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ON PAIRS OF PRIME GEODESICS WITH FIXED HOMOLOGY
DIFFERENCE.

MORTEN S. RISAGER

Abstract. We exhibit the analogy between prime geodesics on hyperbolic Rie-
mann surfaces and ordinary primes. We present asymptotic counting results con-
cerning pairs of prime geodesics with fixed homology difference.

1. Introduction

Let M be a compact Riemann surface M of genus g > 1. It is a fascinating fact
that the norms of the prime closed geodesics on M in many respects are analogous
to ordinary primes p ∈ N. One may think of them as being ‘pseudo-primes’. A
striking instance of this analogy is the prime geodesic theorem which was proved by
Huber [3] and Selberg (see [2]):

(1.1) π(x) = #{γ ∈ P(M)|N(γ) ≤ x} ∼ li(x).

Here P(M) is the set of prime closed geodesics (a geodesic is prime if it is not
an iterate of another geodesic), li(x) =

∫ x
1

1/ log(t)dt, and N(γ) is the norm of γ

defined by N(γ) = el(γ) where l(γ) is the geodesic length of γ.
Consider now Φ : P(M) → H1(M,Z), i.e. the projection to the first homology

group with integer coefficients. Fix β ∈ H1(M,Z) and let πβ(x) be the number
of prime geodesics γ of norm at most x and with Φ(γ) = β. Phillips and Sarnak
[8] (and immediately following them Adachi and Sunada [1]) found an asymptotic
expansion for πβ(x):

(1.2) πβ(x) ∼ (g − 1)g
x

logg+1 x

(
1 +

c1(β)

log x
+
c2(β)

log2 x
+ · · ·

)
.

The way in which ci(β) depends on the specific homology class β remained unex-
amined in [8]. We notice that the main term does not depend on β.

In certain applications we would like to understand the dependence of the homol-
ogy class in this asymptotic expansions. One result in this direction is the following
due to Sharp [12]: Fix an isomorphism ψ : H1(M,Z) ∼= Z2g There exist a 2g × 2g
positive definite symmetric matrix N of determinant 1 such that

(1.3) πβ(x) =
e−〈ψ(β),N−1ψ(β)〉/2σ2 log x

(2πσ2 log x)g
li(x) + o

(
x

logg+1(x)

)
,
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2 MORTEN S. RISAGER

where σ−2 = 2π(g − 1) and the implied constant is independent of β. The main
point is of course the independence of β in the error term, since without this (1.3)
reduces to a statement about the main term in a asymptotic expansion a la (1.2).

On average we can get better error terms. Petridis and Risager [6] proved that

(1.4)
∑
β∈B

‖ψ(β)‖m≤
√

log x log log x

(
πβ(x)−

e−〈ψ(β),N−1ψ(β)〉/2σ2 log x

(2πσ2 log x)g
li(x)

)
= o(li(x)).

From (1.4) follows an equidistribution result concerning geodesics in (large) sets
of homology classes: Let ‖r‖ be a norm on R2g. We say that a subset B ⊆ H1(M,Z)
has asymptotic density d‖·‖(B) with respect to ‖·‖ if the limit

lim
x→∞

#{β ∈ B| ‖ψ(β)‖ ≤ x}
#{β ∈ H1(M,Z)| ‖ψ(β)‖ ≤ x}

exists and equals d‖·‖(B), i.e. if the image in Z2g under ψ has asymptotic density in
Z2g with respect to ‖·‖. In [6] it was shown that there exist a norm ‖·‖M such that
for all sets B ⊆ H1(M,Z) with asymptotic density with respect to ‖·‖M

(1.5)
πB(x)

π(x)
→ d‖·‖M (B) as x→∞.

Here πB(x) is the number of prime closed geodesics with norm N(γ) at most x and
homology class Φ(γ) ∈ B.

One may investigate what happens if we consider pairs – or more generally k-
tuples – of prime closed geodesics. Pollicott and Sharp [10] recently did so in the
following way: Let a1, . . . , ag, b1, . . . bg be a fundamental set of generators for the
fundamental group π1(M) (see section 3) The conjugacy classes of π1(M) are in
one to one correspondence with closed geodesics on M . For a closed geodesic we
let |γ| = min{wl (g) g ∈ {γ}} where {γ} is the conjugacy class associated with
the closed geodesic γ and wl (γ) is the word length of g in the fundamental set of
generators. Pollicott and Sharp used sub-shifts of finite type and the thermodynamic
formalism to prove the following pair correlation result: there exist a constant c such
that for any a < b

(1.6) #{(γ, γ′)| |γ| , |γ′| ≤ n, a ≤ l(γ)− l(γ′) ≤ b} ∼ c(b− a)
e2n

n5/2
,

in the limit n→∞. We notice that in terms of the ‘pseudo-primes’ N(γ) Pollicott
and Sharp are looking at quotients of norms in finite intervals. For a somewhat
different type of results concerning pairs see [9].

In this paper we study a more geometric counting functions for pairs of geodesics.
More precisely we consider the counting function for pairs of prime closed geodesics
with norm at most x and fixed homology difference:

(1.7) πβ2 (x) = #{γ1, γ2 ∈ P(M)|N(γi) ≤ x, Φ(γ2)− Φ(γ1) = β}.
This counting function is geometric in the sense that the ordering of elements is
according to the geodesic length. We will prove the following result:

Theorem 1.1. Let β ∈ H1(M,Z).

πβ2 (x) ∼ (g − 1)g

2g
x2

logg+2(x)

in the limit x→∞.
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In particular there are infinitely many pairs of prime geodesics with fixed homology
difference. One may think of this as a hyperbolic Riemann surface version of the
twin prime conjecture. For further explanation as to this analogy we refer to section
2. We can now ask how the error term depends on the specific homology class β.
We prove the following result:

Theorem 1.2. Let β ∈ H1(M,Z).

πβ2 (x) =
1

2g
e−〈ψ(β),N−1ψ(β)〉/2σ2 log(x)

(2πσ2 log(x))g
x2

log2(x)
+ o

(
x2

logg+2(x)

)
when x > 3, where, when ‖ψ(β)‖m = o(

√
log x/ log log x), the implied constant is

independent of β.

As with Sharps result (1.3) the main point in Theorem 1.2 is the existence of an
error term which is independent of β. Theorem 1.1 follows trivially from Theorem
1.2. The assumption ‖ψ(β)‖m = o(

√
log x/ log log x) may be relaxed to ‖ψ(β)‖m =

o(
√

log x).

Remark 1.3. The geometry of the surface M is intimately linked with the spectrum
of the Laplacian of the surface considered as a Riemannian manifold. This link is
evident from the Selberg trace formulae which relates the lengths of closed geodesics
with the eigenvalues of the Laplacian in a summation formulae. (See (3.7) below).
This ‘duality’ between the length spectrum and the Laplace spectrum has proven
itself extremely useful both in the study of eigenvalues (e.g. Weyl’s law (see e.g.
[13, §4.4])) as well as in the study of the lengths of geodesics which is what we
investigate in the present work. We use the Selberg trace formulae to count primes
in a homology class (a technique developed by Phillips and Sarnak [8]), and we keep
track of the dependence on the specific homology class in the error terms. We then
analyze how these error terms contribute to the relevant sum.

Remark 1.4. The fact that we are considering surfaces of fixed negative sectional
curvature −1, is not essential. If M has variable negative curvature we can combine
the ideas of this paper with the ideas developed by Sharp [12], to get results similar
to theorems 1.1 and 1.2. In this case the proof uses the thermodynamic formalism
instead of the Selberg trace formulae. It is also possible to obtain similar results for
free groups using ideas by Petridis and Risager [6, 7].

Remark 1.5. The techniques used in this paper may be used to study counting results
of a more general type than the ones we consider. Consider any A ⊆ H1(M,Z)k.
We may then consider the counting function

(1.8) #{(γi) ∈ P(M)k|N(γi) ≤ x, (φ(γi)) ∈ A}
This may be rewritten as ∑

(αi)ki=1∈A

k∏
i=1

παi(x)

By using good expansions for παi(x) it is now possible to study (1.8). To prove
Theorem 1.2 we develop and analyze this in full for

A = {(α1, α2) ∈ H1(M,Z)2|α2 − α1 = β}
The techniques certainly apply to much more general sets. We hope this paper will
be facilitating for anyone interested in such questions.
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The paper is organized as follows: In section 2 we describe how the results in
this introduction may be seen as analogues of statements in analytic number theory.
Section 3 briefly describe the technique developed by Phillips and Sarnak (combined
by an idea of Sharp [12]) to count primes in a specific homology class. In the following
section we describe how this may be transformed into counting prime pairs with fixed
homology difference. In Section 5 we find the main and error term of a counting
function with certain weights, and in Section 6 we explain how to use multi-variable
summation by parts to remove these weights.

2. Ordinary primes in arithmetic progressions

There is nothing new in this section. Its purpose is to emphasize how (almost)
all the results mentioned in the introduction are analogues of classical results or
conjectures in analytic number theory. Readers not interested in such connections
should feel free to move to the next section, as the rest of the paper does not depend
directly on this section. We quote from [4] but most of the results can be found in
any solid textbooks on analytic number theory.

Let Π(x) = #{p ≤ x} be the number of primes less than or equal to x. The
prime number theorem [4, Section 2.1] proved by Hadamard and de la Vallée Poussin
asserts that

(2.1) Π(x) ∼ li(x).

The theorem of Huber and Selberg (1.1) is analogous to (2.1).
Given a primitive conjugacy class a mod q i.e. (a, q) = 1 we let Π(x; a, q) be the

number of primes less than x with p ≡ a mod q. The main result about primes in
arithmetic progressions is ([4, (17.2)])

(2.2) Π(x; q, a) ∼ li(x)

Φ(q)
,

where Φ(q) = #{1 ≤ a < q|(a, q) = 1} is the Euler totient. The result of Phillips
and Sarnak (1.2) my be considered analogous to (2.2).

In applications to other problems involving primes it is of great interest to know
how the error term in (2.2) depends on q and x. A first result in this direction is the
Siegel-Walfisz theorem [4, Corollary 5.29] which states that for all A > 0 a, q ∈ N,
(a, q) = 1

(2.3) Π(x; q, a) =
li(x)

Ψ(q)
+O

(
x

logA(x)

)
,

when x > 2 where the implied constant depends only on A. We like to think of
Sharps theorem (1.3) as analogous to this result.

The extremely potent idea of taking averages over q and a to get better bounds
on the error term on average has been used very successfully in the famous theorem
of Bombieri and Vinogradov [4, Theorem 17.1]:

Theorem 2.1 (Bombieri-Vinogradov). For any A > 0 there exist B > 0 such that∑
q≤Q

max
(a,q)=1

∣∣∣∣Π(x; q, a)− li(x)

Φ(q)

∣∣∣∣ = O

(
x

logA(x)

)
where Q = x1/2log−B(x). The implied constant depends only on A.
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Conjecturally (Elliot-Halberstram) we can take Q = x1−ε. In many applications
Theorem 2.1 is an excellent substitute for the Generalized Riemann hypothesis which
says that Π(x, q, a) = li(x)/Ψ(q)+O(x1/2+ε) The large range q ≤ x1−ε can be handled
on average if we allow averages in a also (See [4, Theorem 17.2]):

Theorem 2.2 (Barbon, Davenport, Halberstram). For any A > 0 there exist B > 0
such that ∑

q≤Q

∑
a mod q
(a,q)=1

(
Π(x; q, a)− li(x)

Φ(q)

)2

= O

(
x

logA(x)

)

where Q = xlog−B(x). The implied constant depends only on A.

The theorem of Petridis and Risager may be considered analogous to Theorems
2.1 and 2.2.

A folklore conjecture says that there are infinitely many twin primes i.e. primes p
such that p+2 is a prime. This conjecture was quantified by Hardy and Littlewood
who conjectured that

(2.4) #{p1, p2 ≤ x|p2 − p1 = 2} ∼ 2c2

∫ x

1

1

log2(t)
dt

where c2 =
∏

p>2(1−(p−1)−2). We could prove it if we where able to handle certain

linear combinations of Π(x; q, a)− li(x)/Ψ(q) See ([4, Section 13.1]). Certainly the
Montgomery conjecture – Π(x; q, a) = li(x)/Ψ(q)+O(x1/2+ε/q1/2) – would give it im-
mediately. Unfortunately we are not able to handle the relevant linear combinations
and the twin prime conjecture remains completely open.

Theorem 1.1 is analogous to the Conjecture (2.4), and its proof goes along the
same lines as what one would like to do for primes. But for prime geodesics the
β dependence of πβ(x) can be understood well enough that we can prove which
contributions give error terms and which contribution gives the main term in the
relevant linear combination.

3. Counting prime closed geodesics in homology classes

In this section we set up some notation and explain how the Selberg trace formula
can be used to count geodesics in a homology class. We then quote an equality from
Petridis and Risager [6] which is proved using this technique. This equality is the
starting point of our current investigation.

Any compact Riemann surface of genus g > 1 without boundary may be realized
as M = Γ\H, where H is the upper half-plane and Γ ⊆ PSL2(R) is a strictly hyper-
bolic discrete subgroup of PSL2(R) acting on H by linear fractional transformations.
The surface M has fundamental group π1(M) = Γ. The closed oriented geodesics
are in one to one correspondence with the conjugacy classes of Γ by the following
recipe: Pick a base point z0 ∈ H above m. From a conjugacy class {γ} we project
(mod Γ) the geodesic in H from z0 to γz0 to M which is homologous to a closed
geodesic on M .

The group Γ has a fundamental set of generators i.e. a set of generators

a1, . . . , ag, b1, . . . , bg ∈ Γ

with one defining relation
[a1, b1] · · · [ab, bg] = 1
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where [a, b] is the commutator of a and b.
We let Ci, i = 1, . . . g, be the geodesic induced by ai and Cg+i, i = 1, . . . g, be

the geodesic induced by bi (The fundamental generators lie in different conjugacy
classes so i 6= j implies Ci 6= Cj). The first homology group H1(M,Z) is isomorphic
to the free group over Z of C1, . . . , C2g, i.e.

H1(M,Z) ∼=
{∑

miCi|mi ∈ Z
}
∼= Z2g

The exist a basis for the space of harmonic 1-forms which is dual to C1, . . . C2g in
the sense that

(3.1)

∫
Ci

ωj = δij.

These lift to harmonic differentials αi = <(fi(z)dz) on H where fi(z) is a holo-
morphic form of weight 2 with respect to Γ. Then γ ∈ Γ induces a geodesic with
homology

∑
miCi if and only if

(3.2) φ(γ) :=

(∫ γz0

z0

α1, . . . ,

∫ γz0

z0

α2g

)
= (m1, . . . ,m2g).

We notice that φ(γ) does not depend on the choice of path or of the choice of z0.
Consider the unitary characters on Γ defined by

(3.3)
χε : Γ → S1

γ 7→ e2πi〈φ(γ),ε〉 .

where ε ∈ R2g and 〈·, ·〉 is the usual inner product on Rn.
Consider now the set of the set of square-integrable χε-automorphic functions, i.e.

the set of f : H → C such that

(3.4) f(γz) = χε(γ)f(z)

and

(3.5)

∫
F

|f(z)|2 dµ(z) <∞,

where F is a fundamental domain for Γ\H. Let Lε denote the Laplacian defined as
the closure of

(3.6) −y2

(
∂2

∂x2
+

∂2

∂y2

)
defined on smooth compactly supported functions satisfying (3.4) and (3.5). The
Laplacian is self-adjoint and its spectrum consists of a countable set of eigenvalues
0 ≤ λ0(ε) ≤ λ1(ε) ≤ . . . We write λj(ε) = 1/4 + r2

j (ε) = sj(ε)(1 − sj(ε)). All our
geodesic counting results has their origin in the Selberg trace formula for Lε which
relates the Laplace spectrum with the length spectrum in a very precise way. (See
[11, 2]): ∑

j

ĥ(rj(ε)) =2(g − 1)

∫ ∞

−∞
r tanh(πr)ĥ(r)dr

+
∑
{γ}

χε(γ)l(γ)

k sinh(l(γ)/2)
h(l(γ))

(3.7)
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where h is a smooth even function on R of compact support, ĥ is its Fourier trans-
form and l(γ) is the length of the geodesic induced by γ ∈ Γ. When ε = 0 the
contribution from r0(0) should be counted twice. One of the main ideas in [8] is
that by multiplying (3.7) with exp(−2πi 〈ψ(β), ε〉) and then integrating over the
whole character variety (i.e. over ε ∈ R2g\Z2g) we pick out exactly those γ on the
right hand side of (3.7) with homology class β.

By combining ideas of Sharp [12] and Phillips and Sarnak [8] it is possible to get
precise information from (3.7) about

(3.8) Rβ(x) =
∑′

N(γ)≤x
Φ(γ)=β

l(γ)

sinh (l(γ)/2)

(the ′ on the sum means that we only sum over prime geodesics). Petridis and
Risager noticed [6, (2.11)] that up to an error term of decay (independent of β) x−δ

(3.9)
Rβ(x)

4
√
x
− e−〈ψ(β),N−1ψ(β)〉/2σ2 log(x)

(2πσ2 log(x))g

equals

(3.10)

∫
B(ρ)

(
e(s0(ε)−1) log(x)

2s0(ε)− 1
− e−〈ε,Nε〉4π

2σ2 log(x)/2

)
χβε dε

for every sufficiently small ρ. This will be the starting point for our investigation
concerning pairs of prime geodesic.

4. Counting prime pairs with fixed homology difference

In this section we explain how to use the counting technique described in the
previous section to count pairs of geodesics with restrictions on their homology
difference.

We define, for x1, x2 > 1,

πβ2 (x1, x2) := # {γ1, γ2 ∈ P(M) |N(γi) ≤ xi,Φ(γ2)− Φ(γ2) = β }

and we denote πβ2 (x) := πβ2 (x, x). We fix 0 < k < 1. We will always assume that

(4.1) xk ≤ xi ≤ x.

An obvious choice is to let x = maxxi. Then (4.1) puts restrictions on min xi. The
restriction (4.1) implies that log(x1), log(x2), and log(x) are all of the same size (i.e.
log(x1) � log(x2) � log(x)) The same is true for log−1(x1), log−1(x2), and log−1(x).
When we, in the following, estimate various sums the error term may depend on k
but never on x.

Instead of working with πβ2 (x1, x2) directly it turns out to be more convenient for
us to work with something closer related to Rβ(x). In principle we would like to use

πβ2 (x1, x2) =
∑

α∈H1(M,Z)

#

{
γ1, γ2 ∈ P(M)

∣∣∣∣ N(γi) ≤ xi
(Φ(γ1),Φ(γ2)) = (α, β + α)

}
=

∑
α∈H1(M,Z)

πα(x1)πβ+α(x2)
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but it turns out to be more convenient to use

Rβ
2 (x1, x2) :=

∑′

N(γi)≤xi
Φ(γ2)−Φ(γ1)=β

l(γ1)l(γ2)

sinh (l(γ1)/2) sinh (l(γ2)/2)

=
∑

α∈H1(M,Z)

Rα(x1)Rα+β(x2)(4.2)

The main strategy is now to use (3.9) and (3.10) to find an asymptotic expansion
for (4.2) and then use multi-dimensional partial summation to get the expansion for

πβ2 (x1, x2).
We start by making some estimates on Rβ(x). Consider

fx(ε) =

(
e(s0(ε)−1) log(x)

2s0(ε)− 1
− e−〈ε,Nε〉4π

2σ2 log(x)/2

)
.

We let

A(β, x) = 4
√
x
e−〈ψ(β),N−1ψ(β)〉/2σ2 log(x)

(2πσ2 log(x))g

B(β, x) = 4
√
x

∫
B(ρ)

fx(ε)χ
β
ε dε.

(4.3)

From (3.9) and (3.10) we have

(4.4) Rβ(x) = A(β, x) +B(β, x) +O(x1/2−δ)

for some δ > 0. The constant δ and the implied constant are absolute.
To be able to bound expressions involving B(β, x), i.e. Σ2,Σ3, and Σ4, we recall

Proposition 2.5 from [6].

Proposition 4.1. Let N = {〈ωi, ωj〉}.
(i) For every ε0 ∈ R2g

e(s0(ε/2πσ
√

log(x))−1) log(x) → e−〈ε,Nε〉/2

as x→∞.
(ii) There exists δ > 0 such that for all ‖ε‖ < δ

√
log(x)∣∣∣e(s0(ε/2πσ

√
log(x))−1) log(x) − e−〈ε,Nε〉/2

∣∣∣ ≤ 2e−〈ε,Nε〉/4.

(iii) For all θ > 0 sufficiently small there exist C > 0 such that for all log(x) > 0,
‖ε‖ < δ log(x)θ,∣∣∣e(s0(ε/ρ

√
log(x))−1) log(x) − e−〈ε,Nε〉/2

∣∣∣ ≤ C
1

log(x)1−2θ
.

(iv) Let 0 < ν < 1/4. For every k > 0 there exist constants δ1, δ2 > 0 such that,∣∣∣e(s0(ε/2πσ
√

log(x))−1) log(x) − e−〈ε,Nε〉/2
∣∣∣ ≤ e−ν〈ε,Nε〉

logk(x)
.

when log(x) > 0, δ1
√

log(log(x)) < ‖ε‖ < δ2
√

log(x).

We use Proposition 4.1 to prove the following lemma:
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Lemma 4.2. Let j = 1, 2. For every l > 0 there exist a δ > 0 such that∫
B′(x)

|fx(ε)|j dε = O((log x)−(g+j)+ε)(4.5) ∫
B(δ)\B′(x)

|fx(ε)|j dε = O((log x)−l)(4.6)

where B′(x) = B(δ
√

log log x/
√

log x).

Proof. We let j = 1. By a change of variables we see that∫
B′(x)

|fx(ε)| dε = (2πσ
√

log x)−2g

∫
‖ε‖≤2πσδ

√
log log x

∣∣∣fx(ε/2πσ√log x)
∣∣∣ dε

∫
B(δ)\B′(x)

|fx(ε)| dε = (2πσ
√

log x)−2g

∫
2πσδ

√
log log x≤‖ε‖≤ρ2πσ

√
log(x)

∣∣∣fx(ε/2πσ√log x)
∣∣∣ dε

We now let δ = δ1/2πσ where δi are constants as in Proposition 4.1 (iv) with
k = l. We may safely assume that ρ has been chosen so small that ρ2πσ < δ2. Since
s0(ε) is even with s0(0) = 1 we have

(4.7)
∣∣(2s0(ε)− 1)−1 − 1

∣∣ ≤ C ‖ε‖2

when ‖ε‖ ≤ ρ. Hence the integrand is bounded by∣∣∣e(s0(ε/2πσ
√

log x)−1) log x − e−〈ε,Nε〉/2
∣∣∣+ C

∣∣∣e(s0(ε/2πσ
√

log x)−1) log x
∣∣∣ ‖ε‖2 log x−1,

which by Proposition 4.1 (ii) is bounded by∣∣∣e(s0(ε/2πσ
√
T )−1)T − e−〈ε,Nε〉/2

∣∣∣+ Ce−µ〈ε,Nε〉 log x−1,

for some small µ > 0.
When ‖ε‖ ≤ 2πσδ

√
log log x we use Proposition 4.1 (iii) to conclude (4.5).

We can safely assume that δ2 is big enough that

e−µ〈ε,Nε〉 ≤ e−µ/2〈ε,Nε〉

logl(x)

when δ2
√

log log x ≤ ‖ε‖ ≤ ρ2πσ
√

log(x). Using Proposition 4.1 (iii) we see that∣∣∣fx(ε/2πσ√log x)
∣∣∣ ≤ C ′ e

−µ〈ε,Nε〉/2

logl(x)

in this region, from which we easily conclude (4.6).
The case j = 2 is similar.

�

We now return to the sum (4.2) We start by showing that we only need a finite
sum:

Lemma 4.3. Let ‖r‖m =
∑
|ri| be the max norm. There exist a constant C > 0

depending only on M such that

(4.8) ‖φ(γ)‖m ≤ Clγ

for all closed geodesics γ .
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Proof. This follows directly from [6, Lemma 2.4]. �

From Lemma 4.3 follows that Rβ(x) = 0 if ‖ψ(β)‖m > C log(x). This implies
that in (4.2) we only need to sum over

‖ψ(α+ β)‖m ≤ C log x2(4.9)

‖ψ(α)‖m ≤ C log x1(4.10)

Since we are mainly interested in asymptotics we may restrict the sum to a much
smaller sum. We define u(x) =

√
log(x) log log x and let

(4.11) R̃β
2 (x1, x2) :=

∑
α∈H1(M,Z)

‖ψ(α)‖m≤u(x)

Rα(x1)Rα+β(x2)

Then

Rβ
2 (x1, x2)− R̃β

2 (x1, x2) =
∑

α∈H1(M,Z)
u(x)≤‖ψ(α)‖m≤C log(x)

Rα(x1)Rα+β(x2)(4.12)

≤ O

( √
x2

logg x2

∑
α∈H1(M,Z)

u(x)≤‖ψ(α)‖m≤C log(x)

Rα(x1)

)
(4.13)

We used Lemma 4.2 to get the inequality. The sum∑
α∈H1(M,Z)

u(x)≤‖ψ(α)‖m≤C log(x)

Rα(x1)

is o(
√
x1) by [6, Lemma 2.7].

It follows that

(4.14) Rβ
2 (x1, x2)− R̃β

2 (x1, x2) = o

(√
x1x2

logg(x)

)
so for the asymptotic results we are aiming at, we may consider the small sum
R̃β

2 (x1, x2).
Using (4.14) we conclude that when x ≥ 3

Rβ
2 (x1, x2) =

∑
α∈H1(M,Z)

‖ψ(α)‖m≤u(x)

A(α, x1)A(α+ β, x2)

+
∑

α∈H1(M,Z)
‖ψ(α)‖m≤u(x)

A(α, x1)B(α+ β, x2)

+
∑

α∈H1(M,Z)
‖ψ(α)‖m≤u(x)

B(α, x1)A(α+ β, x2)(4.15)

+
∑

α∈H1(M,Z)
‖ψ(α)‖m≤u(x)

B(α, x1)B(α+ β, x2) + o((x1x2)
1/2/ logg x)

= Σ1(β, x1, x2) + Σ2(β, x1, x2) + Σ3(β, x1, x2) + Σ4(β, x1, x2)

+ o((x1x2)
1/2/ logg x).

for some δ′ > 0.
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5. Finding the main term and error term

We ended the last section by splitting the function Rβ
2 (x1, x2) into four different

contributions and an error term. In this section we determine which contributions
are ‘big’ and which are ‘small’. We will prove the following result:

Theorem 5.1. Let β ∈ H1(M,Z) and 0 < k < 1. Then

Rβ
2 (x1, x2) = 16x

1/2
1 x

1/2
2

e−〈ψ(β),N−1ψ(β)〉/2σ2 log x2

(2πσ2(log x1 + log x2))g
+ o

(
x

1/2
1 x

1/2
2

logg/2(x1) logg/2(x2)

)
when 3 < xk ≤ xi ≤ x, ‖ψ(β)‖m = o(

√
log x/ log log x)) and x → ∞, where the

implied constant depends at most on k and M .

Our starting point is the identity (4.15). We start by showing that the main term
comes out of Σ1.

Lemma 5.2.

Σ1(β, x1, x2) = 16x
1/2
1 x

1/2
2

e−〈ψ(β),N−1ψ(β)〉/2σ2 log x2

(2πσ2(log x1 + log x2))g
+ o

(
x

1/2
1 x

1/2
2

logg/2(x1) logg/2(x2)

)
where, when ‖ψ(β)‖m = o(

√
log x/ log log x), the implied constant is independent

of β.

Proof. Using (4.15) and (4.3) we easily find that

Σ1(β, x1, x2) = 16

√
x1x2

(2πσ2)2g

1

(log x1 log x2)g

·
∑
α∈Z2g

‖α‖m≤u(x)

e
−
〈α,N−1α〉
2σ2 log x1 e

−
〈(α+ψ(β)),N−1(α+ψ(β))〉

2σ2 log x2

= 16

√
x1x2

(2πσ2)2g

e−〈ψ(β),N−1ψ(β)〉/2σ2 log x2

(log x1 + log x2)g

·
∑
α∈Z2g

‖α‖m≤u(x)

e
−
〈α,N−1α〉
2σ2g(x1,x2)

g(x1, x2)g
e
−2
〈α,N−1ψ(β)〉

2σ2 log x2

where

(5.1) g(x1, x2) = (log−1 x1 + log−1 x2)
−1 =

log x1 log x2

log x1 + log x2

.

We must therefore understand the above sum.
We consider first the case where β = 0. In this case we consider

(5.2)
1

(2πσ2)g

∑
α∈Z2g

‖α‖m≤u(x)

e−〈α,N−1α〉/2σ2g(x1,x2)

g(x1, x2)g

It follows from [6, Lemma 2.10] that this sum converges to 1, and we conclude that

Σ1(0, x1, x2) =
16x

1/2
1 x

1/2
2

(2πσ2(log x1 + log x2))g
+ o

(
x

1/2
1 x

1/2
2

logg/2(x1) logg/2(x2)

)
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which proves the lemma when β = 0.
The general case follows in the same way if we verify that

∑
α∈Z2g

‖α‖m≤u(x)

e−〈α,N−1α〉/2σ2g(x1,x2)

g(x1, x2)g
(1− e−2〈α,N−1ψ(β)〉/2σ2 log x2) = o (1)(5.3)

when ‖β‖m = o(
√

log x/ log log x).
There exist a decreasing function r(x) going to zero as x→∞ such that ‖β‖m ≤

r(x)
√

log x/ log log x). Hence there exist an absolute constant C > 0

(5.4) (1− e−2〈α,N−1ψ(β)〉/2σ2 log x2) ≤ Cr(x)

when ‖α‖m ≤
√

log x log log x. The bound (5.3) now follows from this and the fact
that the remaining part of the sum converges to 1 ([6, Lemma 2.10]). In particular
it is bounded (independently of β) �

Remark 5.3. It is fairly straightforward to improve Lemma 5.2 to only requiring
‖β‖m = o(

√
log x). This requires showing that we need only to sum over u(t) =√

log(x)v(x) in 4.15. Here v(x) is some function which grows sufficiently slowly to
infinity.

We are now ready to bound the 3 remaining terms of (4.15) which all go into the
error term in Theorem 5.1:

Lemma 5.4.

Σi(β, x1, x2) = o

(
x

1/2
1 x

1/2
2

logg/2(x1) logg/2(x2)

)
, i = 2, 3

where the implied constant is independent of β.

Proof. We see from (4.3) and (4.15) that the function Σ3(β, x1, x2) equals

16x
1/2
1 x

1/2
2

∫
B(ρ)

fx1(ε)
∑

α∈H1(M,Z)
‖ψ(α)‖m≤u(x)

e−〈ψ(α+β),N−1ψ(α+β)〉/2σ2 log(x2)

(2πσ2 log(x2))g
χαε dε.

By bounding the character trivially and using Lemma 4.2 we get that

(5.5) Σ3(β, x1, x2) = O

(
x

1/2
1 x

1/2
2

logg+1−ε(x1)

∑
α∈H1(M,Z)

‖ψ(α)‖m≤u(x)

e−〈ψ(α+β),N−1ψ(α+β)〉/2σ2 log(x2)

(2πσ2 log(x2))g

)
.

The result follows from the fact that

log−1(x1) ≤ k−1 log−1(x2),
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if we show that the remaining sum in (5.5) is uniformly bounded. To see this we
note that∑
α∈H1(M,Z)

‖ψ(α)‖m≤u(x)

e−〈ψ(α+β),N−1ψ(α+β)〉/2σ2 log(x2)

(2πσ2 log(x2))g
≤

∑
α∈H1(M,Z)

‖ψ(α)‖m≤u(x)+‖β‖m

e−〈ψ(α),N−1ψ(α)〉/2σ2 log(x2)

(2πσ2 log(x2))g

≤
∑

α∈H1(M,Z)
‖ψ(α)‖m≤u(x)

e−〈ψ(α),N−1ψ(α)〉/2σ2 log(x2)

(2πσ2 log(x2))g
+

∑
α∈H1(M,Z)

u(x)≤‖ψ(α)‖m≤u(x)+‖β‖m

e−〈ψ(α),N−1ψ(α)〉/2σ2 log(x2)

(2πσ2 log(x2))g

The first sum is independent of β and converging to 1 ([6, Lemma 2.10]. The second
sum may be bounded by an absolute constant times

∑
n∈N

u(x)≤n

e−µn
2/ log x

√
log x

(∑
n∈N

e−µn
2/ log x

√
log x

)g−1

for some small µ > 0. It is easy to see that this is bounded (in fact converging to
zero) by comparison with an integral. The sum Σ2(β, x) may be handled in the
same way. �

Lemma 5.5.

Σ4(β, x1, x2) = o

(
x

1/2
1 x

1/2
2

logg/2(x1) logg/2(x2)

)
where the implied constant is independent of β.

Proof. Using the definitions (4.3) and (4.15) we see that Σ4(β, x1, x2) equals

(5.6) 16x
1/2
1 x

1/2
2

∫
B(ρ)×B(ρ)

fx1(ε
1)fx2(ε

2)
∑

α∈H1(M,Z)
‖ψ(α)‖m≤u(x)

χαε1χ
α+β
ε2 dε1dε2

We write B(ρ)× B(ρ) = [B′(x)× B′(x)] ∪ [(B(ρ)× B(ρ)) \ (B′(x)× B′(x))] where
B′(x) is defined in Lemma 4.2, and the corresponding l is chosen sufficiently large.
We split the integral in (5.6) accordingly.

In the part over B(ρ) × B(ρ)\B′(x) × B′(x), we bound the sum trivially by
O(u(v)2g) and the remaining integral is easily seen to be O(log(x)−h) for h as big as
we care for by choosing the data of B′(x) sufficiently well.

In the integral over B′(x)×B′(x) we use Cauchy-Schwarz to conclude that∫
B′(x)×B′(x)

fx1(ε
1)fx2(ε

2)
∑

α∈H1(M,Z)
‖ψ(α)‖m≤u(x)

χαε1χ
α+β
ε2 dε1dε2

is bounded by

(5.7)

( ∫
B′(x)×B′(x)

∣∣fx1(ε
1)fx2(ε

2)
∣∣2 dε1dε2)1/2

,
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which is O((log x1 log x2)
−(g/2+1)+ε) by Lemma 4.2, times

(5.8)

( ∫
B′(x)×B′(x)

∣∣∣∣∣ ∑
α∈H1(M,Z)

‖ψ(α)‖m≤u(x)

χαε1χ
α+β
ε2

∣∣∣∣∣
2

dε1dε2

)1/2

Notice that( ∫
B′(x)×B′(x)

∣∣∣∣∣ ∑
α∈H1(M,Z)

‖ψ(α)‖m≤u(x)

χαε1χ
α+β
ε2

∣∣∣∣∣
2

dε1dε2

)1/2

≤ #{α ∈ H1(M,Z)| ‖ψ(α)‖m ≤ u(x)} × vol(B′(x))

= O(u(x)2g(
√

log log x/
√

log x)2g)

= O((log log x)3g)

Collecting the pieces we see that

Σ4(β, x1, x2) = O

(
x

1/2
1 x

1/2
2

logg/2(x1) logg/2(x2)
logε−1 x

)
from which the result follows. �

Theorem 5.1 now follows from (4.15), Lemmata 5.2, 5.4, and 5.5.

6. Using partial summation

In this section we show how to use multi-dimensional partial summation to con-
clude from Theorem 5.1 our main result:

Theorem 6.1. Let β ∈ H1(M,Z) and 0 < k < 1.

πβ2 (x1, x2) =
e−〈ψ(β),N−1ψ(β)〉/2σ2 log(x2)

(2πσ2(log x1 + log(x2))g
x1x2

log(x1) log(x2)

+ o

(
x1x2

logg/2+1(x1) logg/2+1(x2)

)
when 3 < xk ≤ xi ≤ x and x→∞, where the implied constant depends at most on
k and M for ‖ψ(β)‖m = o(

√
log x/ log log x).

We notice that putting x1 = x2 we obtain Theorem 1.2 and Theorem 1.1
To prove Theorem 6.1 we let

P β
2 (x1, x2) =

∑′

N(γi)≤xi
Φ(γ2)−Φ(γ1)=β

4 logN(γ1) logN(γ2)√
N(γ1)

√
N(γ2)

).

We have a trivial bound

(6.1) P β
2 (x1, x2) = O(x

1/2
1 x

1/2
2 )

which follows directly from (1.1) by ignoring the condition Φ(γ2)− Φ(γ1) = β.
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It is not difficult to see that∣∣∣Rβ
2 (x1, x2)− P β

2 (x1, x2)
∣∣∣

≤
∑′

N(γi)≤xi

2 log(N(γ1))√
N(γ1)

log(N(γ2))

N(γ2) sinh (log(N(γ2)/2))

−
∑′

N(γi)≤xi

2 log(N(γ2))

sinh(log(N(γ2)/2))

log(N(γ1))

N(γ1) sinh (log(N(γ1)/2))

=
∑′

N(γ1)≤x1

2 log(N(γ1))√
N(γ1)

∑′

N(γ2)≤x2

log(N(γ2))

N(γ2) sinh (log(N(γ2)/2))
(6.2)

−
∑′

N(γ2)≤x2

2 log(N(γ2))

sinh(log(N(γ2)/2))

∑′

N(γ1)≤x1

log(N(γ1))

N(γ1) sinh (log(N(γ1)/2))

= O(x
1/2
1 + x

1/2
2 )

We used (1.1) again in the last estimate. It follows that Theorem 5.1 holds with

Rβ
2 (x1, x2) replaced by P β

2 (x1, x2).
Using multi-dimensional partial summation ([5, Theorem 1.6])we find∑′

N(γi)≤xi
Φ(γ2)−Φ(γ1)=β

1 =
∑′

N(γi)≤xi
Φ(γ2)−Φ(γ1)=β

4 logN(γ1) logN(γ2)√
N(γ1)

√
N(γ2)

·
√
N(γ1)

√
N(γ2)

4 logN(γ1) logN(γ2)

=

√
x1
√
x2

4 log x1 log x2

P β
2 (x1, x2)

−
√
x1

4 log x1

∫ x2

1

P β
2 (x1, t2)m(t2)dt2

−
√
x2

4 log x2

∫ x1

1

P β
2 (t1, x2)m(t1)dt1(6.3)

+
1

4

∫ x1

1

∫ x2

1

P β
2 (t1, t2)m(t1)m(t2)dt2dt1.

where

(6.4) m(t) =
d

dt

√
t

log(t)
=

1

2
√
t log(t)

− 1√
t log2(t)

We then find the asymptotics of the three integrals.

Lemma 6.2. Let w ∈ R.∫ x1

1

P β
2 (t1, x2)(

√
t1 logw(t1))

−1dt1 =

√
x1

logw(x1)
P β

2 (x1, x2)

+ o

(
x1x

1/2
2

logg/2+w(x1) logg/2(x2)

)
where the implied constant is independent of β.

Proof. We start by noting that it follows from the trivial bound (6.1) that∫ √
x1

1

P β
2 (t1, x2)(

√
t1 logw(t1))

−1dt1 = o(x
3/4
1 x

1/2
2 )
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(Clearly P β
2 (x1, x2) = 0 for x1 or x2 close to 1 since lengths of geodesics does not

accumulate at zero, so the integral makes sense even though there seems to be a
singularity at 1).

Let

mβ(x1, x2) = 16x
1/2
1 x

1/2
2

e−〈ψ(β),N−1ψ(β)〉/2σ2 log x2

(2πσ2(log x1 + log x2))g

Consider now∫ x1

√
x1

P β
2 (t1, x2)(

√
t1 logw(t1))

−1dt1 −
√
x1

logw(x1)
P β

2 (x1, x2)

=

∫ x1

√
x1

(P β
2 (t1, x2)−mβ(t1, x2))(

√
t1 logw(t1))

−1dt1

+

∫ x1

√
x1

mβ(t1, x2)(
√
t1 logw(t1))

−1dt1 −
√
x1

logw(x1)
P β

2 (x1, x2)(6.5)

=

∫ x1

√
x1

(P β
2 (t1, x2)−mβ(t1, x2))(

√
t1 logw(t1))

−1dt1

+

√
x1

logw(x1)
mβ(x1, x2)−

√
x1

logw(x1)
P β

2 (x1, x2) +O

(
x

1/2
1 x

1/2
2

logg+w+1(x1)

)
.

Using Theorem 5.1 and (6.2) it follows that there exist a function gk(x) depending
on k′, independent of β, and decreasing to zero as x→∞ such that if xk

′ ≤ xi ≤ x
then

(6.6)
∣∣∣P β

2 (x1, x2)−mβ(x1, x2)
∣∣∣ ≤ gk′(x)

x
1/2
1 x

1/2
2

logg/2(x1) logg/2(x2)

We let k′ = k/2. Then since we are assuming xk ≤ xi ≤ x we have xk
′ ≤ t1, x2 ≤ x

when t1 ≥
√
x1.

If we take absolute values in (6.5) we therefore find

| · | ≤ gk′(
√
x)x

1/2
2 log−g/2(x2)

∫ x1

√
x1

log−g/2−w(t1))dt1

+

√
x1

logw(x1)
gk′(x)

x
1/2
1 x

1/2
2

logg/2(x1) logg/2(x2)
+O

(
x1x

1/2
2

logg+w+1(x1)

)

= o

(
x1x

1/2
2

logg/2+w(x1) logg/2(x2)

)
.

�

Lemma 6.3. Let w ∈ R.∫ x2

1

P β
2 (x1, t2)(

√
t2 logw(t2))

−1dt2 =

√
x2

logw(x2)
P β

2 (x1, x2)

+ o

(
x

1/2
1 x2

logg/2(x1) logg/2+w(x2)

)
where the implied constant is independent of β.
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Proof. We claim that∫ x2

√
x2

mβ(x1, t2)(
√
t2 logw(t2))

−1dt = mβ(x1, x2)

√
x2

logw(x2)
+O

(
x

1/2
1 x2

logg/2(x1) logg/2+w+1

)
where the implied constant depends at most on k and w. Using partial integration
we see that∫ x2

√
x2

e−〈ψ(β),N−1ψ(β)〉/2σ2 log(t2)

logg+w(t2)
dt2 = x2

e−〈ψ(β),N−1ψ(β)〉/2σ2 log(x2)

logg+w(x2)

−
√
x2
e−〈ψ(β),N−1ψ(β)〉/2σ2 log(

√
x2)

logg+w(
√
x2)

−
∫ x2

√
x2

e−〈ψ(β),N−1ψ(β)〉/2σ2 log(t2)(−〈ψ(β), N−1ψ(β)〉 /2σ2 log(t2)− (g + w))

logg+w+1(t2)
dt2.

(6.7)

Since e−avv is bounded for v ∈ R+ the enumerator of the integrand is bounded
(depending on g an w) and the claim follows easily.

Using the claim the proof follows the proof of Lemma 6.2 almost verbatim. �

Lemma 6.4. Let w1, w2 ∈ R.∫ x1

1

∫ x2

1

P β
2 (t1, t2)(

√
t1 logw1(t1)

√
t2 logw2(t2))

−1dt1dt2

=
x

1/2
1 x

1/2
2

logw1(x1) logw2(x2)
P β

2 (x1, x2)

+ o

(
x1x2

logg/2+w1(x1) logg/2+w2(x2)

)
Proof. If we bound P β

2 (x1, x2) trivially 6.1 we see that we only need to bound the
integral over (t1, t2) ∈ [

√
x1, x1]× [

√
x2, x2].∣∣∣∣∣

∫ x1

√
x1

∫ x2

√
x2

· · · dt1dt2 −
x

1/2
1 x

1/2
2

logw1(x1) logw2(x2)
P β

2 (x1, x2)

∣∣∣∣∣
≤

∣∣∣∣∣
∫ x1

√
x1

∫ x2

√
x2

(P β
2 (t1, t2)−mβ(t1, t2))(

√
t1 logw1(t1)

√
t2 logw2(t2))

−1dt1dt2

∣∣∣∣∣
+

∣∣∣∣∣
∫ x1

√
x1

∫ x2

√
x2

mβ(t1, t2)√
t1 logw1(t1)

√
t2 logw2(t2)

dt1dt2 −
x

1/2
1 x

1/2
2

logw1(x1) logw2(x2)
P β

2 (x1, x2)

∣∣∣∣∣
We use (6.7) and a calculation on the last integral:

=

∣∣∣∣∣
∫ x1

√
x1

∫ x2

√
x2

(P β
2 (t1, t2)−mβ(t1, t2))(

√
t1 logw1(t1)

√
t2 logw2(t2))

−1dt1dt2

∣∣∣∣∣
+

∣∣∣∣ x1x2

logw1(x1) logw2(x2)
(mβ(x1, x2)− P β

2 (x1, x2))

∣∣∣∣+O

(
x1x1

logg+w1+w2(x)

)
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We then use (6.6)

= gk′(x)

∫ x1

√
x1

∫ x2

√
x2

t
1/2
1 t

1/2
2

logg/2(t1) logg/2(t2)
(
√
t1 logw1(t1)

√
t2 logw2(t2))

−1dt1dt2

+ gk′(x)
x

1/2
1 x

1/2
2

logw1(x1) logw2(x2)

x
1/2
1 x

1/2
2

logg/2(x1) logg/2(x2)
+O

(
x1x1

logg+w1+w2(x)

)
= o

(
x1x2

logg/2+w1(x1) logg/2+w2(x2)

)
.

which finishes the proof the the lemma. �

We are now ready to finish the proof of Theorem 6.1. From (6.3) and lemmata
6.2, 6.3 and 6.4 we find that

πβ2 (x1, x2) =
1

16

x
1/2
1 x

1/2
2

log x1 log x2

P β
2 (x1, x2)

+O

(
x

1/2
1 x

1/2
2

log x1 log x2 log(x)
P β

2 (x1, x2)

)
(6.8)

+ o

(
x1x2

logg/2+1(x1) logg/2+1(x2)

)
From (6.3) and Theorem 5.1 we find easily

(6.9) P β
2 (x1, x2) = 0

(
x

1/2
1 x

1/2
2

logg(x)

)
where the implied constant is independent of β. We conclude that

(6.10) πβ2 (x1, x2) =
1

16

x
1/2
1 x

1/2
2

log(x1) log(x2)
P β

2 (x1, x2) + o

(
x1x2

logg/2+1(x1) logg/2+1(x2)

)
Using (6.10) Theorem 6.1 follows from Theorem 5.1.
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