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Abstract

We unify various constructions of C∗-algebras from dynamical systems, specifi-
cally, the dimension group construction of Krieger for shift spaces, the corresponding
constructions of Wagoner and Boyle, Fiebig and Fiebig for countable state Markov
shifts and one-sided shift spaces, respectively, and the constructions of Ruelle and
Putnam for Smale spaces. The general setup is used to analyze the structure of
the C∗-algebras arising from the homoclinic and heteroclinic equivalence relations in
expansive dynamical systems; in particular expansive group endomorphisms and au-
tomorphisms, and generalized 1-solenoids. For these dynamical systems it is shown
that the C∗-algebras are inductive limits of homogeneous or sub-homogeneous alge-
bras with one-dimensional spectra.
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Preface

The crossed product construction is the classical way of associating a C∗-algebra
to a dynamical system, and it is sometimes interpreted as a non-commutative sub-
stitute for the often ill behaved space of orbits of the action. This view of the crossed
product is most natural when the action is free, since the crossed product will oth-
erwise depend on more than the orbit equivalence relation. Nonetheless it makes
good sense to view the crossed product as an attempt to produce a non-commutative
algebra, a C∗-algebra, from the orbit equivalence defined by the action, in order to
capture important features of the orbit space which may be difficult or impossible
to handle from a topological point of view.

In recent years there has been a growing interest in other equivalence relations
arising from dynamics, in particular homoclinicity and heteroclinicity. These rela-
tions are in some sense transverse to orbit equivalence and the C∗-algebras which can
be naturally associated to them are very different from the corresponding crossed
product. This can be observed already in what seems to be the earliest of such con-
structions made by Wolfgang Krieger in [Kr2]: The C∗-algebras arising from the
homoclinic and heteroclinic equivalence relations of a mixing topological Markov
chain are simple AF-algebras while the corresponding crossed product is neither AF
nor simple.

David Ruelle was the next to construct a C∗-algebra from the equivalence relation
given by homoclinicity in dynamical systems, cf. [Ru2], and it is his approach I
will consider in the present paper. What is crucial for the method of Ruelle is
that in many dynamical systems, such as the Smale spaces considered by Ruelle,
homoclinicity of two states can be extended to a ’uniform local homoclinicity’. See
Condition C of [Ru2]. It is this strengthening of the relation which ensures that the
topology on the graph of the equivalence relation defined by homoclinicity becomes
what is nowadays called an étale equivalence relation, so that the construction of
Renault, [Re1], can be used to construct the C∗-algebra of the relation. Here I
take the stronger relation as point of departure and this allows the construction of
an étale equivalence relation from the homoclinicity relation and the heteroclinicity
relation in more general settings than the Smale spaces introduced by Ruelle.

Besides the work of Krieger and Ruelle the paper builds on, and is strongly
influenced by the work of Ian Putnam and J. Wagoner. While Ruelle only considered
homoclinicity, Putnam showed how one can construct the C∗-algebras of heteroclinic
equivalence in Smale spaces. For this he used the concept of a Haar measure of the
underlying groupoid, building again on the work of Renault. To let go of the étale
condition is actually a weakening for many purposes, but through his work with J.
Spielberg, [PS], his was able to partly remedy this defect. One of the major points
of the present work is to show that an approach of Wagoner to the construction of a
dimension group representation for countable state Markov shifts, [Wa], can be used
to give a canonical construction of an étale equivalence relation whose C∗-algebra,

v



vi PREFACE

when specialized to Smale spaces, is the stabilized version of what Putnam calls ’the
stable algebra’. This illustrates one of the main purposes of the paper; to unify and
simplify various constructions of C∗-algebras from dynamical systems, specifically,
the dimension group construction of Krieger for shift spaces, the corresponding
constructions of Wagoner and Boyle, Fiebig and Fiebig for countable state Markov
shifts and one-sided shift spaces, respectively, besides the constructions of Ruelle
and Putnam for Smale spaces. Another purpose is to use the general setup to
improve our understanding of the structure of the C∗-algebras of the homoclinic
and heteroclinic equivalence relations and initiate the study of their relation to the
dynamical systems used for their construction.

Let me comment briefly on the content of each chapter of the paper. The first
chapter contains the general construction of an étale equivalence relation from a
(relatively) expansive dynamical system. It is this construction which is used in
various settings in the following chapters.

The second chapter studies the functoriality properties of the C∗-algebras arising
from the étale equivalence relations of the first chapter. As pointed out by Putnam
(e.g. in [Pu2]) this issue is an important one, and many of the difficulties connected
with the study of the C∗-algebras arise from the fact that the functoriality properties
are very different from those of the crossed product construction.

Chapter 3 contains a study of the C∗-algebras arising from homoclinicity in var-
ious expansive dynamical systems. In particular, it is shown that for a two-sided
shift space one obtains the AF-algebras whose dimension groups were constructed
by Krieger in Section 2 of [Kr2]. For one sided shift spaces the dimension group
of the resulting AF-algebra is what was called ’the images group’ by Boyle, Fiebig
and Fiebig in [BFF]. Further, it is shown that for positively expansive group en-
domorphisms and expansive group automorphisms, the homoclinic algebra is an
AT-algebra; that is, a direct limit of a sequence of circle algebras. This conclusion is
achieved by using some of the recent results from the classification program for sim-
ple C∗-algebras, in particular, results of Gong, Lin and Phillips. These results are
combined with a thorough (but not complete) study of the homoclinic subgroup of
expansive group automorphisms. Since there is recent work dedicated to the exhibi-
tion of an expansive automorphism of a compact connected group whose homoclinic
group is not isomorphic to the dual of the group on which it acts, cf. [CF], we point
out here, as an aside, that we obtain more examples of this kind, including examples
where the homoclinic group contains torsion.

Chapter 4 describes the construction of the heteroclinic algebra alluded to above,
and it is shown that the construction generalizes both some of the constructions of
Wagoner from [Wa] as well as the construction of the stable algebra of a Smale
space from [Pu1]. It is then shown that the heteroclinic algebra of Smale spaces
arising from expanding maps, cf. [Ru1], are always AH-algebras.

In Chapter 5 it is shown that the heteroclinic algebra can be constructed for
certain homeomorphisms that are not expansive, including general diffeomorphic
automorphisms of a Lie group. Furthermore, it is shown that for an expansive
group automorphism of a compact group the heteroclinic algebra is an AT-algebra,
just as the homoclinic algebra is in this case. The study of these examples allow
me to exhibit expansive automorphisms of the two-torus with the property that the
heteroclinic algebra is not isomorphic to the heteroclinic algebra of its inverse; in
Putnam’s terminology, the stable and unstable algebras of these automorphisms are
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not (stably) isomorphic. It is tempting to conclude from these examples that the
heteroclinic algebra is sensitive to properties of a dynamical system which the more
conventional invariants, such as the topological entropy and the structure of periodic
points, do not see.

Chapter 6 is devoted to the 1-solenoids of Yi, [Y1]. The study of the C∗-algebras
arising from the heteroclinic structure of such spaces was started by Yi in [Y3] and
we continue his attack by showing that the heteroclinic algebra of the 1-solenoids are
simple, stable and can be realized as inductive limits of sub-homogenous C∗-algebras
with one-dimensional spectra of a type introduced by the author in [Th4].

Finally, in Chapter 7, the heteroclinic algebra is used to remedy a defect of the
dimension group representation for a countable state Markov shift as it was defined
by Wagoner in [Wa]; namely that in Wagoner’s approach only the automorphisms
that are uniformly continuous with respect to a specific metric gives rise to auto-
morphisms of the dimension group. This problem was pointed out to me by Michael
Schraudner, and I am able to show that the heteroclinic algebra does give rise to a
dimension group without the mentioned flaw, provided the Markov shift is locally
compact and satisfies a certain condition (’finitely many edge-disjoint double paths’)
which was introduced by Schraudner himself in [Sch], and shown to be equivalent
to countability of the automorphism group. However, I am only able to give a satis-
fying description of the dimension group and show that it is generally very different
from that of Wagoner for locally compact Markov shifts whose one-point compact-
ification is expansive. The methods used for this purpose may have independent
interest; for example they allow me to obtain necessary and sufficient conditions for
the one-point compactification of a countable state Markov shift to be sofic or of
finite type.

It has been suggested by Putnam, e.g. in [Pu2], that the stable (and unstable)
algebra of a Smale space might always be what is nowadays called an AH-algebra,
and many of our results support this suspicion. However, the results on the Smale
spaces of one-solenoids suggest that it may be necessary to allow more complicated
building blocks.

Finally, it should be observed that both the homoclinic and the heteroclinic alge-
bra of an expansive homeomorphism carries a natural automorphism which extends
the given homeomorphism. The crossed product of this non-commutative dynamical
system generalizes the Ruelle algebras of Putnam, [Pu2], [PS], and hence also the
Cuntz-Krieger algebra, [CuK]. However, the present paper is devoted to the study
of the homoclinic and heteroclinic algebras and the natural automorphisms arising
from the underlying dynamical systems will mostly be ignored. In terms of equiva-
lence relations this means that the focus is on homoclinicity and heteroclinicity in
their pure form, without interference from orbit equivalence.

I want to thank Ola Bratteli, Søren Eilers, Johan P. Hansen, Palle Jorgensen,
K. H. Kim, Magnus Landstad, Fred Roush, Michael Schraudner, Henrik Stetkær,
Jesper Funch Thomsen and Bent Ørsted for helping me in various ways during the
development of the material presented here.

Klaus Thomsen





CHAPTER 1

The Ruelle algebra of a relatively expansive system

1.1. Relatively expansive systems

We describe the input from dynamical systems which we need for the construc-
tion of the étale equivalence relations and C∗-algebras we are going to study.

Let X be a topological space and d a metric for the topology of X. Let E ⊆ X
be a subset of X equipped with a locally compact topology which is finer than the
topology inherited from X. That is, U ∩ E is open in E when U ⊆ X is open in
X, but there may be open sets in E which are not of this form. Note that E is a
locally compact Hausdorff space since the topology inherited from X is Hausdorff.

Let S be a countable set and for each s ∈ S, let fs : X → X be a continuous
map. Thus f = (fs)s∈S is simply a collection of continuous self-maps of X, indexed
by the set S. S may be a group or a semi-group, and s→ fs a homomorphism, but
this is not necessary for the basic construction we describe below. We will assume
that f is relatively expansive on E in the sense that there is a dense subset E0 of E
with the following two properties.1

1) E0 is asymptotically stable in the sense that when x ∈ E, y ∈ E0, and

lim
s→∞

d (fs(x), fs(y)) = 0,

then x ∈ E0.
2) f is locally expansive on E0 in the sense that for each x ∈ E there is an

open neighborhood Ux of x in E and a δx > 0 such that

z, y ∈ E0 ∩ Ux, d (fs(z), fs(y)) ≤ δx ∀s ∈ S ⇒ z = y. (1.1)

We call then the pair (Ux, δx) an expansive pair at x, and δx > 0 is called a local
expansive constant at x. We say that E is an expansive region for the action f . The
tuple (X, d, S, f, E, E0) will be called a relatively expansive system in the following.

1.1.1. Examples.

Example 1.1. Let (X, d) be a locally compact metric space, EndX the semi-
group of continuous maps from X to itself. Let Γ be a discrete semi-group. An
action of Γ on X is a semi-group homomorphism Γ ∋ γ 7→ fγ ∈ EndX. The action
is called expansive when there is a δ > 0 such that

x, y ∈ X, sup
γ∈Γ

d (fγ(x), fγ(y)) ≤ δ ⇒ x = y.

Then (X, d,Γ, f,X,X) is a relatively expansive system. More generally with E any
open or closed subset of X, and E0 any dense asymptotically stable subset of E, the
tuple (X, d,Γ, f, E, E0) is a relatively expansive system. The most familiar examples
of expansive actions are actions of N,Z or Zn on compact metric spaces. �

1Given a function G : S → [0,∞) we write lims→∞G(s) = 0 to mean that for every ǫ > 0
there is a finite set F ⊆ S such that G(s) ≤ ǫ when s /∈ F .

1



2 1. THE RUELLE ALGEBRA OF A RELATIVELY EXPANSIVE SYSTEM

Example 1.2. Let G = (V,E) be a countable strongly connected, locally finite
directed graph with vertex set V , edge set E together with the maps i, t : E → V ,
where i(e) is the initial and t(e) the terminal vertex of an edge e ∈ E. Then

XG =
{
(xi)i∈Z ∈ EZ : t (xj) = i (xj+1) ∀j ∈ Z

}
is a locally compact subset of EZ and the shift σ acts as a homeomorphism of XG

in the standard way: σ(x)j = xj+1. Furthermore, the locally compact topology of
XG is given by a metric, called the Gurevich metric, cf. [Sch]. Unless G is finite
the shift is rarely expansive with respect to the Gurevich metric, but there is a
natural class of graphs for which the shift acts expansively on a canonical dense
subset: Assume that G only has finitely many pairwise edge-disjoint double paths,
as defined by Schraudner in [Sch]. As shown by Schraudner in Theorem 3.4 of
[Sch] there is then a constant c > 0 such that supn∈Z d (σn(x), σn(y)) ≥ c whenever
x and y are different points in XG and at least one of them is doubly transitive,
meaning that both the forward and the backward orbit is dense in XG. Note that
the doubly transitive points are dense in XG since G is strongly connected. Hence,
if we follow [Sch] and let DT (XG) denote the doubly transitive points of XG, the
tuple (XG, d,Z, σ,XG, DT (XG)) will be a relatively expansive system. �

1.2. The étale equivalence relation of local conjugacy

We recall the definition of an étale equivalence relation, cf. [Re1], [GPS].
Let X be a set and R ⊆ X × X an equivalence relation. We say that R is

a topological equivalence relation when R is equipped with a topology (possibly
different from the topology inherited from X × X) such that the inversion R ∋
(x, y) 7→ (y, x) ∈ R is a homeomorphism and the composition

R(2) ∋ ((x, y), (y, z)) 7→ (x, z) ∈ R
is continuous, where the set of composable pairs

R(2) = {((x, y), (u, v)) ∈ R× R : u = y}
has the relative topology inherited from R × R. In this setting we call r(x, y) = x
the range map and s(x, y) = y the source map.

Definition 1.3. Let X be a locally compact Hausdorff space and R ⊆ X ×X
a topological equivalence relation. R is an étale equivalence relation when the range
map r : R → X is a local homeomorphism in the sense that every element γ ∈ R
has an open neighborhood Uγ of γ such that r (Uγ) is open in X and r : Uγ → r (Uγ)
is a homeomorphism.

We come now to the basic construction of the paper; the construction of an étale
equivalence relation from a relatively expansive system (X, d, S, f, E, E0).

Two elements x, y ∈ E are said to be locally conjugate, written x ∼ y, when
there are open neighborhoods U and V of x and y in E, and a homeomorphism
χ : U → V such that χ(x) = y and

lim
s→∞

sup
z∈U

d (fs(z), fs (χ(z))) = 0.

The triple (U, V, χ) is called a local conjugacy from x to y, or just a local con-
jugacy or a conjugacy for short when it is not necessary to emphasize the points x
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and y. Note that local conjugacy is an equivalence relation on E. The graph of this
equivalence relation is the set

Rf(X,E) = {(x, y) ∈ E × E : x ∼ y} .
We call Rf (X,E) the local conjugacy relation on E.

Define a topology on Rf (X,E) by declaring sets of the form

{(x, χ(x)) : x ∈ U} , (1.2)

where (U, V, χ) is a conjugacy, to be a subbase for the topology, i.e. a subset of
Rf(X,E) is open if and only if it is the union of finite intersections of sets of the
form (1.2). It is then easy to see that the range and source maps, r and s, are
continuous.

Lemma 1.4. Let (U, V, χ) and (U ′, V ′, χ′) be local conjugacies from x to y in E.
There are then open neighborhoods U0 of x and V0 of y in E such that x ∈ U0 ⊆
U ∩ U ′, y ∈ V0 ⊆ V ∩ V ′, χ|U0 = χ′|U0 and χ(U0) = V0.

Proof. Let (Uy, δy) be an expansive pair at y. By shrinking Uy we can arrange
that Uy ⊆ V ∩ V ′. There is a finite set F ⊆ S such that

sup
x′∈U

d (fs(x
′), fs (χ (x′))) ≤ δy

2

and

sup
x′∈U ′

d (fs(x
′), fs (χ′ (x′))) ≤ δy

2

when s /∈ F . It follows that supx′∈U∩U ′ d (fs (χ(x)) , fs (χ′(x))) ≤ δy when s /∈
F . Since the topology of E is finer than the relative topology inherited from
X, there is an open neighborhood W of y in E such that y ∈ W ⊆ Uy and
sups∈F d (fs(y

′), fs(y′′)) ≤ δy for all y′, y′′ ∈ W . Set U0 = χ−1(W ) ∩ χ′−1(W ).
Let x′ ∈ U0 ∩ E0. Note that χ(x′), χ′(x′) ∈ E0 ∩ Uy since E0 is asymptotically
stable. Since d (fs (χ(x′)) , fs (χ′(x′))) ≤ δy for all s ∈ S it follows from (1.1) that
χ′(x′) = χ(x′). Since U0 ∩E0 is dense in U0 the continuity of χ and χ′ implies that
χ|U0 = χ′|U0. Set V0 = χ(U0). �

Corollary 1.5. The sets of the form (1.2) is a base for the topology of Rf (X,E).

Lemma 1.6. Let Ω be an open subset of the topological product E×E. It follows
that Rf (X,E) ∩ Ω is open in Rf(X,E).

Proof. Let (x, y) ∈ Rf (X,E) ∩ Ω. There is a local conjugacy (U, V, χ) from
x to y, and there are open sets Wx,Wy ⊆ E such that (x, y) ∈ Wx × Wy ⊆ Ω.
Set U0 = Wx ∩ χ−1 (Wy ∩ V ). Then (x, y) ∈ {(z, χ(z)) : z ∈ U0} ⊆ Rf(X,E) ∩ Ω,
proving that Rf (X,E) ∩ Ω is indeed open in Rf (X,E). �

Theorem 1.7. Rf (X,E) is an étale equivalence relation.

Proof. It follows from Lemma 1.6 that the topology is Hausdorff since the
topology of E is. To see that Rf (X,E) is locally compact, consider an element
ξ = (x, y) ∈ Rf (X,E), and let (U, V, χ) be a conjugacy from x to y. Let U0 ⊆ U be
an open neighborhood of x such that U0 ⊆ U is compact. Set

K =
{
(z, χ(z)) : z ∈ U0

}
.
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To show that K is compact in Rf (X,E) it suffices, either by Alexander’s subbase
theorem or by Corollary 1.5, to show that any cover of K by open sets of the form
(1.2) has a finite sub-cover. Let therefore (Uα, Vα, χα) , α ∈ I, be a collection of
conjugacies such that

K ⊆
⋃
α∈I
{(z, χα(z)) : z ∈ Uα} .

It follows from Lemma 1.4 that for any z ∈ U0 there is an α(z) ∈ I and an open
neighborhood Wα(z) ⊆ Uα ∩ U of z such that χ|Wα(z)

= χα(z)|Wα(z)
. By compactness

of U0 there is a finite set z1, z2, . . . , zN in U0 such that

U0 ⊆
N⋃
i=1

Wα(zi).

When z ∈ U0 ∩Wα(zi) we have that (z, χ(z)) =
(
z, χα(zi)(z)

)
, so we conclude that

K ⊆
N⋃
i=1

{(
z, χα(zi)(z)

)
: z ∈ Uα(zi)

}
,

completing the proof of local compactness of Rf (X,E).
To prove that Rf(X,E) is a topological equivalence relation, observe first that

the inversion (x, y) → (y, x) is clearly a homeomorphism. It suffices therefore
to show that the composition is continuous. So let ((x, y), (y, z)) ∈ Rf (X,E)(2),
and let (U, V, χ) be a conjugacy from x to z. We must show that there is a
open neighborhood Ω of ((x, y), (y, z)) in Rf (X,E)× Rf(X,E) such that (x′, z′) ∈
{(v, χ(v)) : v ∈ U} when (x′, y′), (y′, z′) is a composable pair in Ω. To this end let
(U1, V1, χ1) be a conjugacy from x to y and (U2, V2, χ2) a conjugacy from y to z. It
follows from Lemma 1.4 that χ2◦χ1 agrees with χ in a neighborhood W of x. Hence

Ω = {(x′, χ1(x
′)) : x′ ∈W} × {(y′, χ2(y

′)) : y′ ∈ χ1(W )}
has the required property.

To prove that r is a local homeomorphism, let (U, V, χ) be a conjugacy. Then
r : {(x, χ(x)) : x ∈ U} → U is a homeomorphism since its inverse, the map U ∋
z 7→ (z, χ(z)), is continuous by Lemma 1.4. �

In many important cases the expansive region E is X itself and E0 = E = X.
We denote then the local conjugacy relation by Rf (X).

1.2.1. Miscellaneous observations. In this section we have gathered a series
of observations on the construction of Rf (X,E) that we are going to need later on.

Lemma 1.8. Rf(X,E) is second countable if and only if E is. In this case there
is a countable base for Rf (X,E) consisting of sets of the form (1.2).

Proof. Since the range map r is continuous and open it follows immediately
that Rf(X,E) can only be second countable when E is. So assume that E is second
countable and let B be a countable base for the topology of E. Since S is countable
we can write S =

⋃
n∈N Fn where each Fn is a finite subset of S. Let δ > 0 be

rational, U0, V0 ∈ B and N ∈ N. We require that (V0, δ) is an expansive pair
at y for some y ∈ V0, and d (fs(z), fs(z

′)) ≤ δ when z, z′ ∈ V0 and s ∈ FN . A
local conjugacy (U, V, χ) is will be said to be of type (U0, V0, δ, N) when U = U0,
V ⊆ V0, and supz∈U d (fs(z), fs (χ(z))) ≤ δ

2
when s /∈ FN . If (U ′, V ′, χ′) is also of
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type (U0, V0, δ, N) we have that U ′ = U0 = U , and that d (fs (χ(z)) , fs (χ′(z))) ≤ δ
for all s ∈ S. It follows then from the first condition on (V0, δ) that χ(z) = χ′(z)
when z ∈ E0 ∩ U . By density of E0 and continuity of χ and χ′ it follows that
χ = χ′. Thus V = χ(U) = χ′(U ′) = V ′. This shows that there is at most one
local conjugacy of type (U0, V0, δ, N). There are therefore only countably many
local conjugacies that are of some type and it remains now only to show that they
give rise to a base for the topology of Rf (X,E). So we consider a local conjugacy
(U, V, χ) and a point (x, y) ∈ {(z, χ(z)) : z ∈ U}. There is then an N ∈ N such

that supz∈U d (fs(z), fs (χ(z))) ≤ δ
2
≤ δy

2
for all s /∈ FN , where δy is a local expansive

constant at y and δ > 0 is rational. Since B is a base for the topology of E there
are elements U0, V0 ∈ B such that x ∈ U0 ⊆ U, χ (U0) ⊆ V0, and d (fs(z), fs(z

′)) ≤ δ
for all z, z′ ∈ V0 and all s ∈ FN . Then (U0, χ (U0) , χ) is of type (U0, V0, δ, N) and
(x, y) ∈ {(z, χ(z)) : z ∈ U0} ⊆ {(z, χ(z)) : z ∈ U}. �

Lemma 1.9. A subset D ⊆ Rf (X,E) is pre-compact in Rf (X,E) if and only if
there is a finite collection (Ui, Vi, χi) , i = 1, 2, . . . , N , of local conjugacies in E and
compact subsets Li ⊆ Ui such that

D ⊆
N⋃
i=1

{(x, χi(x)) : x ∈ Li} . (1.3)

Proof. From the proof of Theorem 1.7 it follows that each {(x, χi(x)) : x ∈ Li}
is compact so D is certainly pre-compact when the condition holds. For the converse
assume that D is pre-compact. Then the closure D of D can be covered by a finite
collection of sets from the subbase. Thus we have a finite collection (Ui, Vi, χi) , i =
1, 2, . . . , N , of local conjugacies in E and inclusions

D ⊆ D ⊆
N⋃
i=1

{(x, χi(x)) : x ∈ Ui} .

Since Rf (X,E) is locally compact and D is compact there is a partition of unity
ϕi, i = 1, 2, . . . , N , on D such that suppϕi ⊆ {(x, χi(x)) : x ∈ Ui}. Set Li =
r (suppϕi). Then (1.3) holds. �

Let Cc (Rf (X,E)) be the space of continuous complex functions on Rf (X,E) of
compact support. We say that a function f ∈ Cc (Rf (X,E)) is localized when its
support is contained in the set {(z, µ(z)) : z ∈ U} for some local conjugacy (U, V, µ).

Lemma 1.10. Every element of Cc (Rf (X,E)) is the sum of finitely many local-
ized functions.

Proof. This follows from Lemma 1.9 and an obvious partition of unity argu-
ment. �

We now make an additional assumption which will allow us to give an alternative
description of Rf (X,E) and its topology. Specifically, we will assume that there is
a δ > 0 such that

z, y ∈ E0, d (fs(z), fs(y)) ≤ δ ∀s ∈ S ⇒ z = y. (1.4)
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There is an increasing sequence F1 ⊆ F2 ⊆ F3 ⊆ . . . of finite subsets of S such
that S =

⋃∞
n=1 Fn. Let δ > 0 be a constant such that (1.4) holds. Set

An =

{
(x, y) ∈ E × E : d (fs(x), fs(y)) <

δ

2
, s /∈ Fn

}
. (1.5)

Lemma 1.11. Let ξ = (x, y) ∈ An ∩ Rf (X,E), and consider a local conjugacy
(U, V, χ) from x to y. There is then an open neighborhood W of x in E such that
x ∈W ⊆ U , (W,χ(W ), χ) is a conjugacy from x to y and

{(z, χ(z)) : z ∈W} ⊆ An ∩Rf (X,E).

Proof. There is an m > n such that supz∈U d (fs(z), fs(χ(z))) < δ
2

when s /∈
Fm. Note that d (fs(x), fs(χ(x))) < δ

2
when s /∈ Fn. There is therefore an open

neighborhood W ⊆ U of x in E such that supz∈W d (fs(z), fs(χ(z))) < δ
2

for all
s ∈ Fm\Fn. Then W has the stated properties. �

It follows from Lemma 1.11 that An ∩Rf (X,E) is open in Rf(X,E). Note that

Rf (X,E) =

∞⋃
n=1

An ∩ Rf(X,E). (1.6)

Lemma 1.12. The topology of An ∩ Rf (X,E) inherited from Rf(X,E) is the
same as the topology inherited from E ×E.

Proof. By Lemma 1.6 it suffices to consider an open set Ω in Rf(X,E) and
show that Ω∩An ∩Rf (X,E) is open in the topology inherited from E×E. To this
end we may take Ω to be of the form (1.2). Let ξ = (x, y) ∈ Ω ∩ An ∩ Rf (X,E).
By Lemma 1.11 we can find an open neighborhood W of x in E and a conjugacy
(W,χ(W ), χ) from x to y such that

{(z, χ(z)) : z ∈ W} ⊆ Ω ∩ An ∩ Rf(X,E). (1.7)

Let W ′ be an open neighborhood of y contained in χ(W ) such that

sup
y′,y′′∈W ′

d (fs(y
′), fs(y′′)) < δ (1.8)

for all s ∈ Fn. We claim that(
χ−1(W ′)×W ′) ∩ An ∩ Rf(X,E) ⊆ {(z, χ(z)) : z ∈ W} . (1.9)

To prove this let (x′, y′) ∈ (χ−1(W ′)×W ′) ∩ An ∩ Rf(X,E). There is then a
conjugacy (U ′, V ′, χ′) from x′ to y′ such that U ′×V ′ ⊆ χ−1(W ′)×W ′. Let m ∈ N be
so large that supz∈U ′ d (fs(z), fs (χ′(z))) < δ

2
when s /∈ Fm. Since d (fs(x

′), fs(y′)) <
δ
2

when s /∈ Fn, we can shrink U ′ to achieve that

sup
z∈U ′

d (fs(z), fs (χ′(z))) <
δ

2

when s /∈ Fn. Let x′′ ∈ U ′ ∩ E0 and note that

d (fs(x
′′), fs(χ(x′′))) <

δ

2

for all s /∈ Fn because (x′′, χ(x′′)) ∈ An, cf. (1.7), and that

d (fs(χ
′(x′′)), fs(χ(x′′))) < δ
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for all s ∈ Fn because χ(x′′), χ′(x′′) ∈W ′. It follows that

d (fs(χ
′(x′′)), fs(χ(x′′))) < δ

for all s ∈ S, and hence that χ(x′′) = χ′(x′′) because of (1.4). Since U ′ ∩ E0

is dense in U ′ we conclude that χ(x′) = χ′(x′). Thus (x′, y′) = (x′, χ(x′)) ∈
{(z, χ(z)) : z ∈W}, completing the proof of (1.9).

It follows from (1.7) and (1.9) that ξ ∈ (χ−1(W ′)×W ′) ∩ An ∩ Rf (X,E) ⊆
Ω ∩ An ∩ Rf(X,E), proving that Ω ∩ An ∩ Rf (X,E) is open in the topology of
An ∩Rf (X,E) inherited from E × E. �

Remark 1.13. As observed in Example 1.1 an expansive homeomorphism ϕ of a
compact metric space (X, d) gives rise to a relatively expansive system in a canonical
way. For such a system it is clear that conjugacy of two points x, y ∈ X implies that
x and y are homoclinic in the sense that

lim
|k|→∞

d
(
ϕk(x), ϕk(y)

)
= 0.

In many cases, such as the Smale spaces of Ruelle, this condition is sufficient to en-
sure the existence of a local conjugacy between x and y; that is, points are conjugate
if and only if they are homoclinic.

To give an example with two homoclinic points that are not locally conjugate,
consider the even shift Y which is the two-sided shift in the alphabet {0, 1} obtained
by disallowing the words

{
102k+11 : k = 0, 1, 2, . . .

}
. Set yi = 0, i ∈ Z, and xi =

0, i ∈ Z\{0}, x0 = 1. Then x = (xi)i∈Z and y = (yi)i∈Z are both elements of Y , and
x and y are homoclinic under the shift. To see that x and y are not conjugate, let
δ > 0 be an expansive constant for Y such that z, z′ ∈ Y, d (z, z′) < δ ⇒ z0 = z′0.
Assume to get a contradiction, that (U, V, χ) is a conjugacy from x to y. There is
then a K ∈ N such that

χ(z)k = zk, |k| ≥ K, z ∈ U. (1.10)

By definition of the topology of Y there is an open neighborhood V0 of y such that
y ∈ V0 ⊆ V and z[−K,K] = y[−K,K] = 02K+1 when z ∈ V0. Consider the sequence
ai, i ∈ N, where

ai = . . . 1111102i102i111111 . . .

Then ai ∈ Y for all i and limi→∞ ai = x. In particular, ai ∈ χ−1 (V0) for all i large
enough. For such an i, χ (ai)[−K,K] = 02K+1 and χ (ai)k = (ai)k for all |k| ≥ K,

thanks to (1.10). In particular, for some i ≥ K,

χ (ai) = 1∞04i+11∞

which is not an element of Y . It follows that x and y are not conjugate. �

Remark 1.14. This remark concerns the relationship between the construction
of Section 1.2 and a construction of Renault, cf. p. 139 of [Re1], which has subse-
quently been developed further by himself as well as by Deaconu, Anantharaman-
Delaroche and others. In the most general setup (with compact unit space) the
input for Renaults construction is a compact Hausdorff space X equipped with a
continuous surjection σ : X → X which is also a local homeomorphism. For each
n ∈ N, let

Rσ
n = {(x, y) ∈ X ×X : σn(x) = σn(y)}
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have the relative topology inherited from X×X. Since Rσ
n is open in Rσ

n+1 the union
Rσ =

⋃
nR

σ
n is a locally compact Hausdorff space in the inductive limit topology,

and in fact an étale equivalence relation. For the point we want to make, note that
the openness of σ is crucial for the construction; it does not suffice that σ is locally
injective.

If we now also assume that X is a metric space (with metric d) and that σ
is expansive, the tuple (X, d, σ,X,X) is a relatively expansive tuple and we can
construct Rσ(X) as above. It follows from Lemma 1.12 that the two constructions
are identical in this situation, i.e. Rσ(X) = Rσ, with the same topology. However,
when σ is merely expansive, and not necessarily open, Renault’s construction does
not work. Consequently Renault’s construction does not work for a one-sided shift-
space which is not of finite type since the latter condition is equivalent to openness
of the shift, [Pa]. Specifically, Renault’s groupoid will not be étale when the shift
is note of finite type. In particular, Renault’s construction does not apply to the
even shift, as claimed on page 222 of [A]. In contrast Rσ(X) makes sense for any
one-sided shift space, but for the even shift the corresponding AF-algebra will not
be simple, cf. Example 3.5 below. �

1.3. The C∗-algebra of a local conjugacy relation

There is a general construction which produces a C∗-algebra from an étale equiv-
alence relation R on a locally compact Hausdorff space X, cf. [Re1]: First observe
that the space Cc (R) of compactly supported continuous functions on R is a ∗-
algebra with the product

(f · g)(x, y) =
∑

{z: (x,z)∈R}
f(x, z)g(z, y)

and the involution

f ∗(x, y) = f(y, x).

To obtain a C∗-norm on Cc (R) we introduce a family of representations in the
following way. For every point x ∈ X we let [x] denote the set of points in X that
are equivalent to x, and we denote by l2[x] the Hilbert space of square-summable
complex functions on [x]. For each f ∈ Cc(R) we define a bounded operator κ[x](f)
on l2[x] such that (

κ[x](f)ψ
)
(y) =

∑
z∈[x]

f(y, z)ψ(z). (1.11)

Each κ[x] is a ∗-representation of Cc(R), and together they form a separating
family so we get a C∗-norm by putting

‖f‖ = sup
x∈X

∥∥κ[x](f)
∥∥ . (1.12)

The completion of Cc(R) in this norm is then a C∗-algebra C∗
red(R).

Applied to the local conjugacy relation Rf (X,E) we obtain a C∗-algebra which
we denote by Af (X,E) and call the Ruelle algebra. In the remaining part of this
section we collect a few observations about the Ruelle algebra which we shall use
later on.

Remark 1.15. Let Cb(X) be the C∗-algebra of continuous bounded functions
on X, and let M (C∗

r (R)) denote the multiplier algebra of C∗
r (R). There is an
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embedding Φ : Cb(X) → M (C∗
r (R)) defined such that Φ (Cb(X))Cc(R) ⊆ Cc(R)

and
(Φ(f)g) (x, y) = f(x)g(x, y),

when f ∈ Cb(X), g ∈ Cc(R). Note that Φ (C0(X)) ⊆ C∗
r (R). In the following

we suppress Φ from the notation and consider instead C0(X) and Cb(X) as C∗-
sub-algebras of C∗

r (R) and M (C∗
r (R)), respectively. It is known that C0(X) is

a maximal abelian C∗-algebra of C∗
r (R) with other nice properties, cf. [Re1]. In

particular, C0(X) has the (unique) extension property in C∗
r (R), i.e. a pure state of

C0(X) has a unique (pure) state extension to C∗
r (R), cf. Lemma A.13. �

Remark 1.16. Let R be an étale equivalence relation on X and R′ an étale
equivalence relation on X ′. A map Λ : R → R′ is an isomorphism when there is a
homeomorphism ϕ : X → X ′ such that Λ = ϕ× ϕ and Λ is a homeomorphism. It
is clear that such an isomorphism gives rise to a ∗-isomorphism C∗

r (R′) → C∗
r (R)

sending f ∈ Cc (R′) to f ◦ Λ. This is the easy part of the following result which is
proved in Appendix A. �

Theorem 1.17. Two étale equivalence relations, R on X and R′ on X ′, are
isomorphic if and only if there is a ∗-isomorphism ψ : C∗

r (R) → C∗
r (R

′) such that
ψ (C0(X)) = C0 (X ′).

Proof. The theorem follows from a general construction which produces an
étale equivalence relation from a pair D ⊆ A where A is a C∗-algebra and D is an
abelian C∗-sub-algebra with the extension property. See Theorem A.16 in Appen-
dix A. �

Remark 1.18. When U ⊆ R is an open subrelation, the inclusion Cc(U) ⊆
Cc(R) extends to an embedding C∗

r (U) ⊆ C∗
r (R), cf. e.g. Proposition 1.9 of [Ph1].

�
Lemma 1.19. Let R be an étale equivalence relation on a locally compact Haus-

dorff space X. Let V ⊆ X be an open subset, and set U = r−1(V ) ∩ s−1(V ). Then
C∗
r (U) ⊆ C∗

r (R) is the hereditary C∗-sub-algebra generated by C0(V ) ⊆ C∗
r (R).

Proof. We must show that C∗
r (U) is the closure of the span of elements of the

form bab′, where a ∈ C∗
r (R), b, b′ ∈ C0(V ). It is easy to see that g · f · g′ ∈ Cc(U)

when f ∈ Cc(R), g, g′ ∈ Cc(V ), and this gives one of the required inclusions. For
the other let f ∈ Cc(U). Then r (supp f) ∪ s (supp f) is a compact subset of V and
there is an element h ∈ Cc(V ) such that h(t) = 1 for all t ∈ r (supp f) ∪ s (supp f).
Since f = h · f · h this implies the other inclusion. �

Lemma 1.20. Let R be an étale equivalence relation on a locally compact Haus-
dorff space X. Let R1 ⊆ R2 ⊆ R3 ⊆ . . . be an increasing sequence of open sub-
relations of R such that R =

⋃∞
n=1Rn. It follows that

C∗
r (R) =

∞⋃
n=1

C∗
r (Rn).

Proof. This follows from Remark 1.18 and the observation that Cc(R) =⋃∞
n=1Cc (Rn). �
Lemma 1.21. Let Af (X,E) be the Ruelle algebra of a relatively expansive system.

Then Af(X,E) is separable if and only if E is second countable.
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Proof. The inclusion C0(E) ⊆ Af (X,E) shows that C0(E) is separable when
Af(X,E) is. Hence E is second countable in this case. Assume that E is second
countable. By Lemma 1.8 there is a countable collection of local conjugacies such
that the corresponding sets (1.2) form a base for the topology ofRf (X,E). Therefore
every element of Cc (Rf (X,E)) is a finite sum of functions localized on these sets. It
suffices then to show that the set of elements of Cc (Rf (X,E)) that are localized on
a set of the form (1.2) is a separable subset of Af (X,E). This follows from the fact
that C0(U) is separable for any open subset U of E because E is second countable,
combined with the observation that

‖f‖ = sup
z∈Rf (X,E)

|f(z)| ,

when f is localized. �

1.4. Products and unions

When R and R′ are two étale equivalence relations on the locally compact Haus-
dorff spaces X and X ′, respectively, there is a natural way to define the product
R×R′, namely as the equivalence relation in X ×X ′ given by

R× R′ =
{

((x, x′), (y, y′)) ∈ (X ×X ′)2
: (x, y) ∈ R, (x′, y′) ∈ R′

}
.

By transferring the topology from the topological product of R and R′ to R × R′

by use of the map ((x, y), (x′, y′)) 7→ ((x, x′), (y, y′)) we turn R × R′ into an étale
equivalence relation.

Lemma 1.22. C∗
red (R× R′) ≃ C∗

red(R) ⊗ C∗
red(R

′), where ⊗ is the minimal (or
spatial) tensor product of C∗-algebras.

Proof. This follows from the identification l2 [x, x′] = l2[x]⊗ l2[x′]. �
Consider now two relatively expansive systems,

(X, d, S, f, E, E0) and (X ′, d′, S, f ′, E ′, E ′
0) ,

where only the index-set S for the continuous transformations are the same. We
can then form a product of the two systems in the following way: On the product
space X ×X ′ we use the metric d× d′ given by

d× d′ ((a, a′) , (b, b′)) = d (a, b) + d′ (a′, b′) .

In the product topology E×E ′ is finer than the topology inherited from the metric
space (X ×X ′, d× d′) and E0 × E ′

0 is of course dense in E × E ′. For s ∈ S we set
(f × f ′)s (x, y) = (fs(x), f

′
s(y)). Then

(X ×X ′, d× d′, S, f × f ′, E × E ′, E0 × E ′
0)

is a relatively expansive system.

Proposition 1.23. There is an isomorphism of étale equivalence relations

Rf×f ′ (X ×X ′, E × E ′) ≃ Rf (X,E)×Rf ′ (X
′, E ′) ,

and hence an isomorphism

Af×f ′ (X ×X ′, E × E ′) ≃ Af (X,E)⊗ Af ′ (X ′, E ′)

of C∗-algebras.
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Proof. If (U, V, χ) is a conjugacy in E and (U ′, V ′, χ′) a conjugacy in E ′, it
follows that (U × U ′, V × V ′, χ× χ′) is a conjugacy in E × E ′. We can therefore
define a map

Λ : Rf (X,E)×Rf (X ′, E ′) → Rf (X ×X ′, E × E ′)

such that
Λ (((x, x′) , (y, y′)) = ((x, y), (x′, y′)) ,

and Λ is clearly open and injective. By Lemma 1.22 and Remark 1.16 it remains now
only to show that Λ is surjective and continuous. To this end, let (x, x′) , (y, y′) ∈
E×E ′ be conjugate, and let (U, V, χ) be a conjugacy from (x, x′) to (y, y′) in E×E ′.
There is then an open neighborhood A of x in E such that A × {x′} ⊆ U . Define
µ : A→ E such that µ(z) = p1 (χ (z, x′)), where p1 : X ×X ′ → X is the projection.
Similarly, there is an open neighborhood A′ of x′ and a map ν : A′ → E ′ defined
such that ν(z) = p2 (χ (x, z)) where p2 : X×X ′ → X ′ is the projection to the second
coordinate. Then µ(x) = y, ν (x′) = y′ and

lim
s→∞

sup
z∈A

d (fs (µ(z)) , fs(z))

≤ lim
s→∞

sup
z∈A

d (fs × f ′s (χ (z, x′)) , fs × f ′s (z, x′)) = 0.

In the same way we find that lims→∞ supz∈A′ d (f ′s (ν(z)) , f ′s(z)) = 0. By shrinking
A and A′ if necessary we can assume that A× A′ ⊆ U . Since

d× d′ (fs × f ′s (µ(z), ν (z′)) , fs × f ′s (χ (z, z′)))

≤ d× d′ (fs × f ′s (µ(z), ν (z′)) , (fs(z), f ′s (z′)))

+ d× d′ ((fs(z), f ′s (z′)) , fs × f ′s (χ (z, z′)))

we see that d × d′ (fs × f ′s (µ(z), ν (z′)) , fs × f ′s (χ (z, z′))) tends to zero uniformly
in A × A′ as s leaves every finite subset of S. Therefore we can shrink A and A′

further to arrange that d×d′ (fs × f ′s (µ(z), ν (z′)) , fs × f ′s (χ (z, z′))) is smaller than
an expansive constant at (y, y′) for all s ∈ S. It follows that when A and A′ are
sufficiently small we have that χ = µ × ν on A × A′. By using the same reasoning
to χ−1 in place of χ we conclude that there are conjugacies (A,B, µ) and (A′, B′, ν)
from x to y and from x′ to y′, respectively, such that

Λ ({(z, µ(z)) : z ∈ A} × {(z′, ν(z′)) : z′ ∈ A′}) ⊆ {((z, z′) , χ (z, z′)) : (z, z′) ∈ U} .
�

Lemma 1.24. Let (X, d, S, f, E, E0) be a relatively expansive system. Assume
that E1 ⊆ E2 ⊆ E3 ⊆ . . . is a sequence of open subsets of E such that E =

⋃∞
n=1E

n.
There is then a sequence A1 ⊆ A2 ⊆ A3 ⊆ . . . of hereditary C∗-sub-algebras of
Af (X,E) and ∗-isomorphisms ψn : An → C∗

r (Rf (X,En)) such that

An
ψn

C∗
r (Rf (X,En))

An+1
ψn+1

C∗
r (Rf (X,En+1))

commutes and Af (X,E) =
⋃
nAn.

Proof. Note that Rf (X,En) is an open sub-relation of Rf (X,E) and that
Rf (X,E) =

⋃∞
n=1Rf (X,En). Apply Lemma 1.20 and Lemma 1.19. �





CHAPTER 2

On the functoriality of the Ruelle algebra

2.1. Contravariant functoriality

Let (X, d, S, E, f, E0) and (X ′, d′, E ′, S ′, f ′, E ′
0) be two relatively expansive sys-

tems. Assume that

π : E → E ′

is a continuous map. We seek to identify conditions that ensure that π × π gives
rise to a map from Rf (X,E) → Rf ′ (X

′, E ′) and in turn to a ∗-homomorphism
π• : Af ′ (X

′, E ′)→ Af (X,E) between the Ruelle algebras of the two systems.
Define mπ : E → N ∪ {∞} such that

mπ(x) = #
{
y ∈ π−1 (π(x)) : y ∼ x

}
.

We consider the following conditions:
Condition 1: When (U, V, χ) is a conjugacy in E from x to y, there is a conjugacy

(U ′, V ′, χ′) from π(x) to π(y) in E ′ and an open neighborhood U0 ⊆ U of x such
that

χ′ ◦ π(z) = π ◦ χ(z) (2.1)

for all z ∈ π−1 (U ′) ∩ U0.
Condition 2 : mπ(x) is finite for all x ∈ E and mπ is locally constant.
Condition 3 : π is surjective, and π : {z ∈ E : z ∼ x} → {z′ ∈ E ′ : z′ ∼ π(x)}

is surjective for all x ∈ E.

Lemma 2.1. Assume that condition 1 holds. Then

(π × π) (Rf (X,E)) ⊆ Rf ′ (X
′, E ′)

and π × π : Rf (X,E)→ Rf ′ (X
′, E ′) is continuous.

Proof. Only the continuity of π×π is not obvious. To prove it, let (W,V, µ) be
a conjugacy in E ′ and (x, y) ∈ Rf (X,E) an element such that (π(x), π(y)) ∈W ×V
and µ(π(x)) = π(y). Since (x, y) ∈ Rf (X,E) there is a conjugacy (U, V, χ) in E
from x to y, and then by condition 1 also a conjugacy (U ′, V ′, χ′) from π(x) to π(y)
in E ′ such that (2.1) holds for some open neighborhood U0 ⊆ U of x. It follows
from Lemma 1.4 that there is an open neighborhood W ′ ⊆ U ′∩W of π(x) such that
χ′ = µ on W ′. Then Ω = {(z, χ(z)) : z ∈ π−1(W ′) ∩ U0} is an open neighborhood
of (x, y) in Rf (X,E) such that (π × π) (Ω) ⊆ {(y, µ(y)) : y ∈W}. �

Lemma 2.2. Assume that condition 1 and condition 2 both hold. For every
x ∈ E there is an open neighborhood Ux of x and conjugacies (Ux, Vi, χi) , i =
1, 2, . . . , mπ(x)− 1, such that Vi ∩ Ux = ∅, Vi ∩ Vj = ∅, i 6= j, and

{v ∈ E : v ∼ z, π(v) = π(z)} =
{
z, χ1(z), χ2(z), . . . , χmπ(x)−1(z)

}
for all z ∈ Ux.

13
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Proof. Set k = mπ(x). It follows from condition 2 that there is an open
neighborhood W of x such that mπ(z) = k for all z ∈ W . Let y1, y2, . . . , yk−1 be
the elements of {z ∈ π−1 (π(x)) \{x} : z ∼ x}. By shrinking W we may assume
that there are open neighborhoods Ui of yi such that Ui ∩ Uj = ∅ when i 6= j and
Ui ∩ W = ∅ for all i. There is then an open neighborhood Ux ⊆ W of x and
conjugacies (Ux, Vi, χi), from x to yi, such that Vi ⊆ Ui, i = 1, 2, . . . , k − 1. It
follows from condition 1 and Lemma 1.4 that we can arrange, by shrinking Ux, that
π ◦ χi(z) = π(z), z ∈ Ux, i = 1, 2, . . . , k − 1. It follows then that for every z ∈ Ux,
the elements z, χ1(z), . . . , χk−1(z) are mutually conjugate and distinct elements of
π−1 (π(z)), which implies that

{v ∈ E : v ∼ z, π(v) = π(z)} = {z, χ1(z), χ2(z), . . . , χk−1(z)}
since mπ(z) = k. �

Recall that a continuous map between topological spaces is proper when the
pre-image of any compact set of the target space is compact in the domain space.

Lemma 2.3. Assume that conditions 1,2 and 3 all hold, and that π is proper. It
follows that π × π : Rf(X,E)→ Rf ′(X

′, E ′) is a proper surjection.

Proof. It follows from condition 3 that π × π is surjective. Let (U ′, V ′, χ′) be
a conjugacy in E ′. Let K ⊆ U ′ be a compact subset. By Lemma 1.9 it suffices to
show that

(π × π)−1 ({(z, χ′(z)) : z ∈ K}) (2.2)

is compact in Rf(X,E). Let x ∈ π−1 (U ′). By condition 3 there is an element y ∈ E
such that x ∼ y and π(y) = χ′ (π(x)). Let (U, V, µ) be a conjugacy from x to y. It
follows from condition 1 and Lemma 1.4 that we can arrange that U ⊆ π−1 (U ′) and
π ◦ µ = χ′ ◦ π on U . By Lemma 2.2 there is an open neighborhood V0 ⊆ V of y and
conjugacies (V0, Vj, χj) , j = 1, 2, . . . , mπ(y), such that

{v ∈ E : v ∼ z, π(v) = π(z)} =
{
χ1(z), χ2(z), . . . , χmπ(y)(z)

}
for all z ∈ V0. Set kx = mπ(y), Wx = µ−1(V0) and µxj = χj ◦ µ. Then

(π × π)−1 ({(z, χ′(z)) : z ∈ U ′}) ∩ r−1 (Wx) =

kx⋃
j=1

{(
z, µxj (z)

)
: z ∈Wx

}
.

Since π is proper there is a finite sub-cover Wx1,Wx2 , . . . ,WxN
of the cover Wx, x ∈

π−1(K), of π−1(K). Since E is locally compact there are compact subsets Li ⊆ Wxi

such that π−1(K) ⊆ ⋃N
i=1 Li. Then

(π × π)−1 ({(z, χ′(z)) : z ∈ K}) ⊆
N⋃
i=1

kxi⋃
j=1

{(
z, µxi

j (z)
)

: z ∈ Li
}
. (2.3)

By Lemma 1.9 and Lemma 2.1 we can conclude from (2.3) that (2.2) is compact, as
desired. �

Theorem 2.4. Assume that π is proper, and that condition 1, condition 2 and
condition 3 all hold. It follows that there is a ∗-homomorphism π• : Af ′ (X

′, E ′)→
Af (X,E) such that

π•(f)(x, y) = mπ(x)
− 1

2mπ(y)
− 1

2 f (π(x), π(y))

when f ∈ Cc (Rf ′(X
′, E ′)).
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Proof. π• : Cc (Rf ′(X
′, E ′)) → Cc (Rf (X,E)) is defined by Lemma 2.1 and

Lemma 2.3. Let f, g ∈ Cc (Rf(X,E)) and observe that

(π•(f) · π•(g)) (x, y)

= mπ(x)
− 1

2mπ(y)
− 1

2

∑
z∼x

mπ(z)
−1f(π(x), π(z))g(π(z), π(y))

= mπ(x)
− 1

2mπ(y)
− 1

2

∑
v∼π(x)

∑
{z∈π−1(v): z∼x}

mπ(z)
−1f(π(x), v)g(v, π(y))

= mπ(x)
− 1

2mπ(y)
− 1

2

∑
v∼π(x)

f(π(x), v)g(v, π(y)) = π•(f · g)(x, y),

proving that π• is a ∗-homomorphism. Let ψ ∈ l2[x]. We define ϕ : [π(x)]→ C such
that

ϕ(v) =
∑

{z∈π−1(v): z∼x}
mπ(z)

− 1
2ψ(z).

Then

|ϕ(v)|2 ≤
( ∑
{z∈π−1(v): z∼x}

mπ(z)
−1
)( ∑

{z∈π−1(v): z∼x}
|ψ(z)|2

)
=

∑
{z∈π−1(v): z∼x}

|ψ(z)|2 .

It follows that ϕ ∈ l2 [π(x)] and ‖ϕ‖ ≤ ‖ψ‖. Note that(
κ[x] (π

•(f))ψ
)
(y) =

∑
z∼x

mπ(z)
− 1

2mπ(y)
− 1

2f (π(y), π(z))ψ(z)

=
∑
v∼π(x)

mπ(y)
− 1

2f (π(y), v)ϕ(v) = mπ(y)
− 1

2

(
κ[π(x)](f)ϕ

)
(π(y))

and that∑
y∼x

∣∣∣mπ(y)
− 1

2

(
κ[π(x)](f)ϕ

)
(π(y))

∣∣∣2
≤
∑
v∼π(x)

∑
{y∈π−1(v): y∼x}

mπ(y)
−1
∣∣κ[π(x)](f)ϕ (v)

∣∣2 =
∥∥κ[π(x)](f)ϕ

∥∥2

It follows first that
∥∥κ[x] (π

•(f))
∥∥ ≤ ∥∥κ[π(x)](f)

∥∥, and then that ‖π•(f)‖ ≤ ‖f‖. We
conclude that π• extends by continuity to a ∗-homomorphism π• : Af ′ (X

′, E ′) →
Af (X,E). �

Corollary 2.5. Assume that

• S = S ′,
• f ′s (E ′) ⊆ E ′ and fs (E) ⊆ E for all s ∈ S,
• π : E → E ′ is a homeomorphism,
• π ◦ fs = f ′s ◦ π for all s ∈ S, and
• π and π−1 are uniformly continuous with respect to the metrics d and d′.

It follows that there is a ∗-isomorphism π• : Af ′ (X
′, E ′)→ Af (X,E) such that

π•(f)(x, y) = f (π(x), π(y))

when f ∈ Cc (Rf ′(X
′, E ′)).
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Proof. It is straightforward to check that conditions 1-3 hold with mπ = 1. �

2.2. Covariant functoriality

The Ruelle-algebra construction is also functorial in a covariant way; at least
into the KK-category of C∗-algebras and under appropriate conditions. We retain
the setting from Section 2.1.

Set

E ×π E ′ = {(x, e) ∈ E × E ′ : π(x) ∼ e}
= {(x, e) ∈ E × E ′ : (π(x), e) ∈ Rf ′(X

′, E ′)} .
Sets of the form

{(z, µ ◦ π(z)) : z ∈ U0} ,
where (U, V, µ) is a local conjugacy in E ′ and U0 ⊆ π−1(U) is open, form a subbase
for the topology of E×πE ′ we consider in the following. We summarize the principal
facts about E ×π E ′ in the next lemma.

A function f ∈ Cc (E ×π E ′) is localized when its support is contained in the
set {(z, µ ◦ π(z)) : z ∈ U0} for some conjugacy (U, V, µ) in E ′ and some open subset
U0 ⊆ π−1(U).

Lemma 2.6.

a) E ×π E ′ is a locally compact Hausdorff space whose topology is finer than
the relative topology inherited from E ×E ′.

b) The map E ×π E ′ ∋ (x, b) 7→ x ∈ E is a local homeomorphism, i.e. open
and locally injective.

c) A subset D of E ×π E ′ is pre-compact if and only if there are finitely
many local conjugacies (Ui, Vi, µi), and compact subsets Li ⊆ π−1(Ui), i =
1, 2, . . . , N , such that

D ⊆
N⋃
i=1

{(z, µi ◦ π(z)) : z ∈ Li} .

d) Every element of Cc (E ×π E ′) is the sum of finitely many localized func-
tions.

Proof. The relevant arguments from the proofs of Lemma 1.6, Theorem 1.7,
Lemma 1.9 and Lemma 1.10 are straightforward to adopt. We omit the repetition.

�
Note that Cc (E ×π E ′) is a right Cc (Rf ′(X

′, E ′))-module defined such that

(f · g) (x, b) =
∑
a∼b

f(x, a)g(a, b)

when f ∈ Cc (E ×π E ′), g ∈ Cc (Rf ′(X
′, E ′)). Cc (E ×π E ′) is also a left-module

over Cc(E):
h · f(x, b) = h(x)f(x, b)

when h ∈ Cc(E).
We consider now the following conditions.
Condition 4 : π : E → E ′ is a local homeomorphism, i.e. π is open and locally

injective.
Condition 5 : For all z ∈ E ′ there is an x ∈ E such that π(x) ∼ z.
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Condition 6 : x, y ∈ E, π(x) ∼ π(y) ⇒ x ∼ y.

Lemma 2.7. Assume that condition 4 holds. Let f, g ∈ Cc (E ×π E ′). Then the
function 〈f, g〉 : Rf ′(X

′, E ′)→ C defined by

〈f, g〉 (a, b) =
∑

{x∈E: π(x)∼a}
f(x, a)g(x, b), (2.4)

is in Cc (Rf ′(X
′, E ′)).

Proof. It suffices to consider the case where f and g are localized. So assume
that (U, V, µ) and (U ′, V ′, µ′) are local conjugacies in E ′ and U0 ⊆ π−1(U), U ′

0 ⊆
π−1(U ′) open sets such that f is supported in {(z, µ ◦ π(z)) : z ∈ U0} and g is
supported in {(z, µ′ ◦ π(z)) : z ∈ U ′

0}. Since π is locally injective we may restrict
the attention to the case where π is injective on U0 and U ′

0. Then∑
{x∈E: π(x)∼a}

f(x, a)g(x, b)

=

{
h(z) when (a, b) = (z, µ′ ◦ µ−1(z)) for some z ∈ µ ◦ π (U0 ∩ U ′

0),

0 otherwise,

(2.5)

where h(z) = f (π−1 ◦ µ−1(z), z)g (π−1 ◦ µ−1(z), µ′ ◦ µ−1(z)). Since π is open by

assumption we see that (a, b) 7→∑
{x∈E: π(x)∼a} f(x, a)g(x, b) is a localized function

on Rf ′ (X
′, E ′). �

By using the κ[x]-representations, x ∈ E ′, cf. (1.11), it is easy to check that
〈f, f〉 ≥ 0 in Af ′(X

′, E ′) and therefore 〈f, f〉 = 0 ⇒ f = 0. Thus 〈·, ·〉 is a
Cc (Rf ′(X

′, E ′))-valued inner product. An easy calculation confirms that

〈f, g · h〉 = 〈f, g〉 · h (2.6)

when f, g ∈ Cc (E ×π E ′) and h ∈ Cc (Rf ′(X
′, E ′)). We get therefore a norm ‖ · ‖π

on Cc (E ×π E ′) when we set

‖f‖π = ‖〈f, f〉‖ 1
2 .

The completion Cc (E ×π E ′) in this norm is then a Hilbert Af ′(X
′, E ′)-module, cf.

e.g. Lemma 1.1.2 of [K-JT]. We denote this Hilbert C∗-module by Eπ. 1

Lemma 2.8. Assume that conditions 4 and 5 both hold. Then

{〈f, g〉 : f, g ∈ Cc (E ×π E ′)}
spans a dense subspace in Af ′(X

′, E ′). In particular, Eπ is a full Hilbert Af ′(X
′, E ′)-

module.

Proof. Since Cc(E
′) ·Cc (Rf ′(X

′, E ′)) spans a dense subspace of Af ′(X
′, E ′) it

follows from (2.6) that it suffices to show that

Cc(E
′) ⊆ Span {〈f, g〉 : f, g ∈ Cc (E ×π E ′)} . (2.7)

Consider a function ϕ ∈ Cc(E ′), ϕ ≥ 0. Let y ∈ suppϕ ⊆ E ′. By condition 5
there is an x ∈ E and a local conjugacy (U, V, µ) from π(x) to y. Since π is a local

1We refer to [K-JT] for the basic theory of Hilbert C∗-modules as well as the fundamentals
of Kasparovs KK-theory which we will be using. However, our notation does deviate slightly from
the notation in [K-JT] in that we here write LB(F ) for the C∗-algebra of adjointable operators of
the Hilbert B-module F and KB(F ) for the ideal in LB(F ) consisting of the ’compact’ operators.
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homeomorphism we can shrink U to achieve that there is an open neighborhood Ux
of x such that π is injective on Ux, Ux is compact and π (Ux) = U . By compact-
ness of suppϕ we have then a finite set x1, x2, . . . , xN in E and for each i a local
conjugacy (π (Uxi

) , Vi, µi) such that suppϕ ⊆ ⋃N
i=1 Vi. Let {gi}Ni=1 ⊆ Cc (E

′) be a

partition of unity on suppϕ subordinate to {Vi}Ni=1, and define fi ∈ Cc (E ×π E ′)
as the function localized in {(z, µi ◦ π(z)) : z ∈ Uxi

} such that fi (z, µi ◦ π(z)) =√
gi (µi ◦ π(z))ϕ (µi ◦ π(z)). Then

∑N
i=1 〈fi, fi〉 = ϕ. Since every element of Cc(E

′)
is a linear combination of four non-negative elements of Cc(E

′), we obtain (2.7). �

When condition 1 holds we can also make Cc (E ×π E ′) into a left Cc (Rf (X,E))-
module such that

(h · f) (x, b) =
∑
y∼x

h(x, y)f(y, b), (2.8)

when f ∈ Cc (E ×π E ′), h ∈ Cc (Rf(X,E)). Let ϕ ∈ l2[c] for some c ∈ E ′. The
estimate∑

a,b

ϕ(a) 〈h · f, h · f〉 (a, b)ϕ(b)

=
∑
a,b

ϕ(a)
∑

{x: π(x)∼a}
h · f(x, a)h · f(x, b)ϕ(b)

=
∑
a,b

∑
{x: π(x)∼a}

∑
y∼x
z∼x

ϕ(a)h(x, y)f(y, a)h(x, z)f(z, b)ϕ(b)

=
∑

{x: π(x)∼a}

(∑
a,y∼x

h(x, y)f(y, a)ϕ(a)
)(∑

b,z∼x
h(x, z)f(z, b)ϕ(b)

)
≤
∑
x

(∑
a,y∼x

h(x, y)f(y, a)ϕ(a)
)(∑

b,z∼x
h(x, z)f(z, b)ϕ(b)

)
=
∑
a,b

∑
x

∑
y∼x
z∼x

ϕ(a)h(x, y)f(y, a)h(x, z)f(z, b)ϕ(b)

=
∑
a,b

∑
y∼z

ϕ(a)f(y, a) (h∗ · h) (y, z)f(z, b)ϕ(b)

≤ ‖h‖2
∑
a,b

∑
y

ϕ(a)f(y, a)f(y, b)ϕ(b)

shows that

〈h · f, h · f〉 ≤ ‖h‖2 〈f, f〉
for all f ∈ Cc (E ×π E ′). It follows that we obtain a ∗-homomorphism

π• : Af (X,E)→ LAf ′(X′,E′) (Eπ) .
defined such that π•(h)f = h · f when f ∈ Cc (E ×π E ′), h ∈ Cc (Rf (X,E)).

Lemma 2.9. Assume that conditions 1 and 4 hold. Then

π• (Af(X,E)) ⊆ KAf ′(X′,E′) (Eπ) ,
and π• is injective.
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Proof. Since Cc(E) contains an approximate unit for Af(X,E), and using
that KAf ′(X′,E′) (Eπ) is a closed two-sided ideal in LAf ′(X′,E′) (Eπ) it suffices to show

that π• (Cc(E)) ⊆ KAf ′(X′,E′) (Eπ). To this end it suffices to show that π• (ϕ) ∈
KAf ′(X′,E′) (Eπ) when ϕ ∈ Cc(E) is supported in an open set V ⊆ E on which π is

injective. We write ϕ as a product ϕ = ϕ1ϕ2, where ϕ1, ϕ2 ∈ Cc(V ), and define
f, g ∈ Cc (E ×π E ′) to be the functions with supports in {(x, π(x)) : x ∈ V } such
that f(x, π(x)) = ϕ1(x) and g(x, π(x)) = ϕ2(x). We claim that

π•(ϕ) = Θf,g; (2.9)

a fact that will finish the proof.2 To check (2.9), consider an open neighborhood
W in E such that π is injective on W , and let h ∈ Cc (E ×π E ′) have support in
{(x, µ ◦ π(x) : x ∈W} for some local conjugacy µ defined on π(W ). It suffices to
check (2.9) on h since functions of this sort span a dense subspace of Eπ, cf. d) of
Lemma 2.6. It is straightforward to check that

π•(ϕ)h(x, b) =

{
ϕ(x)h(x, µ ◦ π(x)) when x ∈ V ∩W and b = µ ◦ π(x),

0, otherwise

=

{
ϕ1(x)ϕ2(x)h(x, µ ◦ π(x)) when x ∈ V ∩W and b = µ ◦ π(x),

0, otherwise

= Θf,g(h)(x, b).

To establish the injectivity of π• it suffices, by Proposition 4.6 of [Re1], to show
that π•(ϕ) = 0⇒ ϕ = 0, which is easy. �

Lemma 2.9 implies that (π•, Eπ, 0) is a Kasparov Af(X,E)−Af ′(X ′, E ′) module,
and hence the triple defines an element

[π] ∈ KK (Af(X,E), Af ′(X
′, E ′)) .

Lemma 2.10. Assume that conditions 1 and 4 hold, and that E is second count-
able. Then the element [π] ∈ KK (Af (X,E), Af ′(X

′, E ′)) is represented by a ∗-
homomorphism Af (X,E)→ Af ′(X

′, E ′)⊗K.

Proof. To simplify notation, set A = Af (X,E) and B = Af ′(X
′, E ′). Using

the notation from [K-JT] we have that [π] is represented by (π•, Eπ, 0)⊕ (0, HB, 0).
It follows then from Kasparov’s stabilization theorem, cf. e.g. Theorem 1.1.24 in
[K-JT], that [π] is represented by a triple (ψ,HB, 0). Since K (HB) ≃ B ⊗ K
by another result of Kasparov, cf. e.g. Lemma 1.2.7 of [K-JT], the result follows
from this. �

The main point of the last lemma is that it shows that the map of K-theory
induced by [π] is positive on K0.

Assume that we have a third relatively expansive system (X ′′, d′′, S ′′, , f ′′, E ′′, E ′′
0 )

and let π′ : E ′ → E ′′ be a continuous map.

Proposition 2.11. Assume that both π and π′ satisfy conditions 1 and 4, and
that E,E ′ and E ′′ are second countable. It follows that

[π′ ◦ π] = [π′] • [π]

2If necessary, see page 5 of [K-JT] for the definition of Θf,g.
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in KK (Af (X,E), Af ′′(X
′′, E ′′)), where • is the Kasparov-product.

Proof. The reader can find the definition of the Kasparov product in (e.g. )
[K-JT]. The present case is greatly simplified by the fact that the degree 1 operator
of our Kasparov triples are both zero. Thus the product [π′] • [π] is represented by
the triple

(Eπ ⊗π′• Eπ′, π• ⊗π′• idEπ′ , 0
)
, in the notation from [K-JT]. Define Φ :

Cc (E ×π E ′)⊗ Cc (E ′ ×π′ E ′′)→ Cc (E ×π′◦π E ′′) such that

Φ(f ⊗ g)(x, b) =
∑
z∼b

f(x, z)g(z, b).

It is then straightforward to check that 〈Φ(f ⊗ g),Φ(f ′ ⊗ g′)〉 = 〈g, π• (〈f, f ′〉) g′〉
and Φ ((f · h)⊗ g) = Φ (f ⊗ (h · g)) when f, f ′ ∈ Cc (E ⊗π E ′), h ∈ Cc (Rf ′(X

′, E ′))
and g, g′ ∈ Cc (E

′ ⊗π′ E ′′), which is what is required to see that Φ falls to a map
Φ : Eπ⊗π′Eπ′ → Eπ′◦π. To conclude that Φ is an isomorphism of HilbertAf ′′ (X

′′, E ′′)-
modules it remains only to show that Φ is surjective. Let k ∈ Cc (E ×π′◦π E ′′) be
a localized and non-negative function supported in {(t, µ ◦ π′ ◦ π(t)) : t ∈ U} for
some local conjugacy µ in E ′′. Since π′ and π are local homeomorphisms we may
assume that π(U) and π′ ◦ π(U) are open and that π : U → π(U) and π′ : π(U) →
π′ ◦ π(U) are both homeomorphisms. We can then define f ∈ Cc (E ×π E ′) and
g ∈ Cc (E ′ ×π E ′′) such that f is supported in {(t, π(t)) : t ∈ U} and satisfies that

f(t, π(t)) =
√
k(t, µ ◦ π′ ◦ π(t)) while g is supported in {(s, µ ◦ π′(s)) : s ∈ π(U)}

and satisfies that g(s, µ ◦ π′(s)) =
√
k (π−1(s), µ ◦ π′(s)). Then Φ(f ⊗ g) = k. Since

functions with the properties we have required by k span all of Cc (E ×π E ′′) we
conclude that Φ is indeed an isomorphism of Af ′′ (X

′′, E ′′)-modules. The proof of
the proposition is then completed by the trivial observation that Φ◦(π• ⊗π′• idEπ′

)
=

(π′ ◦ π)•. �

Lemma 2.12. Assume conditions 1,4 and 6 all hold.
It follows that π• : Af (X,E)→ KAf ′(X′,E′) (Eπ) is a ∗-isomorphism.

Proof. Let f, g ∈ Cc (E ×π E ′). In view of Lemma 2.9 it suffices to show that
Θf,g ∈ π• (Af(X,E)). Since Θf,g is sesqui-linear in (f, g) we may assume that f and
g are both localized. Let (U, V, µ) and (U ′, V ′, µ′) be local conjugacies in E ′ and U0 ⊆
π−1(U), U ′

0 ⊆ π−1(U ′) open sets such that f is supported in {(t, µ ◦ π(t)) : t ∈ U0}
and g is supported in {(t, µ′ ◦ π(t)) : t ∈ U ′

0}. Since condition 4 holds we may
assume, in addition, that π is injective on U0 and U ′

0. Observe that

Θf,g(h)(x, b) =
∑
c∼b

f(x, c) 〈g, h〉 (c, b) =
∑
c∼b

∑
{y:π(y)∼c}

f(x, c)g(y, c)h(y, b). (2.10)

There are compact subsets K ⊆ U0 and K ′ ⊆ U ′
0 such that

supp f ⊆ {(t, µ ◦ π(t)) : t ∈ K} and supp g ⊆ {(t, µ′ ◦ π(t)) : t ∈ K ′} .
Set L = K ∩ π−1 ◦ µ−1 (µ′ ◦ π(K ′)). There is then for each t ∈ L a unique el-
ement γ(t) ∈ K ′ such that µ ◦ π(t) = µ′ ◦ π(γ(t)). Since condition 6 holds we
see that t ∼ γ(t) in E. By condition 1 there is then an open neighborhood U
of t and a conjugacy (U, V, ν) from t to γ(t) such that U ⊆ U0, V ⊆ U ′

0 and
π ◦ ν(s) = µ′−1 ◦ µ ◦ π(s) for all s ∈ U . By compactness of L we get a finite
collection (Ui, Vi, νi), i = 1, 2, . . . , N , of local conjugacies in E with Ui ⊆ U0, L ⊆⋃N
i=1 Ui, Vi ⊆ U ′

0 and π◦νi(s) = µ′−1◦µ◦π(s), s ∈ Ui for all i. Let hi, i = 1, 2, . . . , N ,
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be a partition of unity on L subordinate to the Ui’s. For each i we can then de-
fine an element ϕi ∈ Cc (Rf (X,E)) such that suppϕi ⊆ {(t, νi(t)) : t ∈ Ui} and

ϕi(t, νi(t)) = hi(t)f(t, µ ◦ π(t))g (νi(t), µ′ ◦ π ◦ νi(t)). It is straightforward to check

that Θf,g = π•
(∑N

i=1 ϕi
)
, yielding the desired conclusion. �

Theorem 2.13. Assume conditions 1,4,5 and 6 all hold. It follows that Af (X,E)
and Af ′(X

′, E ′) are strongly Morita equivalent in the sense of Rieffel, [Ri1].

Proof. It follows from Lemma 2.12 and Lemma 2.8 that Eπ is an imprimitivity
bi-module for Af ′(X

′, E ′) and Af(X,E). �
Corollary 2.14. Assume that U ⊆ E is an open subset such that every element

of E is conjugate to an element from U . It follows that Af(X,E) is strongly Morita
equivalent to Af (X,U).

Proof. Apply Theorem 2.13 to the inclusion of U into E. �
Both Af (X,E) and Af ′(X

′, E ′) are separable C∗-algebras when E and E ′ are
second countable, cf. Lemma 1.21. In this case strong Morita equivalence is the
same as stable isomorphism, cf. [BGR].

Remark 2.15. In the setting of Corollary 2.14 we know from Lemma 1.19 that
Af(X,U) is a hereditary C∗-sub-algebra of Af (X,E). Using the description of the
ideals in a C∗-algebra of an étale equivalence relation given in [Re1] it follows that
Af(X,U) is full in Af(X,E) in the sense of [Br]. In this way Corollary 2.14 follows
from [Re1] and [Br], at least in the separable case.

Similarly Theorem 2.13 can be deduced from Theorem 2.8 of [MRW] by showing
that the conditions 1,4,5 and 6 are sufficient to make E ×π E ′ into a (Rf (X,E),
Rf ′ (X

′, E ′))-equivalence in the sense of [MRW]. �





CHAPTER 3

The homoclinic algebra of expansive actions

Let S be a countable set and (X, d) a locally compact metric space. Let EndX
denote the semi-group of continuous maps X → X, and let α : S → EndX a map.
We assume here that α is an expansive action in the sense that there is δ > 0 such
that

sup
s∈S

d (αs(x), αs(y)) ≤ δ ⇒ x = y. (3.1)

In this case (X, d, S, α,X,X) is a relatively expansive system in the sense of Section
1.1 and the Ruelle algebra Aα(X) is defined as described in Chapter 1. We will call
it the homoclinic algebra of α. In the following sections we study this C∗-algebra is
more detail for certain classes of expansive actions.

Let α : S → EndX and β : S → End Y be expansive actions of the same
countable set S on (X, d) and (Y, d′), respectively. A uniformly continuous home-
omorphism π : X → Y , with a uniformly continuous inverse, is an asymptotic
conjugacy when

lim
s→∞

sup
x∈X

d′ (π ◦ αs(x), βs ◦ π(x)) = 0.

Theorem 3.1. Let π : X → Y be an asymptotic conjugacy between the expansive
actions α : S → EndX and β : S → End Y . It follows that there is a ∗-isomorphism
π• : Aβ(Y )→ Aα(X) such that π• (Cc (Rβ(X))) = Cc (Rα(X)) and

π•(f)(x, y) = f (π(x), π(y))

when f ∈ Cc (Rβ(Y )).

Proof. It is straightforward to check that π × π is a homeomorphism from
Rα(X) onto Rβ(Y ) and hence an isomorphism of étale equivalence relations. As
observed in Remark 1.16 this implies the result. �

When α : S → EndX takes values in the group AutX of uniformly continuous
homeomorphisms of X, the action α extends to a map α : S → AutAα(X) such
that

αs(f)(x, y) = f
(
α−1
s (x), α−1

s (y)
)
.

We call α : S → AutAα(X) the canonical action of S on the homoclinic algebra.

3.1. Shift spaces

In [Kr1] and Section 2 of [Kr2] Wolfgang Krieger introduced the dimension
group for a general shift space. This dimension group is the K0-group of an AF-
algebra which we now describe before we go on to show that it agrees with the
homoclinic algebra of the shift-space.

Let A be a finite set, sometimes called the alphabet, and X ⊆ AZ a shift space.
Thus X is a closed subset of AZ which is shift-invariant in the sense that σ(X) = X,
where σ is the shift on AZ, viz. σ

(
(xi)i∈Z

)
j

= xj+1 for all j ∈ Z. The words in X

23
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are the elements w ∈ ⋃∞
n=0An which occur in some element of X in the sense that

w = xi+1xi+2 . . . xi+|w| for some i ∈ Z and some x ∈ X. Here |w| is the length of
w, i.e. the number of letters in w. The empty word is then the word of length 0.
The set of words in X of length k is denoted by Wk(X), so that the set W(X) of
all words in X is W(X) =

⋃∞
k=0 Wk(X).

Let w ∈W(X). The context E(w) of w consists of the pair (a, b) ∈W(X)2 with
the property that awb ∈ W(X). A simple but crucial observation is the following:
When w, v ∈W(X), E(w) = E(v) and (a, b) ∈ E(w), then E(awb) = E(avb). This
observation is used tacitly (and often) in the following.

Let n ∈ N. We denote by R(n,X) the set of pairs (w, v) ∈ W2n+1(X)2 for
which E(w) = E(v). The free complex vector space AX(n) with basis R(n,X) is a
∗-algebra with involution ∗ and product defined such that

(w, v)∗ = (v, w)

and

(w, v) (s, t) =

{
(w, t) when v = s

0 when v 6= s.

Thus

AX(n) ≃ Mn1(C)⊕Mn2(C)⊕ · · · ⊕MnN
(C),

where i = 1, 2, . . . , N numbers the equivalence classes in W2n+1(X) of words with
the same context, and ni is the number of elements in the i’th equivalence class. Let
ϕn : AX(n)→ AX(n+ 1) be the linear map which satisfies that

ϕn(w, v) =
∑

{(a,b)∈A2: (a,b)∈E(w)}
(awb, avb).

Then ϕn is an injective unital ∗-homomorphism. LetAX be the resulting AF-algebra,

AX = lim−→
n

(AX(n), ϕn) ,

which we will call the Krieger algebra of the shift space X. We denote by ϕ∞,n :
AX(n) → AX the canonical ∗-homomorphism associated with the inductive limit
construction, and for j ≥ i by ϕj,i the composite ∗-homomorphism ϕj−1 ◦ϕj−2 ◦ · · ·◦
ϕi : AX(i)→ AX(j).

The shift gives rise to an automorphism of AX in the following way. Define a
unital ∗-homomorphism σ′n : AX(n)→ AX(n+ 1) such that

σ′n(w, v) =
∑

{x∈W2(X): (wx,vx)∈W2n+3(X)2}
(wx, vx).

Then the diagram

AX(n)

ϕn

σ′n
AX(n+ 1)

ϕn+1

AX(n+ 1)
σ′n+1

AX(n+ 2)

(3.2)
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commutes, giving us a ∗-endomorphism σ′ : AX → AX such that σ′ ◦ ϕ∞,n =

ϕ∞,n+1 ◦ σ′n for all n. Define σ′−1
n : AX(n)→ AX(n + 1) such that

σ′−1
n (w, v) =

∑
{x∈W2(X): (xw,xv)∈W2n+3(X)2}

(xw, xv),

and note that the diagram

AX(n)
ϕn+2,n

σ′n

AX(n+ 2)

σ′n+2

AX(n+ 1)
σ′−1

n+1

ϕn+3,n+1
AX(n+ 3)

(3.3)

commutes, showing that there is ∗-endomorphism σ′−1 : AX → AX such that σ′−1 ◦
ϕ∞,n = ϕ∞,n+1 ◦ σ′−1

n . σ′−1 is the inverse of σ′, i.e. σ′ is an automorphism of AX
with inverse σ′−1. We call σ′ the shift automorphism of the Krieger algebra AX .

We show next that the Krieger algebra is the same as the homoclinic algebra of
X. When x ∈ X and i ≤ j in Z, we denote the word xixi+1xi+2 . . . xj ∈ W(X) by
x[i,j]. When w ∈W2n+1(X), set

Cw =
{
(xi)i∈Z ∈ X : x[−n,n] = w

}
.

Then Cw, w ∈
⋃∞
n=0 W2n+1(X), is a base for the topology of X.

Lemma 3.2. Two points x, y ∈ X are locally conjugate if and only if there is an
N ∈ N such that xi = yi and E

(
x[−i,i]

)
= E

(
y[−i,i]

)
for all i ≥ N . In fact, we can

then define a local conjugacy
(
Cx[−N,N]

, Cy[−N,N]
, χ
)

from x to y such that

χ(z)i =

{
zi, |i| > N,

yi, |i| ≤ N
. (3.4)

Proof. Assume first that x and y are conjugate. Then x and y are forward and
backward asymptotic under the shift so there is anM ∈ N such that xi = yi, |i| ≥M .
Choose ǫ > 0 such that z, z′ ∈ X, d(z, z′) ≤ ǫ ⇒ z0 = z′0. Since x is conjugate to y
there is then a K ∈ N with the following property: When V is an open neighborhood
of y there is an open neighborhood U of x such that

sup
x′∈U

inf
y′∈V

(
sup
|i|≥K

d
(
σi(x′), σi(y′)

)) ≤ ǫ.

Choose now N0 > max{K,M}. It follows then that there is an N1 ∈ N such that
N1 > N0 and when z ∈ Cx[−N1,N1]

there is a z′ ∈ Cy[−N0,N0]
such that zi = z′i for

all |i| ≥ K. Since xi = yi when |i| ≥ N0 because N0 > M , it follows that in fact
z′ ∈ Cy[−N1,N1]

. This shows that E
(
x[−N1,N1]

) ⊆ E
(
y[−N1,N1]

)
, and it follows that

xi = yi and E
(
x[−i,i]

) ⊆ E
(
y[−i,i]

)
for i ≥ N1. By symmetry there is also an N2 ∈ N

such that xi = yi and E
(
y[−i,i]

) ⊆ E
(
x[−i,i]

)
for i ≥ N2. Set N = max{N1, N2}.

The converse is straightforward. �

Theorem 3.3. There is a ∗-isomorphism ψ : AX → Aσ(X) such that σ ◦ ψ =
ψ◦σ′ when σ ∈ AutAσ(X) is the canonical automorphism of the homoclinic algebra.
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Proof. Let (w, v) ∈ R(n,X). By Lemma 3.2 we define 1w ×n 1v ∈ Cc (Rσ(X))
such that

1w ×n 1v(x, y) =

{
1, when (x, y) ∈ Cw × Cv and xi = yi, |i| ≥ n+ 1,

0, otherwise.

We can then define a ∗-homomorphism ψn : AX(n) → Cc (Rσ(X)) such that
ψn(w, v) = 1w ×n 1v. Then ψn+1 ◦ ϕn = ψn and it follows that there is a ∗-
homomorphism ψ : AX → Aσ(X) such that ψ ◦ ϕ∞,n = ψn. Note that ψ is injective
since each ψn is. To see that ψ is also surjective it suffices, by Lemma 1.10, to
show that every localized function f ∈ Cc (Rσ(X)) is in the range of ψ. Let ǫ > 0
and let (U, V, χ) be a conjugacy such that supp f ⊆ {(x, χ(x)) : x ∈ U}. Since f
has compact support and X is totally disconnected there is a compact and open
subset L ⊆ U such that supp f ⊆ {(x, χ(x)) : x ∈ L}. It follows from Lemma 3.2
and Lemma 1.4 that there is an n ∈ N and elements w1, w2, . . . , wN , v1, v2, . . . , vN ∈
Wn(X) such that L =

⋃N
i=1Cwi

is a partition, (wi, vi) ∈ R(n,X) and χ(z)[−n,n] =
vi, χ(z)j = zj , |j| > n, when z ∈ Cwi

, for all i. Furthermore, we can arrange that
|f(x, χ(x))− f(y, χ(y))| ≤ ǫ for all x, y ∈ Cwi

.
For each i we choose an element xi ∈ Cwi

. To estimate the distance in Aσ(X)

between f and
∑N

i=1 f (xi, χ (xi)) 1wi
×n 1vi

we define functions h, k : X → C such
that

h(x) = f (x, χ(x))

and

k(x) =

N∑
i=1

f (xi, χ (xi)) 1Cwi
(x)

when x ∈ U and h(x) = k(x) = 0 when x /∈ U . 1Cwi
is here the characteristic

function of the set Cwi
. Then h, k ∈ C(X) ⊆ Cc (Rσ(X)) and ‖h− k‖ < ǫ. Since

f = h ·∑N
i=1 1wi

×n 1vi
and

∑N
i=1 f (xi, χ (xi)) 1wi

×n 1vi
= k ·∑N

i=1 1wi
×n 1vi

we find
that ∥∥∥f − N∑

i=1

f (xi, χ (xi)) 1wi
×n 1vi

∥∥∥ ≤ ‖h− k‖∥∥∥ N∑
i=1

1wi
×n 1vi

∥∥∥
in Aσ(X). Note that

(∑N
i=1 1wi

×n1vi

)·(∑N
i=1 1wi

×n1vi

)∗
= 1L, and that 1L ∈ C(X)

is projection in Aσ(X). It follows that
∥∥∑N

i=1 1wi
×n 1vi

∥∥ ≤ 1 and we conclude that∥∥∥f − N∑
i=1

f (xi, χ (xi)) 1wi
×n 1vi

∥∥∥ ≤ ‖h− k‖ ≤ ǫ.

Since ǫ > 0 was arbitrary and
∑N

i=1 f (xi, χ (xi)) 1wi
×n 1vi

is in the range of ψ, it
follows that so is f .

For the equivariance part of the theorem it suffices to check that ψ ◦ σ′ ◦
ϕ∞,n(w, v) = σ ◦ ψ ◦ ϕ∞,n(w, v) when (w, v) ∈ R(n,X). We leave this to the
reader. �

3.1.1. One-sided shift-spaces. There is an analogous version of the preceding
for one-sided shift spaces. The only difference is that there is no natural extension
of the one-sided shift to an endomorphism of the homoclinic algebra. Apart from
this the key definitions can be adopted with the obvious modifications. We outline
the constructions.
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Let Z be a closed subset ofAN which is shift-invariant in the sense that σ(Z) = Z,
where σ : AN → AN is now the one-sided shift. As above the point of departure is
the collection of words W(Z) occurring in the shift space. The follower set F (w) of
a word w ∈W(Z) is the set

F (w) = {v ∈W(Z) : wv ∈W(Z)} .
Let n ∈ N. We denote by F (n, Z) the set of pairs (w, v) ∈ Wn(Z)2 for which
F (w) = F (v). The free complex vector space AZ(n) with basis F (n, Z) is then a
finite dimensional C∗-algebra in the same way as above, cf. (3.1) and (3.1).

We can define a unital ∗-homomorphism ϕn : AZ(n)→ AZ(n+ 1) such that

ϕn ((w, v)) =
∑

{b∈A:b∈F (w)}
(wb, vb).

Note that ϕn is injective and unital, and let AZ be the resulting AF-algebra,

AZ = lim−→
n

(AZ(n), ϕn) .

The K0-group of AZ has appeared before in the work of Boyle, Fiebig and Fiebig,
[BFF], as ’the images group’. The coincidence of the two follows from the descrip-
tion of the images group given in Section 10 of [BFF]. In particular, it follows that
K0 (AZ) is the dimension group of Z, cf. [LM], when Z is of finite type. As stated
in [BFF] the “construction of the images group is very much in the tradition of
Krieger’s construction of a dimension group for a two-sided SFT”, and we take this
as justification for adopting the terminology from the two-sided case and call AZ
the Krieger-algebra of Z.

It is straightforward to prove the analogue of Lemma 3.2 and use it to prove the
following

Theorem 3.4. The Krieger-algebra AZ is ∗-isomorphic to the homoclinic alge-
bra Aσ(Z).

Example 3.5. One virtue of Theorem 3.3 and Theorem 3.4 is that they make it
possible to write down Bratteli diagrams for the homoclinic algebra of a shift space.
For sofic shift spaces one can use the Fischer cover for this purpose. To illustrate
this consider the even shift which was mentioned in Remark 1.13. The even shift
can be presented by a labeling of its Fischer cover, cf. e.g. [LM]:

1

0

0
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The Bratteli diagram for the homoclinic algebra of the two-sided even shift be-
comes

·

· · · · ·

· · · · ·

· · · · ·

...
...

...
...

...

For the one-sided even shift the Bratteli diagram becomes

·

· · ·

· · ·

· · ·

...
...

...

3.2. Expansive actions by affine maps

Assume now that X is a compact metric group with neutral element e. An affine
endomorphism of X is a map α : X → X such that

α(x) = λα0(x), x ∈ X,
where λ ∈ X and α0 is a continuous group-endomorphism. We say that λ is the
translation part of α and that α0 is the endomorphism part of α. Let (X, d, S, α) be
an expansive action as in (3.1). Assume that α is an expansive affine action in the
sense that each αs is an affine endomorphism of X. Slightly generalizing a definition
of Lind and Schmidt, [LS], we call

∆α =
{
x ∈ X : lim

s→∞
d (αs(x), αs(e)) = 0

}
.

the homoclinic group of α. Note that since d is equivalent to a left-invariant metric
the homoclinic group only depends on the endomorphism parts. Specifically, if we
let α0

s denote the endomorphism part of αs,

∆α =
{
x ∈ X : lim

s→∞
d
(
α0
s(x), e

)
= 0
}
.

In particular, ∆α is indeed a subgroup of X.
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Lemma 3.6. Let x, y ∈ X. The following are equivalent:

a) x and y are conjugate.
b) lims→∞ d (αs(x), αs(y)) = 0.
c) xy−1 ∈ ∆α.

Proof. a) ⇒ b) is trivial. b) ⇒ c):

lim
s→∞

d (αs(x), αs(y)) = 0

m
lim
s→∞

d
(
α0
s(x), α

0
s(y)

)
= 0

m
lim
s→∞

d
(
α0
s(xy

−1), e
)

= 0.

c) ⇒ a): Define χ : X → X such that χ(z) = yx−1z and observe that (X,X, χ) is
then a conjugacy from x to y. �

Lemma 3.7. The map
(x, y) 7→ (

yx−1, y
)

is an isomorphism of topological groupoids from Rα(X) onto the transformation
groupoid ∆α ×X corresponding to left-translation by ∆α on X.

Proof. It follows from Lemma 3.6 that the map is an algebraic isomorphism
of groupoids. (A description of the groupoid ∆α × X can be found in [Ph1], for
example.) We leave the reader to check that Γ is a homeomorphism. �

To describe the homoclinic algebra Aα(X) we introduce some (standard) no-
tation regarding crossed products of C∗-algebras. Let B be a C∗-algebra with an
automorphic action β : H → AutB of a discrete group H . The Hilbert B-module
l2(H,B) carries a unitary representation u of H given by

(uhψ) (g) = ψ
(
h−1g

)
,

and there is an embedding B ⊆ LB (l2(H,B)) defined such that

(bψ) (h) = βh−1(b)ψ(h).

By definition the reduced crossed productB⋊βH is the C∗-sub-algebra of LB (l2(H,B))
generated by B and the unitaries {uh : h ∈ H}.

When G is a compact group and H ⊆ G is a subgroup we denote by τ the action
of H on C(G) given by left-translation:

τh(f)(g) = f(h−1g).

Theorem 3.8. Let α be an expansive affine action on X. The homoclinic algebra
Aα(X) and the crossed-product C(X) ⋊τ ∆α are related by a ∗-isomorphism ψ such
that the diagram

Aα(X)
ψ

C(X) ⋊τ ∆α

C(X) C(X)

commutes.

Proof. This follows from Lemma 3.7 since the reduced C∗-algebra of the group-
oid ∆α ×X is C(X) ⋊τ ∆α, cf. e.g. Proposition 1.8 of [Ph1]. �



30 3. THE HOMOCLINIC ALGEBRA OF EXPANSIVE ACTIONS

Corollary 3.9. Let α be an expansive affine action on X. The following are
equivalent.

i) The homoclinic algebra Aα(X) is simple.
ii) The trace state of Aα(X) is unique.
iii) The homoclinic group ∆α is dense in X.

Proof. This can be deduced from the identification Aα(X) = C(X) ⋊τ ∆α as
follows. Since ∆α acts freely onX it follows from a classical result of Zeller-Meyer, cf.
4.20 of [Z], that there is a bijective correspondance between ideals in C(X)⋊τ∆α and
closed τ -invariant subsets ofX. It follows that i) is equivalent to iii). Furthermore, it
follows from Theorem 4.5 of [Th3] that there is a bijective correspondence between
trace states of C(X) ⋊τ ∆α and τ -invariant Borel probability measures on X. If iii)
holds the normalized Haar measure of X is the only τ -invariant Borel probability
measures on X. In this way iii) implies ii). Conversely, if ii) holds the compact
group ∆α must be all of X since its Haar measure would otherwise give rise to a
τ -invariant Borel probability measure on X different from the Haar measure of X.
This would produce two different trace states of C(X) ⋊τ ∆α contradicting ii). In
this way ii) implies iii). �

3.2.1. Expansive algebraic actions on connected groups. Given a C∗-
algebra B one can define the dual groupoid. The idea of the construction is ap-
parently due to Alain Connes and one can find a description of it in [Re2]. The
elements of the dual groupoid are the extremal elements of the unit ball in the dual
space B∗ of B. Let D ⊆ B be an abelian C∗-sub-algebra of B with the unique
extension property for pure states. That is, every pure state of D has a unique
(pure) state extension to B. The reduction of the dual groupoid of B to the pure
state space of D is then a locally compact topological groupoid by [Re2]. This is
relevant for us here because the canonical copy of C(X) inside the crossed product
C(X) ⋊ G coming from a free action of the discrete group G on X is known to
have the extension property by Corollary 6.2 of [Ba] and Remark 2.8 (i) of [ABG].
Hence the inclusion C(X) ⊆ C(X) ⋊G gives rise to a locally compact groupoid via
a fairly general construction, and it was shown in [Th1] that this groupoid is the
product of the transformation groupoid coming from the action of G on X with the
circle group T. When G is connected (and only in this case), it follows that the
inclusion C(X) ⊆ C(X) ⋊G determines the action of G on X modulo a conjugacy
and an automorphism of G, cf. Theorem 9 of [Th1]. In particular, this is the case
in the setting of Theorem 3.8 when X is connected. In this section we gather some
consequences of this.

Theorem 3.10. Let X and Y be compact connected abelian metric groups and
α : S → EndX and β : S → EndY expansive affine actions of the countable set
S on X and Y , respectively. Assume that the homoclinic group ∆α of α is dense
in X. Consider a homeomorphism ψ : X → Y such that ψ(0) = 0.

The following conditions are equivalent:

1) ψ×ψ is an isomorphism between the étale equivalence relations Rα(X) and
Rβ(Y ).

2) ψ is a topological group isomorphism ψ : X → Y such that ψ (∆α) = ∆β.
3) There is a ∗-isomorphism µ : Aα(X) → Aβ(Y ) such that µ(f) = f ◦ ψ−1

for f ∈ C(X).
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Proof. 1) ⇒ 3) follows from Remark 1.16. 3) ⇒ 2): We adopt the notation
from [Th1]. By Theorem 3.8 we may consider µ as a ∗-isomorphism from C(X) ⋊τ

∆α to C(Y ) ⋊τ ∆β. As such µ defines a topological groupoid isomorphism µ∗ :
G (C(Y ) ⋊τ ∆β , C(Y ))→ G (C(X) ⋊τ ∆α, C(X)) whose action on the unit space Y
is ψ−1. By (the proof of) Theorem 9 of [Th1] there is an isomorphism ϕ : ∆α → ∆β

such that ψ (x− ϕ(h)) = ψ(x)−h for all x ∈ X and all h ∈ ∆α. It follows then from
the density of ∆α in X that ψ − ψ(0) is a group isomorphism taking ∆α onto ∆β .
Since ψ(0) = 0, 2) follows.

The implication 2) ⇒ 1) follows from Lemma 3.7. �
The equivalence of 1) and 3) in Theorem 3.10 is a special case of a much more

general result. See Appendix A.
By inspection of the last proof it becomes clear that the implication 3) ⇒ 2)

is a result on topological isomorphism rigidity. This is a new approach to this
type of results and it seems worthwhile to pause a little to develop this point. For
previous work on topological isomorphism rigidity we refer, without any claim of
completeness, to [W], [B1], [B2], [KS], [BW], [EW] and [BS].

Theorem 3.11. Let X and Y be compact connected abelian metric groups and
α : S → EndX and β : S → End Y expansive affine actions of the countable set S
on X and Y , respectively. Assume that ψ : X → Y is an asymptotic conjugacy.

It follows that there is a group isomorphism ϕ : ∆β → ∆α such that

ψ(x)− h = ψ (x− ϕ(h))

for all x ∈ X and all h ∈ ∆β.

Proof. ψ induces a topological isomorphism Rα(X) → Rβ(Y ) of étale equiva-
lence relations, and hence by Lemma 3.7 also a homeomorphism of the corresponding
transformation groupoids arising form the actions of the homoclinic groups. Since X
(and Y ) are connected Theorem 9 of [Th1] gives a group isomorphism ϕ : ∆β → ∆α

such that f (ψ(x)− h) = f (ψ (x− ϕ(h))) for all f ∈ C(Y ), x ∈ X, h ∈ ∆β. The
conclusion follows from this. �

Remark 3.12. It follows from Theorem 3.11 that a topological conjugacy be-
tween expanding affine actions of the same semi-group on connected groups is a
group-isomorphism on the homoclinic group, and hence on the entire group when
the homoclinic subgroup is dense. For actions by a group this follows from [B1]. �

3.2.2. Positively expansive endomorphisms of compact groups. Recall
that a continuous map ψ : X → X on a metric space (X, d) is said to be positively
expansive when the corresponding action of the semi-group N is expansive, i.e. when
there is a δ > 0 such that

sup
n∈N

d (ψn(x), ψn(y)) ≤ δ ⇒ x = y.

Lemma 3.13. Let X be a compact metric group. Let ψ : X → X be a positively
expansive and surjective group endomorphism. Then ψ is open. If in addition X
is connected or ψ is ergodic with respect to the Haar-meausure of X, then ∆ψ =⋃
k≥1 kerψk is dense in X.

Proof. It is obvious that ∆ψ =
⋃
k≥1 kerψk. Let H =

⋃
k≥1 kerψk be the

closure of
⋃
k≥1 kerψk in X; clearly a normal subgroup. To prove that H = X note
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first that ψ is constant-to-one. In fact, # kerψ < ∞ by expansiveness and then
#ψ−1(x) = # kerψ for all x ∈ X since ψ is a surjective group endomorphism. Let
δ > 0 be so small that

a, b ∈ ψ−1(x), a 6= b ⇒ d(a, b) ≥ δ. (3.5)

It follows that for each x ∈ X and each ǫ > 0 there is an ǫ′ > 0 such that

d (ψ(x), z) ≤ ǫ′ ⇒ ∃a ∈ ψ−1(z) : d (a, x) < ǫ. (3.6)

Indeed, if not there is a sequence {zi} ⊆ X such that limi→∞ zi = ψ(x) while

dist (ψ−1 (zi) , x) ≥ ǫ for all i. Let aji , j = 1, 2, . . . ,# kerψ, be the elements of
ψ−1 (zi). By compactness of X there is a sequence {ni} in N such that each sequence{
ajni

}∞
i=1

converges, say to aj ∈ X, j = 1, 2, . . . ,# kerψ. By combining (3.5) with
the fact that d (aj , x) ≥ ǫ > 0, we conclude that x, a1, a2, . . . , a#kerψ are distinct
elements of ψ−1 (ψ(x)), contradicting that #ψ−1 (ψ(x)) = # kerψ. Hence (3.6)
holds. Note that it follows that ψ is open. In addition it follows also from (3.6) that

ψ(x) ∈ H ⇒ x ∈ H, (3.7)

which implies that the continuous group endomorphism ψ′ : X/H → X/H induced
by ψ is injective. Since it is obviously also surjective we see that ψ′ is an automor-
phism of the compact group X/H.

It follows from [Rd] that there are a metric d′ for the topology of X, a λ > 1
and an ǫ1 > 0 such that d′(x, y) ≤ ǫ1 ⇒ d′(ψ(x), ψ(y)) ≥ λd′(x, y). By substituting
d′(x, y) with

sup
a∈X

d′(xa, ya)

we may assume that d′ is right-invariant. We get then a metric d̃ for the topology
on X/H such that

d̃ (xH, yH) = inf
h,h′∈H

d′(xh, yh′).

It follows from (3.6) that there is an ǫ2 > 0 such that

d′ (ψ(x), z) ≤ ǫ2 ⇒ ∃a ∈ ψ−1(z) : d′ (a, x) < ǫ1 (3.8)

for all x ∈ X. Let ǫ3 > 0 be so small that

d̃ (xH, yH) ≤ ǫ3 ⇒ d̃ (ψ(x)H,ψ(y)H) ≤ ǫ2
2
.

Consider x, y ∈ X such that d̃ (xH, yH) ≤ ǫ3. Let δ > 0. There are elements k, k′ ∈
H such that d′ (ψ(x)k, ψ(y)k′) ≤ d̃ (ψ(x)H,ψ(y)H) + δ and d′ (ψ(x)k, ψ(y)k′) < ǫ2.
It follows from (3.7) that k = ψ(h) for some h ∈ H . It follows then from (3.8) that
there is an element z ∈ X such that ψ(z) = ψ(y)k′ and d′(xh, z) < ǫ1. Set h′ = y−1z
and note that h′ ∈ H by (3.7). Then

d̃ (ψ(x)H,ψ(y)H) + δ ≥ d′ (ψ(xh), ψ(yh′))

≥ λd′(xh, yh′) ≥ λd̃(xH, yH).

Since δ > 0 was arbitrary, we conclude that

d̃ (xH, yH) ≤ ǫ3 ⇒ d̃ (ψ(x)H,ψ(y)H) ≥ λd̃(xH, yH). (3.9)

It follows from (3.9) that ψ′ is positively expansive. By a result of S. Schwartzman
a compact metric space that supports a positively expansive homeomorphism is
finite. See [CK] for a short proof of this. Hence we know now that X/H is finite.
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Under any of the two additional assumptions it is easy to prove that X/H = 0, as
desired. �

We pause again to point out a consequence concerning isomorphism rigidity
which does not seem to have been noted before.

Theorem 3.14. Let X and Y be compact connected abelian metric groups and
α : X → X, β : Y → Y positively expansive and surjective affine maps.

Assume that ψ : X → Y is an asymptotic conjugacy. It follows that ψ is affine.

Proof. Combine Theorem 3.10 and Lemma 3.13. �
We turn to the structure of the homoclinic algebra.

Definition 3.15. Let T denote the unit circle in the complex plane. A circle
algebra is a C∗-algebra ∗-isomorphic to C(T) ⊗ F for some finite-dimensional C∗-
algebra F . An AT-algebra is a C∗-algebra A which contains an increasing sequence

A1 ⊆ A2 ⊆ A3 ⊆ . . . of circle algebras as C∗-sub-algebras such that A =
⋃∞
n=1An.

Theorem 3.16. Let G be a compact metric group and ψ : G → G a positively
expansive and surjective endomorphism. Assume that G is connected or that ψ is
ergodic with respect to the Haar measure of G. It follows that Aψ(G) is a simple
unital AT-algebra of real rank zero with a unique trace state.

Proof. We argue first that

a) dimG <∞, and that
b) K∗ (C(G)) is torsionfree.

Note first that G is homeomorphic to the topological product G0 × (G/G0), where
G0 denotes the connected component of the neutral element in G. This seems to
be a well-known fact; a more general statement appears as Proposition 5.9 of [KS].
It follows from Lemma 3.13 and Theorem 7.12 of [HeRo] that ψ restricts to a
positively expansive map of G0 which is expanding in the sense of [Ao]. It follows
then from Theorem 2 of [Ao] that G0 is an inverse limit of tori of the same fixed
dimension. Since G/G0 is totally disconnected by Theorem 7.3 of [HeRo], both a)
and b) follow easily.

By Lemma 3.13 the homoclinic group ∆ψ is the union of an increasing sequence
F1 ⊆ F2 ⊆ F3 ⊆ . . . of finite subgroups of G. It follows therefore from Theorem 3.8
that Aψ(G) is the inductive limit of a sequence

C(G) ⋊τ F1 → C(G) ⋊τ F2 → C(G) ⋊τ F3 → . . .

By Lemma B.5 in Appendix B C(G) ⋊τ Fn is stably isomorphic to C (G/Fn). Set
Ak = C(G) ⋊τ Fk and let ϕk : Ak → Ak+1 be the connecting map in the above
sequence. Since Ak is unital and Ak ⊗K ≃ C (G/Fn)⊗K it follows that there is an
lk ∈ N and a projection pk ∈ Mlk (C (G/Fn)) such that Ak ≃ pkMlk (C (G/Fn)) pk.
It follows that there are ∗-isomorphisms ιk : Ak → pkMlk (C (G/Fk)) pk and unital ∗-
homomorphisms ψk : pkMlk (C (G/Fk)) pk → pk+1Mlk+1

(C (G/Fk+1)) pk+1 such that
the infinite diagram

A1
ϕ1

ι1

A2
ϕ2

ι2

A3
ϕ3

ι3

. . .

p1Ml1 (C (G/F1)) p1
ψ1

p2Ml2 (C (G/F2)) p2
ψ1

p3Ml3 (C (G/F3)) p3
ψ3 . . .
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commutes. Hence Aψ(G) ≃ lim−→k
(pkMlk (C (G/Fk)) pk, ψk). As observed above C(G)

has torsion-freeK-theory and finite covering dimension. It follows that C (G/Fk) has
torsion-free K-theory and that dimG/Fk = dimG < ∞ for all k. Since C (G/Fk)
and pkMlk (C (G/Fk)) pk have the same K-theory we conclude that K∗ (Aψ(G)) is
torsion-Free. Since Aψ(G) is simple by Lemma 3.13 and Theorem 3.8, it follows
now from Corollary 6.7 of [G] that Aψ(G) is in fact an AT-algebra. Being simple it
is then approximately divisible in the sense of [BKR] by a result of Elliott, [Ell1].
Furthermore, it follows from Corollary 3.9 that Aψ(G) has a unique trace state
(arising from the normalized Haar measure of G), and hence Aψ(G) has real rank
zero by [BKR]. �

3.3. Expansive group automorphisms

3.3.1. The shift of a solenoid. Let n ∈ N and let ρ : Rn → Tn = Rn/Zn be
the quotient map. Let ‖ · ‖ be a vector space norm on Rn such that ‖z‖ ≥ 1 for all
z ∈ Zn. We will work with the metric d0 on Tn given by

d0 (ρ(x), ρ(y)) = inf
z∈Zn
‖x− y − z‖.

Let Q ∈ Gln (Q), and set

SQ =
{

(zi)i∈Z ∈ (Tn)Z : (zi, zi+1) ∈ {(ρ(t), ρ(Qt)) : t ∈ Rn} ∀i ∈ Z
}
. (3.10)

We equip SQ with the metric d given by

d
(
(xi)i∈Z , (yi)i∈Z

)
=
∑
i∈Z

2−|i|d0 (xi, yi) .

Let σQ : SQ → SQ be the shift of SQ, i.e. σQ
(
(zi)i∈Z

)
j
= zj+1.

Lemma 3.17. Let L : Rn → Rn be linear and invertible. There is a decomposition
Rn = U ⊕N ⊕ S of Rn into a direct sum of the subspaces U , N and S, such that

i) S = {x ∈ Rn : limn→∞ Lnx = 0},
ii) U = {x ∈ Rn : limn→−∞ Lnx = 0}, and
iii)

{
x ∈ Rn : supk∈Z

∥∥Lkx∥∥ <∞} ⊆ N .

Furthermore there are constants λ,K > 0, λ < 1, such that ‖Lnx‖ ≤ Kλ|n|‖x‖
when x ∈ U and n ≤ 0 or x ∈ S and n ≥ 0.

Proof. See e.g. pp. 23-26 in [HK]. �
In the following we let

Rn = U ⊕N ⊕ S (3.11)

be the decomposition obtained by applying Lemma 3.17 to Q : Rn → Rn. The hy-
perbolicity of Q is equivalent to expansiveness of (SA, σQ) and means that N = {0},
cf. Proposition 6.2 of [KS]. But we will not yet assume that the shift is expansive.

We seek to describe the homoclinic group. The following lemma is due to
Brenken, cf. Proposition 3.6 and Proposition 3.7 of [Bre].

Lemma 3.18. (Brenken) There is a δ > 0 such that for all x = (xi)
∞
i=−∞ ∈ SQ,

i) if d0 (xi, 0) < δ for all i ≤ 0, there is a unique element z ∈ Rn such that
xi = ρ (Qiz) and ‖Qiz‖ < δ for all i ≤ 0,

ii) if d0 (xi, 0) < δ for all i ≤ 0 and limi→−∞ d0 (xi, 0) = 0, there is a unique
element z ∈ U such that xi = ρ (Qiz) and ‖Qiz‖ < δ for all i ≤ 0,
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iii) if d0 (xi, 0) < δ for all i ≥ 0, there is a unique element z ∈ Rn such that
xi = ρ (Qiz) and ‖Qiz‖ < δ for all i ≥ 0,

iv) if d0 (xi, 0) < δ for all i ≥ 0 and limi→∞ d0 (xi, 0) = 0, there is a unique
element z ∈ S such that xi = ρ (Qiz) and ‖Qiz‖ < δ for all i ≥ 0,

Proof. i) and iii) are reformulations of Proposition 3.6 and Proposition 3.7 in
[Bre], respectively. ii) and iv) follow from i) and iii) since ρ is a local homeomor-
phism. �

Let N ∈ N and set

HN =
{(
x, (wi)

2N+1
i=1 , y

)
∈ U ⊕ (Zn)2N+1 ⊕ S : Q2Nx+

2N+1∑
i=1

Q2N+1−iwi = y
}
.

For ξ =
(
x, (wi)

2N+1
i=1 , y

) ∈ HN , define ΛN(ξ) ∈ SQ such that

ΛN(ξ)k =


ρ
(
Qk+Nx

)
, k ≤ −N

ρ
(
Qk+Nx+Qk+Nw1 +Qk+N−1w2 + · · ·+Qwk+N

)
, −N < k < N

ρ(Qk−Ny), k ≥ N.

(3.12)
Then ΛN is a homomorphism and ΛN (HN) ⊆ ∆σQ

. Define ιN : HN → HN+1 such
that

ιN (x, (w1, w2, . . . , w2N+1) , y) =
(
Q−1x, (0, w1, w2, . . . , w2N+1, 0) , Qy

)
. (3.13)

Then ιN is a homomorphism and ΛN+1◦ιN = ΛN . We get therefore a homomorphism

Λ : lim−→
N

(HN , ιN)→ ∆σQ
. (3.14)

Lemma 3.19. Λ is surjective.

Proof. Let z ∈ ∆σQ
. It follows from Lemma 3.18 that there is an N ∈ N and

elements x ∈ U , y ∈ S such that z−N−j = ρ (Q−jx) and zN+j = ρ (Qjy) for all j ≥ 0.
By successively applying the condition that (zj , zj+1) ∈ {(ρ(t), ρ (Qt)) : t ∈ Rn} for

all −N ≤ j ≤ N , we get an element (w1, w2, . . . , w2N+1) ∈ (Zn)2N+1 such that

Q2Nx+
∑2N+1

i=1 Q2N+1−iwi = y and

ρ
(
Qk+Nx+Qk+Nw1 +Qk+N−1w2 + · · ·+Qwk+N

)
= zk

when −N < k < N . �

Let H be a finitely generated abelian group. Then H ≃ Zm⊕F for some m ∈ N
and some finite abelian group F . We call m the rank of H and denote it by RankH .

Lemma 3.20. HN is finitely generated and torsion-free of rank ≤ n. In particu-
lar, Rank ΛN (HN) ≤ n for all N ∈ N.

Proof. Letm ∈ N be so large thatmQk ∈Mn(Z) for all k ∈ {0, 1, 2, . . . , 2N+1}.
Define Φ : HN → Zn such a way that Φ

(
x, (wi)

2N+1
i=1 , y

)
= m

∑2N+1
i=1 Q2N+1−iwi. If

Φ
(
x, (wi)

2N+1
i=1 , y

)
= 0 it follows that Q2N+1x = y and hence that x = y = 0 since

U ∩ S = {0}. This shows that Φ is injective and the lemma follows. �
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Lemma 3.21. The solenoid SQ is a projective limit of n-tori, i.e. there is a
sequence ϕk : Tn → Tn, k = 1, 2, . . . , of continuous surjective group endomorphisms
such that SQ is isomorphic, as a topological group, to the projective limit of the
sequence

Tn Tn
ϕ1

Tn
ϕ2

Tn
ϕ3

. . .
ϕ4

In particular, SQ is connected and divisible.

Proof. For each k, equip the subgroup

Ωk =
(
Qt
)−k

(Zn) +
(
Qt
)−k+1

(Zn) + · · ·+ (Qt
)k−1

(Zn) +
(
Qt
)k

(Zn)

of Qn with the discrete topology. The dual group ŜQ of SQ can then be identified
with the union

⋃∞
k=1 Ωk, cf. the proof of Proposition 6.2 of [KS]. It follows that SQ

is isomorphic to the corresponding projective limit

Ω̂1 Ω̂2 Ω̂3 Ω̂4
. . .

Since Ωk ≃ Zn, and hence Ω̂k ≃ Tn for each k, this yields the lemma. �
We denote in the following by 〈M〉 the subgroup of Rn generated by a subset

M ⊆ Rn.

Lemma 3.22. The homoclinic group ∆σQ
is dense in the solenoid SQ if and

only if (
U +

〈⋃
j≥k

Qj (Zn)
〉)
∩
(
S +

〈 ⋃
j≤−k

Qj (Zn)
〉)

(3.15)

is dense in Rn for all k ∈ N.

Proof. Let m ∈ N be a natural number such that mQ has integer entries.
Assume first that ∆σQ

is dense in SQ. Let a0 ∈ Rn, ǫ > 0 and d ≥ 2k be given. Set
ai = Qia0, i ∈ Z. Then (ρ (ai))i∈Z ∈ SQ and it follows therefore from the density
of ∆σQ

that there is an element c = (ci)i∈Z ∈ ∆σQ
such that d0 (ρ (a0) , c0) ≤ ǫ

2
and

d0 (ρ (ai) , ci) ≤ 1
4(‖Q‖+1)m

for 0 ≤ i ≤ d. Choose bi ∈ Rn such that ci = ρ (bi),

‖a0 − b0‖ ≤ ǫ and ‖ai − bi‖ ≤ 1
3(‖Q‖+1)m

, i = 0, 1, 2, . . . , d. Then ‖Qbj − bj+1‖ ≤
‖Qbj −Qaj‖ + ‖aj+1 − bj+1‖ ≤ 2

3m
, and hence Qbj = bj+1 for j = 0, 1, 2, . . . , d− 1.

Since limi→±∞ d0 (ci, 0) = 0 it follows from ii) and iv) of Lemma 3.18 that b0 ∈
U +

〈⋃
j≥0Q

j (Zn)
〉

while bd ∈ S +
〈⋃

j≤0Q
j (Zn)

〉
. Since bd = Qdb0 we conclude

that

b0 ∈
(
U +

〈⋃
j≥0

Qj (Zn)
〉)
∩
(
S +

〈 ⋃
j≤−d

Qj (Zn)
〉)
.

Since (
U +

〈⋃
j≥k

Qj (Zn)
〉)
∩
(
S +

〈 ⋃
j≤−k

Qj (Zn)
〉)

⊇ Qk
((
U +

〈⋃
j≥0

Qj (Zn)
〉)
∩
(
S +

〈 ⋃
j≤−d

Qj (Zn)
〉))

,

this proves the density of (3.15) in Rn.
Conversely, assume that (3.15) is dense in Rn for each k. Fix b ∈ SQ, and let

ǫ > 0 and d ∈ N be given. It follows from Lemma 3.21 that there is an element
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a ∈ SQ such that mda = b. By definition of SQ there are then c0 ∈ Rn and
u1, u2, . . . , ud ∈ Zn such that

a0 = ρ (c0) ,

a1 = ρ (Qc0 +Qu1) ,

a2 = ρ
(
Q2c0 +Q2u1 +Qu2

)
,

...

ad = ρ
(
Qdc0 +Qdu1 +Qd−1u2 + · · ·+Qud

)
.

Set c = mdc0 and note that bj = ρ (Qjc) , j = 0, 1, 2, . . . , d. Thanks to the density
of (3.15) for k = d, there is an element

ξ ∈
(
U +

〈⋃
j≥1

Qj (Zn)
〉)
∩
(
S +

〈 ⋃
j≤−d

Qj (Zn)
〉)

such that ‖c− ξ‖ ≤ ǫ. There are an M ∈ N,M > d, and elements

w1, w2, . . . , wM , v1, v2, . . . , vM ∈ Zn

and u ∈ U , s ∈ S such that ξ = u+QMw1 +QM−1w2 + · · ·+QwM = s +Q−dv1 +
Q−d−1v2 + · · ·+Q−MvM−d+1. Set

ti =


wi, 1 ≤ i ≤M,

0, M + 1 ≤ i ≤M + d,

−vi−M−d, M + d+ 1 ≤ i ≤ 2M + 1.

Then
ξ′ =

(
Q−Mu, (t1, t2, . . . , t2M+1) , Q

Ms
) ∈ HM

and d
(
bj ,ΛM (ξ′)j

) ≤ ‖Q‖jǫ for all j = 0, 1, 2, . . . , d. Since the the homoclinic group
is invariant under the shift this proves its density in SQ. �

Lemma 3.23. Assume that σQ is expansive. i.e. that N = {0}. It follows that
the homoclinic group ∆σQ

is dense in SQ.

Proof. Let k ∈ N. Let PU : Rn → U and PS : Rn → S be the projections
corresponding to the decomposition (3.11). Note that H = PU

(〈⋃
j≤−kQ

j (Zn)
〉)

is a Q−1-invariant subgroup of U which spans U linearly. It follows that U/H is a
compact group on which Q−1 induces a surjective continuous group-endomorphism.
Some power of this endomorphism is a strict contraction since some power of Q−1

is a strict contraction on U by Lemma 3.17. By compactness this implies that
U/H = {0}, i.e. PU

(〈⋃
j≤−kQ

j (Zn)
〉)

is dense in U . Similarly, we see that

PS
(〈⋃

j≥kQ
j (Zn)

〉)
is dense in S. Hence we conclude that

PU
(〈 ⋃

j≤−k
Qj (Zn)

〉)
+ PS

(〈⋃
j≥k

Qj (Zn)
〉)

is dense in Rn. Since x = PU(x) + PS(x) for all x ∈ Rn we have that(
U +

〈⋃
j≥k

Qj (Zn)
〉)
∩
(
S +

〈 ⋃
j≤−k

Qj (Zn)
〉)

= PU
(〈 ⋃

j≤−k
Qj (Zn)

〉)
+ PS

(〈⋃
j≥k

Qj (Zn)
〉)
,
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so we conclude that(
U +

〈⋃
j≥k

Qj (Zn)
〉)
∩
(
S +

〈 ⋃
j≤−k

Qj (Zn)
〉)

(3.16)

is dense in Rn. This proves the density of ∆σQ
in SQ by Lemma 3.22. �

Remark 3.24. Another approach to Lemma 3.23 would be to show that σQ has
completely positive entropy and then appeal to Theorem 4.2 of [LS]. �

By combining Theorem 3.8, Lemma 3.23 and some more or less wellknown re-
sults about crossed product C∗-algebras, which we relegate to Appendix B, we get a
relatively detailed description of the homoclinic algebra AσQ

(SQ). To state the re-
sult, consider an abelian group H , a compact abelian group G and a homomorphism
p : H → G. We can then define an action τ ◦ p of H on C (G) such that

(τ ◦ p)h (f)(x) = f (x− p(h)) .
When p is injective we suppres it in the notation and write τ for this action. If, in
addition, H ≃ Zk and G ≃ Tn we will call the resulting crossed product C∗-algebra
C (Tn) ⋊τ H a special non-commutative torus of rank (n, k).

Lemma 3.25. Assume that Q ∈ Gln(Q) is hyperbolic. Then the homoclinic
algebra AσQ

(SQ) is simple and ∗-isomorphic to an inductive limit lim−→k
(Ak, ϕk) where

the ϕk’s are unital ∗-homomorphisms and

Ak ≃ C (Tn) ⋊τ◦pk Hk

for some finitely generated abelian group Hk and some homomorphism pk : Hk → Tn.
Furthermore, each Ak is stably isomorphic to a finite direct sum of copies of the same
special non-commutative torus of rank (nk, mk), where nk +mk ≤ 2n.

Proof. Note that ∆σQ
is countable, e.g. by Lemma 3.19 and Lemma 3.20.

The simplicty of AσQ
(SQ) follows from Corollary 3.9 and Lemma 3.23. The other

statements follow from Lemma B.2 and Lemma B.6 in Appendix B, using the inverse
limit decomposition of Lemma 3.21. The bound on the rank follows from Lemma
B.6 and Lemma 3.20. �

Remark 3.26. The simplicity of AσQ
(SQ) follows also from a combination of

[Br] and [PS]. �

In the following we collect some information on the structure of the homoclinic
algebra AσQ

(SQ) which follows by combining Lemma 3.25 with other mathemati-
cians work on the structure of (simple) C∗-algebras.

Proposition 3.27. Assume that Q ∈ Gln(Q) is hyperbolic.

1) AσQ
(SQ) is in the bootstrap category N of Rosenberg and Schochet. In

particular, the UCT-theorem of [RS] holds for AσQ
(SQ) with respect to an

arbitrary separable ’coefficient’ C∗-algebra.
2) AσQ

(SQ) has a unique trace state.

3) K∗
(
AσQ

(SQ)
)

is torsionfree.
4) AσQ

(SQ) is approximately divisible (in the sense of [BKR]).
5) AσQ

(SQ) has stable rank 1.
6) AσQ

(SQ) has real rank 0.



3.3. EXPANSIVE GROUP AUTOMORPHISMS 39

7) K0

(
AσQ

(SQ)
)
+

=
{
x ∈ K0

(
AσQ

(SQ)
)

: ω(x) > 0
} ∪ {0}, where ω is the

trace state of AσQ
(SQ).

Proof. 1) follows directly from Lemma 3.25 by using that N by definition con-
tains all separable abelian C∗-algebras and is closed under the formation of crossed
products by Z, under (countable) inductive limits and and stable isomorphism.

2) follows from Corollary 3.9 and Lemma 3.23; the unique trace is the trace on
the crossed product C (SQ) ⋊τ ∆σQ

coming from the Haar measure of SQ.
3) follows from Lemma 3.25 and the wellknown fact that the K-theory of a

non-commutative torus is torsion-free.
To prove 4) we proceed as follows: By Lemma 3.25 AσQ

(SQ) is ∗-isomorphic to
the inductive limit of a sequence

A1
ϕ1

A2
ϕ2

A3
ϕ3 . . .

of unital C∗-algebras such that each ϕk is unital and such that Ak⊗K ≃ Bk⊗Cak⊗K,
where Bk ≃ C

(
Tbk
)

⋊τ Zck for some natural numbers ak, bk with bk + bk ≤ 2n. We
consider the following cases separately:

Bk is nonrational in the sense of [BKR] for infinitely many k. In this case we
can assume that Bk is nonrational for all k. By standard C∗-algebra techniques, as in
the proof of Theorem 3.16, we get then for each k a natural number lk, a projection
pk ∈ Mlk (Bk ⊗ Cak), a ∗-isomorphism ιk : Ak → pkMlk (Bk ⊗ Cak) pk and a unital
∗-homomorphism ψk : pkMlk (Bk ⊗ Cak) pk → pk+1Mlk+1

(Bk+1 ⊗ Cak+1) pk+1 such
that the infinite diagram

A1

ϕ1

ι1

A2

ϕ2

ι2

A3

ϕ3

ι3

. . .

p1Ml1 (B1 ⊗ Ca1) p1
ψ1

p2Ml2 (B2 ⊗ Ca2) p2
ψ1

p3Ml3 (B3 ⊗ Ca3) p3
ψ3 . . .

(3.17)
commutes. Since approximate divisibility is preserved by taking tensor products we
conclude from Theorem 1.5 and Corollary 2.9 of [BKR] that pkMlk (Bk ⊗ Cak) pk
is approximately divisible for all k. It follows that the inductive limit of the lower
sequence in (3.17) is approximately divisible. But this inductive limit is ∗-isomorphic
to AσQ

(SQ) by (3.17).
Bk is rational in the sense of [BKR] except for finitely many k. We may then

assume that Bk is rational for all k. Note that C
(
Tbk
)

⋊τ Zck is rational only when

ck = 0. Thus Bk ≃ C
(
Tbk
)

for all k. We construct a diagram (3.17) as above

with the only difference that now Bk ≃ C
(
Tbk
)

for some bk ≤ 2n. Corollary 6.7 of
[G] implies that the inductive limit of the lower sequence in (3.17) and hence also
AσB

(SB) is an inductive limit of direct sums of circle algebras. It follows then from
a result of Elliott, [Ell1], that AσB

(SB) is approximately divisible.
Having established 4), both 5) and 6) follow from Theorem 1.4 of [BKR]. 7)

follows from Corollary 3.9 of [BKR]. �

By using recent results of H. Lin and N.C. Phillips we obtain the following.

Theorem 3.28. Assume that Q ∈ Gln(Q) is hyperbolic. Then AσQ
(SQ) is a

simple unital AT-algebra of real rank zero with a unique trace state.
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Proof. By combining Lemma 3.25 with Proposition B.7 from Appendix B we
see that AσQ

(SQ) is locally AH. Hence, by Proposition 5.3 of [Lin], the trace state
of AσQ

(SQ) is approximately AC in the sense of [Lin]. Therefore we can combine
Proposition 3.27 with Theorem 4.15 of [L] to conclude that AσQ

(SQ) has tracial
rank zero. It follows then from Proposition 3.7 of [Ph2] that AσQ

(SQ) is AT. �

The previous analysis and its results can be slightly improved in the case where
Q ∈ Mn (Z). In this case Q induces a group endomorphism of the n-torus given by
the tautologically looking formula

Qρ(x) = ρ(Qx).

Define Λ : Rn → SQ such that Λ(x)i = ρ (Qix) , i ∈ Z, and set

W u(0) =
{
x ∈ X : lim

n→−∞
d
(
σnQ(x), 0

)
= 0
}
.

Lemma 3.29. Assume that Q ∈Mn (Z). Then Λ (U) = W u(0) and Λ is injective
on U .

Proof. Clearly, Λ (U) ⊆ W u(0). Let z = (zi)i∈Z ∈ W u(0). It follows from
Lemma 3.18 that there is an x ∈ U such that ρ (Q−ix) = z−N−i for all i ≥ 0. Then
QNx ∈ U and Λ

(
QNx

)
= z. Hence Λ (U) = W u(0). If x ∈ U and Λ(x) = 0, we see

that Qix ∈ Zn for all i ∈ Z. Since some power of Q−1 is a contractive automorphism
of the discrete group U ∩⋂k∈ZQ

k (Zn), this group must be {0} and hence x = 0. �

Lemma 3.30. Assume that Q ∈Mn (Z). The homoclinic group ∆σQ
is

Λ
(
U ∩

(
S +

⋃
k≥0

Q−k (Zn)
))
.

Proof. Let z = (zi)i∈Z ∈ ∆σQ
. Since ∆σQ

⊆W u(0) it follows from Lemma 3.29
that there is an x ∈ U such that ρ (Qix) = zi for all i ∈ Z. On the other hand,
it follows from Lemma 3.18 that there is an N ∈ N and a vector y ∈ S such that
ρ(Qjy) = zN+j for all j ≥ 0. Since ρ

(
QNx

)
= zN = ρ(y), it follows that QNx− y ∈

Zn. Hence x ∈ S + Q−N (Zn), proving that ∆σQ
⊆ Λ

(U ∩ (S +
⋃
k≥0A

−k (Zn)
))

.
The reversed inclusion is trivial. �

Lemma 3.31. The map

Λ ◦ PU :
⋃
j≥0

Q−j (Zn) ∩ (U + S)→ ∆σA

is an isomorphism.

Proof. Surjectivity: Let x ∈ U∩(S +
⋃
k≥0Q

−k (Zn)
)
. There are then elements

s ∈ S and v ∈ ⋃j≥0Q
−j (Zn)∩(U + S) such that x = s+v. It follows that PU(v) = x

and hence that Λ(x) = Λ ◦ PU(v). By Lemma 3.30 this gives the surjectivity.
Injectivity: The injectivity of Λ on U follows from Lemma 3.29. It suffices therefore
to prove the injectivity of PU on Q−k (Zn) ∩ (U + S) for any k ≥ 0. To this end
observe that some power of Q is an injective strict contraction on the discrete set
S ∩ Zn which implies that S ∩ Zn = {0}. Hence, if x ∈ Q−k (Zn) ∩ (U + S) and
PU(x) = 0, we find that Qk(x) ∈ S ∩ Zn = {0}. Hence x = 0. �
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Theorem 3.32. Assume that Q ∈ Mn (Z) ∩Gl (n,Q) is hyperbolic. The homo-
clinic algebra AσQ

(SQ) is simple and ∗-isomorphic to the crossed product C(SQ) ⋊τ⋃
k≥0Q

−k (Zn).

Proof. Simplicity follows from Theorem 3.25. The crossed product description
follows from Theorem 3.8 and Lemma 3.31. �

By specializing further we get also the following.

Theorem 3.33. Let Q ∈ Gln(Z) be hyberbolic and let ϕ : Tn → Tn be the corre-
sponding expansive automorphism. It follows that the homoclinic algebra Aϕ (Tn) is
a simple special non-commutative torus of the form C (Tn) ⋊τ Zn.

Remark 3.34. Let Q ∈Mn (Z)∩Gl (n,Q) be hyperbolic. It follows from Lemma
3.31 that ∆SQ

is isomorphic to the inductive limit group of the sequence

Zn
Q

Zn
Q

Zn
Q . . . (3.18)

while ŜQ is isomorphic to the inductive limit group of the sequence

Zn
Qt

Zn
Qt

Zn
Qt

. . . , (3.19)

where Qt is the transpose of Q. It can happen that these inductive limit groups are
not isomorphic. This is for example the case when

Q =

(
65 7
24 67

)
,

cf. Example 3.6 of [BJKR]. In this case the homoclinic group of σQ is not isomorphic

to ŜQ (as it is in the case where Q ∈ Gln(Z)). Since the argument in [BJKR] only
shows that the two groups are not isomorphic as ordered groups (i.e. as dimension
groups) the arguments for the stronger statement have been included in Appendix
C. Presumably the phenomenon is not exceptional at all; the methods explored in
Appendix C can be used to find other examples, albeit in a rather unsystematic
way. It is, for example, easy to check by the same procedure that the matrix(

82 57
5 86

)
is another example of this sort.

A different example of an expansive automorphism of a compact connected group
whose homoclinic group is not isomorphic to the dual of the group on which it acts
has been exhibited before in [CF]. All these examples show that the statement (2)
of Theorem 5.1 in [KPS] is incorrect.

In all the cases mentioned above, the homoclinic group is at least torsion free.
Below, in Remark 6.9, we exhibit a hyperbolic matrix Q ∈ M2 (Q) such that ∆σQ

has torsion. �

3.3.2. General expansive group automorphisms. We extend here Theo-
rem 3.28 to a general expansive automorphism of a compact group. This is relatively
straightforward thanks to the following result of Kitchens and Schmidt, cf. Theo-
rem 6.7 of [KS].
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Theorem 3.35. (Kitchens and Schmidt) Let ψ : G → G be an expansive au-
tomorphism of the compact group G. Then (G,ψ) is topologically conjugate to a
product (F × Σm × SQ, τ × σ × σQ), where τ is an automorphism of the finite group
F , (Σ, σ) is the full m-shift for some m ≥ 1 and σQ is the shift of the solenoid SQ
for some hyperbolic Q ∈ Gln(Q).

By using Proposition 1.23 it follows from Theorem 3.35 that

Aψ(G) ≃ Aτ (F )⊗ Aσ (Σm)⊗ AσQ
(SQ) .

Clearly Aτ (F ) = C#F and it follows from Theorem 3.3 that Aσ (Σm) is the UHF-
algebra of Glimm-type m∞. Note that the finite group F must be trivial when ψ
is mixing. The following theorem follows therefore from Theorem 3.28 and Propo-
sition 3.27.

Theorem 3.36. Let ψ : G → G be an expansive automorphism of the compact
group G. When ψ is mixing it follows that Aψ(G) is a simple AT-algebra of real
rank zero with a unique trace state.

In general, Aψ(G) ≃ Ck ⊗Q for some k ∈ N where Q is a simple AT-algebra of
real rank zero with a unique trace state.



CHAPTER 4

The heteroclinic algebra

In this chapter we introduce a canonical construction of a relatively expansive
system for a class of invertible dynamical systems with periodic points. This allows
us to define a C∗-algebra from these dynamical systems which we call the heteroclinic
algebra. The construction generalizes the construction of Putnam, [Pu1], of what
he calls the stable algebra.

4.1. Post-periodic points and the Wagoner topology

Let (X, d) be a metric space and ϕ : X → X a homeomorphism of X. For
x ∈ X, set

W u(x) =
{
y ∈ X : lim

k→−∞
d
(
ϕk(x), ϕk(y)

)
= 0
}
.

When k ∈ Z and ǫ > 0, set

W u(x, k, ǫ) =
{
y ∈W u(x) : d

(
ϕi(x), ϕi(y)

) ≤ ǫ, i ≤ k
}
.

To simplify notation, set W u(x, 0, ǫ) = W u(x, ǫ).
In the following we let PerX denote the set of ϕ-periodic points and |p| the

minimal period of a ϕ-periodic point p ∈ X.

Definition 4.1. Let p ∈ PerX. We say that ϕ is locally expansive at p when
there is an ǫp > 0 such that W u (p, ǫp) is compact in X and

z, y ∈ W u (p) , d
(
ϕj(z), ϕj(y)

) ≤ ǫp ∀j ∈ Z ⇒ z = y. (4.1)

Since ϕ (W u(p, ǫ)) ∩ {x ∈ X : d (x, ϕ(p)) ≤ ǫ} = W u (ϕ(p), ǫ) we see that ϕ is
locally expansive at every element of the orbit of p when it is locally expansive at p.
We say that ϕ is locally expansive on post-periodic points when it is locally expansive
at every p ∈ PerX.

Lemma 4.2. Let K be a compact subset of X and p ∈ PerX such that

• p ∈ K,
• ϕ−|p|(K) ⊆ K, and
• there is an ǫ > 0 such that

x ∈ K, d (ϕn(x), ϕn(p)) ≤ ǫ ∀n ∈ Z ⇒ x = p.

It follows that there is a δ > 0 such that

lim
n→∞

sup
x∈Kδ

d
(
ϕ−n(x), ϕ−n(p)

)
= 0, (4.2)

where

Kδ =
{
x ∈ K : d

(
ϕj(x), ϕj(p)

) ≤ δ, j ≤ 0
}
.

43
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Proof. Set L =
⋃|p|−1
j=0 ϕ−j(K). Then L is compact, ϕ−1-invariant and contains

the orbit of p. Choose κ > 0 so small that

κ < 1
2
min

{∣∣ϕi(p)− ϕj(p)∣∣ : i, j ∈ {0, 1, 2, . . . , |p| − 1}, i 6= j
}

(4.3)

and

x, y ∈ L, d(x, y) ≤ κ ⇒
d (ϕ(x), ϕ(y)) ≤ 1

2
min

{∣∣ϕi(p)− ϕj(p)∣∣ : i, j ∈ {0, 1, 2, . . . , |p| − 1}, i 6= j
}
.

(4.4)

Let δ = min{κ, ǫ} and set

L′ =
|p|−1⋃
j=0

ϕ−j
(
Kδ
)
.

Then L′ is a compact ϕ−1-invariant subset of L and contains the orbit of p. In
particular,

ϕ−i−1 (L′) ⊆ ϕ−i (L′) (4.5)

for all i ∈ N. We claim that
∞⋂
i=0

ϕ−i(L′) =
{
p, ϕ(p), ϕ2(p), . . . , ϕ|p|−1(p)

}
. (4.6)

Let z ∈ ⋂∞
i=0 ϕ

−i(L′) and consider a k ∈ Z. For each m ∈ N there is an ele-
ment xm ∈ L′ such that ϕk(z) = ϕk−m (xm). Note that for each m there is a
j ∈ {0, 1, 2, . . . , |p| − 1} such that d (ϕn (xm) , ϕn+j(p)) ≤ δ for all n ≤ 0. It follows
that there is a sequence m1 < m2 < m3 < · · · in N and a j ∈ {0, 1, 2, . . . , |p| − 1}
such that

d
(
ϕk(z), ϕk−mi

(
ϕj(p)

))
= d

(
ϕk−mi (xmi

) , ϕk−mi
(
ϕj(p)

)) ≤ δ

for all i. Thus, for some j′ ∈ {0, 1, 2, . . . , |p| − 1} we have d
(
ϕk(z), ϕk

(
ϕj

′
(p)
)) ≤ δ.

Note that ϕk(z) ∈ L′ ⊆ L. Since also ϕk+j
′
(p) is in L it follows from (4.4) and (4.3)

that the same j′ works for all k ∈ Z. That is,

d
(
ϕk(z), ϕk+j

′
(p)
) ≤ δ (4.7)

for all k ∈ Z. Since z ∈ L′ there is a z′ ∈ Kδ and a j′′ ∈ Z such that z = ϕj
′′
(z′)

and d (ϕi(z′), ϕi(p)) ≤ δ for all i ≤ 0. It follows from (4.7) that

d
(
ϕk(z′), ϕk

(
ϕj

′−j′′(p)
)) ≤ δ

for all k ∈ Z. Since δ ≤ κ it follows first that j′− j′′ = 0 modulo |p| and then, since
δ ≤ ǫ, that z′ = p. Hence z ∈ {p, ϕ(p), . . . , ϕ|p|−1(p)

}
, proving (4.6).

Let µ ∈]0, δ[ be given. It follows from (4.6) and (4.5) that there is an N so big
that

ϕ−n
(
Kδ
) ⊆ {z ∈ X : dist

(
z,
{
p, ϕ(p), ϕ2(p), . . . , ϕ|p|−1(p)

}) ≤ µ
}

for all n ≥ N . Since 2δ ≤ min {|ϕi(p)− ϕj(p)| : i, j ∈ {0, 1, 2, . . . , |p| − 1}, i 6= j}
we see that d (ϕ−n(u), ϕ−n(p)) ≤ µ for all u ∈ Kδ and all n ≥ N . This proves (4.2).

�
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Lemma 4.3. Let (X, d) be a compact metric space and ϕ : X → X a homeomor-
phism of X. Let p be a ϕ-periodic point, and assume that there is an ǫ > 0 such
that

x ∈ X, d (ϕj(x), ϕj(p)) ≤ ǫ ∀ j ∈ Z ⇒ x = p. (4.8)

It follows that there is a δ > 0 such that

W u (p, δ) =
{
x ∈ X : d

(
ϕi(x), ϕi(p)

) ≤ δ, ∀i ≤ 0
}
.

In particular, W u (p, δ) is compact.

Proof. Apply Lemma 4.2 withK = {x ∈ X : d (ϕj(x), ϕj(p)) ≤ ǫ, j ≤ 0}. �
Lemma 4.4. Let p ∈ PerX and assume ϕ is locally expansive at p. It follows

that there is an ǫ′p > 0 such that

lim
n→∞

sup
x∈Wu(p,ǫ′p)

d
(
ϕ−n(x), ϕ−n(p)

)
= 0.

Proof. This follows by applying Lemma 4.2 to K = W u (p, ǫp), where ǫp > 0 is
as in Definition 4.1. �

Lemma 4.5. Let p ∈ PerX and assume ϕ is locally expansive at p. There is an
η′p > 0 such that {

x ∈W u(p) : d
(
ϕj(x), ϕj(p)

) ≤ η, j ≤ k
}

is compact and {
x ∈W u(p) : d

(
ϕj(x), ϕj(p)

)
< η, j ≤ k

}
is locally compact in the topology inherited from (X, d) for all k ∈ Z and all η ≤ η′p.

Proof. Set η′p = min{ǫ′ϕn(p) : n ∈ Z} and let η ≤ η′p. Let k ∈ Z. It follows

from Lemma 4.4 that there is an N ∈ N such that d
(
ϕj(y), ϕj

(
ϕl(p)

))
< η for all

j ≤ −N , all y ∈ {x ∈W u
(
ϕl(p)

)
: d
(
ϕj(x), ϕj

(
ϕl(p)

)) ≤ η, j ≤ 0
}

and all l ∈ Z.
Note that{

x ∈W u(p) : d
(
ϕj(x), ϕj(p)

)
< η, j ≤ k

}
= ϕ−k

({
x ∈W u

(
ϕk(p)

)
: d
(
ϕj(x), ϕj

(
ϕk(p)

))
< η, j ≤ 0

})
= ϕ−k (E ∩ F ) ,

where

E =
{
x ∈W u

(
ϕk(p)

)
: d
(
ϕj(x), ϕj

(
ϕk(p)

)) ≤ η, j ≤ 0
}

and

F =
{
x ∈ X : d

(
ϕj(x), ϕj

(
ϕk(p)

))
< η, −N ≤ j ≤ 0

}
.

Note that E is compact inX by the first condition of Definition 4.1. Hence ϕ−k(E) =
{x ∈W u(p) : d (ϕj(x), ϕj(p)) ≤ η, j ≤ k} is also compact. Since F is open in X we
conclude that E ∩ F , and hence also ϕ−k (E ∩ F ), is locally compact in the relative
topology. �

To simplify the notation we let W u
< (y, k, η) denote the set

W u
< (y, k, η) =

{
x ∈W u(y) : d

(
ϕj(x), ϕj(p)

)
< η, j ≤ k

}
.

Assume now that ϕ is locally expansive on post-periodic points, and let p ∈
PerX. It follows from Lemma 4.4 and Lemma 4.5 that there is an ηp > 0 such that
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for every k ∈ Z the set W u
< (p, k, η) is locally compact in the topology inherited from

(X, d), and

lim
n→−∞

sup
x∈Wu(p,k,η)

d (ϕn(x), ϕn(p)) = 0. (4.9)

when η ≤ ηp. Since W u
< (p, k, ηp) is an open subset of W u

< (p, k − 1, ηp), it follows
from Lemma 4.5 that W u(p) is locally compact in the inductive limit topology
corresponding to the union

W u(p) =
⋃
k∈Z

W u
< (p, k, ηp) .

In this topology a subset U ⊆W u(p) is open if and only if there are open sets Wk in
X such that U ∩W u

< (p, k, ηp) = Wk ∩W u
< (p, k, ηp) for all k ∈ Z. It is easy to see, by

use of (4.9), that this topology of W u(p) is independent of ηp in the sense that the
inductive limit topology of W u(p) arising from a union W u(p) =

⋃
k∈ZW

u
< (p, k, η),

where 0 < η ≤ ηp, will give the same topology.
By Definition 4.1 we can assume that W u (p, k, η) is compact for all k ∈ Z and

all 0 < η ≤ ηp. Furthermore, by Lemma 4.3 we can also arrange, by taking a smaller
ηp if necessary, that

W u(p, k, η) =
{
x ∈ X : d

(
ϕj(x), ϕj(p)

) ≤ η, j ≤ k
}

(4.10)

for all 0 < η ≤ ηp and all k ∈ Z. We shall often tacitly assume that this holds.
The union

WX,ϕ =
⋃

p∈PerX

W u(p),

or just W consists of the post-periodic points, and we equip W = WX,ϕ with a
topology by declaring a subset U ⊆ W to be open when U ∩ W u(p) is open in
W u(p) for all p ∈ PerX. Thus W is the disjoint union of the W u(p)’s, as a set as
well as a topological space. It is a locally compact Hausdorff space which was first
introduced by Wagoner in the setting of countable state Markov shifts, [Wa], and we
will refer to its topology as the Wagoner topology. Note that the Wagoner topology
is second countable if (and only if) there are only countably many periodic points
in X. Note also that the Wagoner topology is finer than the topology inherited
from X.

The following lemma describes a natural base for the Wagoner topology.

Lemma 4.6. Assume that (X, d, ϕ) is locally expansive on post-periodic points.
Let x ∈WX,ϕ. There is then an ǫ0 such that the sets{

y ∈ X : d
(
ϕj(y), ϕj(x)

)
< ǫ, j ≤ k

}
, k ∈ Z, ǫ ∈ ]0, ǫ0] , (4.11)

are all contained in W u(x) and form an open neighborhood base at x in the Wagoner
topology.

Proof. There is a periodic point p such that x ∈ W u(p). Since W u(p) =⋃
n∈ZW

u
<

(
p, n, ηp

2

)
there is an m ∈ Z such that x ∈ W u

<

(
p,m, ηp

2

)
. Set ǫ0 = ηp

2
and

let ǫ ∈]0, ǫ0[. Then{
y ∈ X : d

(
ϕj(y), ϕj(x)

)
< ǫ, j ≤ k

}
⊆ {y ∈ X : d

(
ϕj(y), ϕj(p)

)
< ηp, j ≤ min {k,m}}
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and hence {
y ∈ X : d

(
ϕj(y), ϕj(x)

)
< ǫ, j ≤ k

}
⊆W u

< (p,min{k,m}, ηp) ⊆W u(p) = W u(x)

for all k ∈ Z by (4.10). It follows from (4.9) that there is an N ∈ N such that
d (ϕj(z), ϕj(p)) ≤ ǫ

3
for all z ∈W u

< (p,min{k,m}, ηp) and all j ≤ −N . Then{
y ∈ X : d

(
ϕj(y), ϕj(x)

)
< ǫ, j ≤ k

}
=
{
y ∈ X : d

(
ϕj(y), ϕj(x)

)
< ǫ, −N ≤ j ≤ k

} ∩W u
< (p,min{k,m}, ηp) ,

showing that {y ∈ X : d (ϕj(y), ϕj(x)) < ǫ, j ≤ k} is open in WX,ϕ.
To show that the sets (4.11) form a local basis at x we consider an open neigh-

borhood U of x in WX,ϕ. Since W u(p) =
⋃
n∈ZW

u
<(p, n, ηp), there is a k ∈ Z such

that x ∈ U ∩W u
< (p, k, ηp). Since U ∩W u

< (p, k, ηp) is open in the topology which
W u
< (p, k, ηp) inherits from X, there is an ǫ ∈ ]0, ǫ0]{

z ∈ X : d
(
ϕk(z), ϕk(x)

)
< ǫ
} ∩W u

<(p, k, ηp) ⊆ U ∩W u
<(p, k, ηp).

Since ǫ ≤ ǫ0 = ηp

2
it follows from (4.10) that{

y ∈ X : d
(
ϕj(y), ϕj(x)

)
< ǫ, j ≤ k

}
⊆ {z ∈ X : d

(
ϕk(z), ϕk(y)

)
< ǫ
} ∩W u

<(p, k, ηp) ⊆ U. �
Lemma 4.7. Assume that (X, d, ϕ) is locally expansive on post-periodic points.

Let x ∈ W . There is then an open neighborhood Vx of x in W and a δx > 0 such
that

z, y ∈ Vx, d (ϕn(z), ϕn(y)) ≤ δx ∀n ∈ N ⇒ z = y.

Proof. There is a p ∈ PerX and a k ∈ Z such that x ∈ W u
< (p, k, ηp). Let

ǫp > 0 be as in Definition 4.1. It follows from (4.9) that there is an N ∈ N such that
−N ≤ k and d

(
ϕl(z), ϕl(p)

) ≤ ǫp
2

for all z ∈W u (p, k, ηp) and all l ≤ −N . Set

Vx =
{
z ∈ X : d

(
ϕl(z), ϕl(x)

)
<
ǫp
2
, −N ≤ l ≤ 0

}
∩W u

< (p, k, ηp)

and δx = ǫp
2
. �

It follows that (X, d,N, ϕ,W,W ) is a relatively expansive system and we can
define the local conjugacy relation Rϕ (X,W ) and the corresponding Ruelle algebra
Aϕ (X,W ). Specifically, two elements x, y ∈ W are locally conjugate if and only
if there are open neighborhoods U and V of x and y in W and a homeomorphism
χ : U → V such that limn→∞ supz∈U d (ϕi(z), ϕi (χ(z))) = 0. In the following we
will refer to Aϕ (X,W ) as the heteroclinic algebra of (X,ϕ), and denote it by

Bϕ (X) .

4.2. Functoriality of the post-periodic points and the Wagoner topology

It is clear that the functorial properties of the heteroclinic algebra depends on
the functoriality of the construction of W . We pause therefore to collect the facts
on this issue which we are going to need later on.

Lemma 4.8. Let (X, d, ϕ) and (X ′, d′, ϕ′) be locally expansive on the post-periodic
points. Let f : X → X ′ be a continuous map such that ϕ ◦ f = f ◦ ϕ′. It follows
that f (WX,ϕ) ⊆ WX′,ϕ′ and that f : WX,ϕ → WX′,ϕ′ is continuous for the Wagoner
topology.
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Proof. It is obvious that f (WX,ϕ) ⊆ WX′,ϕ′. To prove the continuity of f :
WX,ϕ → WX′,ϕ′ with respect to the Wagoner topology, let p be a periodic point in
X, of period |p|, and let k ∈ Z be given. Let η > 0 be sufficiently small. Since
f is continuous and equivariant there is an ǫ > 0 such that d (y, ϕj(p)) < ǫ ⇒
d′
(
f(y), ϕ′j (f(p))

)
< η for all j = 0, 1, 2, . . . , |p| − 1. It follows from (4.9) that

there is an N ∈ N such that d
(
ϕn|p|+j(y), ϕj(p)

)
< ǫ for all y ∈ W u(p, k, ηp), all

j ∈ {0, 1, . . . , |p| − 1} and all n ≤ −N . Since ϕ′|p|(f(p)) = f(p), it follows that

d′
(
ϕ′i
(
f(y)

)
, ϕ′i

(
f(p)

))
< η

for all y ∈W u(p, k, ηp) when i ≤ −N |p|. Hence

f (W u
<(p, k, ηp)) ⊆W u

<

(
f(p),−N |p|, ηf(p)

)
,

provided only that η > 0 is small enough. Now the continuity of f with respect
to the Wagoner topology follows from the continuity of f with respect to the given
topologies. �

Lemma 4.9. Let (X, d, ϕ) and (X ′, d′, ϕ′) be locally expansive on the post-periodic
points. Let f : X → X ′ be continuous and proper map such that ϕ ◦ f = f ◦ ϕ′.
Assume that f−1(p) is a finite set for every periodic point p ∈ X ′. It follows that
f−1 (WX′,ϕ′) ⊆WX,ϕ and that f |WX,ϕ

: WX,ϕ →WX′,ϕ′ is proper.

Proof. It follows from the definition that a subset K ⊆ WX′,ϕ′ is compact in
the Wagoner topology if and only it is compact in the original topology of X ′ and
there are finite collections p1, p2, . . . , pN in PerX ′ and n1, n2, . . . , nN in Z such that
K ⊆ ⋃N

i=1W
u
< (pi, ni, ηpi

). It suffices therefore to consider a compact subset K of
X ′, contained in W u

< (p, n, ηp) for some p ∈ PerX ′ and some n ∈ Z, and show that
f−1(K) is compact in WX,ϕ. It follows from (4.9) that there is an m ≤ 0 such that

ϕ′i (W u (p, n, ηp)) ⊆
|p|−1⋃
j=0

W u
(
ϕ′j(p), ηϕ′j(p)

)
for all i ≤ m. Note that the set on the right-hand side is compact in X ′. Then⋃

i≤0

ϕ′i(K) ⊆ ϕ′−m
(|p|−1⋃

j=0

W u
(
ϕ′j(p), ηϕ′j(p)

))
(4.12)

and we conclude that the closure, L, of
⋃
i≤0 ϕ

′i(K) is compact in X ′. Note that L

is ϕ′−1-invariant and that⋂
i≤0

ϕ′i(L) =
{
p, ϕ′(p), ϕ′2(p), . . . , ϕ′|p|−1(p)

}
(4.13)

because (4.12) and (4.9) imply that

lim
k→−∞

sup
z∈L

dist
(
ϕ′k(z),

{
p, ϕ′(p), . . . , ϕ′|p|−1(p)

})
= 0

for all z ∈ L. Since f is proper and equivariant, f−1(L) is a compact ϕ−1-invariant
subset of X, and hence

f−1(L) ⊇ ϕ−1
(
f−1(L)

) ⊇ ϕ−2
(
f−1(L)

) ⊇ ϕ−3
(
f−1(L)

) ⊇ . . . (4.14)
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Since
⋂
i≤0 ϕ

i (f−1(L)) ⊆ f−1
(⋂

i≤0 ϕ
′i(L)

)
, it follows from (4.13) that

⋂
i≤0

ϕi
(
f−1(L)

) ⊆ |p|−1⋃
j=0

f−1
(
ϕ′j(p)

)
. (4.15)

By assumption the right-hand side of (4.15) is a finite ϕ-invariant set, q1, q2, . . . , qM ,
of periodic points. Let η > 0. Combining (4.14) and (4.15) we see that there in

an m ≤ 0 such that ϕj (f−1(L)) ⊆ ⋃M
k=1 {y ∈ X : d (y, qk) ≤ η} for all j ≤ m. It

follows from this and Lemma 4.3 that if just η is small enough we have that

f−1(L) ⊆
M⋃
k=1

W u
< (qk, m, ηqk) .

Hence f−1(K) ⊆ f−1(L) is compact in WX,ϕ. �
Proposition 4.10. Let (X, d, ϕ) and (X ′, d′, ϕ′) be locally expansive on post-

periodic points. Let π : X → X ′ be uniformly continuous homeomorphism with a
uniformly continuous inverse such that ϕ′◦π = π◦ϕ. There is then a ∗-isomorphism
f • : Bϕ′ (X

′)→ Bϕ (X) such that

π•(f)(x, y) = f (π(x), π(y))

when f ∈ Cc (Rϕ′ (X
′,WX′,ϕ′)).

Proof. Combine Lemma 4.8, Lemma 4.9 and Corollary 2.5. �

4.3. The heteroclinic algebra of a countable state Markov shift

Let G be a countable oriented graph with edge-set E and vertex set V. We will
assume that G has finite out-degree in the sense that there are only finitely many
edges leaving each vertex. The terminal vertex of an edge e ∈ E will be denoted by
t(e), and the initial vertex of e by i(e). The space

XG =
{
(ei)i∈Z ∈ EZ : i (ei+1) = t (ei) ∀i ∈ Z

}
consists of the bi-infinite paths in G. XG is a complete metric space with the metric

d
(
(ei)i∈Z , (fi)i∈Z

)
= 2

∑
i∈Z

8−|i|δei,fi
, (4.16)

where

δei,fi
=

{
0, when ei = fi

1, when ei 6= fi.

The shift σ acts as a uniformly continuous homeomorphism of XG in the usual way:
σ
(
(ei)i∈Z

)
j

= ej+1, and we will refer to XG as a countable state Markov shift.

The exact choice of metric d is not signifigant for the following constructions. In
fact, it follows from Proposition 4.10 that only its equivalence class matters. But
with the choice (4.16) we have that δ = 1 is an expansive constant for σ, and that

d(x, y) ≤ 1 ⇔ d(x, y) < 1 ⇔ x0 = y0.

It is then straightforward to see that σ is locally expansive on the post-periodic
points. In particular, W u (p, 1) is compact in XG because we assume that G has
finite out-degree.
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Lemma 4.11. The sets W u(y, k, 1), k ∈ Z, y ∈ W , form a base for the topology
of W = WXG,σ consisting of open and compact sets.

Proof. Let p ∈ PerXG be a periodic point such that y ∈ W u(p,m, 1) for some
m ∈ Z. Then

W u(y, k, 1) = W u(p,m, 1) ∩ {z ∈ X : zi = yi, m ≤ i ≤ k}
if m ≤ k and W u(y, k, 1) = W u(p, k, 1) otherwise. In both cases we see that
W u(y, k, 1) is open and compact in W by definition of the Wagoner topology. That
the collection W u(y, k, 1), k ∈ Z, y ∈ W , is a base for the topology follows from
Lemma 4.6. �

Lemma 4.12. Let x, y ∈WXG,σ. Then the following are equivalent

a) x and y are conjugate.
b) There is an N ∈ Z such that xi = yi, i ≥ N .
c) There is an N ∈ Z and a homeomorphism χ : W u(x,N, 1) → W u(y,N, 1)

such that χ(z)i = zi, i ≥ N .

Proof. Straightforward. �

Let x ∈ XG. We say that x]−∞,0] is a post-periodic past when x ∈ W u(p) for
some p ∈ PerXG. Let v ∈ V be a vertex in G. We denote by T the set of pairs
(γ, µ) where γ and µ are post-periodic pasts terminating at the same vertex, and by
Tv the set of pairs (γ, µ), where γ and µ are post-periodic pasts which terminate at
v. Note that T is a countable set. The free complex vector space M0 with basis T
is a ∗-algebra with involution ∗ and product defined such that

(γ, µ)∗ = (µ, γ)

and

(γ, µ) (α, β) =

{
(γ, β) , when α = µ

0, when α 6= µ.
(4.17)

There is a unique C∗-norm onM0 and we denote byM the C∗-algebra completion
of M0. For each v ∈ V, let Mv denote the C∗-subalgebra of M0 generated by Tv.
Then

Mv =

{
Mnv(C), when nv <∞
K, when nv =∞.

where nv is the number of post-periodic pasts terminating at v and K denotes the
C∗-algebra of compact operators on an infinite dimensional separable Hilbert space.
Furthermore,

M≃ ⊕v∈VMv. (4.18)

We define a ∗-homomorphism Φv,w : Mv →Mw such that

Φv,w (γ, µ) =
∑

{e∈E: s(e)=v,t(e)=w}
(γe, µe) ,

and then, using the identification (4.18), a ∗-homomorphism Φ :M→M such that

Φ ((xv)v∈V) =
(∑
v∈V

Φv,w (xv)
)
w∈V

.
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In this way we get a stationary sequence of C∗-algebras,

M Φ M Φ M Φ . . . . . . (4.19)

We intend to prove that the inductive limit C∗-algebra of this sequence, (4.19), is
∗-isomorphic to the homoclinic algebra Bσ (XG).

Let i ∈ N and consider an element (γ, µ) ∈ T . We let 1iγ,µ ∈ Cc (Rσ (XG,W )) be
the characteristic function of the set{

(x, y) ∈W 2 : x]−∞,i−1] = γ, y]−∞,i−1] = µ, xj = yj, j ≥ i
}
.

We can then define a ∗-homomorphism Ψi :M→ Bσ (XG) such that

Ψi ((γ, µ)) = 1iγ,µ.

It is easily seen that Ψi is an injective ∗-homomorphism and that Ψi+1 ◦Φ = Ψi. It
follows that the Ψi’s induce an injective ∗-homomorphism

Ψ : lim−→ (M,Φ)→ Bσ (XG) . (4.20)

Proposition 4.13. The ∗-homomorphism (4.20) is a ∗-isomorphism.

Proof. The proof is essentially the same as the proof of Theorem 3.3. It re-
mains only to establish the surjectivity of Ψ. By Lemma 1.10 it suffices to show
that every localized element g ∈ Cc (Rσ (XG,W )) is in the range of Ψ. Assume
therefore that g is supported in {(z, χ(z)) : z ∈ U} for some conjugacy (U, V, χ).
It follows from Lemma 4.12 that we can asume, after an obvious partition of
unity argument, that there are elements x0, y0 ∈ W and an N ∈ Z such that
U = W u(x0, N, 1), V = W u(y0, N, 1), χ(x0) = y0, and χ(z)i = zi, i ≥ N, z ∈
W u(x0, N, 1). Let ǫ > 0. The map W u(x0, N, 1) ∋ z 7→ g (z, χ(z)) is continuous.
We can therefore find a finite open cover Vj , j ∈ J , of r (supp g) inside W u(x0, N, 1)
such that |g (z, χ(z))− g (z′, χ(z′))| < ǫ when z, z′ ∈ Vj, j ∈ J . Since W is totally
disconnected by Lemma 4.11 we can also arrange that the Vj’s are compact and
open, and mutually disjoint, and in fact that there is an M ∈ N, M ≥ N and
elements xj ∈W u(x0, N, 1) such that

Vj =
{
z ∈W : z]−∞,M ] = zj |]−∞,M ]

}
for all j ∈ J . Set λj = g (xj , χ(xj)) for some choice of elements xj ∈ Vj. Set

γj = xj |]−∞,M−1], µj = χ (xj) |]−∞,M−1]

and note that (γj , µj) ∈ T . It follows as in the proof of Theorem 3.3 that∥∥∥g −∑
j∈J

λj1
M
γj ,µj

∥∥∥ ≤ ǫ

in Bσ (XG). This completes the proof because
∑

j∈J λj1
M
γj ,µj

is in the range of Ψ. �

Note that K0 (M) = ⊕v∈VZ. This is an identification of partial ordered groups
when ⊕v∈VZ has the natural ordering where an element (xv)v∈V is positive if and
only if xv ≥ 0 for all v. It follows then from Proposition 4.13 that

K0 (Bσ (XG)) ≃ lim−→ (⊕v∈VZ,Φ∗) . (4.21)

This is an isomorphism of partially ordered abelian groups when the inductive limit
is taken in that category. Let A = (Av,w)v,w∈V be the adjacency matrix of G, i.e.

Av,w ∈ N∪{0} is the number of edges in G with w as initial vertex and v as terminal
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vertex. It follows easily from the definition of Φ that Φ∗ is given by A under the
identification (4.21):

(Φ∗(x))v =
∑
w∈V

Av,wxw.

Thus K0 (Bσ (XG)) is isomorphic to the dimension group K0 (XA) introduced by
Wagoner [Wa]. However, the C∗-algebra Bσ (XG) is not the same as the C∗-algebra
MA from [Wa] since the first is separable and the latter is not. But Bσ (XG)
is, by construction, the analogue of the AF-algebraMPA introduced for A finite in
Section 5 of [Wa]. And it follows from Theorem 2.13 thatMA is Morita equivalent to
Bσ (XG) in most of the interesting cases, in particular when G is strongly connected.

When G is finite we can combine with Section 3.1.1 and [BFF] to conclude that
K0 (Bσ (XG)) is isomorphic to K0 (AZ), where Z is the one-sided shift space defined
by G. It follows in this way from the classification of AF-algebras that AZ and
Bσ (XG) are stably isomorphic. A more direct proof of this, in a much more general
setting, will be given in Theorem 4.19.

4.4. The heteroclinic algebra of a Smale space

Let now (X,ϕ) be a Smale space, [Ru1],[Ru2] and [Pu1]. For simplicity we
will consider only mixing Smale spaces. We adopt the notation and terminology
from [Pu1], except that we use ǫX to denote the sufficiently small, but otherwise
arbitrary positive number which was denoted by ǫ0 in [Pu1].

It is straightforward to show that the homoclinic algebra Aϕ(X) is identical with
the asymptotic algebra A of [Pu1]. It follows from the description of V U(x, ǫ) given
on p. 179 of [Pu1] that a Smale space is locally expansive on post-periodic points.
In fact, this is the case for all expansive homeomorphisms on compact spaces by
Lemma 4.3. The purpose of this section is to establish the relation between the
heteroclinic algebra Bϕ(X) and the stable algebras of [Pu1].

Lemma 4.14. Let (X,ϕ) be a Smale space. Two post-periodic points x, x′ ∈WX,ϕ

are conjugate (in WX,ϕ) if and only if

lim
k→∞

d
(
ϕk(x), ϕk(x′)

)
= 0. (4.22)

Proof. Assume (4.22). Let 0 < ǫ < ǫX be so small that [[x, y], z] = [x, z]
when d(x, y) < ǫ and d(x, z) < ǫ. Choose k so large that d

(
ϕk(x), ϕk(x′)

)
< ǫ

2
and

ϕk(x′) ∈ V S
(
ϕk(x), ǫ

)
. Then d

(
ϕk(z), ϕk(x′)

)
< ǫ

2
and d

(
ϕk(z), ϕk(x)

)
< ǫ

2
for all

z in an open neighborhood U of x. Set

µ(z) = ϕ−k
[
ϕk(z), ϕk(x′)

]
when z ∈ U . Then µ(x) = x′. Note that µ(z) ∈ V U(x′) so that µ(z) ∈ WX,ϕ since
x′ ∈ WX,ϕ. Similarly, there is an open neighborhood U ′ of x′ in X, defined in a
similar way, such that we can define

ν(z) = ϕ−k
[
ϕk(z), ϕk(x)

]
for z ∈ U ′. When z ∈ U ′ ∩ ν−1(U) ∩ ϕ−k (V U

(
ϕk (x′) , ǫ

))
we find that

µ ◦ ν(z) = ϕ−k
[[
ϕk (z) , ϕk(x)

]
, ϕk(x′)

]
= ϕ−k

[
ϕk (z) , ϕk(x′)

]
= z.

Similarly, ν ◦ µ(z) = z for all z ∈ U ∩ µ−1(U ′) ∩ ϕ−k (V U
(
ϕk(x), ǫ

))
. Note that

U ∩µ−1(U ′)∩ϕ−k (V U
(
ϕk(x), ǫ

))
and U ′ ∩ ν−1(U)∩ϕ−k (V U

(
ϕk (x′) , ǫ

))
are open
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sets in the Wagoner topology of WX,ϕ. It follows that µ, suitably restricted, gives
rise to a conjugacy from x to x′ in WX,ϕ.

The reversed implication, that conjugacy in WX,ϕ implies (4.22), is trivial. �
Lemma 4.15. Let (X,ϕ) be a mixing Smale space. Then Bϕ(X) is a stable

C∗-algebra.

Proof. Let a be a positive element in Bϕ(X). For any ǫ > 0 there is an
element f ∈ Cc (Rϕ (X,W )) such that ‖a− f ∗f‖ < ǫ. Set K = r (supp f) and K ′ =
s (supp f). Then K and K ′ are compact subsets of W and there are finite subsets
F, F ′ ⊆ PerX such that K ′ ⊆ ⋃p∈F ′ V

U(p) and K ⊆ ⋃p∈F V
U(p). Choose δ′ ∈

]0, ǫX [ so small that [[x, y] , z] = [x, z] = [x, [y, z]] and d ([x, y] , y) + d ([x, y] , x) < ǫX
when d(x, y) < 5δ′ and d(x, z) < 5δ′. Choose then δ ∈]0, δ′[ such that d ([x, y], y) < δ′

when d(x, y) < 2δ. Since K is compact there is a finite cover K ⊆ ⋃N
j=1 Vj of

K by non-empty open sets Vj in WX,ϕ such that xj ∈ Vj ⊆ V U(xj , δ) for some
xj ∈

⋃
p∈F V

U(p), cf. Lemma 4.6. Since the periodic points are dense in X, cf.

[Ru1], and X is not finite, there are periodic points q1, q2, . . . , qN in X such that

F ′ ∩ {ϕn (qi) : n ∈ Z, i = 1, 2, . . . , N} = ∅,
and

{ϕn (qi) : n ∈ Z} ∩ {ϕn (qj) : n ∈ Z} = ∅
when i 6= j. Let i ∈ {1, 2, . . . , N}. Since (X,ϕ) is transitive,

⋃|qi|
k=1 V

U
(
ϕk(qi)

)
is

dense in X, cf. [Ru1], and there is therefore an element yi ∈
⋃|qi|
k=1 V

U
(
ϕk(qi)

)
such

that d(xi, yi) < δ. Then d (z, yi) < 2δ for all z ∈ Vi and we can define a continuous
map χi : Vi → V U (yi, ǫX) such that χi(z) = [z, yi]. Set Ui = χi (Vi) and note that
Ui ⊆

{
z ∈ V U (yi, ǫX) : d (z, yi) < δ′

}
. Define µi :

{
v ∈ V U (yi, ǫX) : d (v, yi) < δ′

}
→ V U (xi, ǫX) such that µi(v) = [v, xi]. Then µi ◦ χi(z) = z for all Vi so that χi is
a homeomorphism of Vi onto Ui. To see that Ui is open in WX,ϕ, let z ∈ Ui. Then
z = χi(z

′) for some z′ ∈ Vi. Since [z, xi] = z′ ∈ Vi there is an open neighborhood
Ω ⊆ {v ∈ V U (yi, ǫX) : d (v, yi) < δ′

}
of z in WX,ϕ such that µi(z

′′) ∈ Vi and χi ◦
µi(z

′′) = [[z′′, xi] , yi] = z′′ for all z′′ ∈ Ω. It follows that (Vi, Ui, χi) is a conjugacy

in WX,ϕ. Note that Ui ⊆
⋃|qi|
k=1 V

U
(
ϕk(qi)

)
so that Ui ∩ Uj = ∅ when i 6= j.

Let {ϕi} be a partition of unity on K subordinate to {Vi} and define for each i
a function vi ∈ Cc (Rϕ (X,WX,ϕ)), localized in

{(
x, χ−1

i (x)
)

: x ∈ Ui
}
, such that

vi
(
x, χ−1

i (x)
)

=
√
ϕi(χ

−1
i (x)). Set v =

∑n
j=1 vj. Since Ui ∩ Uj = ∅ we find that

v∗j vi = 0 when i 6= j. It follows that v∗vf =
∑N

i=j v
∗
i vif = f and, since fvi = 0 for

all i, we have also that fv = 0. Set b = f ∗f and c = vff ∗v∗. Then bc = 0 and
b ⊥ c in the notation of [HR]. The stability of Bϕ(X) follows then by combining
Proposition 2.2 and Theorem 2.1 of [HR]. �

Lemma 4.16. Let (X,ϕ) be a mixing Smale space. Then the heteroclinic algebra
Bϕ(X) is strongly Morita equivalent to the stable algebra S of Putnam, [Pu1].

Proof. Let x0 ∈ X be a periodic point. Then V U(x0) is an open subset of
WX,ϕ. Let x ∈ WX,ϕ. Since V U (x0) is dense in X, [Ru1], there is an element
z ∈ V U (x0) such that d(x, z) < ǫX . Then [x, z] ∈ V U (x0) ∩ V S (x). It follows from
Lemma 4.14 that x is conjugate to [x, z] in WX,ϕ. This shows that every element
of WX,ϕ is conjugate to an element of V U (x0) and Corollary 2.14 implies now that
Bϕ(X) is strongly Morita equivalent to Aϕ

(
X, V U(x0)

)
. By Theorem 3.7 of [PS] it
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suffices now to show that the étale equivalence relations Rϕ

(
X, V U(x0)

)
and Gs(x0)

of [PS] are the same. It follows from Lemma 4.14 that Rϕ

(
X, V U(x0)

)
and Gs(x0)

are identical as sets. To see that the identity map Gs(x0) → Rϕ

(
X, V U(x0)

)
is a

homeomorphism, it suffices to show that the two topologies have the same converging
sequences. This follows easily by combining the description given on page 287 of
[PS] with Lemma 1.12 above. �

Theorem 4.17. Let (X,ϕ) be a mixing Smale space. The heteroclinic algebra
Bϕ(X) is ∗-isomorphic to the stabilized stable algebra S of [Pu1]. In symbols,

Bϕ(X) ≃ S ⊗K.
Proof. Use [BGR] in combination with Lemma 4.16 and Lemma 4.15. �
This theorem makes it possible to give cleaner formulations of the results of Put-

nam from [Pu3] regarding the functoriality of heteroclinic algebras of Smale spaces
with respect to resolving maps. For example it follows that the algebras obtained
by taking the crossed product of the stable algebras of Putnam with respect to the
canonical automorphism (these algebras are called Ruelle-algebras in [PS]) behave
just as nicely with respect to resolving maps as the stable algebra; simply because
the ∗-homomorphisms between the heteroclinic algebras induced by a resolving map
are equivariant with respect to the canonical automorphisms.

4.5. More inductive limit decompositions

4.5.1. Smale spaces from expanding maps. Let X be a compact metric
space and ψ : X → X a positively expansive map, cf. Section 3.2.2. The inverse
limit space X̃ = proj lim (X,ψ) of the sequence

X X
ψ

X
ψ

X
ψ

. . .
ψ

carries a homeomorphism ψ̃ : X̃ → X̃ defined such that

ψ̃ ((xi)
∞
i=0) = (ψ (xi))

∞
i=0 .

Note that the inverse of ψ̃ is given by the shift, i.e. ψ̃−1 ((xi))j = xj+1.

The dynamical system
(
X̃, ψ̃

)
is the natural invertible extension of (X,ψ). If d

is a metric for the topology of X there is a metric D for the topology of X̃ defined
such that

D
(
(xi)

∞
i=0 , (yi)

∞
i=0

)
=

∞∑
i=0

2−id (xi, yi) .

Note that ψ̃ is an expansive homeomorphism of X̃.

Lemma 4.18. Assume that ψ is surjective and open. It follows that
(
X̃, ψ̃

)
is a

Smale space.

Proof. We appeal first to [Rd] to get a metric d for the topology of X, a λ > 1
and an ǫ0 > 0 such that

d(x, y) ≤ ǫ0 ⇒ d (ψ(x), ψ(y)) ≥ λd(x, y). (4.23)

By Lemma 1 of [CV] there is then a δ0 ≤ ǫ0
2

such that

x, y ∈ X, d (ψ(x), y) ≤ δ0 ⇒ ψ−1(y) ∩
{
z ∈ X : d(z, x) ≤ δ0

λ

}
6= ∅. (4.24)
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It follows then that (X,ψ) satisfies condition (E) of Section 7.26 in [Ru1] and from

the work of Ruelle it follows that
(
X̃, ψ̃

)
is a Smale space. �

A positively expansive map which is also surjective and open is said to be ex-
panding.

Theorem 4.19. Assume that ψ is expanding and that the ψ-periodic points are
dense in X. Then the homoclinic algebra Aψ(X) is stably ∗-isomorphic to the hete-

roclinic algebra Bψ̃(X̃). In fact,

Bψ̃(X̃) ≃ Aψ(X)⊗K.

Proof. Define p : X̃ → X such that p ((xi)
∞
i=0) = x0 and note that p is equivari-

ant. We will show that p : WX̃,ψ̃ → X satisfies conditions 1, 4, 5 and 6 of Chapter 2.
For this purpose we first establish condition 4, i.e. that p is a local homeomorphism.

Let x ∈WX̃,ψ̃. By Lemma 4.6 there is an ǫ0 such that

U =
{
y ∈ X̃ : D

(
ψ̃j(y), ψ̃j(x)

)
< ǫ, j ≤ 0

}
is contained in W u(x) and is an open neighborhood of x for the Wagoner topology
for all ǫ ∈ ]0, ǫ0[. We choose ǫ < δ0 where δ0 comes from (4.24). Then d (yi, xi) < δ0
for all i ∈ N when y ∈ U and it follows from (4.23) that p : U → p(U) is injective.

Let y ∈ U . Since y ∈ W u(x) we have that supi∈N D
(
ψ̃i(y), ψ̃i(x)

)
< ǫ. Set δ =

ǫ− supi∈ND
(
ψ̃i(y), ψ̃i(x)

)
and

δ′ =
δ∑∞

i=0 2−iλ−i
,

where λ > 1 is the number from (4.23) and (4.24). Let z0 ∈ X such that d (z0, y0) < δ′.
By repeated use of (4.24) we construct zi ∈ X, i ≥ 0, such that z = (zi)

∞
i=0 ∈ X̃ and

d (zj , yj) ≤ λ−jδ′ for all j. It follows that D
(
ψ̃j(z), ψ̃j(y)

) ≤∑∞
i=0 2−iλ−iδ′ = δ for

all j ≤ 0. By the choice of δ this shows that z ∈ U . Since z0 = p(z) we conclude
that p(U) is open in X. Inspection of the estimates show that in fact,

D
(
ψ̃j(z), ψ̃j(y)

) ≤ ∞∑
i=0

2−iλ−id (z0, y0) ,

for all j ≤ 0, and this proves that the inverse of p : U → p(U) is continuous,
completing the proof that condition 4 holds.

Condition 1 follows from condition 4 since p is equivariant; the required local
conjugacy χ′ can be defined as p ◦ χ ◦ p−1 in a neighborhood of p(x).

To establish condition 5 of Chapter 2 it suffices to show that p : WX̃,ψ̃ → X is
surjective. Since we assume that the ψ-periodic points are dense in X it suffices
to consider a ψ-periodic point x0 ∈ X and show that {z0 ∈ X : d (z0, x0) < δ0} ⊆
p
(
WX̃,ψ̃

)
. Let x ∈ X̃ be the ψ̃-periodic point such that p(x) = x0. By repeated use

of (4.24) in the same way as above we find z ∈ X̃ such that d (zi, xi) ≤ λ−iδ0 for all
i ∈ N. Then z ∈W u(x) and p(z) = z0.

To check that also condition 6 of Chapter 2 is fullfilled, let q, q′ be periodic
point for ψ̃ and x ∈ W u(q), y ∈ W u(q′) elements such that that p(x) ∼ p(y) in X.
It follows that limk→∞ d

(
ψk(x0), ψ

k(y0)
)

= 0. Since ψ is positively expansive this

implies that ψk(x0) = ψk(y0) for some k ∈ N. Since ψk is a local homeomorphism
it follows from the preceding that there are open neighborhoods in the Wagoner
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topology, Ux of x and Uy of y, and a homeomorphism χ : Ux → Uy such that
ψk (χ(z)0) = ψk (z0) for all z ∈ Ux and χ(x) = y. It follows then that

lim
n→∞

sup
z∈Ux

D
(
ψ̃n (χ(z)) , ψ̃n(z)

)
= 0,

so that (Ux, Uy, χ) is a local conjugacy from x to y in WX̃,ψ̃. This shows that also
condition 6 of Chapter 2 is fullfilled.

It follows now from Theorem 2.13 that Aψ(X) and Bψ̃(X̃) are strongly Morita
equivalent. Since both algebras are separable by Lemma 1.21 we conclude from
[BGR] that the algebras are stably ∗-isomorphic. But Bψ̃(X̃) is stable. When ψ̃ is
mixing this follows from Lemma 4.18 and Lemma 4.15. Since ψ̃ is non-wandering,
because we assume that the ψ-periodic points are dense, the stability ofBψ̃

(
X̃
)

in the
general case follows from the mixing case by use of Smales ’spectral decomposition’,
cf. [Pu3] or 7.4 in [Ru1]. �

Remark 4.20. It should be observed that the density of the ψ-periodic points
is automatic, given the other two conditions, when X is connected. See Lemma 2
of [Sa]. Furthermore, the ψ-periodic points are dense in X whenever X̃ is mixing
since the periodic points are dense in a mixing Smale space, cf. 7.19 of [Ru1]. �

Remark 4.21. As pointed out in Remark 1.14, the homoclinic algebra Aψ(X) is
the same as the algebra coming from the construction of Renault. Hence Theorem
4.19 gives the answer to the question of Putnam from page 4.14 of [Pu2]. �

Corollary 4.22. In the setting of Theorem 4.19 the heteroclinic algebra Bψ̃(X̃)
is the inductive limit of a sequence

A1 A2 A3
. . .

where An ≃ C (Xn)⊗K for some compact metric space Xn of dimension DimXn =
DimX.

Proof. It follows from Corollary 2.2 of [Re3] and Proposition 2.2 of [MW] that
Aψ(X)⊗K can be realized as the inductive limit of such a sequence. In particular,
the fact that DimXn = DimX for all n follows from (e.g. ) Theorem 1.12.7 on
page 138 of [En]. �

Remark 4.23. By Proposition 2.1 of [KuR] Aψ(X) and Bψ̃

(
X̃
)

are simple if
and only if ψ is exact in the sense that for every non-empty open subset U ⊆ X
there is an m ∈ N such that ψm(U) = X. By Theorem 6.1 of [Re3] Aψ(X) will then
have a unique trace state and Bψ̃

(
X̃
)

a densely defined lower semi-continuous trace
which is unique up to scalar multiplication. It follows from Corollary 4.22 and the
work of Gong [G] that when DimX is finite, Bψ̃(X̃) is simple and the K-groups of

Bψ̃(X̃) are torsion-free, then Bψ̃(X̃) is an AT-algebra, cf. Definition 3.15, necessarily
of real rank zero. �



CHAPTER 5

One-dimensional generalized solenoids

R.F. Williams has developed a theory of expanding attractors for a dynamical
system, cf. [Wi1] and [Wi2]. These can be modeled as shift maps of generalized n-
solenoids which are defined as inverse limits of immersions of n-dimensional branched
manifolds satisfying certain axioms. In the one-dimensional case these axioms were
given a purely topological formulation by I.Yi, [Y1], and he called them 1-dimen-
sional generalized solenoids or just 1-solenoids. See also [Y2],[Y3],[Y4],[Y5]. Under
an additional assumption about orientability he subsequently made a first study of
the stable and unstable algebras, in the sense of Putnam, which 1-dimensional gen-
eralized solenoids give rise to, cf. [Y4]. In this section we will carry this investiga-
tion further by showing that one-dimensional generalized solenoids are Smale spaces
quite generally and that the corresponding heteroclinic algebra is a simple, stable
C∗-algebra which can be realized as the inductive limit of certain sub-homogenous
algebras with one-dimensional spectrum of a type which were originally introduced
in the classification program to demonstrate the richness of the Elliott-invariant,
cf. [Th4].

5.1. The Smale-space structure of 1-solenoids

Let Γ be a finite (unoriented) graph with edgeset E and vertex set V. We consider
Γ as a compact metric space with metric d such that the edges are isometrically
homeomorphic to [0, 1], and d is the corresponding arclength metric. When x, y ∈ Γ
lie on the same edge e ∈ E of Γ we denote by [x, y] the closed interval in e between x
and y. The open interval ]x, y[ is then [x, y]\ {x, y}, and similarly, [x, y[= [x, y]\{y},
]x, y] = [x, y]\{x}. When e ∈ E we denote by int(e) the ’interior’ of e, i.e. int(e) =
e\V.

Let f : Γ→ Γ be a continuous map. Set

Γ =
{
(xi)

∞
i=0 ∈ ΓN : f (xi+1) = xi, i = 0, 1, 2, . . .

}
.

We consider Γ as a compact metric space with the metric

D
(
(xi)

∞
i=0 , (yi)

∞
i=0

)
=

∞∑
i=0

2−id (xi, yi) .

Define f : Γ→ Γ such that f(x)i = f (xi) for all i ∈ N. This is clearly a homeomor-
phism and we seek to identify conditions on f that make

(
Γ, f

)
a Smale space.

We assume that f has the following properties.

a) (Flattening) All x ∈ Γ have an open neighborhood Ux such that f (Ux) is
homeomorphic to ]− 1, 1[.

b) (Expansion) There is a constant λ > 1 such that

d (f(x), f(y)) ≥ λd(x, y)

when x, y ∈ e ∈ E and there is an edge e′ ∈ E with f ([x, y]) ⊆ e′.

57
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c) (Nonfolding) f and f 2 are locally injective on e for each e ∈ E.
d) (Markov) f (V) ⊆ V.

Lemma 5.1. There is an ǫ > 0 with the following property: When

x0, x1, x
′
0, x

′
1, y0, y1, y2 ∈ Γ

satisfy that f (y2) = y1, f (y1) = y0, f (x1) = x0, f (x′1) = x′0, and

d (xi, yi) ≤ ǫ, d (x′i, yi) ≤ ǫ, i = 0, 1, (5.1)

then there are elements z1, z2, z
′
1, z

′
2 ∈ Γ such that

• f (z2) = z1, f (z1) = x0,
• f (z′2) = z′1, f (z′1) = x′0,
• d (z1, y1) ≤ λ−1d (x0, y0), d (z2, y2) ≤ λ−1d (z1, y1),
• d (z′1, y1) ≤ λ−1d (x′0, y0), d (z′2, y2) ≤ λ−1d (z′1, y1),
• d (z1, z

′
1) ≤ λ−1d (x′0, x0), d (z2, z

′
2) ≤ λ−1d (z1, z

′
1).

Proof. Note that every vertex v ∈ V has a neighborhood Ωv with the property
that Ωv ∩V = {v} and

d(x, y) = d(x, v) + d(y, v) (5.2)

when x, y ∈ Ωv and x, y are not contained in the same edge of Γ. We arrange that
Ωv ∩Ωw = ∅ when w 6= v, and by the nonfolding condition we can also arrange that
f is injective on e ∩ Ωv for any e ∈ E and any v ∈ V.

For δ > 0 and v ∈ V, set

Uv = {x ∈ Γ : d(x, v) < δ} ,
and U =

⋃
v∈V Uv. We claim that when δ is small enough we have

i) Dist (Uv, Uw) > 0 when v 6= w.
ii) Uv ⊆ Ωv for all v ∈ V.
iii) f (Uw) ∩ Uv = ∅ unless f(w) = v.
iv) f (Uv) ⊆ Ωf(v) for all v ∈ V.
v) f (Uv) and f 2 (Uv) contain exactly one vertex for each v ∈ V.
vi) f (Uv) is homeomorphic to ]− 1, 1[ for each v ∈ V.
vii) f (Uv ∩ f (Uw)) ⊇ Uf(v) ∩ f (Uv) when v, w ∈ V and f(w) = v.
viii) When x ∈ Γ\U and f(x) ∈ Uw for some w ∈ V, there is an open interval

ix = ]x′, x′′[ containing x such that f (Ix) ⊆ Ωw, f 2 (Ix) ⊆ Ωf(w), f
2 is

injective on Ix, and

f 2 (Ix) ⊇ Uf(w) ∩ f (Uw) .

i), ii), iii), iv), v) and vi) will hold for all sufficiently small δ. It follows from the
expansion and flattening conditions that the same is true for vii).

It remains to check that we can arrange viii) by choosing δ sufficiently small. Note
that f is finite-to-one. In particular, f−1 (V) is a finite set. For each x ∈ f−1 (V) \V
there is an open interval Ix containing x such that f 2 (Ix) = ]ax, f

2(x)]∪ [f 2(x), bx[⊆
Ωf2(x) for some ax, bx ∈ Γ close to f 2(x) and f (Ix) ⊆ Ωf(x). (The first property uses
the nonfolding condition.) By shrinking Ix we can ensure that f 2 is injective on Ix.
Then

∩x∈f−1(w)]ax, f(w)]∪ [f(w), bx[ ⊇ ]av, f(w)] ∪ [f(w), bv[



5.1. THE SMALE-SPACE STRUCTURE OF 1-SOLENOIDS 59

for some bv, av sufficiently close to v = f(w). (This uses the flattening condition.)
It suffices then to take the δ > 0 so small that

f−1 (Uw) \U ⊆
⋃

x∈f−1(w)

Ix

and
Uf(w) ∩ f (Uw) ⊆ ]av, f(w)] ∪ [f(w), bv[

for all w ∈ V.
To proceed with the proof take ǫ > 0 so small that

2ǫ ≤ min
v 6=w

Dist (Uv, Uw) , (5.3)

2ǫ ≤ dist (Γ\U,V) , (5.4)

and such that

x, y ∈ Γ, d(x, y) ≤ ǫ ⇒ 2d (f(x), f(y)) ≤ min
w 6=v

Dist (Uv, Uw) . (5.5)

Consider then x0, x1, x
′
0, x

′
1, y0, y1, y2 ∈ Γ as in the statement of the lemma.

Assume first that there is an edge e ∈ E such that x0, x
′
0, y0 ∈ int(e). Then the

Markov condition implies that y1 ∈ int (e1) for some e1 ∈ E, and it follows from
the Markov and nonfolding conditions that f (e1) ⊇ e. There is then an element
z1 ∈ int (e1) such that f (z1) = x0 and f ([z1, y1]) = [x0, y0]. Note that d (z1, y1) ≤
λ−1d (x0, y0) by the expansion condition. Similarly, there is an element z′1 ∈ int (e1)
such that f (z′1) = x′0, f ([z′1, y1]) = [x′0, y0] and d (z′1, y1) ≤ λ−1d (x′0, y0). Then
f ([z1, z

′
1]) ⊆ f ([z1, y1])∪ f ([z′1, y1]) ⊆ e and hence λd (z1, z

′
1) ≤ d (x0, x

′
0), thanks to

the Markov condition. Since z1, z
′
1, y1 ∈ int (e1) we can repeat the construction to

obtain z2, z
′
2 with the required properties.

Assume that there is no edge containing x0, x
′
0 and y0 in its interior, but an edge

e ∈ E with x1, x
′
1, y1 ∈ int(e). It follows from (5.1),(5.3) and (5.4) that there is a

vertex v ∈ V such that x0, x
′
0, y0 ∈ Uv. Assume first that x0 and y0 do not lie on

the same edge. Note that (5.5) implies that 2d (f(t), f (x1)) ≤ minw 6=v Dist (Uv, Uw)
for all t ∈ [x1, y1]. Since f (x1) = x0, f (y1) = y0 and x0, y0 are not contained
in the interior of a common edge there must be an element z ∈ [x1, y1] ⊆ e
such that f(z) = v. It follows then from the expansion condition and (5.2) that
λd (x1, y1) ≤ λd (x1, z) + λd (z, y1) ≤ d (x0, v) + d (y0, v) = d (x0, y0). The same
estimate, λd (x1, y1) ≤ d (x0, y0), follows from the expansion condition when x0

and y0 do lie on the same edge since f ([x1, y1]) = [x0, y0]. Similarly, we find that
λd (x′1, y1) ≤ d (x0, y0) and λd (x1, x

′
1) ≤ d (x0, x

′
0), regardless of the position of x0, x

′
0

and y0 in Uv. We set z1 = x1, z
′
1 = x′1 in this case. Then z1, z

′
1, y1 ∈ int(e) and we

can construct z2 and z′2 by the method of the first case above.
Assume then that neither {x0, x

′
0, y0} nor {x′1, x1, y1} is contained in the interior

of the same edge. By combining (5.1), (5.3) and (5.4) it follows that x1, x
′
1, y1 ∈

Uw and x0, x
′
0, y0 ∈ Uv ∩ f(Uw) for some v, w ∈ V with f(w) = v. We split the

considerations into two cases:
y2 /∈ U : Then y2 ∈ int(e) for some e ∈ E. It follows from condition viii) above

that there is an interval I ⊆ int(e) such that y2 ∈ I, f(I) ⊆ Ωw and f 2(I) ⊇
Uv ∩ f(Uw). Furthermore, the sets I, f(I) and f 2(I) contain at most one vertex
each and f 2 is injective on I. Consider a, b ∈ I. If f(I) does not contain a vertex,
neither does I and the expansion property ensures that λd(a, b) ≤ d (f(a), f(b)).
If f(I) contains a vertex it must be w and we choose c ∈ I such that f(c) = w.
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Then λd (a, b) ≤ λd (a, c)+λd (c, b) ≤ d (f(a), w)+d (f(b), w) = d (f(a), f(b)) when
[a, b] contains c. If not, we get the estimate λd (a, b) ≤ d (f(a), f(b)) from the
expansion condition. Since f is injective on f(I) we can use the same arguments to
show that λd (f(a), f(b)) ≤ d (f 2(a), f 2(b)). It follows that when we choose z2, z

′
2 ∈ I

such that f 2 (z2) = x0 and f 2 (z′2) = x′0 and set z1 = f (z2) , z
′
1 = f (z′2), we will have

obtained the desired properties.
y2 ∈ U : Then y2 ∈ Uv′ for some v′ ∈ V with f (v′) = w. Let then I be an interval,

possibly in a slightly extended sense to allow a single vertex in I, containing y2 such
that f(I) = f (Uv′), f

2 is injective on I and the sets I, f(I) and f 2(I) contain at most
one vertex. To construct such an interval I, note first that there are intervals (a, v′]
and [v′, b) such that y2 ∈ (a, v′] and f ((a, v′] ∪ [v′, b)) = f (Uv′). If f is injective on
f (Uv′) we take I = (a, v′]∪ [v′, b). If not we find the point a′ on the edge containing
(a, v′] such that f 2 ((a, v′]) = f 2 (Uv′). We take then I = (a, v′]. In both cases we
have that f 2(I) = f 2 (Uv′) ⊇ f (Uw ∩ f (Uv′)) ⊇ Uv ∩ f (Uw) ⊇ {x0, x

′
0, y0} and we

repeat the construction which was used in the case where y2 /∈ U . �

The conditions used by Yi in the definition of 1-solenoids were not exactly a)–d)
above, but the following, cf. [Y1]:

a’) (Flattening) There is a d ∈ N such that for all i ≥ d and all x ∈ Γ there is
a neighborhood U i

x of x with f i (U i
x) homeomorphic to ]− 1, 1[.

b’) (Expansion) There are constants C > 0 and λ > 1 such that

d (fn(x), fn(y)) ≥ Cλnd(x, y)

for every n ∈ N when x, y ∈ e ∈ E and there is an edge e′ ∈ E with
fn ([x, y]) ⊆ e′.

c’) (Nonfolding) fn is locally injective on e for each e ∈ E and each n ∈ N.
d’) (Markov) f (V) ⊆ V.

Condition a’) is stronger than the flattening condition used by Yi, [Y1], but
only in the absence of the indecomposability and nonwandering conditions emposed
in [Y1].

From [Y1] we take the following

Lemma 5.2. (Lemma 2.9 of [Y1].) Assume that f satisfies conditions a’), b’),
c’) and d’). There is an l ∈ N and an κ > 0 such that

d
(
fk(x), fk(y)

) ≤ κ ∀k ∈ N ⇒ f l(x) = f l(y).

In [Y2] this lemma is used to conclude that
(
Γ, f

)
is a Smale space under some

additional assumptions. However, the sketch of proof in [Y2] works only when f is
both open and expansive. Furthermore, the additional assumptions are redundant.
In fact, the following holds.

Theorem 5.3. Assume that (Γ, f) satisfies conditions a’), b’), c’) and d’). Then(
Γ, f

)
is a Smale space.

Proof. It follows easily from Lemma 5.2 that f is expansive, cf. Proposition 2.11
of [Y1]. Let δ > 0 be an expansive constant for f . To define the local product
structure note that for some sufficiently large m ∈ N, the map fm will satisfy
conditions a),b),c) and d), possibly with a different λ > 1. We use this new λ > 1
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to define a new metric D1 for the topology of Γ such that

D1(x, y) =
∞∑
j=0

λ−jd (xjm, yjm) . (5.6)

Let δ′ > 0 be such that

x, y ∈ Γ, D1(x, y) ≤ δ′ ⇒ D
(
f
j
(x), f

j
(y)
)
< δ, (5.7)

for j = 0, 1, 2, . . . , m. It follows from Lemma 5.1 that there is an ǫ > 0 with the
property that when x, y ∈ Γ and D1(x, y) ≤ ǫ there is an element z ∈ Γ such that

z0 = x0 (5.8)

and
d
(
z(j+1)m, y(j+1)m

) ≤ λ−1d (zjm, yjm) . (5.9)

for all j ∈ N. We may assume that 2ǫλ
λ−1
≤ δ′.

If z′ ∈ Γ is another element of Γ with the properties (5.8) and (5.9) we find that

D1

(
f
jm

(z), f
jm

(z′)
)

=
∞∑

i=j+1

λ−id
(
zmi−mj , z′mi−mj

)
= λ−jD1 (z, z′)

≤ D1 (z, z′) ≤ D1 (z, y) +D1 (y, z′)

≤ 2ǫλ

λ− 1
≤ δ′

and

D1

(
f
−jm

(z), f
−jm

(z′)
)

=

∞∑
i=0

λ−id
(
zmi+mj , z

′
mi+mj

)
≤

∞∑
i=0

λ−id (zmi+mj , ymi+mj) +

∞∑
i=0

λ−id
(
z′mi+mj , ymi+mj

)
≤

∞∑
i=0

λ−i−jd (zmi, ymi) +
∞∑
i=0

λ−i−jd (z′mi, ymi)

≤ D1 (z, y) +D1 (z′, y) ≤ 2ǫλ

λ− 1
≤ δ′

for all j ≥ 0. It follows then from (5.7) that D
(
f
k
(z), f

k
(z′)
)
< δ for all k ∈ Z and

hence that z = z′ since δ is an expansive constant for
(
Γ, D, f

)
.

We can therefore define

[·, ·] :
{
(x, y) ∈ Γ× Γ : D1(x, y) < ǫ

}→ Γ

such that [x, y] is the unique element z of Γ for which (5.8) and (5.9) hold.
To verify that this gives

(
Γ, f

)
the structure of a Smale space we prove first that

there is an ǫ0 ≤ ǫ such that

i) [·, ·] :
{
(x, y) ∈ Γ× Γ : D1(x, y) < ǫ0

}→ Γ is continuous.

ii) [x, x] = x for all x ∈ Γ.
iii) [[x, y] , z] = [x, z] = [x, [y, z]] when D1(x, y) ≤ ǫ0, D1 ([x, y] , z) ≤ ǫ0 and

D1 (x, [y, z]) ≤ ǫ0.
iv) f ([x, y]) =

[
f(x), f(y)

]
when D1 (x, y) ≤ ǫ0.
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To check i) we use (5.9) to find that

D1 ([x′, y′] , [x, y]) ≤ D1 ([x′, y′] , y′) +D1 (y′, y) +D1 ([x, y] , y)

≤ 1

1− λd (x′0, y
′
0) +

1

1− λd (x0, y0) +D1(y
′, y)

when D1(x, y) ≤ ǫ and D1 (x′, y′) ≤ ǫ. Hence i) holds for any choice of 0 < ǫ0 ≤ ǫ.
ii) follows from the uniqueness of the element z satisfying (5.8) and (5.9).
To obtain iii) note that [[x, z] , z]0 = [x, z]0 = [x, [y, z]]0 = x0, that

d
(
[[x, y] , z]im+m , [x, z]im+m

)
≤ d

(
[[x, y] , z]im+m , zim+m

)
+ d

(
[x, z]im+m , zim+m

)
≤ λ−1d ([[x, y] , z]im , zim) + λ−1d ([x, z]im , zim)

and that

d
(
[x, z]im+m , [x, [y, z]]im+m

)
≤ d

(
[x, z]im+m , zim+m

)
+ d

(
zim+m, [y, z]im+m

)
+ d

(
[y, z]im+m , [x, [y, z]]im+m

)
≤ λ−1d ([x, z]im , zim) + λ−1d (zim, [y, z]im) + λ−1d ([y, z]im , [x, [y, z]]im)

for all i ∈ N. As above it follows from this that

D1

(
f
jm

([[x, y] , z]) , f
jm

([x, z])
)
≤ 4ǫ1λ

λ− 1

and

D1

(
f
jm

([x, z]) , f
jm

([x, [y, z]])
)
≤ 8ǫ1λ

λ− 1

for all j ∈ Z, where

ǫ1 = max
{
D1 ([[x, y] , z] , z) , D1 ([x, z] , z) ,

D1 (y, [y, z]) , D1 (y, [y, z]) , D1 ([y, z] , [x, [y, z]])
}
.

It follows from i) that 8ǫ1λ
λ−1
≤ δ′ when ǫ0 is sufficiently small. Then iii) will hold with

such a choice of ǫ0.
To establish iv) let κ > 0 be the constant from Lemma 5.2. Note that

d
(
f ([x, y])i ,

[
f(x), f(y)

]
i

) ≤ d
(
f ([x, y])i , f(y)i

)
+ d

(
f(y)i,

[
f(x), f(y)

]
i

)
= d

(
[x, y]i−1 , yi−1

)
+ d

(
f(y)i,

[
f(x), f(y)

]
i

)
for all i ≥ 1. Since d ([x, y]jm, yjm) ≤ λ

λ−1
D1(x, y) and d

(
f(y)jm,

[
f(x), f(y)

]
jm

) ≤
λ
λ−1

D1

(
f(x), f(y)

)
for all j ∈ N it follows that

d
(
f ([x, y])i ,

[
f(x), f(y)

]
i

) ≤ κ

for all i ≥ 1 provided ǫ0 is so small that λ
λ−1

max
{
D1(x, y), D1

(
f(x), f(y)

)} ≤ κ

when D1(x, y) ≤ ǫ0. Since f ([x, y])0 = f (x0) =
[
f(x), f(y)

]
0

it follows from

Lemma 5.2 that f ([x, y]) =
[
f(x), f(y)

]
when D1(x, y) ≤ ǫ0.

Define now a new metric D2 on Γ such that

D2(x, y) =

∞∑
i=0

λ−id (xi, yi) .
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When [x, y] = y and [x, z] = z for some x ∈ Γ with D1(y, x) ≤ ǫ0 and D1(z, x) ≤ ǫ0
we find that

D2

(
f(y), f(z)

)
=

∞∑
i=1

λ−id (yi−1, zi−1) = λ−1D2(y, z) (5.10)

since z0 = y0 = x0. When [y, x] = y and [z, x] = z for some x ∈ Γ with D1(y, x) ≤ ǫ0
and D1(z, x) ≤ ǫ0 we find from Lemma 5.1 applied to fm that

D2

(
f
−m

(y), f
−m

(z)
)

=

∞∑
i=0

λ−id
(
[y, x]i+m , [z, x]i+m

) ≤ λ−1D2(y, z). (5.11)

Set

D3(x, y) =

m−1∑
j=0

λ
j
mD2

(
f
−j

(x), f
−j

(y)
)

and note that D3 is a metric for the topology of Γ and hence equivalent to D1. Thus
i)–iv) hold withD1 replaced byD3, provided ǫ0 is changed accordingly. Furthermore,
we have now that there is an ǫ′0 > 0 such that

v) D3

(
f(y), f(z)

) ≤ λ−
1
mD3(y, z) when [x, y] = y and [x, z] = z for some

x ∈ Γ with D3(y, x) ≤ ǫ′0 and D3(z, x) ≤ ǫ′0, and

vi) D3

(
f
−1

(y), f
−1

(z)
) ≤ λ−

1
mD3(y, z) when [y, x] = y and [z, x] = z for some

x ∈ Γ with D3(y, x) ≤ ǫ′0 and D3(z, x) ≤ ǫ′0.

v) follows from (5.10) since λ−1 ≤ λ−
1
m and vi) follows from (5.11). The properties

i) through vi) are exactly what is required in a Smale space, cf. Section 7.1 of [Ru1]
and [Pu1]. �

5.2. The heteroclinic algebra of 1-solenoids

Let (Γ, f) and
(
Γ, f

)
be as in Theorem 5.3. Let d ∈ N be the number from the

flattening condition a’).

Lemma 5.4. Let x, y ∈ Γ be two elements such that xi = yi for some i ∈ N
and such that [x, y] is defined. Assume that there is a j > i, j − i ≥ d, and open
neighborhoods Uxj

and Uyj
of xj and yj such that f j−i

(
Uxj

)
= f j−i

(
Uyj

) ≃]− 1, 1[.
It follows that [z, y]i = zi for all z in an open neighborhood of x.

Proof. Since f j−i
(
Uyj

) ≃ ]− 1, 1[ and j − i ≥ d it follows from the expansion
and flattening axioms that there is an open neighborhood Ω of yi = xi such that f i

is injective on Ω ∩ f j−i (Uyj

)
. By construction of [·, ·] there is a K > 0 such that

d ([z, y]k, yk) ≤ Kd (z0, y0) for all k ∈ N whenever [z, y] is defined. Since x0 = y0 this
implies that there is an open neighborhood V of x such that zi ∈ Ω∩ f j−i (Uxj

)
and

[z, y]j ∈ Uyj
∩f i−j (Ω) when z ∈ V . Then zi, [z, y]i ∈ Ω∩f j−i (Uyj

)
= Ω∩f j−i (Uxj

)
when z ∈ V . Since f i ([z, y]i) = z0 = f i (zi) we conclude that [z, y]i = zi for all z
in V . �

Set W = WΓ,f . For each i ∈ N we let Ri denote the subequivalence relation

of Rf

(
Γ,W

)
consisting of the pair (x, y) ∈ W 2 such that f i (x0) = f i (y0) and

f i (Ux0) = f i (Uy0) ≃] − 1, 1[ for open neighborhoods Ux0 and Uy0 of x0 and y0,
respectively.
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Lemma 5.5. Ri is open in Rf

(
Γ,W

)
when i ≥ d.

Proof. Consider an element (x, y) ∈ Ri. It follows from the proof of Lemma
4.14 that there is a k > i and a local conjugacy µ from x to y in W such that

µ(z) =
(
f
)−k [

f
k
(z), f

k
(y)
]

in an open neighborhood of x in W . Since we have
that f

k
(x)k−i = f i (x0) = f i (y0) = f

k
(y)k−i and f i (Ux0) = f i (Uy0) for some

open neighborhoods Ux0 of x0 = f
k
(x)k and Uy0 of y0 = f

k
(y)k, respectively, we

conclude from Lemma 5.4 that there is an open neighborhood V of x in W such
that

[
f
k
(z), f

k
(y)
]
k−i = f

k
(z)k−i = f i (z0) for all z ∈ V . It follows that f i (µ(z)0) =[

f
k
(z), f

k
(y)
]
k−i = f i (z0) for all z in a neighborhood of x in W . This shows that

Ri is open in Rf

(
Γ,W

)
. �

It follows from Lemma 5.5 that Ri is an étale equivalence relation when i ≥ d.

Lemma 5.6. Assume that f : Γ → Γ is surjective and let i ≥ d, where d ∈ N is
the number from the flattening condition a’). Then C∗

r (Ri)⊗ K is ∗-isomorphic to
an extension E of the form

0 C0 (Γ\V)⊗K E ⊕v∈VF
i
v ⊗K 0, (5.12)

where the F i
v, v ∈ V, are finite-dimensional.

Proof. Set Γ0 = f−i (V) and Γ1 = Γ\Γ0. Then

W1 = {x ∈W : x0 ∈ Γ1}
is an open Ri-invariant subset of W and it follows from Proposition 4.5 of [Re1]
that C∗

r (Ri) is an extension of C∗
r (Ri|W0) by C∗

r (Ri|W1), where W0 = W\W1. Note
that it follows from the nonfolding condition that two elements x, x′ of W1 are Ri-
equivalent if and only if f i (x0) = f i (x′0). Therefore Ri|W1 is a second countable
proper principal groupoid in the sense of [MW] and it follows from Proposition 2.2
of [MW] that C∗

r (Ri|W1)⊗K ≃ C0 (W1/Ri)⊗K. Since f i is a local homeomorphism
on W1 and maps W1 onto Γ\V we find that W1/Ri is homeomorphic to Γ\V and
conclude therefore that C∗

r (Ri|W1)⊗K ≃ C0 (Γ\V)⊗K.
Note that Γ0 is finite since f is finite-to-one. By definition of the Wagoner

topology each element of W0 is isolated in W and hence W0 is countable. For each
v ∈ V, set Yv = {x ∈W : f i (x0) = v}. Then W0 is the disjoint union of the Yv
and elements of W0 can only be Ri-equivalent if they belong to the same Yv. It
follows that C∗

r (Ri|W0) ≃ ⊕v∈VC
∗
r (Ri|Yv). Let Ri,v be the equivalence relation on

f−1(v) defined such that two elements s, t ∈ f−1(v) are equivalent if and only if
there are neighborhoods Us and Ut of s and t such that f i (Us) = f i (Ut) ≃] − 1, 1[.
Then two elements, x and x′, of Yv are Ri-equivalent if and only if x0 and x′0 are
Ri,v-equivalent. It follows that C∗

r (Ri|Yv) ⊗ K ≃ C∗
r (Ri,v) ⊗ K. Since C∗

r (Ri,v) is
finite-dimensional, this completes the proof. �

Proposition 5.7. Assume that (Γ, f) satisfies conditions a’), b’), c’) and d’),
and that f is surjective. It follows that Bf(Γ)⊗K is the inductive limit of a sequence

A1 A2 A3
. . .

where each Ai is an extension of the form (5.12).
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Proof. Note that Rk ⊆ Rk+1 when k ≥ d. Furthermore, it follows from
Lemma 5.2 and the flattening axiom that Rf

(
Γ,W

)
=
⋃∞
k=1Rk. It follows then

from Lemma 1.24 that Bf (Γ) is the limit of the sequence

C∗
r (Rd) C∗

r (Rd+1) C∗
r (Rd+2) . . .

By Lemma 5.6 this yields the proposition. �
Consider the following condition:

e’) (Mixing) For every edge e ∈ E there is an m ∈ N such that Γ ⊆ fm(e).

It follows from the work of Williams and Yi, cf. 1.6 of [Wi1] and Lemma 2.14
of [Y1], that condition e’) holds when (Γ, f) satisfies conditions a’),b’),c’), d’) plus
the following two:

f’) (Indecomposability) Γ is not the union of two nonempty, closed f -invariant
subsets.

g’) (Nonwandering) No point in Γ is wandering under f .

Presumably e’) is equivalent to f’) and g’) in the presence of conditions a’)–d’),
and the reason I prefer e’) over f’) and g’) is that e’) is easiest to check in examples.

Lemma 5.8. Assume that (Γ, f) satisfies conditions a’), b’), c’), d’) and e’). It
follows that for every non-degenerate interval I ⊆ Γ there is an m ∈ N such that
fm(I) ⊇ Γ. Furthermore,

(
Γ, f

)
is mixing in this case.

Proof. Let I ⊆ Γ be non-degenerate interval. It follows from the expansion
and nonfolding conditions that there is an n ∈ N such that fn(I) contains an edge.
By condition e’) this implies that Γ = fm(I) for some m ≥ n. To show that

(
Γ, f

)
is mixing we take an arbitrary ǫ > 0 and an open non-empty subset U ⊆ Γ. By
definition of D and compactness of Γ there is a k ∈ N such that

x, y ∈ Γ, xj = yj, j ≤ k ⇒ D(x, y) ≤ ǫ.

Furthermore, there is an open non-degenerate interval I ⊆ Γ and an i ∈ N such
that

{
x ∈ Γ : xi ∈ I

} ⊆ U . As we have just seen there is then an n ∈ N such that

fn(I) = Γ. Let j ≥ k − i and consider an element z ∈ Γ. Since fn(I) = Γ there
is an a ∈ I such that fn(a) = zi+j . Since f is surjective there is an element y ∈ Γ
such that yi+j = a. Note that fn (yl) = fn+i+j−l (yi+j) = f i+j−l (zi+j) = zl when

l ≤ i+ j. Since i+ j ≥ k it follows that D
(
f
n
(y), z

) ≤ ǫ. Since yi+j ∈ I we see that

y ∈ f−j(U). Hence we have shown that dist
(
f
n−j

(U), z
) ≤ ǫ for all z ∈ Γ and all

j ≥ k − i. It follows that f is mixing. �
Let d ∈ N and l ∈ N be the numbers from the flattening condition a’) and

Lemma 5.2, respectively. Furthermore, we let m ∈ N and λ0 > 1 be such that

d (fm(x), fm(y)) ≥ λ0d (x, y) (5.13)

when x, y ∈ e ∈ E and fm ([x, y]) ⊆ e′ for some edge e′ ∈ E.
Let p = (p0, p1, . . . ) ∈ Γ be f -periodic. For δ > 0, set

Γp,δ =
{
x ∈ Γ : d

(
ximd|p|, p0

)
< δ, i ∈ N

}
,

and
Ip0,δ =

{
z ∈ Γ : z = x0 for some x ∈ Γp,δ

}
.

Lemma 5.9. Let ǫ > 0 be given. There is a δ > 0 such that
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i) Γp,δ ⊆W u(p, ǫ),
ii) Ip0,δ ≃ ]− 1, 1[,
iii) x 7→ x0 is a homeomorphism from Γp,δ onto Ip0,δ.

Proof. Let Up0 be an open neighborhood of p0 such that fmd|p| (Up0) ≃ ]−1, 1[.
We assume, as we may, that both Up0 and fmd|p| (Up0) at most contains one vertex,
which must then be p0. Then fmd|p|

(
Up0 ∩ fmd|p| (Up0)

)
is an open interval contained

in fmd|p| (Up0). There is a δ > 0 such that {z ∈ Γ : d (z, p0) < δ} ⊆ Up0 ,

x, y ∈ Γ, d(x, y) < δ ⇒ d
(
f j(x), f j(y)

)
< κ, j = 0, 1, 2, . . . , md|p|, (5.14)

where κ < ǫ
2

and κ is smaller than an expansive constant for
(
Γ, f

)
, and

{z ∈ Γ : d (z, p0) < δ} ∩ fmd|p| (Up0) ⊆ fmd|p|
(
Up0 ∩ fmd|p| (Up0)

)
. (5.15)

It follows then from (5.14) that Γp,δ ⊆ W u(p, ǫ), i.e. i) holds. To establish ii) and
iii) it suffices now to show that

Γp,δ ∋ x 7→ x0 ∈ fmd|p| (Up0) ∩ {z ∈ Γ : d (z, p0) < δ} (5.16)

is a homeomorphism. The map is injective because we chose κ smaller than an ex-
pansive constant for

(
Γ, f

)
. To show that the map is surjective, let z′ ∈ fmd|p| (Up0)∩

{z ∈ Γ : d (z, p0) < δ}. It follows from (5.15) that

z′ ∈ fmd|p| (Up0 ∩ fmd|p| (Up0)) ,
i.e. there is an element z1 ∈ Up0 ∩ fmd|p| (Up0) such that fmd|p| (z1) = z′. Since
d (z1, p0) ≤ λ−1

0 d (z, p0) < δ it follows from (5.15) that z1 ∈ fmd|p|
(
Up0 ∩ fmd|p| (Up0)

)
.

We can therefore continue by induction to construct an element x ∈ Γ such that
x0 = z′ and d

(
ximd|p|, p0

)
< δ for all i ∈ N. Then x ∈ Γp,δ and it follows that

(5.16) is surjective. Note that the preceding argument shows that when z′, z′′ ∈
fmd|p|

(
Up0 ∩ fmd|p| (Up0)

)
are sufficiently close, there are elements x′, x′′ ∈ Γp,δ such

that x′0 = z′, x′′0 = z′′ and d
(
x′imd|p|, x

′′
imd|p|

) ≤ 2d (z′, z′′) for all i ∈ N. This shows

that the inverse of (5.16) is continuous. �

Let g : [−1, 1] → Γ be a locally injective continuous map. We define an equiv-
alence relation ∼ on ] − 1, 1[ such that t ∼ s if and only if g(t) = g(s) and there
are open neighborhoods Us and Ut of s and t in ] − 1, 1[, respectively, such that
g (Us) = g (Ut) ≃]− 1, 1[. Set

R =
{
(s, t) ∈]− 1, 1[2: s ∼ t

}
.

Give R the topology inherited from ]− 1, 1[2.

Lemma 5.10. R is an étale equivalence relation.

Proof. It is trivial that R is a topological equivalence relation. To prove that
R is locally compact we will argue that R is the intersection of a closed and an
open subset of ] − 1, 1[2. To this end consider s ∈] − 1, 1[ \ g−1 (V). Since g is
locally injective on [−1, 1] it is also finite-to-one and hence g−1 (V) is finite. If t ∈
]−1, 1[\g−1(V) and g(s) = g(t), there are neighborhood Us and Ut in ]−1, 1[ of s and
t, respectively, such that g is injective on both Us and Ut, and (Us ∪ Ut)∩g−1 (V) = ∅.
Then g (Us) and g (Ut) are non-degenerate intervals such that g(s) = g(t) is in the
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interior of g (Us) ∩ g (Ut). It follows that if we shrink Us and Ut we can ensure that
g (Us) = g (Ut). This shows that

R =
{
(s, t) ∈]− 1, 1[2: g(s) = g(t)

} \ {(s, t) ∈ g−1(V)2 : s ≁ y
}

;

clearly the intersection of a closed and an open subset.
To see that r : R →] − 1, 1[ is a local homeomorphism, consider an element

(s, t) ∈ R. Let Us and Ut be open neighborhoods in ] − 1, 1[ of s and t such that
g (Us) = g (Ut) ≃]− 1, 1[. By shrinking Us and Ut we may assume that g is injective
on Ut. It follows that r : (Us × Ut) ∩R→ Us is a homeomorphism. �

We are going to use the étale equivalence relations of Lemma 5.10 in the special
case where g(−1), g(1) ∈ V and g(]− 1, 1[) = Γ. When this holds we say that R is
an open interval-graph relation.

Definition 5.11. A C∗-algebra A is called an interval building block when there
are finite-dimensional C∗-algebras F1 and F2 and ∗-homomorphisms ϕ0, ϕ1 : F1 → F2

such that A ≃ {(a, f) ∈ F1 ⊕ (C ([0, 1], F2)) : ϕ0(a) = f(0), ϕ1(a) = f(1)}.
Lemma 5.12. Let R be an open interval-graph relation. Then C∗

r (R) is an in-
terval building block.

Proof. Note that we can add vertices to Γ without affecting R. In this way
we can arrange that Γ has no loops. Let AV be the finite-dimensional C∗-algebra
generated by matrix units ex,y where x, y ∈ g−1(V) are such that g (]x− ǫ, x+ ǫ[) ∩
g (]y − ǫ, y + ǫ[) ≃]−1, 1[ for all small ǫ > 0. Note that ]−1, 1[\g−1(V) is a collection
C of open disjoint subintervals. For each e ∈ E we let Me be the full matrix algebra
generated by the matrix units f eγ,γ′, where γ, γ′ ∈ C and g(γ) = g (γ′) = e. When
e ∈ E and v ∈ V are such that v ∈ e we define ϕe,v : AV → Me such that

ϕe,v (ex,y) =

{
0, when x, y /∈ g−1(v),

f eγ,γ′ where x ∈ γ and y ∈ γ′, when x, y ∈ g−1(v).

This is well-defined since Γ has no loops. When h ∈ Cc(R) we define ah ∈ AV such
that

ah =
∑

x,y∈g−1(V)

h(x, y)ex,y

and he ∈ C (e,Me) such that

he(s) =
∑

(γ,γ′)∈C2

h
(
(g|γ)−1 (s), (g|γ′)−1 (s)

)
f eγ,γ′ , s ∈ int(e).

It is now not difficult to see that the map h 7→ (
ah, (h

e)e∈E
)

extends to a ∗-
isomorphism from C∗

r (R) onto{(
a, (f e)e∈E

) ∈ AV ⊕ (⊕e∈EC (e,Me)) : ϕe,v(a) = f e(v) when v ∈ e} .
Since the latter is an interval building block this completes the proof. �

Theorem 5.13. Assume that (Γ, f) satisfies conditions a’), b’), c’), d’) and e’).
It follows that Bf(Γ) is a stable and simple C∗-algebra which is isomorphic to the
inductive limit of a sequence of interval building blocks.
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Proof. That Bf (Γ) is stable and simple follows from Lemma 5.8, Theorem 5.3
and Theorem 4.17.

Let J be a non-empty open subinterval of the set Ip,δ of Lemma 5.9, chosen such
that the endpoints of J are in f−i0(V) for some i0 ∈ N. Set Ω =

{
x ∈ Γp,δ : x0 ∈ J

}
.

Then Ω is an open subset of WΓ,f and it follows from Lemma 5.8 that every element
of WΓ,f is conjugate to an element of Ω since e’) holds. By Corollary 2.14 this

implies that Bf (Γ) is stably isomorphic to Af
(
Γ,Ω

)
. By Lemma 5.5 Rf

(
Γ,Ω

)∩Ri

is open in Rf (Γ,Ω) when i ≥ d and it follows from Lemma 5.2 and the flattening
condition a’) that

Rf (Γ,Ω) =
∞⋃
i=d

Rf

(
Γ,Ω

) ∩ Ri.

By Lemma 1.20 we have therefore that

Af
(
Γ,Ω

)
=

∞⋃
i=d

C∗
r (R′

i),

where R′
i = Rf (W,Ω) ∩ Ri. It follows from Lemma 5.8 that fm (J) = Γ for some

m ∈ N. R′
i is then an open interval-graph relation for every i ≥ max {i0, m, d}.

Since Bf (Γ) ≃ Af
(
Γ,Ω

)⊗K it follows that Bf(Γ) can be realized as the inductive
limit of a sequence of C∗-algebras of the form Mn (C∗

r (R)), where R is an open
interval-graph relation. By Lemma 5.12 these are all interval building blocks. �

Remark 5.14. Interval building blocks are slight generalizations of the building
blocks used by the author in [Th4]. The difference is that we here allow the ∗-
homomorphisms ϕ0 and ϕ1 to be non-unital. To get an idea about the variety of
simple C∗-algebras which can aris as inductive limits of interval building blocks we
refer to [Th4], [JS] and [Ell2]. It is difficult not to wonder about which C∗-algebras
of this class can be realized by one-dimensional solenoids.



CHAPTER 6

The heteroclinic algebra of a group automorphism

6.1. Automorphisms locally expansive on post-periodic points

Let G be a locally compact metric group such that the metric d is subinvariant
in the sense that there is a constant K > 0 such that

d(ax, ay) ≤ Kd(x, y) and d(xa, ya) ≤ Kd(x, y)

for all a, x, y ∈ G. Let ϕ : G→ G a continuous group automorphism.

Theorem 6.1. Let G be a Lie group with subinvariant metric d and ϕ : G→ G
an automorphism of G (i.e. a diffeomorphic group automorphism). Then ϕ is
expansive on post-periodic points.

Proof. Let LG be the Lie algebra of G and L = dϕ : LG→ LG the differential
at the identity e of ϕ. Let LG = U ⊕N ⊕ S be the decomposition of LG obtained
by applying Lemma 3.17 to L. There is then a δ > 0 such that the exponential
map exp : LG → G is a diffeomorphism of {x ∈ LG : ‖x‖ < δ} onto an open
neighborhood of e. Let ǫ > 0 be such that

{x ∈ G : d (x, e) ≤ Kǫ} ⊆
{

exp y : ‖y‖ ≤ δ

‖L−1‖+ ‖L‖+ 1

}
.

Let p ∈ PerG. If x ∈ W u(p, ǫ) there are elements yi ∈ LG, ‖yi‖ ≤ δ
‖L−1‖+‖L‖+1

,

such that ϕi (p−1x) = exp yi for all i ≤ 0. Since ‖L−1yi‖ < δ and expL−1yi =
ϕ−1 (exp yi) = exp yi−1, we conclude that L−1yi = yi−1. It follows that yi = Liy0 for
all i ≤ 0. Since limi→−∞ ϕi (p−1x) = e, we conclude that limi→−∞ Liy0 = 0 which
means that y0 ∈ U by Lemma 3.17.

Define F : {x ∈ LG : ‖x‖ < δ} → G such that F (y) = p exp y, and note that
F is a homeomorphism from {x ∈ LG : ‖x‖ < δ} onto a neighborhood of p. From
what we have just shown it follows that W u(p, ǫ) = F (Ω), where

Ω =

{
y ∈ U : ‖y‖ ≤ δ

‖L−1‖+ ‖L‖+ 1

}
∩ F−1

({
x ∈ G : d

(
ϕi(x), ϕi(p)

) ≤ ǫ, i ≤ 0
})
.

Since Ω is compact in LG we conclude that W u(p, ǫ) is compact in G.
Let x, y ∈ W u(p) and assume that d (ϕi(x), ϕi(y)) ≤ ǫ for all i ∈ Z. As above

we get a sequence of vectors

yi ∈
{
y ∈ LG : ‖y‖ ≤ δ

‖L−1‖+ ‖L‖+ 1

}
such that ϕi (x−1y) = exp yi for all i ∈ Z. The same argument as above now shows
that yi = Liy0 for all i ∈ Z. Since ‖Liy0‖ < δ for all i ∈ Z it follows from Lemma
3.17 that y0 ∈ N . However, limn→−∞ d (ϕi (x−1y) , e) = 0 since both x and y lie

69
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in W u(p). Hence limi→−∞ Liy0 = 0, and we conclude that y0 ∈ U ∩ N = {0} by
Lemma 3.17. It follows that x = y, completing the proof. �

Lemma 6.2. Let Q ∈ Mn (Q) be invertible. Then the shift σQ of the solenoid SQ
is locally expansive on post-periodic points.

Proof. Let p ∈ SQ be periodic under σQ. It follows from Lemma 3.18 that
there is an ǫp > 0 such that W u (p, ǫp) is homeomorphic to a compact neighborhood
of 0 in U , and therefore compact. There is an m ∈ N such that mQ and mQ−1 both
have integer entries. Set

ǫ =
1

m (‖Q‖+ 1)
.

Here ‖Q‖ is the operator norm of Q with respect to a norm of Rn such that ‖x‖ ≥ 1
when x ∈ Zn. We claim that

x, y ∈ SQ, lim
n→−∞

d
(
σnQ(x), σnQ(y)

)
= 0, sup

j∈Z
d
(
σjQ(x), σjQ(y)

) ≤ ǫ ⇒ x = y.

This will show that σQ is locally expansive on post-periodic points. So let x, y ∈ SQ
such that limn→−∞ d

(
σnQ(x), σnQ(y)

)
= 0 and d

(
σjQ(x), σjQ(y)

) ≤ ǫ for all j ∈ Z.
Let Rn = U ⊕ N ⊕ S be the decomposition obtained from Lemma 3.17 applied
to Q. Set w = y−1x. It follows from Lemma 3.18 that there is an N ∈ N and
a u ∈ U such that wi = ρ (Qiu) , i ≤ −N . By increasing N if necessary we
may assume that ‖Qiu‖ ≤ δ for all i ≤ −N . Assume then that j ∈ Z is such
that ‖Qju‖ ≤ ǫ and wj = ρ (Qju). This holds when j ≤ −N . To see that it is
also true for j + 1, note that there is a z ∈ Zn such that wj+1 = ρ (Qj+1u+Qz).
Since d0 (wj+1, 0) ≤ ǫ there is a ξ ∈ Zn such that ‖Qj+1u+Qz − ξ‖ ≤ ǫ. Hence
m ‖Qz − ξ‖ ≤ m ‖Qj+1u‖ + mǫ ≤ m‖Q‖ ‖Qju‖ + mǫ ≤ (m‖Q‖+m) ǫ < 1. It
follows that ξ = Qz. Since ‖Qj+1u‖ ≤ ǫ and wj+1 = ρ (Qj+1u), we can proceed
by induction to conclude that ‖Qiu‖ ≤ ǫ and wi = ρ (Qiu) for all i ∈ Z. Hence
u ∈ N ∩ U = {0} by Lemma 3.17, and we conclude that wj = 0 for all j ∈ Z, i.e.
x = y. �

Despite the impression one may get from Lemma 6.2 and Theorem 6.1 not every
automorphism of a compact abelian group is locally expansive on post-periodic
points. The shift on TZ is a counterexample.

In the following we let G be a locally compact group with subinvariant metric
d, and we let ϕ : G → G be an automorphism of G which is locally expansive on
post-periodic points.

Lemma 6.3. The set WG,ϕ of post-periodic points is a locally compact group in
the Wagoner topology.

Proof. The periodic points clearly form a subgroup of G and it follows from
the joint continuity of the product in G that WG,ϕ is a subgroup of G. It remains to
prove the continuity of the group operations in the Wagoner topology. This follows
readily from Lemma 4.6. �

Let e be the neutral element of G. Set

P∆ϕ =
{
g ∈WG,ϕ : lim

n→∞
d (ϕn(g), e) = 0

}
.

This is clearly a subgroup of WG,ϕ and we call it the heteroclinic subgroup of ϕ. We
consider P∆ϕ as a discrete group.
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Lemma 6.4. Let x, y ∈WG,ϕ. The following are equivalent

a) x and y are conjugate in WG,ϕ.
b) limn→∞ d (ϕn(x), ϕn(y)) = 0.
c) xy−1 ∈ P∆ϕ.

Proof. The proof of Lemma 3.6 works with only the obvious changes. �

Let P∆ϕ × WG,ϕ be the transformation groupoid corresponding to the left-
translation of P∆ϕ on WG,ϕ. We can then define an isomorphism Φ : P∆ϕ×WG,ϕ →
Rϕ (G,WG,ϕ) of topological groupoids such that

Φ(h, x) =
(
xh−1, x

)
.

In this way we obtain

Theorem 6.5. Let G be a locally compact group with subinvariant metric d, and
let ϕ : G→ G be an automorphism of G which is locally expansive on post-periodic
points. Then

Bϕ(G) ≃ C0 (WG,ϕ) ⋊τ P∆ϕ,

where αh(f)(x) = f(h−1x), h ∈ P∆ϕ, f ∈ C0 (WG,ϕ).

Proof. This follows from the preceding observations since C0 (WPG)⋊τ P∆ϕ ≃
C∗
r (P∆ϕ ×WG,ϕ), cf. [Re1] or [Ph1]. �

To clarify the structure of Bϕ(G) further we observe that there is a homomor-
phism Γ : PWG,ϕ → PerG such that Γ (W u(p)) = {p}. Set PereG = Γ (P∆ϕ) so
that

PereG = {p ∈ PerG : W u(p) ∩W s(e) 6= ∅} ,
where W s(e) = {g ∈ G : limn→∞ d (ϕn(g), e) = 0}. Then PereG is a normal sub-
group of PerG, and it follows from Lemma 6.4 that two elements x, y ∈ WG,ϕ only
can be locally conjugate when Γ(x)−1Γ(y) ∈ PereG. Hence

Bϕ(G) = Aϕ (G,WG,ϕ) ≃ ⊕χ∈PerG/PereGAϕ (G,Wχ) ,

where Wχ =
⋃
p∈χW

u(p). For each χ ∈ PerG/PereG, fix a representative pχ ∈
PerG of χ. It follows from Corollary 2.14 that Aϕ (G,Wχ) is strongly Morita equiv-
alent to Aϕ (G,W u (pχ)). Since Γ−1 (e) ∩ P∆ϕ = ∆ϕ, where

∆ϕ =
{
g ∈ G : lim

|n|→∞
d (ϕn(g), e) = 0

}
is the homoclinic group of ϕ, it follows that

Rϕ (G,W u (pχ)) ≃ ∆ϕ ×W u (pχ) .

Since ∆ϕ ×W u (pχ) ≃ ∆ϕ ×W u(e) under the map (h, x) 7→ (
h, xp−1

χ

)
, we find that

Aϕ (G,Wχ) is stably isomorphic to C0 (W u(e)) ⋊τ ∆ϕ. Hence

Theorem 6.6. Let G be a locally compact group with subinvariant metric d, and
let ϕ : G→ G be an automorphism of G which is locally expansive on post-periodic
points. Then the heteroclinic algebra Bϕ(G) is stably isomorphic to

⊕PerG/PereGC0 (W u(e)) ⋊τ ∆ϕ.
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Remark 6.7. I have not found an example of a non-expansive automorphism of
a locally compact group for which the heteroclinic algebra is defined and simple. But
it can certainly happen that C0 (W u(e))⋊τ ∆ϕ is simple although ϕ is not expansive.
By using Lemma 3.29-Lemma 3.31 it is easy to construc matrices Q ∈ Mn(Z) such
that this happens for the shift on the corresponding solenoid SQ. Q = ( 2 0

0 1 ) is such
an example. �

6.2. The heteroclinic algebra of an expansive automorphism of a
compact group

Let G be a compact group and ϕ : G → G an expansive automorphism of G.
It follows from Lemma 4.3 that ϕ is locally expansive on post-periodic points. It is
the purpose of this section to investigate the structure of the heteroclinic C∗-algebra
Bϕ(G) is this case.

6.2.1. The shift of a solenoid. Let Q ∈ Gln(Q) and consider the correspond-
ing solenoid SQ, cf. (3.10). We seek first to determine the unstable manifold of 0,
i.e. W u(0), for the shift σQ acting on SQ; not only as a set, but as a locally compact
space in the Wagoner topology. Let

KQ =
{

(zi)
∞
i=1 ∈ (Zn)N : Qjz1 +Qj−1z2 + · · ·+Qzj ∈ Zn ∀j ∈ N

}
and

DQ = (Zn)N /KQ.

To make DQ into a compact group, set

Dm
Q = (Zn)m /Km

Q ,

where

Km
Q =

{
(zi)

m
i=1 ∈ (Zn)m : Qjz1 +Qj−1z2 + · · ·+Qzj ∈ Zn ∀j ∈ {1, 2, . . . , m}} .

Then Dm
Q is a finite group; indeed, Dm

Q is a quotient of Znm/LmZnm when L ∈ N is
so large that LQ has integer entries. The map

(z1, z2, . . . , zm) 7→ (z1, z2, . . . , zm−1)

induces a homomorphism pm−1 : Dm
Q → Dm−1

Q . The inverse limit group

proj lim
(
Dm
Q , pm−1

)
of the sequence

D1
Q D2

Q

p1
D3
Q

p2
D4
Q

p3 . . .p4

is then a compact group in the topology inherited from the product topology of∏∞
j=1D

j
Q. The maps (Zn)N → Dm

Q arising from the projection to the first m coordi-
nates fit together to give an isomorphism

DQ → proj lim
(
Dm
Q , pm−1

)
,

and we equip DQ with the topology coming from this identification. Define T :

(Zn)N → (Zn)N such that

T (z1, z2, z3, . . . ) = (0, z1, z2, z3, . . . ) .
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This is an injection and since Tz ∈ KQ if and only if z ∈ KQ we obtain from it an
embedding T : DQ → DQ. Note that T is continuous on DQ and that T (DQ) is
open in DQ. It follows that the inductive limit group

DQ = lim−→ (DQ, T )

of the stationary system

DQ
T

DQ
T

DQ
T . . .

is a locally compact topological group in the inductive limit topology.
Let Rn = U ⊕ N ⊕ S be the decomposition obtained by applying Lemma 3.17

to Q. Let i ∈ Z and define a homomorphism Ψi : U ×DQ → SQ such that

Ψi (u, (z1, z2, z3, . . . ) +KQ)

=

{
ρ (Qju) , j ≤ i

ρ (Qju+Qj−iz1 +Qj−i−1z2 + · · ·+Qzj−i) , j ≥ i+ 1.

The infinite commuting diagram

U ×DQ
idU ×T

Ψ0

U ×DQ
idU ×T

Ψ−1

U ×DQ
idU ×T

Ψ−2

. . .

...

SQ

gives rise to a homomorphism

ι : U × DQ → SQ.

Lemma 6.8. ι is an isomorphism of topological groups from U ×DQ onto W u(0)
equipped with the Wagoner topology.

Proof. Clearly, ι (U ×DQ) ⊆W u(0) and it follows then from Lemma 3.18 that
ι (U × DQ) = W u(0).

Injectivity of ι: If (u, (z1, z2, . . . ) +KQ) ∈ U × DQ is send to 0 under Ψi for
some i ≤ 0, we have in particular that ρ (Qju) = 0, i.e. that Qju ∈ U ∩ Zn, for
all j ≤ i. Since ‖Qju‖ converges to 0 as j goes to −∞ there is a j ≤ i such that
‖Qju‖ < 1, forcing the conclusion that u = 0. Once this is established it is clear
that (z1, z2, . . . ) ∈ KQ.

To show that ι is continuous it suffices to establish the continuity of each Ψi,
i ≤ 0. Let Ω ⊆ W u(0) be an open subset, and (u, (z1, z2, . . . ) +KQ) ∈ U ×DQ an
element of Ψ−1

i (Ω). Set ξ = Ψi ((u, (z1, z2, . . . ) +KQ)). It follows from Lemma 4.6
and Lemma 4.3 that there is an ǫ > 0 and an N ∈ N such that{

(xj)j∈Z ∈ SQ : d0

(
xj , ρ

(
Qju

)) ≤ ǫ, j ≤ i, and d0 (xj , ξj) ≤ ǫ, −N ≤ j ≤ N
}

is a subset of Ω. By Lemma 3.17 there is a δ > 0 such that ‖Qju−Qju′‖ ≤ ǫ for
all j ≤ N when u′ ∈ U and ‖u− u′‖ < δ. Then the set V consisting of the elements
(u′, (z′1, z

′
2, . . . ) +KQ) ∈ U ×DQ such that ‖u− u′‖ < δ and(

z1 − z′1, z2 − z′2, . . . , zN−i − z′N−i
) ∈ KN−i

Q

is open in U ×DQ and ξ ∈ V ⊆ Ψ−1
i (Ω).
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To complete the proof it suffices to show that ι is open, and hence that each
Ψi, i ≤ 0, is open. To this end consider (u, (z1, z2, . . . ) +KQ) ∈ U × DQ, an ǫ > 0
and an m ∈ N. Set U = U1 × U2, where U1 = {u′ ∈ U : ‖u− u′‖ < ǫ} and

U2 =
{
(z′1, z

′
2, . . . ) +KQ ∈ DQ : (z1 − z′1, z2 − z′2, . . . , zm − z′m) ∈ Km

Q

}
.

Such sets U form a base for the topology of U × DQ so it suffices to show that
Ψi (U) is open in W u(0). Let u′ ∈ U1 and (z′1, z

′
2, . . . ) + KQ ∈ U2. If x ∈ W u(0)

is sufficiently close to Ψi (u
′, (z′1, z

′
2, . . . ) +KQ) in W u(0), it follows from Lemma

3.18 and Lemma 4.6 that there is an element v ∈ U such that ‖u′ + v − u‖ < ǫ
and xk = ρ

(
Qku+Qkv

)
for all k ≤ i. If we assume that x is sufficiently close

to Ψi (u
′, (z′1, z

′
2, . . . ) +KQ) we get that xi+1 = ρ (Qi+1u′ +Qi+1v +Qz′′1 ) for some

z′′1 ∈ Zn and that Qi+1u′ + Qi+1v + Qz′′1 + z is very close to Qi+1u′ + Qz′1 for
some z ∈ Zn. If this approximation is close enough, so that also v is small
enough, we conclude that Qz′′1 + z = Qz′1, i.e. that Q (z′′1 − z′1) ∈ Zn. If only x
is sufficiently close to Ψi (u

′, (z′1, z
′
2, . . . ) +KQ) in W u(0) we can repeat this ar-

gument m times to conclude that there are elements z′′1 , z
′′
2 , . . . , z

′′
m ∈ Zn such

that xi+j = ρ
(
Qi+ju′ +Qi+jv +Qjz′′1 +Qj−1z′′2 + · · ·+Qz′′j

)
and Qj (z′′1 − z′1) +

Qj−1 (z′′2 − z′2) + · · · + Q
(
z′′j − z′j

) ∈ Zn for all j = 1, 2, . . . , m. This shows that
x ∈ Ψi (U) if x is sufficiently close to Ψi (u

′, (z′1, z
′
2, . . . ) +KQ) in W u(0). �

Remark 6.9. We are now in position to show that the homoclinic group of the
shift of a solenoid can contain torsion. Let TQ be the subgroup of

⊕NZn =
{

(zi) ∈ (Zn)N : zi = 0 for all except finitely many i
}

consisting of the elements with the property that.

∞∑
i=1

Qk+1−izi ∈ Zn

for all large k. Then Ψ0 (0, z) ∈ ∆σQ
and it follows from Lemma 6.8 that the map

z 7→ Ψ0 (0, z) puts a copy of TQ/KQ into ∆σQ
. Note that TQ/KQ is a torsiongroup.

To give an example where this group is non-trivial, let

Q =

(
2 1

2
0 2

)
.

Set z1 = (0, 1) ∈ Z2. Then (z1, 0, 0, 0, . . . ) ∈ TQ and its image in TQ/KQ has
order two. �

Lemma 6.10. Assume that Q is hyperbolic. Then P∆σQ
is dense in WSQ,σQ

.

Proof. Let p ∈ Per SQ and let qj ∈ Rn be vectors such that pj = ρ (qj) for
all j ∈ Z. Let u ∈ U and consider an element x ∈ WSQ,σQ

such that xj =
ρ (qj +Qju) , j ≤ 0. By Lemma 3.18 an arbitrary element y of W u(p) has the
form σkQ(x) for some k ∈ N and some x of this form. Since σQ restricts to a home-
omorphism of WSQ,σQ

by Lemma 4.8 it suffices to approximate such an element x
of WSQ,σQ

by an element from P∆σQ
. Let d ∈ N and ǫ > 0 be given. Let m ∈ N

be such that mQ ∈ Mn (Z). Since SQ is divisible by Lemma 3.21 there is an ele-
ment y ∈ SQ such that mdy = x. Then y0 = ρ (b0) , y1 = ρ (Qb0 +Qz1) , . . . , yd =
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ρ
(
Qdb0 +Qdz1 +Qd−1z2 +Qd−2z3 + · · ·+Qzd

)
for some b0 ∈ Rn and some z1, z2,

. . . , zd ∈ Zn. Set b = mdb0 and note that

q0 + u = b+ v (6.1)

for some v ∈ Zn. Furthermore,

xj = ρ
(
Qjb
)
, j = 0, 1, 2, . . . , d. (6.2)

As argued in the proof of Lemma 3.23 the group PU
(〈⋃

j≤−dQ
j (Zn)

〉)
is dense

in U , and hence so is the set

PU
(〈 ⋃

j≤−d
Qj (Zn)

〉
+ v − q0

)
= PU

(〈 ⋃
j≤−d

Qj (Zn)
〉)

+ PU (v − q0) .

Since PU + PS = 1 it follows that there is an element ξ ∈ ⋃j≤−dQ
j (Zn) and an

element s ∈ S such that ‖u− u′‖ is as small as we like, where u′ = s + v − q0 + ξ.
To begin to define the desired approximating element, set x′j = ρ (qj +Qju′) when

j ≤ 0. It follows from Lemma 3.17 that supj≤0 d0

(
xj , x

′
j

)
can be made arbitrarily

small if only ‖u− u′‖ is small enough. We set x′j = ρ (Qjq0 +Qju′ −Qjv) , j =

1, 2, . . . , d. It follows from (6.1) and (6.2) that sup1≤j≤d d0

(
xj , x

′
j

)
can be made

arbitrarily small if only ‖u− u′‖ is small enough. To define x′j , j > d, note that there

areN ∈ N and elements z1, z2, . . . , zN ∈ Zn such thatQdξ = z1+Q
−1z2+· · ·+Q−NzN

and that Qdq0 +Qdu′−Qdv = Qds+q0−q0 +Qdξ = Qds+z1 +Q−1z2 + · · ·+Q−NzN .
Hence

x′d = ρ
(
Qds +Q−1z2 +Q−2z3 + · · ·+Q−NzN

)
and we set

x′d+j = ρ
(
Qd+js+Q−1zj+2 +Q−2zj+3 + · · ·+Q−N+jzN

)
,

j = 1, 2, . . . , N , and x′d+N+j = ρ
(
Qd+N+js

)
, j ≥ 0. Then we have x′ ∈ P∆σQ

and

supj≤d d0

(
x′j , xj

)
is as small as we need if only ‖u − u′‖ is chosen small enough.

By Lemma 4.6 this shows that we have obtained the desired approximation of x
in W u(0). �

Lemma 6.11. Assume that Q is hyperbolic. Then BσQ
(SQ) is simple, stable

and has a lower-semicontinuous densely defined trace which is unique up to scalar
multiplication.

Proof. This follows by combining Theorem 6.5 and Lemma 6.10 with Corollary
B.11 from Appendix B. �

Remark 6.12. We have based the proof of Lemma 6.11 on the crossed product
description of BσQ

(SQ), but it seems appropriate to point out that there is another
proof which uses work of Brenken, Putnam and Spielberg: (SQ, σQ) is a mixing Smale
space by [Bre] and it follows then from [PS] that its stable algebra is simple. Thus
BσQ

(SQ) is simple and stable by Theorem 4.17. That BσQ
(SQ) has an essentially

unique lower-semicontinuous densely defined trace can be deduced from Theorem 3.1
of [Pu1] and the uniqueness of the trace state of the homoclinic algebra AσQ

(SQ),
which follows from Corollary 3.9. �

For each i ∈ N, setHi = (Ψ−i)
−1 (∆σQ

) ⊆ U×DQ. Note that idU ×T (Hi) ⊆ Hi+1.
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Lemma 6.13. There is a sequence A1 ⊆ A2 ⊆ A3 ⊆ . . . of hereditary C∗-
subalgebras of AσQ

(SQ,W
u(0)) and ∗-isomorphisms ψn : An → C0 (U ×DQ) ⋊τ Hn

such that

An
ψn

C0 (U ×DQ) ⋊τ Hn

An+1
ψn+1

C0 (U ×DQ) ⋊τ Hn+1

(6.3)

commutes, and AσQ
(SQ,W

u(0)) =
⋃
nAn.

Proof. It follows from Lemma 6.8 that Ψ−i (U ×DQ) is open inW u(0) and that
W u(0) =

⋃
i∈N Ψ−i (U ×DQ). By Lemma 1.24 there is a sequence A1 ⊆ A2 ⊆ A3 ⊆

· · · of hereditary C∗-subalgebras of AσQ
(SQ,W

u(0)) such that AσQ
(SQ,W

u(0)) =⋃
nAn and An ≃ AσQ

(SQ,Ψ−n (U ×DQ)). It follows from Lemma 6.4 that there
are commuting diagrams

RσQ
(SQ,Ψ−n (U ×DQ))

idU ×T

Hn × (U ×DQ)

idU ×T

RσQ
(SQ,Ψ−n−1 (U ×DQ)) Hn+1 × (U ×DQ)

of étale equivalence relations such that the horizontal arrows represent topologi-
cal groupoid isomorphisms. By combining this diagram with the diagram from
Lemma1.24 we obtain the diagram (6.3). �

Let p̃m : U ×DQ → U ×Dm
Q be the map

p̃m (u, (z1, z2, z3, . . . ) +KQ) =
(
u, (z1, z2, . . . , zm) +Km

Q

)
.

Let m1 < m2 < m3 < . . . be a sequence in N. There is then a commuting diagram

C0

(U ×Dm1
Q

)
⋊τ◦p̃m1

H1

jm1
C0 (U ×DQ) ⋊τ H1

C0

(U ×Dm2
Q

)
⋊τ◦p̃m2

H2

jm2
C0 (U ×DQ) ⋊τ H2

C0

(U ×Dm3
Q

)
⋊τ◦p̃m3

H3

jm3
C0 (U ×DQ) ⋊τ H3

...
...

(6.4)

Here the vertical maps are induced by idU ×T in the natural way, by use of
Lemma B.1, while the horizontal maps, the jmi

’s, are induced by the pmi
’s. It

follows from Lemma 6.13 that the inductive limit of the right column in (6.4) is a
copy of AσQ

(SQ,W
u(0)). Note that jk : C0

(U ×Dk
Q

)
⋊τ◦pk

Hn → C0 (U ×DQ)⋊τHn

is injective for each k, n, and that

C0 (U ×DQ) ⋊τ Hn =

∞⋃
k=1

jk
(
C0

(U ×Dk
Q

)
⋊τ◦p̃k

Hn

)
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for each n. Since Hk is a countable abelian group it is the union of an increasing
sequence of finitely generated abelian groups. In fact, by Lemma 3.20 each Hi is
the union of an increasing sequence of finitely generated abelian groups of rank no
more than n. Therefore we can choose finitely generated subgroups H ′

k of Hk, all or
rank ≤ n, such that ∆σQ

=
⋃
i≤0 Ψi (Hi) =

⋃
i≤0 Ψi (H

′
i). By using the separability

of AσQ
(SQ,W

u(0)), we see that if the sequences (mi)
∞
i=1 and H ′

i, i ∈ N, increase fast
enough the diagram (6.4) will give us an isomorphism

AσQ
(SQ,W

u(0)) ≃ lim−→
k

C0

(U ×Dmk
Q

)
⋊τ◦p̃mk

H ′
k. (6.5)

Lemma 6.14. Assume that Q is hyperbolic. It follows that BσQ
(SQ) is ∗-isomor-

phic to an inductive limit lim−→k
Ak, where each Ak has the form

Ak ≃ K⊗ Cjk ⊗ A′
k,

and A′
k is a special non-commutative torus of rank (nk, mk) with nk +mk ≤ n.

Proof. Let x ∈ W u(p). It follows from Lemma 6.10 and Corollary 2.14 that
BσQ

(SQ) is stably isomorphic to AσQ
(SQ,W

u(0)). Hence

BσQ
(SQ) ≃ K⊗AσQ

(SQ,W
u(0)) (6.6)

by Lemma 6.11. We seek an inductive limit decomposition of AσQ
(SQ,W

u(0)), and
the point of departure for this is (6.5).

Let q : U × DQ → U be the projection. It follows from Lemma 6.10 and
Lemma 6.8 that

⋃∞
i=1 q (H ′

i) is dense in U . Hence, for some k0, U = Span q
(
H ′
k0

)
.

Let L ∈ N be such that LQ has integer entries only. Then

Ljq
(
H ′
k0

) ⊆ {u ∈ U : (u, 0) ∈ p̃j
(
H ′
k0

)}
for all j ∈ N. Hence

U = Span {u ∈ U : (u, 0) ∈ p̃j (H ′
k)} (6.7)

for all j and all k ≥ k0. Let k ≥ k0. It follows from Lemma B.3 that[
C0

(U ×Dmk
Q

)
⋊τ◦p̃mk

H ′
k

]⊗K ≃ [C0

(U ×Dmk
Q

)
⋊τ p̃mk

(H ′
k)
]⊗Clk ⊗C (Tnk)⊗K

for some lk, nk ∈ N with nk + Rank p̃mk
(H ′

k) ≤ RankH ′
k ≤ n. By Lemma B.8,

C0

(U ×Dmk
Q

)
⋊τ p̃mk

(H ′
k) ≃ Cl′k ⊗ [C0 (U) ⋊τ H

′]

where H ′ ⊆ U is the image of p̃mk
(H ′

k) under the projection U × Dmk
Q → U and

l′k ≤ #Dmk
Q . Note that H ′ spans U by (6.7). By Theorem B.12 of Appendix B,

C0 (U) ⋊τ H
′ ≃ K ⊗ A′

k, where A′
k is a special non-commutative torus of rank

(n′k, m
′
k), where n′k = dimU ≤ n and m′

k = Rank p̃mk
(H ′

k)− dimU . Hence

C0

(U ×Dmk
Q

)
⋊τ◦p̃mk

H ′
k ≃ K⊗Cjk ⊗ A′

k, (6.8)

where jk = lkl
′
k. Since C (Tnk) ⊗ A′

k is a special non-commutative torus of rank
(nk + n′k, m

′
k) the conclusion of the lemma follows from (6.5), (6.6) and (6.8). �

Theorem 6.15. Assume that Q is hyperbolic. Then BσQ
(SQ) is a simple stable

AT-algebra of real rank zero with a densely defined lower semi-continuous trace which
is unique up to scalar multiplication.
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Proof. It follows from Lemma 6.14 that there is a sequence Bi of special non-
commutative tori of ranks (ni, mi), where ni + mi ≤ n, sequences ki, li ∈ N and
projections pi ∈Mki

(
Cli ⊗ Bi

)
such that BσQ

(SQ) is the limit of the sequence

p1Mk1

(
Cl1 ⊗Bi1

)
p1 p2Mk2

(
Cl2 ⊗ Bi2

)
p2

. . . (6.9)

To show that BσQ
(SQ) is approximately divisible and has real rank zero we can use

[BKR] and [G] in combination with (6.9) in the same way as in the proof of Propo-
sition 3.27: Either infinitely many of the Bi’s are non-rational non-commutative
tori in which case BσQ

(SQ) is approximately divisible with real rank zero by [BKR]
or else infinitely many of the Bi are ∗-isomorphic to C (Tji) for some ji ≤ n and
then Corollary 6.7 of [G] shows that BσQ

(SQ) is an AT-algebra. Being simple and
stable by Lemma 6.11 it is then ∗-isomorphic to K⊗B, where B is a unital simple
AT-algebra. B is approximately divisible by [Ell1]. Since the lower semi-continuous
trace of BσQ

(SQ) is essentially unique by Lemma 6.11 B has exactly one trace state
and it follows then from Theorem 1.4 of [BKR] that B has real rank zero.

All in all we conclude that BσQ
(SQ) is approximately divisible with real rank

zero in all cases. Let p ∈ BσQ
(SQ) be a projection. Then pBσQ

(SQ) p is unital and
approximately divisible with real rank zero by [BKR]. It follows that pBσQ

(SQ) p
has all the properties 1)–7) which were stated for AσQ

(SQ) in Proposition 3.27. By
Lemma 6.14 and Proposition B.7 of Appendix B BσQ

(SQ) is locally AH in the sense
of [Lin] and then the same is the case of pBσQ

(SQ) p. By using the work of Lin
and Phillips as in the proof of Theorem 3.28 we conclude that pBσQ

(SQ) p is AT. It

follows that BσQ
(SQ) ≃ K⊗ (pBσQ

(SQ) p
)

is AT. �
By using Theorem 3.35 we can extend Theorem 6.15 to cover general expansive

group automorphisms. For this we need the following

Proposition 6.16. Let (X, d, ϕ) and (X ′, d′, ϕ′) be locally expansive on the post-
periodic points. Let D be the metric on X × X ′ such that D ((x, x′) , (y, y′)) =
max {d(x, y), d′ (x′, y′)}. Then (X ×X ′, D, ϕ× ϕ′) is locally expansive on post-peri-
odic points and

Bϕ×ϕ′ (X ×X ′) ≃ Bϕ(X)⊗ Bϕ′ (X
′) . (6.10)

Proof. Let p ∈ PerX, p′ ∈ PerX ′. Then

W u ((p, p′) ,min {ǫp, ǫp′}) ⊆W u (p, ǫp)×W u (p′, ǫp′) .

Since W u ((p, p′) ,min {ǫp, ǫp′}) is closed in X×X ′ it follows from this inclusion that
it is in fact compact, and it is then clear that (X ×X ′, D, ϕ× ϕ′) is expansive on
post-periodic points. It follows easily from Lemma 4.6 that the obvious identification

WX×X′,ϕ×ϕ′ = WX,ϕ ×WX′,ϕ′

is a homeomorphism and then the isomorphism (6.10) follows from Proposition 1.23.
�

Theorem 6.17. Let ψ : G → G be an expansive automorphism of the compact
group G. Assume that ψ is mixing. It follows that the heteroclinic algebra Bψ(G)
is a simple stable AT-algebra of real rank zero with a lower-semicontinuous densely
defined trace which is unique up to scalar multiplication.
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Proof. It follows from Theorem 3.35 that (G,ψ) is conjugate to

(Σm × SQ, σ × σQ) ,

where (Σm, σ) is the full m-shift and (SQ, σQ) is a solenoid corresponding to an
hyperbolic matrix Q ∈ Mn(Q). The finite group factor in Theorem 3.35 is trivial
because we assume that ψ is mixing. It follows then from Proposition 6.16 that
Bψ(G) ≃ Bσ (Σ) ⊗ BσQ

(SQ). It follows straightforwardly from Proposition 4.13
that Bσ (Σm) is a copy of the UHF-algebra of Glimm-type m∞ tensored with K.
The tensor product of an AT-algebra of real rank zero with a UHF-algebra is clearly
again AT of real rank zero, and hence Bψ(G) is AT of real rank zero. The remaining
properties of Bψ(G) can also be deduced from this tensor-product decomposition,
but they follow also from Corollary B.11 in Appendix B. �

For a general expansive automorphism of a compact group the heteroclinic al-
gebra is a finite direct sum of the same simple stable AT-algebra of real rank zero
with a essentially unique lower semi-continuous trace.

6.2.2. The heteroclinic algebra of a torus automorphism. In the special
case where the hyperbolic matrix Q has integer entries, the shift σQ of SQ is the
natural invertible extension of the endomorphism of Tn induced by Q. The structure
of the heteroclinic algebra BσQ

(SQ) simplifies quite a bit in this case. In fact, it
follows from Lemma 6.10, Theorem 6.6, Lemma 3.29 and Lemma 3.31 that BσQ (SQ)
is stably isomorphic to the crossed product

C0 (U) ⋊τ PU
(⋃
j≥0

Q−j (Zn)
)
.

In fact, since SQ is a Smale space by [Bre], it follows from Lemma 4.15 that BσQ
(SQ)

is actually isomorphic to this crossed product. If we specialize further to the case
where Q ∈ Gln(Z) we find that

BσQ
(SQ) ≃ C0 (U) ⋊τ PU (Zn) .

Note that PU (Zn) ≃ Zn since Zn ∩ S = {0}. We obtain therefore the following
conclusion from Theorem B.12:

Theorem 6.18. Let Q ∈ Gln(Z) be hyperbolic. It follows that the hetero-
clinic algebra of the corresponding automorphism of Tn is a stabilized special non-
commutative torus of rank (k, n− k), where k = Dim {x ∈ Rn : limj→−∞Qjx = 0}.

In general a non-commutative torus of rank n is defined from an anti-symmetric
real matrix θ = (θi,j) ∈Mn(R) as the universal C∗-algebra generated by n unitaries
u1, u2, . . . , un satisfying the relation

uiuj = e2π
√−1θi,jujui

for all i, j. For a special non-commutative torus of rank (k, n− k) the matrix θ has
the from

θ =

(
0 θ0
−θ0 0

)
where θ0 is a real k × (n − k)-matrix. For a hyperbolic Q ∈ Gln(Z) the matrix θ0
depends on the position of the subspace {x ∈ Rn : limj→−∞Qjx = 0} in Rn relative
to Zn ⊆ Rn.
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To illustrate how our results can be used we shall now apply them to give ex-
amples of hyperbolic automorphisms of the two-torus with the property that the
corresponding heteroclinic algebras are not isomorphic to the heteroclinic algebra of
the inverse automorphism.

6.2.3. Expansive automorphisms of the two-torus. Let Q =
(
a0 b0
c0 d0

) ∈
Gl2(Z) be hyperbolic, and let ϕQ be the corresponding expanding automorphism of
the two-torus T2 = R2/Z2. There are then real numbers α, β ∈ R such that (1, α)
is an eigenvector for Q corresponding to the eigenvalue of absolute value > 1 while
(1, β) is an eigenvector for Q corresponding to the eigenvalue of absolute value < 1.
Then

(1, 0) =
β

β − α(1, α) +
α

α− β (1, β),

and

(0, 1) =
1

α− β (1, α) +
1

β − α(1, β),

so it follows from Theorem 6.18 and its proof that BϕQ
(T2) is ∗-isomorphic to

C0(R)⋊αZ2, where α(1,0) is translation by 1 and α(0,1) is translation by
(

β
β−α
)−1 1

α−β =

−β−1. Thus, by Theorem B.12, BϕQ
(T2) ≃ K⊗R−β−1 , where R−β−1 is the irrational

rotation C∗-algebra obtained from rotation by e2πi(−β
−1). Now we recall the result

of M. Rieffel, [Ri2], on stable isomorphism of irrational rotation C∗-algebras:

Theorem 6.19. (Rieffel) Let α, β ∈ R\Q. Then the corresponding irrational
rotation C∗-algebras Rα and Rβ are stably isomorphic if and only if there is a(

a b
c d

)
∈ Gl2(Z)

such that aα+b
cα+d

= β.

Now this result can of course also be deduced from the more general results of
Phillips, [Ph2]. It follows, in particular, that R−β−1 is stably isomorphic to Rβ .
Thus we see that

BϕQ

(
T2
) ≃ K⊗Rβ . (6.11)

Furthermore, it follows from Theorem 6.19 that when Q′ ∈ Gl2Z) is another hyper-
bolic automorphism then

BϕQ

(
T2
) ≃ BϕQ′

(
T2
) ⇔ aβ + b

cβ + d
= β ′ for some

(
a b
c d

)
∈ Gl2(Z),

when (1, β) and (1, β ′) are eigenvectors of Q and Q′, respectively, corresponding to
the eigenvalue of smallest numerical value.

Calculations of β: Let χQ(t) = t2 +Bt+C be the characteristic polynomium of

Q. Set D = B2 − 4C. The roots of χQ are −B±√D
2

. It follows that

a0 + b0β =
−B −√D

2
,

and hence that

β =
−B −√D − 2a0

2b0
.
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(If b0 = 0, the roots of χQ are both integers which is not possible since Q is hyper-
bolic.) Similarly, we find that

α =
−B +

√
D − 2a0

2b0
.

(Note that
√
D must be irrational since otherwise the image of (1, α) in T2 will be

periodic under ϕQ. But it is also asymptotic to 0 under the iteration of ϕQ, and
hence it must be 0 in T2, i.e. α ∈ Z. For the same reason we have that β ∈ Z, which
is not possible since Q is hyperbolic.) By using Theorem 6.19 we see that BϕQ

(T2)
and Bϕ−1

Q
(T2) = BϕQ−1 (T2) are isomorphic if and only there is(

a b
c d

)
∈ Gl2(Z)

such that
aα + b

cα + d
= β. (6.12)

Now (6.12) is equivalent to

aα + b = β (cα+ d) ,

or

a

(
−B − 2a0 +

√
D

2b0

)
+ b =

(B + 2a0)
2 −D

4b20
c +
−B − 2a0 −

√
D

2b0
d.

Since
√
D is irrational this equation holds if and only if

a = −d (6.13)

and

a
−B − 2a0

b0
+ b =

(B + 2a0)
2 −D

4b20
c.

Since B = −a0 − d0 this can also be written

b =
(d0 − a0)

2 −D
4b20

c+ a
a0 − d0

b0
. (6.14)

Now note that χQ(t) = (t − a0)(t − d0) − c0b0 = t2 − (a0 + d0)t + a0d0 − c0b0 =
t2 − (a0 + d0)t+ DetA. Hence

D = B2 − 4C = (a0 + d0)
2 − 4 DetQ.

Thus (6.14) becomes

b =
−b0c0
b20

c+ a
a0 − d0

b0
= a

a0 − d0

b0
− c0
b0
c.

Hence we see that BϕQ
(T2) and Bϕ−1

Q
(T2) are isomorphic if and only there are

integers a, b, c such that

−a2 − bc = ±1, b0b = (a0 − d0)a− c0c. (6.15)

By Proposition 17 of [BR1] there are integer solutions a, b, c to (6.15) if and only
of the elements of the projective group PGl2(Z) = Gl2(Z)/ {±1} represented by Q
and Q−1 are conjugate in PGl2(Z). This should be compared with the fact that ϕQ
and ϕQ−1 are conjugate dynamical systems if and only if Q and Q−1 are conjugate
in Gl2(Z). There are many cases where it is easy to find integer solutions to (6.15).
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For example when a0 = d0, there is always the solution a = a0, b = −c0, c = b0,
and when c0|a0 − d0, we have the solution a = 1, b = 0, c = a0−d0

c0
. Similarly, when

b0|a0 − d0 we have the solution a = 1, b = a0−d0
c0

and c = 0, and when b0 = ±c0,
we have the solution a = 0, b = 1, c = ∓1. Thus in all these cases the two algebras
BϕQ

(T2) and Bϕ−1
Q

(T2) are isomorphic. But in fact there are many cases where

there are no integer solutions to the equations (6.15). To see this note that there
is a systematic way of deciding whether or not there are integer solutions to (6.15)
which is a based on results going back to Gauss and described in Section 3.1.2 of
[BR2]. By using this it can be seen that there are no integer solutions to (6.15)
when Q is, for example, any of the following elements of Gl2(Z):(

11 4
3 1

)
,

(
10 3
7 2

)
,

(
17 6
3 1

)
,

(
4 9
7 16

)
.

According to [BR2] the last of these matrices has the the least possible absolute
value of the trace among the elements Q of Sl2(Z) for which BϕQ

(T2) and Bϕ−1
Q

(T2)

are not isomorphic. The interested reader can easily find more examples by combin-
ing the method described in [BR2] with an effective calculator to solve quadratic
diophantine equations which may by found at

http://www.alpertron.com.ar/QUAD.HTM



CHAPTER 7

A dimension group for certain countable state Markov shifts

7.1. Markov shifts with finitely many edge-disjoint doublepaths

We shall now consider a countable state Markov shift coming from a countable
oriented graph G as described in Section 4.3. If G has both finite out-degree and
finite in-degree, the space

XG =
{
(ei)i∈Z ∈ EZ : i (ei+1) = t (ei) ∀i ∈ Z

}
will be locally compact in the product topology. The shift σ acts as a uniformly
continuous homeomorphism of XG and it is obviously expansive with respect to the
metric (4.16). Thus it gives rise to a relatively expansive system and we can de-
fine the corresponding homoclinic algebra Aσ (XG) which can be shown to be an
AF-algebra in essentially the same way it was done for shift spaces in Section 3.1.
Likewise the heteroclinic algebra Bσ (XG) can be defined, even when G only has
finite out-degree, as described in Section 4.3. Both constructions provides us with a
dimension group, namely the K0-group of the resulting AF-algebra. Furthermore,
the group K0 (Bσ (XG)) generalizes the dimension-group which plays a prominent
role in the study of shifts of finite type, see e.g. [LM], [K]. However, since the
dimension group is particularly important and powerfull for the study of the au-
tomorphism group of a shift of finite type it is annoying that a shift-commuting
homeomorphism of XG only gives rise to an automorphism of the homoclinic alge-
bra or the heteroclinic algebra when it is uniformly continuous with respect to the
metric (4.16). As we shall now show this problem can be resolved for a class of
graphs introduced by Michael Schraudner in [Sch].

Recall that a path γ in G is an ordered tuple γ = (e1, e2, . . . , en) (or γ =
e1e2 . . . en) of edges in G such that i (ek+1) = t (ek) for all k = 1, 2, . . . , n − 1.
The number of edges, n, in γ is the length of γ which we denote by |γ|, and we
set i(γ) = i (e1) , t(γ) = t (en). A doublepath, [Sch], is an unordered tuple (γ, γ′)
of different paths, γ and γ′, of the same length in G such that i (γ) = i (γ′) and
t (γ) = t (γ′). A pair of doublepaths, (γ, γ′) and (µ, µ′), are edge-disjoint when the
set of edges making up γ and γ′ is disjoint from the set of edges making up µ and µ′.
Following [Sch] we say that G has finitely many pairwise edge-disjoint doublepaths
when every collection of pairwise edge-disjoint doublepaths in G is finite. At first
sight this condition may seem artificial, but as shown by Schraudner in Theorem 2.3
of [Sch] the property reflects an important intrinsic property of the countable state
Markov shift defined by the graph. Specifically, it follows from Theorem 2.3 of
[Sch] that G has finitely many pairwise edge-disjoint doublepaths if and only if the
automorphism group of (XG, σ) is countable.

83
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We shall impose the following conditions on G:

i) G has both finite in-degree and finite out-degree at each vertex,
ii) G is strongly connected in the sense that for every pair v, w of vertices in

G there is a path γ in G with i(γ) = v and t(γ) = w, and
iii) G has finitely many pairwise edge-disjoint doublepaths.

Since E is countable there is an injection h : E→ N\{0} and we define a metric
dG on XG such that

dG
(
(ei)i∈Z , (e

′
i)i∈Z

)
=
∑
n∈Z

2−|n|
∣∣h (en)

−1 − h (e′n)
−1∣∣.

This metric is known as the Gurevich metric, and it is characterized, up to equiva-
lence, by the fact that it is the restriction to XG of a metric for the topology of the
one-point compactification X+

G of XG. As in Section 4.3 we consider now the topo-
logical space WXG,σ of post-periodic points in the Wagoner topology. To simplify the
notation we denote this space by WG in the following. With respect to the Gurevich
metric the shift is no longer locally expansive on WG, but we shall nonetheless now
construct a relatively expansive system in this setup. This is where condition iii)
comes in. Let W 0

G denote the set of post-periodic points that are forward transitive;
that is

W 0
G =

{
x ∈WG : ∀y ∈ XG ∀ǫ > 0 ∃j ∈ N : dG

(
y, σj(x)

)
< ǫ
}
.

Note that W 0
G is dense in XG as well as in WG since G is countable and strongly

connected.

Lemma 7.1. For each p ∈ PerXG there is δp > 0 such that

x, y ∈W u(p), y ∈W 0
G, sup

j∈Z
dG
(
σj(x), σj(y)

) ≤ δp ⇒ x = y.

Proof. We simply mimic a part of the proof of Theorem 3.4 of [Sch]. Let F be
the set consisting of the edges from a maximal collection of pair-wise edge-disjoint
doublepaths in G. By assumption this is a finite set. Set

δp =
1

2
min

{
1

h(e)
− 1

h(e) + 1
: e ∈ F

}
,

where h is the injection used to define dG. Assume that x, y ∈ W u(p), y ∈ W 0
G and

that dG (σj(x), σj(y)) ≤ δp for all j ∈ Z. Note first of all that x−j = y−j for all
sufficiently large j since x, y ∈W u(p). Assume to get a contradiction that xj0 6= yj0
for some j0 ∈ Z. Since y is forward transitive there is a j > j0 such that yj ∈ F . By
definition of δp this implies that yj = xj . It follows that both

a = max {i ≤ j0 : xi = yi}
and

b = min {i ≥ j0 : xi = yi}
exist. Then the pair (γ, γ′), where

γ = (xa+1, xa+2, . . . , xb−1)

and

γ′ = (ya+1, ya+2, . . . , yb−1) ,
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is a doublepath which does not contain any edge from F . In particular, (γ, γ′) is
edge-disjoint from any doublepath used to define F . This contradicts the maximality
of that collection. It follows that x = y. �

It follows from Lemma 7.1 that (XG, dG,Z, σ,WG,W
0
G) is a relatively expansive

system. In the following we denote the resulting Ruelle algebra Aσ (XG,WG) by BG.
Let AutXG be the group of shift-commuting homeomorphisms of XG. Elements

of AutXG can fail to be uniformly continuous with respect to the metric d, but
they are all uniformly continuous with respect to the Gurevich-metric and this is
the reason that we can prove the following

Theorem 7.2. For every α ∈ AutXG there is a unique ∗-automorphism α• of
BG such that

α•(f)(x, y) = f
(
α−1(x), α−1(y)

)
,

when f ∈ Cc (Rσ (XG,WG)).

Proof. α induces a homeomorphism of WG by Lemma 4.9. Since α and α−1

are uniformly continuous with respect to the Gurevich-metric dG it follows that we
can apply Corollary 2.5. �

Let α∗ be the automorphism of K0 (BG) induced by α•. It follows from Theo-
rem 7.2 that the map

AutXG ∋ α 7→ α∗ ∈ AutK0 (BG)

is a homomorphism of groups. Furthermore, it follows from Section 4.3 that K0 (BG)
is isomorphic, as an ordered group, to the dimension group of XG when G is finite.
In this case α 7→ α∗ agrees with the dimension group representation of AutXG.

In the following we seek to determine the structure of BG. Let x, y ∈ WG. A
conjugacy (U, V, χ) from x to y in WG is normal when there is an i0 ∈ Z such that
xi0 = yi0, U = {z ∈WG : zi = xi, i ≤ i0}, V = {z ∈WG : zi = yi, i ≤ i0} and

χ(z)k =

{
yk, k ≤ i0,

zk, k ≥ i0 + 1.

We say that an element x = (xi)i∈Z ∈ XG tends to infinity when limi→∞ h (xi) =∞.

Lemma 7.3. Let x, y ∈WG, and let (U, V, χ) be a conjugacy from x to y in WG.
Assume that x does not tend to infinity. It follows that y does not tend to infinity
and that there is a normal conjugacy (U0, V0, χ0) from x to y such that U0 ⊆ U and
χ|U0 = χ0.

Proof. Since x does not tend to infinity, there is a finite collection F of edges
in G such that xi ∈ F for infinitely many i. Since

dG
(
σj(x), σj(y)

) ≤ 1

2
min

{
1

h(e)
− 1

h(e) + 1
: e ∈ F

}
for infinitely many j, we conclude that xj = yj ∈ F for infinitely many j. In
particular, y does not tend to infinity. Let F0 be the set of edges occuring in a
maximal collection of pairwise edge-disjoint doublepaths in G. Let i0 ∈ N be so
large that xi0 = yi0 and

dG
(
σj(x), σj(y)

) ≤ 1

2
min

{
1

h(e)
− 1

h(e) + 1
: e ∈ F ∪ F0

}
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for all j ≥ i0. It follows that xi = yi for all i ≥ i0 and we can define a normal
conjugacy (U ′

0, V
′
0 , χ0) from x to y such that U ′

0 = {z ∈ WG : zj = xj , j ≤ i0} and

χ0(z)k =

{
yk, k ≤ i0
zk, k ≥ i0.

By Lemma 1.4 there is a j0 ≥ i0 such that U0 = {z ∈WG : zj = xj, j ≤ j0} ⊆ U
and χ0(z) = χ(z) for all z ∈ U0. Set V0 = χ0 (U0) and note that (U0, V0, χ0) is a
normal conjugacy from x to y. �

We are now faced with a new kind of local conjugacies. If, for example, G is the
graph

...

·
·

a4

·
a3

·
a2

·
a1

a−1

· · · · . . .

·
a−2

·
a−3

·
a−4

·
...

(7.1)

there is a local conjugacy between any pair x, y ∈ WG with xi = ai, i ≥ 1, and
yi = a−i, i ≥ 1. Such non-normal conjugacies complicate the analysis of the structure
of BG and we have very little to say about the structure of BG in full generality, but
the following observation will be usefull.

Lemma 7.4. BG is stable.

Proof. If G is finite XG is a Smale space and it follows in this case from
Lemma 4.15 that BG is stable. Assume then that G is infinite. We use the work
of Hjelmborg and Rørdam in the same way as in the proof of Lemma 4.15. Thus
it suffices to consider an element f ∈ Cc (Rσ (XG,WG)) and construct an element
v ∈ BG such that vv∗f = f and fv∗ = 0. To this end note that there is a finite set
of periodic points p1, p2, . . . , pN in XG and a finite set of edges e1, e2, . . . , eM in G
such that

r(supp f) ∪ s (supp f) ⊆
⋃
k,j

{
(xi)i∈Z ∈W u (pk) : x0 = ej

}
.

Let q be a periodic point in XG whose orbit is disjoint from {p1, p2, . . . , pN}. Since
G is strongly connected there is for each (k, j) ∈ {1, 2, . . . , N} × {1, 2, . . . ,M} a
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normal conjugacy (Uk,j, Vk,j, χk,j) in WG such that

Uk,j =
{
x = (xi)i∈Z ∈W u (pk) : x0 = ej

}
and Vk,j ⊆

⋃
l∈N W

u
(
σl(q)

)
. Let {gk,j} be a partition of unity on r (supp f) subor-

dinate to {Uk,j}. Define g̃k,j ∈ Cc (Rσ (XG,WG)) such that

g̃k,j(x, y) =

{√
gk,j(x) when (x, y) ∈ {(z, χk,j(z)) : z ∈ Uk,j} ,

0 otherwise.

Then v =
∑

k,j g̃k,j ∈ Cc (Rσ (XG,WG)) does the job. �

To handle local conjugacies that are not normal we make in the following an
additional assumption:

iv) There is a finite set, F , of edges in G such that for every edge e0 ∈ G there
is at most one right-infinite ray r = e0e1e2e3 . . . in G with ei /∈ F for all
i ≥ 1 and at most one left-infinite ray l = . . . e−2e−1e0 in G with ei /∈ F for
all i ≤ −1.

In the presence of conditions i)–iii) this additional assumption is equivalent to the
condition that the canonical extension of the shift to the one-point compactification
of XG is expansive and, therefore, is a compact shift space, cf. [Sch], [F]. Hence,
when condition iv) holds, (XG, σ) is actually expansive with the respect to the
Gurevich-metric dG on the entire space XG, and not only on the doubly transitive
points.

We assume now that conditions i), ii), iii) and iv) all hold.
Let F ⊆ V be a finite subset. An out-going ray in G is a right-infinite path

γ = e0e1e2e3 . . . in G such that t (ei) /∈ F for all i = 0, 1, 2, . . . . γ is a maximal
out-going ray when i (e0) ∈ F . Likewise an incoming ray in G is a left-infinite path
. . . e−3e−2e−1e0 = γ′ in G such that i (ei) /∈ F for all i = 0,−1,−2,−3, . . . , and γ′

is a maximal incoming ray when t (e0) ∈ F . A finite path γ = e0e1e2 . . . en in G is
said to avoid F when t (ei) /∈ F, i = 0, 1, 2, . . . , n− 1.

It follows from condition iii) and iv) that there is a finite set F ⊆ V of vertices
such that

t(γ) = t (γ′) ⇒ γ = γ′ (7.2)

when γ, γ′ are maximal incoming rays,

i(γ) = i (γ′) ⇒ γ = γ′ (7.3)

when γ, γ′ are maximal outgoing rays, and

i(γ) = i (γ′) , t(γ) = t (γ′) ⇒ γ = γ′ (7.4)

when γ, γ′ are finite paths of the same length that both avoid F .
Note that if γ = e1e2e3 . . . is an out-going ray and t (ei) = t (ei+k) for some

i, k ∈ N, it follows from condition iv) that ej = ej+k for all j ≥ i + 1, i.e. γ is
eventually k-periodic. If we add to F the vertices of all eventually periodic out-
going rays we still have a finite set of vertices and (7.2), (7.3) and (7.4) hold for the
larger set. Thus, by enlarging F if necessary, we can assume that no outgoing ray
is pre-periodic, i.e. that

i 6= j ⇒ t (ei) 6= t (ej) (7.5)
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when γ = e1e2e3 . . . is an outgoing ray. A finite set F ⊆ V such that (7.2), (7.3),
(7.4) and (7.5) all hold will be called a core for G. Note that if we add a finite set
of vertices to a core the union is still a core.

Let v ∈ V. In the following a shortcut from F to v is a finite path γ which avoids
F such that i (γ) ∈ F and t (γ) = v. Similarly, a shortcut from v to F is a finite
path γ which avoids F such that i (γ) = v and t (γ) ∈ F .

The following lemma should be compared with Lemma 3.3 of [Sch].

Lemma 7.5. Let F ⊆ V be a core. Let (xi)i∈Z ∈ XG. Then t (xj) ∈ F for some
j ∈ Z.

Proof. Assume t (xj) /∈ F for all j. Then xkxk+1xk+2 . . . is the tail of a maximal
out-going ray for each k, and hence

i 6= j ⇒ xi 6= xj , (7.6)

because no out-going ray is eventually periodic, cf. (7.5). Since G is strongly con-
nected there is for each k ∈ Z a shortcut γk from F to i (xk). But F is finite so
there is a sequence m1 > m2 > m3 > . . . in Z and a vertex v ∈ F such that there
is, for each k, a shortcut from F to i (xmk

) which starts at v. Choose k such that

m1 −mk > |γ1| . (7.7)

Then γkxmk
xmk+1xmk+2 . . . and γ1xm1xm1+1xm1+2 . . . are out-going rays starting at

the same vertex. By condition iv) these rays must be identical, which is impossible
by (7.7) and (7.6). �

Let F ⊆ V be a core for G. We let F E = {e ∈ E : t(e) ∈ F} and set A =
F E ∪ {↑}. Define XG ∋ x 7→ x̃ ∈ AZ such that

x̃i =

{
xi when t (xi) ∈ F
↑ when t (xi) /∈ F.

(7.8)

We define d′F : XG ×XG → [0,∞) such that

d′F (x, y) =
∑
i∈Z

2−|i|δ (x̃i, ỹi) ,

where

δ (a, b) =

{
0 when a = b

1 when a 6= b.

Lemma 7.6. d′F is a metric on XG equivalent to dG.

Proof. Let X+
G be the one-point compactification of XG. Even without condi-

tion iv) the map x 7→ x̃ extends to a continuous shift-commuting map ψ : X+
G →

AZ such that ψ(+) =↑∞, cf. Proposition 3.5 of [Sch]. The crucial point is that
ψ : XG → AZ\ {↑∞} is continuous and proper, which is easy to check. It remains to
check that ψ is injective in our case. This follows from (7.2), (7.3), (7.4), (7.5) and
Lemma 7.5. �

Lemma 7.7. Assume that F is a core. Let v ∈ V be a vertex which does not
belong to any out-going ray. There is then an N ∈ N such that |γ| ≤ N for every
shortcut γ from v to F .



7.1. MARKOV SHIFTS WITH FINITELY MANY EDGE-DISJOINT DOUBLEPATHS 89

Proof. If no such N exists it would follow from condition i) that there is an
out-going ray e0e1e2 . . . in G such that i (e0) = v, contradicting the assumption
on v. �

Lemma 7.8. Let e0e1e2 . . . be an out-going ray in G. For each pair n,N ∈ N
such that n < N there is an L ∈ N with the property that every shortcut γ of length
|γ| ≥ L from t (en) to F contains eN .

Proof. An edge starting at t (ei) which is not ei+1 can not terminate in a vertex
which belongs to an out-going ray. This follows from condition iv). It follows then
from condition i) and Lemma 7.7 that for each i ∈ {n, n+ 1, . . . , N − 1} there is an
Li ∈ N such that all shortcuts from t (ei) to F which does not contain ei+1 must
have length ≤ Li. Set

L = max
n≤j≤N−1

(Lj + j) .

�

Let γ = e0e1e2e3 . . . and γ′ = f0f1f2f3 . . . be out-going rays in G, belonging to
different maximal out-going rays. In the following we shall consider the condition
that there are numbers n < N < M in N such that the following holds for each
k ∈ N and each v ∈ F :

A) If there is a shortcut of length k from t (eN) to F ending at v, there is also
a (necessarily unique) shortcut of length k+N − n from t (fn) to F ending
at v.

B) If there is a shortcut of length k from t (fM) to F ending at v, there is also
a (necessarily unique) shortcut of length k+M−N from t (eN ) to F ending
at v.

Let γ = e1e2e3 . . . be an out-going ray in G. In the following we shall consider
the condition that there are N, k, L ∈ N, k 6= 0, such that the following hold for
each v ∈ F and each l ≥ L:

C) There is a shortcut of length l from t (eN ) to F which terminates at v if and
only if there is a shortcut from t (eN+k) to F of length l which terminates
at v, and

D) every shortcut of length l from t (eN) to F contains eN+k.

Lemma 7.9. Let G be a graph satisfying conditions i) through iv). When x, y ∈
WG are conjugate, either

a) xi = yi for all large i, or
b) there are different out-going rays γ and γ′ for which A) and B) hold such

that xi ∈ γ and yi ∈ γ′ for all large i, or
c) there is a maximal outgoing ray γ for which C) and D) hold, and xi, yi ∈ γ

for all large i.

Proof. a) holds if and only if there is a normal conjugacy between x and y.
Assume therefore that there is no normal conjugacy from x to y and let (U, V, χ)
be a non-normal conjugacy in WG from x to y. It follows from Lemma 7.3 that x
and y both tend to infinity. Furthermore, x and y can not be asymptotically equal.
There are out-going rays, γ = e0e1e2 . . . and γ′ = f0f1f2 . . . in G and K ∈ N such
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that x[K,∞) = γ and y[K,∞) = γ′. Choose L ≥ K such that

sup
z∈U

dG
(
σj (χ(z)) , σj(z)

) ≤ 1

2
min

{
1

h(e)
− 1

h(e) + 1
: e ∈ F

}
(7.9)

and

sup
z∈V

dG
(
σj
(
χ−1(z)

)
, σj(z)

) ≤ 1

2
min

{
1

h(e)
− 1

h(e) + 1
: e ∈ F

}
for all j ≥ L. For each I ∈ Z and each u ∈WG, set

Uu
I = {z ∈WG : zi = ui, i ≤ I} .

There is an n ≥ K such that Uy
n ⊆ V and Ux

n ⊆ U . There is an N1 ∈ N such that
N1 > n and

χ
(
Ux
N1

) ⊆ Uy
n+L+K . (7.10)

Let µ be a shortcut of length k from t (xN1+L) to F . There is then a z ∈ Ux
N1+L such

that z[N1+L+1,N1+L+|µ|] = µ. It follows from (7.10) that χ(z) ∈ Uy
n+L+K and from

(7.9) that zj ∈ F ⇔ χ(z)j ∈ F ∀j ≥ L so we conclude that χ(z)[n+K+1,N1+L+K+|µ|]
is a shortcut of length L+N1 + |µ| − n from t (yn+K) to F . Set N = L+N1 −K.
Then A) holds. By exchanging the roles of x and y the same argument applies to
find M > N such that also B) holds. Hence b) holds, unless γ and γ′ are contained
in the same maximal outgoing ray. In the case where γ and γ′ are contained in
the same maximal out-going ray e0e1e2 . . . we observe first that there are D ∈ N
and k ∈ Z such that γ = eDeD+1eD+2 . . . and γ′ = eD+keD+k+1eD+k+2 . . . . Note
that k = 0 is impossible because there is no normal conjugacy from x to y. By
exchanging the roles of x and y if needed, we can assume that k ≥ 1. By combining
Lemma 7.8 with A) and B) we find that there are numbers N,L ∈ N such that the
triple N, k, L satisfy both C) and D). �

7.1.1. Grafting. Throughout this section we assume that conditions i), ii), iii)
and iv) are all satisfied. Let F0 ⊆ V be a core for G.

Lemma 7.10. There is then a core F ⊆ V for G containing F0 such that different
maximal out-going rays are pair-wise vertex disjoint, i.e.

{i (ek) : k = 0, 1, 2, . . .} ∩ {i (fk) : k = 0, 1, 2, . . .} = ∅.
when e0e1e2e3 . . . and f0f1f2 . . . are different outgoing rays in G, and such that F
is the vertex set of a finite strongly connected subgraph of G.

Proof. Let Γ be the finite set of maximal out-going rays from F0. If two
different elements γ = e1e2e3 . . . and γ′ = f1f2f3 . . . of Γ are not vertex disjoint,
there are numbers n,m ∈ N such that t (en) = t (fm) and

{i (e1) , i (e2) , . . . , i (en)} ∩ {i (f1) , i (f2) , . . . , i (fm)} = ∅.
It follows from condition iv) that fm+k = en+k for all k ∈ N. Set

Γγ,γ′ = {i (e1) , i (e2) , . . . , i (en+1)} ∪ {i (f1) , i (f2) , . . . , i (fm+1)} .
Let

F ′ = F0 ∪
⋃

(γ,γ′)

Γγ,γ′

where we take the union over all pairs γ, γ′ from Γ that are not vertex disjoint. F ′

is clearly a finite set, and it is easy to check that F ′ is a core such that all different
maximal out-going rays are pair-wise vertex disjoint. Since G is strongly connected
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there is a strongly connected finite subgraph of G which contains F ′. The vertices
of such a finite subgraph form a core F with the desired additional properties. �

Consider then a core F ⊆ V with the two additional properties described in
Lemma 7.10. If G is the graph (7.1) F could be the vertices of the subgraph

·
·

a1

a−1

·
·

(7.11)

Assume that there are out-going rays γ and γ′ such that A) and B) hold. It
follows that when γ is a shortcut from t (eN ) to F there is a unique shortcut µγ of
length |γ|+N −n from t (fn) to F with t (γ) = t (µγ). Let A be the set of shortcuts
from eN to F such that fM /∈ µγ.

Let G′′ be the subgraph of G containing the following edges from G:

• all edges e ∈ G with i(e), t(e) ∈ F ,
• all edges contained in some path γ which starts at a vertex in F , ends in a

vertex in F and avoids F and eN+1 in between, and
• all edges of the paths e0e1 . . . eNγ, where γ ∈ A.

Then G′′ satisfies conditions i) through iv) and F remains a core for G′′. When G
is the graph (7.1), F the vertices from the subgraph (7.11) and γ = a−2a−3 . . . we
can take fn = a2 and eN = a−3 and fM = a4. The resulting graph G′′ is then

...

·
·
·
·
· · · · · . . .

·
·
·

(7.12)

We add now to G′′ a new path, µnew, of length M − N from t (eN ) to t (fM).
Denote the resulting graph by G′. Then G′ satisfies conditions i) through iv) and F
is a core for G′, although different maximal outgoing rays can have common vertices
in G′.
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In the example (7.12) the graph G′ becomes

...

·
·
·
·
·
· · · · · . . .

·
·
·

(7.13)

In order to relate XG′ to XG we need some lemmas.

Lemma 7.11. Let e0e1e2 . . . be a maximal out-going ray in G. Then t (ei) has
in-degree 1 for all i, i.e.

# {e ∈ E : t(e) = t (ei)} = 1

for all i = 0, 1, 2, 3, . . . .

Proof. This follows because different maximal out-going rays are pair-wise ver-
tex disjoint. �

Lemma 7.12. Let v, w ∈ F .

a) There is a bijection between the set of maximal incoming rays in G that
terminate at v and the set of maximal incoming rays in G′ that terminate
at v.

b) For each n ∈ N there is a bijection between the paths in G of length n that
start at v, end at w and avoid F , and the corresponding set of paths in G′.

c) There is a bijection between the set of maximal outgoing rays in G that start
at v and the set of maximal outgoing rays in G′ that start at v.

Proof. a) By condition iv) it suffices to show that v is the terminal vertex of a
maximal incoming ray in G if and only if it is in G′. It follows from Lemma 7.11 that
an incoming ray in XG′ can not contain µnew. It must therefore be an incoming ray
in G′′ and hence in G. Let γ be a maximal incoming ray in G which terminates at
v. If every vertex in γ can be reached from F by a finite path which avoids eN+1, γ
will be a maximal incoming ray in G′ by construction of G′. Otherwise, v will be the
terminal vertex of arbitrarily long shortcuts from t (eN) to F in G. By condition A)
v will then also be the terminal vertex of arbitrarily long shortcuts from t (fn) to F .
It follows from Lemma 7.11 that none of these shortcuts contains eN+1, so they all
proceed in G′′. If follows that v is also the terminal vertex of a maximal incoming
rays in G′.

b) Let γ be a path in G which avoids F such that i(γ) = v and t(γ) = w. If
eN+1 /∈ γ, γ is also a path in G′. If eN+1 ∈ γ, γ = γ1γ2, where γ2 is a shortcut from
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t (eN ) to F . If γ2 ∈ A, γ is also a path in G′. If γ2 /∈ A, fM ∈ µγ2 which means that
µγ2 = fn+1fn+2 . . . fMµ

′ for some shortcut µ′ from t (fM). Then γ1µnewµ
′ is a path

in G′ with the same length as γ which avoids F , starts at v and ends at w.
Let then µ be a path in G′ which avoids F , starts at v and ends at w. If µnew * µ,

µ is also a path in G, so assume that µnew ⊆ µ. It follows that µ = µ1µnewµ2, where
µ1 is the unique shortcut from F to t (eN) and µ2 is the unique shortcut from t (fM)
to F of length |µ| − |µ1| −M +N . By condition B) there is then a unique shortcut
ν of length |µ| − |µ1| in G from t (eN) to F such that t(ν) = w. It follows that µ1ν
is a path in G with the same length as µ which avoids F , starts at v and ends at w.

c) Since condition iv) is satisfied by both G′ and G it suffices to show that v is
the start vertex of a maximal outgoing ray in G if and only if it is in G′. So let δ
be a maximal outgoing ray in G with i(δ) = v. If γ * δ, δ will also be a maximal
outgoing ray in G′. If not δ′ = µ1µnewfM+1fM+2 . . . is a maximal outgoing ray in G′

such that i (δ′) = v, where µ1 is the unique shortcut from F to t (eN). Conversely,
let δ′ be a maximal outgoing ray in G′ with i (δ′) = v. If µnew * δ′, δ′ is also a
maximal outgoing ray in G. On the otherhand, if µnew ⊆ δ′ we find that i (δ′) = i(δ)
where δ is the maximal outgoing ray in G containing γ. �

Lemma 7.13. The dynamical systems, (XG, σ) and (XG′, σ) are conjugate.

Proof. We define a map ϕ : XG → XG′ as follows. Let x = (xi)
∞
i=−∞ ∈ XG.

We will then define ϕ(x) ∈ XG′ as follows. When t (xi) ∈ F , set ϕ(x)i = xi. When
t (xi) /∈ F , we consider the possibilities

a) t (xj) /∈ F, j ≤ i,
b) t (xj) /∈ F, j ≥ i, and
c) there are i1 < i and i < i2 such that t (xi1) , t (xi2) ∈ F .

In case a), set i0 = min {k > i : t (xk) ∈ F}, cf. Lemma 7.5. Then . . . xi0−2xi0−1xi0 is
a maximal incoming ray in G and by a) of Lemma 7.12 there is a unique maximal in-
coming ray γ in G′ such that t (γ) = t (i0). We set ϕ(x)]−∞,i0] = γ. In particular, this
determines ϕ(x)i. In case b) we set i0 = max {k < i : t (xk) ∈ F}. Then x[i0+1,∞[ is
a maximal out-going ray in G and by c) of Lemma 7.12 there is a unique maximal
outgoing ray δ in G′ such that i(δ) = t (xi0). We set ϕ(x)[i0+1,∞[ = δ in this case. In
particular, this determines ϕ(x)i. In case c) we set i2 = min {k > i : t (xk) ∈ F} and
i1 = max {k < i : t (xk) ∈ F}. Then x[i1+1,i2] is path in G which avoids F . By b) of
Lemma 7.12 there is a unique path µ in G′ of the same length as x[i1+1,i2] and with
the same initial and terminal vertex. We set ϕ(x)[i1+1,i2] = µ. In particular, this
determines ϕ(x)i in case c). Note that ϕ commutes with the shift. Since ϕ does not
change F -coordinates it follows ϕ is isometric with respect to the metric d′F . Hence,
by Lemma 7.6 and the bijective correspondances of Lemma 7.12 we conclude that
ϕ is a conjugacy. �

Corollary 7.14. There is a ∗-isomorphism ψ : BG → BG′ such that σ• ◦ ψ =
ψ ◦ σ•.

Proof. It follows from Lemma 7.13 that we can apply Corollary 2.5. �

By successive repetition of the process described we obtain from G a new graph
H – with the same essential properties – such that (XG, σ) and (XH, σ) are conjugate
via a shiftcommuting homeomorhism ϕ with both ϕ and ϕ−1 uniformly continuous
with respect to the Gurevich metrics, and, as a result, BG and BH are ∗-isomorphic
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via a ∗-isomorphism which intertwines the automorphisms induced by the shift.
What is true for H is that A) and B) do not hold for any pair of rays belonging
to different maximal outgoing rays. We say that H is totally grafted when this is
the case. That is, repeated application of Lemma 7.13 and Corollary 7.14 yields the
following

Lemma 7.15. Let G be a graph satisfying i) through iv). There is then a totally
grafted graph H satisfying conditions i) through iv) such that (XG, σ) and (XH, σ)
are conjugate.

7.1.2. Pruning. We still assume that G satisfies conditions i) through iv) and
that F is a core in G having the additional properties desribed in Lemma 7.10.
Assume now that there is an out-going ray γ = e1e2e3 · · · in G such that C) and D)
hold.

This is for example the case in the graph

...·
...·

· ·

· ·

· ·

• •

(7.14)

When C) and D) hold for some N,L, k ∈ N we call k an asymptotic period of
the ray γ.

Lemma 7.16. Assume that C) and D) hold. It follows that when j ≥ N , there
is an Lj ∈ N such that for each v ∈ F and each l ≥ Lj,

• there is a shortcut of length l from t (ej) to F which terminates at v if and
only if there is a shortcut from t (ej+k) to F of length l−k which terminates
at v, and
• every shortcut of length l ≥ Lj from t (ej) to F contains ej+k.

Proof. This follows from Lemma 7.8. �

Let

p = min {k : k is an asymptotic period for γ} .
We call p the minimal asymptotic period of γ.

Lemma 7.17. A natural number m ∈ N is an asymptotic period of γ if and only
if m ∈ Np.

Proof. Left to the reader. �
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By increasing L if necessary we may assume that there is in fact a shortcut of
length L from t (eN) to F . We construct first a new graph G′′′ as follows:

Let G0 be the subgraph of G consisting of

• all edges e ∈ G with i(e), t(e) ∈ F ,
• all edges contained in some path γ which starts at a vertex in F , ends in a

vertex in F and avoids e1 in between, and
• all edges of the paths e1 . . . eNγ, where γ is a shortcut from t (eN) to F of

length |γ| ≥ L.

For each shortcut µ from t (e1) to F which is not of the form e2 . . . eNγ, where
γ is a shortcut from t (eN) to F of length |γ| ≥ L, we add to G0 a new path µ′

of length |µ| + 1 from s (e1) to t (µ). All these new paths must be mutually edge
disjoint and contain no edges from G0. The resulting graph G′′′ satisfies condition
i)–iv) and the set F is a core for G′′′ and enjoys the extra properties described in
Lemma 7.10. Furthermore, G′′′ and G have exactly the same outgoing and incoming
rays with respect to F . Finally C) and D) still hold in G0. What we have achieved
is that in G′′′

|γ| ≥ L when γ is a shortcut from t (eN) to F . (7.15)

Note now that Lemma 7.12 holds with G′ replaced by G′′′ and we can prove the
following lemma by the method used to prove Lemma 7.13.

Lemma 7.18. The dynamical systems (XG, σ) and (XG′′′ , σ) are conjugate.

If G is the graph (7.14) and we let F be the vertices indicated by fat dots, and
N = 1, k = 1 and L = 3, the graph G′′′ becomes

...
...

· ·

· ·

· ·

· ·

• •

· ·

(7.16)

Let G′′ be the subgraph of G′′′ containing the following edges from G:

• all edges e ∈ G with i(e), t(e) ∈ F ,
• all edges contained in some path γ which starts at a vertex in F , ends in a

vertex in F and avoids F and eN in between, and
• the edges e1, e2, . . . , eN .
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Add to G′′ a loop ν of length p (the asymptotic period of γ) at t (eN) which is edge
disjoint from G′′. For each shortcut µ in G′′′ of length l ∈ {L,L+ 1, . . . , L+ p− 1}
from t (eN) to F we add to G′′ a path δµ of length l from t (eN ) to F such that
t (δµ) = t (µ). These paths are mutually edge-disjoint and edge-disjoint from G′′

and ν. The resulting graph will de denoted by G′.
By applying this recipe in the appropriate way to the graph (7.16) the graph G′

becomes
·

· ·

• •

· ·

(7.17)

We have only added finitely many new edges to G′′ to obtain G′, and it follows
therefore that G′ satisfies condition i) through iv) since G′′′ and G′′ do. Observe
that there is one less maximal out-going ray in G′ than there is in G.

In the following we let ν∞ denote the set of periodic elements y of XG′ with the
property that yi ∈ ν for all i ∈ Z. Thus ν∞ is a p-periodic orbit.

Lemma 7.19. Let v, w ∈ F .

a) There is a bijection between the set of maximal incoming rays in G′′′ that
terminate at v and the set of maximal incoming rays in G′ that terminate
at v.

b) For each n ∈ N there is a bijection between the paths in G′′′ of length n that
start at v, end at w and avoid F , and the corresponding set of paths in G′.

c) There is a bijection between the set of maximal outgoing rays in G′′′ that
start at v and the set of maximal outgoing rays in G′ that start at v.

Proof. The proof is quite analogous to the proof of Lemma 7.12. We omit the
details. �

Lemma 7.20. There is a unique shiftcommuting map ψ : XG′′′ → XG′ such that
ψ(x)i ∈ F ⇔ xi ∈ F for all i ∈ Z.

Proof. This follows from Lemma 7.19 in the same way as Lemma 7.13 follows
from Lemma 7.12. �

Lemma 7.21. F ∪ t (eN ) is a core for G′.

Proof. Note that a maximal incoming (outgoing) ray in G′ relative to F∪t (eN)
is also a maximal incoming (outgoing) ray in G′′′ relative to F . Therefore conditions
(7.2), (7.3) and (7.5) follow from the corresponding conditions for F in G′′′.

Consider then two finite paths γ and γ′ of the same length in G′ which both avoid
F ∪ t (eN) and have the property that i(γ) = i (γ′) , t(γ) = t (γ′). If t(γ) = t (eN)
and i (γ) 6= t (eN) we must have that γ = γ′ = e1e2 . . . eN . If t(γ) = i (γ) = t (eN ) we
have that γ = γ′ = ν. If i(γ) = t (eN) and t(γ) 6= t (eN ), we find that γ = γ′ = δµ,
where µ is the unique shortcut in G′′′ from t (eN) to F of length |γ|. All in all we
conclude that F ∪ t (eN ) also satisfies condition (7.4) in G′. �
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Set F ′ = F ∪ t (eN ).

Lemma 7.22. The metric d′F induces the same topology on XG′\ν∞ as d′F ′.

Proof. Since d′F ≤ d′F ′ it suffices to show that a d′F ′-open subset of XG′\ν∞
is also d′F -open. Let therefore U be a non-empty d′F ′-open subset of XG′\ν∞. To
prove that U is also d′F -open, let A = F E∪{↑}, where F E = {e ∈ E : t(e) ∈ F} and
define for each x ∈ XG′ the element x̃ ∈ AZ as in (7.8). There is an N ∈ N with the
property that when x, y ∈ XG′, i ∈ Z, k ∈ N, we have the implication

xi = yi ∈ F, x̃[i−k−N,i+k+N ] = ỹ[i−k−N,i+k+N ] ⇒ x[i−k,i+k] = y[i−k,i+k]. (7.18)

This follows from Lemma 7.7 and the correponding statement for incoming rays,
in combination with Lemma 7.19. Let then x ∈ U . Since U is d′F ′-open there
is an M ∈ N such that y ∈ U when y[−M,M ] = x[−M,M ]. Since x /∈ ν∞ there is
an i ∈ Z such that xi ∈ F . Choose k > |i| + M . There is an ǫ > 0 such that
x̃[i−k−N,i+k+N ] = ỹ[i−k−N,i+k+N ] when d′F (x, y) ≤ ǫ. It follows then from (7.18) that
{y ∈ XG′ : d′F (y, x) < ǫ} ⊆ U . �

Lemma 7.23. ψ : (XG′′′ , σ)→ (XG′\ν∞, σ) is a conjugacy.

Proof. This follows from Lemma 7.20 and Lemma 7.22. �
Lemma 7.24. There is a factor map π : X+

G′ → (XG′\ν∞)+ ≃ X+
G′′′, and, if G′

is finite, a factor map π : XG′ → X+
G′′′.

Proof. It follows from Lemma 7.22 that there is an embedding µ : (XG′\ν∞)+ →(
F E ∪ {↑})∞ such that µ(+) =↑∞. Similarly, by Lemma 7.6, there is an embedding

µ′ : X+
G′ →

(
F E ∪ {eN} ∪ {↑}

)∞
such that µ′(+) =↑∞. Let π :

(
F E ∪ {eN} ∪ {↑}

)∞
→ (

F E ∪ {↑})∞ be the one-block factor map sending eN to ↑. The diagram

XG′\ν∞
µ

XG′

µ′(
F E ∪ {↑})∞ (

F E ∪ {eN} ∪ {↑}
)∞

π

commutes so we conclude that π ◦ µ′ (X+
G′
)

= µ
(
(XG′\ν∞)+). When G′ is finite we

find that π ◦ µ′ (XG′) = µ
(
(XG′\ν∞)+). This proves the lemma. �

Lemma 7.25. Assume that G is totally grafted. There is a ∗-isomorphism ϕ :
BG′′′ → BG′ such that ϕ∗ ◦ σ∗ = σ∗ ◦ ϕ∗ on K∗ (BG′′′).

Proof. It follows from Lemma 7.23 and Lemma 4.8 that ψ restricts to a home-
omorphism from WG′′′ onto WXG′\ν∞,σ. Set

W̃G′ =
⋃

q∈PerXG′\ν∞
W u(q),

which is an open and closed subset of WG′ . Note that there is an identification
WXG′\ν∞,σ = W̃G′ which we use in the following. We will check that ψ : WG′′′ → W̃G′

and ψ−1 : W̃G′ → G′′′ both satisfy conditions 1,2 and 3 of Section 2.1 relative to
(XG′′′, d

′
F ,WG′′′) and

(
XG′, d

′
F ′, W̃G′

)
. (Recall that F ′ = F ∪ {t (eN)}.) Condition 2

is clearly satisfied by both maps. To check the other two note first that

d′F ′ (ψ(x), ψ(y)) = d′F ′ (x, y) ≥ d′F (x, y)
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for all x, y ∈WG′′′. It follows that (ψ−1 (U ′) , ψ−1 (V ′) , ψ−1 ◦ χ′ ◦ ψ) is a local conju-
gacy inWG′′′ from x to y when (U ′, V ′, χ′) is a conjugacy in W̃G′ from ψ(x) to ψ(y). In
order to have established condition 1 and 3 for both ψ and ψ−1 it suffices now to es-
tablish the following: When (U, V, χ) is a local conjugacy inWG′′′ from x to y, there is
an open set U ′ such that x ∈ U ′ ⊆ U and such that (ψ (U ′) , ψ (χ (U ′)) , ψ ◦ χ ◦ ψ−1)
is a local conjugacy from ψ(x) to ψ(y) in W̃G′. If there is a normal conjugacy from
x to y we have that xi = yi for all large i and it follows that ψ(x)i = ψ(y)i for all
large i. In this case we can use

U ′ = {z ∈WG′′′ : zi = xi, i ≤ i0} ,
provided i0 is so large that U ′ ⊆ U , xi0 = yi0, ψ(x)i0 = ψ(y)i0 and χ agrees with
the normal conjugacy χ0 : U ′ → {z ∈WG′′′ : zi = yi, i ≤ i0} defined such that
χ0(z)k = zk, k ≥ i0 + 1. Assume therefore that there is no normal conjugacy from x
to y. Since G′′′ is totally grafted we conclude from Lemma 7.9 that x and y must,
eventually, stay on the same maximal outgoing ray γ′. If γ′ = γ, there are N,M ∈ N
and a k ∈ Z such that xi = eM+i, yi = eM+i+k for all i ≥ N . The assumed conjugacy
between x and y then yields the conclusion that k must an asymptotic period of
γ and it follows then from Lemma 7.17 that ψ(x)i = ψ(y)i for all large enough i.
There is then a normal conjugacy (U ′′, V ′′, χ′′) from ψ(x) to ψ(y) in this case. Since

d′F
(
σj ◦ ψ−1 ◦ χ′′ ◦ ψ(z), σj(z)

) ≤ d′F ′
(
σj ◦ χ′′ ◦ ψ(z), σj ◦ ψ(z)

)
tends to zero uniformly on ψ−1 (U ′′) we conclude that

(
ψ−1 (U ′′) , ψ−1 (V ′′) , ψ−1 ◦

χ′′ ◦ ψ) is a conjugacy from x to y in WG′′′ . The existence of the desired set U ′

follows then from Lemma 1.4 in this case.
Assume then that γ′ 6= γ. There is an N ∈ N such that

d′F
(
σj(χ(z)), σj(z)

) ≤ 1

2
min

{
1

h(e)
− 1

h(e) + 1
: e ∈ F E

}
for all j ≥ N and all z ∈ U . Choose M ≥ N such that xi, yi ∈ γ′ for all i ≥ M . Set

U ′ = U ∩ {z ∈WG′′′ : zi = xi, i ≤ M} ∩ χ−1 ({z ∈WG′′′ : zi = yi, i ≤M})
and V ′ = χ (U ′). Then

{i ≥M : ψ(z)i ∈ F ′} = {i ≥M : ψ (χ(z))i ∈ F ′}
for all z ∈ U ′, and it follows that

lim
k→∞

d′F ′
(
σk (ψ(z)) , σk (ψ (χ(z)))

)
= 0,

uniformly on U ′. Then (ψ (U ′) , ψ (V ′) , ψ ◦ χ ◦ ψ−1) is a local conjugacy between
ψ(x) and ψ(y).

Having established that both ψ and ψ−1 satisfy condition 1, 2 and 3 of Section 2.1
it follows from Theorem 2.4 that ψ induces a ∗-isomorphism ψ• : Aσ

(
XG′, W̃G′

) →
Aσ (XG′′′ ,WG′′′) such that ψ• ◦ σ• = σ• ◦ ψ•. The existence of the desired ∗-
isomorphism ϕ : BG′′′ → BG′ follows now from Corollary 2.14 and Lemma 7.4.
On the level of K-theory the isomorphism ϕ : BG′′′ → BG′ induces the same map as
the composition

Aσ (XG′′′ ,WG′′′)
(ψ•)−1

Aσ

(
XG′, W̃G′

)
Aσ (XG′,WG′) ,

which is equivariant. Hence ϕ∗ ◦ σ∗ = σ∗ ◦ ϕ∗. �
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7.2. The structure of the heteroclinic algebra

Let G be a graph satisfying conditions i) through iv). By Lemma 7.15 there
is a totally grafted graph G′′ which satisfies conditions i) through iv) and an σ-
equivariant isomorphism BG ≃ BG′′. We can then use the procedure of Section 7.1.2,
called pruning, to remove, one by one, the maximal outgoing rays of G′′ for which
C) and D) hold. The resulting graph, G′, will still satisfy conditions i) through iv),
and it follows from Lemma 7.25 that there is a ∗-isomorphism BG′ ≃ BG′′ which is
σ∗-equivariant on K-theory. We will say that G′ is obtained from G by grafting and
pruning.

Theorem 7.26. Assume that G satisfies conditions i), ii), iii) and iv). It follows
that there is a graph G′ such that

• G′ satisfies conditions i), ii), iii) and iv).
• G′ is obtained from G by grafting and pruning.
• There is a ∗-isomorphism ϕ : BG → BG′ such that ϕ∗ ◦ σ∗ = σ∗ ◦ ϕ∗ on
K0 (BG).
• The dimension group K0 (BG) is isomorphic, as a partially ordered group,

to the dimension group K0 (XA) of [Wa] corresponding to the adjacency
matrix A of G′.

Proof. At this point only the last assertion requieres a proof. For this note
that by Lemma 7.9 every local conjugacy in WG′ is normal, at least after a shrinking
of its domain. It is then clear that BG′ is identical with the AF-algebra Bσ (XG′)
of Section 4.3. As pointed out in Section 4.3, K0 (Bσ (XG′)) is isomorphic, as a
partially ordered group, to the dimension group K0 (XA) of [Wa]. �

In has been shown by D. Fiebig and U. Fiebig that X+
G is always a synchronized

system when conditions i) through iv) hold. See Lemma 4.5 of [F]. The process of
grafting and pruning can be used to describe necessary and sufficient conditions for
X+

G to be sofic and of finite type.

Theorem 7.27. Let G be a graph satisfying conditions i) through iv). Then X+
G

is sofic if and only if G can be made finite by grafting and pruning.

Proof. It follows from Lemma 7.15 and Lemma 7.24 that there is a factor map
X+

G′ → X+
G , and if G′ is finite, a factor map XG′ → X+

G . It follows that X+
G is sofic

in the latter case, cf. Theorem 3.2.1 of [LM]. Conversely, assume that X+
G is sofic.

By Lemma 7.15 there is a totally grafted graph H, obtained from G by grafting,
such that X+

H is conjugate to X+
G . Hence X+

H is sofic. We claim that all outgoing
rays in H are asymptotically periodic in the sense that conditions C) and D) hold
for some N, k, L. To see this we identify X+

H with a subshift of AZ as described in
the proof of Lemma 7.6. Let γ = e0e1e2 . . . be a maximal outgoing ray in H which
is not asymptotically periodic, and choose e ∈ E such that t(e) = i (e0). For each
n ∈ N,

wn = e↑↑ . . . ↑︸ ︷︷ ︸
n

is a word X+
H , and since γ is not asymptotically periodic it follows that wn and wm

have different follower-sets in X+
H when n 6= m, i.e. the sets{

u ∈W
(
X+

H
)

: wnu ∈W
(
X+

H
)}
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are different for different n. This contradicts that X+
H is sofic, cf. Theorem 3.2.10 of

[LM]. Thus all outgoing rays in H are asymptotically periodic and they can then
be pruned off one by one to get a finite graph. �

The necessary and sufficient condition for X+
G to be sofic is neatly reflected in

the structure of the heteroclinic algebra BG:

Theorem 7.28. In the setting of Theorem 7.26, BG is simple if and only if G′

is finite and aperiodic.

Proof. When G′ is finite the heteroclinic algebra BG′ is ∗-isomorphic to the
stabilized AF-algebra whose Bratteli diagram is stationary with the connecting map
given by the adjacency matrix of G′. This is a simple algebra if and only if G′ is
aperiodic. By Theorem 7.26 this implies that BG is simple.

For the converse it suffices to show that BG′ is not simple when G′ is infinite.
To see this, note first that when G′ is infinite there has to be an outgoing ray in G′.
Let then γ = e0e1e2 . . . be such a ray. Let z ∈WG′ be an element such that z0 = e0,
and x ∈ WG′ an element such that x[0,∞) = e1e2e3 . . . . It is then easy to see that
there is no normal conjugacy in WG′ from x to any element of

U = {y ∈WG′ : yi = zi, i ≤ 0} .
It follows then from Lemma 7.9 that there is no conjugacy at all from x to an element
of U , and then BG′ is not simple by Proposition 4.6 of [Re1]. �

For completeness we observe the following consequence of our methods:

Theorem 7.29. Let G be an infinite graph satisfying conditions i) through iv).
Then the one-point compactification X+

G is of finite type if and only if every totally
grafted graph H, obtained from G by grafting, only has one maximal outgoing ray
and that ray has asymptotic period 1.

Proof. X+
H is conjugate to X+

G , cf. Lemma 7.13. Let F be a core for H and
represent X+

H as a subshift of
{
F E ∪ {↑})∞, cf. Lemma 7.6. If H has two different

maximal outgoing rays, conditions A) and B) can not hold for them since H is totally
grafted. It is then not difficult to show that there are infinitely many n ∈ N for which
↑n is a word in X+

H which is not synchronizing. Hence X+
H is not of finite type when

there is more than one maximal outgoing ray in H. Note that the single remaining
outgoing ray in H must be asymptotically periodic, in the sense that conditions B)
and C) must hold, if X+

G is to be sofic or even of finite type by Theorem 7.27. If the
asymptotic period is not one it is easy to show that there are also infinitely n for
which ↑n is not synchronizing for X+

H when this shiftspace is realized as a subshift
of
(
F E ∪ {eN} ∪ {↑}

)∞
, in the notation from the proof of Lemma 7.24. In this way

we obtain the necessity of the stated condition for X+
G to be of finite type.

To prove the converse it suffices to prove that the factor map π : XG′ → X+
G′′′

of Lemma 7.24 is injective when ν∞ only contains one point. We leave this to the
reader. �

There are other conclusions one can draw from the methods developed in this
chapter. For example that only very special sofic shift spaces can be the one-point
compactification of a countable state Markov chain coming from a locallly finite
strongly connected countable graph. Specifically, in the terminology of [Th5] they
must have depth one and the derived shift space must consist entirely of periodic
orbits. To reach this conclusion one must also use work by D. Fiebig and M. Schraud-
ner, [Sch].



APPENDIX A

Étale equivalence relations from abelian C∗-subalgebras
with the extension property

The material in this appendix is to some extend build on ideas from work of
Kumjian and Renault from the first half of the 80’s. See [Ku] and [Re2]. The main
results, however, are new. This is probably only because we are here interested in
the passage from étale equivalence relations to C∗-algebras and back, rather than
from C∗-algebras to groupoids and back.

Let A be a C∗-algebra and D ⊆ A an abelian C∗-subalgebra. Let P (A) and
P (D) be the pure state spaces of A and D, respectively, considered as topological
spaces in their respective weak∗-topologies.

Lemma A.1. Let ω ∈ P (D), and let ω̃ ∈ A∗ be a state extension of ω. Then
ω̃(ad) = ω̃(a)ω(d) for all a ∈ A, d ∈ D.

Proof.

|ω̃(ad)− ω̃(a)ω(d)|2 = |ω̃ (a (d− ω(d)))|2
≤ ω̃(aa∗)ω ((d− ω(d))∗ (d− ω(d))) = 0

since ω is a character on D. �
We assume that D has the extension property in A, i.e. that every pure state of

D has a unique (pure) state extension to A. Given ω ∈ P (D) we let ω̃ denote the
unique pure state ω̃ ∈ P (A) extending ω.

Lemma A.2. The map P (D) ∋ ω 7→ ω̃ ∈ P (A) is continuous.

Proof. By Corollary 2.7 (c) and Remark 2.6 (iii) of [ABG] there is a conditional
expectation θ : A→ D such that ω̃(x) = ω (θ(x)) for all x ∈ A. �

Set
N(D) = {a ∈ A : aD = Da, aa∗ ∈ D, a∗a ∈ D} .

Note that when ω ∈ P (D) and v ∈ N(D) we can define a functional on D such
that D ∋ d 7→ ω (vdv∗) for all d ∈ D. We denote this functional by ω (v − v∗) in the
following. In fact, we will sligthly extend this notation to similar cases when the
meaning is clear.

Definition A.3. Let ω, µ ∈ P (D). A local A-conjugacy from ω to µ is a pair
(U, v, V ) where U and V are neighborhoods in P (D) of ω and µ, respectively, and
v ∈ N(D) is an element such that ω (v − v∗) = µ and V = {ν (v − v∗) : ν ∈ U}.

Lemma A.4. Let (U, v, V ) be a local A-conjugacy from ω to µ. Then

i) ν (vv∗) = 1 for all ν ∈ U ,
ii) ν (v∗v) = 1 for all ν ∈ V , and
iii) (V, v∗, U) is a local A-conjugacy from µ to ω.

101



102 A. ABELIAN C∗-SUBALGEBRAS WITH THE EXTENSION PROPERTY

Proof. i) follow from the fact that ν (v − v∗) is a state for all ν ∈ U . iii):
Let ν ′ ∈ V . Then ν ′ = ν (v − v∗) for some ν ∈ U and hence ν ′ (v∗ − v) =
ν (vv∗ − vv∗) = ν by i) and Lemma A.1.This shows that {ν ′ (v∗ − v) : ν ′ ∈ V } ⊆
U . Conversely, when ν ∈ U , ν ′ = ν (v − v∗) ∈ V and ν = ν ′ (v∗ − v). Hence
U ⊆ {ν ′ (v∗ − v) : ν ′ ∈ V }, and iii) follows. ii) follows from i) and iii). �

Lemma A.5. Let (U, v, V ) be a local A-conjugacy from ω to µ and (U ′, w, V ′) a
local A-conjugacy from µ to ν. Then (U, vw, V ′) is a local A-conjugacy from ω to ν.

Proof. Note that ω (vw − w∗v∗) = µ (w − w∗) = ν. When κ ∈ V ′ there is a
κ′ ∈ U ′ such that κ = κ′ (w − w∗) and a κ′′ ∈ U such that κ′′ (v − v∗) = κ′. Then
κ′′ (vw − w∗v∗) = κ, proving that V ′ ⊆ {κ (vw − w∗v∗) : κ ∈ U}. The reversed
inclusion is also trivial. �

We say that ω, µ ∈ P (D) are locally conjugate and write ω ∼ µ when there is a
local A-conjugacy from ω to µ.

Lemma A.6. Local conjugacy is an equivalence relation on P (D).

Proof. Symmetry is iii) of Lemma A.4 and transitivity is Lemma A.5. To see
that ω ∈ P (D) is locally conjugate to itself it suffices to pick an element d ∈ D
such that ν (dd∗) = 1 for all ν in a neighborhood U of ω. Then (U, d, U) is local
A-conjugacy from ω to itself. �

Set

R(A,D) = {(ω, µ) ∈ P (D)× P (D) : ω ∼ µ} .
We go on to make R(A,D) an étale equivalence relation, and for this we proceed in
complete analogy with the construction from Section 1.2. The topology of R(A,D)
is given by the subbase consisting of the sets of the form

{(ν, ν (v − v∗)) : ν ∈ U} (A.1)

for some local A-conjugacy (U, v, V ).

Lemma A.7. Let (U, v, V ) be a local A-conjugacy from ω to µ. Let U0 ⊆ U be
an open subset containing ω. It follows that V0 = {ν (v − v∗) : ν ∈ U0} is open in
P (D) and that (U0, v, V0) is a local A-conjugacy from ω to µ.

Proof. Let ν ′ ∈ V0. Then ν ′ = ν (v − v∗) for some ν ∈ U0. Note that ν =
ν ′ (v∗ − v) by Lemma A.4 and Lemma A.1. Furthermore, it follows from Lemma A.2
that ω (v∗ − v) is close to ν ′ (v∗ − v) = ν in P (D) when ω is close to ν ′. There is
therefore an open neighborhood V ′

0 of ν ′ such that V ′
0 ⊆ V and ω (v∗ − v) ∈ U0 when

ω ∈ V ′
0 . Since ω (v∗v − v∗v) = ω when ω ∈ V by Lemma A.4 and Lemma A.1, we

conclude that V ′
0 ⊆ V0, proving that V0 is open. The rest is trivial. �

For every state τ of A we denote by (Hτ , πτ , ξτ) the GNS-representation of A,
i.e. Hτ is a Hilbert space, πτ : A → LC (Hτ ) is a ∗-homomorphism, and ξτ is a
unit vector in Hτ such that τ(a) = 〈ξτ , πτ (a)ξτ 〉 for all a ∈ A, and πτ (A)ξτ is dense
in Hτ .

Lemma A.8. Let ω ∈ P (D).

i) πω̃(d)ξω̃ = ω(d)ξω̃, ω ∈ P (D), d ∈ D.
ii) For b ∈ N(D) and d ∈ D, πω̃(d)πω̃(b)ξω̃ ∈ Cππ̃(b)ξω̃.
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Proof. i) ‖πω̃(d)ξω̃ − ω(d)ξω̃‖2 = ω ((d− ω(d))∗ (d− ω(d))) = 0.
ii) Since b ∈ N(D) there is an element d′ ∈ D such that db = bd′. Then

πω̃(d)ππ̃(b)ξω̃ = ππ̃(b)πω̃(d
′)ξω̃ = ω(d′)ππ̃(b)ξω̃ by i). �

Lemma A.9. Let ω ∈ P (D), a, b ∈ N(D). Assume that ω (a∗b) 6= 0. It follows
that there is a λ ∈ T such that

ω (a∗a)−
1
2 πω̃(a)ξω̃ = λω (b∗b)−

1
2 πω̃(b)ξω̃.

Proof. Since |ω (a∗b)|2 ≤ ω (a∗a)ω (b∗b), we can set a′ = ω (a∗a)−
1
2 a and b′ =

ω (b∗b)−
1
2 b. Then πω̃(a

′)ξω̃ and πω̃(b
′)ξω̃ unit vectors and

〈πω̃(a′)ξω̃, πω̃(b′)ξω̃〉 6= 0. (A.2)

It follows from ii) of Lemma A.8 that there are characters µa, µb of D such that
πω̃(d)πω̃(a

′)ξω̃ = µa(d)πω̃(a
′)ξω̃ and πω̃(d)πω̃(b

′)ξω̃ = µb(d)πω̃(b
′)ξω̃ for all d ∈ D. It

follows from (A.2) that µa = µb, and hence that

〈πω̃(a′)ξω̃, πω̃ (−) πω̃(a
′)ξω̃〉 = 〈πω̃(b′)ξω̃, πω̃ (−) πω̃(b

′)ξω̃〉
on D. It follows from the extension property that this equality holds on A also, and
then the irreducibility of πω̃ implies that πω̃(a

′)ξω̃ = λπω̃(b
′)ξω̃ for some λ ∈ T, cf.

e.g. Proposition 3.3.7 of [Pe]. �
Lemma A.10. Let (U, v, V ) and (U ′, w, V ′) be local A-conjugacies from ω to µ.

It follows that there is an open neighborhood Ω ⊆ U ∩ U ′ of ω such that

ν (vdv∗) = ν (wdw∗) ∀d ∈ D
when ν ∈ Ω.

Proof. Since ω (v − v∗) = ω (w − w∗) it follows from the extension property
that

〈πω̃ (v∗) ξω̃, πω̃(−)πω̃ (v∗) ξω̃〉 = 〈πω̃ (w∗) ξω̃, πω̃(−)πω̃ (w∗) ξω̃〉
on A. Since πω̃ is irreducible and πω̃ (v∗) ξω̃, πω̃ (w∗) ξω̃ are both unit vectors, we
conclude that there is a λ′ ∈ T such that

πω̃ (w∗) ξω̃ = λ′πω̃ (v∗) ξω̃, (A.3)

cf. e.g. Proposition 3.3.7 of [Pe]. In particular, ω̃ (wv∗) = 〈πω̃ (w∗) ξω̃, πω̃ (v∗) ξω̃〉 6= 0.
It follows then from Lemma A.2 that ν̃ (w∗v) 6= 0 for all ν in an open neighborhood
Ω of ω with Ω ⊆ U ∩ U ′. By Lemma A.9 this implies that πν̃ (w∗) ξν̃ and πν̃ (v∗) ξν̃
are proportional when ν ∈ Ω. Hence

ν (v − v∗) = 〈πν̃ (v∗) ξν̃ , πν̃(−)πν̃ (v∗) ξν̃〉
= 〈πν̃ (w∗) ξν̃ , πν̃(−)πν̃ (w∗) ξν̃〉 = ν (w − w∗)

when ν ∈ Ω. �
Corollary A.11. A base for the topology of R(A,D) is given by the sets of the

form (A.1).

The following generalizes the second proposition on page 437 of [Re2].

Theorem A.12. R(A,D) is an étale equivalence relation.

Proof. With Lemma A.10 replacing Lemma 1.4 the proof of Theorem 1.7 can
be adopted with only the obvious changes. �
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Consider now an étale equivalence relation R on the locally compact Hausdorff
space X. Let r : R→ X and s : R→ X be the range and source map, respectively.
By a graph in R we shall mean an open subset U ⊆ R such that r(U) and s(U)
are open in X and r : U → r(U), s : U → s(U) are homeomorphisms. An element
f ∈ Cc(R) is localized when there is a graph U ⊆ R such that supp f ⊆ R. Every
element of Cc(R) is a finite linear combination of localized functions. In particular
the localized functions span a dense subspace in C∗

r (R).

Lemma A.13. C0(X) has the extension property in C∗
r (R).

Proof. Let ω be a pure state of C0(X), and let ω̃ be a state extension of ω to
C∗
r (R). Let x0 ∈ X be the point such that ω(h) = h (x0) for all h ∈ C0(X). It suffices

to show that ω̃(f) = f (x0, x0) when f ∈ Cc(R). Since supp f ∩ Xc is a compact
subset of R we can find functions ki, hi in Cc(X) and ψi ∈ Cc(R), i = 1, 2, . . . , N ,

such that hiki = 0 for all i,
∑N

j=1 ψj(x, y) = 1 for all (x, y) ∈ supp f ∩Xc, and

ψi(x, y) = ki(x)ψi(x, y)hi(y) (A.4)

for all (x, y) ∈ R and all i = 1, 2, . . . , N . It follows from Lemma A.1 and (A.4) that

ω̃ (ψif) = ω̃ (ki · (ψif) · hi) = ki (x0) hi (x0) ω̃ (ψif) .

Since ki (x0) hi (x0) = 0 we conclude that ω̃ (ψif) = 0 for all i. Since f −∑N
i=1 ψif

is supported in X ⊆ R, we find that

ω̃ (f) = ω
(
f −

N∑
i=1

ψif
)

=
(
f −

N∑
i=1

ψif
)

(x0, x0) = f (x0, x0) .

�
By Lemma A.13 and Theorem A.12 we can consider the étale equivalence relation

R (C∗
r (R), C0(X)).

Lemma A.14. Let f ∈ Cc(R) be localized. Then f ∈ N (C0(X)).

Proof. Let U ⊆ R be a graph with supp f ⊆ U . Let γ : s(U) → r(U) be
the homeomorphism such that (γ(t), t) ∈ U for all t ∈ s(U). When d ∈ C0(X)
there is a h ∈ Cc(r(U)) such that d · f = (dh) · f = f · ((dh) ◦ γ). This show that
C0(X) · f = f · C0(X). Since f · f ∗, f ∗ · f ∈ Cc(X) this completes the proof. �

Theorem A.15. There is an isomorphism R→ R (C∗
r (R), C0(X)) of étale equiv-

alence relations given by
R ∋ (x, y) 7→ (evx, evy) , (A.5)

where evx ∈ C0(X)∗ is the functional which evaluates functions at x.

Proof. Set Φ(x, y) = (evx, evy). When (x, y) ∈ R there is a localized function
f ∈ Cc(R) such that f(x′, y′) = 1 for all (x′, y′) in a neighborhood Ω of (x, y) in R.
Then f ∈ N (C0(X)) by Lemma A.14. Let µ : r (Ω)→ s (Ω) be the homeomorphism
such that Ω = {(t, µ(t)) : t ∈ r(Ω)}. Then

f · h · f ∗(t, t) =
∑
a,b

f(t, a)h(a, b)f(b, t) = h (µ(t), µ(t))

for all t ∈ r(Ω) and all h ∈ Cc(R). It follows that ˜evt (f − f ∗) = ˜evµ(t) for all
t ∈ r(Ω). This show that (U, f, V ) is a local C∗

r (R)-conjugacy from evx to evy.
We conclude that (evx, evy) ∈ R (C∗

r (R), C0(X)), and we have therefore proved that
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Φ(R) ⊆ R (C∗
r (R), C0(X)). It remains to show that Φ : R→ R (C∗

r (R), C0(X)) is a
homeomorphism.

Let (ω, µ) ∈ R (C∗
r (R), C0(X)) and let (U, v, V ) be a C∗

r (R)-conjugacy from ω
to µ. There are points x, y ∈ X such that ω = evx and µ = evy. The functional
ω̃ (−v∗) is non-zero and hence ω̃ (gv∗) 6= 0 for some localized function g ∈ Cc(R).
Since g ∈ N (C0(X)) it follows from Lemma A.9 that πω̃ (g∗) ξω̃ = λπω̃ (v∗) ξω̃ for
some λ ∈ C\{0}. Then

ω̃ (−g∗) = 〈ξω̃, πω̃(−)πω̃ (g∗) ξω̃〉 = λ 〈ξω̃, πω̃(−)πω̃ (v∗) ξω̃〉 = λω̃ (−v∗) . (A.6)

Since
∑

a g(x, a)g(a, x) = ω̃ (g · g∗) = λω̃ (gv∗) 6= 0 there is an element z ∈ X such
that (x, z) ∈ R and g (x, z) 6= 0. Note that z is unique because g is localized.
Assume to obtain a contradiction that z 6= y. Choose h ∈ Cc(X) such that h(z) = 0
and h(y) = 1. Let 1x ∈ l2[x] be the characteristic function at x and note that

ω (−) =
〈
1x, κ[x](−)1x

〉
on C0(X). The extension property of C0(X) in C∗

r (R) and Proposition 3.3.7 of [Pe]
imply that there is a unitary U : Hω̃ → l2[x] such that Uξω̃ = 1x and κ[x](−) =
Uπω̃(−)U∗. It follows that

ω̃ (−g∗) =
〈
1x, κ[x](−)κ[x](g

∗)1x
〉

= g(z, x)
〈
1x, κ[x](−)1z

〉
.

Inserting vh we find that

ω̃ (vhg∗) = g(z, x)
〈
1x, κ[x](v)κ[x](h)1z

〉
= 0

since κ[x](h)1z = h(z)1z = 0. In contrast,

ω̃ (vhv∗) = µ(h) = h(y) = 1,

contradicting (A.6). It follows that (x, y) ∈ R and that Φ is a bijection.
Let (x, y) ∈ R, and let (U, v, V ) be a local C∗

r (R)-conjugacy from evx to evy.
There is a localized function f ∈ Cc(R) such that f(x′, y′) = 1 for all (x′, y′) in a
graph Ω ⊆ R containing (x, y). Note that

˜evx′ (f − f ∗) =
〈
1x′, κ[x′](f)κ[x′](−)κ[x′](f

∗)1x′
〉

=
〈
1y′ , κ[x′](−)1y′

〉
= ˜evy′

when (x′, y′) ∈ Ω. It follows that (U ′, f, V ′) is a local C∗
r (R)-conjugacy from evx to

evy, where U ′ = {evz : z ∈ r(Ω)} and V ′ = {evz : z ∈ s(Ω)}. By Lemma A.10 this
implies that ˜evx′ (f − f ∗) = ˜evx′ (v − v∗) for all x′ in an open neighborhood U0 of x
such that U0 ⊆ U ′. This shows that

Φ
(
Ω ∩ r−1 (U0)

)
= {(evt, evt (v − v∗)) : t ∈ U0} .

It follows that Φ is both open and continuous, and hence a homeomorphism. �
The following theorem is a straightforward consequence of Theorem A.15.

Theorem A.16. Two étale equivalence relations, R on X and R′ on X ′, are
isomorphic if and only if there is a ∗-isomorphism ψ : C∗

r (R) → C∗
r (R

′) such that
ψ (C0(X)) = C0 (X ′).

At this point it is natural to ask if we get the pair D ⊆ A back when we construct
the reduced groupoid C∗-algebra from R(A,D), and the answer is ’not in general’.
This can be seen from the fact that while the set of normalizers N (C0(X)) of C0(X)
in C∗

r (R) always span a dense subspace of C∗
r (R) this may not be the case of N(D)

in A. See [Ku] and [Re2] for more on this issue.





APPENDIX B

On certain crossed product C∗-algebras

This appendix contains the results about crossed products which are used in the
main body of the text. Most must be known to experts, but I haven’t been able to
locate the statements in the litterature.

B.1. Translations on tori

In this section we have gathered some technical observations on the structure of
crossed products arising from translations in groups, primarily tori.

Lemma B.1. Let β : H → AutB and β ′ : H ′ → AutB′ be actions of the
discrete amenable groups H and H ′ on the C∗-algebras B and B′, respectively. Let
π : B → B′ be a ∗-homomorphism and ϕ : H → H ′ a homomorphism such that

β ′ϕ(h) (π(a)) = π (βh(a)) (B.1)

for all a ∈ B and all h ∈ H. There is then a ∗-homomorphism Π(π,ϕ) : B ⋊β H →
B′ ⋊β′ H

′ such that Π(π,ϕ) (auh) = π(a)uϕ(h) for all a ∈ B and all h ∈ H. Π(π,ϕ) is
injective if π and ϕ both are.

Proof. By (B.1) the pair
(
π, uϕ(·)

)
is a covariant representation of (B, β) and

as such it gives rise to a ∗-homomorphism between the full crossed products which
takes buh to π(b)uϕ(h). Since we assume that H is amenable the reduced and the
full crossed products agree, cf. [Pe]. It follows from the general theory of crossed
product that Π(π,ϕ) is injective when π and ϕ both are. �

Lemma B.2. Let G1←−G2←−G3←− . . . be a sequence of compact abelian groups
and continuous surjective group homomorphisms. Let G = proj limkGk be the cor-
responding inverse limit group, and H ⊆ G a countable subgroup. Let pk : G → Gk

be the canonical projections and let H1 ⊆ H2 ⊆ H3 ⊆ . . . be a sequence of subgroups
of H such that H =

⋃
j Hj.

It follows that C(G) ⋊τ H is ∗-isomorphic to the inductive limit

lim−→
k

(
C(Gk) ⋊τ◦pk Hk, ψk

)
where each ψk is a unital ∗-homomorphism and the action τ ◦ pk of Hk on C (Gk)
is given by (

τ ◦ pk)
h
(f)(x) = f

(
x− pk(h)) , (B.2)

f ∈ C (Gk) , h ∈ Hk.

Proof. It follows from Lemma B.1 that there is an infinite commuting diagram

C (G1) ⋊τ◦p1 H1 C (G2) ⋊τ◦p2 H2 C (G3) ⋊τ◦p3 H3 . . .

...

C(G) ⋊τ H

(B.3)
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of injective ∗-homomorphisms. The actions τ ◦ pk are here defined such that (B.2)
holds. By commutativity of the diagram (B.3) there is a ∗-homomorphism

µ : lim−→
k

C (Gk) ⋊τ◦pk Hk → C(G) ⋊τ H.

Note that µ is injective. By using that C(G) is isomorphic to lim−→jC (Gj) it follows
that the canonical copy of C(G) is in the range of µ. By construction the same is
the case of uh for each h ∈ H since H =

⋃
j Hj. Since {fuh : f ∈ C(G), h ∈ H}

generates C(G) ⋊τ H , this proves that µ is surjective. �

Lemma B.3. Let α : H → AutA be an action of the countable discrete abelian
group H on the separable C∗-algebra A. It follows that A⋊αH is stably isomorphic

to (A⋊α (H/ kerα))⊗ C(k̂erα).
Proof. Let s : H/ kerα→ H be a section for the quotient map H → H/ kerα.

Then ω(x, y) = s(x) + s(y) − s(x + y) is a kerα-cocycle which we can consider as
a 2-cocycle with values in the unitary group of C

(
k̂erα

)
. It follows from The-

orem 4.1 of [PR] that A ⋊α H is ∗-isomorphic to the twisted crossed product
A ⊗ C

(
k̂erα

)
⋊α⊗idC(k̂er α),1A⊗ω (H/ kerα). The 2-cocycle ω ⊗ 1L, which takes val-

ues in the unitary group of L = L
C
(
k̂erα
)(l2(H/ kerα,C

(
k̂erα

)))
is a co-boundary;

specifically, ω(x, y)⊗ 1L = vxvyv
∗
x+y, where

vxψ(y) = ω(x, y)ψ(x+ y).

It follows therefore that(
A⊗ C(k̂erα)⋊α⊗idC(k̂er α),1A⊗ω (H/ kerα)

)
⊗K

(
l2 (H/ kerα)

)
is ∗-isomorphic to

(
A⊗C(k̂erα)⋊α⊗idC(k̂er α)

(H/ kerα)
)⊗K (l2 (H/ kerα)), cf. Lem-

ma 3.3 of [PR]. This yields the lemma since

A⊗ C(k̂erα)⋊α⊗idC(k̂er α)
(H/ kerα) ≃ (A⋊α (H/ kerα))⊗ C(k̂erα).

�

Lemma B.4. Let H be a finitely generated subgroup of the n-torus Tn and k the
rank of the torsion-free part of H. It follows that there is a subgroup K ⊆ Tn such
that K ≃ Zk and such that C (Tn) ⋊τ H is stably isomorphic to C (Tn) ⋊τ Zk.

Proof. Note that H ≃ F ⊕Zk for some finite abelian group F . Then C (Tn)⋊τ

H ≃ (C (Tn) ⋊τ F ) ⋊ Zk. Let

p =
1

#F

∑
k∈F

uk ∈ C (Tn) ⋊τ F.

A simple calculation shows that p is a projection such that

p (C (Tn) ⋊τ F ) p =
{∑
k∈K

fuk : f ∈ C(G), f(g − k) = f(g), ∀g ∈ G, k ∈ F
}

≃ C (Tn/F ) .

By using that Tn/F ≃ Tn we find that

p
(
(C (Tn) ⋊τ F ) ⋊ Zk

)
p ≃ C (Tn) ⋊τ Zk.
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Since the action of H is free, there is bijective correspondance between the ideals
of (C (Tn) ⋊τ F ) ⋊ Zk and the H-invariant ideals of C (Tn). It is therefore clear
that p is a full projection in (C (Tn) ⋊τ F ) ⋊ Zk and we conclude from [Br] that
(C (Tn) ⋊τ F ) ⋊ Zk is stably isomorphic that C (Tn) ⋊τ Zk. �

The same proof yields also the following, which is a special case of a result of
Rieffel, [Ri1].

Lemma B.5. Let G be a compact group, F a finite normal subgroup of G. It
follows that C (G) ⋊τ F is stably isomorphic to C (G/F ).

Lemma B.6. Let H be finitely generated abelian group and ϕ : H → Tn a
homomorphism and m the rank of the torsion-free part of H. Let τ ◦ ϕ : H →
AutC (Tn) be the action given by

(τ ◦ ϕ)h (f)(x) = f (x− ϕ(h)) .

Then either

i) there is a natural number l ∈ N such that C (Tn) ⋊τ◦ϕ Zm is stably isomor-
phic to Cl ⊗ C (Tn+m), or

ii) there are natural numbers l, r, d, k and a non-degenerate special non-commu-
tative torus B of rank (d, k) such that r+d+k = n+m and C (Tn)⋊τ◦ϕZm

is stably isomorphic to Cl ⊗ C (Tr)⊗B.

Proof. Let l′ be the order of the torsion subgroup of kerϕ. It follows from
Lemma B.3 that C (Tn) ⋊τ◦ϕ H is stably ∗-isomorphic to

Cl′ ⊗ C (Ta)⊗ (C (Tn) ⋊τ (H/ kerϕ))

where a is the rank of the torsion-free part of kerϕ. Write H/ kerϕ ≃ F ⊕ Zk

where F is a finite group. If k = 0 we are in case i) by Lemma B.5. Assume
therefore that k ≥ 1. It follows from Lemma B.4 that C (Tn)⋊τ (H/ kerϕ) is stably
isomorphic to C (Tn)⋊τ Zk. Let ψ : Zn → Tk be the dual of the embedding Zk ⊆ Tn

and set µ(x) = ψ(x)−1. Then µ has dense range since ψ has and C (Tn) ⋊τ Zk ≃
C
(
Tk
)

⋊τ◦µ Zn. We are now essentially back where we started, but with the crucial
difference that µ has dense range. When we repeat the preceding arguments we get
therefore that C

(
Tk
)
⋊τ◦µZn is stably isomorphic to Cl′′⊗C (Ta′

)⊗(C (Tk
)

⋊τ Zm′)
,

where Zm′
is now a dense subgroup of Tk, l′′ is the order of the torsion part of kerψ

while a′ is the rank of the torsion-free part of kerψ. Then B = C
(
Tk
)

⋊τ Zm′
is

a non-degenerate noncommutative torus and we have shown that C (Tn) ⋊τ◦ϕ H is
stably ∗-isomorphic to Cl′l′′ ⊗ C (Ta+a′

) ⊗ B. Since a′ + a + k + m′ = n + m this
completes the proof. �

Proposition B.7. Let H be finitely generated abelian group and ϕ : H → Tn

a homomorphism and m the rank of the torsion-free part of H. Let τ ◦ ϕ : H →
AutC (Tn) be the action given by

(τ ◦ ϕ)h (f)(x) = f (x− ϕ(h)) .

There are then a sequence Fi, i ∈ N, of finite dimensional C∗-algebras, a natural
number k ≤ n+m+ 1, projections pi ∈ C

(
Tk
)⊗ Fi and a sequence

A1 ⊆ A2 ⊆ A3 ⊆ · · ·
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of unital C∗-subalgebras of C (Tn) ⋊τ◦ϕ H such that

C (Tn) ⋊τ◦ϕ H =
∞⋃
i=k

Ak

and
Ai ≃ pi

(
C
(
Tk
)⊗ Fi) pi

for all i.

Proof. This follows straightforwardly by combining Lemma B.6 with the main
result of [Ph2]. �

Lemma B.8. Let H be a locally compact abelian group, F a finite abelian group
and G ⊆ H × F a countable subgroup. Let p : H × F → F the projection. Set
F0 = p (G) and G0 = ker p ∩G.

Then C0 (H × F ) ⋊τ G is stably isomorphic to ⊕F/F0
C0(H) ⋊τ G0.

Proof. It follows from Theorem 4.1 of [PR] that there is a twisted action
(α, v) on C0(H) ⋊τ G0 such that C0 (H × F ) ⋊τ G is ∗-isomorphic to the twisted
crossed product ((C0(H) ⋊τ G0)⊗ C(F ))⋊α⊗τ,v⊗1C(F )

F0. By using Theorem 3.4 and
Lemma 3.3 of [PR] we see that there is a genuine action β of F0 on K⊗(C0(H) ⋊τ G0)
such that ((C0(H) ⋊τ G0)⊗ C(F )) ⋊α⊗τ,v⊗1C(F )

F0 is stably ∗-isomorphic to

(K⊗ (C0(H) ⋊τ G0)⊗ C(F )) ⋊β⊗τ F0.

It is straightforward to see that (K⊗ (C0(H) ⋊τ G0)⊗ C(F )) ⋊β⊗τ F0 decomposes
as a direct sum

⊕F/F0
(K⊗ (C0(H) ⋊τ G0)⊗ C(F0)) ⋊β⊗τ F0.

But

(K⊗ (C0(H) ⋊τ G0)⊗ C(F0)) ⋊β⊗τ F0 ≃ K⊗ (C0(H) ⋊τ G0) ⋊β F0 ⋊bβ F̂0,

cf. Lemma 7.9.2 of [Pe], and K⊗ (C0(H) ⋊τ G0) ⋊β F0 ⋊bβ F̂0 ≃ K⊗ (C0(H) ⋊τ G0)

by Takai-duality, cf. Theorem 7.9.3 of [Pe]. �

B.2. On crossed products of abelian C∗-algebras by discrete groups

Let X be a locally compact second countable space. Let H be a countable
discrete group and βh, h ∈ H , an action of H by homeomorphisms of X. Let β̃ be
the corresponding action of H by automorphisms of C0(X), i.e. β̃g(f) = f ◦ βg−1 ,
f ∈ C0(X).

Theorem B.9. Assume that for all compact subsets K of X there is a g ∈ H
such that βg(K) ∩K = ∅.

It follows that C0(X) ⋊β̃ H is stable.

Proof. We use Proposition 2.2 and Theorem 2.1 of [HR] in the same way as
in the proof of Lemma 4.15. Let F ⊆ H be a finite subset, and fg ∈ C0(X), g ∈ F ,
functions of compact supports. Since elements of the form

∑
g∈F fgug are dense in

C0(X) ⋊β̃ H it suffices to find an element v ∈ C0(X) ⋊β̃ H such that

v∗v
(∑
g∈F

fgug

)
=
∑
g∈F

fgug (B.4)
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and (∑
g∈F

fgug

)
v = 0. (B.5)

To this end, let

K =
⋃

g∈F−1∪{e}
βg

(⋃
h∈F

supp fh

)
.

Since K is compact there is by assumption an element k ∈ G such that βk (K) ∩
K = ∅. Let h ∈ Cc(X) be a non-negative function such that h(x) = 1, x ∈ K, and

supph ∩ βk (K) = ∅. Set v = uk−1

√
h. It is straightforward to check that (B.4) and

(B.5) hold. �
Let τ be a densely defined lower-semicontinuous trace on the crossed product

C0(X) ⋊β̃ H . Then τ is finite on the Pedersen ideal of C0(X) ⋊β̃ H , cf. 5.6 of [Pe],
and since the Pedersen ideal contains all positive elements a of C0(X) ⋊β̃ H for
which there is another positive element b such that ba = a, we see that τ restricts to
a positive linear functional on Cc(X) ⊆ C0(X) ⋊β̃ H . By the Riesz representation
theorem there is therefore a positive measure µτ on X such that

τ(f) =

∫
X

f(t) dµτ (t)

for all f ∈ Cc(X). Note that µτ is finite on compact subsets of X and invariant
under β in the sense that µτ (βg(A)) = µτ (A) for all g ∈ H and all Borel sets A ⊆ X.

Theorem B.10. Assume that β is a free action, i.e. that βg(x) 6= x when
x ∈ X, g ∈ H\{e}. It follows that the map τ 7→ µτ is a bijection from the densely
defined lower-semicontinuous traces on C0(X) ⋊β̃ H onto the positive β-invariant
Borel measures on X that are finite on compact subsets.

Proof. Surjectivity: Let ν be a positive β-invariant Borel measure on X, finite
on compact subsets. When a ∈ C0(X) ⋊β̃ H is positive set

τ(a) =

∫
X

P (a)(t) dν(t),

where P : C0(X) ⋊β̃ H → C0(X) be the canonical conditional expectation. Since P
is continuous it follows from Fatou’s lemma that τ is lower semi-continuous. Since
ν is finite on compact subsets we have that τ is finite on every positive element of
Cc(X) and since this set of elements contains an approximate unit for C0(X) ⋊β̃ H
it follows that τ is densely defined. To see that τ is trace, i.e. that τ (uau∗) = τ(a)

when u is a unitary from the unitezation
(
C0(X) ⋊β̃ H

)+
, note that there is a von

Neumann algebra M with a semi-finite faithful trace ψ and a ∗-homomorphism
π : C0(X)+ ⋊β̃ H →M such that the diagram

C0(X)+ ⋊β̃ H
π

τ

M
ψ

[0,∞]

commutes on positive elements, cf. pp. 148-149 of [Di]. The trace property follows

from this because
(
C0(X) ⋊β̃ H

)+ ⊆ C0(X)+ ⋊β̃ H . Since µτ = ν by construction
this proves the surjectivity part.



112 B. ON CERTAIN CROSSED PRODUCT C∗-ALGEBRAS

Injectivity: Let τ1, τ2 be two densely defined lower-semicontinuous traces on
C0(X) ⋊β̃ H . Assume that µτ1 = µτ2 , and represent C0(X) on L2 (X,µτ1) as mul-
tiplication operators. Then C0(X) ⋊β̃ H can be considered as a strongly dense
C∗-subalgebra of von Neumann algebra crossed product L∞ (X,µτ1) ⋊ H . It fol-
lows from Proposition 5.6.7 of [Pe] that τ1 and τ2 both extend to normal semi-finite
traces, τ̃1 and τ̃2, on L∞ (X,µτ1) ⋊ H . Note that τ̃1 and τ̃2 agree on L∞ (X,µτ1)
since µτ1 = µτ2. Since β is a free action it follows therefore from Theorem 7.11.13
of [Pe] that τ̃1 = τ̃2. In particular, τ1 = τ2. �

Corollary B.11. Let G be a locally compact second countable group and
H ⊆ G a countable dense subgroup. Assume that G is not compact. It follows that
C0(G) ⋊τ H is stable, simple and and has a densely defined lower semi-continuous
trace which is unique up to scalar multiplication.

Proof. The simplicity of the (reduced) crossed product C0(G) ⋊τ H follows
from [Z] (or Proposition 4.6 of [Re1]), the stability from Theorem B.9 and the
existence and essential uniqueness of the trace from Theorem B.10 by using the
essential uniqueness of the Haar-measure. �

B.3. Translations in Rk.

In this section we study the structure of the crossed products arising from vector
translations in Euclidian space.

Let n, k ∈ N, n ≥ k. Let v1, v2, . . . , vn be a collection of vectors in Rk. Define
an action α of Zn on C0

(
Rk
)

such that

αz(f)(x) = f
(
x+

n∑
i=1

zivi

)
.

We are interested in the structure of the crossed product C∗-algebra

C0

(
Rk
)

⋊α Zn

under the assumption that the vi’s span Rk.
Assume that v1, v2, . . . , vk are linearly independent. Let α′ be the action of Zk

on C0

(
Rk
)

obtained by restricting α to Zk ⊆ Zn, and let α′′ be the action of Zn−k

on C0

(
Rk
)

⋊α′ Zk obtained from α. Then

C0

(
Rk
)

⋊α Zn =
(
C0

(
Rk
)

⋊α′ Zk
)

⋊α′′ Zn−k.

Set

L =
{ k∑
i=1

zivi : (z1, z2, . . . , zk) ∈ Zk
}
.

For f ∈ C0

(
Rk
)

and x ∈ Rk, define fx ∈ C0 (L) such that fx(l) = f(x+ l). Let β

be the action of Zk on C0(L) given by

βz(g)(l) = g
(
l +

k∑
i=1

zivi

)
.

We get in this way a ∗-homomorphism Π : C0

(
Rk
)

⋊α′ Zk → Cb
(
Rk, C0(L) ⋊β Zk

)
defined such that

Π
(∑
z∈Zk

f(z)uz

)
(x) =

∑
z∈Zk

f(z)xuz
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when f ∈ Cc
(
Zk, C0

(
Rk
))

. For every l ∈ L define an automorphism γl of C0(L)⋊βZk

such that

γl

(∑
z∈Zk

g(z)uz

)
=
∑
z∈Zk

g(z)luz,

where hl(l′) = h(l + l′), h ∈ C0(L), l ∈ L. Then Π is a ∗-isomorphism mapping
C0

(
Rk
)

⋊α′ Zk onto

A =
{
g ∈ Cb

(
Rk, C0(L) ⋊β Zk

)
: g(x+ l) = γl (g(x)) , x ∈ Rk, l ∈ L} .

Define an action µ of Zn−k on A such that

µ(zk+1,zk+2,...,zn)(g)(x) = g
(
x+

n∑
i=k+1

zivi

)
.

Since Π ◦ α′′z = µz ◦Π for all z ∈ Zn−k we conclude that

C0

(
Rk
)

⋊α Zn =
(
C0

(
Rk
)

⋊α′ Zk
)

⋊α′′ Zn−k = A⋊µ Zn−k.

Represent C0(L) as multiplication operators on l2(L) in the natural way and

define Uz ∈ L (l2(L)) such that (Uzψ) (l) = ψ
(
l +

∑k
i=1 zivi

)
. Then C0(L) ⋊β Zk

is generated, as a C∗-algebra, by
{
fUz : f ∈ C0(L), z ∈ Zk

}
, and C0(L) ⋊β Zk =

L (l2(L)) = K. The Fourier transformation W : l2(L) → L2
(
[0, 1]k

)
is a unitary

such that

(WUzW
∗ψ) (t1, t2, . . . , tk) = e2πi

Pk
j=1 zjtjψ (t1, t2, . . . , tk) .

For s ∈ Rk, define Vs ∈ LC
(
L2
(
[0, 1]k

))
such that

(Vsψ) (t1, t2, . . . , tk) = e2πi
Pk

j=1 sjtjψ (t1, t2, . . . , tk) .

Then Us = W ∗VsW is a strictly continuous representation such that AdUl = γl.
We can then define a ∗-isomorphism Ψ from A onto

B =
{
g ∈ Cb

(
Rk, C0(L) ⋊β Zk

)
: g(x+ l) = g(x), x ∈ Rk, l ∈ L}

such that

Ψ(f)(x) = U∗
xf(x)Ux.

This shows that

C0

(
Rk
)

⋊α Zk ≃ C
(
Rk/L, C0(L) ⋊β Zk

)
= C

(
Rk/L

)⊗K. (B.6)

Let wk+1, wk+2, . . . , wn ∈ Rk/L be the image of vk+1, vk+2, . . . , vn ∈ Rk. Define
actions κ and κ′ of Zn−k on C

(
Rk/L

)
and K such that

(κzf) (x) = f
(
x+

n∑
i=k+1

ziwi

)
,

and

κ′z = AdU−z,

respectively. It is now clear that the isomorphism (B.6) turns the action α′ on
C0

(
Rk
)

⋊α Zk into the diagonal action κ⊗ κ′ on C
(
Rk/L

)⊗K. Thus

C0

(
Rk
)

⋊α Zn ≃ (C (Rk/L
)⊗K

)
⋊κ⊗κ′ Zn−k.
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Now the formula ∑
z∈Zn−k

f(z)uz 7→
∑

z∈Zn−k

f(z) (1⊗ Uz) uz

gives rise to a ∗-isomorphism(
C
(
Rk/L

)⊗K
)

⋊κ⊗κ′ Zn−k ≃ (C (Rk/L
)⊗K

)
⋊κ⊗id Zn−k

=
(
C
(
Rk/L

)
⋊κ Zn−k)⊗K,

and we can summarize the result as follows:
Let ei, i = 1, 2, . . . , k, be the standard basis in Rk. Let V ∈Mk (R) be the matrix

such that V ei = vi. Set αj = ρ (V −1vj+k) , j = 1, 2, . . . , n− k, where ρ : Rk → Tk =
Rk/Zk is the quotient map. Let β be the action of Zn−k on C

(
Tk
)

obtained from
rotation by the αj ’s, i.e.

βz(f)(x) = f
(
αz11 α

z2
2 . . . α

zn−k

n−k x
)
.

Theorem B.12. Assume that the vi’s span Rk. Then

C0

(
Rk
)

⋊α Zn ≃ K⊗ (C (Tk
)

⋊β Zn−k) .
Corollary B.13. Assume that

{∑n
j=1 zjvj : (z1, z2, . . . , zn) ∈ Zn

}
is dense in

Rk. It follows that C0(Rk)⋊αZn is a stable AT-algebra of real rank zero with a lower
semi-continuous densely defined trace which is unique up to scalar multiplication.

Proof. Under the present assumption C0(Rk) ⋊α Zn is simple and hence the
crossed product C

(
Tk
)
⋊βZn−k is a (special) nondegenerate non-commutative torus.

Therefore the corollary follows by combining Theorem B.12 with the main result
of [Ph2]. �



APPENDIX C

On an example of Bratteli, Jorgensen, Kim and Roush

The purpose of this Appendix is to supply the details of the argument which
shows that the stationary dimension groups corresponding to the matrix(

65 7
24 67

)
(C.1)

and its transpose are not isomorphic, even when we ignore the orderings. Compare
with Example 3.6 of [BJKR]. I am grateful to Kim and Roush for explaining me
the part of the argument which is missing in [BJKR].

Let A be an 2 × 2 matrices with entries from N. The inductive limit group of
the sequences

Z2 A
Z2 A

Z2 A
Z2 A . . . (C.2)

will be denoted by GA. Since the entries of A are non-negative, GA is a partially
ordered group in a natural way, cf. e.g. [BJKR]. Assume that A is invertible in
M2 (Q), i.e. assume that DetA 6= 0. Then the commuting diagram

Z2 A

id

Z2 A

A−1

Z2 AA

A−2

Z2 A

A−3

...

. . .

Q2

gives rise to an embedding GA ⊆ Q2 which identifies GA with{
z ∈ Q2 : Akz ∈ Z2 for some k ∈ N

}
.

Lemma C.1. Assume that the eigenvalues, n and m, of A are positive natural
numbers, different and relatively prime. Choose v ∈ Z2\{(0, 0)} such that Av = nv.
It follows that {

z ∈ GA :
1

nk
z ∈ GA for all k ∈ N

}
= Qv ∩GA. (C.3)

If, furthermore, v = (a, b) is chosen such that a and b are mutually prime, we have
that

Qv ∩GA =

{
k

l
v : k, l ∈ Z, l|ni for some i ∈ N

}
. (C.4)

Proof. Let w ∈ Qv∩GA and consider some k ∈ N. Then Ar+k
(

1
nkw

)
= Arw ∈

Z2 for some r ∈ N since w ∈ GA. It follows that 1
nkw ∈ GA.

Conversely, assume that z ∈ GA and that 1
nk z ∈ GA for all k ∈ N. Let u ∈ N2

be an eigenvector for A corresponding to the eigenvalue m. Then z = qv + q′u for
some q, q′ ∈ Q, and we aim to show that q′ = 0. Let N ∈ N be so large that p = Nq

115
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and p′ = Nq′ are both integers. Then Nz = pv+ p′u. If q′ 6= 0 we can choose k ∈ N
so large that

1

nk
p′u /∈ Z2. (C.5)

Since 1
nkNz ∈ GA there must be an r ∈ N, r ≥ k, such that

Z2 ∋ Ar
(

1

nk
Nz

)
= pnr−kv + p′

mr

nk
u.

Since pnr−kv ∈ Z2 this implies that p′m
r

nk u ∈ Z2. This contradicts (C.5) since n and
m are mutually prime. Hence q′ = 0 and we conclude that z ∈ Qv ∩ GA. (C.3) is
established.

To prove (C.4) note first that one inclusion, namely ⊇, is trivial. Let p
q
v ∈ GA,

where p, q ∈ Z are relatively prime. Then Ai
(
p
q
v
)

= p
q
niv ∈ Z2 for some i ∈ N and

it follows then that q|ni since (p, q) and (a, b) are relatively prime. �
For the following lemma recall that a non-negative matrix is primitive when

some power of it has all entries strictly positive.

Lemma C.2. Let A and B be primitive 2 × 2 matrices with entries from N.
Assume that A and B have the same distinct and mutually prime eigenvalues
from N \ {0}. Assume that GA and GB are isomorphic as groups.

It follows that A and B are shift equivalent, i.e. there are matrices U, V ∈M2 (Z)
with non-negative entries such that UA = BU, V B = AV, UV = Bl and V U = Al

for some l ∈ N.

Proof. Let n,m be the two common eigenvalues for A and B. Choose v, u, v′,
u′ ∈ Z2 be non-zero vectors such that Av = nv,Au = mu,Bv′ = nv′ and Bu′ = mu′.
Let ϕ : GA → GB be an isomorphism. It follows from Lemma C.1 that ϕ (v) ∈ Qv′
and ϕ(u) ∈ Qu′, which in turn implies that

ϕ ◦ A = B ◦ ϕ. (C.6)

Let X ∈ M2 (Q) be the matrix determined by the condition that Xu = ϕ(u) and
Xv = ϕ(v). It follows from (C.6) that

XA = BX. (C.7)

Similarly, we construct a matrix Y ∈ M2 (Q) such that Y u′ = ϕ−1 (u′) , Y v′ =
ϕ−1 (v′) and

Y B = AY. (C.8)

Let e1 = (1, 0), e2 = (0, 1). There is then a natural number k such that

Bkϕ (e1) , B
kϕ (e2) , A

kϕ−1 (e1) , A
kϕ−1 (e2)

are all in Z2. Define U, V ∈ M2 (Z) such that Ue1 = Bkϕ (e1), Ue2 = Bkϕ (e2),
V e1 = Akϕ−1 (e1) and V e2 = Akϕ−1 (e2). Since there are integers ki, li, ni such that
kiei = liv + niu, i = 1, 2, it is easy to check that

B−kU = X (C.9)

and

A−kV = Y. (C.10)

It follows from (C.7) through (C.10) that UA = BU and V B = AV . Finally, since
XY = Y X = 1, we find that UV = BkXAkY = B2k and V U = AkY BkX = A2k.
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U and V have the required properties, except that they may contain negative
entries. Since both A and B are primitive, this can be remedied by Perron-Frobenius
theory, cf. Lemma 2.2.8 of [K]. �

Since the matrix (C.1) is primitive, we can now complete our task by appealing
to the reasoning from Example 3.6 of [BJKR]. For completeness we include the
argument here. So let now A be the matrix (C.1). The common eigenvalues for A
and At are the primes n = 53 and m = 79. Choose vectors

( αβ ) ,
(
α′
β′
)
, ( xy ) ,

(
x′
y′
)

in Z2 such that
A ( αβ ) = n ( αβ ) ,

A
(
α′
β′
)

= m
(
α′
β′
)
,

At ( xy ) = n ( xy ) ,

and
At
(
x′
y′
)

= m
(
x′
y′
)
.

We ’normalize’ these vectors such that the pairs (α, β) , (α′, β ′) , (x, y) and (x′, y′)
are all relatively prime. Assume to get a contradiction that GA and GAt are iso-
morphic as groups. By Lemma C.2 there are then matrices U, V ∈ M2(Z) such

that UA = AtU, V At = AV, UV = (At)
l

and V U = Al for some l ∈ N. Then
UGA = GAt and it follows from the Lemma C.1 that

U ( αβ ) =
k

l
( xy ) , U

(
α′
β′
)

=
k′

l′
(
x′
y′
)

for some k, k′, l, l′ ∈ Z such that l|ni and l′|mi for some i ∈ N. Then

UAi ( αβ ) = d ( xy ) , UAi
(
α′
β′
)

= d′
(
x′
y′
)

where d = k
l
ni ∈ Z and d′ = k′

l′m
i ∈ Z. Since UAi : GA → GAt is an isomorphism of

groups, it follows from Lemma C.1 that there must be some k, l ∈ Z such that l|nr
for some r ∈ N and

UAi
k

l
( αβ ) = ( xy ) .

This implies that dk
l

= 1 and hence that d|nr since l|nr. By using the same argument

with ( αβ ) replaced by
(
α′
β′
)

and by increasing r, if necessary, we conclude that d|nr
and d′|mr. Since

UAi
(
α α′
β β′
)

=
(
x x′
y y′
) (

d 0
0 d′
)
,

we conclude that (
x x′
y y′
) (

d 0
0 d′
) (

α α′
β β′
)−1

= UAi ∈M2 (Z) . (C.11)

Now, it is elementary to check that(
α α′
β β′
)−1

= ( −7 1
12 2 )

−1
=

(
− 1

13
1
26

6
13

7
26

)
,

while (
x x′
y y′
)

= ( −2 12
1 7 ) .

The (1, 1) entry in the product
(
x x′
y y′
) (

d 0
0 d′
) (

α α′
β β′
)−1

is

2d

13
+

72d′

13
.
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As noted above d|nr and d′|mr for some r ∈ N. Since n and m are primes and both
congruent to −1 modulo 13, we conclude that d and d′ are both congruent to ±1
modulo 13. That is, we can write d = ǫ1 + n1 · 13 and d′ = ǫ2 + n2 · 13 for some
ǫi ∈ {1,−1} and some ni ∈ Z, i = 1, 2. It follows that

2d

13
+

72d′

13
=

2ǫ1
13
− 6ǫ2

13
modulo 1. This is not an integer, contradicting (C.11).
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[RS] J. Rosenberg and C. Schochet, The Künneth theorem and the universal coefficient theorem

for Kasparov’s generalized K-functor, Duke J. Math. 55 (1987), 337–347.
[Ro] I. Rosenholtz, Local expansions, derivatives, and fixed points, Fund. Math. 91(1976), 1–4.
[Ru1] D. Ruelle, Thermodynamic Formalism, Encyclopedia of Mathematics and its Applications

5, Addison-Wesley, Reading, Ma. 1978.
[Ru2] , Non-commutative algebras for hyperbolic diffeomorphisms, Invent. Math. 93

(1988), 1–13.
[Sa] K.Sakai, Periodic points of positively expansive maps, Proc. Amer. Math. Soc. 94(1985),

531–534.
[Sch] M. Schraudner, On the algebraic properties of the automorphism groups of countable-state

Markov shifts, Ergodic Theory Dynam. Systems 26 (2006), 551–583.
[Th1] K. Thomsen, On free transformation groups and C∗-algebras, Proc. Royal Soc. Edinburgh

107A (1987), 339–347.
[Th2] , Inductive limits of interval algebras: the simple case, Quantum and non-

commutative analysis (Kyoto, 1992), 399–404, Math. Phys. Stud., 16, Kluwer Acad.
Publ., Dordrecht, 1993.

[Th3] , Traces, Unitary Characters and Crossed Products by Z, Publ. RIMS 31(1995),
1011–1029.

[Th4] , From traces to states of the K0 group of a simple C∗-algebras, Bull. London
Math. Soc. 28 (1996), 66–72.

[Th5] , On the structure of a sofic shift space, Trans. Amer. Math. Soc. 356 (2004),
3557–3619.

[To] J. Tomiyama, Invitation to C∗-algebras and topological dynamics, World Scientific Ad-
vanced Series in Dynamical Systems 3, World Scientific, Singapore/New Jersey/Hong
Kong, 1987.

[Y1] I. Yi, Canonical symbolic dynamics for one-dimensional generalized solenoids, Trans.
Amer. Math. Soc. 353(2001), 3741–3767.

[Y2] , Ordered group invariants for one-dimensional spaces, Fund. Math. 170(2001),
267–286.

[Y3] ,Ordered group invariants for nonorientable one-dimensional generalized solenoids
Proc. Amer. Math. Soc. 131(2003), 1273–1282.



122 BIBLIOGRAPHY

[Y4] , K-theory of C∗-algebras from one-dimensional generalized solenoids, J. Operator
Theory 50(2003), 283–295.

[Y5] , Bratteli-Vershik systems for one-dimensional generalized solenoids, Houston J.
Math. 30(2004), 691–704.

[W] P. Walters, Topological conjugacy of affine transformations of compact abelian groups,
Trans. Amer. Math. Soc. 140 (1969), 95–107.

[Wa] J.B. Wagoner, Topological Markov Chains, C∗-algebras, and K2, Advances in Math. 71
(1988), 133–185.

[Wi1] R. F. Williams, Classification of one dimensional attractors, Proceedings of Symposia in
Pure Mathematics 14 (1970), 341–361.

[Wi2] , Expanding attractors, IHES Publ. Math. 43(1974), 169–203.
[Z] G. Zeller-Meyer, Produits croisés d’une C∗-algèbre par une group d’automorphisms, J.
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