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Generators of Jacobians of Hyperelliptic Curves

Christian Robenhagen Ravnshøj

Abstract

This paper provides a probabilistic algorithm to determine generators of the
m-torsion subgroup of the Jacobian of a hyperelliptic curve of genus two.

1 Introduction

Let C be a hyperelliptic curve of genus two defined over a prime field Fp, and JC the
Jacobian of C. Consider the rational subgroup JC(Fp). JC(Fp) is a finite abelian group,
and

JC(Fp) ' Z/n1Z⊕ Z/n2Z⊕ Z/n3Z⊕ Z/n4Z,

where ni | ni+1 and n2 | p − 1. Frey and Rück (1994) shows that if m | p − 1, then
the discrete logarithm problem in the rational m-torsion subgroup JC(Fp)[m] of JC(Fp)
can be reduced to the corresponding problem in F×p (Frey and Rück, 1994, corollary 1).
In the proof of this result it is claimed that the non-degeneracy of the Tate pairing
can be used to determine whether r random elements of the finite group JC(Fp)[m] in
fact is an independent set of generators of JC(Fp)[m]. This paper provides an explicit,
probabilistic algorithm to determine generators of JC(Fp)[m].

In short, the algorithm outputs elements γi of the Sylow-` subgroup Γ` of the rational
subgroup Γ = JC(Fp), such that Γ` =

⊕
i〈γi〉 in the following steps:

1. Choose random elements γi ∈ Γ` and hj ∈ JC(Fp), i, j ∈ {1, . . . , 4}.

2. Use the non-degeneracy of the tame Tate pairing τ to diagonalize the sets {γi}i
and {hj}j with respect to τ ; i.e. modify the sets such that τ(γi, hj) = 1 if i 6= j
and τ(γi, hi) is an `th root of unity.

3. If
∏
i |γi| < |Γ`| then go to step 1.

4. Output the elements γ1, γ2, γ3 and γ4.

The key ingredient of the algorithm is the diagonalization in step 2; this process will
be explained in section 5.

We will write 〈γi|i ∈ I〉 = 〈γi〉i and ⊕
i∈I〈γi〉 =

⊕
i〈γi〉 if the index set I is clear

from the context.
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2 Hyperelliptic curves
A hyperelliptic curve is a smooth, projective curve C ⊆ Pn of genus at least two with
a separable, degree two morphism φ : C → P1. In the rest of this paper, let C be a
hyperelliptic curve of genus two defined over a prime field Fp of characteristic p > 2.
By the Riemann-Roch theorem there exists an embedding ψ : C → P2, mapping C to
a curve given by an equation of the form

y2 = f(x),

where f ∈ Fp[x] is of degree six and have no multiple roots (see Cassels and Flynn,
1996, chapter 1).

The set of principal divisors P(C) on C constitutes a subgroup of the degree zero
divisors Div0(C). The Jacobian JC of C is defined as the quotient

JC = Div0(C)/P(C).

Consider the subgroup JC(Fp) < JC of Fp-rational elements. There exist numbers ni,
such that

JC(Fp) ' Z/n1Z⊕ Z/n2Z⊕ Z/n3Z⊕ Z/n4Z, (1)
where ni | ni+1 and n2 | p − 1 (see Frey and Lange, 2006, proposition 5.78, p. 111).
We wish to determine generators of the m-torsion subgroup JC(Fp)[m] < JC(Fp), where
m | |JC(Fp)| is the largest number such that ` | p− 1 for every prime number ` | m.

3 Finite abelian groups
Miller (2004) shows the following theorem.

Theorem 1. Let G be a finite abelian group of torsion rank r. Then for s ≥ r the
probability that a random s-tuple of elements of G generates G is at least

Cr
log log |G|

if s = r, and at least Cs if s > r, where Cs > 0 is a constant depending only on s (and
not on |G|).
Proof. (Miller, 2004, theorem 3, p. 251)

Combining theorem 1 and equation (1), we expect to find generators of Γ[m] by
choosing 4 random elements γi ∈ Γ[m] in approximately log log |Γ[m]|

C4
attempts.

To determine whether the generators are independent, i.e. if 〈γi〉i =
⊕
i〈γi〉, we need

to know the subgroups of a cyclic `-group G. These are determined uniquely by the
order of G, since

{0} < 〈`n−1g〉 < 〈`n−2g〉 < · · · < 〈`g〉 < G

are the subgroups of the group G = 〈g〉 of order `n. The following corollary is an
immediate consequence of this observation.

Corollary 2. Let U1 and U2 be cyclic subgroups of a finite group G. Assume U1 and
U2 are `-groups. Let 〈ui〉 < Ui be the subgroups of order `. Then

U1 ∩ U2 = {e} ⇐⇒ 〈u1〉 ∩ 〈u2〉 = {e}.
Here e ∈ G is the neutral element.

2



4 The tame Tate pairing
Let Γ = JC(Fp) be the rational subgroup of the Jacobian. Consider a number λ |
gcd(|Γ|, p−1). Let g ∈ Γ[λ] and h =

∑
i aiPi ∈ Γ be divisors with no points in common,

and let
h ∈ Γ/λΓ

denote the class containing the divisor h. Furthermore, let f ∈ Fp(C) be a rational
function on C with divisor div(f) = λg. Set f(h) =

∏
i f(Pi)

ai . Then

eλ(g, h) = f(h)

is a well-defined pairing Γ[λ] × Γ/λΓ −→ F×p /(F×p )λ, the Tate pairing ; cf. Galbraith
(2005). Raising to the power p−1

λ
gives a well-defined element in the subgroup µλ < F×p

of the λth roots of unity. This pairing

τλ : Γ[λ]× Γ/λΓ −→ µλ

is called the tame Tate pairing.
Since the class h is represented by the element h ∈ Γ, we will write τλ(g, h) instead

of τλ(g, h). Furthermore, we will omit the subscript λ and just write τ(g, h), since the
value of λ will be clear from the context.

Hess (2004) gives a short and elementary proof of the following theorem.

Theorem 3. The tame Tate pairing τ is bilinear and non-degenerate.

Corollary 4. For every element g ∈ Γ of order λ an element h ∈ Γ exists, such that
µλ = 〈τ(g, h)〉.
Proof. (Silverman, 1986, corollary 8.1.1., p. 98) gives a similar result for elliptic curves
and the Weil pairing. The proof of this result only uses that the pairing is bilinear and
non-degenerate. Hence it applies to corollary 4.

Remark 5. In the following we only need the existence of the element h ∈ Γ, such that
µλ = 〈τ(g, h)〉; we do not need to find it.

5 Generators of Γ[m]

As in the previous section, let Γ = JC(Fp) be the rational subgroup of the Jacobian.
We are searching for elements γi ∈ Γ[m] such that Γ[m] =

⊕
i〈γi〉. As an abelian group,

Γ[m] is the direct sum of its Sylow subgroups. Hence, we only need to find generators
of the Sylow subgroups of Γ[m].

Set N = |Γ| and let ` | gcd(N, p − 1) be a prime number. Choose four random
elements γi ∈ Γ. Let Γ` < Γ be the Sylow-` subgroup of Γ, and set N` = |Γ`|. Then
N
N`
γi ∈ Γ`. Hence, we may assume that γi ∈ Γ`. If all the elements γi are equal to

zero, then we choose other elements γi ∈ Γ. Hence, we may assume that some of the
elements γi are non-zero.

Let |γi| = λi, and re-enumerate the γi’s such that λi ≤ λi+1. Since some of the γi’s
are non-zero, we may choose an index ν ≤ 4, such that λν 6= 1 and λi = 1 for i < ν.
Choose λ0 minimal such that λ = λν

λ0
| p− 1. Then Fp contains an element ζ of order λ.
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Now set gi = λi
λ
γi, ν ≤ i ≤ 4. Then gi ∈ Γ[λ], ν ≤ i ≤ 4. Finally, choose four random

elements hi ∈ Γ.
Let

τ : Γ[λ]× Γ/λΓ −→ 〈ζ〉
be the tame Tate pairing. Define remainders αij modulo λ by

τ(gi, hj) = ζαij .

By corollary 4, for any of the elements gi we can choose an element h ∈ Γ, such that
|τ(gi, h)| = λ. Assume that Γ/λΓ = 〈h1, h2, h3, h4〉. Then h =

∑
i qihi, and so

τ(gi, h) = ζαi1q1+αi2q2+αi3q3+αi4q4 .

If αij ≡ 0 (mod `), 1 ≤ j ≤ 4, then |τ(gi, h)| < λ. Hence, if Γ/λΓ = 〈h1, h2, h3, h4〉,
then for all i ∈ {ν, . . . , 4} we can choose a j ∈ {1, . . . , 4}, such that αij 6≡ 0 (mod `).

Enumerate the hi such that α44 6≡ 0 (mod `). Now assume a number j < 4 exists,
such that α4j 6≡ 0 (mod λ). Then ζα4j = ζβ1α44 , and replacing hj with hj − β1h4 gives
α4j ≡ 0 (mod λ). So we may assume that

α41 ≡ α42 ≡ α43 ≡ 0 (mod λ) and α44 6≡ 0 (mod `).

Assume similarly that a number j < 4 exists, such that αj4 6≡ 0 (mod λ). Now set β2 ≡
α−1

44 αj4 (mod λ). Then τ(gj − β2g4, h4) = 1. So we may also assume that

α14 ≡ α24 ≡ α34 ≡ 0 (mod λ).

Repeating this process recursively, we may assume that

αij ≡ 0 (mod λ) and α44 6≡ 0 (mod `).

Again ν ≤ i ≤ 4 and 1 ≤ j ≤ 4.
The discussion above is formalized in the following algorithm.

Algorithm 1. As input we are given a hyperelliptic curve C of genus two defined over
a prime field Fp, the number N = |Γ| of Fp-rational elements of the Jacobian, and a
prime factor ` | gcd(N, p − 1). The algorithm outputs elements γi ∈ Γ` of the Sylow-`
subgroup Γ` of Γ, such that 〈γi〉i =

⊕
i〈γi〉 in the following steps.

1. Compute the order N` of the Sylow-` subgroup of Γ.

2. Choose elements γi ∈ Γ, i ∈ I := {1, 2, 3, 4}. Set γi := N
N`
γi.

3. Choose elements hj ∈ Γ, j ∈ J := {1, 2, 3, 4}.
4. Set K := {1, 2, 3, 4}.
5. For k′ from 0 to 3 do the following:

(a) Set k := 4− k′.
(b) If γi = 0, then set I := I \ {i}. If |I| = 0, then go to step 2.
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(c) Compute the orders λκ := |γκ|, κ ∈ K. Re-enumerate the γκ’s such that
λκ ≤ λκ+1, κ ∈ K. Set I := {5− |I|, 6− |I|, . . . , 4}.

(d) Set ν := min(I), and choose λ0 minimal such that λ := λν
λ0
| p − 1. Set

gκ := λκ
λ
γκ, κ ∈ I ∩K.

i. If gk = 0, then go to step 6.
ii. If τ(gk, hj)

λ/` = 1 for all j ≤ k, then go to step 3.
(e) Choose a primitive λth root of unity ζ ∈ Fp. Compute αkj and ακk from

τ(gk, hj) = ζαkj and τ(gκ, hk) = ζακk , 1 ≤ j < k, κ ∈ I ∩K. Re-enumerate
h1, . . . , hk such that αkk 6≡ 0 (mod `).

(f) For 1 ≤ j < k, set β ≡ α−1
kk αkj (mod λ) and hj := hj − βhk.

(g) For κ ∈ I ∩K \ {k}, set β ≡ α−1
kk ακk (mod λ) and γκ := γκ − β λkλκγk.

(h) Set K := K \ {k}.
6. Output γ1, γ2, γ3 and γ4.

Remark 6. Algorithm 1 consists of a small number of

1. calculations of orders of elements γ ∈ Γ`,

2. multiplications of elements γ ∈ Γ with numbers a ∈ Z,

3. additions of elements γ1, γ2 ∈ Γ,

4. evaluations of pairings of elements γ1, γ2 ∈ Γ and

5. solving the discrete logarithm problem in Fp, i.e. to determine α from ζ and
ξ = ζα.

By (Miller, 2004, proposition 9), the order |γ| of an element γ ∈ Γ` can be calculated
in time O(log3N`)AΓ, where AΓ is the time for adding two elements of Γ. A multiple
aγ or a sum γ1 + γ2 is computed in time O(AΓ). By Frey and Rück (1994), the pairing
τ(γ1, γ2) of two elements γ1, γ2 ∈ Γ can be evaluated in time O(logN`). Finally, by
Pohlig and Hellmann (1978) the discrete logarithm problem in Fp can be solved in time
O(log p). We may assume that addition in Γ is easy, i.e. that AΓ < O(log p). Hence
algorithm 1 runs in expected time O(log p).

Careful examination of algorithm 1 gives the following lemma.

Lemma 7. Let Γ` be the Sylow-` subgroup of Γ, ` | p − 1. Algorithm 1 determines
elements γi ∈ Γ` and hi ∈ Γ, 1 ≤ i ≤ 4, such that one of the following cases holds.

1. α11α22α33α44 6≡ 0 (mod `) and αij ≡ 0 (mod λ), i 6= j, i, j ∈ {1, 2, 3, 4}.
2. γ1 = 0, α22α33α44 6≡ 0 (mod `) and αij ≡ 0 (mod λ), i 6= j, i, j ∈ {2, 3, 4}.
3. γ1 = γ2 = 0, α33α44 6≡ 0 (mod `) and αij ≡ 0 (mod λ), i 6= j, i, j ∈ {3, 4}.
4. γ1 = γ2 = γ3 = 0.

If |γi| = λi, then λi ≤ λi+1. Set ν = min{i|λi 6= 1}, and define λ0 as the least number,
such that λ = λν

λ0
| p − 1. Set gi = λi

λ
γi, ν ≤ i ≤ 4. Then the numbers αij above are

determined by
τ(gi, hj) = ζαij ,

where τ is the tame Tate pairing Γ[λ]× Γ/λΓ→ µλ = 〈ζ〉.
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Theorem 8. Algorithm 1 determines elements γ1, γ2, γ3 and γ4 of the Sylow-` subgroup
of Γ, ` | p− 1, such that 〈γi〉i =

⊕
i〈γi〉.

Proof. Choose elements γi, hi ∈ Γ such that the conditions of lemma 7 are fulfilled.
Set λi = |γi|, and let ν = min{i|λi 6= 1}. Define λ0 as the least number, such that
λ = λν

λ0
| p− 1. Set gi = λi

λ
γi. Then the αij’s from lemma 7 are determined by

τ(gi, hj) = ζαij .

We only consider case 1 of lemma 7, since the other cases follow similarly. We start by
determining 〈γ3〉 ∩ 〈γ4〉. Assume that g3 = ag4. Then

1 = τ(g3, h4) = τ(ag4, h4) = ζaα44 ,

i.e. a ≡ 0 (mod λ). Hence 〈γ3〉∩〈γ4〉 = {0}. Then we determine 〈γ2〉∩〈γ3, γ4〉. Assume
g2 = ag3 + bg4. Then

1 = τ(g2, h3) = τ(ag3, h3) = ζaα33 ,

i.e. a ≡ 0 (mod λ). In the same way,

1 = τ(g2, h4) = ζbα44 ,

i.e. b ≡ 0 (mod λ). Hence 〈γ2〉 ∩ 〈γ3, γ4〉 = {0}. Similarly 〈γ1〉 ∩ 〈γ2, γ3, γ4〉 = {0}.
Hence 〈γi〉i =

⊕
i〈γi〉.

>From theorem 8 we get the following probabilistic algorithm to determine gene-
rators of the m-torsion subgroup Γ[m] < Γ, where m | |Γ| is the largest divisor of |Γ|
such that ` | p− 1 for every prime number ` | m.

Algorithm 2. As input we are given a hyperelliptic curve C of genus two defined over
a prime field Fp, the number N = |Γ| of Fp-rational elements of the Jacobian, and the
prime factors p1, . . . , pn of gcd(N, p − 1). The algorithm outputs elements γi ∈ Γ[m]
such that Γ[m] =

⊕
i〈γi〉 in the following steps.

1. Set γi := 0, 1 ≤ i ≤ 4. For ` ∈ {p1, . . . , pn} do the following:

(a) Use algorithm 1 to determine elements γ̃i ∈ Γ`, 1 ≤ i ≤ 4, such that 〈γ̃i〉i =⊕
i〈γ̃i〉.

(b) If
∏
i |γ̃i| < |Γ`|, then go to step 1a.

(c) Set γi := γi + γ̃i, 1 ≤ i ≤ 4.

2. Output γ1, γ2, γ3 and γ4.

Remark 9. By remark 6, algorithm 2 has expected running time O(log p). Hence algo-
rithm 2 is an efficient, probabilistic algorithm to determine generators of the m-torsion
subgroup Γ[m] < Γ, where m | |Γ| is the largest divisor of |Γ| such that ` | p − 1 for
every prime number ` | m.

Remark 10. The strategy of algorithm 1 can be applied to any finite, abelian group Γ
with bilinear, non-degenerate pairings into cyclic groups. For the strategy to be efficient,
the pairings must be efficiently computable, and the discrete logarithm problem in the
cyclic groups must be easy.
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