
U N I V E R S I T Y OF A A R H U S
D E P A R T M E N T OF M A T H E M A T I C S

ISSN: 1397–4076

LOCALIZATION AT LOW TEMPERATURE

AND INFRARED BOUNDS

by Volker Bach and Jacob Schach Møller

Preprint Series No.: 11 November 2006
2006/11/16

Ny Munkegade, Bldg. 1530 http://www.imf.au.dk
DK-8000 Aarhus C, Denmark institut@imf.au.dk



Localization at Low Temperature and Infrared
Bounds

Volker Bach
Johannes Gutenberg Universität
Institut für Mathematik, FB 08

55099 Mainz, Germany
email: vbach@mathematik.uni-mainz.de

Jacob Schach Møller
Aarhus University

Department of Mathematical Sciences
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Abstract

We consider a class of classical lattice spin systems, with Rn-valued spins
and two-body interactions. Our main result states that the associated Gibbs
measure localizes in certain cylindrical neighbourhoods of the global minima
of the unperturbed Hamiltonian. As an application we establish existence
of a first order phase transition at low temperature, for a reflection positive
mexican hat model on Zd, d ≥ 3, with a non-ferromagnetic interaction.

1



2 V. Bach and J. S. Møller

I Assumptions and Main Result

Let n ∈ N and Λ be a finite set. Elements of Λ are denoted by x, y and z. We pick
and fix one element o ∈ Λ which plays the distinguished role of an origin. We write
Ω = (Rn)Λ for the vector space of spin configurations ϕ = {ϕx}x∈Λ over Λ, where
ϕx ∈ Rn. We use the symbols ψ and ϕ for elements of Ω. The letters u and v are
used for vectors in Rn, and |u| denotes the euclidean norm of u. It is assumed that
Λ comes equipped with a metric ρ which satisfies

max
x∈Λ

∑
y∈Λ

e−ρ(x,y) ≤ Cρ <∞. (I.1)

We study a Hamiltonian function HΛ ∈ C1(Ω; R) of the form

HΛ(ϕ) =
∑
x∈Λ

fx(ϕx) + J
∑

x,y∈Λ,x 6=y

wxy(ϕx, ϕy).

The self-energies {fx}x∈Λ and the interactions {wxy}x,y∈Λ,x 6=y should satisfy assump-
tions specified in the following Conditions I.1 and I.2, respectively.

We introduce some notation. We write ∂|u| = u
|u| · ∇u for the radial derivative

with respect to the Rn-valued variable u, and Br(u) := {v ∈ Rn||u − v| ≤ r}, for
the closed ball of radius r and centered at u.

Condition I.1. There are positive constants R, cf , Cf > 0 such that the family
{fx}x∈Λ of functions fx ∈ C1(Rn; R) satisfy (i)–(iv) as follows:

(i) fx ≥ 0 and minu∈Rn fx(u) = 0.

(ii) The set G0 := {u ∈ Rn|fo(u) = 0} of global minima satisfies G0 ⊂ BR(0).

(iii) For all x ∈ Λ and u ∈ Rn, with |u| ≥ R, we have ∂|u|fx(u) ≥ cf .

(iv) For all x, y ∈ Λ and u, v ∈ Rn, with |v| ≥ |u| ≥ R, we have

∂|u|fx(u) ≤ Cf∂|v|fy(v).

For j ∈ {1, 2}, we write ∇jwxy for the gradient of wxy with respect to the j’th
variable. The wxy’s are required to be dominated by the fx’s, as specified by the
next condition

Condition I.2. There exist constants Cρ
a > 0 and {axy}x,y∈Λ, with axy = ayx ≥ 0,

axx = 0, and

max
x∈Λ

{∑
y∈Λ

axye
ρ(x,y)

}
≤ Cρ

a , (I.2)

such that the family {wxy}x,y∈Λ of functions wxy ∈ C1(Rn × Rn; R), with wxx ≡ 0,
obeys the following bounds:

max{|∇1wxy(u, v)|, |∇2wxy(u, v)|} (I.3)

≤ axy

(
1 + 1l[|u|≥4R]∂|u|fx(u) + 1l[|v|≥4R]∂|v|fy(v)

)
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Eq. (I.2) expresses exponential decay of the interaction with respect to the met-
ric ρ. Let C0

a ≤ Cρ
a be such that

max
x∈Λ

{∑
y∈Λ

axy

}
≤ C0

a . (I.4)

For polynomially bounded, measurable functions u : Ω → C, we use the following
notation for expectations with respect to the Gibbs state in finite volume Λ and
inverse temperature β:

EΛ[u] := Z−1
Λ

∫
Ω

u(ϕ)e−βHΛ(ϕ) dΛϕ. (I.5)

Here ZΛ =
∫

Ω
e−βHΛ(ϕ) dΛϕ is the partition function. For the integral in (I.5) to exist

under Conditions I.1 and I.2, we require |J | < Γ−1
0 , where

Γ0 := 2C0
a

(
1 + Cf + c−1

f

)
. (I.6)

See Lemma A.1. We note that for many examples, including the example in Sec-
tion II, the fx’s grow at a faster rate than the wxy’s such that no assumption on |J |
is needed to make polynomially bounded observables integrable. For the probability
of a (measurable) event A ⊂ Ω, we write

PΛ[A] := EΛ[1lA].

For ζ > 0, we introduce level sets for fo

Gζ :=
{
u ∈ Rn|fo(u) ≤ ζ

}
.

We are now ready to formulate the main result of the paper.

Theorem I.1. Assume (I.1). Let {fx}x∈Λ satisfy Condition I.1 and {wxy}x,y∈Λ

satisfy Condition I.2. Let

Γ1 := 4RC0
a(

1
3
Cρ + 3), Γ2 = Γ0 + 102

5
Cρ
a , Γ3 := 2

3
cfR, (I.7)

and

J0 := Γ3 min
{ 3

4Γ1

,
1

Γ1 + Γ2Γ3

}
. (I.8)

For |J | < J0, β > 0 and δ > 2|J |Γ1, we have

PΛ[{ϕ ∈ Ω|ϕo 6∈ Gδ}] ≤ Ce−βσ, (I.9)

where

C = 2 max
{[ 4R

min{δ, 3
2
Γ3}

sup
|u|≤2R

|∇fo(u)|
]n
, (3

5
)n

}
e

1
2
nCρ , (I.10)

and σ is a strictly positive constant given by

σ = min
{

1
2
δ, 3

4
Γ3,Γ3(1− |J |Γ2)

}
− |J |Γ1. (I.11)
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Remark I.2.
(1) We stress that the constants J0, {Γj}j=1,2,3, C, and σ, only depend on ρ, {fx}x∈Λ

and {wxy}x,y∈Λ through the constants Cρ, cf , Cf , R, C0
a and Cρ

a . In particular, they
are independent of Λ and the choice of origin o.

(2) The set of ϕ’s with ϕo ∈ Gδ is a cylinder set containing the global minima of the
unperturbed (that is, J = 0) Hamiltonian. The condition δ > 2|J |Γ1, ensures that
the global minima of the perturbed Hamiltonian remain contained in this cylinder
set.

(3) The proof goes through without modifications if Rn is replaced by a convex
subset thereof containing 0.

(4) A choice was made here to present the method for a class of Hamiltonians without
any special symmetry. For models with O(n) symmetry, like the example discussed
in Section II, one can tweak the proof to get better constants.

(5) The restriction to two-body interactions is made for simplicity. The method
extends to models with many-body interactions.

The derivation of the bound (I.9) follows a scheme used in [1, Section 3], to derive
low temperature localization bounds for models with a unique global minimum at 0.
The method developed in [1] was in turn inspired by work going back to Sjöstrand
[11], see also [7, 9]. The common idea in the papers cited in this paragraph is to
systematically shift points in the set of ϕ’s with ϕo 6∈ Gδ, towards the global mimima
and measure the resulting decrease in energy. In this paper and in [1] the shift is
implemented by a single transformation T , with the property that infϕ,ϕo 6∈Gδ

[H(ϕ)−
H(T (ϕ))] ≥ σ > 0. It is this σ which contributes to the exponential localization in
(I.9). In the papers [7, 9, 11] the idea is slightly different: The configuration space
is cut up into pieces, each of which is translated into a neighbourhood of a unique
global minimum, and the contributions are then summed up. We remark that in
[9], the interaction does not shift the global minimum away from 0, which makes it
possible to localize arbitrarily close to 0 while keeping the coupling constant J fixed
(see Remark I.2 (2)).

II Motivating Example

Let Λ =]−L,L]d ∩Zd, be the d-dimensional hypercubic lattice of sidelength 2L, for
some d ≥ 3 and L ∈ N. We view Λ as the torus Zd/2LZd, equipped with the metric
ρ(x, y) = minz∈Zd |x−y−2Lz|1, where |z|p, is the p-norm of z ∈ Rd. As self-energies
we take

fx(u) = |u|4 − 2|u|2 + 1, (II.1)

and as interaction we take

wxy(u, v) = −JΛ(x− y)u · v, (II.2)

where JΛ is periodic and defined from an underlying interaction J ∈ `1(Zd; R) by

JΛ(x) :=
∑
y∈Zd

J (x+ 2Ly). (II.3)
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In general, one should take a reflection positive interaction, with respect to a suitable
reflection, in order to get an infrared bound. Here we specialize to the following
example

J (x) :=

{
1, |x|2 = 1,

−b, |x|2 =
√

2.
(II.4)

In order to obtain a reflection positive interaction, we impose the restriction

J > 0, 0 < b <
1

2(d− 1)
.

Note that the ferromagnetic case −b ≥ 0, can be treated by methods already estab-
lished. We introduce the correlation function FΛ : Λ → R by

FΛ(x) := EΛ[ϕ0 · ϕx].

Let Λ∗ =]−π, π]d∩( π
L
Zd) be the dual lattice and F̂Λ : Λ∗ → R the Fourier transform

of FΛ. That is, F̂Λ(ξ) =
∑

x∈Λ exp(−ix · ξ)FΛ(x). Similarly, for ξ ∈ Λ∗,

ĴΛ(ξ) = Ĵ (ξ) = 2a
d∑
j=1

cos(ξj)− 4b
∑

1≤i<j≤d

cos(ξi) cos(ξj)

is the Fourier transform of JΛ. Here Ĵ (ξ) =
∑

x∈Zd e−ix·ξJ (x). The model defined
by (II.1) and (II.4) is translation invariant and reflection positive, cf. [3, 6], and
hence it satisfies an infrared bound of the form

0 ≤ F̂Λ(ξ) ≤ n

Jβ

(
Ĵ (0)− Ĵ (ξ)

)−1
, (II.5)

for ξ ∈ Λ∗\{0}. Here n is the dimension of the single spin space. For a proof of this
bound see [6, Proposition 20.12]. See [4] for a discussion of the critical case, where
2(d− 1)b = 1.

As usual, (II.5) implies that

EΛ[ϕ0 · ϕx] = EΛ[|ϕ0|2] + FΛ(x)− FΛ(0)

= EΛ[|ϕ0|2] +
1

|Λ|
∑
ξ∈Λ∗

(eix·ξ − 1)F̂Λ(ξ) (II.6)

≥ EΛ[|ϕ0|2]−
2n

Jβ|Λ|
∑

ξ∈Λ∗\{0}

(
Ĵ (0)− Ĵ (ξ)

)−1
.

Note that Ĵ (0) = Ĵ (ξ) if, and only if, ξ = 0, and

Ĵ (0)− Ĵ (ξ) ∼ (1− 2(d− 1)b)ξ2,

near ξ = 0. In dimension d ≥ 3 this implies the existence of a first order phase tran-
sition at low temperature (large β), provided one can verify the following moment
inequality

EΛ[|ϕ0|2] ≥ c > 0. (II.7)
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Here c should be independent of L. The estimate (II.6) then says that a (necessarily
translation invariant) limit state E∞ = w − limΛ→Zd EΛ is not ergodic, hence not
a pure phase. See [3, 5, 10] and in particular [6, Theorem 20.15], for a reference
dealing with possibly unbounded spins. For models constrained to the unit sphere
(or in general to closed subsets of Rn not containing 0) the bound (II.7) is trivial.

If J (x) ≥ 0, for all x, i.e. the model is ferromagnetic, there are two general
methods one can use to verify (II.7) for models with interaction of the type (II.2).
If n = 1 one can use the FKG inequalities [2], which imply monotonicity of the
second moment in J (x) (for any fixed x). This can be used to reduce the moment
inequality to a one-dimensional problem which can be analyzed explicitly. See [8] for
a discussion of this idea. Another argument applies under the additional assump-
tion of reflection positivity of the interaction (II.2). Then the so-called chessboard
estimate [6, Chapter 17.1] applies (a key ingredient in the proof of (II.5) and the
reason for the choice of a reflection positive model as our example). The chessboard
estimate together with ferromagnetism, i.e. positivity of J , also leads to a moment
inequality; no restrictions on n are needed. See [6, Lemma 20.8].

If the interaction is not ferromagnetic there seems to be no method available in
the literature to deal with the innocuous looking moment inequality (II.7). This is
where our main result comes in. Clearly, Theorem I.1 gives explicit J0 and α0 such
that, for 0 < J < J0 and Jβ > α0, we have EΛ[|ϕ0|2] ≥ c > 0, for an equally explicit
constant c. Here one should take 0 < δ < 1, such that Gδ is an annulus. Moreover,
as opposed to the methods of the preceding paragraph, Theorem I.1 is robust and
does not rely on correlation inequalities or indeed on any non-trivial properties of
the underlying Gibbs measure. We have thus extended the applicability of Georgii’s
result [6, Theorem 20.15] to interactions J , which need not be ferromagnetic. (Recall
that Georgii in this case requires the single spin space to be bounded away from 0,
cf. [6, Comments 20.18 (3)]).

For the above concrete model, we estimated the constant J0, fixed a J < J0 and
estimated σ and C, for which the bound (I.9) is valid. As for J0 we got J0 ∼ 10−4,
which seems small, but is in fact only a factor of 10 smaller than Γ−1

0 . Recall that
Γ−1

0 was the upper limit for coupling strengths such that all models satisfying the
conditions, with the same constants, are well-defined. This also serves to illustrate
Remark I.2 (4). We then took J = 1

2
10−4 and found σ ∼ 1

20
and C ∼ e60. To get

a probability less than 1 in (I.9), one has to take β > β0 with β0 ∼ 1200. We note
that we did not try to optimize carefully over possible choices of metric and the
constant R. (For R we chose R = 1.03. For the metric we chose κρ, with κ = ln(2).
Here ρ is the metric given at the beginning of this section.)

III Transformation T ζ

The purpose of this section is to construct a transformation of the space Ω, and
estimate its Jacobian.

We begin by analyzing the size of the level sets Gζ . Let ζ ≥ 0 and u ∈ Rn be such
that |u| > 2ζc−1

f + R, where the constants cf and R are taken from Condition I.1.
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Let u′ := Ru/|u|, and for 0 ≤ t ≤ 1,

ut := tu+ (1− t)u′ =

(
R

|u|
+ t

(
1− R

|u|

))
u.

Then, using that u̇t/|u̇t| = ut/|ut|, we estimate

fo(u) ≥ fo(u)− fo(u
′) =

∫ 1

0

u̇t · ∇fo(ut)dt

= (|u| −R)

∫ 1

0

(∂|u|fo)(ut)dt

≥ 2ζc−1
f

∫ 1

0

cfdt = 2ζ.

This implies that
G2ζ ⊂ BR+2ζc−1

f
(0). (III.1)

We shall henceforth assume that 0 < ζ ≤ 1
2
cfR, which is equivalent to

R < Rζ := R +
2ζ

cf
≤ 2R. (III.2)

We introduce the size rζ , of the largest ball contained in Gζ :

rζ := sup
{
r ≥ 0|∃u ∈ Gζ : Br(u) ⊂ Gζ

}
. (III.3)

Fix an ηζ ∈ Gζ , for which Brζ(ηζ) ⊂ Gζ . Such an ηζ exists by the choice (III.3) of
rζ . By (III.1) we get a bound from below on rζ

rζ ≥ dist(Gcζ ,G0) = dist(BRζ
(0) ∩ Gcζ ,G0).

Let u ∈ G0 and v ∈ BRζ
(0) ∩ Gcζ . Then

ζ ≤ fo(v)− fo(u) ≤ |v − u| sup
u∈BRζ

(0)

|∇fo(u)|.

This implies

rζ ≥
ζ

supu∈BRζ
(0) |∇fo(u)|

. (III.4)

We pick a function θ ∈ C∞(R; [0, 1]) with θ ≡ 0 on (−∞, 1
2
], θ ≡ 1 on [1,∞),

and θ′ ≥ 0. Note that supp(θ′) ⊂ (1
2
, 1).

The final input is a family of scaling factors {εx}x∈Λ. We choose them to be of
the form

εx := εoe
−ρ(x,o). (III.5)

Here εo is chosen such that

0 < εo <
1
2
(1 + ‖θ′‖∞)−1, (III.6)

where ‖θ′‖∞ = maxt∈[ 1
2
,1] |θ′(t)| > 2. (We will optimize over εo and θ in Section VI.)
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We define a transformation T ζ : Ω → Ω as follows: (T ζ(ϕ))x := T ζx (ϕx) and

∀x 6= o : T ζx (u) :=

(
1− εxθ

( |u|
4R

))
u, (III.7)

T ζo (u) :=

 (1− εo)u, |u| ≥ 4R,( rζ
4R

)
u+ ηζ , |u| < 4R.

(III.8)

The transformation T ζ is not a global diffeomorphism, but we work below in the
sectors {ϕ : |ϕo| < 4R} and {ϕ : |ϕo| > 4R} separately, and T ζ restricted to these
sectors is a smooth transformation.

We end this section with an estimate on the determinant of Jac(T ζ), the Jacobian
of T ζ .

Lemma III.1. Let T ζ be the transformation defined in (III.7) and (III.8). We have
the bound ∣∣ det Jac(T ζ)(ϕ)

∣∣ ≥ min
{ ζ

4R sup|u|≤Rζ
|∇fo(u)|

, 1− εo

}n

× exp
[
− nεo(1 + ‖θ′‖∞)Cρ

]
, (III.9)

for all ϕ ∈ Ω, with |ϕo| 6= 4R.

Proof: The Jacobian of T ζ (away from |ϕo| = 4R) is a block diagonal matrix with
n× n-blocks given by

∀x 6= o : Jac(T ζ)xx(ϕ) =

(
1− εxθ

( |ϕx|
4R

))
In −

εx|ϕx|
4R

θ′
( |ϕx|

4R

)
Pϕx ,

Jac(T ζ)oo(ϕ) =

 (1− εo)In, |ϕo| > 4R,( rζ
4R

)
In, |ϕo| < 4R.

Here In is the identity matrix in Rn, and Pu := |u|−2|u〉〈u|, is the orthogonal pro-
jection onto span{u}, for u ∈ Rn\{0}.

Note that, for x 6= o,

εx|ϕx|
4R

θ′
( |ϕx|

4R

)
Pϕx ≤ εx‖θ′‖∞In.

Using this observation, we estimate the determinant of the Jacobian as follows

for |ϕo| < 4R :
∣∣ det Jac(T ζ)(ϕ)

∣∣ ≥ [ rζ
4R

∏
x( 6=o)

{
1− εx(1 + ‖θ′‖∞)

}]n
,

for |ϕo| > 4R :
∣∣ det Jac(T ζ)(ϕ)

∣∣ ≥ [
(1− εo)

∏
x( 6=o)

{
1− εx(1 + ‖θ′‖∞)

}]n
.

Using the bound ln(1 − t) ≥ −2t, for 0 ≤ t ≤ 1
2
, together with (I.1), (III.5) and

(III.6), we arrive at (III.9). �
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IV Estimating the Interaction

In this section we estimate the effect of the transformation T ζ on the interaction
W (ϕ) =

∑
x 6=y wxy(ϕx, ϕy). We prove the following lemma which is the central

technical step in the proof of Theorem I.1. The constant Γ0 below is defined in
(I.6).

Lemma IV.1. For 0 < ζ ≤ 1
2
cfR, we have, for all ϕ ∈ Ω, the bound∣∣W (ϕ)−W (T ζ(ϕ))

∣∣ ≤ C1
W + C2

W

∑
x∈Λ

1l[|ϕx|≥4R]

(
fx(ϕx)− fx(T

ζ
x (ϕx))

)
, (IV.1)

where

C1
W := 4RC0

a(2εoCρ + 3), C2
W := Γ0 + Cρ

a

(
3ε−1
o + 2(1− εo)

−1
)
. (IV.2)

Proof: Let ϕ ∈ Ω, x, y ∈ Λ with x 6= y. For z ∈ {x, y} we abbreviate uz(t) =
tϕz + (1− t)T ζz (ϕz).

Using the fundamental theorem of calculus, together with Condition I.2, we
estimate

|wxy(ϕx, ϕy)− wxy((T
ζ(ϕ))x, (T

ζ(ϕ))y)|

=
∣∣∣ ∫ 1

0

{
(ϕx − T ζx (ϕx)) · ∇1wxy(ux(t), uy(t))

+ (ϕy − T ζy (ϕy)) · ∇2wxy(ux(t), uy(t))
}
dt

∣∣∣
≤ axy

(
|ϕx − T ζx (ϕx)|+ |ϕy − T ζy (ϕy)|

)
(IV.3)

×
[
1 +

∫ 1

0

{
1l[|ux(t)|≥4R](∂|u|fx)(ux(t)) + 1l[|uy(t)|≥4R](∂|u|fy)(uy(t))

}
dt

]
= axy

(
Sx1 (ϕ) + Sy1 (ϕ) + Sxy2 (ϕ) + Syx2 (ϕ)

)
,

where

Sz1(ϕ) = |ϕz − T ζz (ϕz)|
[
1 +

∫ 1

0

1l[|uz(t)|≥4R](∂|u|fz)(uz(t))dt
]
,

Szz
′

2 (ϕ) = |ϕz − T ζz (ϕz)|
∫ 1

0

1l[|uz′ (t)|≥4R](∂|u|fz′)(uz′(t))dt.

We proceed to estimating Sz1(ϕ) and Szz
′

2 (ϕ), for all ϕ ∈ Ω.
To estimate Sz1 we recall (III.7), and observe the bound

|ϕz − T ζz (ϕz)| ≤ εz|ϕz|, (IV.4)

which holds true if z 6= o, or z = o and |ϕo| ≥ 4R. To deal with the complementary
case, where z = o and |ϕo| < 4R, we note that in this case (III.8) implies |T ζo (ϕ0)| ≤
Rζ ≤ 2R, and hence

|uo(t)| < 4R and |ϕo − T ζo (ϕo)| ≤ 6R. (IV.5)
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Combining (IV.4) and (IV.5) yields for all z and ϕ ∈ Ω,

Sz1(ϕ) ≤ 6Rδzo + εz|ϕz|
[
1 +

∫ 1

0

1l[|uz(t)|≥4R](∂|u|fz)(uz(t))dt
]
. (IV.6)

Here we used that |ϕo| ≥ 4R on the support of 1l[|uo(t)|≥4R].
As for Szz

′
2 we split Ω into two regions:

Ωzz′

I :=
{
ϕ ∈ Ω

∣∣|ϕz| ≥ |ϕz′|/(1− εz)
}

and Ωzz′

II = Ω\Ωzz′

I .

From Condition I.1 (iv) we get the bound

1l[ϕ∈Ωzz′
I ]1l[|uz′ (t)|≥4R](∂|u|fz′)(uz′(t)) ≤ Cf1l[|uz(t)|≥4R](∂|u|fz)(uz(t)), (IV.7)

because on the support of the indicator functions we have

|uz(t)| ≥ (1− εz)|ϕz| ≥ |ϕz′| ≥ |uz′(t)| ≥ 4R.

Complementing (IV.7) we now consider the region Ωzz′
II . We obtain, for z 6= o,

or z = o and |ϕo| ≥ 4R,

|ϕz − T ζz (ϕz)|1l[ϕ∈Ωzz′
II ]1l[|uz′ (t)|≥4R] ≤

εz
1− εz

|ϕz′|1l[|uz′ (t)|≥4R]. (IV.8)

Here (IV.4) was used. We note that, for |ϕo| ≤ 4R, we have from (IV.5)

|ϕo − T ζo (ϕo)|1l[|uz′ (t)|≥4R] ≤ 6R1l[|uz′ (t)|≥4R] ≤ 3
2
|ϕz′|1l[|uz′ (t)|≥4R]. (IV.9)

Combining (IV.7)–(IV.9) yields for z 6= z′ and ϕ ∈ Ω:

Szz
′

2 (ϕ) ≤ εz|ϕz|Cf
∫ 1

0

1l[|uz(t)|≥4R](∂|u|fz)(uz(t))dt

+ εz′|ϕz′|
{ εz

(1− εz)εz′
+

3

2εz′
δoz

}∫ 1

0

1l[|uz′ (t)|≥4R](∂|u|fz′)(uz′(t))dt. (IV.10)

Inserting the bounds (IV.6) and (IV.10) into (IV.3), we get the following estimate
for all x 6= y and ϕ ∈ Ω

|wxy(ϕx, ϕy)− wxy((T
ζ(ϕ))x, (T

ζ(ϕ))y)|

≤ axyεx|ϕx|
(
1 +

{
1 + Cf +

3

2εx
δyo +

εy
(1− εy)εx

}
×

∫ 1

0

1l[|ux(t)≥4R](∂|u|fx)(ux(t))dt
)

(IV.11)

+ axyεy|ϕy|
(
1 +

{
1 + Cf +

3

2εy
δxo +

εx
(1− εx)εy

}
×

∫ 1

0

1l[|uy(t)≥4R](∂|u|fy)(uy(t))dt
)

+ axy6R(δxo + δyo).
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Observe that

|ϕx| ≥ |ux(t)| ≥ 4R implies T ζx (ϕx) = (1− εx)ϕx, (IV.12)

and hence

εx|ϕx|
∫ 1

0

1l[|ux(t)|≥4R](∂|u|fx)(ux(t))dt

≤ 1l[|ϕx|≥4R]

∫ 1

0

εx|ϕx|(∂|u|fx)(ux(t))dt

= 1l[|ϕx|≥4R]

∫ 1

0

( d
dt

[fx(ux(t))]
)
dt

= 1l[|ϕx|≥4R]

(
fx(ϕx)− fx(T

ζ
x (ϕx))

)
. (IV.13)

As an application we get the bound, cf. Condition I.1 (iii) and (IV.12),

εx|ϕx| = εx|ϕx|1l[|ϕz |<4R] + εx|ϕx|1l[|ϕx|≥4R] (IV.14)

≤ εx4R1l[|ϕx|<4R] + c−1
f 1l[|ϕx|≥4R]

(
fx(ϕx)− fx(T

ζ
x (ϕx))

)
.

Inserting (IV.13) and (IV.14) into (IV.11) we get, for ϕ ∈ Ω,∣∣wxy(ϕx, ϕy)− wxy((T
ζ(ϕ))x, (T

ζ(ϕ))y)
∣∣

≤ axy

[
εx4R + 6Rδxo +

{
1 + c−1

f + Cf +
3

2εx
δyo +

εy
(1− εy)εx

}
× 1l[|ϕx|≥4R]

(
fx(ϕx)− fx(T

ζ
x (ϕx))

)]
+ axy

[
εy4R + 6Rδyo +

{
1 + c−1

f + Cf +
3

2εy
δxo +

εx
(1− εx)εy

}
× 1l[|ϕy |≥4R]

(
fy(ϕy)− fy(T

ζ
y (ϕy))

)]
.

We now recall (I.1), (I.2), (I.4) and (III.5), before we sum up and obtain, for ϕ ∈ Ω,∣∣W (ϕ)−W (T ζ(ϕ))
∣∣ ≤ 8εoRC

0
aCρ + 12RCa

+ 2
∑
x∈Λ

{
C0
a

(
1 + c−1

f + Cf
)

+ 3
2
Cρ
aε

−1
o +

∑
y∈Λ

axyεy
(1− εo)εx

}
(IV.15)

× 1l[|ϕx|≥4R]

(
fx(ϕx)− fx(T

ζ
x (ϕx))

)
.

The following bound is a consequence of (I.2) and the triangle inequality for ρ∑
y∈Λ

axyεy
(1− εo)εx

≤ Cρ
a

1− εo
. (IV.16)

See also the proof of [1, Lemma 3.2].
From (IV.15) and (IV.16) we conclude the lemma with the constants given in

(IV.2). �
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V Estimating the Hamiltonian

Lemma V.1. Let 0 < ζ ≤ cfR/2, |J | < J̃0(ζ), and

σζT := min
{
ζ, 4εocfR(1− |J |C2

W )
}
− |J |C1

W , (V.1)

where

J̃0(ζ) := min
{ ζ

C1
W

,
4εocfR

C1
W + 4εocfRC2

W

}
. (V.2)

Then, for all ϕ ∈ Ω, with ϕo 6∈ G2ζ, we have the bound

HΛ(ϕ)−HΛ(T ζ(ϕ)) ≥ σζT . (V.3)

Proof: We begin by analyzing the self-energy difference between ϕ and T ζ(ϕ).
For x 6= o we get by definition of T ζx , cf. (III.7), and Condition I.1 (iii) that

fx(ϕx)− fx(T
ζ
x (ϕx)) ≥ 0. In particular we get

fx(ϕx)− fx(T
ζ
x (ϕx)) ≥ 1l[|ϕx|≥4R]

(
fx(ϕx)− fx(T

ζ
x (ϕx))

)
≥ 0. (V.4)

For x = o, we distinguish two cases. First consider |ϕo| ≥ 4R. Here |T ζo (ϕo)| =
(1− εo)|ϕo| ≥ R and hence, by Condition I.1 (iii),

fo(ϕo)− fo(T
ζ
o (ϕo)) ≥ εocf |ϕo| ≥ 4εocfR. (V.5)

Secondly consider the case |ϕo| < 4R and ϕo 6∈ G2ζ . Then T ζo (ϕo) ∈ Gζ and thus

fo(ϕo)− fo(T
ζ
o (ϕo)) ≥ ζ. (V.6)

Putting (IV.1) and (V.4)-(V.6) together, we obtain the desired lower bound on
H(ϕ)−HΛ(T ζ(ϕ)),

HΛ(ϕ)−HΛ(T ζ(ϕ))

≥
[ ∑
x 6=o

1l[|ϕx|≥4R]

{
1− |J |C2

W}
(
fx(ϕx)− fx(T

ζ
x (ϕx))

)]
− |J |C1

W

+
{
1l[|ϕo|<4R] + 1l[|ϕo|≥4R](1− |J |C2

W )
}(
fo(ϕo)− fo(T

ζ
o (ϕo))

)
≥ min

{
ζ, 4εocfR(1− |J |C2

W )
}
− |J |C1

W , (V.7)

where we use ϕo /∈ G2ζ and also |J |C2
W < J̃0(ζ)C

2
W ≤ 1. �

VI Localization

In this section we prove the main result, Theorem I.1.
We begin separating into two regions

PΛ

[
ϕo 6∈ G2ζ

]
= PΛ

[
|ϕo| ≥ 4R

]
+ PΛ

[
ϕo ∈ B4R(0)\G2ζ

]
(VI.1)

= Z−1
Λ

( ∫
{|ϕo|≥4R}

e−βHΛ(ϕ)dΛϕ+

∫
{ϕo∈B4R(0)\G2ζ}

e−βHΛ(ϕ)dΛϕ
)
.
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LetA1 = {|ϕo| ≥ 4R} andA2 = {ϕo ∈ B4R(0)\G2ζ}. We estimate using Lemma V.1,
for j = 1, 2,∫

Aj

e−βHΛ(ϕ)dΛϕ ≤ sup
ϕ∈Aj

{
e−β[HΛ(ϕ)−HΛ(T ζ(ϕ))]

} ∫
Aj

e−βHΛ(T ζ(ϕ))dΛϕ

= e−β infϕ∈Aj
[HΛ(ϕ)−HΛ(T ζ(ϕ))]

∫
T ζ(Aj)

e−βHΛ(ψ) dΛψ

|(det JacT ζ)(T ζ−1(ψ))|

≤ e−βσ
ζ
T

infϕ∈Aj
|(det JacT ζ)(T ζ−1(ϕ))|

ZΛ, (VI.2)

provided |J | < J̃0(ζ) and 0 < ζ ≤ cfR/2. Inserting (VI.2) into (VI.1), together with
the estimate (III.9) on the determinant of the Jacobian of T ζ , we get

PΛ

[
ϕo 6∈ G2ζ

]
≤ max

{[
4Rζ−1 sup

|u|≤Rζ

|∇fo(u)|
]n
, (1− εo)

−n
}

× exp
[
nεo(1 + ‖θ′‖∞)Cρ

]
e−βσ

ζ
T . (VI.3)

Taking infimum over admissible θ’s and εo’s, yields the estimate with ‖θ′‖∞ replaced
by 2 and εo replaced by 1

6
(see (III.6)), We have thus obtained the bound

PΛ

[
ϕo /∈ G2ζ

]
≤ 2 max

{[
4Rζ−1 sup

|u|≤Rζ

|∇fo(u)|
]n
, (6

5
)n

}
e

1
2
nCρe−βσ

ζ
T . (VI.4)

We recapitulate: The constants in (IV.2), (V.1) and (V.2), with ‖θ′‖∞ = 2 and
εo = 1

6
, become

C1
W = 4RC0

a(
1
3
Cρ + 3), C2

W = Γ0 + 102
5
Cρ
a , (VI.5)

J̃0(ζ) = min
{ ζ

C1
W

,
2
3
cfR

C1
W + 2

3
cfRC2

W

}
, (VI.6)

σζT = min
{
ζ, 2

3
cfR(1− |J |C2

W )
}
− |J |C1

W . (VI.7)

With these constants and for |J | < J̃0(ζ), 0 < 1
2
ζ ≤ cfR, and β > 0 the localization

bound (VI.3) holds true.
We end by explaining how to derive the assertion of Theorem I.1 from here.

Note that Γ1 = C1
W and Γ2 = C2

W . Comparing (VI.6) to (I.8), we further notice

that J̃0(
1
2
cfR) = J0 and that J̃0(ζ) ≤ J0, whenever ζ ≤ 1

2
cfR. By assumption, we

have |J | ≤ min{J0,
1
2
δΓ−1

1 }. We distinguish the cases δ ≥ cfR and δ < cfR.

If δ ≥ cfR then we choose ζ := 1
2
cfR and observe that |J | ≤ J0 = J̃0(ζ). The

claim now follows from (VI.3), the trivial bound PΛ[ϕo /∈ Gδ] ≤ PΛ[ϕo /∈ GcfR], and
the fact that min{δ, 3

2
Γ3} = min{δ, cfR} = cfR = 2ζ.

Conversely, if δ < cfR then we choose ζ := 1
2
δ < 1

2
cfR. Since δ > 2|J |Γ1, also

this choice insures that |J | ≤ J̃0(ζ), namely, |J | < 1
2
ζΓ−1

1 ≤ J̃0(ζ). Now the claim
follows directly from (VI.3) and min{δ, 3

2
Γ3} = min{δ, cfR} = δ = 2ζ.

This completes the proof of Theorem I.1. �
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A Controlling the interaction

In this appendix we prove a basic bound on the interaction, which shows that it
can be dominated by the self-energy. This is only used to ensure that polynomially
bounded observables are integrable, and in particular that the partition function is
finite.

Lemma A.1. Suppose Conditions I.1 and I.2. There exists a constant A, which
may depend on Λ, such that for all ϕ ∈ Ω∣∣∣ ∑

x 6=y,x,y∈Λ

ωxy(ϕx, ϕy)
∣∣∣ ≤ A+ 2C0

a

(
1 + Cf + c−1

f

) ∑
x∈Λ

fx(ϕx).

Proof. Let u, v 6= 0. In the followingAj, j ∈ {1, 2, 3}, denote non-negative constants,
which contribute to the A in the lemma. We estimate using Conditions I.1 and I.2

|wxy(u, v)| ≤ A1 + |wxy(u, v)− wxy(0, 0)|

≤ A1 +

∫ 1

0

∣∣u · (∇1wxy)(tu, tv) + v · (∇2wxy)(tu, tv)
∣∣dt

≤ A1 + axy

∫ 1

0

(|u|+ |v|)
[
1 + 1l[t|u|≥4R](∂|u|fx)(tu) + 1l[t|v|≥4R](∂|v|fy)(tv)

]
dt

≤ A1 + axy

{
|u|+ |v|

+ (1 + Cf )

∫ 1

0

[
1l[t|u|≥4R]|u|(∂|u|fx)(tu) + 1l[t|v|≥4R]|v|(∂|v|fy)(tv)

]
dt

}
= A1 + axy

{
|u|+ |v|

+ (1 + Cf )

∫ 1

0

[
1l[t|u|≥4R]

d

dt
fx(tu) + 1l[t|v|≥4R]

d

dt
fy(tv)

]
dt

}
= A1 + axy

{
|u|+ |v|

+ (1 + Cf )
[
1l[|u|≥4R]

∫ 1

4R
|u|

d

dt
fx(tu)dt+ 1l[|v|≥4R]

∫ 1

4R
|v|

d

dt
fy(tv)dt

]}
≤ A2 + axy

{
|u|+ |v|+ (1 + Cf )

[
fx(u) + fy(v)

]}
.

To conclude the proof we observe the following bound

|u| ≤ A3 + 1l[|u|≥R]|u| ≤ A3 + c−1
f 1l[|u|≥R]fx(u) ≤ A3 + c−1

f fx(u),

and sum up, using (I.4). �
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