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B-COHOMOLOGY

HENNING HAAHR ANDERSEN AND TARIK RIAN

Abstract. Let B be a Borel subgroup in a reductive algebraic group G
over a field k. We study the cohomology H•(B, λ) of 1-dimensional B-
modules λ. When char k = 0 there is an easy a well-known description of
this cohomology whereas the corresponding problem in characteristic p > 0
is wide open. We develop some new techniques which enable us to calculate
all such cohomology in degrees at most 3 when p is larger than the Coxeter
number for G. Our methods also apply to the corresponding question for
quantum groups at roots of unity.

1. Introduction

Let G be a reductive algebraic group over an algebraically closed field k
and denote by B a Borel subgroup in G. In this paper we shall study the B-
cohomology H•(B,−) = Ext•B(k,−), i.e. the derived functors of the B-fixed
point functor H0(B,−).

We are especially interested in the B-cohomology of simple (i.e. 1-dimen-
sional) B-modules. If T is a maximal torus contained in B then B = TU
where U is the unipotent radical of B. Any character λ ∈ X(T ) of T extends
uniquely to B (by λ(U) = 1). The corresponding 1-dimensional B-module is
also denoted λ or sometimes kλ. In particular, the trivial B-module k may
also be written k0.

We want to compute H•(B, λ) for each λ ∈ X(T ). When char k = 0 this
is easy because we can compare with the corresponding G-cohomology and
take advantage of the fact that H i(G,−) = 0 for all i > 0 (G is reductive).
Moreover, the Borel-Weil-Bott theorem describes completely the cohomology
H•(G/B, λ), see (2.3) below. But when char k = p > 0 this approach fails
completely: There are non-vanishing higher G-cohomology and the Borel-Weil-
Bott theorem is no longer true. In fact, the problem of determining H•(B, λ)
is in this case wide open. Our contribution in this paper is to give a couple
of general results on the behaviour of H•(B, λ) and to calculate H2(B, λ) and
H3(B, λ) explicitly (for p larger than the Coxeter number for G).

Our results are based on a combination of several methods, see Section 3
below. The main ingredient is the spectral sequence relating B-cohomology to
the cohomology for the first Frobenius kernel B1 of B. We take advantage of
the fact that the cohomology H•(B1, λ) was completely determined in [5].

Our approach works equally well for quantum groups. Let Uq denote the
quantum group corresponding to G with parameter q ∈ k∗ and let Bq be a Borel
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subalgebra in Uq. When q is not a root of unity we can determine H•(Bq, λ)
exactly as in the above characteristic 0 case. So we consider the case where
q is an l-th root of unity. Then the problem of describing H•(Bq, λ) is again
wide open in general. But our methods allow us to obtain similar results as
described above for B.

2. Known results

2.1. Notation. First we fix some notation used throughout this paper. We
have already introduced G, B, T and U above. We set X = X(T ), the character
group of T (and of B). Then we denote by R ⊂ X the root system for (G, T )
and we fix a set of positive roots R+ ⊂ R by requiring that the roots of B are
in −R+. The positive roots induce an ordering on X given by λ ≥ µ if and
only if λ− µ can be written as a sum of positive roots.

We let S denote the corresponding set of simple roots and W will be the
Weyl group. A weight λ ∈ X is called dominant if 〈λ, α∨〉 ≥ 0 for all α ∈ S.
Here α∨ denotes the coroot of α. For each root α ∈ R we let sα denote the
reflection associated to α. In addition to the usual action of W on X where
sα(λ) = λ− 〈λ, α∨〉α for all α ∈ R, λ ∈ X we also consider the so-called ‘dot
action’ given by w · λ = w(λ + ρ)− ρ, w ∈ W, λ ∈ X. As usual ρ denotes half
the sum of the positive roots.

The set of dominant weights X+ parametrizes the simple modules of G via
highest weight. For λ ∈ X+ we let L(λ) be the simple G-module of highest
weight λ. All modules we consider in this paper will be finite dimensional.

Finally, let h be the Coxeter number for G and let ht : X → Z denote the
height function on X which takes value 1 on all simple roots.

2.2. Characteristic zero. If M is a B-module then we have a spectral se-
quence

Hr(G, Hs(G/B, M)) =⇒ Hr+s(B, M). (2.1)

Here H•(G/B,−) denotes the derived functors of induction from B to G or al-
ternatively H•(G/B, M) is the coherent sheaf cohomology of the vector bundle
associated to M .

When char k = 0 we have Hr(G,−) = 0 for all r > 0 because G is reductive.
Hence the above spectral sequence degenerates and gives us isomorphisms of
B-modules

Hr(B, M) ' H0(G, Hr(G/B, M)) for all r ≥ 0. (2.2)

Now, suppose M is the 1-dimensional B-module determined by λ ∈ X. If we
choose w ∈ W such that w(λ + ρ) ∈ X+ then the Borel-Weil-Bott theorem [9]
(cf. also [11]) says

Hr(G/B, λ) '
{

H0(G/B, w · λ) if r = l(w),
0 otherwise.

(2.3)

Here l(w) denotes the length of w. Since the only dominant weight µ for which
there is a non-trivial G-fixed point in H0(G/B, µ) is µ = 0 we conclude that
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(cf [3] Proposition 2.1)

Hr(B, λ) '
{

k if λ = w · 0 for some w ∈ W with l(w) = r,
0 otherwise.

(2.4)

2.3. Characteristic p. For the rest of this section we assume char k = p > 0.
As mentioned in the introduction the determination of H•(B, λ) is wide open
in this case. In the following subsections we summarize some known results.

2.4. The linkage principle. The strong linkage principle [2] implies that all
composition factors of Hr(G/B, λ) have highest weights in W ·λ+pZR. More-
over, it also gives that for each simple G-module L(µ) we have H•(G, L(µ)) = 0
unless µ ∈ W · 0 + pZR. Hence the spectral sequence (2.1) shows that

H•(B, λ) = 0 unless λ ∈ W · 0 + pZR. (2.5)

Remark 2.1. As observed in [3] the strong linkage principle implies also that
we have the following characteristic p-analogue of (2.4)

Hr(B, w · 0) '
{

k if r = l(w),
0 otherwise.

(2.6)

2.5. Let k[U ] denote the coordinate ring of U . Tensoring the ‘standard’ injec-
tive resolution

k → k[U ] → k[U ]⊗ k[U ] → · · ·

of the trivial B-module k by a weight λ ∈ X gives

H•(B, λ) = 0 unless λ ≤ 0. (2.7)

In fact, the weights of each term in the resulting resolution of the B-module
λ has weights ≤ λ. Hence there are no T -fixed points (and so certainly no
B-fixed points either) unless λ ≤ 0.

Remark 2.2. A little more careful argument (see e.g. [10], Lemma 2.3) shows
that in fact we have

H i(B, λ) = 0 unless λ ≤ 0 and i ≤ − ht(λ). (2.8)

2.6. The first cohomology group. It is clear that H0(B, k) = k and that
H0(B, λ) = 0 for all λ 6= 0. The first cohomology group H1(B, λ) is also
completely known, see [3]

H1(B, λ) '
{

k if λ = −prα for some α ∈ S, r ≥ 0,
0 otherwise.

(2.9)

This may be deduced from the spectral sequence (2.1) by using that the
G-socle of H1(λ) = H1(G/B, λ) is known, see [1]. In particular, H0(G,
H1(G/B, λ)) = 0 unless λ = −prα for some α ∈ S, r ≥ 0.
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2.7. The second cohomology group. One of the main results in [8] is
a complete description of H2(B, λ). When p > h we shall recover this result
below (see Section 5) so we do not give the statement here. One of the features
is that for any λ its second B-cohomology group is at most 1-dimensional (as
was the case for H1, see 2.6).

We emphasize that [8] describes H2(B, λ) for all p whereas we focus in this
paper only on the case p > h.

2.8. SL2 and SL3. The only Borel subgroup B for which the full story about
H•(B, λ) is known is the Borel subgroup of SL2. Since (in general) U is normal
in B and T is reductive we have H i(B, λ) = H i(U, k)−λ. Now, when U is 1-
dimensional the cohomology H•(U, k) is completely described in [13].

In the SL3 case the cohomology H•(Bq, λ) was calculated in [4]. Here Bq

(cf. Section 7 below) denotes the Borel subalgebra of the quantum group
corresponding to SL3 and q is assumed to be a complex root of unity of odd
order at least 3. Many of the calculations for this case can easily be carried
over to the characteristic p situation giving a start for the determination of
B-cohomology for B < SL3(k).

3. Methods

3.1. In this section we continue to assume that char k = p > 0. Even though
the spectral sequence (2.1) is not so effective in characteristic p it has the
following very useful variant.

Note that we may replace G by any parabolic subgroup P containing B. In
particular, we shall explore the case where P = Pα is the minimal parabolic
subgroup corresponding to α ∈ S. Writing H i

α(−) short for H i
α(Pα/B,−) we

get in this way for all i ≥ 0

H i(B, λ) ' H i(Pα, H0
α(λ)) if 〈λ, α∨〉 ≥ 0, (3.1)

H i+1(B, λ) ' H i(Pα, H1
α(λ)) if 〈λ, α∨〉 ≤ −2, (3.2)

H i(B, λ) = 0 if 〈λ, α∨〉 = −1. (3.3)

Note also that H i(Pα, M) ' H i(B, M) for all i when M is a Pα-module (this
follows from the same spectral sequence argument by observing that for such
M we have H0

α(M) ' M and H1
α(M) = 0).

Recall that when 0 ≤ 〈λ, α∨〉 < p then H0
α(λ) ' H1

α(sα · λ). Using this
together with (3.1) and (3.2) we get that for all i ≥ 0

H i(B, λ) ' H i+1(B, sα · λ) whenever 0 ≤ 〈λ, α∨〉 < p. (3.4)

3.2. Let B1 denote the first Frobenius kernel in B. This means that B1 is the
subgroup scheme obtained as the kernel of the Frobenius homomorphism F on
B. When M is a B-module we denote by M (1) the Frobenius twist of M , i.e.
the same vector space M but with action composed with F . Similarly, if N is
a B-module whose restriction to B1 is trivial then N (−1) is the B-module such
that (N (−1))(1) = N .
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We have then for each B-module M the Lyndon-Hochschild-Serre spectral
sequence

Hr(B, Hs(B1, M)(−1)) =⇒ Hr+s(B, M). (3.5)

3.3. Consider now the case where M = λ for some λ ∈ X. If p is larger than
h then the cohomology H•(B1, λ) is completely known for all λ ∈ X. By (2.5),
we need only consider λ’s of the form λ = w · 0 + pµ for some w ∈ W and
µ ∈ X. Then we have (see [5])

Hr(B1, w · 0 + pµ)(−1) ' S(r−l(w))/2(u∗)⊗ µ. (3.6)

Here u∗ denotes the dual of the Lie algebra u = Lie(U) with the adjoint
B-action, Sr denotes the r-symmetric power, and we interpret Sr to be 0
whenever r /∈ N.

3.4. When we combine (3.6) and the spectral sequence (3.5) we obtain (cf. [4]
Theorem 4.3.ii)

Proposition 3.1. Suppose p > h. Let w ∈ W, µ ∈ X. Then we have for all i

H i(B, w · 0 + pµ) ' H i−l(w)(B, pµ).

This result reduces the problem of computing H•(B, λ) to the case where
λ ∈ pX.

Note also that this proposition reproves Remark 2.1 when p > h.

3.5. In order to effectively take advantage of the spectral sequence (3.5) we
need by (3.6) to determine the B-cohomology of Snu∗⊗ λ for λ ∈ X. This we
don’t know how to do in general but the following short exact sequence will
allow us to settle some cases.

Let α ∈ S. Note that the line of weight α in u∗ is a B-submodule and that
the quotient Vα = u∗/α is a Pα-module. This leads to an exact sequence of
B-modules for each n > 0

0 → Sn−1u∗ ⊗ α → Snu∗ → SnVα → 0. (3.7)

Tensoring by a weight λ ∈ X we get

0 → Sn−1u∗ ⊗ (α + λ) → Snu∗ ⊗ λ → SnVα ⊗ λ → 0. (3.8)

This gives H i(B, Snu∗ ⊗ λ) = 0 unless H i(B, Sn−1u∗ ⊗ (λ + α)) 6= 0 or
H i(B, SnVα ⊗ λ) 6= 0.

As an easy consequence of (3.4) we get that if λ satisfies 0 ≤ 〈λ, α∨〉 < p
then we have for all i, n

H i(B, SnVα ⊗ λ) ' H i+1(B, SnVα ⊗ sα · λ). (3.9)

Lemma 3.2. Suppose p > h and let λ ∈ X. Then we have

H0(B, Vα ⊗−λ) = 0 unless λ ∈ {R+ \ {α} | λ− α /∈ R+}.
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Proof: Let Lα denote the Levi subgroup of Pα. Since Vα is a Lα-module and
p > h we get from the linkage principle that Vα ' ⊕Lα(γ) as Lα-modules.
Here γ runs through those roots in R+ \ {α} for which γ + α /∈ R+ and Lα(γ)
denotes the simple Lα-module of highest weight γ. Note that if Bα = B ∩ Lα

then H0(Bα, Lα(γ)⊗−λ) = 0 unless λ = sα(γ). Then the lemma follows.

4. B-cohomology of Snu∗ ⊗ λ

In this and the following two sections we assume that char k = p > 0.
As mentioned before, in order to calculate H2(B, λ) and H3(B, λ) explicitly,

we need to compute some low degree cohomology of Snu∗ ⊗ λ. This is what
we do in this section.

4.1. Degree zero.

Proposition 4.1. Fix n ∈ N and λ ∈ X. Then

H0(B, Snu∗ ⊗ λ) '
{

k if n = − ht(λ),
0 otherwise.

Proof: Since the weights of Snu∗ are all ≥ 0 we can apply (2.7) to conclude
that H0(B, Snu∗⊗λ) = 0 unless λ ≤ 0. So we may assume λ is not dominant.
Choose then α ∈ S such that 〈λ, α∨〉 < 0. The exact sequence (3.8) gives

H0(B, Snu∗ ⊗ λ) ' H0(Sn−1u∗ ⊗ (α + λ)).

Now an easy induction on n proves the proposition.

Remark 4.2. Proposition 4.1 remains true when char k = 0.

4.2. Degree 1. First note that for each α, β ∈ S we have

α + β ∈ R+ if and only if 〈β, α∨〉 < 0.

Proposition 4.3. Assume p > h and let λ ∈ X. Then

H1(B, u∗ ⊗ λ) '



k if λ = −β − pnα for α, β ∈ S and n > 0,
k if λ = −β − α for α, β ∈ S with 〈β, α∨〉 < 0,
k if λ = −2α for α ∈ S,
k2 if λ = −β − α for α, β ∈ S with 〈β, α∨〉 = 0,
k if λ = sαsβ · 0 for α, β ∈ S with 〈β, α∨〉 < 0,
0 otherwise.

Proof: We begin by checking each of the first five cases where the proposition
claims that the cohomology is non-zero.

So consider first the case where λ = −β − pnα for some α, β ∈ S, n > 0.
We have the following exact sequence

0 → (β + λ) → u∗ ⊗ λ → Vβ ⊗ λ → 0. (4.1)

We note that −λ is not a weight of Vβ and that no weights of Vβ ⊗ λ have the
form −pmγ with γ ∈ S, m ≥ 0. Hence (using (2.9)) we have

H0(B, Vβ ⊗ λ) = H1(B, Vβ ⊗ λ) = 0.
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This together with the long exact sequence arising from (4.1) give

H1(B, u∗ ⊗ λ) ' H1(B,−pnα) ' k.

Consider now λ = −β − α for some α, β ∈ S with α + β ∈ R+. In this
case we still have that H0(B, Vβ ⊗ λ) = 0, see Lemma 3.2. We claim that
H1(B, Vβ ⊗−α− β) = 0. To see this we consider the sequence

0 → α → Vβ → Q → 0. (4.2)

Noting that α + β is a minimal weight of Q (with multiplicity 1) it follows
immediately that H0(B, Q⊗(−β−α)) ' k. No weights of Q⊗(−β−α) have the
form −pmµ with µ ∈ S, m ≥ 0. Therefore we get H1(B, Q⊗(−β−α)) = 0 and
then the long exact sequence coming from (4.2) gives H1(B, Vβ⊗−β−α) = 0.
Combining this claim with the exact sequence (3.8) we get

H1(B, u∗ ⊗ (−β − α)) ' H1(B,−α) ' k.

Next consider λ = −β − α for some α, β ∈ S with α + β /∈ R+. Arguing as
before we have H0(B, Vβ⊗−α−β) = 0, but this time we have also H0(B, Q⊗
(−β−α)) = 0. Note that if β = α then 2α is not a weight of Vα. In this case we
get H1(B, Vα⊗−2α) = 0. Weight considerations as before imply that if α 6= β
then H1(B, Vβ ⊗ −α − β) ' k. Inserting in the long exact sequence arising
from (3.8) we get the desired conclusions because H2(B,−α) ' H1(B, k0) = 0.

Finally, consider λ = sαsβ · 0 for some α, β ∈ S with 〈β, α∨〉 < 0. Then
〈λ, α∨〉 = 〈β, α∨〉 − 2 < 0. By (3.9), the sequence (3.8) then gives

H1(B, u∗ ⊗ λ) ' H1(B, Vα ⊗ λ) ' H0(B, Vα ⊗ sα · λ)

because H1(B, λ + α) = H2(B, λ + α) = 0. Since sα · λ = −β we have
H0(B, Vα⊗ sα · λ) ' k and we have thus checked the last of the non-vanishing
cases.

Assume therefore now that H1(B, u∗ ⊗ λ) 6= 0 for some λ ∈ X. To finish
the proof we need to show that we are then in one of the above five cases.

Weight considerations show via (2.9) that λ = −β − pnα for some β ∈
R+, α ∈ S, n ≥ 0. We claim that if n > 0 then β ∈ S (i.e. we are in the first
case listed in the proposition). If β /∈ S then (2.9) gives H1(B, λ + α) = 0 and
hence the sequence (3.7) implies

H1(B, u∗ ⊗ λ) ⊆ H1(B, Vα ⊗ λ) ' H0(B, Vα ⊗H1
α(λ)).

Here the claimed isomorphism comes from the fact that 〈λ, α∨〉 = −〈β, α∨〉 −
2pn < 0. On the other hand, if we tensor the sequence (3.7) by H1

α(λ) we get
the sequence

→ H0(B, u∗ ⊗H1
α(λ)) → H0(B, Vα ⊗H1

α(λ)) → H1(B, α⊗H1
α(λ)).

Recall that the weights of H1
α(λ) are λ + α, . . . , sα · λ. Therefore, if µ is a

weight of H1
α(λ) then H0(B, u∗ ⊗ µ) = 0 unless β ∈ S, see Proposition 4.1.

Also H1(B, α + µ) = 0 unless β ∈ S. This proves the claim.
On the other hand, if n = 0 then we claim that we are in one of the remaining

four cases. Since −β − α /∈ X+ we may choose γ ∈ S such that 〈λ, γ∨〉 < 0.
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As 〈λ, γ∨〉 > −p we get from (3.9)

H1(B, Vγ ⊗ λ) ' H0(B, Vγ ⊗ sγ · λ). (4.3)

Using our assumption that H1(B, u∗⊗λ) 6= 0, the sequence (4.1) relative to γ
gives that either H1(B, λ + γ) 6= 0 or H1(B, Vγ ⊗ λ) 6= 0.

Suppose first that H1(B, λ + γ) 6= 0. Then λ = −γ − pmδ for some δ ∈
S, m ≥ 0. Since λ = −β − α we have m = 0 and β ∈ {γ, δ} ⊆ S. This means
that we are in one of the cases 2, 3 or 4 on the list.

Suppose H1(B, Vγ ⊗ λ) 6= 0. By (4.3), we get H0(B, Vγ ⊗ sγ · λ) 6= 0. Then
the sequence

H0(B, u∗ ⊗ sγ · λ) → H0(B, Vγ ⊗ sγ · λ) → H1(B, γ + sγ · λ)

gives either H0(B, u∗ ⊗ sγ · λ) 6= 0 or H1(B, γ + sγ · λ) 6= 0. This means that
either sγ · λ = −δ or γ + sγ · λ = −pmδ for some δ ∈ S, m ≥ 0. The first
possibility means that λ = sγ · (−δ) = sγsδ ·0 , i.e. we are in case 4 or 5 on our
list. The second possibility can only occur with m = 0 and then sγ ·λ = −γ−δ.
But in that case

H0(B, Vγ ⊗ sγ · λ) = H0(B, Vγ ⊗−δ − γ)

and this is 0 according to Lemma 3.2. This completes the proof.
The same arguments as in Proposition 4.3 give

Proposition 4.4. Let λ ∈ X. If char k = 0 then

H1(B, u∗ ⊗ λ) '


k if λ = −2α for α ∈ S,
k if λ = −β − α for α, β ∈ S with 〈β, α∨〉 < 0,
k2 if λ = −β − α for α, β ∈ S with 〈β, α∨〉 = 0,
k if λ = sαsβ · 0 for α, β ∈ S with 〈β, α∨〉 < 0,
0 otherwise.

5. H•(B, λ) in degrees 2 and 3

In this section we assume p > h and then compute H2(B, λ) and H3(B, λ)
for all λ ∈ X.

5.1. Degree 2.

Theorem 5.1. Let λ ∈ X. Then

H2(B, λ) '


k if λ = pn(−α) for α ∈ S and n > 0,
k if λ = pn(w · 0) for w ∈ W with l(w) = 2, n ≥ 0,
k if λ = pn(−α− pmβ) for α, β ∈ S, n ≥ 0, m > 0,
0 otherwise.

Proof: If λ 6∈ pX then we use Proposition 3.1 to reduce to a lower degree
cohomology group. These are described in Section 2. So suppose λ = pµ for
some µ ∈ X. We then use the spectral sequence (3.5) to compute H2(B, λ).
By (3.6), there are only two E2-terms that may contribute, namely H2(B, µ)
and H0(B, u∗ ⊗ µ). If µ ∈ −S then the first of these terms vanishes (by
Proposition 3.1) whereas the second equals k. Hence H2(B,−pα) = k for all
α ∈ S.
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On the other hand, if µ 6∈ −S then we have that that the second term
vanishes (according to Proposition 4.1) and H2(B, λ) ' H2(B, µ). We repeat
this argument if µ ∈ pX (note that this gives H2(B, pµ) ' H2(B, p2µ) ' · · · '
H2(B, pnµ) for all µ ∈ X and all n > 0). Otherwise, H2(B, µ) identifies with
a lower degree cohomology group as before. It is now a matter of bookkeeping
to see that this leads to the statement in the theorem.

5.2. Degree 3.

Theorem 5.2. Let λ ∈ X. Then

H3(B, λ) '



k if λ = pn(−2α) for α ∈ S and n > 0,
k2 if λ = pn(−β − pmα) for α, β ∈ S and n, m > 0,
k if λ = pn(−β − α) for α, β ∈ S with

〈β, α∨〉 < 0 and n > 0,
k2 if λ = pn(−β − α) for α, β ∈ S with

〈β, α∨〉 = 0 and n > 0,
k if λ = pn(sαsβ · 0) for α, β ∈ S with

〈β, α∨〉 < 0 and n > 0,
k if λ = pn(w · 0) for w ∈ W with

l(w) = 3 and n ≥ 0,
k if λ = pn(w · 0− pmα) for α ∈ S, w ∈ W with

l(w) = 2 and n ≥ 0, m > 0,
k if λ = pn(pmw · 0− α) for α ∈ S, w ∈ W with

l(w) = 2 and n ≥ 0, m > 0,
k if λ = −β − pnα for α, β ∈ S, n > 0,
k if λ = pn(−α− pmβ − plγ) for α, β, γ ∈ S and

n ≥ 0, m > l > 0,
0 otherwise.

Proof: Suppose that λ = pµ for some µ ∈ X. Consider the spectral se-
quence (3.5). The only E2-terms that contribute to H3(B, λ) are H3(B, µ)
and H1(B, u∗ ⊗ µ). The latter vanishes if µ ∈ pX. Hence we get H3(B, pµ) '
H3(B, p2µ) ' · · · ' H3(B, pnµ) for all µ ∈ X and all n > 0.

For those µ listed in Proposition 4.3, we have that unless µ = −β − pnα for
some α, β ∈ S, n > 0 then H3(B, µ) = 0 and hence H3(B, pµ) ' H1(B, u∗⊗µ).

Suppose now that µ = −β − pnα with α, β ∈ S and n > 0. Proposition
4.3 and Theorem 5.1 (combined with Proposition 3.1) yield that both of the
above terms equal k. In this situation we have an exact sequence

0 → H3(B, µ) → H3(B, pµ) → H1(B, u∗ ⊗ µ) → 0

i.e. we have H3(B, pµ) ' k2.
On the other hand, if µ is not one of those weights listed in Proposition 4.3

then the second term vanishes. In this case we have H3(B, pµ) ' H3(B, µ).
Arguing as in Theorem 5.1 the stated results follow.

6. Upper bound

In this section we determine for each λ ∈ X an upper bound i for the degree
in which the cohomology H i(B, λ) can be non-zero.
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We consider first the case where λ ∈ pX.

Proposition 6.1. Let λ ∈ X. Then

H i(B, pλ) = 0 for i > −2 ht(λ).

Proof: We have H•(B, pλ) = 0 unless λ ≤ 0. In particular, we may assume
that ht(λ) ≤ 0. We then proceed by induction on n = −2 ht(λ). If n = 0 we
have λ = 0. In this case the claim is clearly true, see 2.5-6.

Suppose now that i > n > 0. Since λ /∈ X+ we can choose α ∈ S with
〈λ, α∨〉 < 0. Then we have for each i ≥ 1

H i(B, pλ) ' H i−1(B, H1
α(pλ)).

Set µ = pλ and a = −〈λ, α∨〉− 1. Then the weights of H1
α(µ) are µ +α, µ +

2α, . . . , sα · µ. Note that the weights ν of H1
α(µ) which belong to W · 0 + pZR

have the form ν = µ + jpα with j ∈ {1, . . . , a}, or ν = sα · µ − jpα with
j ∈ {0, . . . , a}.

Consider first ν = µ + jpα for some j ∈ {1, . . . , a}. Since i − 1 > n − 1 ≥
−2 ht(λ + jα) = n− 2j we get by induction that H i−1(B, ν) = 0.

Consider now ν = sα · µ− jpα for some j ∈ {0, . . . , a}. Then

ν = sα · 0 + p(sα(λ)− jα) = sα · 0 + p(λ− (〈λ, α∨〉+ j)α).

Note

−2 ht(λ− (〈λ, α∨〉+ j)α) = −2 ht(λ) + 2(〈λ, α∨〉+ j)

≤ −2 ht(λ) + 2(〈λ, α∨〉+ a)

= n− 2.

Then by induction we get from Proposition 3.1 that

H i−1(B, ν) ' H i−2(B, p(λ− (〈λ, α∨〉+ j)α)) = 0.

We conclude that H i−1(B, H1
α(µ)) = 0. This completes the proof.

Combining Proposition 6.1 with Proposition 3.1 we find

Corollary 6.2. Let λ ∈ X and w ∈ W . Then

H i(B, w · 0 + pλ) = 0 for i > l(w)− 2 ht(λ).

Remark 6.3. We believe that the bound in Corollary 6.2 is in fact the best
possible. As evidence we point to the rank 1 computations in [13], and to the
quantum case, see Remark 7.1 below.
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7. The quantum case

In this section the field k will be arbitrary and we consider an element q ∈ k∗.
We denote by Uq the quantum group with parameter q associated with our root
system R. By this we mean more precisely the specialization at q ∈ k of the
Lusztig integral form of the quantized enveloping algebra attached to R. We
denote by Bq the Borel subalgebra in Uq corresponding to the negative roots.

Here we shall demonstrate that the results in the previous sections have
direct analogues for Bq. The proofs are almost identical and we therefore omit
the details.

7.1. Just as for B above each λ ∈ X (now identified with the set of integral
weights in spanR R) defines a character of Bq, see e.g. [6]. Our aim is to study
the cohomology H•(Bq, λ), where λ denotes the 1-dimensional Bq-module ob-
tained in this way. Note that H0(Bq,−) is now the fixed point functor for Bq

in the Hopf algebra sense.
When q is not a root of unity then we can argue as in Section 2.2 using this

time the quantized Borel-Weil-Bott theorem [6] and the complete reducibility
of Uq valid in this case by [6] Corollary 7.7. In this way we obtain then the
following complete description of H•(Bq, λ) (in analogy with (2.4)):

Hr(Bq, λ) '
{

k if λ = w · 0 for some w ∈ W with l(w) = r,
0 otherwise.

(7.1)

7.2. We let from now on q ∈ k∗ denote a primitive l-th root of unity. We shall
assume that l is odd, larger than the Coxeter number h, and prime to 3 if the
root system R contains a component of type G2.

For each α ∈ S we let Eα, Fα, K±1
α denote the standard generators. Then

Uq is generated by K±1
α together with the divided powers of all the Eα and Fα.

The small quantum uq is the subalgebra of Uq generated by all Eα, Fα, K±1
α

modulo the ideal generated by K l
α − 1. Moreover, bq will denote the small

quantum Borel subalgebra of uq corresponding to Bq.
We have a quantum Frobenius homomorphism, see [7], Section 1, Frq :

Uq → Ū . Here Ū denotes the specialisation at k of the Kostant Z-form of the
enveloping algebra of the Lie algebra for the semisimple group Ḡ corresponding
to R. We identify the category of finite dimensional Ū -modules with the
category of finite dimensional rational Ḡ-modules. We shall also need the
restriction of Fq to Bq mapping into the enveloping algebra associated with
the Borel subgroup B̄ in Ḡ.

7.3. We limit ourselves to finite dimensional modules for Uq and Bq of type 1.
So if M is a Uq (resp. Bq)-module whose restriction to uq (resp. bq) is trivial
then we use the quantum Frobenius homomorphism Fq to make M into a Ḡ
(resp. B̄)-module that we denote by M (−1) in analogy with the notation in
Section 3.2. Similarly, if N is a Ḡ (resp. B̄)-module then N (1) denotes the Uq

(resp. Bq)-module obtained via Frq.
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As in Section 3.2 we have for each Bq-module the Lyndon-Hochschild-Serre
spectral sequence

Hr(B̄, Hs(bq, M)(−1)) =⇒ Hr+s(Bq, M). (7.2)

The cohomology Hr(bq, λ) is completely known, see [12]

Hr(bq, λ) = 0 for all r ≥ 0 unless λ ∈ W · 0 + lZR. (7.3)

Hr(bq, w · 0 + lλ)(−1) ' S(r−l(w))/2ū∗ ⊗ λ (7.4)

where ū is the Lie algebra of the unipotent radical of B̄. The same arguments
as before (see Sections 2.4 and 3.4, respectively Corollary 6.2) give then

Hr(Bq, λ) = 0 for all r ≥ 0 unless λ ∈ W · 0 + lZR, (7.5)

Hr(Bq, w · 0 + lλ) ' Hr−l(w)(Bq, lλ) for all w ∈ W, r ∈ N, (7.6)

Hr(Bq, w · 0 + lλ) = 0 for all r > l(w)− 2 ht(λ). (7.7)

Remark 7.1. Suppose that α ∈ S and let w ∈ W . In characteristic zero
weight considerations (for details we refer to [4] Corollary 4.6) give for each
m > 0

Hr(Bq, w · 0−mlα) '
{

k if r = l(w) + 2m, l(w) + 2m− 1,
0 otherwise.

(7.8)

This shows that there are cases where H l(w)−2 ht(λ)(Bq, w · 0 + lλ) is non-zero.

7.4. Degrees 0 and 1. Using the Lyndon-Hochschild-Serre spectral sequence
(7.2), the cohomology for Bq can be related to that for B̄. Combining this with
the results in the previous sections, we are now able to completely determine
some of the Hochschild cohomology of 1-dimensional Bq-modules.

It is clear that

H0(Bq, k) ' k and H0(Bq, λ) 6= 0 if and only if λ = 0.

Noting that the only E2-term in (7.2) that contributes to H1(Bq, lλ) is
H1(B̄, λ), we have

H1(Bq, lλ) ' H1(B̄, λ).

Therefore the description of the first cohomology H1(Bq, λ) depends on whether
k is a field of characteristic 0 or of characteristic p > 0. If char k = 0 then we
obtain from (2.4)

H1(Bq, λ) '
{

k if λ = −α or − lα for α ∈ S,
0 otherwise.

(7.9)

On the other hand, if char k = p > 0 then we have (using this time (2.9))

H1(Bq, λ) '
{

k if λ = −pnα or − lpnα for α ∈ S, n ≥ 0,
0 otherwise.

(7.10)
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7.5. Degree 2. The only terms in (7.2) that contribute to H2(Bq, lλ) are
H2(B̄, λ) and H0(B̄, ū∗ ⊗ λ). Hence by (2.4) and Proposition 4.1 we get

Theorem 7.2. Let λ ∈ X. If char k = 0 then

H2(Bq, λ) '


k if λ = −lα for α ∈ S,
k if λ = lw · 0 for w ∈ W with l(w) = 2,
k if λ = −β − lα for α, β ∈ S,
k if λ = w · 0 for w ∈ W with l(w) = 2,
0 otherwise.

When p > 0 we replace (2.4) in the above argument by Theorem 5.1. Then
we find

Theorem 7.3. Let λ ∈ X. If char k = p > 0 then

H2(Bq, λ) '



k if λ = lpn(−α) for α ∈ S, n ≥ 0,
k if λ = lpn(w · 0) for w ∈ W with l(w) = 2, n ≥ 0,
k if λ = lpn(−α− pmβ) for α, β ∈ S, n ≥ 0, m > 0
k if λ = w · 0 for w ∈ W with l(w) = 2,
k if λ = −β − lpnα for α, β ∈ S, n ≥ 0,
0 otherwise.

7.6. Degree 3. We now turn to H3(Bq, λ). The only E2-terms in (7.2) that
contribute to H3(Bq, lλ) are H3(B̄, λ) and H1(B̄, ū∗ ⊗ λ). As in the modular
case we get

Theorem 7.4. Let λ ∈ X. If char k = 0 then

H3(B, λ) '



k if λ = l(−2α) for α ∈ S,
k if λ = l(−β − α) for α, β ∈ S with 〈β, α∨〉 < 0,
k2 if λ = l(−β − α) for α, β ∈ S with 〈β, α∨〉 = 0,
k if λ = l(sαsβ · 0) for α, β ∈ S with 〈β, α∨〉 6= 0,
k if λ = l(w · 0) for w ∈ W with l(w) = 3,
k if λ = w · 0 for w ∈ W with l(w) = 3,
k if λ = w · 0− lα for α ∈ S and w ∈ W with

l(w) = 2,
k if λ = lw · 0− α for α ∈ S and w ∈ W with

l(w) = 2,
k if λ = −β − lα for α, β ∈ S,
0 otherwise.
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Theorem 7.5. Suppose that char k = p > 0. If λ ∈ X then

H3(B, λ) '



k if λ = lpn(−2α) for α ∈ S and n > 0,
k2 if λ = lpn(−β − pmα) for α, β ∈ S and

n, m > 0,
k if λ = lpn(−β − α) for α, β ∈ S with

〈β, α∨〉 < 0 and n > 0,
k2 if λ = lpn(−β − α) for α, β ∈ S with

〈β, α∨〉 = 0 and n > 0,
k if λ = lpn(sαsβ · 0) for α, β ∈ S with

〈β, α∨〉 6= 0 and n > 0,
k if λ = lpn(w · 0) for w ∈ W with

l(w) = 3 and n ≥ 0,
k if λ = lpn(w · 0− pmα) for α ∈ S, w ∈ W

with l(w) = 2 and n ≥ 0, m > 0
k if λ = lpn(pmw · 0− α) for α ∈ S, w ∈ W

with l(w) = 2 and n ≥ 0, m > 0
k if λ = lpn(−α− pmβ − pvγ) for α, β, γ ∈ S

and n ≥ 0, m > v > 0,
k if λ = l(−β − pnα) for α, β ∈ S and n > 0,
k if λ = w · 0 for w ∈ W with l(w) = 3,
k if λ = w · 0− lpnα for α ∈ S, w ∈ W with

l(w) = 2 and n ≥ 0,
k if λ = −β − lpnα for α, β ∈ S and n ≥ 0,
k if λ = −β − lpnw · 0 for α ∈ S, w ∈ W

with l(w) = 2 and n ≥ 0,
k if λ = −α + lpn(−β − pmγ) for α, β, γ ∈ S

and n ≥ 0, m > 0,
0 otherwise.
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