
U N I V E R S I T Y OF A A R H U S
D E P A R T M E N T OF M A T H E M A T I C S

ISSN: 1397–4076

CLASSICAL SCATTERING AT LOW ENERGIES
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CLASSICAL SCATTERING AT LOW ENERGIES

J. DEREZIŃSKI AND E. SKIBSTED

Abstract. For a class of negative slowly decaying potentials including the at-
tractive Coulombic one we study the classical scattering theory in the low-energy
regime. We construct a (continuous) family of classical orbits parametrized by ini-
tial position x ∈ R

d, final direction ω ∈ Sd−1 of escape (to infinity) and the energy
λ ≥ 0, yielding a complete classification of the set of outgoing scattering orbits.
The construction is given in the outgoing part of phase-space (a similar construc-
tion may be done in the incoming part of phase-space). For fixed ω ∈ Sd−1 and
λ ≥ 0 the collection of constructed orbits constitutes a smooth manifold that we
show is Lagrangian. The family of those Lagrangians can be used to study the
quantum mechanical scattering theory in the low-energy regime for the class of
potentials considered here. We devote this study to a subsequent paper [DS].
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1. Introduction

In this paper we shall address a classical low-energy scattering problems for a two-
body system. In a subsequent paper [DS] we shall combine the results of this paper
and some of [FS] in a study of the quantum mechanical low-energy scattering theory
within the same class of potentials; this will include construction of wave operators,
corresponding generalized eigenfunctions and S–matrices and the establishment of
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Stochastics, funded by The Danish National Research Foundation and by the Postdoctoral Training
Program HPRN-CT-2002-0277. The research of J.D. was also supported by the Polish grants
SPUB127 and 2 P03A 027 25. Part of the research was done during a visit of both authors to the
Erwin Schrödinger Institute.
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2 J. DEREZIŃSKI AND E. SKIBSTED

regularity/asymptotics of these quantities at the threshold energy λ = 0. A related
programme has been carried out for positive energies for a wide class of potentials,
see [IK1], [IK2], [Ya] and [RY]; for this case the study is based on a relatively simple
structure of a class of outgoing (or incoming) classical orbits used in the construction
of certain Fourier integral operators.

However there are severe difficulties if one tries to incorporate the low energy
regime λ ≈ 0 by this approach. Some of the difficulties already show up at the
classical level, and therefore one needs additional conditions on the potential from
the very outset of the analysis. In our opinion these “additional conditions” naturally
count the virial condition and spherical symmetry of the leading term of the potential
(both conditions to be imposed at infinity only).

To simplify the presentation let us in this introduction assume that the potential
takes the form (with x ∈ R

d for d ≥ 2)

V (x) = −γ|x|−µ + O(|x|−µ−ǫ), (1.1)

where µ ∈ (0, 2) and γ, ǫ > 0. For derivatives, assume that ∂β{V (x) + γ|x|−µ} =
O

(

|x|−µ−ǫ−|β|
)

. We look at the classical Hamiltonian h(x, ξ) = 1
2
ξ2 + V (x).

With (1.1) one can prove the existence of the asymptotic normalized velocities for
any classical scattering orbit, i.e. a solution to Newton’s equation with |x(t)| → ∞,

ω± = ± lim
t→±∞

x(t)/|x(t)|; (1.2)

notice that this includes orbits with arbitrary energy λ ≥ 0. In particular we see
that there is a well-defined classical scattering theory for λ = 0 (the quantities ω±

are outgoing and incoming directions).
We look at the following mixed problem (restricted to outgoing and incoming

regions): Consider the momentum ξ =
√

2λω as depending on the two independent
variables λ ≥ 0 and ω ∈ Sd−1 and solve



















ÿ(t) = −∇V (y(t))

λ = 1
2
ẏ(t)2 + V (y(t))

y(±1) = x

ω = ± limt→±∞ y(t)/|y(t)|

. (1.3)

The bulk of the paper is devoted to solving (1.3) and deriving various regularity
properties. Given solutions to (1.3) we then construct phases φ±(x, ω, λ) in terms
of the velocity fields

∇xφ
±(x, ω, λ) = ẏ(±1) = ẏ(t = ±1; x, ω, λ).

It turns out that the constructed phases φ±(x, ω, λ) are jointly continuous but
lack smoothness in the λ–variable at λ = 0.

We give a complete classification of the set of scattering orbits: For any scattering
orbit x(t) with asymptotic velocities ω± given by (1.2) and energy λ ≥ 0 there exists
a (large) T0 > 0 such that for all ±t ≥ T ≥ T0

x(t) = y(t ∓ T ± 1; x(±T ), ω±, λ),

ẋ(t) = ∇xφ
±(x(t), ω±, λ).

A typical orbit x(t) for λ = 0 is depicted below, see Example 4.3 for an elaboration.
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The paper is organized as follows: In Section 2 we impose conditions on the
potential. In the case we allow the potential to have a non-spherically symmetric
term we shall need certain regularity properties of the leading spherically symmetric
term. These properties are stated in Condition 2.2; they are fulfilled for the example
(1.1) discussed above.

In Section 3 we show the existence of the asymptotic normalized velocity in the
classical theory (only the +∞ case is treated).

In Sections 4 and 6 we solve the mixed problem (1.3) (the +∞ case only), first
in the case of spherical symmetry and then in the more general non-spherically
symmetric case, and we derive smoothness properties of the solution. The first case
is treated by the implicit function theorem while our study of the second case is based
on a perturbation and Taylor expansion argument (similar to [Sk1, Sk2]) allowing us
to set up a fixed point problem. The material is technically somewhat complicated,
and to improve the presentation we devote Section 5 to some (abstract) preliminaries
for Section 6 related to the uncertainty principle lemma (Hardy inequality). The
basic issue of Section 5 is a limiting absorption principle at zero energy for a one-
dimensional vector-valued problem in which the time variable plays the role of a
configuration space variable!

We prove in Section 7 that the outgoing velocity field (x, F (x)) from Definition
6.3 is Lagrangian, so that F = ∇φ for some phase function φ. Then we fix φ+ = φ
by specifying its value at a (local) point. We also explain how to define φ−. These
constructions will be the outset for studying quantum mechanics in [DS]. Finally
we show that the family of orbits (1.3) yields a complete classification of the set of
scattering orbits.

2. Conditions

We shall consider a classical Hamiltonian h = 1
2
ξ2 + V on R

d × R
d where d ≥ 2

and V satisfies Condition 2.1 and possibly Conditions 2.2 and 2.3 (all stated below).
We shall use the standard notation 〈x〉 = (1 + x2)1/2 for x ∈ R

d.

Condition 2.1. The function V can be written as a sum of two real-valued smooth
functions, V = V1 + V2, such that: For some µ ∈ (0, 2) we have

(1) V1 is a negative function that only depends on the radial variable r = |x| in
the region r ≥ 1 (that is V1(x) = V1(r) for r ≥ 1). There exists ǫ1 > 0 such
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that

V1(r) ≤ −ǫ1r
−µ; r ≥ 1.

(2) For all γ ∈ (N ∪ {0})d there exists Cγ > 0 such that

〈x〉µ+|γ||∂γV1(x)| ≤ Cγ.

(3) There exists ǫ̃1 > 0 such that

rV ′
1(r) ≤ −(2 − ǫ̃1)V1(r); r ≥ 1. (2.1)

(4) There exists ǫ2 > 0 such that for all γ ∈ (N ∪ {0})d

〈x〉µ+ǫ2+|γ||∂γV2(x)| ≤ Cγ.

We introduce the quantity

t̃(r) =

∫ r

1

(−2V1(ρ))−
1
2 dρ; r ≥ 1, (2.2)

which is the time of arrival at distance r from the origin for a purely outgoing
zero-energy orbit starting at r = 1 at time t = 0 (assuming V2 = 0).

The following condition will be needed only in the case V2 6= 0. We notice that
(2.1) and (2.3) tend to be somewhat strong conditions for µ≈2. On the other hand
Conditions 2.1 and 2.2 hold for all ǫ2 > 0 for the particular example V1(r) = −γr−µ

(with ǫ1 = γ, ǫ̃1 = 2 − µ and some ǭ1 < 1 − αµ), cf. Section 1.

Condition 2.2. Let V1 be given as in Condition 2.1, and define α = 2
2+µ

. There

exists ǭ1 > max(0, 1 − α(µ + 2ǫ2)) such that

lim sup
r→∞

r−1V ′
1(r) t̃(r)2 < 4−1(1 − ǭ2

1), (2.3)

lim sup
r→∞

V ′′
1 (r) t̃(r)2 < 4−1(1 − ǭ2

1). (2.4)

Let us for convenience assume under Condition 2.1 that

ǫ2 ≤ 4−1(2 − µ). (2.5)

Notice that under Condition 2.2, (2.5) is not in conflict with the condition ǭ1 >
max(0, 1 − α(µ + 2ǫ2)).

The following condition will be needed only in Subsection 7.2.

Condition 2.3. Let V1, V2 and ǭ1 be given as in Conditions 2.1 and 2.2. Then

lim sup
r→∞

−V ′
1(r)

√

−2V1(r)
t̃(r) < 2−1(1 + ǭ1). (2.6)

In the (typical) situation where V1(r) is concave at infinity obviously the bounds
(2.4) and (2.6) are fulfilled.

We shall often use the notation x = rx̂ with r = |x| and x̂ = x/r for vectors
x ∈ R

d \ {0}. The notation F (s > ǫ) denotes a smooth increasing function = 1 for
s > 3

4
ǫ and = 0 for s < 1

2
ǫ; F (· < ǫ) := 1 − F (· > ǫ). Throughout the paper the

notation µ refers to the number µ appearing in Condition 2.1 and α := 2/(2 + µ),

cf. Condition 2.2. The function g(r) :=
√

2λ − 2V1(r) (for V1 obeying Condition
2.1) will also be used extensively. This quantity represents the speed of any orbit
with energy λ and located at distance r from the origin (assuming V2 = 0).
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3. Asymptotic normalized velocity

We define a classical outgoing scattering orbit to be a solution to Newton’s equa-
tion ẍ(t) = −∇V (x(t)) obeying |x(t)| → ∞ for t → +∞ (we consider for conve-
nience here only the case of t → +∞). In this section we investigate various general
properties of scattering orbits. Note that all the conditions on the potentials used
in this section are implied by Condition 2.1.

The energy of the orbit is given by

λ = 1
2
ẋ(t)2 + V (x(t)).

We start with a well known consequence of the positivity of the virial.

Proposition 3.1. Suppose that for |x| ≥ R

−2V (x) − x · ∇V (x) ≥ 0.

Then for any outgoing scattering orbit there exists T such that for t ≥ T

x(t) · ẋ(t) ≥ 2(t − T )λ, x2(t) ≥ 2λ(t − T )2 + R2.

Proof. We have for |x(t)| ≥ R

1

2

d2

dt2
x2(t) =

d

dt

(

x(t) · ẋ(t)
)

= 2λ − 2V (x(t)) − x(t) · ∇V (x(t))

≥ 2λ. (3.1)

If x(t) is a scattering orbit, we can find T such that d
dt

x2(T ) ≥ 0 and |x2(T )| > R2.
So (3.1) is satisfied for all t ≥ T , and the result follows from integration. ¤

The following proposition can be traced back to [Ge], see also [FS, Theorem 4.7].

Proposition 3.2. Suppose that

2V (x) + x · ∇V (x) ≤ −c|x|−µ, c > 0, |x| ≥ R (3.2)

Then for any outgoing scattering orbit for large enough time and some ǫ > 0,

|x(t)| ≥ ǫtα. (3.3)

Proof. For large enough T and t ≥ T we have |x(t)| ≥ R. Then

1

2

d2

dt2
x2(t) = 2λ − 2V (x(t)) − x(t) · ∇V (x(t)) ≥ c|x(t)|−µ. (3.4)

We multiply (3.4) from both sides by d
dt

x2(t) and, using µ < 2, we obtain

d

dt

(

d

dt
x2(t)

)2

≥ c1
d

dt

(

x2(t)
)1−µ

2 .

This yields
(

d

dt
x2(t)

)2

≥ c1

(

x2(t)
)1−µ

2 + c2.

By Proposition 3.1 we know that for large times d
dt

x2(t) ≥ 0 is positive, and hence

d

dt
x2(t) ≥

(

c1

(

x2(t)
)1−µ

2 + c2

)
1
2

.

This implies for large enough time (3.3). ¤



6 J. DEREZIŃSKI AND E. SKIBSTED

The upper bound on the zero energy orbit (3.5) can be traced back to [De1, De2].

Proposition 3.3. Assume that V (x) = O(|x|−µ). Then the outgoing scattering
orbits with λ = 0 satisfy the bound

x(t) = O(tα). (3.5)

If in addition, for |x| ≥ R, V (x) ≤ −c0|x|−µ, c0 > 0, then all outgoing scattering
orbits for large enough time satisfy the bound

|ẋ(t)| ≥ ǫtα−1. (3.6)

If also for (3.2) holds, then the orbits with λ = 0 satisfy

ẋ(t) = O(tα−1). (3.7)

Proof. For zero energy orbits we have

d

dt
|x(t)| ≤ |ẋ(t)| ≤

√

|2V (x(t))| ≤ C1|x(t)|−µ/2.

This implies (3.5) for large time.
Again, for zero energy orbits

|ẋ(t)| =
√

−2V (x(t)) ≥ c2x(t)−µ/2, c2 > 0,

which together with (3.5) yields (3.6) for large time. For positive energy orbits we

clearly have |ẋ(t)| →
√

2λ, which also implies (3.6) for large time.
Finally, (3.3) and

|ẋ(t)| =
√

−2V (x(t)) = O(|x(t)|−µ/2)

yield (3.7). ¤

For a given outgoing scattering orbit x(t) we define the asymptotic normalized
velocity to be

ω+ = lim
t→+∞

ω(t); ω(t) = x(t)/|x(t)|, (3.8)

provided that this limit exists. We also define

ω̃+ := lim
t→+∞

ω̃(t); ω̃(t) = ẋ(t)/|ẋ(t)|,

provided that this limit exists.

Proposition 3.4. Suppose that

∇nV (x) = O(|x|−n−µ), n = 1, 2,

V (x) ≤ −c0|x|−µ, c0 > 0, |x| ≥ R,

2V (x) + x · ∇V (x) ≤ −c|x|−µ, c > 0, |x| ≥ R,

∇V (x) − x̂x̂ · ∇V (x) = O(|x|−1−µ−ǫ2), ǫ2 > 0. (3.9)

Then for any outgoing scattering orbit x(t) there exists ω+ and ω̃+ and they are
equal. Moreover,

ω(t) = ω+ + O(t−αǫ2) = ω̃(t) + O(t−αǫ2). (3.10)
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Proof. Let Lij = xiẋj − xjẋi be the ij’th component of the angular momentum.
Note that

L2 :=
∑

i<j

L2
ij = x2ẋ2 − (x · ẋ)2 = x2ẋ2(1 − (ω · ω̃)2).

By (3.9),
∣

∣

∣

∣

d

dt
Lij

∣

∣

∣

∣

= |x| |∇V (x) − ω ω · ∇V (x)| = O(|x|−µ−ǫ2) = O
(

t−α(µ+ǫ2)
)

,

and therefore,

Lij = O
(

t1−α(µ+ǫ2)
)

. (3.11)

We compute
d

dt
ω(t) =

ẋ(t) − ω(t) ω(t) · ẋ(t)

|x(t)| .

Hence,
∣

∣

∣

∣

d

dt
ω(t)

∣

∣

∣

∣

=

√

ẋ2(t) − (ω(t)ẋ(t))2

|x(t)|

=
|L(t)|
|x(t)|2 = O(t−1−αǫ2) ∈ L1(dt).

Hence ω+ is well-defined, and the first estimate in (3.10) holds.
Now

dω̃(t)

dt
= −∇V (x(t)) − ω̃(t) · ∇V (x(t))ω̃(t)

|ẋ(t)|

= −ω(t) · ∇V (x(t))
(

ω(t) − ω(t) · ω̃(t)ω̃(t)
)

|ẋ(t)| + O(t−1−αǫ2).

The norm of the first term equals

|ω(t) · ∇V (x(t))||L(t)|
|ẋ(t)|2|x(t)| = O(t−1−αǫ2).

Hence
dω̃(t)

dt
= O(t−1−αǫ2) ∈ L1(dt).

Hence ω̃+ is well-defined, and the second estimate in (3.10) holds.
We have,

1 − (ω(t) · ω̃(t))2 =
L(t)2

x2(t)ẋ2(t)
= O(t−2αǫ2).

Hence, |ω+ · ω̃+| = 1.
By Proposition 3.1 (or [FS, (4.38)]), we have ω(t) · ω̃(t) ≥ 0, for large t. Hence,

ω+ · ω̃+ ≥ 0. Therefore, ω+ = ω̃+. ¤

Example 3.5. (Extension of an example in a preliminary version of the book [DG])
Consider the potential V = r−µχ(θ − c ln r) specified in two dimensions using polar
coordinates. Here χ ∈ C∞(S1) is negative, χ′(0) < 0 and c > 0 (and µ ∈ (0, 2)). A
computation shows that there is a classical scattering orbit with θ = c ln r if

χ(0) = µ−1
(

c
( α

1 − αµ
− 1

)

+ c−1 1 − α

1 − αµ

)

χ′(0). (3.12)
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So in this case the asymptotic normalized velocity ω+ does not exist. This shows
the importance of the smallness condition of Condition 2.1 (4), viz. ǫ2 > 0. We also
see from (3.12) that a weaker notion of smallness would not suffice neither: If χ is
taken to be almost constant, say χ ≈ −1, which may be viewed as an example of
another type of perturbed radial potential, then there is still a solution to (3.12), in
fact one with c ≈ 0.

4. Mixed problem for radial potentials

In this section we assume that the potential is radial and for r ≥ 1,

|∂n
r V (r)| ≤ Cnr

−n−µ, n = 0, 1, . . . ;

V (r) ≤ −cr−µ, c > 0; rV ′(r) + 2V (r) < 0. (4.1)

Clearly, Condition 2.1 with V2(r) = 0 implies (4.1).
For radial potentials all orbits are confined to a plane. Let us first investigate the

two-dimensional problem. We will use polar coordinates (y1, y2) = (r cos θ, r sin θ).
The angular momentum L is a preserved quantity, at our disposal. We need to

solve the system
{

θ̇ = Lr−2

ṙ =
√

2λ − 2V (r) − L2r−2
. (4.2)

We impose the conditions

r(1) = r1,
d

dt
r(1) > 0, lim

t→+∞
θ(t) = 0. (4.3)

Our assumption implies that for any λ ≥ 0 and L ∈ R, there exists at most one
rtp = rtp(λ, L) ≥ 1 that solves

2λ − 2V (rtp) − L2r−2
tp = 0.

Note that the function

(1,∞) ∋ r → rg(r) = r
√

2λ − 2V (r) is increasing. (4.4)

Clearly, for any λ ≥ 0, L ∈ R and r1 > rtp ≥ 1 the problem (4.2) subject to (4.3)
has a unique solution. This solution is a scattering orbit and it has turning point at
rtp. Writing θ1 = θ(1) we obtain

−θ1 = L

∫ ∞

r1

r−2(2λ − 2V (r) − L2r−2)−
1
2 dr. (4.5)

The angle between the asymptotic direction and the turning point equals

−θtp = L

∫ ∞

rtp

r−2(2λ − 2V (r) − L2r−2)−
1
2 dr. (4.6)

Clearly, limt→−∞ θ(t) = 2θtp.
Let θal = θal(λ, r1) denote the largest allowed angle such that for |θ1| < θal there

exists a solution to Newton’s equation with energy λ obeying the conditions (4.3)
as well as θ(1) = θ1.

Proposition 4.1. Introduce the constant

C = sup
r′≥r≥1

V (r′)

V (r)
. (4.7)
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Then θal ≥ π/2−arctan
√

C − 1. In particular, if V (r) is increasing, so that C = 1,
then θal ≥ π/2.

Proof. Let us write L = r1g(r1)κ with κ ∈ [−1, 1]. It follows from (4.4) that for any
such κ

2λ − 2V (r) − L2r−2 > 0 for r > r1.

After a change of variable we may then write (4.5) as

−θ1 = κ

∫ ∞

1

s−1

(

s2λ − V (sr1)

λ − V (r1)
− κ2

)−
1
2

ds. (4.8)

Note that

cs−µ ≤ λ − V (sr1)

λ − V (r1)
=

g(sr1)
2

g(r1)2
≤ C. (4.9)

Clearly the right hand side of (4.8) is an increasing function of κ. Therefore, we
get the lower bound

∫ ∞

1

s−1

(

s2λ − V (sr1)

λ − V (r1)
− 1

)−
1
2

ds ≥
∫ ∞

1

s−1
(

s2C − 1
)−

1
2 ds

= π/2 − arctan
√

C − 1

for the largest allowed angle. ¤

Example 4.2. For the purely Coulombic case V (r) = −γr−1 one can compute the
orbit

L2γ−1r(t)−1 = 1 − cos(θtp − θ(t))

cos(θtp)
,

where θtp(λ, L) = π − arctan
√

2λL2γ−2, (see [Ne, p. 126], for example). Therefore,
the allowed angle equals

θal(λ, r1) = π − arctan
√

2λ(2λγ−2r2
1 + 2γ−1r1). (4.10)

In particular, for λ > 0 the allowed angle is at least π/2 and for λ = 0 it is π.

Example 4.3. We look at scattering for the example V (r) = −γr−µ at energy λ = 0.
The angle betweeen asymptotic direction and the turning point is independent of
the orbit and is equal to θtp = π

2−µ
. The fact that this angle is independent of the

orbit may be seen independently by invoking the scaling and rotational symmetry
of Newton’s equation; thus there is essentially only one scattering orbit at λ = 0
(see the illustration in Section 1 for the case µ = 1.8). The implicit equation for
this orbit is

2

1 + cos
(

(2 − µ)(θtp − θ(t))
) = r(t)2−µ. (4.11)

4.1. Dependence of the angular momentum on data.

Lemma 4.4. We fix κ0 ∈ (0, 1). Then for any L ∈ R, λ ≥ 0 and r1 ≥ 1, satisfying

L2

r2
1

≤ κ2
0g(r1)

2, (4.12)
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we have a unique outgoing scattering orbit with the conditions (4.3), the energy λ
and angular momentum L. The initial angle is given by (4.5), and we have the
following estimates:

∂n
r1

∂m
L2

θ1

L
= O

(

r−1−n−2m
1 g(r1)

−1−2m
)

, n,m ≥ 0. (4.13)

Proof. Only (4.13) needs elaboration. For n ≥ 1, we have

∂n
r (2λ − 2V (r) − L2/r2) = O(r−µ−n) + O(L2r−2−n)

= O(r−µ−n) + O(r2g(r)2r−2−n)

= O(r−ng(r)2).

The quantity ∂n
r (2λ − 2V (r) − L2/r2)−p is a linear combination of terms of the

following form, where n1 + · · · + nk = n,

(2λ − 2V (r) − L2/r2)−p−k × ∂n1

r (2λ − 2V (r) − L2/r2) · · · ∂nk
r (2λ − 2V (r) − L2/r2)

= O
(

g(r)−2p−2kg(r)2r−n1 · · · g(r)2r−nk
)

= O
(

r−ng(r)−2p
)

.

Hence,
∂n

r (2λ − 2V (r) − L2/r2)−p = O
(

r−ng(r)−2p
)

.

Using (4.4) and (4.9) we obtain that

∂m
L2

θ1

L
= Cm

∫ ∞

r1

drr−2−2m(2λ − 2V (r) − L2/r2)−1/2−m

= O(r−1−2m
1 g(r1)

−1−2m).

For n ≥ 1, ∂n
r1

∂m
L2

θ1

L
is a linear combination of terms of the form

r−k−2m−1
1 ∂n−k

r1
(2λ − 2V (r1) − L2/r2

1)
−1/2−m = O

(

r−n−2m−1
1 g(r1)

−1−2m
)

.

¤

Lemma 4.5. Let θ0 ∈ (0, π/2−arctan
√

C − 1) where C is given by (4.7). Then for
all r1 ≥ 1, |θ1| ≤ θ0 and λ ≥ 0 we can find an outgoing scattering orbit satisfying
(4.3) with θ(1) = θ1. We have the following estimates:

∂n
r1

∂m
θ2
1
L2 = O

(

r2−n
1 g(r1)

2
)

, n,m ≥ 0; (4.14)

∂n
r1

∂m
θ2
1

L

θ1

= O
(

r1−n
1 g(r1)

)

, n,m ≥ 0. (4.15)

Proof. We can solve the equation (4.5) for L such that (4.12) is fulfilled for some
κ0 ∈ (0, 1). Treating L2 as an independent variable, obviously

∂n
r1

∂m
L2L2 = O

(

r2−2m−n
1 g(r1)

2−2m
)

. (4.16)

We apply ∂n
r1

∂m
L2 to

θ2
1 =

(

θ1

L

)2

L2,

use (4.13) and (4.16), and obtain

∂n
r1

∂m
L2θ2

1 = O
(

r−n−2m
1 g(r1)

−2m
)

. (4.17)
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Next we note

∂L2θ2
1 =

∫ ∞

r1

r−2(2λ − 2V (r) − L2r−2)−
1
2 dr

×
∫ ∞

r1

r−2(2λ − 2V (r))(2λ − 2V (r) − L2r−2)−
3
2 dr

≥ c0r
−2
1 g(r1)

−2, for some c0 > 0. (4.18)

We claim that the quantity ∂n
r1

∂m
θ2
1

L2 is a linear combination of terms of the form

∂n1

r1
∂m1

L2 θ2
1 · · · ∂np

r1
∂

mp

L2 θ2
1(∂L2θ2

1)
−m−p = O

(

r2−n
1 g(r1)

2
)

, (4.19)

where n = n1 + · · · + np and m + p = m1 + · · · + mp + 1, which obviously proves
(4.14). To see that indeed the terms are of the form given to the left of (4.19) we use
induction with respect to n + m. The first step (justified by the implicit function
theorem and the chain rule) is

∂θ2
1
L2 = (∂L2θ2

1)
−1,

∂r1
L2 = −∂r1

θ2
1(∂L2θ2

1)
−1.

The inductive step uses the following identities:

∂θ2
1
(∂n1

r1
∂m1

L2 θ2
1) = ∂n1

r1
∂m1+1

L2 θ2
1(∂L2θ2

1)
−1,

∂r1
(∂n1

r1
∂m1

L2 θ2
1) = ∂n1+1

r1
∂m1

L2 θ2
1 − ∂n1

r1
∂m1+1

L2 θ2
1∂r1

θ2
1(∂L2θ2

1)
−1.

Finally we use (4.17) and (4.18) yielding the bound (4.19).
The quantity ∂n

r1
∂m

θ2
1

θ1

L
is a linear combination of terms of the form

∂n1

r1
∂m1

θ2
1

L2 · · · ∂np

r1
∂

mp

θ2
1

L2∂k
r1

∂p
L2

θ1

L
= O

(

r−1−n
1 g(r1)

−1
)

,

where n = n1 + · · · + np + k and m = m1 + · · · + mp; for the bound we use (4.13)
and (4.14). Thus

∂n
r1

∂m
θ2
1

θ1

L
= O

(

r−1−n
1 g(r1)

−1
)

. (4.20)

We note the inequality

−θ1

L
≥ r−1

1 g(r1)
−1. (4.21)

Finally, the quantity ∂n
r1

∂m
θ2
1

L
θ1

is a linear combination of terms of the form

∂n1

r1
∂m1

θ2
1

θ1

L
· · · ∂nk

r1
∂mk

θ2
1

θ1

L

(

L

θ1

)k+1

= O(r1−n
1 g(r1)),

where n1 + · · · + nk = n and m1 + · · · + mk = m; for the bound we use (4.20) and
(4.21). This proves (4.15). ¤

Finally, we consider orbits in an arbitrary dimension. We introduce for R ≥ 1
and σ > 0

Γ+
R,σ(ω) = {y ∈ R

d | y · ω ≥ (1 − σ)|y|, |y| ≥ R}; ω ∈ Sd−1,

Γ+
R,σ = {(y, ω) ∈ R

d × Sd−1| y ∈ Γ+
R,σ(ω)}.
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The mixed problem consists in finding a solution y(t) to Newton’s equation subject
to mixed boundary conditions and an energy constraint given in terms of data
x ∈ R

d, ω ∈ Sd−1 and λ ≥ 0:


















ÿ(t) = −∇V (y(t)),

λ = 1
2
ẏ(t)2 + V (y(t)),

y(1) = x,

ω = limt→+∞ ω(t); ω(t) = y(t)/|y(t)|.

(4.22)

Proposition 4.6. For all small enough σ > 0 the problem (4.22) has a solution
y(t), t ≥ 1, for all data (x, ω) ∈ Γ+

1,σ and λ ≥ 0. Moreover this solution y(t) ∈
Γ+

1,σ(ω) for all t ≥ 1, and given the latter invariance property it is unique and

∂α
x ∂β

ωL2 = O
(

|x|2−|α|g(|x|)2
)

, (4.23)

Proof. Note that (r1, sin
2 θ1) =

(

|x|, 1 − (ω · x̂)2
)

. Therefore, θ2
1 and r1 = |x| are

smooth function of x and ω with

∂δ
ω∂γ

xθ2
1 = O(|x|−|γ|), ∂γ

xr1 = O(|x|1−|γ|). (4.24)

In conjunction with (4.14) and the Faa di Bruno formula we obtain (4.23). ¤

Remarks 4.7. 1) The function L2 is continuous in all variables at λ = 0, however
as may readily be checked it is not smooth in λ at this point. This function is
smooth for λ > 0.

2) The derivatives in ω and x of the function L2 are also continuous in λ at λ = 0.
This follows by an abstract argument (the proof is very simple, see for example
[Hö, proof of Lemma 7.7.2]): Suppose U is an open subset of R

n, and that
f : U × [0, 1] → R is smooth in z ∈ U (for any fixed λ ∈ [0, 1]) with |∂β

z f | ≤ Cβ

uniformly on U × [0, 1], and suppose f is continuous in (z, λ) ∈ U × [0, 1]. Then
all z–derivatives are continuous in (z, λ) ∈ U × [0, 1].

4.2. Dependence of flow on data. Let us examine the dependence of the flow
on the boundary conditions. We start with the dependence of the two-dimensional
flow (θ, r) = (θ(t), r(t)) on (r1, θ1).

Lemma 4.8. The orbits described in Lemma 4.5 obey

∂n
r1

∂m
θ2
1
r = O

(

r1−n
1 g(r1)g(r)−1

)

; n + m ≥ 1, (4.25)

∂n
r1

∂m
θ2
1
θ2 = O

(

r2−n
1 r−2g(r1)

2g(r)−2
)

; n + m ≥ 0, (4.26)

∂n
r1

∂m
θ2
1

θ

θ1

= O
(

r1−n
1 r−1g(r1)g(r)−1

)

; n + m ≥ 0. (4.27)

Proof. To prove (4.25) we note that the second equation of (4.2) is solved by
∫ r

r1

(2λ − 2V (ρ) − L2ρ−2)−1/2dρ = t − 1. (4.28)

We use induction wrt. n + m. We apply to (4.28) the derivative ∂n
r1

∂m
θ2
1

. We obtain

that zero is a linear combination of terms of the following form:

∂n1

r1
∂m1

θ2
1

L2 · · · ∂nk
r1

∂mk

θ2
1

L2 × r−2k−u
1 ∂v

r1
(2λ − 2V (r1) − L2/r2

1)
− 1

2
−k, (4.29)
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with n1 + · · · + nk + u + v + 1 = n, m1 + · · · + mk = m;

∂p1

r1
∂q1

θ2
1

r · · · ∂pl
r1

∂ql

θ2
1

r × ∂n1

r1
∂m1

θ2
1

L2 · · · ∂nk
r1

∂mk

θ2
1

L2

× r−2k−u∂v
r (2λ − 2V (r) − L2/r2)−

1
2
−k, (4.30)

with n1 + · · ·+nk +p1 + · · ·+pl = n, u+v +1 = l, m1 + · · ·+mk + q1 + · · ·+ ql = m;
and

∂n1

r1
∂m1

θ2
1

L2 · · · ∂nk
r1

∂mk

θ2
1

L2 ×
∫ r

r1

ρ−2k(2λ − 2V (ρ) − L2/ρ2)−
1
2
−kdρ, (4.31)

with n1 + · · · + nk = n, m1 + · · · + mk = m.
Using (4.14) the terms (4.29) are estimated by

O
(

r−n+1
1 g(r1)

−1
)

. (4.32)

The terms (4.30) are divided into the single term

∂n
r1

∂m
θ2
1
r (2λ − 2V (r) − L2/r2)−1/2 (4.33)

and the remaining ones, which by (4.4) and (4.14) can be estimated by

C|∂p1

r1
∂q1

θ2
1

r| · · · |∂pl
r1

∂ql

θ2
1

r|rp1+···+pl−n
1 r1−lg(r)−1. (4.34)

By the induction assumption, and using l ≥ 1 and (4.9), (4.34) is bounded by

Cr1−n
1 g(r1)g(r)−2. (4.35)

Using k ≥ 1 and (4.9), the terms (4.31) are estimated by

C1g(r1)
2kr2k−n

1

∫ r

r1

ρ−2kg(ρ)−1−2kdρ ≤ C2g(r1)
2g(r)−2r2−n

1

∫ r

r1

ρ−2g(ρ)−1dρ

≤ C3g(r1)g(r)−2r1−n
1 . (4.36)

Thus we obtain the estimate

|∂n
r1

∂m
θ2
1
r |g(r)−1 = O

(

g(r1)g(r)−2r1−n
1

)

, (4.37)

from which (4.25) follows.
Next we would like to prove (4.26). We start from the identity

θ

L
= −

∫ ∞

r

ρ−2(2λ − V (ρ) − L2/ρ2)−
1
2 dρ. (4.38)

This shows θ
L

= O
(

r−1g(r)−1
)

. Next we obtain that ∂n
r1

∂m
θ2
1

θ
L

is a linear combination

of terms of the following form:

∂p1

r1
∂q1

θ2
1

r · · · ∂pl
r1

∂ql

θ2
1

r × ∂n1

r1
∂m1

θ2
1

L2 · · · ∂nk
r1

∂mk

θ2
1

L2

× r−2−2k−u∂v
r (2λ − 2V (r) − L2/r2)−

1
2
−k, (4.39)

with n1 + · · ·+nk +p1 + · · ·+pl = n, u+v +1 = l, m1 + · · ·+mk + q1 + · · ·+ ql = m;
and

∂n1

r1
∂m1

θ2
1

L2 · · · ∂nk
r1

∂mk

θ2
1

L2 ×
∫ ∞

r

ρ−2−2k(2λ − 2V (ρ) − L2/ρ2)−
1
2
−kdρ, (4.40)

with n1 + · · · + nk = n, m1 + · · · + mk = m.
The term (4.39) is estimated by

C1r
−n+l+2k
1 r−1−l−2kg(r1)

l+2kg(r)−1−l−2k ≤ C2r
−n
1 r−1g(r)−1. (4.41)
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The term (4.40) is estimated by

C1r
−n+2k
1 r−1−2kg(r1)

2kg(r)−1−2k ≤ C2r
−n
1 r−1g(r)−1. (4.42)

Thus

∂n
r1

∂m
θ2
1

θ

L
= O

(

r−n
1 r−1g(r)−1

)

. (4.43)

Now by

θ2 =

(

θ

L

)2

L2,

(4.14) and (4.43) we obtain (4.26).
By

θ

θ1

=
θ

L

L

θ1

,

(4.15) and (4.43), we obtain (4.27). ¤

We go back to the case of an arbitrary dimension.

Proposition 4.9. The orbits considered in Proposition 4.6 satisfy

∂δ
ω∂γ

xy =

{

O(|y|) for γ = 0;

O
(

|x|1−|γ|g(|x|)g(|y|)−1
)

for |γ| ≥ 1;
(4.44)

in particular,

∂δ
ω∂γ

xy = O
(

|x|−|γ||y|
)

. (4.45)

Proof. We use the formula

y = r cos θ ω + r
sin θ

sin θ1

(x̂ − x̂ · ω ω). (4.46)

Now, ∂δ
ω∂γ

xr cos θω is a linear combination of terms of the form

∂π1

ω ∂ρ1

x r1 · · · ∂πn

ω ∂ρn

x r1 × ∂σ1

ω ∂τ1
x θ2

1 · · · ∂σm

ω ∂τm

x θ2
1

× ∂n1

r1
∂m1

θ2
1

r∂n2

r1
∂m2

θ2
1

cos θ × ∂δ0
ω ω. (4.47)

Likewise, ∂δ
ω∂γ

x
r sin θ

r1 sin θ1
(x − x · ω ω) is a linear combination of terms of the form

∂π1

ω ∂ρ1

x r1 · · · ∂πn

ω ∂ρn

x r1 × ∂σ1

ω ∂τ1
x θ2

1 · · · ∂σm

ω ∂τm

x θ2
1

× ∂n1

r1
∂m1

θ2
1

r∂n2

r1
∂m2

θ2
1

sin θ

sin θ1

× ∂δ0
ω ∂γ0

x (x̂ − x̂ · ω ω). (4.48)

Note that

∂δ0
ω ω = O(1), (4.49)

∂δ0
ω ∂γ0

x (x̂ − x̂ · ω ω) = O(|x|−|γ0|). (4.50)
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Moreover by Lemma 4.8,

∂n1

r1
∂m1

θ2
1

r =

{

O(r), n1 + m1 = 0,

r1−n1

1 g(r1)g(r)−1, n1 + m1 ≥ 1;
(4.51)

∂n2

r1
∂m2

θ2
1

cos θ =

{

O(1), n2 + m2 = 0

r2−n2

1 r−2g(r1)
2g(r)−2, n2 + m2 ≥ 1;

(4.52)

∂n2

r1
∂m2

θ2
1

sin θ

sin θ1

= r1−n2

1 r−1g(r1)g(r)−1. (4.53)

(For (4.53) we use the decomposition sin θ
sin θ1

= θ
θ1

sin(θ)/θ
sin(θ1)/θ1

.)

Now, applying (4.24) and (4.49)–(4.53) to (4.47) and (4.48) yields (4.44). ¤

One may also estimate derivatives of ẏ:

Proposition 4.10.

∂δ
ω∂γ

x(ẏ −
√

2λω) = O
(

|x|−|γ||y|−µg(|y|)−1
)

. (4.54)

In particular

∂δ
ω∂γ

x ẏ = O
(

|x|−|γ|g(|y|)
)

. (4.55)

Proof. First we represent

ẏ(t) −
√

2λω =

∫ ∞

t

∇V (y)dt′, (4.56)

Now ∂δ
ω∂γ

x(ẏ(t) −
√

2λω) is a linear combination of terms of the form
∫ ∞

t

∂δ1
ω ∂γ1

x y(t′) · · · ∂δn

ω ∂γn

x y(t′)∇n+1V (y(t′))dt′

= O

(

|x|−|γ|

∫ ∞

|y|

ρ−1−µg(ρ)−1dρ,

)

, (4.57)

which are O
(

|x|−|γ||y|−µg(|y|)−1
)

. ¤

We also notice the uniform bounds

|y|−1g(|y|) ≤ C
t−1

, |y|−1 ≤ Ct−α, (4.58)

Since |y|−1 ≤ |x|−1 the second estimate of (4.58) may be generalized as

|y|−1 ≤ C|x|−δt−α(1−δ); δ ∈ [0, 1]. (4.59)

5. Time–dependent linear force problem

We consider the following one-dimensional matrix-valued ODE

z̈(t) − q(t)z(t) = z̃(t), t ≥ 1, (5.1)

where q(t) ∈ Md(C) is self-adjoint for all t ≥ 1, and as a function of t, q is continuous
and bounded. Moreover we assume the following bound for some ǫ > 0

(t − 1)2q(t) ≥ −4−1(1 − ǫ2) for t ≥ 1. (5.2)

The goal of this section is to study the initial value problem given by (5.1) and
the initial value condition z(1) = 0. As the reader will see the relevant tools come
from functional analysis.
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Throughout the section we fix any

r ∈ (−ǫ/2, ǫ/2). (5.3)

We introduce for any such r the following form on the domain D(Qr) = W 1,2
0 (1,∞)

⊆ L2(1,∞) (W 1,2
0 ⊆ W 1,2 refer to standard Sobolev spaces, see for example [Da],

although we are here dealing with C
d–valued functions). Let pt = −i d

dt
.

Qr(ψ, φ) = 〈ptψ, ptφ〉 + 〈ψ, {q(t) − r2t−2 + ir(ptt
−1 + t−1pt)}φ〉. (5.4)

Formally this is the form of the operator Hr = trHt−r, where H is the Schrödinger
operator H = p2

t + q(t) with Dirichlet boundary condition at t = 1. To justify this
we invoke [RS, Theorem VIII.16] and the Hardy inequality [Da, Lemma 5.3.1]. Due
to this inequality and (5.2) there exists δ = δ(ǫ, r) > 0 such that

Re Qr(φ) = Re Qr(φ, φ) ≥ δ〈φ, {p2
t + (t − 1)−2}φ〉. (5.5)

Whence, in the terminology of [RS] the form Qr is strictly m–accretive. There is an
associated operator Hr for which the open left half-plane C− = {ζ ∈ C|Re ζ < 0} is
a subset of the resolvent set, cf. [RS, Lemma after Theorem VIII.16].

Lemma 5.1. The B(L2(1,∞))–valued functions

Br(ζ) := (t − 1)−1(Hr − ζ)−1(t − 1)−1

and

pt(Hr − ζ)−1(t − 1)−1 (5.6)

are uniformly bounded on C−.

Proof. Applying (5.5) to φ = (Hr − ζ)−1(t − σ)−1f where σ < 1 and f ∈ L2(1,∞)
yields (by the Cauchy Schwarz inequality)

‖(t − σ)−1(Hr − ζ)−1(t − σ)−1f‖ ≤ δ−1‖f‖. (5.7)

Letting σ → 1 using the Lebesgue convergence theorems we conclude that (Hr −
ζ)−1(t − 1)−1f ∈ D((t − 1)−1) for all f ∈ D((t − 1)−1) and that (5.7) with σ = 1
holds for such f ’s.

As for bounding (5.6) we combine (5.5) and (5.7) to obtain uniform boundedness
of pt(Hr − ζ)−1(t − σ)−1. Again we let σ → 1. ¤

Lemma 5.2. There exists the weak limit

Br(0) = w − lim
ζ→0, Re ζ<0

Br(ζ).

Proof. Let f ∈ L2(1,∞). For any sequence ζn → 0 with Re ζn < 0, Br(ζnk
)f ⇀ g for

some g and some subsequence ζnk
, c.f. Lemma 5.1 and [Yo, Theorem V.2.1]. Writing

g = Br(0)f it remains to show that for any f ∈ D((t − 1)−1), g is independent of
choice of sequences. So suppose that for such f , Br(ζ1,n)f ⇀ g1 and Br(ζ2,n)f ⇀ g2.
We need to show that ψ := g1−g2 = 0. We readily obtain that for all φ ∈ C∞

c (1,∞)

〈(t − 1)H−rφ, ψ〉 = 0. (5.8)

Using this we can show that indeed ψ = 0 by the following approximation argument.
Pick a real-valued χ ∈ C∞[1,∞) such that χ(t) = 1 for t < 2 and χ(t) = 0 for t > 3,
and let χn(t) = χ(t/n); n ∈ N. We introduce Ψ(t) = (t− 1)ψ(t) and ψn = χnΨ. By
elliptic regularity we obtain from (5.8) that Ψ(t) is smooth up to (and including)
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t = 1. Since ψ ∈ L2(1,∞) we must have Ψ(1) = 0, in particular ψn ∈ D(Qr). Using
(5.8) with this input we compute

Qr(ψn) = ‖χ′
nΨ‖2. (5.9)

Since (t − 1)χ′
n(t) = (t − 1)χ′(t/n)/n is uniformly bounded, the Lebesgue dom-

inated convergence theorem yields that the right hand side of (5.9) vanishes as
n → ∞. Whence by (5.5)

‖ψ‖ = lim
n→∞

‖χnψ‖ = 0.

¤

Lemma 5.3. For all ζ ∈ C−

(Hr − ζ)−1 = tr(H − ζ)−1t−r.

Proof. We shall only consider the case r ≥ 0 (the case r ≤ 0 may be treated
similarly). It suffices to show that

t−r(Hr − ζ)−1 = (H − ζ)−1t−r. (5.10)

Clearly t−r(Hr − ζ)−1f ∈ D(Q0) for any f ∈ L2(1,∞). For all φ ∈ C∞
c (1,∞) we

compute

Q0(φ, t−r(Hr − ζ)−1f) = 〈φ, t−rHr(Hr − ζ)−1f〉. (5.11)

Since C∞
c (1,∞) is a core for Q0 we deduce that (5.11) is valid for all φ ∈ D(Q0).

Whence

Ht−r(Hr − ζ)−1f = t−rHr(Hr − ζ)−1f,

from which we readily obtain (5.10). ¤

Using Lemma 5.3 we can show strong convergence of Tr(ζ) := t−1(Hr − ζ)−1t−1.
Notice that by Lemma 5.2 there exists

Tr(0) = w − lim
ζ→0, Re ζ<0

Tr(ζ),

and that by Lemma 5.3, Tr(0) = trT0(0)t−r.

Lemma 5.4.

Tr(0) = s − lim
ζ→0, Re ζ<0

Tr(ζ). (5.12)

Proof. Pick δ ∈ (0, ǫ/2 − |r|). We claim that for all f ∈ D(tδ)

Tr(ζ)f = t−δTr+δ(ζ)tδf → t−δTr+δ(0)tδf. (5.13)

Since t−δt−1(Hr + 1)−1t is compact the (norm-) convergence (5.13) follows from
the first resolvent equation and weak convergence. Since t−δTr+δ(0)tδ = Tr(0) this
proves (5.12). ¤

Remark 5.5. Using the uniform boundedness of the family (5.6) and Lemma 5.2
one may show that there exists the weak limit

w − lim
ζ→0, Re ζ<0

Rr(ζ); Rr(ζ) = pt(Hr − ζ)−1t−1.

Assuming in addition to the given conditions on q that tq(t) is bounded, one
may show using the proof of Lemma 5.4 that there exists the strong limit, s −
limζ→0, Re ζ<0 Rr(ζ).
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We introduce for s ∈ R the weighted spaces

Z−s = L2
−s(1,∞) = tsL2(1,∞); (5.14)

here L2 refers to the space of C
d–valued square integrable functions.

Lemma 5.6. Suppose s < 1 + ǫ
2
, where ǫ > 0 is given as in (5.2). Suppose z ∈

L2
−s(1,∞) satisfies the homogeneous analogue of (5.1) in D′(1,∞) (i.e. we assume

that the right hand side vanishes and that the equation holds in distributional sense),
and z(1) = 0. Then z = 0.

Proof. We consider for any z̃ ∈ D(1,∞)

0 = lim
ζ→0, Re ζ<0

〈(H − ζ)−1z̃, Hz〉.

By Lemmas 5.3 and 5.4 we may compute the limit as to obtain

0 = 〈H−1z̃, Hz〉
with H−1z̃ := t1−rTr(0)t1+rz̃ provided |r| < ǫ/2. For a later application we need
r ≥ s − 1 which by assumption is feasible.

The idea is to integrate by parts in the expression to the right. First we notice
that ptH

−1z̃ ∈ L2
r, c.f. Remark 5.5. Next we claim that

ptz ∈ L2
1−s. (5.15)

For that we introduce for n ∈ N the multiplication operator Fn(t) = F (t/n < 1),
and consider the expression

〈ptz, Fn(t)t2−2sptz〉 + 〈z, q(t)Fn(t)t2−2sz〉. (5.16)

Up to a term that can be bounded uniformly in n (using the assumption that
z ∈ L2

−s) this expression is equal to Re 〈Hz, Fn(t)t2−2sz〉. Whence (5.15) follows
from (5.16) and the monotone convergence theorem.

Now integration by parts yields (this is a version of Green’s identity)

0 =
[

− H−1z̃ · d

dt
z +

{ d

dt
H−1z̃

}

· z
]∞

1
+ 〈HH−1z̃, z〉.

Obviously the last term to the right is equal to 〈z̃, z〉. We claim that the first term
vanishes. The lower boundary term (at t = 1) vanishes. The upper limit should
be interpreted as a limit along a suitable sequence tm → ∞. Specifically, since the
form is [tf(t)]∞1 with f integrable (here we use (5.15)) indeed tmf(tm) → 0 along
such sequence.

We conclude that

0 = 〈z̃, z〉,
and since this holds for all z̃ ∈ D(1,∞) the proof is complete.

¤

Corollary 5.7. Suppose z̃ ∈ L2
1+r(1,∞) where r > − ǫ

2
with ǫ > 0 given as in

(5.2). Then there exists a uniquely determined z ∈ ∪
s<1+

ǫ
2
L2
−s(1,∞) satisfying the

equation (5.1) in D′(1,∞) and z(1) = 0.

Proof. For the existence part we may assume that r < ǫ
2
. Take z = −t1−rTr(0)t1+rz̃.

The uniqueness part follows immediately from Lemma 5.6. ¤
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6. Mixed problem in the case V2 6= 0

In the section we impose Conditions 2.1 and 2.2. We shall find an analogue of
Proposition 4.6.

6.1. Solving a fixed point problem. We are interested in solving (4.22) for
(x, ω) ∈ Γ+

R,σ where R ≥ 1 is large and σ > 0 is small. For that we write the
solution as y = z + y1, where y1(t) is the solution constructed in Section 4 (with
V2 = V3 = 0). We shall derive a fixed point problem for the “perturbation” z. By
Newton’s equation

z̈ = −∇V (z + y1) + ∇V1(y1) = −∇2V1(y1)z + R(z); (6.1)

R(z) = −
∫ 1

0

(1 − l)∇3V1(lz + y1){z, z}dl −∇V2(z + y1).

The Hessian in the first term on the right hand side of (6.1) is given by

∇2V1(y1) = V ′′
1 (|y1|)P‖(y1) + |y1|−1V ′

1(|y1|)P⊥(y1), (6.2)

where P‖(y1) = |y1|−2|y1〉〈y1| projects onto the span of y1, and P⊥(y1) = I −P‖(y1).
Using Condition 2.2, (4.28) and the representation (6.2) we see that q(t) :=

−∇2V1(y1) satisfies the condition (5.2) with ǫ = ǭ1. The equation (6.1) has the
form of (5.1)

z̈ − qz = z̃ := R(z). (6.3)

We shall solve (6.3) using Banach’s fixed point theorem. In this section the nota-
tion Z−s = L2

−s(1,∞) refers to weighted L2–spaces of R
d–valued square integrable

functions, cf. (5.14).
We will choose s of the form

s = α + 1
2
− ǫ, (6.4)

where ǫ > 0 satisfies

|α − 1
2
− ǫ| < ǭ1

2
, (6.5)

ǫ < αǫ2. (6.6)

By taking ǫ < αǫ2 sufficiently close to αǫ2, indeed (6.5) and (6.6) are fulfilled
(here we use (2.5)).

We shall prove the following result.

Proposition 6.1. Suppose Conditions 2.1 and 2.2. Fix ǫ > 0 sufficiently close to
αǫ2 (but smaller). Then there exist R0 ≥ 1 and σ0 > 0 such that for all R ≥ R0 and
for all positive σ ≤ σ0 the problem (4.22) is solved by some function y(t) = z(t) +
y1(t), t ≥ 1, for all data (x, ω) ∈ Γ+

R,σ and λ ≥ 0. The function z(t) is constructed

as a fixed point of (6.7) stated below. Moreover this solution y(t) ∈ Γ+
R,σ(ω) for all

large enough t ≥ 1.

Proof. We shall use the operator Tr(0) from Lemma 5.4 with r = 1 − s and s given
by (6.4). Notice that then (5.3) is fulfilled upon replacing ǫ → ǭ1 due to (6.5).

Consider the following fixed point problem for z ∈ Z−s

z = P(z), (6.7)

where
P(z) = −tsTr(0)t2−sR̃(z); R̃(z) = χ1χ2R(z). (6.8)
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Here χj are auxiliary operators introduced in a first step; once the fixed point is
constructed they can be removed. They are given in terms of z ∈ Z−s by χ1 =
F (|z|/|y1| < 2

3
) and χ2 = F (|z|/tα−ǫ < 2), respectively.

We claim that the map P is a contraction on Z−s for all (x, ω) ∈ Γ+
R,σ with σ > 0

small and R large, yielding by Banach’s fixed point theorem a solution to (6.7).
We start by verifying that indeed P : Z−s → Z−s.
We may bound the vector R̃(z) in (6.8) as

R̃(z)(t) = O
(

t−α(1+µ)−2ǫ
)

+ O
(

t−α(1+µ+ǫ2)
)

, (6.9)

using the second estimate of (4.58) and the support properties of the χj’s.
Since Tr(0) is bounded on L2(1,∞) we obtain from (6.9) and (6.6) that tsTr(0)×

t2−sR̃(z) ∈ Z−s.
As for the contraction property let z1, z2 ∈ Z−s be given. Straightforward estima-

tions using (4.59) and (6.6) show

‖P(z1) − P(z2)‖−s ≤ C|x|−δ‖z1 − z2‖−s ≤ 1
2
‖z1 − z2‖−s. (6.10)

Here we have taken δ > 0 small; see (6.11) and (6.13) stated below for a similar
application of (4.59). Clearly C|x|−δ ≤ CR−δ ≤ 1

2
if R is large enough.

Finally we show that the factors χj’s in (6.7) and (6.8) can be removed for the
constructed fixed point, say z = z−s ∈ Z−s. First we notice the bound

‖z‖−s ≤ 2‖P(z = 0)‖−s = 2‖tsTr(0)t2−s∇V2(y1(·))‖−s

≤ Cδ|x|−δ ≤ CδR
−δ, (6.11)

obtained using the contraction property (6.10), (6.6) and (4.59). We shall need a
pointwise Sobolev type of bound. Let w(t) = d/dt{t1−2s|z(t)|2}. By elementary
estimations and by using (6.11) and Remark 5.5 (notice that in conjunction with
the fixed point equation the uniform bound of Remark 5.5 yields a weighted bound
of the time-derivative of z) we may show that

∫ ∞

1

|w(t)|dt ≤ 1
4

for R large enough.

From this estimate we get (by integrating to infinity)

|z(t)| ≤ 1
2
tα−ǫ; t ≥ 1. (6.12)

Combining (6.12) with the bound

tǫ−α|y1| ≥ c|x|ǫ/α ≥ cRǫ/α ≥ 2, (6.13)

we conclude that indeed χ1 = F (|z|/|y1| < 2
3
) = 1 and χ2 = F (|z|/tα−ǫ < 2) = 1 for

all sufficiently large R’s. Consequently those factors χj’s can be removed.
Obviously z(1) = 0 and the problem (4.22) is solved by y(t) = z(t) + y1(t). ¤

Remarks 6.2. 1) The above analysis yields the following uniform bound of the
fixed point (with ǫ as above)

|z(t)| ≤ Cδ|x|−δtα−ǫ,

valid for some δ = δ(ǫ) > 0.
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2) For positive energies there is a simpler procedure, cf. [DG, proof of Theorem
1.5.1]. This leads to the improved decay in time

y(t) − (t − 1)
√

2λω − x = O(tδ); δ > max(1 − µ, 0), (6.14)

with the bounding constant being locally uniform in (ω, λ) ∈ Sd−1 × (0,∞).
Obviously (6.14) is not uniform in λ. Compared to the procedure for positive
energies the present one is based on an additional Taylor expansion. In this way
we circumvent a problem related to the fact that the quantity

∫

t|∇2V (y)|dt
is finite only for λ > 0 (causing a difficulty for the contraction property at
λ = 0).

3) Although it is not stated in Proposition 6.1 that Γ+
R,σ(ω) is invariant under the

forward flow this is indeed true; see Lemma 6.4 stated below. Notice that it
follows from Proposition 4.6 that Γ+

R,σ(ω) is invariant in the case V2 = 0.
4) We have not proved that the solution to the problem (4.22) is unique in the

sense used in Proposition 4.6 in the case V2 = 0.

Definition 6.3. Under the conditions of Proposition 6.1 we define a vector field F
on Γ+

R0,σ0
(ω) by

F (x) = ẏ(t = 1; x, ω, λ); (6.15)

here y refers to the solution of (4.22) given in Proposition 6.1.

Lemma 6.4. Let y = y(t) = y(t; x, ω, λ) be the solution of Proposition 6.1. Then
y ∈ Γ+

R,σ(ω) for all t ≥ 1.
Let F1 be given as in Definition 6.3 in the case V2 = 0, and let ǫ be given as in

Proposition 6.1. Then for all positive ǫ′ < ǫ and ǫ′2 < ǫ2

F (x) − F1(x) = O
(

|x|−µ/2−ǫ̆
)

; ǫ̆ := min(ǫ′/α, ǫ′2). (6.16)

In particular for constants C, c > 0 independent of x, ω and λ
∣

∣

∣

F (x)

|F (x)| −
F1(x)

|F1(x)|
∣

∣

∣
≤ C|x|−ǫ̆, (6.17)

and
F (x)

|F (x)| · x̂ ≥ 1 − C
(

1 − x̂ · ω
)

− C|x|−ǫ̆, (6.18a)

F (x)

|F (x)| · x̂ ≤ 1 − c
(

1 − x̂ · ω
)

+ C|x|−ǫ̆, (6.18b)

F (x)

|F (x)| · ω ≥ 1 − C
(

1 − x̂ · ω
)

− C|x|−ǫ̆. (6.18c)

Proof. Let y1 = y1(t) signify the solution in the case V2 = 0. From (4.56) and
Taylor’s formula we obtain

ẏ(t) − ẏ1(t) =

∫ ∞

t

{

∫ 1

0

∇2V1(lz + y1)zdl + ∇V2(y)
}

ds. (6.19)

To bound the contribution from the first term on the right hand side we use (4.58)
and (6.12), and estimate with δ = 2−1(1 − α + ǫ′) for ǫ′ < ǫ

∫ ∞

t

∫ 1

0

∇2V1(lz + y1)z dlds =

∫ ∞

t

O
(

|y1|−δ(2+µ)
)

s−(1−δ)α(2+µ)sα−ǫds

= O
(

|y1(t)|−µ/2−ǫ′/α
)

. (6.20)
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The contribution from the second term on the right hand side is estimated simi-
larly

∫ ∞

t

∇V2(y) ds = |y1(t)|−µ/2−ǫ′2

∫ ∞

t

O
(

|y1|−1−µ/2+ǫ′2−ǫ2
)

ds

= O
(

|y1(t)|−µ/2−ǫ′2). (6.21)

We conclude

ẏ(t) − ẏ1(t) = O
(

|y1(t)|−µ/2−ǫ̆)
)

= |ẏ1(t)|O
(

|x|−ǫ̆
)

. (6.22)

We obtain (6.16) by taking t = 1 in (6.22). Clearly (6.17) follows from (6.16).
Moreover (6.18a) and (6.18b) in turn follow from (6.17) and Section 4 (possibly
after diminishing σ0), while (6.18c) readily follows from (6.18a) (for a new constant).

Notice for (6.18a) and (6.18b) in the case V2 = 0 that 1 − F (x)
|F (x)|

· x̂ = 1 − cos ψ1

and 1 − x̂ · ω = 1 − cos θ1. Whence the statements are equivalent to the bounds
cθ1 ≤ ψ1 ≤ Cθ1 which may be derived from the following formula (representing
κ = − sin ψ1)

∂κ2

∂θ2
1

(θ1 = 0) =
(

∫ ∞

1

s−2 g(r1)

g(sr1)
ds

)−2

. (6.23)

Finally we obtain from (6.17), (6.22) and the above considerations (for the case
V2 = 0) that y(t) ∈ Γ+

R,σ(ω) for all t ≥ 1 given that x = y(1) ∈ Γ+
R,σ(ω).

¤

We shall show in Section 7 that F is a smooth gradient field. The following result,
the proof of which is somewhat complicated since we have not proved uniqueness,
cf. Remarks 6.2 4), will be useful.

Lemma 6.5. Let y = y(t) = y(t; x, ω, λ) be the solution of Proposition 6.1. Then
ẏ(t) = F (y(t)) for all t ≥ 1.

Proof. Let us omit ω, λ in the notation, and consider the following equivalent state-
ment, say p(T ),

y(t + t̄ − 1; x) = y(t; y(t̄; x)) for all t ≥ 1 and all t̄ ∈ [1, T ]. (6.24)

Here T ≥ 1 is arbitrary.
Obviously p(1) is true. Let us prove that p(T ) is true for a T > 1 that may be

chosen to be independent of x: We consider

z̃(·) := y(· + t̄ − 1; x) − y1(·; y(t̄; x))

for t̄ ∈ (1, T ]. We claim that (with s given by (6.4))

z̃ ∈ Z−s, (6.25)

|z̃| < 1
3
|y1(·; y(t̄; x))|, (6.26)

|z̃| < tα−ǫ. (6.27)

Notice that by using (6.25)–(6.27), the fact that z̃(1) = 0, Lemma 5.6 and the
uniqueness property for contractions we obtain that z̃(t) = z(t; y(t̄; x)) and therefore
indeed (6.24) (for suitably small T −1 > 0). Here Lemma 5.6 is applied to the vector
z̃ − P(z̃).
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We estimate

|z̃(t)| ≤ |y(t + t̄ − 1; x) − y(t; x)| (6.28)

+ |z(t; x)| + |y1(t; x) − y1(t; y(t̄; x))|,

|y(t + t̄ − 1; x) − y(t; x)| ≤
∫ t̄−1

0

|ẏ(s + t; x)|ds = O(t0), (6.29)

and

y1(t; x) − y1(t; y(t̄; x)) =

∫ 1

0

(∇xy1)(t; l(x − y(t̄; x)) + y(t̄; x)) · (x − y(t̄; x))dl

= O
(

g(|y1|)−1
)

= O(tαµ/2), (6.30)

cf. (4.44).
We obtain (6.25) from (6.28)–(6.30).
As for (6.26) we may use the estimates

|y1(t; y(t̄; x))| ≥ |y1(t; x)| − |y1(t; y(t̄; x)) − y1(t; x)|, (6.31)

|z(t; x)| ≤ 1
4
|y1(t; x)|, (6.32)

and the previous estimates. (Here the smallness of T − 1 > 0 comes in.) The proof
of (6.27) is similar.

Now to show (6.24) in the general case, suppose p(T ) for some T > 1: Then for
△t̄ > 0 small (in agreement with the previous step) we have, with t̄ = T + △t̄,

y(t + t̄ − 1; x) = y((t + △t̄) + T − 1; x)

= y(t + △t̄; y(T ; x)) = y(t; y(△t̄ + 1; y(T ; x)))

= y(t; y(t̄; x)).

Here we used p(T ) as well as the previous step with x replaced by y(T ; x). Whence
we have shown p(T ′) for a T ′ > T , and therefore (6.24) for all T ≥ 1. ¤

6.2. Smoothness properties of solution y. We shall compute and estimate
derivatives with respect to initial position x and final direction ω of the constructed
solution y = z + y1 and of the vector field F given in Definition 6.3. We studied the
derivatives of y = y1 in Subsection 4.2. It is well-known that under general condi-
tions a solution to a fixed point equation depending on parameters will be smooth
in these variables, see for instance [Ir, Appendix C].

From the fixed point equation (6.7) one may derive (for example) the representa-
tion

∂xz = (I −∇zP)−1∂xP . (6.33)

Notice here the bound

‖∇zP‖B(Z−s) ≤ 1
2
, (6.34)

cf. (6.10) (with s given by (6.4)). To deal with higher order derivatives we need a
more elaborate analysis.

Motivated by (6.12) we introduce the following modification of the spaces Z−σ of
(5.14). Let Zunif

−σ be the space of R
d–valued continuous functions z̃ on [1,∞) obeying

‖z̃‖unif
−σ := sup

t≥1
t−σ|z̃(t)| < ∞.

We shall first estimate various derivatives of the contraction P on Z−s.
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Lemma 6.6. For all multiindices δ and γ, k ∈ N∪{0} and z1, . . . , zk ∈ Zunif
ǫ−α ∩Z−s

‖∂δ
ω∂γ

x∂k
zP{z1, . . . , zk}‖−s ≤ Cδ,γ,k|x|−|γ|‖z1‖unif

ǫ−α · · · ‖zk‖unif
ǫ−α, (6.35)

‖ d
dt

∂δ
ω∂γ

x∂k
zP{z1, . . . , zk}‖1−s ≤ Cδ,γ,k|x|−|γ|‖z1‖unif

ǫ−α · · · ‖zk‖unif
ǫ−α. (6.36)

Proof. We start by verifying (6.35) for k = 0, δ = 0 and |γ| = 1. So we need
to trace the x–dependence of P as defined by (6.8). There is a contribution from
differentiating the factor Tr(0) and another from differentiating the factor R̃(z).
Using Lemma 5.4 we may use the formal computation

∂xTr(0) = −Tr(0)t(∂xq)tTr(0); (6.37)

here
∂xq = −∇3V1(y1)∂xy1. (6.38)

Using (4.58), (4.45) and (6.38) we derive t(∂xq)t = O(|x|−1). Whence ∂xTr(0) =
O(|x|−1). As for the x–dependence from the factor R̃(z) we may combine (4.45) and
the arguments for (6.9) to pick up an extra factor |x|−1 in the estimation of ∂xR̃(z).

Higher derivatives are treated similarly.
As for (6.36) we use Remark 5.5 and the same estimates as before.

¤

Lemma 6.7. For all multiindices δ and γ

‖∂δ
ω∂γ

xz‖−s = O
(

|x|−|γ|
)

, (6.39a)

‖∂t∂
δ
ω∂γ

xz‖1−s = O
(

|x|−|γ|
)

, (6.39b)

‖∂δ
ω∂γ

xz‖unif
ǫ−α = O

(

|x|−|γ|
)

. (6.39c)

Proof. We notice that (6.39a)–(6.39c) in the case |δ| + |γ| = 0 follow from (6.11),
(6.12) and the arguments for (6.12).

By the same reasoning (the Sobolev bound) if (6.39a) and (6.39b) are known for
|δ| + |γ| ≤ n for some n ∈ N, then also (6.39c) for |δ| + |γ| ≤ n is valid.

So suppose we know (6.39a)–(6.39c) for all multiindices δ and γ with |δ| + |γ| ≤
n − 1 for some n ∈ N, then we only need to verify the bounds (6.39a) and (6.39b)
for |δ| + |γ| ≤ n. For this we fix multiindices δ and γ with |δ| + |γ| = n − 1 and
look at the representation of z̆ = ∂δ

ω∂γ
xz obtained from differentiating (6.7) (a Faa

di Bruno formula)

z̆ = (∂zP){z̆} + ∂δ
ω∂γ

xP (6.40)

+
∑

cδ′,δ1,...,δk,γ′,γ1,...,γk
(∂δ′

ω ∂γ′

x ∂k
zP){∂δ1

ω ∂γ1

x z, . . . , ∂δk
ω ∂γk

x z},
where summation is over k ≥ 1, δ′ + δ1 + · · · + δk = δ, γ′ + γ1 + · · · + γk = γ and
n − 1 ≥ k + |δ′| + |γ′| ≥ 2. The meaning of (6.40) if n = 1 is (6.7), while for n = 2
the third term to the right should be omitted. Now we may compute ∂z̆ (meaning
either ∂ei

ω z̆ or ∂
ej
x z̆) by differentiating (6.40). The result is, cf. (6.33),

∂z̆ = (∂zP){∂z̆} + z̃,

where z̃ may be treated using (6.35) and the induction hypothesis. So (again) we
may invoke (6.34). This yields (6.39a) (as well as the representation (6.40)) for
|δ| + |γ| = n.

It remains to prove (6.39b) in the inductive argument. For that we use the proven
formula (6.40) for |δ| + |γ| = n. We proceed somewhat similarly applying now t∂t
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to both sides of this formula with z̆ now given in terms of indices with |δ|+ |γ| = n.
This leads to

t∂tz̆ = t d
dt

∂zP{z̆} + t∂tz̄.

The first term to the right may be treated using Remark 5.5; it is estimated as

‖t d
dt

∂zP{z̆}‖−s ≤ C‖z̆‖−s,

cf. (6.10). The second term may be treated using (6.36) and the induction hypoth-
esis (specifically only (6.39c)). The estimate (6.39b) follows. ¤

Proposition 6.8. With F being the vector field in Definition 6.3 there are uniform
bounds valid for all multiindices δ and γ

∂δ
ω∂γ

xF (x) = 〈x〉−|γ|O (g(|x|)) , (6.41)

∂δ
ω∂γ

x

(

F (x) − F1(x)
)

= 〈x〉−ǫ̆−|γ|O (g(|x|)) ; (6.42)

here F1 is given as F for the case V2 = 0, and ǫ̆ > 0 is given as in Lemma 6.4.

Proof. As for (6.41) we shall use the same scheme as for proving (4.54). First we
notice the following consequence of (6.39c).

|∂δ
ω∂γ

xz(t)| ≤ Cδ,γ|y1(t)| |x|−|γ|. (6.43)

By (4.45)

|∂δ
ω∂γ

xy1(t)| ≤ Cδ,γ|y1(t)| |x|−|γ|. (6.44)

The combination of (6.43) and (6.44) is

|∂δ
ω∂γ

xy(t)| ≤ Cδ,γ|y1(t)| |x|−|γ|. (6.45)

As in the proof of (4.54), we represent

∂∗F = ∂∗ẏ(t = 1) = ∂∗

√
2λω +

∫ ∞

1

∂∇V (y)∂∗y dt, (6.46)

from which we may derive a Faa di Bruno formula (by repeated differentiation) to
which (6.45) applies. The argument for the case δ = 0 and |γ| = 1 is similar to
(4.57):

By combining (6.45) and (6.46) we obtain

∂xẏ(t = 1; x, ω, λ) =

∫ ∞

1

∇2V (y)O
( |y|
|x|

)

dt

= O
(

|x|−
(

1+
µ
2

)

)

= 〈x〉−1O(g(|x|)), (6.47)

which obviously is a particular case of (6.41). The general case is similar.
As for (6.42) we need a more refined argument than (6.47); this is now based on

(6.19). We need to differentiate and estimate the expressions to the left in (6.20)
and (6.21). The estimation of the differentiated expressions is done by using (6.39c)
and (6.44) in a similar manner as done in the proof of Lemma 6.4; details are
omitted. ¤

Lemma 6.9. The vector field F = F (x, ω, λ) as well as all derivatives ∂δ
ω∂γ

xF are
jointly continuous in the variables (x, ω) ∈ Γ+

R0,σ0
and λ ≥ 0.
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Proof. Since in fact F (x, ω, λ) is smooth in (x, ω) ∈ Γ+
R0,σ0

and λ > 0, cf. Remarks
4.7 1), only continuity at λ = 0 is non-trivial. Due to Remarks 4.7 2) and Proposition
6.8 it suffices to show that

F (x, ω, λ) → F (x, ω, 0) for λ → 0. (6.48)

For that we first notice that

y1(t; x, ω, λ) → y1(t; x, ω, 0) for λ → 0. (6.49)

This may be seen by combining Remarks 4.7 1) and a standard continuity statement
of a flow in terms of variation of the initial values and the vector field, see for example
[BR, Theorem 3 page 177].

Since P = P(ζ, λ) ∈ Z−s is jointly continuous in λ ≥ 0 and ζ ∈ Z−s (as may
readily be checked) and there is a uniform contraction constant, a general principle
for contractions, cf. [Ir, Appendix C], yields continuity for the fixed points; viz.

zλ → z0 = zλ=0 in Z−s. (6.50)

Next we represent, cf. (6.19),

F (x, ω, λ) − F (x, ω, 0) =

∫ ∞

1

(

∇V (yλ) −∇V (y0)
)

dt.

The norm of the integrand to the right is estimated uniformly by Ct−α(1+µ). Com-
bining this fact, (6.49), (6.50) and [Ru, Theorems 1.34, 3.12] we conclude (6.48). ¤

We end this section by stating a somewhat similar approximation result needed
in the next section; clearly there are results for higher derivatives as in Lemma 6.9
but they will not be needed. Let V2,n(x) = F (|x|/n < 1)V2(x) for n ∈ N, and let
zn, yn,Pn and Fn be the quantities defined upon replacing V2 by V2,n in previous
constructions.

Lemma 6.10. The vector field Fn = Fn(x, ω, λ) is defined on the same domain as
F (possibly after a slight shrinking), and pointwisely

∂xFn → ∂xF for n → ∞.

Proof. Clearly for all multiindices γ, the function 〈x〉µ+ǫ2+|γ|∂γV2,n(x) is bounded
uniformly in n. Using this property one may check the first statement as well as the
existence of uniform bounds on the quantities supx〈x〉|γ|‖∂γ

xzn‖−s and supx g(x)−1 ×
〈x〉|γ||∂γFn(x)|. Whence it suffices to show that

Fn(x) → F (x) for n → ∞, (6.51)

cf. Remarks 4.7 2).
Since Pn(ζ) ∈ Z−s is jointly continuous in n ∈ N and ζ ∈ Z−s (more precisely

‖Pn(ζn)−P(ζ)‖−s → 0 for any sequence ζn → ζ in Z−s) we have continuity for the
fixed points; viz. zn → z in Z−s.

We represent

Fn − F =

∫ ∞

1

(

∇Vn(yn) −∇V (y)
)

dt.

As in the proof of Lemma 6.9 we have a uniform bound and pointwise convergence
(along subsequences) for the integrand; we can argue as before and conclude (6.51).

¤
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7. Solution to eikonal equation

In this section we shall see that the vector field F of Definition 6.3 can be written
as F (x) = ∇φ(x) for some smooth function φ. We impose Conditions 2.1 and
2.2, however if V2 = 0 Condition 2.1 suffices; in that case F is given by the same
definition.

Definition 7.1. Under the conditions of Proposition 6.1 (or Proposition 4.6) we
introduce for (x, ω) ∈ Γ+

R0,σ0
and λ ≥ 0

φ(x) = φ(x, ω, λ) = (x − R0ω) ·
∫ 1

0

F (l(x − R0ω) + R0ω)dl +
√

2λR0.

It follows from Lemma 6.9 that φ = φ(x, ω, λ) as well as all derivatives ∂δ
ω∂γ

xφ are
jointly continuous in the variables (x, ω) ∈ Γ+

R0,σ0
and λ ≥ 0. We shall show that

the image of the map Γ+
R0,σ0

(ω) ∋ x → (x, F (x) is Lagrangian, so that indeed this
function φ is an antiderivative of F .

Proposition 7.2. Under the conditions of Definition 7.1

F (x) = ∇xφ(x),

and φ solves the eikonal equation

1
2
(∇xφ)2 + V (x) = λ; x ∈ Γ+

R0,σ0
(ω). (7.1)

Proof. Let us denote by θt = (y, F (y)) the Hamiltonian orbit located at time t = 1
at the point (x, F (x)), cf. Lemma 6.5. Viewing θt = θt(x) as a function of x we
shall show that

θ∗1σ = 0, (7.2)

where here σ =
∑

dξi ∧ dxi is the canonical two-form. For that we invoke the
continuity property in the dependence through the term V2 as specified in Lemma
6.10. We obtain that θ∗1σ = limn→∞ θ∗1,nσ (using obvious notation), and henceforth
we may assume that V2 is compactly supported.

Next, since θ∗1σ = θ∗t σ for all t ≥ 1 it suffices to show that the strong limit

lim
t→∞

θ∗t σ = 0. (7.3)

We pick t̄ > 1 so large that the first coordinate, say x̄, of θt̄(x) is outside the support
of V2 (and similarly for all later times). Considering x̄ = x̄(x) as a function of x we
may write θ∗t σ = x̄∗θt−t̄+1(x̄)∗σ, cf. (6.24), and compute

θt−t̄+1(x̄)∗σ =
∑

k<l

∂x̄l
y · (F ′ − F ′tr)∂x̄k

y dx̄k ∧ dx̄l.

Here F ′ signifies the derivative of F at y, and “tr” is used for the transposed operator.
Now, using (4.44) and (6.41) we get

∂x̄l
y · (F ′ − F ′tr)∂x̄k

y = O(g(|y|)|y|−1)O

(

g(|x̄|)2

g(|y|)2

)

= O

(

g(|x̄|)2

|y|g(|y|)

)

.

The right hand side → 0, and therefore (7.3) follows. ¤

Remarks 7.3. 1) For λ > 0 the constructed phase function essentially coincides

with the Isozaki Kitada (outgoing) phase function, φ(x, ξ), ξ =
√

2λω, cf.
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[IK1, Definition 2.3] or [DG, Proposition 2.8.2]. In particular, cf. the method
of proof of Proposition 6.8, there are bounds

∂k
λ∂κ

ω∂γ
x{φ(x, ω, λ) −

√
2λx · ω} = O

(

|x|δ−|γ|
)

for |x| → ∞; (7.4)

δ > max(1 − µ, 0).

However these bounds are not uniform in λ as opposed to (6.41). (We paid in
(6.41) the price of weaker pointwise decay.)

2) We constructed the phase by integrating the vector field F . In [IK1] and [DG]
it is constructed by a different procedure. Since it is assumed there that λ
keeps away from 0 one would need additional elaboration to include λ = 0 by
that procedure. Our arguments are related to [He, p. 16] and [HS, proof of
Theorem 2.1].

3) We may integrate from R0x̂ to x along the line segment joining the two points
plus in addition on the (small) arc joining R0ω and R0x̂ on a great circle of
radius R0. This gives the following represention in the case V2 = 0

φ(x, ω, λ) = φ̃(r, x̂ · ω, λ) + φ2(x̂, ω, λ); (7.5)

φ̃ = r

∫ 1

R0/r

g(lr)
√

1 − κ2(lr, θ2) dl.

7.1. Constructions in incoming region. We introduce for R ≥ 1 and σ > 0

Γ−
R,σ(ω) = {y ∈ R

d | y · ω ≤ (σ − 1)|y|, |y| ≥ R}; ω ∈ Sd−1,

Γ−
R,σ = {(y, ω) ∈ R

d × Sd−1| y ∈ Γ−
R,σ(ω)}.

Mimicking the previous procedure, starting from the mixed problem


















ÿ(t) = −∇V (y(t))

λ = 1
2
ẏ(t)2 + V1(y(t))

y(−1) = x

ω = − limt→−∞ ω(t); ω(t) = y(t)/|y(t)|

, (7.6)

cf. (4.22), we may similarly construct a solution φ−(x, ω, λ) to the eikonal equation
in some Γ−

R,σ(ω). In fact denoting by φ+(x, ω, λ) the solution from Definition 7.1
this amounts to taking

φ−(x, ω, λ) = −φ+(x,−ω, λ); x ∈ Γ−
R0,σ0

(ω) = Γ+
R0,σ0

(−ω). (7.7)

7.2. Classification of scattering orbits. The scattering orbits may be character-
ized in terms of the solutions to (4.22) and (7.6) as follows.

Proposition 7.4. Suppose Conditions 2.1–2.3. For any scattering orbit x(t) with
asymptotic velocities ω± given by (1.2) and energy λ ≥ 0 there exists a (large) T0 > 0
such that for all ±t ≥ T ≥ T0

x(t) = y(t ∓ T ± 1; x(±T ), ω±, λ), (7.8)

ẋ(t) = ∇xφ
±(x(t), ω±, λ). (7.9)

Proof. It suffices to look at the case t → +∞. The proof of (7.8) is somewhat similar
to the proof of Lemma 6.5. We introduce

z̃(t) = x(t − 1 + T ) − y1(t; x(T ), ω+, λ).

It needs to be shown that z̃(t) = z(t; x(T ), ω+, λ); t ≥ 1.
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Clearly z̃(1) = 0. We omit the notation ω+ and λ. As in the proof of Lemma 6.5
it suffices to show (6.25)–(6.27) (with y1(·) = y1(·; x(T )) used to the right in (6.26)).

By Newton’s equation

¨̃z = −
∫ 1

0

∇2V1(lz̃ + y1){z̃}dl −∇V2(z̃ + y1).

Writing q = −
∫ 1

0
∇2V1(lz̃ + y1)dl and R = −∇V2(z̃ + y1) the form is

¨̃z = qz̃ + R,

or equivalently
(p2

t + q)z̃ = −R. (7.10)

By (3.3) we may estimate R as follows in terms of any non-negative κ < 1+µ+ǫ2

|R(t)| ≤ Ct−α(1+µ+ǫ2−κ)|x(T )|−κ. (7.11)

As for the matrix q we claim that indeed it satisfies the condition (5.2) with ǫ = ǭ1

provided T > 0 is large enough. (Notice that the particular case l = 0 was used in
Section 6.) To see this it suffices to show that for any δ > 0 there exists T > 0 large
enough such that

t − 1 ≤ (1 + δ)t̃(|lz̃(t) + y1(t)|) (7.12)

uniformly in t ≥ 1 and l ∈ [0, 1], cf. Condition 2.2. Define θ = θ(t) ∈ [0, π/2] by
the relation cos θ = x(t) · y1(t)/(|x(t)| |y1(t)|) (abusing here and henceforth notation
x(t − 1 + T ) → x(t)). We may estimate

|lx(t) + (1 − l)y1(t)| ≥ cos(θ(t)/2) min(|x(t)|, |y1(t)|),
and use this bound to the upper limit in the integral. Since θ(t) → 0 for T → ∞
uniformly in t ≥ 1 we are left with estimating

t − 1 ≤ (1 + δ)t̃((1 − κ)|x(t)|) (7.13)

for a sufficiently small κ > 0. Notice that we need this also for the particular choice
x(t) = y1(t).

Now since (7.13) is valid for t = 1 it suffices to show that the derivative

(1 + δ)(1 − κ)
x(t)

|x(t)| · ẋ(t)
(

− 2V1((1 − κ)|x(t)|)
)−1/2 ≥ 1. (7.14)

Using Proposition 3.4 and elementary estimates we may see that uniformly in t ≥ 1

lim
T→∞

x(t)

|x(t)| ·
ẋ(t)

|ẋ(t)| = 1,

lim
T→∞

|ẋ(t)|
(

− 2V1(|x(t)|)
)−1/2 ≥ 1,

lim
T→∞

(

− 2V1(|x(t)|)
)1/2( − 2V1((1 − κ)|x(t)|)

)−1/2
= 1.

From this we obtain (7.14), and hence (7.13) and the above assertion for the matrix q.
If λ > 0 the condition (5.2) holds for the matrix q for any ǫ ∈ (0, 1) (provided

T > 0 is sufficiently large).
Next we claim that (7.10) is “solved” by

z̃ = −(p2
t + q)−1R, (7.15)

in agreement with the theory of Section 5. To see this we distinguish between the
cases λ = 0 and λ > 0. Suppose first that λ = 0. The right hand of (7.15) belongs
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to L2
−s̃(1,∞) for some s̃ < 1 + ǭ1

2
due to (7.11) (this is similar to the argument

following (6.9), in fact it holds with s̃ = s). We claim that also

z̃ ∈ L2
−s̃(1,∞) for some s̃ < 1 + ǭ1

2
. (7.16)

To show (7.16) we shall use (3.10) and the fact that

ǭ1 > 1 − α(µ + 2ǫ2) (7.17)

as follows: Abbreviate ω+ = ω and decompose

z̃ = (x − x · ω ω) − (y1 − y1 · ω ω) + z̃ · ω ω. (7.18)

The first two terms to the right are of the form O(tα−αǫ2), cf. (3.10) and (3.5).
By (7.17) the function tα−αǫ2 ∈ L2

−s̃ for some s̃ < 1 + ǭ1
2
.

As for the third term to the right in (7.18) we write

˙̃z = |ẋ| ẋ

|ẋ| − |ẏ1|
ẏ1

|ẏ1|
= (|ẋ| − |ẏ1|)ω + O(t−α µ

2
−αǫ2),

cf. (3.7).
We estimate

|ẋ| =
√

−2V1(|x|) + O(t−α µ

2
−αǫ2).

Combining this with the equation |ẏ1| =
√

−2V1(|y1|) and the estimate

lx + (1 − l)y1

|lx + (1 − l)y1|
= ω + O(t−αǫ2),

we conclude that

|ẋ| − |ẏ1| = q̃z̃ · ω + O(t−α µ

2
−αǫ2),

where

q̃ =

∫ 1

0

−V ′
1(lz̃ + y1)

√

−2V1(lz̃ + y1)
dl.

It follows that
d

dt
z̃ · ω = q̃z̃ · ω + O(t−α µ

2
−αǫ2),

which in turn yields

z̃ · ω =

∫ t

1

e
R t

s
q̃ dt′O(s−α µ

2
−αǫ2) ds. (7.19)

Using Condition 2.3 and (7.12) we get

q̃(t) ≤ κ/(t − 1) for some κ < 2−1(1 + ǭ1), (7.20)

uniformly in t ≥ 1.
We insert (7.20) into the right hand side of (7.19). Invoking (7.17) we get z̃ ·ω =

O(tκ); in particular z̃ · ω ∈ L2
−s̃(1,∞) for some s̃ < 1 + ǭ1

2
and (7.16) is proven.

Finally by combining Lemma 5.6, the fact that z̃(1) = 0, (7.10), (7.16) and the
statement following (7.15) we conlude that indeed (7.15) holds in the case λ = 0.

The case λ > 0 may be treated similarly although the estimates are simpler in
this case. Now it is enough to verify that both sides of (7.15) belong to L2

−s̃ for some
s̃ < 3/2. The right hand of (7.15) satisfies this by the same argument as for λ = 0.
As for the left hand of (7.15) the arguments above lead to

z̃ − z̃ · ω ω = O(t1−αǫ2), (7.21)
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and to the represention

z̃ · ω =

∫ t

1

e
R t

s
q̃ dt′O(s−αǫ2) ds. (7.22)

In combination (7.21) and (7.22) lead to z̃ = O(t1−αǫ2). Consequently indeed
z̃ ∈ L2

−s̃ for some s̃ < 3/2 in the case λ > 0, and we may conclude (7.15) as before.
Using (7.11), (7.15) and the theory of Section 5 one may now verify (6.25)–(6.27)

(with the same s) for T > 0 sufficently big, yielding (7.8) (by the arguments of the
proof of Lemma 6.5). The arguments are similar to the proof of Proposition 6.1.
(Notice for (6.26) that the estimate (3.3) with x(t) → y1(t; x(T )) holds uniformly in
all large T > 0.)

Clearly (7.9) follows from (7.8) and Lemma 6.5. ¤
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