^+$. In this case we still have that $H^0(B, V_\beta \otimes \lambda) = 0$, see Lemma 3.2. We claim that $H^1(B, V_\beta \otimes -\alpha - \beta) = 0$. To see this we consider the sequence

$$0 \to \alpha \to V_\beta \to Q \to 0. \tag{4.2}$$

Noting that $\alpha + \beta$ is a minimal weight of Q (with multiplicity 1) it follows immediately that $H^0(B, Q \otimes (-\beta - \alpha)) \simeq k$. No weights of $Q \otimes (-\beta - \alpha)$ have the form $-p^m \mu$ with $\mu \in S$, $m \ge 0$. Therefore we get $H^1(B, Q \otimes (-\beta - \alpha)) = 0$ and then the long exact sequence coming from (4.2) gives $H^1(B, V_\beta \otimes -\beta - \alpha) = 0$. Combining this claim with the exact sequence (3.8) we get

$$H^1(B, u^* \otimes (-\beta - \alpha)) \simeq H^1(B, -\alpha) \simeq k.$$

Next consider $\lambda = -\beta - \alpha$ for some $\alpha, \beta \in S$ with $\alpha + \beta \notin R^+$. Arguing as before we have $H^0(B, V_\beta \otimes -\alpha - \beta) = 0$, but this time we have also $H^0(B, Q \otimes (-\beta - \alpha)) = 0$. Note that if $\beta = \alpha$ then 2α is not a weight of V_α . In this case we get $H^1(B, V_\alpha \otimes -2\alpha) = 0$. Weight considerations as before imply that if $\alpha \neq \beta$ then $H^1(B, V_\beta \otimes -\alpha - \beta) \simeq k$. Inserting in the long exact sequence arising from (3.8) we get the desired conclusions because $H^2(B, -\alpha) \simeq H^1(B, k_0) = 0$.

Finally, consider $\lambda = s_{\alpha}s_{\beta} \cdot 0$ for some $\alpha, \beta \in S$ with $\langle \beta, \alpha^{\vee} \rangle < 0$. Then $\langle \lambda, \alpha^{\vee} \rangle = \langle \beta, \alpha^{\vee} \rangle - 2 < 0$. By (3.9), the sequence (3.8) then gives

$$H^1(B, u^* \otimes \lambda) \simeq H^1(B, V_\alpha \otimes \lambda) \simeq H^0(B, V_\alpha \otimes s_\alpha \cdot \lambda)$$

because $H^1(B, \lambda + \alpha) = H^2(B, \lambda + \alpha) = 0$. Since $s_{\alpha} \cdot \lambda = -\beta$ we have $H^0(B, V_{\alpha} \otimes s_{\alpha} \cdot \lambda) \simeq k$ and we have thus checked the last of the non-vanishing cases.

Assume therefore now that $H^1(B, u^* \otimes \lambda) \neq 0$ for some $\lambda \in X$. To finish the proof we need to show that we are then in one of the above five cases.

Weight considerations show via (2.9) that $\lambda = -\beta - p^n \alpha$ for some $\beta \in R^+$, $\alpha \in S$, $n \ge 0$. We claim that if n > 0 then $\beta \in S$ (i.e. we are in the first case listed in the proposition). If $\beta \notin S$ then (2.9) gives $H^1(B, \lambda + \alpha) = 0$ and hence the sequence (3.7) implies

$$H^1(B, u^* \otimes \lambda) \subseteq H^1(B, V_\alpha \otimes \lambda) \simeq H^0(B, V_\alpha \otimes H^1_\alpha(\lambda)).$$

Here the claimed isomorphism comes from the fact that $\langle \lambda, \alpha^{\vee} \rangle = -\langle \beta, \alpha^{\vee} \rangle - 2p^n < 0$. On the other hand, if we tensor the sequence (3.7) by $H^1_{\alpha}(\lambda)$ we get the sequence

$$\to H^0(B, u^* \otimes H^1_{\alpha}(\lambda)) \to H^0(B, V_{\alpha} \otimes H^1_{\alpha}(\lambda)) \to H^1(B, \alpha \otimes H^1_{\alpha}(\lambda)).$$

Recall that the weights of $H^1_{\alpha}(\lambda)$ are $\lambda + \alpha, \ldots, s_{\alpha} \cdot \lambda$. Therefore, if μ is a weight of $H^1_{\alpha}(\lambda)$ then $H^0(B, u^* \otimes \mu) = 0$ unless $\beta \in S$, see Proposition 4.1. Also $H^1(B, \alpha + \mu) = 0$ unless $\beta \in S$. This proves the claim.

On the other hand, if n = 0 then we claim that we are in one of the remaining four cases. Since $-\beta - \alpha \notin X^+$ we may choose $\gamma \in S$ such that $\langle \lambda, \gamma^{\vee} \rangle < 0$. As $\langle \lambda, \gamma^{\vee} \rangle > -p$ we get from (3.9)

$$H^{1}(B, V_{\gamma} \otimes \lambda) \simeq H^{0}(B, V_{\gamma} \otimes s_{\gamma} \cdot \lambda).$$
(4.3)

Using our assumption that $H^1(B, u^* \otimes \lambda) \neq 0$, the sequence (4.1) relative to γ gives that either $H^1(B, \lambda + \gamma) \neq 0$ or $H^1(B, V_{\gamma} \otimes \lambda) \neq 0$.

Suppose first that $H^1(B, \lambda + \gamma) \neq 0$. Then $\lambda = -\gamma - p^m \delta$ for some $\delta \in S$, $m \geq 0$. Since $\lambda = -\beta - \alpha$ we have m = 0 and $\beta \in \{\gamma, \delta\} \subseteq S$. This means that we are in one of the cases 2, 3 or 4 on the list.

Suppose $H^1(B, V_{\gamma} \otimes \lambda) \neq 0$. By (4.3), we get $H^0(B, V_{\gamma} \otimes s_{\gamma} \cdot \lambda) \neq 0$. Then the sequence

$$H^0(B, u^* \otimes s_{\gamma} \cdot \lambda) \to H^0(B, V_{\gamma} \otimes s_{\gamma} \cdot \lambda) \to H^1(B, \gamma + s_{\gamma} \cdot \lambda)$$

gives either $H^0(B, u^* \otimes s_{\gamma} \cdot \lambda) \neq 0$ or $H^1(B, \gamma + s_{\gamma} \cdot \lambda) \neq 0$. This means that either $s_{\gamma} \cdot \lambda = -\delta$ or $\gamma + s_{\gamma} \cdot \lambda = -p^m \delta$ for some $\delta \in S$, $m \geq 0$. The first possibility means that $\lambda = s_{\gamma} \cdot (-\delta) = s_{\gamma} s_{\delta} \cdot 0$, i.e. we are in case 4 or 5 on our list. The second possibility can only occur with m = 0 and then $s_{\gamma} \cdot \lambda = -\gamma - \delta$. But in that case

$$H^0(B, V_\gamma \otimes s_\gamma \cdot \lambda) = H^0(B, V_\gamma \otimes -\delta - \gamma)$$

and this is 0 according to Lemma 3.2. This completes the proof.

The same arguments as in Proposition 4.3 give

Proposition 4.4. Let $\lambda \in X$. If char k = 0 then

$$H^{1}(B, u^{*} \otimes \lambda) \simeq \begin{cases} k & \text{if } \lambda = -2\alpha \text{ for } \alpha \in S, \\ k & \text{if } \lambda = -\beta - \alpha \text{ for } \alpha, \beta \in S \text{ with } \langle \beta, \alpha^{\vee} \rangle < 0, \\ k^{2} & \text{if } \lambda = -\beta - \alpha \text{ for } \alpha, \beta \in S \text{ with } \langle \beta, \alpha^{\vee} \rangle = 0, \\ k & \text{if } \lambda = s_{\alpha}s_{\beta} \cdot 0 \text{ for } \alpha, \beta \in S \text{ with } \langle \beta, \alpha^{\vee} \rangle < 0, \\ 0 & \text{otherwise.} \end{cases}$$

5.
$$H^{\bullet}(B, \lambda)$$
 in degrees 2 and 3

In this section we assume p > h and then compute $H^2(B, \lambda)$ and $H^3(B, \lambda)$ for all $\lambda \in X$.

5.1. Degree 2.

Theorem 5.1. Let $\lambda \in X$. Then

$$H^{2}(B,\lambda) \simeq \begin{cases} k & \text{if } \lambda = p^{n}(-\alpha) \text{ for } \alpha \in S \text{ and } n > 0, \\ k & \text{if } \lambda = p^{n}(w \cdot 0) \text{ for } w \in W \text{ with } l(w) = 2, n \ge 0, \\ k & \text{if } \lambda = p^{n}(-\alpha - p^{m}\beta) \text{ for } \alpha, \beta \in S, n \ge 0, m > 0, \\ 0 & \text{otherwise.} \end{cases}$$

Proof: If $\lambda \notin pX$ then we use Proposition 3.1 to reduce to a lower degree cohomology group. These are described in Section 2. So suppose $\lambda = p\mu$ for some $\mu \in X$. We then use the spectral sequence (3.5) to compute $H^2(B, \lambda)$. By (3.6), there are only two E_2 -terms that may contribute, namely $H^2(B, \mu)$ and $H^0(B, u^* \otimes \mu)$. If $\mu \in -S$ then the first of these terms vanishes (by Proposition 3.1) whereas the second equals k. Hence $H^2(B, -p\alpha) = k$ for all $\alpha \in S$. On the other hand, if $\mu \notin -S$ then we have that that the second term vanishes (according to Proposition 4.1) and $H^2(B, \lambda) \simeq H^2(B, \mu)$. We repeat this argument if $\mu \in pX$ (note that this gives $H^2(B, p\mu) \simeq H^2(B, p^2\mu) \simeq \cdots \simeq$ $H^2(B, p^n\mu)$ for all $\mu \in X$ and all n > 0). Otherwise, $H^2(B, \mu)$ identifies with a lower degree cohomology group as before. It is now a matter of bookkeeping to see that this leads to the statement in the theorem.

5.2. Degree 3.

Theorem 5.2. Let $\lambda \in X$. Then

$$H^{3}(B,\lambda) \simeq \begin{cases} k & \text{if } \lambda = p^{n}(-2\alpha) \text{ for } \alpha \in S \text{ and } n > 0, \\ k^{2} & \text{if } \lambda = p^{n}(-\beta - p^{m}\alpha) \text{ for } \alpha, \beta \in S \text{ and } n, m > 0, \\ k & \text{if } \lambda = p^{n}(-\beta - \alpha) \text{ for } \alpha, \beta \in S \text{ with} \\ \langle \beta, \alpha^{\vee} \rangle < 0 \text{ and } n > 0, \\ k^{2} & \text{if } \lambda = p^{n}(-\beta - \alpha) \text{ for } \alpha, \beta \in S \text{ with} \\ \langle \beta, \alpha^{\vee} \rangle = 0 \text{ and } n > 0, \\ k & \text{if } \lambda = p^{n}(s_{\alpha}s_{\beta} \cdot 0) \text{ for } \alpha, \beta \in S \text{ with} \\ \langle \beta, \alpha^{\vee} \rangle < 0 \text{ and } n > 0, \\ k & \text{if } \lambda = p^{n}(w \cdot 0) \text{ for } w \in W \text{ with} \\ l(w) = 3 \text{ and } n \geq 0, \\ k & \text{if } \lambda = p^{n}(w \cdot 0 - p^{m}\alpha) \text{ for } \alpha \in S, w \in W \text{ with} \\ l(w) = 2 \text{ and } n \geq 0, m > 0, \\ k & \text{if } \lambda = p^{n}(p^{m}w \cdot 0 - \alpha) \text{ for } \alpha \in S, w \in W \text{ with} \\ l(w) = 2 \text{ and } n \geq 0, m > 0, \\ k & \text{if } \lambda = -\beta - p^{n}\alpha \text{ for } \alpha, \beta \in S, n > 0, \\ k & \text{if } \lambda = p^{n}(-\alpha - p^{m}\beta - p^{l}\gamma) \text{ for } \alpha, \beta, \gamma \in S \text{ and} \\ n \geq 0, m > l > 0, \\ 0 & \text{otherwise.} \end{cases}$$

Proof: Suppose that $\lambda = p\mu$ for some $\mu \in X$. Consider the spectral sequence (3.5). The only E_2 -terms that contribute to $H^3(B,\lambda)$ are $H^3(B,\mu)$ and $H^1(B, u^* \otimes \mu)$. The latter vanishes if $\mu \in pX$. Hence we get $H^3(B, p\mu) \simeq H^3(B, p^2\mu) \simeq \cdots \simeq H^3(B, p^n\mu)$ for all $\mu \in X$ and all n > 0.

For those μ listed in Proposition 4.3, we have that unless $\mu = -\beta - p^n \alpha$ for some $\alpha, \beta \in S, n > 0$ then $H^3(B, \mu) = 0$ and hence $H^3(B, p\mu) \simeq H^1(B, u^* \otimes \mu)$.

Suppose now that $\mu = -\beta - p^n \alpha$ with $\alpha, \beta \in S$ and n > 0. Proposition 4.3 and Theorem 5.1 (combined with Proposition 3.1) yield that both of the above terms equal k. In this situation we have an exact sequence

$$0 \to H^3(B,\mu) \to H^3(B,p\mu) \to H^1(B,u^* \otimes \mu) \to 0$$

i.e. we have $H^3(B, p\mu) \simeq k^2$.

On the other hand, if μ is not one of those weights listed in Proposition 4.3 then the second term vanishes. In this case we have $H^3(B, p\mu) \simeq H^3(B, \mu)$. Arguing as in Theorem 5.1 the stated results follow.

6. Upper bound

In this section we determine for each $\lambda \in X$ an upper bound *i* for the degree in which the cohomology $H^i(B, \lambda)$ can be non-zero. We consider first the case where $\lambda \in pX$.

Proposition 6.1. Let $\lambda \in X$. Then

$$H^{i}(B, p\lambda) = 0 \ for \ i > -2 \operatorname{ht}(\lambda)$$

Proof: We have $H^{\bullet}(B, p\lambda) = 0$ unless $\lambda \leq 0$. In particular, we may assume that $ht(\lambda) \leq 0$. We then proceed by induction on $n = -2 ht(\lambda)$. If n = 0 we have $\lambda = 0$. In this case the claim is clearly true, see 2.5-6.

Suppose now that i > n > 0. Since $\lambda \notin X^+$ we can choose $\alpha \in S$ with $\langle \lambda, \alpha^{\vee} \rangle < 0$. Then we have for each $i \geq 1$

$$H^{i}(B, p\lambda) \simeq H^{i-1}(B, H^{1}_{\alpha}(p\lambda)).$$

Set $\mu = p\lambda$ and $a = -\langle \lambda, \alpha^{\vee} \rangle - 1$. Then the weights of $H^1_{\alpha}(\mu)$ are $\mu + \alpha, \mu + 2\alpha, \ldots, s_{\alpha} \cdot \mu$. Note that the weights ν of $H^1_{\alpha}(\mu)$ which belong to $W \cdot 0 + p\mathbb{Z}R$ have the form $\nu = \mu + jp\alpha$ with $j \in \{1, \ldots, a\}$, or $\nu = s_{\alpha} \cdot \mu - jp\alpha$ with $j \in \{0, \ldots, a\}$.

Consider first $\nu = \mu + jp\alpha$ for some $j \in \{1, ..., a\}$. Since $i - 1 > n - 1 \ge -2 \operatorname{ht}(\lambda + j\alpha) = n - 2j$ we get by induction that $H^{i-1}(B, \nu) = 0$.

Consider now $\nu = s_{\alpha} \cdot \mu - jp\alpha$ for some $j \in \{0, \ldots, a\}$. Then

$$\nu = s_{\alpha} \cdot 0 + p(s_{\alpha}(\lambda) - j\alpha) = s_{\alpha} \cdot 0 + p(\lambda - (\langle \lambda, \alpha^{\vee} \rangle + j)\alpha).$$

Note

$$-2\operatorname{ht}(\lambda - (\langle \lambda, \alpha^{\vee} \rangle + j)\alpha) = -2\operatorname{ht}(\lambda) + 2(\langle \lambda, \alpha^{\vee} \rangle + j)$$
$$\leq -2\operatorname{ht}(\lambda) + 2(\langle \lambda, \alpha^{\vee} \rangle + a)$$
$$= n - 2.$$

Then by induction we get from Proposition 3.1 that

$$H^{i-1}(B,\nu) \simeq H^{i-2}(B,p(\lambda - (\langle \lambda, \alpha^{\vee} \rangle + j)\alpha)) = 0.$$

We conclude that $H^{i-1}(B, H^1_{\alpha}(\mu)) = 0$. This completes the proof. Combining Proposition 6.1 with Proposition 3.1 we find

Corollary 6.2. Let $\lambda \in X$ and $w \in W$. Then

$$H^{i}(B, w \cdot 0 + p\lambda) = 0 \quad for \quad i > l(w) - 2\operatorname{ht}(\lambda).$$

Remark 6.3. We believe that the bound in Corollary 6.2 is in fact the best possible. As evidence we point to the rank 1 computations in [13], and to the quantum case, see Remark 7.1 below.

7. The quantum case

In this section the field k will be arbitrary and we consider an element $q \in k^*$. We denote by U_q the quantum group with parameter q associated with our root system R. By this we mean more precisely the specialization at $q \in k$ of the Lusztig integral form of the quantized enveloping algebra attached to R. We denote by B_q the Borel subalgebra in U_q corresponding to the negative roots.

Here we shall demonstrate that the results in the previous sections have direct analogues for B_q . The proofs are almost identical and we therefore omit the details.

7.1. Just as for B above each $\lambda \in X$ (now identified with the set of integral weights in $\operatorname{span}_{\mathbb{R}} R$) defines a character of B_q , see e.g. [6]. Our aim is to study the cohomology $H^{\bullet}(B_q, \lambda)$, where λ denotes the 1-dimensional B_q -module obtained in this way. Note that $H^0(B_q, -)$ is now the fixed point functor for B_q in the Hopf algebra sense.

When q is not a root of unity then we can argue as in Section 2.2 using this time the quantized Borel-Weil-Bott theorem [6] and the complete reducibility of U_q valid in this case by [6] Corollary 7.7. In this way we obtain then the following complete description of $H^{\bullet}(B_q, \lambda)$ (in analogy with (2.4)):

$$H^{r}(B_{q},\lambda) \simeq \begin{cases} k & \text{if } \lambda = w \cdot 0 \text{ for some } w \in W \text{ with } l(w) = r, \\ 0 & \text{otherwise.} \end{cases}$$
(7.1)

7.2. We let from now on $q \in k^*$ denote a primitive *l*-th root of unity. We shall assume that *l* is odd, larger than the Coxeter number *h*, and prime to 3 if the root system *R* contains a component of type G_2 .

For each $\alpha \in S$ we let $E_{\alpha}, F_{\alpha}, K_{\alpha}^{\pm 1}$ denote the standard generators. Then U_q is generated by $K_{\alpha}^{\pm 1}$ together with the divided powers of all the E_{α} and F_{α} . The small quantum u_q is the subalgebra of U_q generated by all $E_{\alpha}, F_{\alpha}, K_{\alpha}^{\pm 1}$ modulo the ideal generated by $K_{\alpha}^l - 1$. Moreover, b_q will denote the small quantum Borel subalgebra of u_q corresponding to B_q .

We have a quantum Frobenius homomorphism, see [7], Section 1, Fr_q : $U_q \to \overline{U}$. Here \overline{U} denotes the specialisation at k of the Kostant Z-form of the enveloping algebra of the Lie algebra for the semisimple group \overline{G} corresponding to R. We identify the category of finite dimensional \overline{U} -modules with the category of finite dimensional rational \overline{G} -modules. We shall also need the restriction of F_q to B_q mapping into the enveloping algebra associated with the Borel subgroup \overline{B} in \overline{G} .

7.3. We limit ourselves to finite dimensional modules for U_q and B_q of type **1**. So if M is a U_q (resp. B_q)-module whose restriction to u_q (resp. b_q) is trivial then we use the quantum Frobenius homomorphism F_q to make M into a \overline{G} (resp. \overline{B})-module that we denote by $M^{(-1)}$ in analogy with the notation in Section 3.2. Similarly, if N is a \overline{G} (resp. \overline{B})-module then $N^{(1)}$ denotes the U_q (resp. B_q)-module obtained via Fr_q . As in Section 3.2 we have for each B_q -module the Lyndon-Hochschild-Serre spectral sequence

$$H^{r}(\bar{B}, H^{s}(b_{q}, M)^{(-1)}) \implies H^{r+s}(B_{q}, M).$$
(7.2)

The cohomology $H^r(b_q, \lambda)$ is completely known, see [12]

$$H^{r}(b_{q},\lambda) = 0$$
 for all $r \ge 0$ unless $\lambda \in W \cdot 0 + l\mathbb{Z}R.$ (7.3)

$$H^{r}(b_{q}, w \cdot 0 + l\lambda)^{(-1)} \simeq S^{(r-l(w))/2} \bar{u}^{*} \otimes \lambda$$
(7.4)

where \bar{u} is the Lie algebra of the unipotent radical of \bar{B} . The same arguments as before (see Sections 2.4 and 3.4, respectively Corollary 6.2) give then

$$H^{r}(B_{q},\lambda) = 0 \text{ for all } r \ge 0 \text{ unless } \lambda \in W \cdot 0 + l\mathbb{Z}R,$$
(7.5)

$$H^{r}(B_{q}, w \cdot 0 + l\lambda) \simeq H^{r-l(w)}(B_{q}, l\lambda) \text{ for all } w \in W, r \in \mathbb{N},$$
(7.6)

$$H^{r}(B_{q}, w \cdot 0 + l\lambda) = 0 \text{ for all } r > l(w) - 2 \operatorname{ht}(\lambda).$$
(7.7)

Remark 7.1. Suppose that $\alpha \in S$ and let $w \in W$. In characteristic zero weight considerations (for details we refer to [4] Corollary 4.6) give for each m > 0

$$H^{r}(B_{q}, w \cdot 0 - ml\alpha) \simeq \begin{cases} k & \text{if } r = l(w) + 2m, l(w) + 2m - 1, \\ 0 & \text{otherwise.} \end{cases}$$
(7.8)

This shows that there are cases where $H^{l(w)-2\operatorname{ht}(\lambda)}(B_q, w \cdot 0 + l\lambda)$ is non-zero.

7.4. Degrees 0 and 1. Using the Lyndon-Hochschild-Serre spectral sequence (7.2), the cohomology for B_q can be related to that for \overline{B} . Combining this with the results in the previous sections, we are now able to completely determine some of the Hochschild cohomology of 1-dimensional B_q -modules.

It is clear that

$$H^0(B_q, k) \simeq k$$
 and $H^0(B_q, \lambda) \neq 0$ if and only if $\lambda = 0$.

Noting that the only E_2 -term in (7.2) that contributes to $H^1(B_q, l\lambda)$ is $H^1(\bar{B}, \lambda)$, we have

$$H^1(B_q, l\lambda) \simeq H^1(\bar{B}, \lambda).$$

Therefore the description of the first cohomology $H^1(B_q, \lambda)$ depends on whether k is a field of characteristic 0 or of characteristic p > 0. If char k = 0 then we obtain from (2.4)

$$H^{1}(B_{q},\lambda) \simeq \begin{cases} k & \text{if } \lambda = -\alpha \text{ or } -l\alpha \text{ for } \alpha \in S, \\ 0 & \text{otherwise.} \end{cases}$$
(7.9)

On the other hand, if char k = p > 0 then we have (using this time (2.9))

$$H^{1}(B_{q},\lambda) \simeq \begin{cases} k & \text{if } \lambda = -p^{n}\alpha \text{ or } -lp^{n}\alpha \text{ for } \alpha \in S, n \ge 0, \\ 0 & \text{otherwise.} \end{cases}$$
(7.10)

7.5. Degree 2. The only terms in (7.2) that contribute to $H^2(B_q, l\lambda)$ are $H^2(\bar{B}, \lambda)$ and $H^0(\bar{B}, \bar{u}^* \otimes \lambda)$. Hence by (2.4) and Proposition 4.1 we get

Theorem 7.2. Let $\lambda \in X$. If char k = 0 then

$$H^{2}(B_{q},\lambda) \simeq \begin{cases} k & \text{if } \lambda = -l\alpha \text{ for } \alpha \in S, \\ k & \text{if } \lambda = lw \cdot 0 \text{ for } w \in W \text{ with } l(w) = 2, \\ k & \text{if } \lambda = -\beta - l\alpha \text{ for } \alpha, \beta \in S, \\ k & \text{if } \lambda = w \cdot 0 \text{ for } w \in W \text{ with } l(w) = 2, \\ 0 & \text{otherwise.} \end{cases}$$

When p > 0 we replace (2.4) in the above argument by Theorem 5.1. Then we find

Theorem 7.3. Let $\lambda \in X$. If char k = p > 0 then

$$H^{2}(B_{q},\lambda) \simeq \begin{cases} k & \text{if } \lambda = lp^{n}(-\alpha) \text{ for } \alpha \in S, n \geq 0, \\ k & \text{if } \lambda = lp^{n}(w \cdot 0) \text{ for } w \in W \text{ with } l(w) = 2, n \geq 0, \\ k & \text{if } \lambda = lp^{n}(-\alpha - p^{m}\beta) \text{ for } \alpha, \beta \in S, n \geq 0, m > 0 \\ k & \text{if } \lambda = w \cdot 0 \text{ for } w \in W \text{ with } l(w) = 2, \\ k & \text{if } \lambda = -\beta - lp^{n}\alpha \text{ for } \alpha, \beta \in S, n \geq 0, \\ 0 & \text{otherwise.} \end{cases}$$

7.6. Degree 3. We now turn to $H^3(B_q, \lambda)$. The only E_2 -terms in (7.2) that contribute to $H^3(B_q, l\lambda)$ are $H^3(\bar{B}, \lambda)$ and $H^1(\bar{B}, \bar{u}^* \otimes \lambda)$. As in the modular case we get

Theorem 7.4. Let $\lambda \in X$. If char k = 0 then

$$H^{3}(B,\lambda) \simeq \begin{cases} k & \text{if } \lambda = l(-2\alpha) \text{ for } \alpha \in S, \\ k & \text{if } \lambda = l(-\beta - \alpha) \text{ for } \alpha, \beta \in S \text{ with } \langle \beta, \alpha^{\vee} \rangle < 0, \\ k^{2} & \text{if } \lambda = l(-\beta - \alpha) \text{ for } \alpha, \beta \in S \text{ with } \langle \beta, \alpha^{\vee} \rangle = 0, \\ k & \text{if } \lambda = l(s_{\alpha}s_{\beta} \cdot 0) \text{ for } \alpha, \beta \in S \text{ with } \langle \beta, \alpha^{\vee} \rangle \neq 0, \\ k & \text{if } \lambda = l(w \cdot 0) \text{ for } w \in W \text{ with } l(w) = 3, \\ k & \text{if } \lambda = w \cdot 0 \text{ for } w \in W \text{ with } l(w) = 3, \\ k & \text{if } \lambda = w \cdot 0 - l\alpha \text{ for } \alpha \in S \text{ and } w \in W \text{ with } \\ l(w) = 2, \\ k & \text{if } \lambda = lw \cdot 0 - \alpha \text{ for } \alpha \in S \text{ and } w \in W \text{ with } \\ l(w) = 2, \\ k & \text{if } \lambda = -\beta - l\alpha \text{ for } \alpha, \beta \in S, \\ 0 & \text{otherwise.} \end{cases}$$

Theorem 7.5. Suppose that char k = p > 0. If $\lambda \in X$ then

$$H^{3}(B,\lambda) \simeq \begin{cases} k & if \lambda = lp^{n}(-2\alpha) \text{ for } \alpha \in S \text{ and } n > 0, \\ k^{2} & if \lambda = lp^{n}(-\beta - p^{m}\alpha) \text{ for } \alpha, \beta \in S \text{ with} \\ \langle \beta, \alpha^{\vee} \rangle < 0 \text{ and } n > 0, \\ k^{2} & if \lambda = lp^{n}(-\beta - \alpha) \text{ for } \alpha, \beta \in S \text{ with} \\ \langle \beta, \alpha^{\vee} \rangle = 0 \text{ and } n > 0, \\ k^{2} & if \lambda = lp^{n}(s_{\alpha}s_{\beta} \cdot 0) \text{ for } \alpha, \beta \in S \text{ with} \\ \langle \beta, \alpha^{\vee} \rangle \neq 0 \text{ and } n > 0, \\ k & if \lambda = lp^{n}(w \cdot 0) \text{ for } w \in W \text{ with} \\ l(w) = 3 \text{ and } n \geq 0, \\ k & if \lambda = lp^{n}(w \cdot 0 - p^{m}\alpha) \text{ for } \alpha \in S, w \in W \\ with l(w) = 2 \text{ and } n \geq 0, m > 0 \\ k & if \lambda = lp^{n}(p^{m}w \cdot 0 - \alpha) \text{ for } \alpha \in S, w \in W \\ with l(w) = 2 \text{ and } n \geq 0, m > 0 \\ k & if \lambda = lp^{n}(-\alpha - p^{m}\beta - p^{\nu}\gamma) \text{ for } \alpha, \beta, \gamma \in S \\ and n \geq 0, m > v > 0, \\ k & if \lambda = w \cdot 0 \text{ for } w \in W \text{ with } l(w) = 3, \\ k & if \lambda = w \cdot 0 \text{ for } \alpha \in S, w \in W \text{ with} \\ l(w) = 2 \text{ and } n \geq 0, \\ k & if \lambda = -\beta - lp^{n}\alpha \text{ for } \alpha, \beta \in S \text{ and } n > 0, \\ k & if \lambda = -\beta - lp^{n}w \cdot 0 \text{ for } \alpha \in S, w \in W \text{ with} \\ l(w) = 2 \text{ and } n \geq 0, \\ k & if \lambda = -\beta - lp^{n}w \cdot 0 \text{ for } \alpha \in S, w \in W \text{ with} \\ l(w) = 2 \text{ and } n \geq 0, \\ k & if \lambda = -\alpha + lp^{n}(-\beta - p^{m}\gamma) \text{ for } \alpha, \beta, \gamma \in S \\ and n \geq 0, m > 0, \\ 0 & otherwise. \end{cases}$$

References

- [1] H.H. Andersen, The first cohomology group of a line bundle on G/B, Invent. Math. 51 (1979), 287–296.
- [2] Henning Haahr Andersen, The strong linkage principle, J. Reine Ang. Math. 315 (1980), 53-59.
- [3] H.H. Andersen, Extensions of modules for algebraic groups, Amer. J. Math. 106 (1984), 489–504.
- [4] H.H. Andersen, Cohomology of line bundles, to appear,
- [5] H.H. Andersen, Jens Carsten Jantzen, Cohomology of induced representations for algebraic groups, Math. Ann. 269 (1984), 487–525.
- [6] Henning Haahr Andersen, Patrick Polo and Wen Kexin, Representations of quantum algebras, Invent. Math. 104 (1991), 1–59.
- [7] Henning Haahr Andersen, Wen Kexin, Representations of quantum algebras. The mixed case, J. reine angew. Math. 427 (1992), 35–50.
- [8] Christopher P. Bendel, Daniel K. Nakano, and Cornelius Pillen, Second cohomology groups for Frobenius kernels and related structures, to appear.
- [9] Raoul Bott, Homogeneous vector bundles, Ann. of Math. (2) 44 (1957), 203–248.
- [10] E. Cline, B. Parshall, L. Scott, and W. van der Kallen, *Rational and generic cohomology*, Invent. Math. **39** (1977), no. 2, 143–163.

[11] Michel Demazure, A very simple proof of Bott's theorem, Invent. math.33 (1976), 271–272.

[12] Victor Ginzburg and Shrawan Kumar, Cohomology of quantum groups at roots of unity, Duke Math. J. 69 (1993), no. 1, 179–198.

[13] J. O'Halloran, A vanishing theorem for the cohomology of Borel subgroups, Comm. Algebra **11** (1983), 1603–1606.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF AARHUS BUILDING 530 NY MUNKEGADE 8000 AARHUS C DENMARK *E-mail address*: mathha@imf.au.dk, rian@imf.au.dk