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Abstract

We unify various constructions of C*-algebras from dynamical systems, specifi-
cally, the dimension group construction of Krieger for shift spaces, the corresponding
constructions of Wagoner and Boyle, Fiebig and Fiebig for countable state Markov
shifts and one-sided shift spaces, respectively, and the constructions of Ruelle and
Putnam for Smale spaces. The general setup is used to analyze the structure of
the C*-algebras arising from the homoclinic and heteroclinic equivalence relations in
expansive dynamical systems; in particular expansive group endomorphisms and au-
tomorphisms, and generalized 1-solenoids. For these dynamical systems it is shown
that the C*-algebras are inductive limits of homogeneous or sub-homogeneous alge-
bras with one-dimensional spectra.

2000 Mathematics Subject Classification. Primary 46135, 37D20.
matkt@imf.au.dk.
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Preface

The crossed product construction is the classical way of associating a C*-algebra
to a dynamical system, and it is sometimes interpreted as a non-commutative sub-
stitute for the often ill behaved space of orbits of the action. This view of the crossed
product is most natural when the action is free, since the crossed product will oth-
erwise depend on more than the orbit equivalence relation. Nonetheless it makes
good sense to view the crossed product as an attempt to produce a non-commutative
algebra, a C*-algebra, from the orbit equivalence defined by the action, in order to
capture important features of the orbit space which may be difficult or impossible
to handle from a topological point of view.

In recent years there has been a growing interest in other equivalence relations
arising from dynamics, in particular homoclinicity and heteroclinicity. These rela-
tions are in some sense transverse to orbit equivalence and the C*-algebras which can
be naturally associated to them are very different from the corresponding crossed
product. This can be observed already in what seems to be the earliest of such con-
structions made by Wolfgang Krieger in [Kr2]: The C*-algebras arising from the
homoclinic and heteroclinic equivalence relations of a mixing topological Markov
chain are simple AF-algebras while the corresponding crossed product is neither AF
nor simple.

David Ruelle was the next to construct a C*-algebra from the equivalence relation
given by homoclinicity in dynamical systems, cf. [Ru2], and it is his approach I
will consider in the present paper. What is crucial for the method of Ruelle is
that in many dynamical systems, such as the Smale spaces considered by Ruelle,
homoclinicity of two states can be extended to a "uniform local homoclinicity’. See
Condition C of [Ru2]. It is this strengthening of the relation which ensures that the
topology on the graph of the equivalence relation defined by homoclinicity becomes
what is nowadays called an étale equivalence relation, so that the construction of
Renault, [Rel], can be used to construct the C*-algebra of the relation. Here I
take the stronger relation as point of departure and this allows the construction of
an étale equivalence relation from the homoclinicity relation and the heteroclinicity
relation in more general settings than the Smale spaces introduced by Ruelle.

Besides the work of Krieger and Ruelle the paper builds on, and is strongly
influenced by the work of lan Putnam and J. Wagoner. While Ruelle only considered
homoclinicity, Putnam showed how one can construct the C*-algebras of heteroclinic
equivalence in Smale spaces. For this he used the concept of a Haar measure of the
underlying groupoid, building again on the work of Renault. To let go of the étale
condition is actually a weakening for many purposes, but through his work with J.
Spielberg, [PS], his was able to partly remedy this defect. One of the major points
of the present work is to show that an approach of Wagoner to the construction of a
dimension group representation for countable state Markov shifts, [Wa], can be used
to give a canonical construction of an étale equivalence relation whose C*-algebra,

v



vi PREFACE

when specialized to Smale spaces, is the stabilized version of what Putnam calls the
stable algebra’. This illustrates one of the main purposes of the paper; to unify and
simplify various constructions of C'*-algebras from dynamical systems, specifically,
the dimension group construction of Krieger for shift spaces, the corresponding
constructions of Wagoner and Boyle, Fiebig and Fiebig for countable state Markov
shifts and one-sided shift spaces, respectively, besides the constructions of Ruelle
and Putnam for Smale spaces. Another purpose is to use the general setup to
improve our understanding of the structure of the C*-algebras of the homoclinic
and heteroclinic equivalence relations and initiate the study of their relation to the
dynamical systems used for their construction.

Let me comment briefly on the content of each chapter of the paper. The first
chapter contains the general construction of an étale equivalence relation from a
(relatively) expansive dynamical system. It is this construction which is used in
various settings in the following chapters.

The second chapter studies the functoriality properties of the C*-algebras arising
from the étale equivalence relations of the first chapter. As pointed out by Putnam
(e.g. in [Pu2]) this issue is an important one, and many of the difficulties connected
with the study of the C*-algebras arise from the fact that the functoriality properties
are very different from those of the crossed product construction.

Chapter 3 contains a study of the C*-algebras arising from homoclinicity in var-
ious expansive dynamical systems. In particular, it is shown that for a two-sided
shift space one obtains the AF-algebras whose dimension groups were constructed
by Krieger in Section 2 of [Kr2]. For one sided shift spaces the dimension group
of the resulting AF-algebra is what was called 'the images group’ by Boyle, Fiebig
and Fiebig in [BFF|. Further, it is shown that for positively expansive group en-
domorphisms and expansive group automorphisms, the homoclinic algebra is an
AT-algebra; that is, a direct limit of a sequence of circle algebras. This conclusion is
achieved by using some of the recent results from the classification program for sim-
ple C*-algebras, in particular, results of Gong, Lin and Phillips. These results are
combined with a thorough (but not complete) study of the homoclinic subgroup of
expansive group automorphisms. Since there is recent work dedicated to the exhibi-
tion of an expansive automorphism of a compact connected group whose homoclinic
group is not isomorphic to the dual of the group on which it acts, cf. [CF|, we point
out here, as an aside, that we obtain more examples of this kind, including examples
where the homoclinic group contains torsion.

Chapter 4 describes the construction of the heteroclinic algebra alluded to above,
and it is shown that the construction generalizes both some of the constructions of
Wagoner from [Wa] as well as the construction of the stable algebra of a Smale
space from [Pul]. It is then shown that the heteroclinic algebra of Smale spaces
arising from expanding maps, cf. [Rul], are always AH-algebras.

In Chapter 5 it is shown that the heteroclinic algebra can be constructed for
certain homeomorphisms that are not expansive, including general diffeomorphic
automorphisms of a Lie group. Furthermore, it is shown that for an expansive
group automorphism of a compact group the heteroclinic algebra is an AT-algebra,
just as the homoclinic algebra is in this case. The study of these examples allow
me to exhibit expansive automorphisms of the two-torus with the property that the
heteroclinic algebra is not isomorphic to the heteroclinic algebra of its inverse; in
Putnam’s terminology, the stable and unstable algebras of these automorphisms are
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not (stably) isomorphic. It is tempting to conclude from these examples that the
heteroclinic algebra is sensitive to properties of a dynamical system which the more
conventional invariants, such as the topological entropy and the structure of periodic
points, do not see.

Chapter 6 is devoted to the 1-solenoids of Yi, [Y1]. The study of the C*-algebras
arising from the heteroclinic structure of such spaces was started by Yi in [Y 3] and
we continue his attack by showing that the heteroclinic algebra of the 1-solenoids are
simple, stable and can be realized as inductive limits of sub-homogenous C*-algebras
with one-dimensional spectra of a type introduced by the author in [Th4].

Finally, in Chapter 7, the heteroclinic algebra is used to remedy a defect of the
dimension group representation for a countable state Markov shift as it was defined
by Wagoner in [Wal; namely that in Wagoner’s approach only the automorphisms
that are uniformly continuous with respect to a specific metric gives rise to auto-
morphisms of the dimension group. This problem was pointed out to me by Michael
Schraudner, and I am able to show that the heteroclinic algebra does give rise to a
dimension group without the mentioned flaw, provided the Markov shift is locally
compact and satisfies a certain condition ("finitely many edge-disjoint double paths’)
which was introduced by Schraudner himself in [Sch], and shown to be equivalent
to countability of the automorphism group. However, I am only able to give a satis-
fying description of the dimension group and show that it is generally very different
from that of Wagoner for locally compact Markov shifts whose one-point compact-
ification is expansive. The methods used for this purpose may have independent
interest; for example they allow me to obtain necessary and sufficient conditions for
the one-point compactification of a countable state Markov shift to be sofic or of
finite type.

It has been suggested by Putnam, e.g. in [Pu2], that the stable (and unstable)
algebra of a Smale space might always be what is nowadays called an AH-algebra,
and many of our results support this suspicion. However, the results on the Smale
spaces of one-solenoids suggest that it may be necessary to allow more complicated
building blocks.

Finally, it should be observed that both the homoclinic and the heteroclinic alge-
bra of an expansive homeomorphism carries a natural automorphism which extends
the given homeomorphism. The crossed product of this non-commutative dynamical
system generalizes the Ruelle algebras of Putnam, [Pu2], [PS], and hence also the
Cuntz-Krieger algebra, [CuK]. However, the present paper is devoted to the study
of the homoclinic and heteroclinic algebras and the natural automorphisms arising
from the underlying dynamical systems will mostly be ignored. In terms of equiva-
lence relations this means that the focus is on homoclinicity and heteroclinicity in
their pure form, without interference from orbit equivalence.

I want to thank Ola Bratteli, Sgren Eilers, Johan P. Hansen, Palle Jorgensen,
K. H. Kim, Magnus Landstad, Fred Roush, Michael Schraudner, Henrik Stetkeer,
Jesper Funch Thomsen and Bent Orsted for helping me in various ways during the
development of the material presented here.

Klaus Thomsen






CHAPTER 1

The Ruelle algebra of a relatively expansive system

1.1. Relatively expansive systems

We describe the input from dynamical systems which we need for the construc-
tion of the étale equivalence relations and C*-algebras we are going to study.

Let X be a topological space and d a metric for the topology of X. Let £ C X
be a subset of X equipped with a locally compact topology which is finer than the
topology inherited from X. That is, U N E is open in E when U C X is open in
X, but there may be open sets in E which are not of this form. Note that F is a
locally compact Hausdorff space since the topology inherited from X is Hausdorff.

Let S be a countable set and for each s € S, let f; : X — X be a continuous
map. Thus f = (fs)ses is simply a collection of continuous self-maps of X, indexed
by the set S. S may be a group or a semi-group, and s — f; a homomorphism, but
this is not necessary for the basic construction we describe below. We will assume
that f is relatively expansive on E in the sense that there is a dense subset Ey of E
with the following two properties.*

1) Ey is asymptotically stable in the sense that when = € E,y € Ey, and
leIEo d (fs(x)a fs(y)) =0,

then x € Ej.
2) f is locally expansive on Fj in the sense that for each x € E there is an
open neighborhood U, of z in E and a 6, > 0 such that

%y € BgNUz, d(fu(2), fs(y) S0 Vs € 5= z=y. (1.1)

We call then the pair (U,,d,) an expansive pair at x, and 9§, > 0 is called a local
expansive constant at x. We say that E is an expansive region for the action f. The
tuple (X, d, S, f, E, Ey) will be called a relatively expansive system in the following.

1.1.1. Examples.

ExXAMPLE 1.1. Let (X,d) be a locally compact metric space, End X the semi-
group of continuous maps from X to itself. Let I' be a discrete semi-group. An
action of I' on X is a semi-group homomorphism I' 5 v — f, € End X. The action
is called ezpansive when there is a 6 > 0 such that

r,y € X, 82113 d<f7(x)7f'y(y)) <0 = x=y.

Then (X, d, T, f, X, X) is a relatively expansive system. More generally with F any
open or closed subset of X, and Fy any dense asymptotically stable subset of E, the
tuple (X, d, T, f, E, Ey) is a relatively expansive system. The most familiar examples
of expansive actions are actions of N, Z or Z" on compact metric spaces. Il

1Given a function G : S — [0,00) we write lim, .., G(s) = 0 to mean that for every e > 0
there is a finite set F' C S such that G(s) < ¢ when s ¢ F.

1



2 1. THE RUELLE ALGEBRA OF A RELATIVELY EXPANSIVE SYSTEM

ExXAMPLE 1.2. Let G = (V, E) be a countable strongly connected, locally finite
directed graph with vertex set V', edge set F together with the maps i,t: F — V,
where i(e) is the initial and ¢(e) the terminal vertex of an edge e € E. Then

Xe ={(xi);eq € E": t(x)) =i(2j41) Vj €L}

is a locally compact subset of EZ and the shift o acts as a homeomorphism of X
in the standard way: o(z); = z;;+;. Furthermore, the locally compact topology of
X¢ is given by a metric, called the Gurevich metric, cf. [Sch]. Unless G is finite
the shift is rarely expansive with respect to the Gurevich metric, but there is a
natural class of graphs for which the shift acts expansively on a canonical dense
subset: Assume that G only has finitely many pairwise edge-disjoint double paths,
as defined by Schraudner in [Sch]. As shown by Schraudner in Theorem 3.4 of
[Sch] there is then a constant ¢ > 0 such that sup,,c, d (6" (z),0™(y)) > ¢ whenever
x and y are different points in X and at least one of them is doubly transitive,
meaning that both the forward and the backward orbit is dense in X. Note that
the doubly transitive points are dense in X¢ since G is strongly connected. Hence,
if we follow [Sch] and let DT (Xg) denote the doubly transitive points of X¢, the
tuple (Xq,d,Z,0, Xq, DT (X)) will be a relatively expansive system. O

1.2. The étale equivalence relation of local conjugacy

We recall the definition of an étale equivalence relation, cf. [Rel], [GPS].

Let X be a set and R C X x X an equivalence relation. We say that R is
a topological equivalence relation when R is equipped with a topology (possibly
different from the topology inherited from X x X) such that the inversion R >
(z,y) — (y,z) € R is a homeomorphism and the composition

R? 5 ((x,y),(y,2)) — (z,2) €R
is continuous, where the set of composable pairs
R® = {((z,y), (v,v)) € Rx R: u=y}

has the relative topology inherited from R x R. In this setting we call r(z,y) = =
the range map and s(x,y) = y the source map.

DEFINITION 1.3. Let X be a locally compact Hausdorff space and R C X x X
a topological equivalence relation. R is an étale equivalence relation when the range
map 7 : R — X is a local homeomorphism in the sense that every element v € R
has an open neighborhood U, of 7y such that r (U,) is open in X and r : U, — r (U,)
is a homeomorphism.

We come now to the basic construction of the paper; the construction of an étale
equivalence relation from a relatively expansive system (X, d, S, f, E, Ey).

Two elements x,y € E are said to be locally conjugate, written x ~ y, when
there are open neighborhoods U and V of z and y in E, and a homeomorphism
X : U — V such that x(z) =y and

lim supd (fs(2), fs (x(2))) = 0.

SO0 zeU

The triple (U, V, x) is called a local conjugacy from x to y, or just a local con-
Jugacy or a conjugacy for short when it is not necessary to emphasize the points x
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and y. Note that local conjugacy is an equivalence relation on E. The graph of this
equivalence relation is the set

Ri(X,E)={(z,y) e EXE: z~y}.

We call R¢(X, E) the local conjugacy relation on E.
Define a topology on R¢(X, E) by declaring sets of the form

{(z,x(x)): 2 €U}, (1.2)

where (U,V,x) is a conjugacy, to be a subbase for the topology, i.e. a subset of
R¢(X, E) is open if and only if it is the union of finite intersections of sets of the
form (1.2). It is then easy to see that the range and source maps, r and s, are
continuous.

LEMMA 1.4. Let (U, V,x) and (U, V', X") be local conjugacies from x to y in E.
There are then open neighborhoods Uy of x and Vi of y in E such that x € Uy C
unt’, yeVo CV NV, xlu, = X', and x(Uy) = Vb.

PrOOF. Let (U,,6,) be an expansive pair at y. By shrinking U, we can arrange
that U, € V N V'. There is a finite set F' C .S such that

sup d (fo(a'), fu (x (@) < °

z'eU 2

Y

and
sup d (fu(a'), £, ( () <

Oy
z'elU’ 2
when s ¢ F. It follows that sup,cyrp d(fs (x(2)), fs (X (x))) < 6, when s ¢
F. Since the topology of E is finer than the relative topology inherited from
X, there is an open neighborhood W of y in E such that y € W C U, and
sup,ep d (fs(v), fs(y")) < 6, for all y',y" € W. Set Uy = x HW) N x1(W).
Let 2/ € Uy N Ey. Note that x(z'), x'(2') € Ey N U, since Ey is asymptotically
stable. Since d (fs (x(z')), fs (X'(2"))) < ¢, for all s € S it follows from (1.1) that
X'(2") = x(z'). Since Uy N Ejy is dense in Uy the continuity of x and x’ implies that
Xlvo = X'lu,- Set Vo = x(Uo). O

COROLLARY 1.5. The sets of the form (1.2) is a base for the topology of R¢(X, E).

LEMMA 1.6. Let €2 be an open subset of the topological product E x E. It follows
that R¢(X, E) NQ is open in Ry(X, E).

PROOF. Let (z,y) € Rf(X,E) N Q. There is a local conjugacy (U,V,x) from
x to y, and there are open sets W,, W, C E such that (z,y) € W, x W, C Q.
Set Up = W, Nx ' (W, NV). Then (z,y) € {(z,x(2)): z€ Us} C Ry(X,E)NQ,
proving that R;(X, E) N Q is indeed open in R;(X, E). O

THEOREM 1.7. R;(X, E) is an étale equivalence relation.

Proor. It follows from Lemma 1.6 that the topology is Hausdorff since the
topology of E is. To see that Ry(X, E) is locally compact, consider an element
§=(z,y) € Ry(X,E), and let (U,V, x) be a conjugacy from z to y. Let Uy C U be
an open neighborhood of = such that U, CUis compact. Set

K={(z,x(2): z€Us}.
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To show that K is compact in R;(X, E) it suffices, either by Alexander’s subbase
theorem or by Corollary 1.5, to show that any cover of K by open sets of the form
(1.2) has a finite sub-cover. Let therefore (U,, V,, Xa),a € I, be a collection of
conjugacies such that
K C U {(z,xa(2)) : z€U,}.
acl

It follows from Lemma 1.4 that for any z € Uy there is an a(z) € I and an open
neighborhood W) € U, NU of z such that X|Wa(z) = Xa(z)|Wa(z)~ By compactness

of U, there is a finite set 2, 2o, ..., zy in Uy such that
N
UO - U Wa(zi)-
i=1
When z € Uy N Wy.,) we have that (z,x(2)) = (2, Xa(=s)(2)), so we conclude that

N
K g U {(%Xa(zﬂ(z)) L zE Ua(zi)}’
i=1

completing the proof of local compactness of R¢(X, E).

To prove that R;(X, E) is a topological equivalence relation, observe first that
the inversion (z,y) — (y,z) is clearly a homeomorphism. It suffices therefore
to show that the composition is continuous. So let ((x,y),(y,2)) € R;(X, E)®,
and let (U,V,x) be a conjugacy from = to z. We must show that there is a
open neighborhood €2 of ((x,v), (y,2)) in Rf(X, E) x Ry(X, E) such that (2/,2") €
{(v,x(v)) : v e U} when (2/,v'), (v/,2') is a composable pair in Q. To this end let
(U1, V1, x1) be a conjugacy from x to y and (Us, Va2, x2) a conjugacy from y to z. It
follows from Lemma 1.4 that x,o0x; agrees with x in a neighborhood W of x. Hence

Q={(" x1(2)): 2" e W} xAW x2(¢) : ¥ € xa(W)}
has the required property.
To prove that r is a local homeomorphism, let (U, V, x) be a conjugacy. Then
r:{(z,x(z)): v €U} — U is a homeomorphism since its inverse, the map U >
z +— (2z,x(2)), is continuous by Lemma 1.4. O

In many important cases the expansive region F is X itself and Fy = F = X.
We denote then the local conjugacy relation by R (X).

1.2.1. Miscellaneous observations. In this section we have gathered a series
of observations on the construction of R;(X, E) that we are going to need later on.

LEMMA 1.8. R(X, E) is second countable if and only if E is. In this case there
is a countable base for R¢(X, E) consisting of sets of the form (1.2).

PROOF. Since the range map r is continuous and open it follows immediately
that R;(X, E) can only be second countable when £ is. So assume that £ is second
countable and let B be a countable base for the topology of E. Since S is countable
we can write S = UneN F,, where each F,, is a finite subset of S. Let § > 0 be
rational, Uy, Vy € B and N € N. We require that (V5,0) is an expansive pair
at y for some y € Vp, and d (fs(2), fs(2')) < 0 when 2,2/ € Vj and s € Fy. A
local conjugacy (U, V,x) is will be said to be of type (Uy, Vo, d, N) when U = Uy,
V C Vo, and sup,cp d (fs(2), fs (x(2))) < $ when s ¢ Fy. If (U, V', X’) is also of
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type (Uo, Vo, 9, N) we have that U' = Uy = U, and that d (fs(x(2)), fs (X'(2))) <6
for all s € S. It follows then from the first condition on (Vp,d) that x(z) = x/(2)
when z € FyNU. By density of Ey and continuity of y and x’ it follows that
X = X. Thus V = x(U) = x/(U’) = V'. This shows that there is at most one
local conjugacy of type (Up, Vo, d,N). There are therefore only countably many
local conjugacies that are of some type and it remains now only to show that they
give rise to a base for the topology of R¢(X, E). So we consider a local conjugacy
(U,V,x) and a point (z,y) € {(z,x(2)): z € U}. There is then an N € N such
that sup,cp d (f5(2), fs (x(2))) < £ < %y for all s ¢ Fi, where §, is a local expansive
constant at y and § > 0 is rational. Since B is a base for the topology of E there
are elements Uy, Vy € B such that z € Uy C U, x (Up) C Vo, and d (fs(2), fs(2')) <6
for all z,2" € Vy and all s € Fy. Then (Uy, x (Us), x) is of type (Uy, Vo, 0, N) and
(z,y) € {(z,x(2)) : z2€ U} C{(z,x(2): z€ U} O

LEMMA 1.9. A subset D C Ry(X, E) is pre-compact in Rs(X, E) if and only if
there is a finite collection (U;, Vi, xi),1 = 1,2,..., N, of local conjugacies in E and
compact subsets L; C U; such that

D C U{(:p,xz(x)) sz € Li}. (1.3)

PRrROOF. From the proof of Theorem 1.7 it follows that each {(x, x;(x)) : = € L;}
is compact so D is certainly pre-compact when the condition holds. For the converse
assume that D is pre-compact. Then the closure D of D can be covered by a finite
collection of sets from the subbase. Thus we have a finite collection (U;, V;, x;) ,1 =
1,2,..., N, of local conjugacies in £ and inclusions

DQEQU{(w,Xi(x)): reU}.

Since Ry(X, E) is locally_ compact and D is compact there is a partition of unity
i, i = 1,2,...,N, on D such that suppp; C {(z,xi(z)): z € U;}. Set L; =
7 (supp ¢;). Then (1.3) holds. O

Let C. (Rs(X, E)) be the space of continuous complex functions on Rs(X, E) of
compact support. We say that a function f € C.(Rf(X, E)) is localized when its
support is contained in the set {(z, u(z)) : z € U} for some local conjugacy (U, V, p).

LEMMA 1.10. Every element of C. (Rf(X, E)) is the sum of finitely many local-
1zed functions.

Proor. This follows from Lemma 1.9 and an obvious partition of unity argu-
ment. Il

We now make an additional assumption which will allow us to give an alternative
description of R;(X, E) and its topology. Specifically, we will assume that there is
a 0 > 0 such that

z,y € Ey, d(fs(2), fs(y) <dVse S= z=uy. (1.4)
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There is an increasing sequence F; C Fy, C F3 C ... of finite subsets of S such
that S = J,—, F,,. Let § > 0 be a constant such that (1.4) holds. Set

a={@n eExE A0 LW < g s RY 09

LEMMA 1.11. Let § = (z,y) € A, N Rp(X, E), and consider a local conjugacy
(U,V,x) from x toy. There is then an open neighborhood W of x in E such that
xeW CU, (W,x(W),x) is a conjugacy from z toy and

{(z,x(2)): ze W} C A, NRs(X, E).

PROOF. There is an m > n such that sup,.; d (fs(2), fs(x(z))) < 2 when s ¢

F,,. Note that d(fs(z), fs(x(z))) < % when s ¢ F,. There is therefore an open

neighborhood W C U of z in E such that sup.cy d (fs(2), fs(x(2))) < & for all

s € F,\F,. Then W has the stated properties. U
It follows from Lemma 1.11 that A, N R¢(X, E) is open in R;(X, E). Note that
Ri(X,E) = | J AN Ry(X,E). (1.6)

n=1

LEMMA 1.12. The topology of A, N Ry(X, E) inherited from R¢(X,E) is the
same as the topology inherited from E X E.

PRrOOF. By Lemma 1.6 it suffices to consider an open set Q in R;(X, F) and
show that QN A, N Ry(X, E) is open in the topology inherited from E x E. To this
end we may take (2 to be of the form (1.2). Let £ = (z,y) € QN A, N Rf(X, E).
By Lemma 1.11 we can find an open neighborhood W of x in E and a conjugacy
(W, x(W), x) from x to y such that

{(z,x(2)): ze W} COQNA,NRX,E). (1.7)
Let W’ be an open neighborhood of y contained in x (W) such that
s AW fy") < 8 (1.8)
for all s € F,,. We claim that
(X TW) x W) NA,NRy(X,E) C{(z,x(z)): z€ W}. (1.9)

To prove this let (z/,y") € (x *(W') x W) N A, N Ry(X, E). There is then a
conjugacy (U', V', x/) from 2’ to 3’ such that U’ x V' C x "} (W) x W'. Let m € N be
so large that sup.c;r d (f5(2), fs (X'(2))) < £ when s ¢ F,,. Since d (f(2'), fs(/)) <
¢ when s ¢ F,, we can shrink U’ to achieve that

sup d (fs(2), fs (X'(2))) <

zeU’

when s ¢ F,,. Let 2” € U' N Ey and note that

AU L) < 5

for all s ¢ F,, because (2", x(2")) € A, cf. (1.7), and that
d(fs(X'(@")), fs(x(2"))) < 6

0
2
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for all s € F,, because x(2"), x'(z") € W’. It follows that

d(fs(xX'(«")), fs(x(2"))) <0

for all s € S, and hence that x(z”) = x/(2”) because of (1.4). Since U’ N Ejy
is dense in U’ we conclude that x(z') = x/(«/). Thus (2/,y") = (2/,x(2')) €
{(z,x(2)) : z € W}, completing the proof of (1.9).

It follows from (1.7) and (1.9) that £ € (x *(W') x W) N A, N Ry(X,E) C
QN A, N Ry(X, E), proving that Q N A, N R¢(X, E) is open in the topology of
A, N R¢(X, E) inherited from E x E. O

REMARK 1.13. As observed in Example 1.1 an expansive homeomorphism ¢ of a
compact metric space (X, d) gives rise to a relatively expansive system in a canonical
way. For such a system it is clear that conjugacy of two points x,y € X implies that
x and y are homoclinic in the sense that

dim_d (¥*(2),¢"(y)) = 0.
In many cases, such as the Smale spaces of Ruelle, this condition is sufficient to en-
sure the existence of a local conjugacy between x and y; that is, points are conjugate
if and only if they are homoclinic.

To give an example with two homoclinic points that are not locally conjugate,
consider the even shift ¥ which is the two-sided shift in the alphabet {0, 1} obtained
by disallowing the words {10***'1: k=0,1,2,...}. Set y; = 0,i € Z, and z; =
0,i € Z\{0}, o = 1. Then & = (2;),, and y = (y;),o, are both elements of Y, and
x and y are homoclinic under the shift. To see that  and y are not conjugate, let
d > 0 be an expansive constant for Y such that 2,2’ € Y, d(z,2') < d = 2z = 2.
Assume to get a contradiction, that (U, V, x) is a conjugacy from z to y. There is
then a K € N such that

X(2)k = 2k, k| > K, z€U. (1.10)

By definition of the topology of Y there is an open neighborhood V;, of y such that
y € Vo CVand 2k = Y-k K = 0%£+! when z € V;. Consider the sequence
a;,? € N, where

a; =...111110*10%*111111. ..

Then a; € Y for all 4 and lim; ., a; = x. In particular, a; € x~ (Vp) for all 7 large
enough. For such an i, X (a;);_g g = 02" and x (@), = (a),, for all k| > K,
thanks to (1.10). In particular, for some i > K,

% (az) — 10004i+1 100
which is not an element of Y. It follows that x and y are not conjugate. U

REMARK 1.14. This remark concerns the relationship between the construction
of Section 1.2 and a construction of Renault, cf. p. 139 of [Rel], which has subse-
quently been developed further by himself as well as by Deaconu, Anantharaman-
Delaroche and others. In the most general setup (with compact unit space) the
input for Renaults construction is a compact Hausdorff space X equipped with a
continuous surjection ¢ : X — X which is also a local homeomorphism. For each
n € N, let

Ry ={(z,y) € X x X 0"(z) = 0"(y)}



8 1. THE RUELLE ALGEBRA OF A RELATIVELY EXPANSIVE SYSTEM

have the relative topology inherited from X x X. Since R} is open in R}, the union
R = |, R is a locally compact Hausdorff space in the inductive limit topology,
and in fact an étale equivalence relation. For the point we want to make, note that
the openness of ¢ is crucial for the construction; it does not suffice that o is locally
injective.

If we now also assume that X is a metric space (with metric d) and that o
is expansive, the tuple (X,d,o, X, X) is a relatively expansive tuple and we can
construct R,(X) as above. It follows from Lemma 1.12 that the two constructions
are identical in this situation, i.e. R,(X) = R, with the same topology. However,
when o is merely expansive, and not necessarily open, Renault’s construction does
not work. Consequently Renault’s construction does not work for a one-sided shift-
space which is not of finite type since the latter condition is equivalent to openness
of the shift, [Pa]. Specifically, Renault’s groupoid will not be étale when the shift
is note of finite type. In particular, Renault’s construction does not apply to the
even shift, as claimed on page 222 of [A]. In contrast R,(X) makes sense for any
one-sided shift space, but for the even shift the corresponding AF-algebra will not
be simple, cf. Example 3.5 below. O

1.3. The C*-algebra of a local conjugacy relation

There is a general construction which produces a C*-algebra from an étale equiv-
alence relation R on a locally compact Hausdorff space X, cf. [Rel]: First observe
that the space C.(R) of compactly supported continuous functions on R is a x-
algebra with the product

f-9@y =D [fl@2)g(zy)

{z: (z,z)€R}

and the involution

(@) =y, ).
To obtain a C*-norm on C.(R) we introduce a family of representations in the
following way. For every point € X we let [z] denote the set of points in X that
are equivalent to x, and we denote by [?[z] the Hilbert space of square-summable
complex functions on [z]. For each f € C.(R) we define a bounded operator x(f)
on [?[x] such that

(k1)) (v) = Yy, 2)0(2). (1.11)
z€[x]
Each ;) is a *-representation of C.(R), and together they form a separating
family so we get a C*-norm by putting

LF1l = sup || (F)]] - (1.12)
reX

The completion of C.(R) in this norm is then a C*-algebra C7 ,(R).

Applied to the local conjugacy relation R(X, E) we obtain a C*-algebra which
we denote by A;(X, E) and call the Ruelle algebra. In the remaining part of this
section we collect a few observations about the Ruelle algebra which we shall use
later on.

REMARK 1.15. Let Cy(X) be the C*-algebra of continuous bounded functions
on X, and let M (C}(R)) denote the multiplier algebra of C(R). There is an
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embedding ® : Cp(X) — M (C*(R)) defined such that ® (Cy(X)) C.(R) C C.(R)
and
(©(f)g) (z,y) = f(x)g(x,y),

when f € Cy(X),9 € C.(R). Note that ® (Co(X)) € CF(R). In the following
we suppress ¢ from the notation and consider instead Cy(X) and Cp(X) as C*-
sub-algebras of C*(R) and M (C*(R)), respectively. It is known that Cy(X) is
a maximal abelian C*-algebra of C*(R) with other nice properties, cf. [Rel]. In
particular, Cyp(X) has the (unique) extension property in C;(R), i.e. a pure state of
Co(X) has a unique (pure) state extension to C(R), cf. Lemma A.13. O

REMARK 1.16. Let R be an étale equivalence relation on X and R’ an étale
equivalence relation on X’. A map A : R — R’ is an isomorphism when there is a
homeomorphism ¢ : X — X’ such that A = ¢ x ¢ and A is a homeomorphism. It
is clear that such an isomorphism gives rise to a *-isomorphism C* (R') — C* (R)
sending f € C.(R’) to f o A. This is the easy part of the following result which is
proved in Appendix A. O

THEOREM 1.17. Two étale equivalence relations, R on X and R' on X', are
isomorphic if and only if there is a x-isomorphism ¢ : C¥(R) — C*(R’) such that
¥ (Co(X)) = Co (X).

PROOF. The theorem follows from a general construction which produces an
étale equivalence relation from a pair D C A where A is a C*-algebra and D is an
abelian C*-sub-algebra with the extension property. See Theorem A.16 in Appen-
dix A. O

REMARK 1.18. When U C R is an open subrelation, the inclusion C.(U) C

C.(R) extends to an embedding C*(U) C C*(R), cf. e.g. Proposition 1.9 of [Phl].
U

LEMMA 1.19. Let R be an étale equivalence relation on a locally compact Haus-
dorff space X. Let V.C X be an open subset, and set U = r=1 (V)N s~ (V). Then
Cx(U) C CH(R) is the hereditary C*-sub-algebra generated by Co(V') C C*(R).

PROOF. We must show that C*(U) is the closure of the span of elements of the
form bab’, where a € C(R), b,/ € Co(V). It is easy to see that g- - ¢ € C.(U)
when [ € C.(R), 9,9 € C.(V), and this gives one of the required inclusions. For
the other let f € C.(U). Then r (supp f) U s (supp f) is a compact subset of V' and
there is an element h € C.(V') such that h(t) =1 for all ¢t € r (supp f) U s (supp f).
Since f = h - f - h this implies the other inclusion. O

LEMMA 1.20. Let R be an étale equivalence relation on a locally compact Haus-
dorff space X. Let Ry C Ry C R3 C ... be an increasing sequence of open sub-
relations of R such that R =\J,_ | R,,. It follows that

CH(R) = C; (R).

ProoOF. This follows from Remark 1.18 and the observation that C.(R) =
Uz, Co(Ry). 0

LEMMA 1.21. Let A¢(X, E) be the Ruelle algebra of a relatively expansive system.
Then A¢(X, E) is separable if and only if E is second countable.
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PRrOOF. The inclusion Cy(E) C Af(X, E) shows that Cy(E) is separable when
A¢(X,E) is. Hence E is second countable in this case. Assume that E is second
countable. By Lemma 1.8 there is a countable collection of local conjugacies such
that the corresponding sets (1.2) form a base for the topology of R¢(X, E). Therefore
every element of C, (R¢(X, E)) is a finite sum of functions localized on these sets. It
suffices then to show that the set of elements of C, (R;(X, E)) that are localized on
a set of the form (1.2) is a separable subset of A;(X, E). This follows from the fact
that Co(U) is separable for any open subset U of E because E is second countable,
combined with the observation that

Il =" sup [f(2)],

2€R;(X,E)

when f is localized. O

1.4. Products and unions

When R and R’ are two étale equivalence relations on the locally compact Haus-
dorff spaces X and X', respectively, there is a natural way to define the product
R x R, namely as the equivalence relation in X x X' given by

Rx R = {((x,:z'), (.)€ (X x X')?: (z,9) € R, (a/,y) € R’}.

By transferring the topology from the topological product of R and R’ to R x R’
by use of the map ((z,y), (¢/,¢')) — ((z,2'), (y,y’)) we turn R x R’ into an étale
equivalence relation.

LEmMMA 1.22. C*,(RXx R') ~ C*

red red

spatial) tensor product of C*-algebras.

(R)® C*

* J(R), where ® is the minimal (or

PROOF. This follows from the identification [? [z, 2] = I?[x] ® [*[2']. O
Consider now two relatively expansive systems,
(Xa d7 S7 f’ Ea EO) and (X/a d/a Sa f/a E,7 E(/)) )

where only the index-set S for the continuous transformations are the same. We
can then form a product of the two systems in the following way: On the product
space X x X’ we use the metric d x d’ given by

dxd ((a,a"), (V) =d(a,b) +d (a,V).

In the product topology E x E' is finer than the topology inherited from the metric
space (X x X', d x d’') and Ey x E| is of course dense in E x E'. For s € S we set

(f x 1), (z,y) = (fs(2), fi(y)). Then
(X x X',dxd,S fx f,ExFE Eyx Ej))
is a relatively expansive system.
PROPOSITION 1.23. There is an isomorphism of étale equivalence relations
Rivp (X x X'EX E')~Ry(X,E)x Ry (X', E'),
and hence an isomorphism
Apsp (X X X' EXE')~ Ay (X,E)® Ap (X', E')
of C*-algebras.
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Proor. If (U,V,x) is a conjugacy in E and (U, V' ') a conjugacy in E', it
follows that (U x U,V x V', x x ¥') is a conjugacy in E x E’. We can therefore
define a map

AN: Ry (X,E) x Ry (X’,E') — Ry (X x X' E x E’)
such that

A(((z, ), (y,9) = ((z,9), (@' y)) .

and A is clearly open and injective. By Lemma 1.22 and Remark 1.16 it remains now
only to show that A is surjective and continuous. To this end, let (z,2’), (y,y’) €
E x E' be conjugate, and let (U, V, x) be a conjugacy from (z,2’) to (y,y’) in E x E'.
There is then an open neighborhood A of x in E such that A x {2’} C U. Define
i A — E such that pu(z) = p1 (x (z,2')), where p; : X x X’ — X is the projection.
Similarly, there is an open neighborhood A’ of 2’ and a map v : A’ — E’ defined
such that v(z) = ps (x (x, 2)) where py : X x X’ — X' is the projection to the second
coordinate. Then p(z) =y, v (z') =y and

Jim sup d (£ (5(2)), fu(2))
< lim supd (fy x f; (x (2,27)), fo < [ (2.2) = 0.

ST 2eA

In the same way we find that lim, . sup,c 4 d(f.(v(2)), fi(2)) = 0. By shrinking
A and A’ if necessary we can assume that A x A C U. Since

dxd (fs x fi(u(2),v (), fo x f3 (X (2, 2)))
<d xd (fi x fo(u(z),v (), (fs(2), £ ()
+dxd ((fu(2), fo(2) fo x fi (X (2, 2))

we see that d x d (fs x fi(u(z),v (), fs X fL(x(2,7"))) tends to zero uniformly
in A x A" as s leaves every finite subset of S. Therefore we can shrink A and A’
further to arrange that d x d’ (fs x fi(u(z),v (), fs x fL(x (z,7"))) is smaller than
an expansive constant at (y,y’) for all s € S. It follows that when A and A’ are
sufficiently small we have that Yy = u X v on A x A’. By using the same reasoning
to x~! in place of x we conclude that there are conjugacies (A, B, u) and (A’, B, v)
from = to y and from 2’ to ¥, respectively, such that

A{p(2): 2 € A x {(Z (=) s 2 € A) S{((2.2) X (7)) ¢ (2.2) €U}
O

LEMMA 1.24. Let (X,d, S, f, E, Ey) be a relatively expansive system. Assume
that E' C E* C E® C ... is a sequence of open subsets of E such that E = J.°, E™.
There is then a sequence Ay C Ay C As C ... of hereditary C*-sub-algebras of
A¢ (X, E) and x-isomorphisms 1, : A, — C* (R (X, E™)) such that

Cr (By (X, E™))

Appr — CF (Ry (X, E™H)

commutes and Ap(X, E) =

PrOOF. Note that Ry (

E ) is an open sub-relation of R, (X, E) and that
Ry (X, E) = U, By (X, Ey). A

pply Lemma 1.20 and Lemma 1.19. U







CHAPTER 2

On the functoriality of the Ruelle algebra

2.1. Contravariant functoriality

Let (X,d,S,E, f,Ey) and (X', d', E', S’, ', Ej;) be two relatively expansive sys-
tems. Assume that
7:E—F

is a continuous map. We seek to identify conditions that ensure that m x 7 gives

rise to a map from Ry (X,E) — Rp (X', E') and in turn to a s-homomorphism

m* Ap (X', E') — Af (X, E) between the Ruelle algebras of the two systems.
Define m, : E — NU {oo} such that

me(z) =#{yer " (n(z)): y~a}.

We consider the following conditions:

Condition 1: When (U, V, x) is a conjugacy in E from z to y, there is a conjugacy
(U, V' x") from 7(x) to w(y) in E’ and an open neighborhood Uy C U of z such
that

Vom(z) = 7o x(2) 2.1)
for all z € 7= (U") N Up.
Condition 2: my(x) is finite for all € E and m, is locally constant.
Condition 3: 7 is surjective, and 7 : {z € E: z~za} - {2 € E': 2 ~7(2)}
is surjective for all x € E.

LEMMA 2.1. Assume that condition 1 holds. Then
(v x ) (Ry (X, E)) € Rps (X', EY)
and X m: Ry (X,E) — Ry (X', E') is continuous.

PROOF. Only the continuity of 7 x 7 is not obvious. To prove it, let (W, V, u) be
a conjugacy in £’ and (x,y) € R¢(X, E) an element such that (n(z),n(y)) € WxV
and pu(m(z)) = m(y). Since (x,y) € Ry (X, E) there is a conjugacy (U,V,x) in £
from z to y, and then by condition 1 also a conjugacy (U, V', x’) from 7(x) to 7(y)
in E’ such that (2.1) holds for some open neighborhood Uy C U of x. It follows
from Lemma 1.4 that there is an open neighborhood W' C U'NW of w(x) such that
X = pon W. Then Q = {(z,x(2)) : z€x Y(W)NUy} is an open neighborhood
of (z,y) in Ry (X, E) such that (7 x 7) (Q) C{(y,pu(y)): y€ W} O

LEMMA 2.2. Assume that condition 1 and condition 2 both hold. For every
x € E there is an open neighborhood U, of x and conjugacies (U, Vi, x:),1 =
1,2,....,mg(x) — 1, such that V;NU, =0, V;NV; =0,i # j, and
{U ceb: v~ 2 7‘-(7}) = 7T<Z)} = {Z, Xl(z)a XQ(z)a cet 7Xm7r(x)71(2>}
for all z € U,.
13
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PROOF. Set k = mg(x). It follows from condition 2 that there is an open
neighborhood W of x such that m,(z) = k for all z € W. Let y1,99,...,yx_1 be
the elements of {z € 7! (w(x))\{z}: 2z ~x}. By shrinking W we may assume
that there are open neighborhoods U; of y; such that U; N U; = () when ¢ # j and
U;NW = ( for all .. There is then an open neighborhood U, C W of x and
conjugacies (U, Vi, xi), from z to y;, such that V; C U;, i = 1,2,...,k — 1. It
follows from condition 1 and Lemma 1.4 that we can arrange, by shrinking U,, that
moxi(z) =m(2),z2 € Up,i = 1,2,...,k — 1. It follows then that for every z € U,,
the elements z,x1(2), ..., xx—1(2) are mutually conjugate and distinct elements of
71 (7(2)), which implies that

fveE: v~z mv) =m(2)} = {2z, x1(2), x2(2), - -, Xxx-1(2) }

since m,(z) = k. O

Recall that a continuous map between topological spaces is proper when the
pre-image of any compact set of the target space is compact in the domain space.

LEMMA 2.3. Assume that conditions 1,2 and 3 all hold, and that 7 is proper. It
follows that m x 7 : Ry(X,E) — Rp(X', E') is a proper surjection.

PRrOOF. It follows from condition 3 that = x 7 is surjective. Let (U, V' ') be
a conjugacy in E’. Let K C U’ be a compact subset. By Lemma 1.9 it suffices to

show that
(mxm) " ({(zX(2): z€K}) (2.2)

is compact in Ry(X, F). Let z € 7~ (U’). By condition 3 there is an element y € F
such that = ~ y and 7(y) = X’ (7(x)). Let (U, V, ) be a conjugacy from x to y. It
follows from condition 1 and Lemma 1.4 that we can arrange that U C 7~ (U’) and
mou=x omon U. By Lemma 2.2 there is an open neighborhood V5 C V of y and

conjugacies (Vo,Vj, x;),7=1,2,...,m.(y), such that
vek: v~z 7?() }—{X1 2)s e Xma () (2) }
for all z € Vi. Set k, = m.(y), Wo = u~1(Vp) and (i = xj o p. Then

(rx ) {EE) e U e (W) = J{(as) - ze W)

Since 7 is proper there is a finite sub-cover W, ,W,,, ..., W, of the cover W,,z €
7 YK), of 7 }(K). Since F is locally compact there are compact subsets L; C W,
such that 7='(K) C UY, L;. Then

N kz;

(rxm) " ({(z,X(2): z€ K}) C UU{ z, 15 (2) 2z € Li}. (2.3)

i=1j=1
By Lemma 1.9 and Lemma 2.1 we can conclude from (2.3) that (2.2) is compact, as
desired. 0O

THEOREM 2.4. Assume that 7 is proper, and that condition 1, condition 2 and
condition 3 all hold. It follows that there is a *-homomorphism w* : Ap (X', E') —
A¢ (X, E) such that

T (f)(,y) = ma(2) " 2ma(y) "2 f (n(2), 7(y))
when f € C.(Rpy (X', E')).
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PrOOF. 7* : C. (Rp (X', E')) — C.(Rf (X, E)) is defined by Lemma 2.1 and
Lemma 2.3. Let f,g € C. (R(X, E)) and observe that

(m*(f) - 7*(9)) (x,v)
= ()" 2ma(y) "2 Y ma(2) 7 f(w (@), 7(2))g(n(2), 7(y))

zZ~T

= mﬂ(x)*%mﬁ(y)fé Z Z me(2)" f(m(x),v)g(v,7(y))

v~r(z) {zer—1(v): z~a}

= ma(2) " Ema(y) 2 Z f(r (y) =7(f - 9)(x,y),

proving that 7* is a *-homomorphlsm. Let ¢ € [?[z]. We define ¢ : [r(z)] — C such

that )
p(v) = Z mg(2)"29(2).

{zem=1(v): z~a}

polP<( X m@M) (X REP)

{zer=1(v): z~a} {zem=1(v): z~a}
2
= > ke
{zen=1(v): z~zx}

It follows that ¢ € l2[ ( )] and [|p|| < [|¢||. Note that
(i) (v°(f =D ma(2) Ema(y) = f (7). 7(2) ()

zZ~T

= Y maly) 2 (1), v) 9(v) = ma(y) 72 (s () (7(y))
v~ ()

Then

and that
S [mey) (s (1)) (x()

2

Yy~
- 2 2
< 2 Z ()™ a1 (N O] = [|rian (e
v (@) {yer =1 (v): y~a}
It follows first that |[sp) (7*(f))|| < ||£r)(f)]], and then that [|x*(f)| < || f]|. We
conclude that 7* extends by continuity to a s-homomorphism 7* : Ay (X', E') —
Ar (X, E). O

COROLLARY 2.5. Assume that

e S=9,

o fI(E")CE and fs (E) C E foralls €S,

e 7: FE — E' is a homeomorphism,

e 1o fs=flom foralls € S, and

o 7w and 71 are uniformly continuous with respect to the metrics d and d'.
It follows that there is a *-isomorphism w* : Ay (X', E') — Ay (X, E) such that

™ ()(z,y) = f(7(2),7(y))
when f € C.(Rpy (X', E')).
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PRroOOF. It is straightforward to check that conditions 1-3 hold with m, = 1. [

2.2. Covariant functoriality

The Ruelle-algebra construction is also functorial in a covariant way; at least
into the KK-category of C*-algebras and under appropriate conditions. We retain
the setting from Section 2.1.

Set

Ex,E ={(z,e) € EXE: w(zx)~e}
={(z,e) e EXE": (m(x),e) € Rp(X'", E")}.
Sets of the form
{(z,pom(2)): z€ Uy},
where (U, V, ) is a local conjugacy in E' and Uy C 7 !(U) is open, form a subbase
for the topology of E X E’ we consider in the following. We summarize the principal
facts about £ x, E’ in the next lemma.
A function f € C.(E %, E') is localized when its support is contained in the

set {(z,pom(2)): z € Uy} for some conjugacy (U, V, u) in E’ and some open subset
U(] g 7T_1(U).

LEMMA 2.6.

a) E X E' is a locally compact Hausdorff space whose topology is finer than
the relative topology inherited from E x E'.

b) The map E X, E' > (x,b) — = € E is a local homeomorphism, i.e. open
and locally injective.

c) A subset D of E x, E' is pre-compact if and only if there are finitely
many local conjugacies (U, Vi, ji;), and compact subsets L; C 7 1(U;),i =
1,2,..., N, such that

N
DC U{(z,uiow(z)) Dz € L}
i=1
d) Every element of C.(E X, E') is the sum of finitely many localized func-
tions.

PROOF. The relevant arguments from the proofs of Lemma 1.6, Theorem 1.7,
Lemma 1.9 and Lemma 1.10 are straightforward to adopt. We omit the repetition.

U
Note that C, (E x, E') is a right C, (Rp (X', £'))-module defined such that

(f ' g) (l’, b) = Z f(l‘, (l)g((l, b)
a~b

when f € C.(E %, E'), g € C.(Rp(X',E')). C.(E %, E') is also a left-module
over C.(E):
when h € C.(E).

We consider now the following conditions.

Condition 4: © : E — E’ is a local homeomorphism, i.e. 7 is open and locally
injective.

Condition 5: For all z € E’ there is an « € E such that 7(z) ~ z.
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Condition 6: z,y € E, n(z) ~7(y) = x~v.

LEMMA 2.7. Assume that condition 4 holds. Let f,g € C.(E X, E'). Then the
function (f,g) : Rp(X', E') — C defined by

(forab) = > [wa)gb), (24)
{z€E: w(xz)~a}
is in C. (Rp (X', E')).

PRrOOF. It suffices to consider the case where f and g are localized. So assume
that (U, V,p) and (U', V', 1) are local conjugacies in E' and Uy C 7= Y(U), Uy C
7 1(U’) open sets such that f is supported in {(z,puo7(2)): 2z € Uy} and g is
supported in {(z, 4 om(z)) : z € Ul}. Since 7 is locally injective we may restrict
the attention to the case where 7 is injective on U, and Uj. Then

Y. [fza)g(x,b)
{z€E: n(x)~a}
(2.5)
B {h(z) when (a,b) = (z, ¢/ o u=(2)) for some z € pow (UyNUY),

0 otherwise,

where h(z) = f(r~lopu=1(2),2)g(r toput(2),/ opu=t(2)). Since 7 is open by
assumption we see that (a,b) = > "¢, cp. r()ay [(@,a)g(z,b) is a localized function
on Rf/ (X/, EI) ]

By using the kp-representations, x € E’, cf. (1.11), it is easy to check that
(f,f) = 0in Ap(X', E') and therefore (f,f) = 0 = f = 0. Thus (-, -) is a
C.(Rp (X', E'))-valued inner product. An easy calculation confirms that

{(f,9-h)=(f.9)-h (2.6)
when f,g € C.(E x. E') and h € C. (Rp(X', E')). We get therefore a norm || - ||
on C, (E x, E') when we set

1
[f 1l = [1CF AN
The completion C, (E X, E’) in this norm is then a Hilbert A (X', E')-module, cf.
e.g. Lemma 1.1.2 of [K-JT]. We denote this Hilbert C*-module by &,. *
LEMMA 2.8. Assume that conditions 4 and 5 both hold. Then

{{(f,9): f.9€ Cc(E % E)}
spans a dense subspace in Ap (X', E'). In particular, £ is a full Hilbert Ay (X', E')-
module.
PRrOOF. Since C.(E') - C. (Rp(X', E')) spans a dense subspace of Ay (X', E') it
follows from (2.6) that it suffices to show that
Ce(E') C Span{(f,9) : f.g € Ce(E % E)}. (2.7)

Consider a function ¢ € C.(E’), ¢ > 0. Let y € suppy C E’. By condition 5
there is an x € F and a local conjugacy (U, V, u) from 7(x) to y. Since 7 is a local

'We refer to [K-JT] for the basic theory of Hilbert C*-modules as well as the fundamentals
of Kasparovs KK-theory which we will be using. However, our notation does deviate slightly from
the notation in [K-JT] in that we here write L (F) for the C*-algebra of adjointable operators of
the Hilbert B-module F' and Kp(F') for the ideal in Lp(F') consisting of the ’compact’ operators.
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homeomorphism we can shrink U to achieve that there is an open neighborhood U,
of  such that 7 is injective on U,, U, is compact and 7 (U,) = U. By compact-
ness of supp ¢ we have then a finite set xq,xs,..., 2y in F and for each i a local
conjugacy (m (Uy,), Vi, ;) such that supp ¢ C Uf\; Vi. Let {gi}i]\il C C.(E') be a
partition of unity on supp ¢ subordinate to {Vi}?{:l, and define f; € C.(E %, E')
as the function localized in {(z,p; om(z)): z € Uy, } such that f;(z,u;on(2)) =

Vi (i om(2)) @ (i o w(2)). Then SN (fi, fi) = ¢. Since every element of C..(E’
is a linear combination of four non-negative elements of C,.(E’), we obtain (2.7). O
)

When condition 1 holds we can also make C.. (E x, E') into a left C. (R¢(X, E))-
module such that

b) = h(z,y)f(y.b), (2.8)

Yy~

when f € C.(E % E'), h € C.(Ry(X,E)). Let ¢ € I*[c] for some ¢ € E’. The

estimate

> ola) (h- f.h- f) (a,b)p(b)
=>"pla) > - flza)h- f(x.b)e(b)
n(x

a,b )~a}

Z Z > o)k Ca)h(x, 2) f (2, b)p(b)

{z: w(x)~a} yNﬂi

= > (3 re i ae@) (3 b 0)e)

{z: w(z)~a} ay~x b,z~x
<X (Z hw,y)f <a>) (D hiw, 2)f (b))
= Z Y > wla Ta)h(z, 2) f (2, b)p(b)
= Z?@(a)_f(y_, a) (h* - h) (y,2) f(z,b)p(b)

<RPY Y @) fy.a)f(y.b)e(b)

shows that
for all f € C.(E x, E'). It follows that we obtain a *-homomorphism

o+ Ap(X, B) = Loa 00,y (Ex) -
defined such that m4(h)f =h- f when f e C.(E x, E'), h € C.(R;(X, E)).
LEMMA 2.9. Assume that conditions 1 and 4 hold. Then
7 (Af(X, E)) € K (€x)

and T, 1S injective.
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PRrROOF. Since C.(E) contains an approximate unit for A(X, E), and using
that Ka,, (x,p1) (&r) is a closed two-sided ideal in La,x,e) (&x) it suffices to show
that mq (Ce(E)) C Ka,, (x5 (Ex). To this end it suffices to show that m, (¢) €
Ka,, x,m) (Ex) when ¢ € C.(E) is supported in an open set V' C E on which 7 is
injective. We write ¢ as a product ¢ = 13, where @1,y € C.(V), and define
f,g9 € C.(E X, E') to be the functions with supports in {(z,7(z)): x € V} such
that f(z,m(x)) = ¢1(z) and g(z, 7(z)) = pa(x). We claim that

Te(¥) = Oj4; (2.9)

a fact that will finish the proof.> To check (2.9), consider an open neighborhood
W in E such that 7 is injective on W, and let h € C.(E X, E') have support in
{(x,pon(z): x € W} for some local conjugacy p defined on w(W). It suffices to
check (2.9) on h since functions of this sort span a dense subspace of &, cf. d) of
Lemma 2.6. It is straightforward to check that

(O)h(x.b) o(x)h(x,pom(z)) whenxz e VNW and b= pomn(z),
Te ,0) = .
7 0, otherwise

) ei@)pa(x)h(z, pom(x))  whenz € VAW and b = pom(x),
o, otherwise

= ®f’9(h)(x7 b)

To establish the injectivity of 7, it suffices, by Proposition 4.6 of [Rel], to show
that me() = 0 = ¢ = 0, which is easy. O

Lemma 2.9 implies that (m,, &, 0) is a Kasparov A¢(X, E)— Ay (X', E') module,
and hence the triple defines an element

[7’(’] e KK (Af(X, E),Af/(X/,E,)) .

LEMMA 2.10. Assume that conditions 1 and 4 hold, and that E is second count-
able. Then the element 1] € KK (Af(X,E), Ap (X', E")) is represented by a *-
homomorphism As(X,E) — Ap (X', E') @ K.

ProoOF. To simplify notation, set A = Ay(X,E) and B = Ap (X', E'). Using
the notation from [K-JT] we have that [r] is represented by (7., &, 0) @ (0, Hp, 0).
It follows then from Kasparov’s stabilization theorem, cf. e.g. Theorem 1.1.24 in
[K-JT], that [n] is represented by a triple (¢, Hg,0). Since K(Hg) ~ B ® K
by another result of Kasparov, cf. e.g. Lemma 1.2.7 of [K-JT], the result follows
from this. O

The main point of the last lemma is that it shows that the map of K-theory
induced by [r] is positive on K.

Assume that we have a third relatively expansive system (X", d",S",, f", E", E{))
and let 7’ : " — E” be a continuous map.

PROPOSITION 2.11. Assume that both ™ and 7' satisfy conditions 1 and 4, and
that E, E' and E" are second countable. It follows that

[ on] =[] & [r]

2If necessary, see page 5 of [K-JT] for the definition of O ,.
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in KK (A¢(X,E),Ap (X", E")), where o is the Kasparov-product.

PROOF. The reader can find the definition of the Kasparov product in (e.g. )
[K-JT]. The present case is greatly simplified by the fact that the degree 1 operator
of our Kasparov triples are both zero. Thus the product [n’] e [r] is represented by
the triple (Sﬂ Qs Enty Te Ot idgw/,O), in the notation from [K-JT]. Define ¢ :
Co(Exz E)QC.(E Xp E") — C.(E Xuop E") such that

O(f ®g)(x,b) Z f(x,2)g(z,0).
z~b

It is then straightforward to check that (®(f ® g),®(f' @ ¢')) = (9,7 ({f, f")) ¢)
and @ ((f-h) @ g) = (f @ (- g)) when [, ' € Cu(E @ E), h € C, (Rp(X', E))
and g,¢" € C.(F ®, E"), which is what is required to see that ® falls to a map
Q: &R Er — Eror. To conclude that @ is an isomorphism of Hilbert Az (X", E")-
modules it remains only to show that ® is surjective. Let k € C. (E Xuor E”) be
a localized and non-negative function supported in {(t,uon’om(t)): t € U} for
some local conjugacy p in E”. Since n’ and 7 are local homeomorphisms we may
assume that 7(U) and 7’ o w(U) are open and that 7 : U — n(U) and 7’ : 7(U) —
7' o w(U) are both homeomorphisms. We can then define f € C.(F x, E') and
g€ C’C (E’ X, E") such that f is supported in {(¢,7(t)) : t € U} and satisfies that
ft,m(t) = VE(t,por o7r( )) while g is supported in {(s,uon'(s)): sen(U)}
and satlsﬁes that g(s,pon'(s)) = \/k (r=1(s), uo7'(s)). Then ®(f ® g) = k. Since
functions with the propertles We have requlred by k span all of C.(E x, E") we
conclude that @ is indeed an isomorphism of Ay (X", E”)-modules. The proof of
the proposition is then completed by the trivial observation that ®o (7?. Rl idgﬁ,) =
(7' o),.

LEMMA 2.12. Assume conditions 1,4 and 6 all hold.
1t follows that me : Ap(X, E) — Ka ,(x/,p) (Ex) is a *-isomorphism.

PROOF. Let f,g € C.(FE X, E'). In view of Lemma 2.9 it suffices to show that
Oy € me (Af(X, E)). Since Oy, is sesqui-linear in (f, g) we may assume that f and
g are both localized. Let (U, V, u) and (U, V', i') be local conjugacies in E' and Uy C
7 HU), U, C 71 (U’) open sets such that f is supported in {(t,pom(t)): t € Uy}
and g is supported in {(t,p' om(t)): t € Uj}. Since condition 4 holds we may
assume, in addition, that 7 is injective on Uy and Uj. Observe that

Oy4(h => f@,0){g.h => > fla.)gly.oh(y,b). (2.10)

c~b ce~b {y:m(y)~c}

There are compact subsets K C Uy and K’ C Uy such that

supp f C {(t,pon(t)): t € K} and suppg C {(t,4/on(t)): t € K'}.

Set L = KNnatop ! (Won(K')). There is then for each t € L a unique el-
ement y(t) € K’ such that pon(t) = u' o mw(y(t)). Since condition 6 holds we
see that ¢ ~ (t) in E. By condition 1 there is then an open neighborhood U
of t and a conjugacy (U,V,v) from t to 7(t) such that U C Uy, V C U] and
mov(s) = /" opomn(s) for all s € U. By compactness of L we get a finite
collection (U;, Vi, v4),i = 1,2,..., N, of local conjugacies in E with U; C Uy, L C
Ui:1 Ui, V; C U} and moy,(s) = ,u’ Yopon(s), s € U; for alli. Let h;,i =1,2,..., N,
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be a partition of unity on L subordinate to the U;’s. For each ¢ we can then de-
fine an element ¢; € C.(Rs(X, E)) such that suppp; C {(¢,v4(t)): t € U;} and
oi(t,vi(t) = hi(t) f(t, o m(t))g (vi(t), W omow(t)). It is straightforward to check
that ©;, = 7, (Zf\; ¢;), yielding the desired conclusion. O

THEOREM 2.13. Assume conditions 1,4,5 and 6 all hold. It follows that A;(X, E)
and Ap(X', E") are strongly Morita equivalent in the sense of Rieffel, [Ril].

Proor. It follows from Lemma 2.12 and Lemma 2.8 that &£ is an imprimitivity
bi-module for Ay (X', E') and Af(X, E). O

COROLLARY 2.14. Assume that U C E is an open subset such that every element
of E is conjugate to an element from U. It follows that A;(X, E) is strongly Morita
equivalent to Ay(X,U).

PrRoOOF. Apply Theorem 2.13 to the inclusion of U into E. U

Both A¢(X,E) and Ap (X', E') are separable C*-algebras when E and E’ are
second countable, cf. Lemma 1.21. In this case strong Morita equivalence is the
same as stable isomorphism, cf. [ BGR].

REMARK 2.15. In the setting of Corollary 2.14 we know from Lemma 1.19 that
A¢(X,U) is a hereditary C*-sub-algebra of A;(X, E). Using the description of the
ideals in a C*-algebra of an étale equivalence relation given in [Rel] it follows that
Ap(X,U) is full in A;(X, E) in the sense of [Br|. In this way Corollary 2.14 follows
from [Rel] and [Br], at least in the separable case.

Similarly Theorem 2.13 can be deduced from Theorem 2.8 of [MRW] by showing
that the conditions 1,4,5 and 6 are sufficient to make E x, E’ into a (R¢(X, E),
Ry (X', E'))-equivalence in the sense of [MRW]. O






CHAPTER 3

The homoclinic algebra of expansive actions

Let S be a countable set and (X, d) a locally compact metric space. Let End X
denote the semi-group of continuous maps X — X, and let a : S — End X a map.
We assume here that « is an expansive action in the sense that there is ¢ > 0 such
that

sslelgd(as(x),oas(y)) <0 = =y (3.1)

In this case (X, d, S, a, X, X) is a relatively expansive system in the sense of Section
1.1 and the Ruelle algebra A, (X) is defined as described in Chapter 1. We will call
it the homoclinic algebra of a. In the following sections we study this C*-algebra is
more detail for certain classes of expansive actions.

Let « : S — EndX and 6 : S — EndY be expansive actions of the same
countable set S on (X, d) and (Y, d’), respectively. A uniformly continuous home-
omorphism 7 : X — Y, with a uniformly continuous inverse, is an asymptotic
conjugacy when

lim sup d' (7 o as(z), 85 o w(x)) = 0.
$00 pe X

THEOREM 3.1. Letm : X — Y be an asymptotic conjugacy between the expansive
actionsa : S — End X and 8 : S — EndY. [t follows that there is a x-isomorphism
m*: Ag(Y) — Au(X) such that 7 (C. (Rp(X))) = C. (Ra(X)) and

(), y) = f (w(z),7(y))
when f € C.(Rp(Y)).

PROOF. It is straightforward to check that = x 7 is a homeomorphism from
R,(X) onto Rz(Y) and hence an isomorphism of étale equivalence relations. As
observed in Remark 1.16 this implies the result. Il

When a : S — End X takes values in the group Aut X of uniformly continuous
homeomorphisms of X, the action a extends to a map « : S — Aut A,(X) such
that

as(f)(,y) = f (a7 (2), a7 () -
We call a: S — Aut A, (X) the canonical action of S on the homoclinic algebra.

3.1. Shift spaces

In [Kr1] and Section 2 of [Kr2] Wolfgang Krieger introduced the dimension
group for a general shift space. This dimension group is the Ky-group of an AF-
algebra which we now describe before we go on to show that it agrees with the
homoclinic algebra of the shift-space.

Let A be a finite set, sometimes called the alphabet, and X C A% a shift space.
Thus X is a closed subset of A% which is shift-invariant in the sense that o(X) = X,
where o is the shift on AZ, viz. o ((xi)iel)j = x4 for all j € Z. The words in X

23
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are the elements w € | J_,.A" which occur in some element of X in the sense that
W = Ti41Ti42 . . . Tit|w| for some i € Z and some z € X. Here |w| is the length of
w, i.e. the number of letters in w. The empty word is then the word of length 0.
The set of words in X of length k is denoted by Wy (X), so that the set W(X) of
all words in X is W(X) = U;—, Wi(X).

Let w € W(X). The context E(w) of w consists of the pair (a,b) € W(X)? with
the property that awb € W(X). A simple but crucial observation is the following:
When w,v € W(X), E(w) = E(v) and (a,b) € E(w), then E(awb) = E(avb). This
observation is used tacitly (and often) in the following.

Let n € N. We denote by R(n,X) the set of pairs (w,v) € Wy, 1(X)? for
which F(w) = E(v). The free complex vector space Ax(n) with basis R(n, X) is a
x-algebra with involution % and product defined such that

(w7 U)* = (U7 w)

and
T A
Thus
Ax(n) ~ M,,(C)® M,,(C)® --- @ M,,(C),
where i = 1,2,..., N numbers the equivalence classes in W, ,1(X) of words with

the same context, and n; is the number of elements in the i’th equivalence class. Let
¢t Ax(n) — Ax(n+ 1) be the linear map which satisfies that

Pn(w,v) = Z (awb, avb).

{(a,b)eA?: (a,b)EE(w)}

Then ¢, is an injective unital x-homomorphism. Let Ax be the resulting AF-algebra,

Ax = lim (Ax(n), n),

which we will call the Krieger algebra of the shift space X. We denote by o, :
Ax(n) — Ax the canonical x-homomorphism associated with the inductive limit
construction, and for j > i by ¢;; the composite *-homomorphism ¢;_jo0¢; 50---0

The shift gives rise to an automorphism of Ay in the following way. Define a
unital s-homomorphism o/, : Ax(n) — Ax(n + 1) such that

ol (w,v) = Z (wz, vr).
{zeW2(X): (wz,vz)EWan43(X)?}

Then the diagram

/

Ax(n) “= Ax(n+1)

wnl lwnﬂ (3.2)
Ax(n+1) —— Ax(n+2)

0n+1

g
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commutes, giving us a s-endomorphism ¢’ : Ay — Ax such that ¢’ o p, =
Poomi1 0 0, for all n. Define o/,' : Ax(n) — Ax(n + 1) such that

o' w,v) = Z (zw, 2v),
{zeW2(X): (zw,zv)EWan43(X)2}
and note that the diagram

Pn+2,n

Ax(n) Ax(n +2) (3.3)
e
0/n+1
Ax(n + 1) Pttt Ax(n + 3)

commutes, showing that there is s-endomorphism ¢’ ' : Ay — Ay such that o'~ ' o
Poon = Poont1 O OJ;I. o'~! is the inverse of ¢/, i.e. ¢’ is an automorphism of Ay
with inverse o/ ', We call o’ the shift automorphism of the Krieger algebra Ax.
We show next that the Krieger algebra is the same as the homoclinic algebra of
X. When 2 € X and i < j in Z, we denote the word z;2; 1% ...2; € W(X) by

x;). When w € W, 11(X), set
Co={(@i)jcr € X 1 Tpm =w}.
Then Cy, w € U~y Wa,11(X), is a base for the topology of X.

LEMMA 3.2. Two points x,y € X are locally conjugate if and only if there is an
N € N such that x; = y; and E (x[,m-]) =F (y[,i,ﬂ) for all i > N. In fact, we can
then define a local conjugacy (ng[_N’N], Cy_nns X) from x to y such that

(3.4)

PROOF. Assume first that  and y are conjugate. Then x and y are forward and
backward asymptotic under the shift so there is an M € N such that x; = y;, |i| > M.
Choose € > 0 such that z,2' € X,d(z,2') < € = zy = z,. Since z is conjugate to y
there is then a K € N with the following property: When V' is an open neighborhood
of y there is an open neighborhood U of x such that

sup inf <sup d(ai(:c’),ai(y'))> <e.

r’eUy eV Mi|l>K
Choose now Ny > max{K, M}. Tt follows then that there is an N; € N such that
Ny > Ny and when z € Cx[_Nl,Nﬂ there is a 2/ € Cy[_NO’NO] such that z; = 2/ for
all |i| > K. Since x; = y; when |i| > Ny because Ny > M, it follows that in fact
7 € Cy This shows that E (z_n;ny)) € E (Y—ny,ny))» and it follows that
r; =1y; and E (HTH,@']) CFE (y[,m-]) for © > N;. By symmetry there is also an Ny € N
such that x; = y; and E (y[,i,i}) CFE (x[,m-]) for i > Ny. Set N = max{Ny, No}.

The converse is straightforward. U

—N7p,N1]°

THEOREM 3.3. There is a x-isomorphism 1 : Ax — A,(X) such that o o) =
oo’ when o € Aut A,(X) is the canonical automorphism of the homoclinic algebra.



26 3. THE HOMOCLINIC ALGEBRA OF EXPANSIVE ACTIONS

PROOF. Let (w,v) € R(n, X). By Lemma 3.2 we define 1,, x,, 1, € C. (R,(X))
such that

Luxnlv@zy)=:{

We can then define a x-homomorphism v, : Ax(n) — C.(R,(X)) such that
p(w,v) = 1, X, 1,. Then 9,41 0 @, = 1, and it follows that there is a x-
homomorphism ¢ : Ay — A,(X) such that ¥ o 9o, = 1,. Note that ¢ is injective
since each 1, is. To see that v is also surjective it suffices, by Lemma 1.10, to
show that every localized function f € C.(R,(X)) is in the range of ¢». Let ¢ > 0
and let (U, V,x) be a conjugacy such that supp f C {(z, x(x)): = € U}. Since f
has compact support and X is totally disconnected there is a compact and open
subset L C U such that supp f C {(x,x(z)) : « € L}. It follows from Lemma 3.2
and Lemma 1.4 that there is an n € N and elements wy, ws, ..., wy, v1,09,...,UN5 €
W,.(X) such that L = |, Cy, is a partition, (w;,v;) € R(n, X) and x(2)[_nn =
vi, x(2); = 2j,]j| > n, when z € C,,, for all <. Furthermore, we can arrange that
|f(z,x(z)) = f(y,x(y)| < eforall z,y € C,.

For each ¢ we choose an element z; € C,,. To estimate the distance in A,(X)
between f and vazl f(xi, x (%)) Ly, X, 1y, we define functions h, k : X — C such
that

1, when (z,y) € C, x C, and z; = y;, |i| > n+1,
0, otherwise.

h(z) = f (2, x(x))

and
k(x) = Z f (@i, x () Le,, (2)

when z € U and h(r) = k(z) = 0 when z ¢ U. 1g,, is here the characteristic
function of the set Cy,. Then h,k € C(X) C C.(R,(X)) and ||h — k|| < €. Since

f= h-Zﬁil Ly, Xn 1,, and Zf\; fxix (25)) Ly, Xn 1y, = k- Zivzl L, Xn 1,, we find
that

N N
|7 =37 7 @i @) L e Lo < D0 = B3 L 0 L
i=1 i=1

in A,(X). Note that (Zf\;l Ly, anui) . (vazl Ly, Xn]-'ui)* = 1,, and that 1, € C(X)
is projection in A,(X). It follows that HZf\;l Ly, Xn 1vi|| < 1 and we conclude that

< |lh =kl <e

Hf - i [ (@i x (@) Lu; X 1y,
i=1

Since € > 0 was arbitrary and Zivzl f (i, x (7)) Ly, Xy 1,, is in the range of ), it
follows that so is f.

For the equivariance part of the theorem it suffices to check that 1 o ¢’ o
Coon(W,0) = 0 01 0 P n(w,v) when (w,v) € R(n,X). We leave this to the
reader. O

3.1.1. One-sided shift-spaces. There is an analogous version of the preceding
for one-sided shift spaces. The only difference is that there is no natural extension
of the one-sided shift to an endomorphism of the homoclinic algebra. Apart from
this the key definitions can be adopted with the obvious modifications. We outline
the constructions.
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Let Z be a closed subset of AN which is shift-invariant in the sense that o(Z) = Z,
where o : AN — AN is now the one-sided shift. As above the point of departure is
the collection of words W(Z) occurring in the shift space. The follower set F(w) of
a word w € W(Z) is the set

Flw)={veW(Z): wveW(Z)}.

Let n € N. We denote by F(n,Z) the set of pairs (w,v) € W, (Z)? for which
F(w) = F(v). The free complex vector space Az(n) with basis F(n,Z) is then a
finite dimensional C*-algebra in the same way as above, cf. (3.1) and (3.1).

We can define a unital x-homomorphism ¢,, : Az(n) — Az(n + 1) such that

o ((w,0) = > (wb,vb).

(b AbEF (w)}
Note that ¢, is injective and unital, and let Az be the resulting AF-algebra,

Az =1lim (Az(n), ¢a) -

The Ky-group of Az has appeared before in the work of Boyle, Fiebig and Fiebig,
[BFF], as ’the images group’. The coincidence of the two follows from the descrip-
tion of the images group given in Section 10 of [BFF]. In particular, it follows that
Ko (Az) is the dimension group of Z, cf. [LM], when Z is of finite type. As stated
in [BFF]| the “construction of the images group is very much in the tradition of
Krieger’s construction of a dimension group for a two-sided SFT”, and we take this
as justification for adopting the terminology from the two-sided case and call Az
the Krieger-algebra of Z.

It is straightforward to prove the analogue of Lemma 3.2 and use it to prove the
following

THEOREM 3.4. The Krieger-algebra Ay is x-isomorphic to the homoclinic alge-
bra As(Z).

EXAMPLE 3.5. One virtue of Theorem 3.3 and Theorem 3.4 is that they make it
possible to write down Bratteli diagrams for the homoclinic algebra of a shift space.
For sofic shift spaces one can use the Fischer cover for this purpose. To illustrate
this consider the even shift which was mentioned in Remark 1.13. The even shift
can be presented by a labeling of its Fischer cover, cf. e.g. [LM]:

0
— T
1©v
0
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The Bratteli diagram for the homoclinic algebra of the two-sided even shift be-

For the one-sided even shift the Bratteli diagram becomes

TH

3.2. Expansive actions by affine maps

Assume now that X is a compact metric group with neutral element e. An affine
endomorphism of X is a map a : X — X such that

a(z) = dag(x), z € X,

where A € X and g is a continuous group-endomorphism. We say that A is the
translation part of o and that o is the endomorphism part of . Let (X, d, S, «) be
an expansive action as in (3.1). Assume that « is an expansive affine action in the
sense that each ay is an affine endomorphism of X. Slightly generalizing a definition
of Lind and Schmidt, [LS], we call

A, = {a: € X: Slirrolod(as(x),as(e)) = O}.

the homoclinic group of a. Note that since d is equivalent to a left-invariant metric
the homoclinic group only depends on the endomorphism parts. Specifically, if we
let a? denote the endomorphism part of a,

A, = {x € X: limd(a)(z),e) = O}.

In particular, A, is indeed a subgroup of X.
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LEMMA 3.6. Let x,y € X. The following are equivalent:
a) x and y are conjugate.
b) lim,_.oo d (s(2), as(y)) = 0.
c) zy ™t € A,.

PROOF. a) = b) is trivial. b) = ¢):
lim d (as(z), as(y)) =0

§—00

lim d (a(z),ad(y)) =0

lim d (ad(zy~'),e) = 0.

c) = a): Define xy : X — X such that x(z) = yz~'z and observe that (X, X, y) is
then a conjugacy from x to y. U

LEmMA 3.7. The map
(z,9) = (y2~",y)
is an isomorphism of topological groupoids from R.(X) onto the transformation
groupoid A, x X corresponding to left-translation by A, on X.

Proor. It follows from Lemma 3.6 that the map is an algebraic isomorphism
of groupoids. (A description of the groupoid A, x X can be found in [Ph1], for
example.) We leave the reader to check that I' is a homeomorphism. O

To describe the homoclinic algebra A,(X) we introduce some (standard) no-
tation regarding crossed products of C*-algebras. Let B be a C*-algebra with an
automorphic action § : H — Aut B of a discrete group H. The Hilbert B-module
I>(H, B) carries a unitary representation u of H given by

(unt) (9) =¥ (h™1g) ,
and there is an embedding B C Lp (I*(H, B)) defined such that

(b)) (h) = Bu-1 (D) (h).
By definition the reduced crossed product BxgH is the C*-sub-algebra of Ly (I*(H, B))
generated by B and the unitaries {uy : h € H}.
When G is a compact group and H C G is a subgroup we denote by 7 the action
of H on C(G) given by left-translation:

mw(f)(9) = f(h7'g).

THEOREM 3.8. Let a be an expansive affine action on X. The homoclinic algebra
AL (X) and the crossed-product C(X) X, A, are related by a x-isomorphism 1) such
that the diagram

Aa(X) 2 O(X) %5 Ay

C(jX ) ———=C(X)
commutes.

Proor. This follows from Lemma 3.7 since the reduced C*-algebra of the group-
oid A, x X is C(X) %, A,, cf. e.g. Proposition 1.8 of [Phl]. 0
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COROLLARY 3.9. Let a be an expansive affine action on X. The following are
equivalent.

i) The homoclinic algebra A,(X) is simple.
ii) The trace state of An(X) is unique.
iii) The homoclinic group A, is dense in X.

PRrOOF. This can be deduced from the identification A,(X) = C(X) %, A, as
follows. Since A, acts freely on X it follows from a classical result of Zeller-Meyer, cf.
4.20 of [Z], that there is a bijective correspondance between ideals in C'(X)x,A, and
closed T-invariant subsets of X. It follows that i) is equivalent to iii). Furthermore, it
follows from Theorem 4.5 of [Th3] that there is a bijective correspondence between
trace states of C'(X) %, A, and T-invariant Borel probability measures on X. If iii)
holds the normalized Haar measure of X is the only 7-invariant Borel probability
measures on X. In this way iii) implies ii). Conversely, if ii) holds the compact
group A, must be all of X since its Haar measure would otherwise give rise to a
T-invariant Borel probability measure on X different from the Haar measure of X.
This would produce two different trace states of C'(X) x, A, contradicting ii). In
this way ii) implies iii). O

3.2.1. Expansive algebraic actions on connected groups. Given a C*-
algebra B one can define the dual groupoid. The idea of the construction is ap-
parently due to Alain Connes and one can find a description of it in [Re2]. The
elements of the dual groupoid are the extremal elements of the unit ball in the dual
space B* of B. Let D C B be an abelian C*-sub-algebra of B with the unique
extension property for pure states. That is, every pure state of D has a unique
(pure) state extension to B. The reduction of the dual groupoid of B to the pure
state space of D is then a locally compact topological groupoid by [Re2]. This is
relevant for us here because the canonical copy of C'(X) inside the crossed product
C(X) x G coming from a free action of the discrete group G on X is known to
have the extension property by Corollary 6.2 of [Ba] and Remark 2.8 (i) of [ABG].
Hence the inclusion C'(X) C C(X) x G gives rise to a locally compact groupoid via
a fairly general construction, and it was shown in [Th1] that this groupoid is the
product of the transformation groupoid coming from the action of G on X with the
circle group T. When G is connected (and only in this case), it follows that the
inclusion C'(X) C C(X) x G determines the action of G on X modulo a conjugacy
and an automorphism of G, cf. Theorem 9 of [Th1]. In particular, this is the case
in the setting of Theorem 3.8 when X is connected. In this section we gather some
consequences of this.

THEOREM 3.10. Let X and Y be compact connected abelian metric groups and
a:S — EndX and g : S — EndY expansive affine actions of the countable set
S on X and Y, respectively. Assume that the homoclinic group A, of a is dense
in X. Consider a homeomorphism v : X — Y such that ¥(0) = 0.

The following conditions are equivalent:

1) ¢ x ) is an isomorphism between the étale equivalence relations Rq(X) and
Rs(Y).

2) 1 is a topological group isomorphism ¢ : X — Y such that ¢ (A,) = Ag.

3) There is a x-isomorphism p : Ao(X) — Ag(Y) such that u(f) = foyt
for f e C(X).
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PRrROOF. 1) = 3) follows from Remark 1.16. 3) = 2): We adopt the notation
from [Th1]. By Theorem 3.8 we may consider p as a *-isomorphism from C'(X) X,
A, to C(Y) x,; Ag. As such p defines a topological groupoid isomorphism p* :
G(C(Y) %, A, C(Y)) = G (C(X) %, Ay, C(X)) whose action on the unit space YV’
is 1. By (the proof of) Theorem 9 of [Th1] there is an isomorphism ¢ : A, — Ag
such that ¢ (z — p(h)) = ¢¥(z)—hforallz € X and all h € A,,. It follows then from
the density of A, in X that ¢ —(0) is a group isomorphism taking A, onto Ag.
Since ¥ (0) = 0, 2) follows.

The implication 2) = 1) follows from Lemma 3.7. O

The equivalence of 1) and 3) in Theorem 3.10 is a special case of a much more
general result. See Appendix A.

By inspection of the last proof it becomes clear that the implication 3) = 2)
is a result on topological isomorphism rigidity. This is a new approach to this
type of results and it seems worthwhile to pause a little to develop this point. For
previous work on topological isomorphism rigidity we refer, without any claim of

completeness, to [W], [B1], [B2], [KS], [BW], [EW] and [BS].

THEOREM 3.11. Let X and Y be compact connected abelian metric groups and
a:S—EndX and §:5 — EndY ezxpansive affine actions of the countable set S
on X andY, respectively. Assume that 1 : X — Y is an asymptotic conjugacy.

It follows that there is a group isomorphism ¢ : Ag — A, such that

() —h=1v(x—ph))
forallz € X and all h € Ag.

PROOF. 9 induces a topological isomorphism R, (X) — Rg(Y') of étale equiva-
lence relations, and hence by Lemma 3.7 also a homeomorphism of the corresponding
transformation groupoids arising form the actions of the homoclinic groups. Since X
(and Y') are connected Theorem 9 of [Th1] gives a group isomorphism ¢ : Ag — A,
such that f (¢(x) —h) = f (¥ (x —p(h))) for all f € C(Y),x € X,h € Ag. The

conclusion follows from this. O

REMARK 3.12. It follows from Theorem 3.11 that a topological conjugacy be-
tween expanding affine actions of the same semi-group on connected groups is a
group-isomorphism on the homoclinic group, and hence on the entire group when
the homoclinic subgroup is dense. For actions by a group this follows from [B1]. [

3.2.2. Positively expansive endomorphisms of compact groups. Recall
that a continuous map 1 : X — X on a metric space (X, d) is said to be positively
expansive when the corresponding action of the semi-group N is expansive, i.e. when
there is a 0 > 0 such that

supd (¢"(2),9"(y)) <& = z=y.
ne

LEMMA 3.13. Let X be a compact metric group. Let ¢ : X — X be a positively
expansive and surjective group endomorphism. Then 1 is open. If in addition X
is connected or 1) is ergodic with respect to the Haar-meausure of X, then Ay =

Uk21 ker ¢* is dense in X.

PROOF. It is obvious that A, = s kery*. Let H = |-, ker¢* be the
closure of Uk21 ker ¢/* in X; clearly a normal subgroup. To prove that H = X note
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first that v is constant-to-one. In fact, #kerv¥ < oo by expansiveness and then
#1p~Y(x) = #ker o for all z € X since 1 is a surjective group endomorphism. Let
0 > 0 be so small that

a,bey(z), a#b = d(a,b) > 0. (3.5)
It follows that for each z € X and each € > 0 there is an € > 0 such that
d((z),2)<é = Jacy(z): d(a,7) <e. (3.6)

Indeed, if not there is a sequence {z;} C X such that lim; .. 2z, = ¥(z) while
dist (¢! (2;),2) > € for all i. Let aﬁ,j = 1,2,...,#ker, be the elements of
11 (2;). By compactness of X there is a sequence {n;} in N such that each sequence
{a%i}zl converges, say to a/ € X,j = 1,2,... ,#kert. By combining (3.5) with
the fact that d(a;,x) > € > 0, we conclude that z,a;,as,...,agkery are distinct
elements of ¢! (¢(z)), contradicting that #v¢ ! ((z)) = #kert. Hence (3.6)
holds. Note that it follows that ¢ is open. In addition it follows also from (3.6) that

Y(r) e H=x€ H, (3.7)

which implies that the continuous group endomorphism ¢’ : X/H — X/H induced
by ) is injective. Since it is obviously also surjective we see that ¢’ is an automor-
phism of the compact group X/H.

It follows from [Rd] that there are a metric d’ for the topology of X, a A > 1
and an €; > 0 such that d'(z,y) < ¢ = d'(¢¥(2),¥(y)) > Ad'(x,y). By substituting
d'(z,y) with

sup d'(za, ya)
aeX

we may assume that d’ is right-invariant. We get then a metric d for the topology
on X/H such that

H,yH)= inf d n.
d(zH,yH) = inf d(zhyh)
It follows from (3.6) that there is an €5 > 0 such that
d@(z),2)<e = Jacy Hz): d(a,7) <e (3.8)
for all x € X. Let €3 > 0 be so small that

d(aH,yH) < e = d (b(2)H, b(y)H) < 5.

Consider z,y € X such that J(:EH, yH) < e3. Let § > 0. There are elements k, k' €
H such that d (¥(2)k, »(y)k) < d (@) H,¥(y)H) + 6 and d' ((x)k, ¥(y)k) < €.
It follows from (3.7) that k = v (h) for some h € H. It follows then from (3.8) that
there is an element 2z € X such that ¢(z) = ¢(y)k' and d'(xh, z) < €;. Set b’ =y~ 'z
and note that b’ € H by (3.7). Then

d(W(z)H, Y(y)H) + 0 = d ((zh), v (yh))
> A (zh,yh') > Nd(zH,yH).
Since § > 0 was arbitrary, we conclude that
d(zH,yH) < e3 = d () H,(y)H) > Ad(xH,yH). (3.9)

It follows from (3.9) that ¢ is positively expansive. By a result of S. Schwartzman
a compact metric space that supports a positively expansive homeomorphism is
finite. See [CK] for a short proof of this. Hence we know now that X/H is finite.
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Under any of the two additional assumptions it is easy to prove that X/H = 0, as
desired. O

We pause again to point out a consequence concerning isomorphism rigidity
which does not seem to have been noted before.

THEOREM 3.14. Let X and Y be compact connected abelian metric groups and
a: X — X, 0:Y =Y positively expansive and surjective affine maps.
Assume that ¢ : X — Y is an asymptotic conjugacy. It follows that 1) is affine.

Proor. Combine Theorem 3.10 and Lemma 3.13. O
We turn to the structure of the homoclinic algebra.

DEFINITION 3.15. Let T denote the unit circle in the complex plane. A circle
algebra is a C*-algebra *-isomorphic to C(T) ® F' for some finite-dimensional C*-
algebra F'. An AT-algebra is a C*-algebra A which contains an increasing sequence
A; C Ay C A3 C ... of circle algebras as C*-sub-algebras such that A = J 2, A,.

THEOREM 3.16. Let G be a compact metric group and ¢ : G — G a positively
expansive and surjective endomorphism. Assume that G is connected or that 1 is
ergodic with respect to the Haar measure of G. It follows that Ay(G) is a simple
unital AT-algebra of real rank zero with a unique trace state.

Proor. We argue first that

a) dim G < oo, and that

b) K, (C(Q)) is torsionfree.
Note first that G is homeomorphic to the topological product G° x (G/G°), where
G° denotes the connected component of the neutral element in G. This seems to
be a well-known fact; a more general statement appears as Proposition 5.9 of [KS].
It follows from Lemma 3.13 and Theorem 7.12 of [HeRo] that 1 restricts to a
positively expansive map of G° which is expanding in the sense of [Ao]. It follows
then from Theorem 2 of [Ao] that G° is an inverse limit of tori of the same fixed
dimension. Since G/Gj is totally disconnected by Theorem 7.3 of [HeRo], both a)
and b) follow easily.

By Lemma 3.13 the homoclinic group A, is the union of an increasing sequence

Fy C Fy, C F3 C ... of finite subgroups of GG. It follows therefore from Theorem 3.8
that A,(G) is the inductive limit of a sequence

C(G) %, Fy — C(G) X, Fy - C(G) % F3 — ...

By Lemma B.5 in Appendix B C(G) %, F,, is stably isomorphic to C (G/F,). Set
A, = C(G) %, Fy, and let ¢ : Ap — Agy1 be the connecting map in the above
sequence. Since Ay is unital and Ay @ K ~ C' (G/F,) ® K it follows that there is an
I € N and a projection p, € M, (C (G/F,)) such that A, ~ ppM;, (C (G/F,)) pk.
It follows that there are x-isomorphisms ¢, : Ay — ppM,, (C (G/F})) pr and unital *-
homomorphisms vy, : pe My, (C (G/Fy)) o = pes1Mi,,, (C(G/Fj41)) prgr such that
the infinite diagram

p1 P2 ¥3
Al A2 A3

| | [

piMy, (C(GFy) pr — po M, (C (G F)) py —= psMy, (C (G Fy)) ps —= -
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commutes. Hence Ay (G) = lim, (pxM,, (C (G/Fy)) pi, ). As observed above C(G)
has torsion-free K-theory and finite covering dimension. It follows that C' (G/F},) has
torsion-free K-theory and that dim G/F) = dimG < oo for all k. Since C (G/Fy)
and pyM,, (C(G/Fy))pr have the same K-theory we conclude that K, (A,(G)) is
torsion-Free. Since A,(G) is simple by Lemma 3.13 and Theorem 3.8, it follows
now from Corollary 6.7 of [G] that A,(G) is in fact an AT-algebra. Being simple it
is then approximately divisible in the sense of [BKR] by a result of Elliott, [E1l1].
Furthermore, it follows from Corollary 3.9 that A,(G) has a unique trace state

(arising from the normalized Haar measure of G), and hence A, (G) has real rank
zero by [BKR]. O

3.3. Expansive group automorphisms

3.3.1. The shift of a solenoid. Let n € N and let p : R" — T™ = R"/Z" be
the quotient map. Let || - || be a vector space norm on R™ such that ||z|| > 1 for all
z € 7. We will work with the metric dy on T" given by

do (p(2), p(y)) = inf [lz —y — 2|
Let @ € Gl,, (Q), and set

S ={ ()i € (T (5 500) € {(p(0), p(@1)) - tER"} VieZ).  (3.10)
We equip S with the metric d given by

d ((xi)iEZ ) (yi)iGZ) - Z 271d, (i, yi) -

i€z
Let og : Sg — Sg be the shift of Sg, i.e. og ((Zi)iez)j = Zj41.

LEMMA 3.17. Let L : R™ — R" be linear and invertible. There is a decomposition
R'=UDN &S of R" into a direct sum of the subspaces U, N and S, such that
i) S={reR": lim, ., L"x =0},
i) Y ={x e R": lim, ., L'z =0}, and
iii) {z € R": supyey ||[LFz|| < 00} CN.
Furthermore there are constants A\, K > 0, X\ < 1, such that |L"z| < KX"||z||
whenx €U andn <0 orx e S andn > 0.

PROOF. See e.g. pp. 23-26 in [HK]. O

In the following we let
R'=UBN &S (3.11)
be the decomposition obtained by applying Lemma 3.17 to () : R®™ — R"™. The hy-
perbolicity of @ is equivalent to expansiveness of (S4, 0g) and means that N' = {0},
cf. Proposition 6.2 of [KS]. But we will not yet assume that the shift is expansive.
We seek to describe the homoclinic group. The following lemma is due to
Brenken, cf. Proposition 3.6 and Proposition 3.7 of [Bre].

LEMMA 3.18. (Brenken) There is a 6 > 0 such that for all x = (z;);-__ € So,

i) if do (x;,0) < 0 for all i < 0, there is a unique element z € R"™ such that
z; = p(Q'2) and ||Q"z|| < & for all i <0,

i) if do (x;,0) < 0 for all i <0 and lim,;_,_ do (x;,0) = 0, there is a unique
element z € U such that ; = p (Q'z) and ||Q'z|| < 6 for all i <0,
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iii) if do (x;,0) < 0 for all i > 0, there is a unique element z € R™ such that
z; = p(Q'2) and ||Q'z]| < 6 for alli >0,

iv) if do (24,0) < 9 for all i > 0 and lim; o dy (z;,0) = 0, there is a unique
element z € S such that x; = p (Q'z) and ||Q"z|| < & for alli >0,

PROOF. i) and iii) are reformulations of Proposition 3.6 and Proposition 3.7 in
[Bre], respectively. ii) and iv) follow from i) and iii) since p is a local homeomor-
phism. Il

Let N € N and set

2N+1

Hy = {(13 (i) 7y> cUdZHV" oS QMNr+ Z QN1 — y}

=1

For £ = (1‘, (wi)?iqu ,y) € Hy, define Ay(€) € Sg such that

p (QNz), k< -N
An@©r =4 p (Q" Mo+ Q" Nwy + Q¥ N wy + -+ Quisn), —N<k<N
p(Q"Ny), k> N.
(3.12)

Then Ay is a homomorphism and Ay (Hy) € A,,. Define 1y : Hy — Hyy1 such
that

oy (@, (Wi, wa, .. wani) ,y) = (Q7 '@, (0, w1, wa, . .., wan41,0),Qy) . (3.13)
Then ¢y is a homomorphism and Ay 10ty = Ay. We get therefore a homomorphism

A lim (Hy,in) = Agg. (3.14)
N

LEMMA 3.19. A s surjective.

PROOF. Let z € AUQ. It follows from Lemma 3.18 that there is an N € N and
elements z € U, y € S such that z_y_; = p(Q77z) and 2y, = p (Q’y) for all j > 0.
By successively applying the condition that (z;, z;+1) € {(p(t), p (Qt)) : t € R} for
all =N < j < N, we get an element (wy,ws, ..., wans1) € (Z”)ZNH such that
Q2Nx + Z?iVl+1 Q2N+1—iwi — y and

p (Q Ve + Q" Ny + Q5N lwy + -+ Quipyn) = 2
when —N <k < N. u

Let H be a finitely generated abelian group. Then H ~ Z™ & F for some m € N
and some finite abelian group F'. We call m the rank of H and denote it by Rank H.

LEMMA 3.20. Hy is finitely generated and torsion-free of rank < n. In particu-
lar, Rank Ay (Hy) < n for all N € N.

PROOF. Let m € N be so large that mQ* € M, (Z) forallk € {0,1,2,...,2N+1}.
Define ® : Hy — Z" such a way that ®(z, (w;)}2",y) = m SN QAN Iy, Tf
@(x, (wi)?ivfrl,y) = 0 it follows that Q? 'z = y and hence that z = y = 0 since

UNS = {0}. This shows that ® is injective and the lemma follows. O
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LEMMA 3.21. The solenoid SQ 1s a projective limit of n-tori, i.e. there is a
sequence @y : T" — T k =1,2,..., of continuous surjective group endomorphisms
such that Sq 1s zsomorphzc, as a topological group, to the projective limit of the
sequence

™ ™ ™ ™

1 P2 ®3 4

In particular, Sq is connected and divisible.
PrROOF. For each k, equip the subgroup

—k —k k— n k n

= (@) @)+ (@) @)+ (@) @)+ (@) (2

of Q" with the discrete topology. The dual group 5’5 of Sg can then be identified
with the union (J;; Q, cf. the proof of Proposition 6.2 of [KS]. It follows that Sg
is isomorphic to the corresponding projective limit

U R O
Since 2, ~ Z", and hence fl; ~ T™ for each k, this yields the lemma. O

We denote in the following by (M) the subgroup of R™ generated by a subset
M C R™.

LEMMA 3.22. The homoclinic group A, is dense in the solenoid Sq if and

only if
(u+ <U Q' (M) n(s+ <'U Q' () (3.15)

1s dense in R™ for all k € N.

Proor. Let m € N be a natural number such that m() has integer entries.
Assume first that A, is dense in Sg. Let ap € R", ¢ > 0 and d > 2k be given. Set

= Q'ap,i € Z. Then (p(a;)),c, € Sq and it follows therefore from the density
of A,, that there is an element ¢ = (c;),; € Ay, such that dy (p (ao),co) < 5 and
do (p(ai),c;) < m for 0 < i < d. Choose b; € R™ such that ¢; = p(b;),
lag — bo|] < € and ||a; — b;|| < W,z =0,1,2,...,d. Then [|Qb; — bj11| <
1Qb; — Q|| + |laj+1 — bj41]| < 5, and hence Qb; = b4y for j =0,1,2,...,d— 1.
Since lim; 1 dg (¢;,0) = 0 it follows from ii) and iv) of Lemma 3.18 that by €
U+ <Uj20 Q7 (Z”)> while by € S + <Uj§0 Q’ (Z”)> Since by = Q% we conclude

o by € (u + <]L2Jij (Z”)>> N (8 + <jngj (Z”)>>.
@+ (U@ @))n(s+(U @@))

J>k j<—k

20 (s (Je@))n(s+ (U @e))

this proves the density of (3.15) in R™.
Conversely, assume that (3.15) is dense in R” for each k. Fix b € Sg, and let
€ > 0 and d € N be given. It follows from Lemma 3.21 that there is an element

Since
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a € Sg such that m%a = b. By definition of Sg there are then ¢y € R" and
Uy, Usg, ..., Uug € Z™ such that

g = p (CO) )
ay = p(Qco + Quy),
as = p (Q%co + Q%ur + Quy) |

ag = p (Q%o+ Qi + Q" us + - + Quy) .

Set ¢ = m?cy and note that b; = p(Q’c),j =0,1,2,...,d. Thanks to the density
of (3.15) for k = d, there is an element

ce(u+ (U@ @))n(s+(U @ @)
i>1 j<—d
such that ||c — || < €. There are an M € N, M > d, and elements
Wi, Wa, ..., Wy, V1, Vo, ... U € ZL"
and u € U,s € S such that & = v+ QMw; + QM 1wy + -+ + Qupr = s + Q% +
Q g+ -+ Q Mup_gyq. Set
w;, 1<i< M,
ti=<0, M+1<i<M+d,
pnas MA+d+1<i<2M+1.
Then
¢ =(Q Mu, (ti,tay ..., tarr41) , QMs) € Hy
and d(bj, Ay (f’)j) < ||Q|Ve for all j =0,1,2,...,d. Since the the homoclinic group
is invariant under the shift this proves its density in Sg. O

LEMMA 3.23. Assume that o is expansive. i.e. that N = {0}. It follows that
the homoclinic group A, is dense in Sq.

PrROOF. Let k € N. Let Py : R" — U and Ps : R® — S be the projections
corresponding to the decomposition (3.11). Note that H = Pu(<Uj§7,C Q7 (Z")))

is a Q™ !-invariant subgroup of & which spans U linearly. It follows that U /H is a
compact group on which Q=1 induces a surjective continuous group-endomorphism.
Some power of this endomorphism is a strict contraction since some power of Q!
is a strict contraction on 4 by Lemma 3.17. By compactness this implies that
U/H = {0}, ie. Pu(<Uj§7ij (Z™))) is dense in U. Similarly, we see that
P3(<Uj>k Q7 (Z"))) is dense in S. Hence we conclude that

A((U @)+ n((Ue )
is dense in R™. Since z = J];u(x) + Ps(z) for all :Ejé R™ we have that
@ (Ue@))n(s+(U@e))
=k J<—k
=r((U @ @) +ps((U@ @),
J<—k Jj=k
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so we conclude that
(u+ (U@ @))n(s+(U e a@)) (3.16)
Jjzk J<-k
is dense in R™. This proves the density of A,, in S by Lemma 3.22. U

REMARK 3.24. Another approach to Lemma 3.23 would be to show that o¢ has
completely positive entropy and then appeal to Theorem 4.2 of [LS]. O

By combining Theorem 3.8, Lemma 3.23 and some more or less wellknown re-
sults about crossed product C*-algebras, which we relegate to Appendix B, we get a
relatively detailed description of the homoclinic algebra A, (Sg). To state the re-
sult, consider an abelian group H, a compact abelian group G and a homomorphism
p: H — G. We can then define an action 7 o p of H on C (G) such that

(Top), (N)(x) = f(z—p(h)).

When p is injective we suppres it in the notation and write 7 for this action. If, in
addition, H ~ Z* and G ~ T™ we will call the resulting crossed product C*-algebra
C(T™) x, H a special non-commutative torus of rank (n,k).

LEMMA 3.25. Assume that @ € Gl,(Q) is hyperbolic. Then the homoclinic
algebra A, (Sq) is simple and x-isomorphic to an inductive limit lim (Ag, ©x) where
the @i ’s are unital *-homomorphisms and

Ak ~(C (Tn) N opk Hk

for some finitely generated abelian group Hy, and some homomorphism p* : H, — T".
Furthermore, each Ay, is stably isomorphic to a finite direct sum of copies of the same
special non-commutative torus of rank (ng, my), where ny + my < 2n.

PRrROOF. Note that A, is countable, e.g. by Lemma 3.19 and Lemma 3.20.
The simplicty of A, (Sg) follows from Corollary 3.9 and Lemma 3.23. The other
statements follow from Lemma B.2 and Lemma B.6 in Appendix B, using the inverse

limit decomposition of Lemma 3.21. The bound on the rank follows from Lemma
B.6 and Lemma 3.20. O

REMARK 3.26. The simplicity of A,, (Sg) follows also from a combination of
[Br| and [PS]. O

In the following we collect some information on the structure of the homoclinic
algebra A,, (Sq) which follows by combining Lemma 3.25 with other mathemati-
cians work on the structure of (simple) C*-algebras.

PROPOSITION 3.27. Assume that Q) € Gl,,(Q) is hyperbolic.

1) Ay, (Sq) is in the bootstrap category N of Rosenberg and Schochet. In
particular, the UCT-theorem of [RS] holds for A, (Sq) with respect to an
arbitrary separable “coefficient’ C*-algebra.
oo (Sq) has a unique trace state.
K* ( o (Sq)) is torsionfree.
Asp (SQ) is approzimately divisible (in the sense of [ BKR]).
Asq (Sq) has stable rank 1.
Asq (Sq) has real rank 0.

2

O O i W
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)
)
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)
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7) Ko (Ao (SQ))Jr = {2 € Ky (Ao, (Sq)) + w(x) >0 }U{0}, where w is the
trace state of Ag,, (5¢).

PROOF. 1) follows directly from Lemma 3.25 by using that A by definition con-
tains all separable abelian C*-algebras and is closed under the formation of crossed
products by Z, under (countable) inductive limits and and stable isomorphism.

2) follows from Corollary 3.9 and Lemma 3.23; the unique trace is the trace on
the crossed product C'(Sg) X, A,, coming from the Haar measure of Sp.

3) follows from Lemma 3.25 and the wellknown fact that the K-theory of a
non-commutative torus is torsion-free.

To prove 4) we proceed as follows: By Lemma 3.25 A, (Sg) is *-isomorphic to
the inductive limit of a sequence

P1 P2 P3
A Ay As

of unital C*-algebras such that each ¢y, is unital and such that A;®K ~ B,QC* K,
where By, ~ C (Tb’f) X, 7 for some natural numbers ag, b, with by + b, < 2n. We
consider the following cases separately:

By, is nonrational in the sense of [ BKRY] for infinitely many k. In this case we
can assume that By is nonrational for all k. By standard C'*-algebra techniques, as in
the proof of Theorem 3.16, we get then for each £ a natural number /i, a projection
pe € My, (B ® C*), a s-isomorphism ¢y, : Ay — ppM;, (Br ® C*)p;, and a unital
s-homomorphism vy, = ppM;, (B ® C*)pp — pra1iMi,,, (Brgyr ® C*+1) pryq such
that the infinite diagram

®1 P2 ¥3
A Ay As

piMy, (Br @ C*) py oM, (B2 ® C*2) py S psMy, (B; ® C*) ps LR
(3.17)
commutes. Since approximate divisibility is preserved by taking tensor products we
conclude from Theorem 1.5 and Corollary 2.9 of [BKR] that pyM, (B @ C*) py
is approximately divisible for all k. It follows that the inductive limit of the lower
sequence in (3.17) is approximately divisible. But this inductive limit is *-isomorphic
to Ao, (Sg) by (3.17).

By, is rational in the sense of [ BKR] except for finitely many k. We may then
assume that B, is rational for all k. Note that C (Tbk) X, Z° is rational only when
¢k = 0. Thus B, ~ C (T") for all k. We construct a diagram (3.17) as above
with the only difference that now By ~ C' (Tb’“) for some b, < 2n. Corollary 6.7 of
|G] implies that the inductive limit of the lower sequence in (3.17) and hence also
A, (Sp) is an inductive limit of direct sums of circle algebras. It follows then from
a result of Elliott, [Ell1], that A,, (Sg) is approximately divisible.

Having established 4), both 5) and 6) follow from Theorem 1.4 of [BKR]. 7)
follows from Corollary 3.9 of [BKR]. O

By using recent results of H. Lin and N.C. Phillips we obtain the following.

THEOREM 3.28. Assume that Q € Gl,,(Q) is hyperbolic. Then A,, (Sq) is a
simple unital AT-algebra of real rank zero with a unique trace state.
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PROOF. By combining Lemma 3.25 with Proposition B.7 from Appendix B we
see that Ay, (Sq) is locally AH. Hence, by Proposition 5.3 of [Lin], the trace state
of A, (Sq) is approximately AC in the sense of [Lin]. Therefore we can combine
Proposition 3.27 with Theorem 4.15 of [L] to conclude that A,, (Sg) has tracial
rank zero. It follows then from Proposition 3.7 of [Ph2] that A, (Sg) is AT. [

The previous analysis and its results can be slightly improved in the case where
Q € M, (Z). In this case @ induces a group endomorphism of the n-torus given by
the tautologically looking formula

Qp(x) = p(Qu).
Define A : R® — S such that A(z); = p(Q'z), i € Z, and set

W*(0) = {x €X: lim d (o(2),0) = 0}.
LEMMA 3.29. Assume that Q € M, (Z). Then A (U) = W*(0) and A is injective
onlU.

ProOOF. Clearly, A (U) € W*(0). Let z = (2),c, € W*(0). It follows from
Lemma 3.18 that there is an z € U such that p(Q~'x) = 2_y_; for all i > 0. Then
QNz €U and A (QVz) = 2. Hence A (U) = W*(0). If z € U and A(z) = 0, we see
that Q'x € Z" for all i € Z. Since some power of Q! is a contractive automorphism

of the discrete group U N[,z @ (Z™), this group must be {0} and hence z = 0. O
LEMMA 3.30. Assume that Q € M, (Z). The homoclinic group A, is

A(Lm (8+ Je™ (Z"))).

PROOF. Let z = (2i),c5 € Do, Since Ay, € W*(0) it follows from Lemma 3.29
that there is an z € U such that p(Q'z) = z; for all i € Z. On the other hand,
it follows from Lemma 3.18 that there is an N € N and a vector y € § such that
p(Q’y) = zn4, for all j > 0. Since p (QNx) = zy = p(y), it follows that QVz —y €
Z". Hence z € S+ QN (Z™), proving that Ay, € A (UN (S+ U A (ZM))).

0

The reversed inclusion is trivial.
LEMMA 3.31. The map
AoPy: | JQ7(ZNU+S) — A,

j>0
18 an isomorphism.

PROOF. Surjectivity: Let 2 € UN(S + Uysq @ ¥ (Z")). There are then elements
s€Sandv € J;5,Q 77 (Z")N(U + S) such that z = s+v. It follows that Py(v) = z
and hence that A(z) = A o Py(v). By Lemma 3.30 this gives the surjectivity.
Injectivity: The injectivity of A on U follows from Lemma 3.29. It suffices therefore
to prove the injectivity of Py on Q% (Z") N (U + S) for any k > 0. To this end
observe that some power of () is an injective strict contraction on the discrete set
S N Z™ which implies that S NZ" = {0}. Hence, if v € Q7% (Z") N (U + S) and
Py(z) =0, we find that Q*(x) € SNZ" = {0}. Hence x = 0. O
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THEOREM 3.32. Assume that Q € M, (Z) N Gl (n,Q) is hyperbolic. The homo-
clinic algebra A, (Sq) is simple and x-isomorphic to the crossed product C(Sq) X,

Uso Q*(z").

Proor. Simplicity follows from Theorem 3.25. The crossed product description
follows from Theorem 3.8 and Lemma 3.31. O

By specializing further we get also the following.

THEOREM 3.33. Let Q € Gl,(Z) be hyberbolic and let ¢ : T™ — T™ be the corre-
sponding expansive automorphism. It follows that the homoclinic algebra A, (T") is
a simple special non-commutative torus of the form C (T™) x, Z™.

REMARK 3.34. Let Q € M, (Z)NGl (n, Q) be hyperbolic. It follows from Lemma
3.31 that Ag, is isomorphic to the inductive limit group of the sequence

zn—Legn Logn 2o (3.18)

while 3‘5 is isomorphic to the inductive limit group of the sequence

T Q n Q T Q ey (319)

where Q! is the transpose of Q. It can happen that these inductive limit groups are
not isomorphic. This is for example the case when

65 7
©= (24 67) ’
cf. Example 3.6 of [ BJKR|]. In this case the homoclinic group of o is not isomorphic

to §Z) (as it is in the case where @ € Gl,,(Z)). Since the argument in [BJKR] only
shows that the two groups are not isomorphic as ordered groups (i.e. as dimension
groups) the arguments for the stronger statement have been included in Appendix
C. Presumably the phenomenon is not exceptional at all; the methods explored in
Appendix C can be used to find other examples, albeit in a rather unsystematic
way. It is, for example, easy to check by the same procedure that the matrix

82 57
5 86
is another example of this sort.

A different example of an expansive automorphism of a compact connected group
whose homoclinic group is not isomorphic to the dual of the group on which it acts
has been exhibited before in [CF]. All these examples show that the statement (2)
of Theorem 5.1 in [KPS] is incorrect.

In all the cases mentioned above, the homoclinic group is at least torsion free.
Below, in Remark 6.9, we exhibit a hyperbolic matrix @ € M, (Q) such that A,
has torsion. O

3.3.2. General expansive group automorphisms. We extend here Theo-
rem 3.28 to a general expansive automorphism of a compact group. This is relatively
straightforward thanks to the following result of Kitchens and Schmidt, cf. Theo-
rem 6.7 of [KS].
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THEOREM 3.35. (Kitchens and Schmidt) Let ¢ : G — G be an expansive au-
tomorphism of the compact group G. Then (G,v) is topologically conjugate to a
product (F' X X, X Sg,T X 0 X 0¢), where T is an automorphism of the finite group
F, (£,0) is the full m-shift for some m > 1 and o¢ is the shift of the solenoid Sg
for some hyperbolic Q € Gl,,(Q).

By using Proposition 1.23 it follows from Theorem 3.35 that
Ay(G) = A (F) @ Ay (Bm) ® Asg (S0) -

Clearly A,(F) = C#! and it follows from Theorem 3.3 that A, (3,,) is the UHF-
algebra of Glimm-type m®. Note that the finite group F' must be trivial when
is mixing. The following theorem follows therefore from Theorem 3.28 and Propo-
sition 3.27.

THEOREM 3.36. Let ¢ : G — G be an expansive automorphism of the compact
group G. When ¢ is mizing it follows that Ay(G) is a simple AT-algebra of real
rank zero with a unique trace state.

In general, Ay(G) ~ C* @ Q for some k € N where @ is a simple AT-algebra of
real rank zero with a unique trace state.



CHAPTER 4

The heteroclinic algebra

In this chapter we introduce a canonical construction of a relatively expansive
system for a class of invertible dynamical systems with periodic points. This allows
us to define a C*-algebra from these dynamical systems which we call the heteroclinic
algebra. The construction generalizes the construction of Putnam, [Pul], of what
he calls the stable algebra.

4.1. Post-periodic points and the Wagoner topology

Let (X,d) be a metric space and ¢ : X — X a homeomorphism of X. For
r € X, set

W (zx) = {y €X: klim d (¢"(z), " (y)) = 0}.

——00

When k € Z and € > 0, set

Wz, k,e) = {y € W"(z) : d(¢'(2),¢'(y)) <€, i <k},

To simplify notation, set W*(x,0,€) = W"(x,¢).
In the following we let Per X denote the set of ¢-periodic points and [p| the
minimal period of a (p-periodic point p € X.

DEFINITION 4.1. Let p € Per X. We say that ¢ is locally expansive at p when
there is an €, > 0 such that W* (p, ¢,) is compact in X and

2y eW (p), d(¢(2), ¢ y) <eVjic€Z = z=y. (4.1)

Since p (W*(p,e)) N{x € X : d(z,¢(p)) <€} = W"(p(p),€) we see that ¢ is
locally expansive at every element of the orbit of p when it is locally expansive at p.
We say that ¢ is locally expansive on post-periodic points when it is locally expansive
at every p € Per X.

LEMMA 4.2. Let K be a compact subset of X and p € Per X such that

epe K,
o o P(K)C K, and
e there is an € > 0 such that

re K, d(o"(z),¢"(p) <eVneZ = x=np.
It follows that there is a 6 > 0 such that

lim sup d (¢ "(z), ¢ "(p)) =0, (4.2)

n—~o0 $€K§

where
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PROOF. Set L = U‘jp:‘gl ¢ (K). Then L is compact, ¢~ '-invariant and contains
the orbit of p. Choose k > 0 so small that

k< %min{‘gpi(p) —cpj(p)| 21,7 €40,1,2,...,[p| — 1}, 27&]} (4.3)

and
r,y€ L, dlz,y) <k =
d(p(x),(y)) < 3min{|e'(p) — ¢’ (p)| : 1,5 €{0,1,2,....|]p| =1}, i #j}.
(4.4)
Let § = min{k, ¢} and set
[p|—1 ‘
—= U (p_.] (K6
=0

Then L' is a compact ¢~ !-invariant subset of L and contains the orbit of p. In
particular,

e L) ST (L) (4.5)
for all 7 € N. We claim that
ﬂ e (L) = {p.o(p), &’P), ... " (p)} . (4.6)

Let z € (2, “(L') and consider a k € Z. For each m € N there is an ele-
ment x,, € L' such that ¢*(z) = ¢* ™ (z,,). Note that for each m there is a
J €40,1,2,...,|p| — 1} such that d (¢" (z,n),¢"(p)) < 6 for all n < 0. It follows
that there is a sequence m; < mg < mg < --- in Nand a j € {0,1,2,...,[p| — 1}
such that

d (" (2), "™ (&' (p)) = d ("™ (xm,) , "™ (7 (p))) <0

for all 4. Thus, for some j' € {0,1,2,..., |p| — 1} we have d (¢*(2), ¢* (¢"' (p))) < 0.
Note that ¢*(z) € L' C L. Since also ¢**7'(p) is in L it follows from (4.4) and (4.3)
that the same j' works for all k£ € Z. That is,

d("(2), "' (p)) <6 (4.7)

for all k € Z. Since z € L' there is a 2/ € K% and a j” € Z such that z = /" (2')
and d (¢'(2), ¢'(p)) < § for all i < 0. Tt follows from (4.7) that

d(" (), " (" 7" (p))) <6

for all k € Z. Since ¢ < k it follows first that 7' — 77 = 0 modulo |p| and then, since
6 <, that 2’ = p. Hence z € {p,¢(p),...,¢”"!(p)}, proving (4.6).

Let p €]0, 6] be given. It follows from (4.6) and (4.5) that there is an N so big
that

P (K°) C {z e X« dist (2, {p. (), * (). ... 0" (p)}) < i}

for all n > N. Since 2§ < min {|p'(p) — ¢’/ (p)|: 4,5 € {0,1,2,...,|p| — 1}, i # j}
we see that d (o~ (u), o "(p)) < p for all u € K? and all n > N. This proves (4.2).
U
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LEMMA 4.3. Let (X, d) be a compact metric space and ¢ : X — X a homeomor-
phism of X. Let p be a p-periodic point, and assume that there is an € > 0 such
that

zeX, d(¢(x), ¢ p) <eVieZ = x=np. (4.8)
It follows that there is a 6 > 0 such that
W (p,d) ={z e X: d(¢(z),¢'(p) <6, Vi<0}.
In particular, W* (p,d) is compact.
PROOF. Apply Lemma 4.2 with K = {x € X : d(¢/(2),¢(p)) <€, j<0}. O

LEMMA 4.4. Let p € Per X and assume o is locally expansive at p. It follows
that there is an €, > 0 such that

lim sup d (go’”(x), go’"(p)) =0.

nmee zeWu (p,e;))

ProOOF. This follows by applying Lemma 4.2 to K = W* (p,¢,), where ¢, > 0 is
as in Definition 4.1. O

LEMMA 4.5. Let p € Per X and assume ¢ is locally expansive at p. There is an
n, > 0 such that

{zeW"(p): d(¢’(@).¢'(p)) <m. j <k}
18 compact and
{zreW"(p): d(¥'(2),¢' () <. j <k}
is locally compact in the topology inherited from (X, d) for all k € Z and all n < n,.
PROOF. Set 7, = min{e,.,) : n € Z} and let n < n,. Let k € Z. It follows
from Lemma 4.4 that there is an N € N such that d (¢7(y), ¢/ (¢'(p))) < n for all

j<=N,ally e {z e W (£ (p): d(¢(z),¢ (¢'(p)) <n, j <0} and alll € Z.
Note that

{zeW(p): d(¢(2),¢'(p) <n, j <k}
= " {zew (& (p) : d(¢(2),¢ (¢"(p))) <n, j <0})
=9 " (ENF),
where
E={zecW"("p): d((@).¢ (¢ p)) <n, j <0}
and
F={reX: d(¢(x),¢ (¢ p)) <n —N<j<0}.

Note that F is compact in X by the first condition of Definition 4.1. Hence p=*(E) =
{x e W¥(p): d(¢’(x), ¢’ (p)) <n, 7 <k} is also compact. Since F is open in X we
conclude that E'N F', and hence also ¢ =% (E N F), is locally compact in the relative
topology. O

To simplify the notation we let W¥ (y, k,n) denote the set
W (y, k,n) ={z e Wi(y) : d(¥(2),¢’(p)) <n, j <k}

Assume now that ¢ is locally expansive on post-periodic points, and let p €
Per X. It follows from Lemma 4.4 and Lemma 4.5 that there is an 7, > 0 such that
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for every k € Z the set W (p, k,n) is locally compact in the topology inherited from
(X,d), and

im  sup  d(¢"(2),¢"(p)) = 0. (4.9)
when 7 < n,. Since W (p, k,n,) is an open subset of W (p, k —1,7,), it follows
from Lemma 4.5 that W*(p) is locally compact in the inductive limit topology
corresponding to the union

Wu(p) = U Wg (p7 k, np) :

keZ

In this topology a subset U C W*"(p) is open if and only if there are open sets Wy, in
X such that UNWY (p, k,n,) = Wi NWE (p, k,n,) for all k € Z. It is easy to see, by
use of (4.9), that this topology of W*(p) is independent of 7, in the sense that the
inductive limit topology of W*(p) arising from a union W*(p) = U, W (0, k, ),
where 0 < n < n,, will give the same topology.

By Definition 4.1 we can assume that W*" (p, k,n) is compact for all k£ € Z and
all 0 < n <n,. Furthermore, by Lemma 4.3 we can also arrange, by taking a smaller
7, if necessary, that

W(p, k) ={z € X+ d(¢(2),¢'(p)) <n, j <k} (4.10)
for all 0 <n <, and all k € Z. We shall often tacitly assume that this holds.
The union
WX,<,0 = U Wu<p)7

pEPer X

or just W consists of the post-periodic points, and we equip W = Wx , with a
topology by declaring a subset U C W to be open when U N W*¥(p) is open in
W(p) for all p € Per X. Thus W is the disjoint union of the W"(p)’s, as a set as
well as a topological space. It is a locally compact Hausdorff space which was first
introduced by Wagoner in the setting of countable state Markov shifts, [Wa], and we
will refer to its topology as the Wagoner topology. Note that the Wagoner topology
is second countable if (and only if) there are only countably many periodic points
in X. Note also that the Wagoner topology is finer than the topology inherited
from X.
The following lemma describes a natural base for the Wagoner topology.

LEMMA 4.6. Assume that (X, d, ) is locally expansive on post-periodic points.
Let v € Wx . There is then an €y such that the sets

{yEX: d(cpj(y),gpj(x)) <e j< k:}, keZ, el e, (4.11)

are all contained in W*(x) and form an open neighborhood base at x in the Wagoner
topology.

PROOF. There is a periodic point p such that x € W"(p). Since W¥(p) =
Unez W2 (p,n, ) there is an m € Z such that @ € W (p,m, ). Set ¢g = 2 and
let € €]0, ¢o[. Then

{ye X: d(¢ ), ¢ (2) <€ j <k}
ClyeX: d((y).¢'(p) <np j<min{km}}
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and hence
{yeX: d(YW).¢(x) <e j<k}
C W2 (p,min{k,m},n,) C W"(p) = W"(x)

for all k& € Z by (4.10). It follows from (4.9) that there is an N € N such that
d(¢’(2), " (p) < & for all z. € W2 (p, min{k,m},7,) and all j < —N. Then

{yeX: d().¢(x) <e, j<k}
={yeX: d@®y).¢(x) <e —N <j<k}nW(p,min{k,m},m,),

showing that {y € X : d(¢/(y), ¢/ (z)) <€, j <k} is open in Wx .

To show that the sets (4.11) form a local basis at x we consider an open neigh-
borhood U of z in Wx . Since W*(p) = U,.c;, W2(p,n,1p), there is a k € Z such
that = € UN W (p,k,n,). Since U N W (p,k,n,) is open in the topology which
W (p, k,np,) inherits from X, there is an € € ]0, €]

{ze X d(¢"(2),¢"(2)) < e} NWZ(p, k,mp) CUNWE(p, k,np).
Since € < €y = 2 it follows from (4.10) that

yeX: d(@(y) @) <e j<k}
Cl{zeX: d(¢(2), ") < e} N Wi(p,k,n,) CU. O

LEMMA 4.7. Assume that (X, d, @) is locally expansive on post-periodic points.
Let x € W. There is then an open neighborhood V, of x in W and a 6, > 0 such
that

2,y €Vyy d(0"(2),¢"(y)) <0, VneEN = z=y.

PROOF. There is a p € Per X and a k € Z such that x € W% (p, k,n,). Let
€, > 0 be as in Definition 4.1. It follows from (4.9) that there is an N € N such that
—N < kand d (¢'(2), ¢ (p)) < 2 for all z€ W* (p, k,n,) and all | < —N. Set

V, = {z cX:d ((pl(z),gol(x)) < %p, —-N<I[< 0} NW(p,k,np,)
and 0, = 2. O

It follows that (X,d,N,p, W, W) is a relatively expansive system and we can
define the local conjugacy relation R, (X, W) and the corresponding Ruelle algebra
A, (X, W). Specifically, two elements x,y € W are locally conjugate if and only
if there are open neighborhoods U and V of x and y in W and a homeomorphism
X : U — V such that lim, .. sup,cp d (¢'(2), 9" (x(2))) = 0. In the following we
will refer to A, (X, W) as the heteroclinic algebra of (X, ¢), and denote it by

B, (X).
4.2. Functoriality of the post-periodic points and the Wagoner topology

It is clear that the functorial properties of the heteroclinic algebra depends on
the functoriality of the construction of W. We pause therefore to collect the facts
on this issue which we are going to need later on.

LEMMA 4.8. Let (X, d, ) and (X', d', ") be locally expansive on the post-periodic
points. Let f : X — X' be a continuous map such that po f = fo . It follows
that f Wx.,) € Wxr o and that f : Wx , — Wxs s is continuous for the Wagoner
topology.
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PRrROOF. It is obvious that f(Wx,) € Wxs . To prove the continuity of f :
Wx., — Wx » with respect to the Wagoner topology, let p be a periodic point in
X, of period |p|, and let k € Z be given. Let n > 0 be sufficiently small. Since
f is continuous and equivariant there is an ¢ > 0 such that d (y,¢/(p)) < € =
d (f(y),¢” (f(p))) < nforall j =0,1,2,...,|p| — 1. It follows from (4.9) that
there is an N € N such that d (¢"P*(y), ¢/(p)) < € for all y € W"(p, k,n,), all
j€{0,1,...,|p| — 1} and all n < —N. Since ©'PI(f(p)) = f(p), it follows that

4 (¢ (FW) ¢ (F®)) <n
for all y € W*(p, k,n,) when i < —N|p|. Hence

FW2(p k,mp)) SWE(f(p), —Nlpl,nse))

provided only that n > 0 is small enough. Now the continuity of f with respect
to the Wagoner topology follows from the continuity of f with respect to the given
topologies. O

LEMMA 4.9. Let (X, d, @) and (X', d', ") be locally expansive on the post-periodic
points. Let f : X — X' be continuous and proper map such that p o f = fo .
Assume that f~(p) is a finite set for every periodic point p € X'. It follows that
fH(Wxr ) € Wy and that flw,, - Wx,, — Wxr o is proper.

Proor. It follows from the definition that a subset K C Wx . is compact in
the Wagoner topology if and only it is compact in the original topology of X’ and
there are finite collections pq, pa, ..., px in Per X’ and nq,ng, ..., ny in Z such that
K C UY, W (ps, ns,mp,). Tt suffices therefore to consider a compact subset K of
X', contained in W¥ (p,n,n,) for some p € Per X’ and some n € Z, and show that
f7H(K) is compact in Wx . It follows from (4.9) that there is an m < 0 such that

Ip|—1

(Wu p,n, 77p U Wu ,J 77@’7(1)))

for all 7 < m. Note that the set on the right—hand side is compact in X’. Then

lp|—1
Je'(x) c so'm< U W (7 (p), wwm)) (4.12)

1<0

and we conclude that the closure, L, of |J,, ¢''(K) is compact in X’. Note that L
is ¢/~ Linvariant and that

(" (L) = {p.¢' (), &*®).....&" ' (p)} (4.13)
i<0
because (4.12) and (4.9) imply that
lim supdist (¢™(2), {p.¢'(p),... ,cp'lpl_l(p)}) =0

k——o0 e,

for all z € L. Since f is proper and equivariant, f~'(L) is a compact ¢~ !-invariant
subset of X, and hence

UL 27 (FHL) 202 (D) 2972 (F7H L) 2. (4.14)
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Since (V< @' (f (L)) € f7 (MNico ¥ (L)), it follows from (4.13) that

|p|-1

Ne @)y e U (@'m). (4.15)

1<0

By assumption the right-hand side of (4.15) is a finite ¢-invariant set, q1, g2, . . . , qus,
of periodic points. Let n > 0. Combining (4.14) and (4.15) we see that there in
an m < 0 such that ¢/ (f~Y(L)) € U, {y € X : d(y,q) <n} for all j < m. It
follows from this and Lemma 4.3 that if just n is small enough we have that

M
fﬁl(L) - U Wg (Qk>m7 77%) :

k=1
Hence f~1(K) C f~*(L) is compact in Wy . O

PROPOSITION 4.10. Let (X,d, ) and (X', d',¢") be locally expansive on post-
periodic points. Let w : X — X' be uniformly continuous homeomorphism with a
uniformly continuous inverse such that ¢'om = wop. There is then a x-isomorphism
f*: By (X') — B, (X) such that

(), y) = f(7(z),7(y))

when f € C. (Ry (X', Wxr 1))

Proor. Combine Lemma 4.8, Lemma 4.9 and Corollary 2.5. U

4.3. The heteroclinic algebra of a countable state Markov shift

Let G be a countable oriented graph with edge-set E and vertex set V. We will
assume that G has finite out-degree in the sense that there are only finitely many
edges leaving each vertex. The terminal vertex of an edge e € E will be denoted by
t(e), and the initial vertex of e by i(e). The space

X(G = {(ei)iEZ - EZ : i(€i+1) =1 (ez) Vi € Z}
consists of the bi-infinite paths in G. Xg is a complete metric space with the metric
d ((ei)iez ) (fZ)zez) =2 Z 87‘2“561’7]01’7 (4'16)
i€z
where
~J0, whene; = f;
eofi = 1,  when e; # f;.

The shift ¢ acts as a uniformly continuous homeomorphism of Xg in the usual way:
o ((ei)z‘ez)j = ¢;41, and we will refer to X¢ as a countable state Markov shift.

The exact choice of metric d is not signifigant for the following constructions. In
fact, it follows from Proposition 4.10 that only its equivalence class matters. But
with the choice (4.16) we have that § = 1 is an expansive constant for o, and that

dlz,y) <1 & d(z,y) <1 & x¢=yp.

It is then straightforward to see that o is locally expansive on the post-periodic
points. In particular, W*" (p,1) is compact in Xg because we assume that G has
finite out-degree.
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LEMMA 4.11. The sets W"(y, k,1),k € Z, y € W, form a base for the topology
of W = Wx, , consisting of open and compact sets.

PROOF. Let p € Per X¢ be a periodic point such that y € W*(p, m, 1) for some
m € Z. Then

Wy, k, 1) =W*p,m,1)N{ze X : z =y, m<i<k}

if m < k and W*(y,k,1) = W¥(p,k,1) otherwise. In both cases we see that
W(y, k,1) is open and compact in W by definition of the Wagoner topology. That
the collection W"(y, k,1), k € Z,y € W, is a base for the topology follows from
Lemma 4.6. O

LEMMA 4.12. Let x,y € Wx,,. Then the following are equivalent

a) x and y are conjugate.

b) There is an N € Z such that x; = y;,i > N.

c) There is an N € Z and a homeomorphism x : W*(z, N,1) — W"(y, N, 1)
such that x(z); = z;,1 > N.

PROOF. Straightforward. g

Let v € Xg. We say that xj_.. ) is a post-periodic past when x € W*(p) for
some p € Per Xg. Let v € V be a vertex in G. We denote by T the set of pairs
(v, 1) where v and p are post-periodic pasts terminating at the same vertex, and by
T, the set of pairs (v, u), where v and p are post-periodic pasts which terminate at
v. Note that T is a countable set. The free complex vector space M, with basis T’
is a x-algebra with involution * and product defined such that

(7, 1)" = (11:7)
and
) (7.B), whena=pu
(v, 1) (@, B) = {07 when @ # 1. (4.17)

There is a unique C*-norm on M, and we denote by M the C*-algebra completion
of Mgy. For each v € V, let M, denote the C*-subalgebra of M, generated by T,.
Then

M= M,,(C), when n, < oo
" K, when n, = oco.
where n, is the number of post-periodic pasts terminating at v and K denotes the

C*-algebra of compact operators on an infinite dimensional separable Hilbert space.
Furthermore,

M ~ EBUGVMU- <418)
We define a *-homomorphism ®,,,, : M, — M, such that
By (7, 1) = > (ve, pe),
{e€E: s(e)=v,t(e)=w}
and then, using the identification (4.18), a *-homomorphism ® : M — M such that

@ ((@)uev) = (3 Pon (@)

ev’
veV v
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In this way we get a stationary sequence of C*-algebras,

3] P (]

M-I M- M (4.19)

We intend to prove that the inductive limit C*-algebra of this sequence, (4.19), is
k-isomorphic to the homoclinic algebra B, (Xg).

Let i € N and consider an element (v, ) € T. We let 1 , € C, (R, (Xg, W)) be
the characteristic function of the set

{(]773/) € W2 DT —o0,i—1] = Vs Y)—ooi-1] = Ky, Tj =Yy, ] > Z} .
We can then define a x-homomorphism ¥; : M — B, (Xg) such that

It is easily seen that ¥, is an injective *-homomorphism and that ¥;,; o ® = ;. It
follows that the ¥;’s induce an injective *-homomorphism

U lim (M, @) — B, (Xg) - (4.20)
PROPOSITION 4.13. The *-homomorphism (4.20) is a x-isomorphism.

PROOF. The proof is essentially the same as the proof of Theorem 3.3. It re-
mains only to establish the surjectivity of ¥. By Lemma 1.10 it suffices to show
that every localized element g € C. (R, (Xg,W)) is in the range of U. Assume
therefore that g is supported in {(z,x(z)): z € U} for some conjugacy (U, V, ).
It follows from Lemma 4.12 that we can asume, after an obvious partition of
unity argument, that there are elements xp,yp € W and an N € Z such that
U= Wu($OaN7 1)7 V = Wu(y07N71)7 X(l’o) = Yo, and X(’Z)z = Ziai > N,Z €
W (xg,N,1). Let € > 0. The map W"(zo, N,1) > z — ¢ (z,x(z)) is continuous.
We can therefore find a finite open cover V;, j € J, of r (supp g) inside W*(zq, N, 1)
such that |g (z,x(2)) — g (¢, x(2'))| < € when z,2" € V},j € J. Since W is totally
disconnected by Lemma 4.11 we can also arrange that the V;’s are compact and
open, and mutually disjoint, and in fact that there is an M € N, M > N and
elements x; € W"(xq, N, 1) such that

V}- = {Z eW: Z]—co,M] = Zjhfoo,M]}
for all j € J. Set A\; = g (x;, x(z;)) for some choice of elements z; € V;. Set

Vi = Tilj—oonr—11s K5 = X (%) [ =00,m—1]

and note that (v;, 1) € T. It follows as in the proof of Theorem 3.3 that
U Z )\] 1’]7/\?1/‘]'
jeJ

in B, (Xg). This completes the proof because >

<e€

et )\j]"]Y\g{;U«j is in the range of ¥. [J

Note that Ky (M) = @,eyZ. This is an identification of partial ordered groups

when @,cvZ has the natural ordering where an element (xv)vGV is positive if and
only if x, > 0 for all v. It follows then from Proposition 4.13 that

Ko (B, (Xg)) = liny (BevZ, 2.) (4.21)
This is an isomorphism of partially ordered abelian groups when the inductive limit

is taken in that category. Let A = (Ayw), ey De the adjacency matrix of G, i.e.
A, € NU{0} is the number of edges in G with w as initial vertex and v as terminal
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vertex. It follows easily from the definition of ® that ®, is given by A under the
identification (4.21):
= Z Ap Ty

wey

Thus Ky (B, (Xg)) is isomorphic to the dimension group Ky (X4) introduced by
Wagoner [Wa]. However, the C*-algebra B, (Xg) is not the same as the C*-algebra
M, from [Wa] since the first is separable and the latter is not. But B, (Xg)
is, by construction, the analogue of the AF-algebra MP, introduced for A finite in
Section 5 of [Wa]. And it follows from Theorem 2.13 that M 4 is Morita equivalent to
B, (X¢) in most of the interesting cases, in particular when G is strongly connected.

When G is finite we can combine with Section 3.1.1 and [BFF] to conclude that
Ko (B, (Xg)) is isomorphic to Ky (Az), where Z is the one-sided shift space defined
by G. It follows in this way from the classification of AF-algebras that Az and
B, (X¢) are stably isomorphic. A more direct proof of this, in a much more general
setting, will be given in Theorem 4.19.

4.4. The heteroclinic algebra of a Smale space

Let now (X, ¢) be a Smale space, [Rul],[Ru2] and [Pul]. For simplicity we
will consider only mixing Smale spaces. We adopt the notation and terminology
from [Pul], except that we use ex to denote the sufficiently small, but otherwise
arbitrary positive number which was denoted by ¢, in [Pul].

It is straightforward to show that the homoclinic algebra A, (X) is identical with
the asymptotic algebra A of [Pul]. Tt follows from the description of VY (z, €) given
on p. 179 of [Pul] that a Smale space is locally expansive on post-periodic points.
In fact, this is the case for all expansive homeomorphisms on compact spaces by
Lemma 4.3. The purpose of this section is to establish the relation between the
heteroclinic algebra B,(X) and the stable algebras of [Pul].

LEMMA 4.14. Let (X, ¢) be a Smale space. Two post-periodic points x,z' € Wx
are conjugate (in Wx ) if and only if

Jim d (¢*(z), "(2)) = 0. (4.22)

PROOF. Assume (4.22). Let 0 < ¢ < ex be so small that [[x yl,
when d(x,y) < € and d(x, z) < e. Choose k so large that d( (), oF (!

ok (2') € V5 (¢ (x),€). Then d (¢*(2), ¢*(2')) < & and d (¢*(2), ¢"(z)) < § for all
z in an open neighborhood U of z. Set

w(z) = ¢7" [¢"(2). ¢ (2)]
when z € U. Then u(z) = 2/. Note that pu(z) € VU(2') so that u(z) € Wy, since

' € Wx,. Similarly, there is an open neighborhood U’ of ' in X, defined in a
similar way, such that we can define

v(z) = 07" [¢"(2), " (2)]
for z € U'. WheanU’ﬂu‘l(U) (VU (" (2'),€)) we find that
pov(z) = ¢ " [[¢* (2), "(x )} P(2)] = 7" [ (Z)awk(xl)} =z

o
Similarly, v o pu(z) = z for all z € U N pY(U') Ne* (VY (¢*(z),€)). Note that
Unp (U) N (VY (¢*(x),€)) and U'nv= 1 (U) N * (VY ( (2') ,€)) are open
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sets in the Wagoner topology of Wx .. It follows that p, suitably restricted, gives
rise to a conjugacy from x to 2’ in Wy .
The reversed implication, that conjugacy in Wx , implies (4.22), is trivial. O

LeEMMA 4.15. Let (X, ¢) be a mizing Smale space. Then B,(X) is a stable
C*-algebra.

PROOF. Let a be a positive element in B,(X). For any € > 0 there is an
element f € C. (R, (X,W)) such that |la — f*f|| <e. Set K =r (supp f) and K’ =
s (supp f). Then K and K’ are compact subsets of W and there are finite subsets
F,F" C Per X such that K’ C J,cpn VY(p) and K C J,cp VY (p). Choose ¢’ €
10, ex[ 50 small that [[z, ], 2] = [z, 2] = [z, [y, 2]] and d([z, ] ,9) + d [z, ] ,) < ex
when d(z,y) < 50" and d(x, z) < 5¢’. Choose then ¢ €]0, §'[ such that d ([z, y],y) < ¢’
when d(z,y) < 26. Since K is compact there is a finite cover K C Ujvzl V; of
K by non-empty open sets V; in Wy, such that x; € V; C VY(x;,0) for some
T; € UpeF VUY(p), cf. Lemma 4.6. Since the periodic points are dense in X, cf.
[Rul], and X is not finite, there are periodic points ¢1, gs, . .., gy in X such that

Fole"(g): neZ,i=1,2,...,N} =0,
and

{" (¢i): neZyn{¢™(¢;): n€Z} =10
when i # j. Let i € {1,2,...,N}. Since (X, ) is transitive, |JI%, vV (¢"(q:)) is
dense in X, cf. [Rul], and there is therefore an element y; € Ulkqil VY (¢*(g;)) such
that d(z;,y;) < d. Then d (z,y;) < 26 for all z € V; and we can define a continuous
map x; : V; — VU (y;,ex) such that x;(2) = [2,vi]. Set U; = x; (V;) and note that
U C{zeVY(yi,ex): d(z,y:) <d'}. Define p; : {v e VY (y;,ex) : d(v,y:) <8}
— VU (z;,ex) such that p;(v) = [v,2;]. Then p; o x;(z) = 2 for all V; so that y; is
a homeomorphism of V; onto U;. To see that U; is open in Wx, let z € U;. Then
z = x;(2') for some 2’ € V;. Since [z,x;] = 2 € V; there is an open neighborhood
QC{veVY(y,ex): d(v,y;) <0} of z in Wy, such that p;(2”) € V; and y; o
wi(2") = [[2", 2], y;] = 2" for all 2 € Q. It follows that (V;,U;, x;) is a conjugacy
in Wx,. Note that U; C Ulkqil |74 ((pk(qi)) so that U; N U; = 0 when ¢ # j.
Let {¢;} be a partition of unity on K subordinate to {V;} and define for each i
a function v; € C. (R, (X, Wx,)), localized in {(z,x;'(z)) : = € U;}, such that

v (z,x7 () = Vei(xi ' (x). Set v = > -1 v Since Uy NU; = () we find that
viv; = 0 when ¢ # j. It follows that v*vf = Zﬁ] viv;f = f and, since fv; = 0 for
all 7, we have also that fv = 0. Set b = f*f and ¢ = vff*v*. Then bc = 0 and
b L cin the notation of [HR]. The stability of B,(X) follows then by combining

Proposition 2.2 and Theorem 2.1 of [HR]. O

LEMMA 4.16. Let (X, ) be a mizing Smale space. Then the heteroclinic algebra
B,(X) is strongly Morita equivalent to the stable algebra S of Putnam, [Pul].

PROOF. Let g € X be a periodic point. Then VY(xq) is an open subset of
Wx,. Let x € Wy,. Since VY (zq) is dense in X, [Rul], there is an element
z € VY (2¢) such that d(z, z) < ex. Then [z,2] € VU (20) N V5 (). Tt follows from
Lemma 4.14 that x is conjugate to [z, z] in Wx . This shows that every element
of Wx,, is conjugate to an element of V'V (z) and Corollary 2.14 implies now that
B,(X) is strongly Morita equivalent to A, (X, VY(x)). By Theorem 3.7 of [PS] it
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suffices now to show that the étale equivalence relations Ry, (X, VY(z0)) and G,(zo)
of [PS] are the same. It follows from Lemma 4.14 that R, (X, VY (x0)) and G,(zo)
are identical as sets. To see that the identity map G(zo) — Ry, (X, VY(xg)) is a
homeomorphism, it suffices to show that the two topologies have the same converging

sequences. This follows easily by combining the description given on page 287 of
[PS] with Lemma 1.12 above. O

THEOREM 4.17. Let (X, ¢) be a mizing Smale space. The heteroclinic algebra
B,(X) is x-isomorphic to the stabilized stable algebra S of [Pul]. In symbols,

B,(X)~S®K
PRrOOF. Use [BGR] in combination with Lemma 4.16 and Lemma 4.15. O

This theorem makes it possible to give cleaner formulations of the results of Put-
nam from [Pu3] regarding the functoriality of heteroclinic algebras of Smale spaces
with respect to resolving maps. For example it follows that the algebras obtained
by taking the crossed product of the stable algebras of Putnam with respect to the
canonical automorphism (these algebras are called Ruelle-algebras in [PS]) behave
just as nicely with respect to resolving maps as the stable algebra; simply because
the x-homomorphisms between the heteroclinic algebras induced by a resolving map
are equivariant with respect to the canonical automorphisms.

4.5. More inductive limit decompositions

4.5.1. Smale spaces from expanding maps. Let X be a compact metric
space and ¢ : X — X a positively expansive map, cf. Section 3.2.2. The inverse
limit space X = projlim (X, ) of the sequence

Ay XAy A4

carries a homeomorphism v : X — X defined such that

U ((2i)Z) = (¥ ()2 -
Note that the inverse of ¢ is given by the shift, i.e. 1)~ ((%:)); = Tjt1-
The dynamical system ()~( , 1;) is the natural invertible extension of (X, ). If d

is a metric for the topology of X there is a metric D for the topology of X defined
such that

D((l"i)fio ) (?Jz’)fio) = Z 27"d (w3, ) -

Note that @ is an expansive homeomorphism of X.

LEMMA 4.18. Assume that v is surjective and open. It follows that ()N(, 1[1) 8 a
Smale space.

PROOF. We appeal first to [Rd] to get a metric d for the topology of X, a A > 1
and an €y > 0 such that
d(z,y) < e = d(¥(),¢(y)) = Ad(z,y). (4.23)

By Lemma 1 of [CV] there is then a §y < ¢ such that

> | &

v,y € X, d((x),y) <& = v y)N {z € X: dzx) < } £0. (4.24)
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It follows then that (X, ) satisfies condition (E) of Section 7.26 in [Rul] and from
the work of Ruelle it follows that (X , w) is a Smale space. O

A positively expansive map which is also surjective and open is said to be ez-
panding.

THEOREM 4.19. Assume that v is expanding and that the -periodic points are
dense in X. Then the homoclinic algebra Ay (X) is stably x-isomorphic to the hete-

roclinic algebra By (X X). In fact,
By(X) ~ Ay(X) ® K.

PROOF. Define p: X — X such that p ((2;)>°,) = 2o and note that p is equivari-
ant. We will show that p: W ; — X satisfies conditions 1, 4, 5 and 6 of Chapter 2.
For this purpose we first establish condition 4, i.e. that p is a local homeomorphism.

Let € Wy ;. By Lemma 4.6 there is an ¢y such that

U= {yEX’: D(W(y),&%x)) < €, j§0}

is contained in W*"(x) and is an open neighborhood of = for the Wagoner topology
for all € € ]0, €9[. We choose € < §y where dy comes from (4.24). Then d (y;, x;) < do
for all i € N when y € U and it follows from (4.23) that p : U — p(U) is injective.

Let y € U. Since y € W"(x) we have that supzeND(w( ), Vi (x )) < e Setd =
— sup;ey D (4(y), ¥ (2)) and

!
S S

where A > 1is the number from (4.23) and (4.24). Let zg € X such that d (zq, yo) < ¢
By repeated use of (4.24) we construct z; € X,i > 0, such that z = ()%, € X and
d (zj,y;) < A7 for all j. Tt follows that D (7 (2), 97 (y)) < 3250027 A7 = § for
all 5 < 0. By the choice of ¢ this shows that z € U. Since zy = p(z) we conclude
that p(U) is open in X. Inspection of the estimates show that in fact,

D(¢(2) 22 A7 (20, 90)

for all 7 < 0, and this proves that the inverse of p : U — p(U) is continuous,
completing the proof that condition 4 holds.

Condition 1 follows from condition 4 since p is equivariant; the required local
conjugacy X' can be defined as po x o p~! in a neighborhood of p(z).

To establish condition 5 of Chapter 2 it suffices to show that p: Wg ; — X is
surjective. Since we assume that the -periodic points are dense in X it suffices
to consider a ¢-periodic point zq € X and show that {zy € X : d (20, 70) < dp} C
p(WXﬂ;). Let © € X be the -periodic point such that p(z) = zo. By repeated use
of (4.24) in the same way as above we find z € X such that d (z,z;) < A\™%, for all
i € N. Then z € W*(z) and p(z) = 2.

To check that also condition 6 of Chapter 2 is fullfilled, let ¢,q be periodic
point for ¢ and x € W*(q),y € W*(¢') elements such that that p(z) ~ p(y) in X.
It follows that limy .o d (¥*(20), ¥*(yo)) = 0. Since ¢ is positively expansive this
implies that ¢*(x) = ¥*(yy) for some k € N. Since ¥* is a local homeomorphism
it follows from the preceding that there are open neighborhoods in the Wagoner
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topology, U, of z and U, of y, and a homeomorphism x : U, — U, such that
Yk (x(2)0) = ¥F () for all z € U, and x(z) = y. It follows then that
lim sup D (" (x(2)), " (2)) =0

n—00 ey,

so that (Uy, Uy, x) is a local conjugacy from = to y in W ;. This shows that also
condition 6 of Chapter 2 is fullfilled.

It follows now from Theorem 2.13 that A,(X) and BT;(X ) are strongly Morita
equivalent. Since both algebras are separable by Lemma 1.21 we conclude from
[BGR] that the algebras are stably *-isomorphic. But B@Z(X ) is stable. When Y is
mixing this follows from Lemma 4.18 and Lemma 4.15. Since ¢ is non-wandering,
because we assume that the ¢-periodic points are dense, the stability of By, (X ) in the
general case follows from the mixing case by use of Smales ’spectral decomposition’,
cf. [Pu3] or 7.4 in [Rul]. O

REMARK 4.20. It should be observed that the density of the i-periodic points
is automatic, given the other two conditions, when X is connected. See Lemma 2
of [Sa]. Furthermore, the t-periodic points are dense in X whenever X is mixing
since the periodic points are dense in a mixing Smale space, cf. 7.19 of [Rul]. O

REMARK 4.21. As pointed out in Remark 1.14, the homoclinic algebra A, (X) is
the same as the algebra coming from the construction of Renault. Hence Theorem
4.19 gives the answer to the question of Putnam from page 4.14 of [Pu2]. O

COROLLARY 4.22. In the setting of Theorem 4.19 the heteroclinic algebra By (X)
18 the inductive limit of a sequence

A Ay As

where A, ~ C (X,,) @ K for some compact metric space X,, of dimension Dim X,, =
Dim X.

PRrROOF. It follows from Corollary 2.2 of [Re3] and Proposition 2.2 of [MW] that
Ay(X) @K can be realized as the inductive limit of such a sequence. In particular,
the fact that Dim X,, = Dim X for all n follows from (e.g. ) Theorem 1.12.7 on
page 138 of [En]. O

REMARK 4.23. By Proposition 2.1 of [KuR| A, (X) and By (X) are simple if
and only if 1 is exact in the sense that for every non-empty open subset U C X
there is an m € N such that ¢™(U) = X. By Theorem 6.1 of [Re3] A, (X) will then
have a unique trace state and By, (X ) a densely defined lower semi-continuous trace
which is unique up to scalar multiplication. It follows from Corollary 4.22 and the
work of Gong [G] that when Dim X is finite, BI;(X) is simple and the K-groups of

B;(X) are torsion-free, then B;(X) is an AT-algebra, cf. Definition 3.15, necessarily
of real rank zero. O



CHAPTER 5

One-dimensional generalized solenoids

R.F. Williams has developed a theory of expanding attractors for a dynamical
system, cf. [Wil] and [Wi2]. These can be modeled as shift maps of generalized n-
solenoids which are defined as inverse limits of immersions of n-dimensional branched
manifolds satisfying certain axioms. In the one-dimensional case these axioms were
given a purely topological formulation by 1.Yi, [Y1], and he called them 1-dimen-
sional generalized solenoids or just 1-solenoids. See also [Y2],[Y3],[Y4],[Y5]. Under
an additional assumption about orientability he subsequently made a first study of
the stable and unstable algebras, in the sense of Putnam, which 1-dimensional gen-
eralized solenoids give rise to, cf. [Y4]. In this section we will carry this investiga-
tion further by showing that one-dimensional generalized solenoids are Smale spaces
quite generally and that the corresponding heteroclinic algebra is a simple, stable
C*-algebra which can be realized as the inductive limit of certain sub-homogenous
algebras with one-dimensional spectrum of a type which were originally introduced
in the classification program to demonstrate the richness of the Elliott-invariant,
cf. [Th4].

5.1. The Smale-space structure of 1-solenoids

Let I' be a finite (unoriented) graph with edgeset E and vertex set V. We consider
I' as a compact metric space with metric d such that the edges are isometrically
homeomorphic to [0, 1], and d is the corresponding arclength metric. When x,y € I’
lie on the same edge e € E of I" we denote by [z, y] the closed interval in e between z
and y. The open interval |z, y[ is then [z, y]\ {z, y}, and similarly, [z, y[= [z, y]\{y},
|z, y] = [x,y]\{z}. When e € E we denote by int(e) the ’interior’ of e, i.e. int(e) =
e\V.

Let f: ' — I" be a continuous map. Set

I = {(ZL‘Z);)ZO c . f($i+1) = I, 12071,27}

We consider I as a compact metric space with the metric
D((x:)Z W:)iZ0) = D 27" (wi, 1)
i=0

Define f : T — T such that f(z); = f (z;) for all i € N. This is clearly a homeomor-
phism and we seek to identify conditions on f that make (F, f) a Smale space.
We assume that f has the following properties.

a) (Flattening) All x € I' have an open neighborhood U, such that f (U,) is
homeomorphic to | — 1,1][.
b) (Expansion) There is a constant A > 1 such that
d(f(x), [(y)) = Ad(z,y)
when z,y € e € E and there is an edge ¢’ € E with f ([z,y]) C €.
57
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c¢) (Nonfolding) f and f? are locally injective on e for each e € E.
d) (Markov) f (V) C V.

LEMMA 5.1. There is an € > 0 with the following property: When

! /
Lo, X1, Ty, T1, Yo, Y1, Y2 S r

satisfy that f (y2) = yi. f (1) = vo, f(21) = 20, [ (2}) = 27, and
d(xwyl) S €, d(l’;,yl) S ¢, i = 07 17 (51)

then there are elements z1, zo, 21, 25 € I' such that

Proo¥r. Note that every vertex v € V has a neighborhood €2, with the property
that Q, NV = {v} and

d(z,y) = d(z,v) + d(y,v) (5.2)

when z,y € ), and x,y are not contained in the same edge of I'. We arrange that

Q,NQ, =0 when w # v, and by the nonfolding condition we can also arrange that

f is injective on e N €2, for any e € E and any v € V.
For > 0 and v € V, set

Uy={xel: d(z,v) <},

and U = {J,cy Uy. We claim that when § is small enough we have
i) Dist (Uy, Uy) > 0 when v # w.
i) U, CQ, forallv e V.
iii) f (Uy) NU, =0 unless f(w) =
iv) f(Uy) C Q) for all v e V.
v) f(U,) and f*(U,) contain exactly one vertex for each v € V.
vi) f(U,) is homeomorphic to | — 1, 1[ for each v € V.
vil) f (U, N f(Uy)) 2 Upy N f (U, )WhenvwEVandf( ) =wv.
viii) When z € T'\U and f ( ) € U, for some w € V, there is an open interval

i = ]2/,2"[ containing x such that f(I,) C Qu, f*(L) C Qpw), f* is
injective on I, and

12 (I) 2 Uptuy N f (Un)

i), ii), iii), iv), v) and vi) will hold for all sufficiently small §. It follows from the
expansion and flattening conditions that the same is true for vii).

It remains to check that we can arrange viii) by choosing § sufficiently small. Note
that f is finite-to-one. In particular, f~! (V) is a finite set. For each x € f~!1(V)\V
there is an open interval I, containing x such that f? (I,) = Ja., f2(z)]U[f*(z), b:[C
Q2 for some a,, b, € T close to f2(z) and f (1) C Q). (The first property uses
the nonfolding condition.) By shrinking I, we can ensure that 12 is injective on 1.
Then

mzef_l(w)]aza f(w)] U [f(w)7 bx[ 2 ]ava f(w)] U [f(w)v bv[
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for some b,, a, sufficiently close to v = f(w). (This uses the flattening condition.)
It suffices then to take the § > 0 so small that

fFrove |J L
)

zef~H(w
and
Upwy N [ (Uw) C Jay, f(w)]U[f(w),by]
for all w € V.
To proceed with the proof take € > 0 so small that
2¢ < 2125 Dist (Uy, Uy) , (5.3)
2e < dist (T'\U, V), (5.4)
and such that
ryel, dz,y) <e = 2d(f(z), f(y)) < r&iﬁgDist (Uy, Uy) . (5.5)

Consider then xg, z1, xf, '}, Yo, y1,y2 € I as in the statement of the lemma.

Assume first that there is an edge e € E such that zg, 2(, yo € int(e). Then the
Markov condition implies that y; € int (e;) for some e; € E, and it follows from
the Markov and nonfolding conditions that f(e;) D e. There is then an element
z1 € int (e1) such that f(z1) = xo and f ([z1,21]) = [%0, yo]. Note that d (z1,y1) <
A7Yd (zg, yo) by the expansion condition. Similarly, there is an element 2] € int (e;)
such that f(zi) = 33'6, f([ziayl]) = [x67y0] and d(’ziayl) < )\_ld (%»yo)- Then
f([z1,21]) C f([z1,11]) U f ([Z], 11]) € e and hence Ad (21, 2]) < d (z0, xy), thanks to
the Markov condition. Since zy, 2],y € int (e1) we can repeat the construction to
obtain 2, zj with the required properties.

Assume that there is no edge containing z, x;, and yo in its interior, but an edge
e € E with zy, 2,11 € int(e). It follows from (5.1),(5.3) and (5.4) that there is a
vertex v € V such that xg,z(,yo € U,. Assume first that xy and yo do not lie on
the same edge. Note that (5.5) implies that 2d (f(¢), f (z1)) < miny., Dist (U,, U,,)
for all ¢ € [xy,31]. Since f(x1) = zo, f(y1) = yo and zo,yo are not contained
in the interior of a common edge there must be an element z € [z1,y1] C e
such that f(z) = v. It follows then from the expansion condition and (5.2) that
M (z1,y1) < M (x1,2) + M (z,11) < d(x0,v) + d(yo,v) = d(x0,y0). The same
estimate, Ad (x1,71) < d(xo,y0), follows from the expansion condition when z
and yo do lie on the same edge since f ([z1,y1]) = [xo,yo]. Similarly, we find that
A (2, y1) < d(x0,y0) and Ad (21, 27)) < d (x0, 2(), regardless of the position of z, x|,
and yo in U,. We set z; = x1, 2] = | in this case. Then zi, 2}, y; € int(e) and we
can construct ze and 2z, by the method of the first case above.

Assume then that neither {xo, z{, yo} nor {z, x1,y1} is contained in the interior
of the same edge. By combining (5.1), (5.3) and (5.4) it follows that zq, 2,11 €
Uy and zg, 2,90 € U, N f(Uy) for some v,w € V with f(w) = v. We split the
considerations into two cases:

Yo ¢ U: Then yy € int(e) for some e € E. It follows from condition viii) above
that there is an interval I C int(e) such that y, € I, f(I) C Q, and f*(I) 2
U, N f(U,). Furthermore, the sets I, f(I) and f?(I) contain at most one vertex
each and f? is injective on I. Consider a,b € I. If f(I) does not contain a vertex,
neither does I and the expansion property ensures that Ad(a,b) < d(f(a), f(D)).
If f(I) contains a vertex it must be w and we choose ¢ € I such that f(c) = w.
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Then Ad (a,b) < A (a,c)+ Md(¢,b) < d(f(a),w)+d(f(b),w)=d(f(a), f(b)) when
[a,b] contains c. If not, we get the estimate Ad(a,b) < d(f(a), f(b)) from the
expansion condition. Since f is injective on f(I) we can use the same arguments to
show that Ad (f(a), f(b)) < d(f?*(a), f2(b)). It follows that when we choose 2y, 25 € T
such that f2 (z2) = 2o and f?(2}) = x) and set z; = f (22), 2] = f (2}), we will have
obtained the desired properties.

y2 € U: Then yo € U, for some v € V with f (v') = w. Let then I be an interval,
possibly in a slightly extended sense to allow a single vertex in I, containing y, such
that f(I) = f (Uy), f*is injective on I and the sets I, f(I) and f?(I) contain at most
one vertex. To construct such an interval I, note first that there are intervals (a, v']
and [v/,b) such that y, € (a,v'] and f ((a,v’]| U [V, b)) = f(Uy). If f is injective on
f(Uy) we take I = (a,v'|U[v/,b). If not we find the point a’ on the edge containing
(a,v'] such that f%((a,v']) = f?(U,). We take then I = (a,v']. In both cases we
have that f2([) = f2 (Uv’) 2 f (Uw N f (Uv’)) 2 U, N f (Uw) = {x07x67y0} and we
repeat the construction which was used in the case where yo ¢ U. u

The conditions used by Yi in the definition of 1-solenoids were not exactly a)—d)
above, but the following, cf. [Y1]:

a’) (Flattening) There is a d € N such that for all i > d and all € T there is
a neighborhood U’ of x with f*(U’) homeomorphic to | — 1, 1].
b’) (Expansion) There are constants C' > 0 and A > 1 such that

d(f"(x), f"(y)) = CA"d(z,y)

for every n € N when z,y € e € E and there is an edge ¢/ € E with
S ([ y)) € €
¢’) (Nonfolding) f™ is locally injective on e for each e € E and each n € N.
d’) (Markov) f (V) C V.

Condition a’) is stronger than the flattening condition used by Yi, [Y1], but
only in the absence of the indecomposability and nonwandering conditions emposed
in [Y1].

From [Y1] we take the following

LEMMA 5.2. (Lemma 2.9 of [Y1].) Assume that [ satisfies conditions a’), b’),
¢’) and d’). There is anl € N and an k > 0 such that

d(f*(z), ffy)) <k VEEN = fl(z) = fl(y).

In [Y2] this lemma is used to conclude that (f, ?) is a Smale space under some
additional assumptions. However, the sketch of proof in [Y2] works only when f is
both open and expansive. Furthermore, the additional assumptions are redundant.
In fact, the following holds.

_ THEOREM 5.3. Assume that (T, f) satisfies conditions a’), b’), ¢’) and d’). Then
(F, f) is a Smale space.

PRrOOF. It follows easily from Lemma 5.2 that f is expansive, cf. Proposition 2.11
of [Y1]. Let § > 0 be an expansive constant for f. To define the local product
structure note that for some sufficiently large m € N, the map f™ will satisfy
conditions a),b),c) and d), possibly with a different A > 1. We use this new A > 1
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to define a new metric D; for the topology of I such that

Di(z,y) = Z N (T g, Yjm) - (5.6)

=0
Let ¢’ > 0 be such that

1y eT.Di(ey) <8 = D(P@).Tw) <o (5.7)

for 7 = 0,1,2,...,m. It follows from Lemma 5.1 that there is an ¢ > 0 with the
property that when z,y € I' and D;(x,y) < € there is an element z € I" such that

20 = T (5.8)
and
d (2(+1m: Yig+vm) < A (Zjm, Yjm) - (5.9)
for all 7 € N. We may assume that f%’\l <.
If 2/ € ' is another element of I" with the properties (5.8) and (5.9) we find that

D, <71m(z)7 ?]m(zl)> = Z )‘_Zd (Zmi—mj7 Z7Ini—mj) = )‘_le (27 Z,)

i=j+1

< D (z,2) < Di(z,y)+ Dy (y,2)
< 2eA <5

<577 S

and

Dy (F7" T 7)) = YA (it i)

1=0

< Z A7 (Zinitmg> Ymitmy) + Z A7 (2> Ymitmg )

i=0 =0
S Z /\_i_jd (Zmi7 ymz) + Z )\_i_jd (Z;—ma ymz)
i=0 =0
2eA

SDi(zy) + D y) < =7 <0

for all j > 0. It follows then from (5.7) that D (?k(z), ?k(z')> < ¢ forall k € Z and

hence that z = 2’ since 0 is an expansive constant for (f, D,?).
We can therefore define

[, ] {(z,y) eTxT: Di(z,y) <e} =T

such that [z,y] is the unique element z of I’ for which (5.8) and (5.9) hold.
To verify that this gives (f, f ) the structure of a Smale space we prove first that
there is an €y < € such that

i) [ ] {(z,y) eT x E: Di(z,y) < €} — T is continuous.
i) [z,2] =x forallz €T
iii) [[x,y],z2] = [z, 2] = [z, [y, 2]] when Di(z,y) < €, D1 (|z,y],2) < € and
QM [y, 2]) < eo.
iv) f([z,y]) = [f(z), f(y)] when D (z,y) < €.
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To check i) we use (5.9) to find that
Dl ([.Z'/,y/] ) [I’,y]) < Dl ([$I7yl] 7yl) + Dl (yla y) + Dl ([.’E, y] 7y)

1 1
< —d / / -
when D;(z,y) < e and D; (2/,y") < e. Hence i) holds for any choice of 0 < ¢y < e.
ii) follows from the uniqueness of the element z satisfying (5.8) and (5.9).
To obtain iii) note that [[z, 2], 2], = [z, 2], = [z, [y, 2]], = @0, that

d(zo,v0) + D1(y',y)

d (H% Yl 2 - [, Z]im—I—m)
<d ([[m, Yls 2 imsm Zierm) +d ([xa ] P— Zierm)
<A Y ([[x,y], 2], 5 2im) + A ([2, 2], 5 Zim)
and that
d ([2, i (2 [ i)
<d ([l’, 2 smtm Zim+m) +d (Zim+m> [y, Z]ierm) +d ([y, I Z]]zm+m)
<A ([, 2], 2im) + AT (Zins [0, 2)5) AT (Y, 2] 120 [ 2))500)
for all © € N. As above it follows from this that

Dy (7" ), ) T (. 2D) < 2
and
Dy (P () " (ol ) < 325

for all j € Z, where
e1 = max{D ([[z,y],2],2), D1 ([z,2],2),
Dl (ya [ya Z]) 7D1 (ya [ya Z]) ) Dl ([ya Z] ) [:L‘, [y7 ZH)}

It follows from i) that ie_l’l\ < 0’ when ¢ is sufficiently small. Then iii) will hold with
such a choice of €.
To establish iv) let x > 0 be the constant from Lemma 5.2. Note that

d(f ([, 9]);, [f(2), FW)],) < d(f ([ 9]);, Fw)i) +d (Fw)i [f(2), F(y)],)
=d([z.yli_y - vi1) +d (FW)ir [f(2), FW)],)
for all i > 1. Since d ([, Yljm, Yjm) < 327 D1(z,y) and d(f(y)jm, [[(2), f(y)]
ﬁDl (?@),?(y)) for all j € N it follows that
d(f ([z,9]);. [f(@), f(W)],) <&

for all ¢ > 1 provided € is so small that 25 max {D;(z,y), D1 (f(z), f(y))} < &
when Di(z,y) < €. Since f([z,y]), = f(z) = [f(x),f(y)}o it follows from
Lemma 5.2 that f ([z,y]) = [f(2), f(y)] when D;(z,y) < €.

Define now a new metric D, on I' such that

Ds(z,y) = Z A7 (2, i)
i=0

BE
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When [z,y] = y and [z, 2] = 2 for some z € T with D;(y,7) < € and D;(z,7) < &
we find that

Dy (f(y), f(2)) = Z A7 (yim1, zim1) = AN ' Da(y, 2) (5.10)
i=1
since 29 = yo = 7o. When [y, 7] = y and [z, x] = z for some x € T with D;(y,z) < ¢
and Di(z,z) < ¢ we find from Lemma 5.1 applied to f™ that

Dy (F"0). 7 ")) = oA (1050l [ 7)e) A Doy 2). (5.11)

Set
Dala) = XA, (F/0).T70)

and note that Dj is a metric for the topology of I' and hence equivalent to D;. Thus
i)-iv) hold with D; replaced by Ds, provided ¢, is changed accordingly. Furthermore,
we have now that there is an €, > 0 such that

v) D3 (T(y),f(z)) < )\’iDg(y,z) when [z,y] = y and [z, z] = z for some
x € I' with Ds(y, x) < ¢y and D3(z,x) < €, and
vi) D3 (ffl(y),ffl(z)) < A~ m Ds(y, z) when [y, 2] = y and [z, 2] = z for some
x € I' with Ds(y, x) < ¢y and D3(z,x) < €.
v) follows from (5.10) since A= < A~w and vi) follows from (5.11). The properties

i) through vi) are exactly what is required in a Smale space, cf. Section 7.1 of [Rul]
and [Pul]. O

5.2. The heteroclinic algebra of 1-solenoids

Let (T, f) and (T, f) be as in Theorem 5.3. Let d € N be the number from the
flattening condition a’).

LEMMA 5.4. Let z,y € T be two elements such that x; = y; for some i € N
and such that [z,y] is defined. Assume that there is a j > i, j —i > d, and open
neighborhoods Uy, and Uy, of ; and y; such that f=* (U,,) = =" (U,,) ~] — 1,1[.
It follows that [z,y|, = z; for all z in an open neighborhood of x.

PROOF. Since f/~° (Uy].) ~|—1,1[ and j — i > d it follows from the expansion
and flattening axioms that there is an open neighborhood Q of y; = x; such that f°
is injective on QN f77% (U,,). By construction of [-,] there is a K > 0 such that
d([z, Y]k, yk) < Kd(z0,0) for all k € N whenever [z, y] is defined. Since z¢ = yo this
implies that there is an open neighborhood V' of z such that z; € QN f7~* (ij) and
[2,y]; € Uy, N f779 () when z € V. Then z;,[2,y], € QN fi7 (U,,) =Qn fi= (U,,)
when z € V. Since f*([z,y];,) = 20 = f*(2;) we conclude that [z,y], = 2; for all z
in V. U

Set W = Wr;. For each ¢ € N we let R; denote the subequivalence relation
of Ry (T,W) consisting of the pair (z,y) € W? such that f(zy) = f(yo) and
[ (Uyy) = f1(U,,) ~] — 1,1] for open neighborhoods U,, and U,, of zy and yo,
respectively.



64 5. ONE-DIMENSIONAL GENERALIZED SOLENOIDS
LEMMA 5.5. R; is open in Ry (F, W) when 1 > d.

PRrOOF. Consider an element (x,y) € R;. It follows from the proof of Lemma

4.14 that there is a £k > 7 and a local conjugacy p from x to y in W such that

w(z) = (T) " [Tk(z),fk(y)] in an open neighborhood of z in W. Since we have

that f*(z)r—i = f'(z0) = f'(y) = fk(y)k—i and f*(Uy,) = f'(Uy,) for some
open neighborhoods U,, of xy = Tk(x)k and Uy, of yo = Tk(y)k, respectively, we
conclude from Lemma 5.4 that there is an open neighborhood V' of z in W such
that [F"(2), 7' (1)],_, = T ()i = f' (z0) for all z € V. It follows that f (u(2)o) =
Ek(z),?k(y)]kﬂ. = f'(z) for all z in a neighborhood of x in W. This shows that
R; is open in Ry (f, W) Il

It follows from Lemma 5.5 that R; is an étale equivalence relation when i > d.

LEMMA 5.6. Assume that f : T" — T' is surjective and let i > d, where d € N is
the number from the flattening condition a’). Then C (R;) ® K is x-isomorphic to
an extension E of the form

0—=Co(M\V) @K —+ F ——= @uevF @ K——0, (5.12)
where the F',v € V, are finite-dimensional.
PROOF. Set I'y = f~* (V) and I’y = I'\['y. Then
Wi={zxeW: zgeI}

is an open R;-invariant subset of W and it follows from Proposition 4.5 of [Rel]
that C* (R;) is an extension of C (R;|w,) by Cy (Ri|w,), where W, = W\W;. Note
that it follows from the nonfolding condition that two elements x,z" of Wi are R;-
equivalent if and only if f?(zg) = f'(x}). Therefore R;|w, is a second countable
proper principal groupoid in the sense of [MW] and it follows from Proposition 2.2
of [MW] that C* (R;|w,) @K ~ Cy (W1 /R;)@K. Since f* is a local homeomorphism
on Wy and maps W; onto I'\V we find that W;/R; is homeomorphic to I'\V and
conclude therefore that CF (R;|w,) ® K ~ Cy (I'\V) ® K.

Note that I'y is finite since f is finite-to-one. By definition of the Wagoner
topology each element of W is isolated in W and hence W, is countable. For each
veV, setY,={xeW: f(ry)=uv}. Then Wy is the disjoint union of the Y,
and elements of W, can only be R;-equivalent if they belong to the same Y,. It
follows that C¥ (R;i|lw,) =~ @wevC; (Rily,). Let R;, be the equivalence relation on
f7(v) defined such that two elements s,t € f~!(v) are equivalent if and only if
there are neighborhoods U, and U; of s and ¢ such that f*(U,) = f*(U;) ~] — 1, 1[.
Then two elements, x and 2/, of Y, are R;-equivalent if and only if zy and xzf are
R, ,-equivalent. It follows that CF (R;ly,) ® K ~ C' (R;,) ® K. Since C} (R;,) is
finite-dimensional, this completes the proof. O

PROPOSITION 5.7. Assume that (I, f) satisfies conditions a’), b’), ¢’) and d’),

and that f is surjective. It follows that BY(F) ®K is the inductive limit of a sequence
Ay Ay Az

where each A; is an extension of the form (5.12).
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Proor. Note that Ry C Rpi; when k Z_d. Furthermore, it follows from
Lemma 5.2 and the flattening axiom that Ry (F, W) = Uie; Ri. Tt follows then

from Lemma 1.24 that B5(I') is the limit of the sequence
Cr (Rq) — C7 (Ray1) —= CF (Rape) — -+
By Lemma 5.6 this yields the proposition. O

Consider the following condition:
e’) (Mixing) For every edge e € E there is an m € N such that I' C f™(e).
It follows from the work of Williams and Yi, c¢f. 1.6 of [Wil] and Lemma 2.14
of [Y1], that condition e’) holds when (T, f) satisfies conditions a’),b’),c’), d’) plus
the following two:

") (Indecomposability) T' is not the union of two nonempty, closed f-invariant
subsets.
g’) (Nonwandering) No point in I" is wandering under f.

Presumably €’) is equivalent to f’) and g’) in the presence of conditions a’)-d’),
and the reason I prefer e’) over {’) and g’) is that €’) is easiest to check in examples.

LEMMA 5.8. Assume that (I, f) satisfies conditions a’), b’), ¢’), d’) and ¢’). It
follows that for every non-degenerate interval I C T' there is an m € N such that
f™(I) 2 T. Furthermore, (F, f) 18 mixing in this case.

PrRoOOF. Let I C I' be non-degenerate interval. It follows from the expansion
and nonfolding conditions that there is an n € N such that f"(I) contains an edge.
By condition e’) this implies that I' = (1) for some m > n. To show that (f, ?)
is mixing we take an arbitrary € > 0 and an open non-empty subset U C I'. By
definition of D and compactness of I' there is a k € N such that

z,yel, z;=y;,j <k = D(x,y) <e
Furthermore, there is an open non-degenerate interval I C I' and an ¢ € N such
that {x el: z; € I} C U. As we have just seen there is then an n € N such that
fMI)=T. Let j > k — i and consider an element z € I'. Since f*(I) = I there
is an a € I such that f"(a) = z;,. Since f is surjective there is an element y € T'
such that y;1; = a. Note that f"(y,) = f"™ " (y;,r;) = [ (2i4;) = 2z when
I <i+j. Since i+ j > k it follows that D(?n(y), z) < e. Since y;1; € I we see that

y € f ’(U). Hence we have shown that dist (fn_j(U), z) <eforall z €T and all

j >k —i. It follows that f is mixing. O

Let d € N and [ € N be the numbers from the flattening condition a’) and
Lemma 5.2, respectively. Furthermore, we let m € N and Ay > 1 be such that

d(f"(@), ["(y)) = Aod (z,y) (5.13)
when 7,y € e € E and f™ ([z,y]) C ¢’ for some edge ¢’ € E.
Let p = (po, p1,...) € I be f-periodic. For § > 0, set

fmg = {x el: d (ximd\p\ap()) <46, i€ N} ,

and _
Iys = {Z el': z=uxy for some z € va(;} )

LEMMA 5.9. Let € > 0 be given. There is a 6 > 0 such that
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) F N Wu(p7 6);
111) T To 1S Q homeomorphzsm from F 5 onto I 5

PROOF. Let U, be an open neighborhood of p, such that fmel (U, ) ~ |—1,1].
We assume, as we may, that both U,, and f™@Pl (U,,) at most contains one vertex,
which must then be py. Then f™@Pl (U N frdel (U, )) is an open interval contained
in fmdlPl(U,,). There is a 6 > 0 such that {z € T': d(z,py) < §} C U,

z,y €l dlz,y) < = d(f(z), f(y) <k, j=0,1,2,...,mdlp|, (5.14)
where £ < £ and & is smaller than an expansive constant for (F, 7), and
{z€T: d(z,p) <6yn fmirl(u, ) c fmdvl (Upo N el (@, Upy)) - (5.15)

It follows then from (5.14) that T, 5 € W¥(p,€), i.e. i) holds. To establish ii) and
iii) it suffices now to show that

T,s2x— a0 € fMPHU,)N{zeT: d(zp) <3} (5.16)

is a homeomorphism. The map is injective because we chose x smaller than an ex-
pansive constant for (F, f). To show that the map is surjective, let 2’ € f™4Pl (U, )N
{ze€Tl: d(z,p) <0}. It follows from (5.15) that

2 e friel (U, n i (U,,)),

i.e. there is an element z; € U, N f™PI(U, ) such that fm™Pl(z) = 2. Since
d (z1,p0) < Ay 'd (z,po) < ¢ it follows from (5.15) that z, € fm™4PI (U, N fmel (U,,)).
We can therefore continue by induction to construct an element = € I' such that
19 = 2 and d(ximd‘p‘,po) < 0 for all © € N. Then z € fm and it follows that
(5.16) is surjective. Note that the preceding argument shows that when 2/ 2" €
frdipl (U N fmdiel ( po)) are sufficiently close, there are elements 2/, 2" € T, 5 such
that 2, = 2/, 2 = 2" and d( o) Zmd‘p‘) < 2d(#,7") for all i € N. This shows
that the inverse of (5.16) is continuous. 0

Let g : [-1,1] — T be a locally injective continuous map. We define an equiv-
alence relation ~ on | — 1,1[ such that ¢t ~ s if and only if ¢g(t) = g(s) and there
are open neighborhoods U and U; of s and t in | — 1, 1], respectively, such that
9(Us) = g(Up) ~] = 1,1[. Set

R={(s,t) €] = 1,1[* s~ t}.
Give R the topology inherited from | — 1,12
LEMMA 5.10. R is an étale equivalence relation.

Proor. It is trivial that R is a topological equivalence relation. To prove that
R is locally compact we will argue that R is the intersection of a closed and an
open subset of | — 1,1[%?. To this end consider s €] — 1,1[\ g~ (V). Since g is
locally injective on [—1, 1] it is also finite-to-one and hence ¢! (V) is finite. If t €
]—1,1[\g }(V) and g(s) = ¢(t), there are neighborhood U, and Uy in |—1, 1] of s and
t, respectively, such that g is injective on both U, and Uy, and (U, U Uy)Ng~t (V) = ().
Then ¢ (Us) and ¢ (U;) are non-degenerate intervals such that g(s) = ¢(t) is in the
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interior of g (Us) N g (Uy). It follows that if we shrink Uy and U; we can ensure that
g (Us) = g (U;). This shows that

R={(s,1) €] = L 1P g(s) = g} \ {(s.1) € g (V)?: sy}

clearly the intersection of a closed and an open subset.

To see that r : R —] — 1,1[ is a local homeomorphism, consider an element
(s,t) € R. Let Us and U; be open neighborhoods in | — 1, 1] of s and ¢ such that
g (Us) = g (U;) ~] — 1, 1[. By shrinking U, and U; we may assume that g is injective
on U;. It follows that r : (Us x Uy) N R — Us is a homeomorphism. O

We are going to use the étale equivalence relations of Lemma 5.10 in the special
case where g(—1),¢(1) € V and g(] — 1,1[) = I'. When this holds we say that R is
an open interval-graph relation.

DEFINITION 5.11. A C*-algebra A is called an interval building block when there
are finite-dimensional C*-algebras F; and F;, and *-homomorphisms ¢g, 1 : F1 — F5

such that A ~ {(a, f) € F1 ® (C ([0, 1], F2)) = @ola) = f(0), wi(a) = f(1)}.

LEMMA 5.12. Let R be an open interval-graph relation. Then C*(R) is an in-
terval building block.

PRrooF. Note that we can add vertices to I' without affecting R. In this way
we can arrange that I" has no loops. Let Ay be the finite-dimensional C*-algebra
generated by matrix units e, , where z,y € g~ (V) are such that g (Jz — €,z +€[) N
g(Jy — €,y +¢€[) ~]—1, 1] for all small € > 0. Note that | —1,1[\g~*(V) is a collection
C of open disjoint subintervals. For each e € E we let M, be the full matrix algebra
generated by the matrix units f_,, where 7,7 € C and g(7) = g(7/) = e. When
e € E and v € V are such that v 6 e we define ¢, : Ay — M, such that

o when 2,y ¢ g7 (v)
oniTy ~ . where x € y and y € v,  when z,y € g~ (v).

This is well-defined since I" has no loops. When h € C.(R) we define a;, € Ay such
that

and h¢ € C (e, M,) such that
= > h((gh) 7 (9). (gh) T (9) £2,, s € int(e).
(y")ec?

It is now not difficult to see that the map h +— (ah, (he)eeE) extends to a *-
isomorphism from C}(R) onto

{(a, (f)ocr) € Av @ (BeerC (e, M.)) : @eu(a) = f(v) when v € e} .
Since the latter is an interval building block this completes the proof. U

THEOREM 5.13. Assume that (T, f) satisfies conditions a’), b’), ¢’), d’) and ¢’).
It follows that B?(F) 1s a stable and simple C*-algebra which is isomorphic to the
inductive limit of a sequence of interval building blocks.
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PROOF. That B#(I') is stable and simple follows from Lemma 5.8, Theorem 5.3
and Theorem 4.17.

Let J be a non-empty open subinterval of the set I, s of Lemma 5.9, chosen such
that the endpoints of J are in (V) for some iy € N. Set Q = {x €el,s: x0 € J}.
Then € is an open subset of Wi 7 and it follows from Lemma 5.8 that every element
of Wr7 is conjugate to an element of € since e’) holds. By Corollary 2.14 this
implies that BT(F) is stably isomorphic to A (f, Q) By Lemma 5.5 Ry (F, Q) N R;
is open in Rf(i ) when ¢ > d and it follows from Lemma 5.2 and the flattening
condition a’) that

R#(T,Q) = JR7(T.Q) N R,
i=d
By Lemma 1.20 we have therefore that

A7 (T,0) = JCr (R,
i=d

where R} = Ry (W,Q) N R;. It follows from Lemma 5.8 that f™(J) = I' for some
m € N. R; is then an open interval-graph relation for every i > max {ig, m,d}.
Since B#(T) ~ A (T, Q) ® K it follows that Bf(T') can be realized as the inductive
limit of a sequence of C*-algebras of the form M, (C!(R)), where R is an open
interval-graph relation. By Lemma 5.12 these are all interval building blocks. U

REMARK 5.14. Interval building blocks are slight generalizations of the building
blocks used by the author in [Th4]. The difference is that we here allow the *-
homomorphisms ¢y and ¢, to be non-unital. To get an idea about the variety of
simple C*-algebras which can aris as inductive limits of interval building blocks we
refer to [Th4], [JS] and [El12]. It is difficult not to wonder about which C*-algebras
of this class can be realized by one-dimensional solenoids.



CHAPTER 6

The heteroclinic algebra of a group automorphism

6.1. Automorphisms locally expansive on post-periodic points

Let GG be a locally compact metric group such that the metric d is subinvariant
in the sense that there is a constant X > 0 such that

d(ax,ay) < Kd(z,y) and d(za,ya) < Kd(x,y)
for all a,x,y € G. Let ¢ : G — G a continuous group automorphism.

THEOREM 6.1. Let G be a Lie group with subinvariant metric d and ¢ : G — G
an automorphism of G (i.e. a diffeomorphic group automorphism). Then ¢ is
expansive on post-periodic points.

PROOF. Let LG be the Lie algebra of G and L = dyp : LG — LG the differential
at the identity e of p. Let LG =U ® N & S be the decomposition of LG obtained
by applying Lemma 3.17 to L. There is then a 6 > 0 such that the exponential
map exp : LG — G is a diffeomorphism of {z € LG : ||z|| < ¢} onto an open
neighborhood of e. Let € > 0 be such that

J
: < - : < .
e ato <k e fewys bl < )

Let p € Per G. If x € W*¥(p, €) there are elements y; € LG, ||y:]| < m,
such that ¢’ (p~x) = expy; for all i < 0. Since ||L7'y;|| < 0 and exp L™y, =
o' (expy;) = expy;_1, we conclude that L™'y; = y;_1. It follows that y; = Liy, for
all 4 < 0. Since lim; ., ¢' (p~'x) = e, we conclude that lim; . ., L'yy = 0 which
means that yo € U by Lemma 3.17.

Define F' : {x € LG : ||z|| < d} — G such that F(y) = pexpy, and note that
F' is a homeomorphism from {x € LG : ||z|| < 0} onto a neighborhood of p. From
what we have just shown it follows that W*"(p, €) = F(2), where

)
0= {y“" vl < HL1H+HLH+1}
NF'({zeG: d(¢'(x),¢'(p) <€ i <0}).

Since €2 is compact in LG we conclude that W“(p., €) is compact in G.
Let z,y € W*(p) and assume that d (¢'(z), ' (y)) < € for all i € Z. As above
we get a sequence of vectors

)
yz-e{yemznyns ; }
TR

such that ¢’ (z7'y) = expy; for all i € Z. The same argument as above now shows
that y; = L'yo for all ¢ € Z. Since ||L'yo|| < ¢ for all i € Z it follows from Lemma
3.17 that yo € N. However, lim, . o d (¢ (z7'y),e) = 0 since both z and y lie

69
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in W*(p). Hence lim; ., L'yy = 0, and we conclude that yo € U NN = {0} by
Lemma 3.17. It follows that x = y, completing the proof. O

LEMMA 6.2. Let Q € M, (Q) be invertible. Then the shift o of the solenoid S
18 locally expansive on post-periodic points.

PROOF. Let p € Sg be periodic under og. It follows from Lemma 3.18 that
there is an €, > 0 such that W*" (p, ¢,) is homeomorphic to a compact neighborhood
of 0 in U, and therefore compact. There is an m € N such that mQ and mQ~! both

have integer entries. Set
1

T m(el+ )

Here ||@Q)]| is the operator norm of () with respect to a norm of R™ such that ||z| > 1
when z € Z". We claim that

z,y € Sq. lim _d (0p(x),05(y)) =0, supd (h(2).0h(y)) <e = z=uy.
J

This will show that o is locally expansive on post-periodic points. So let z,y € Sq
such that lim,._. d (05(z), 05(y)) = 0 and d (aé(m),aé(g)) < e forall j € Z.
Let R" = U & N @ S be the decomposition obtained from Lemma 3.17 applied
to Q. Set w = y~'x. It follows from Lemma 3.18 that there is an N € N and
au € U such that w; = p(Q'u), i < —N. By increasing N if necessary we
may assume that |[|[Qu| < ¢ for all i < —N. Assume then that j € Z is such
that ||Q7ul| < e and w; = p(Q7u). This holds when j < —N. To see that it is
also true for j 4+ 1, note that there is a z € Z" such that w;;; = p(Q"u+ Qz).
Since dy (wj41,0) < € there is a £ € Z" such that [|Q"T'u+ Qz —&|| < e. Hence
mQz — € < m Q@ ul +me < mlQl 1Qull +me < (m| Q] +m)e < 1. Tt
follows that £ = Qz. Since [|Q""!u|| < € and w;;; = p(Q"Tu), we can proceed
by induction to conclude that ||Q™u|| < € and w; = p(Q'u) for all i € Z. Hence
uwe NNU = {0} by Lemma 3.17, and we conclude that w; = 0 for all j € Z, i.e.
T =1. ]

Despite the impression one may get from Lemma 6.2 and Theorem 6.1 not every
automorphism of a compact abelian group is locally expansive on post-periodic
points. The shift on TZ is a counterexample.

In the following we let G' be a locally compact group with subinvariant metric
d, and we let p : G — G be an automorphism of G which is locally expansive on
post-periodic points.

LEMMA 6.3. The set Wq,, of post-periodic points is a locally compact group in
the Wagoner topology.

PRrROOF. The periodic points clearly form a subgroup of G and it follows from
the joint continuity of the product in G' that W, is a subgroup of G. It remains to
prove the continuity of the group operations in the Wagoner topology. This follows
readily from Lemma 4.6. O

Let e be the neutral element of GG. Set
PA, = {g € We,: lim d(¢"(g),e) = O} .

This is clearly a subgroup of W¢ , and we call it the heteroclinic subgroup of . We
consider PA,, as a discrete group.
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LEMMA 6.4. Let z,y € Wg,,. The following are equivalent

a) © and y are conjugate in Wg .

c) zy~t € PA,.

PROOF. The proof of Lemma 3.6 works with only the obvious changes. U

Let PA, x Wg,, be the transformation groupoid corresponding to the left-
translation of PA, on W ,. We can then define an isomorphism ® : PA,xW¢ , —
R, (G,Wg,,) of topological groupoids such that

O(h,z) = (zh™,z).
In this way we obtain
THEOREM 6.5. Let G be a locally compact group with subinvariant metric d, and

let ¢ : G — G be an automorphism of G which is locally expansive on post-periodic
points. Then

Bo(G) = Cy (Wa,) % PA,.
where oy, (f)(x) = f(hx), h € PA,, f€Co(Wgy,).

ProOF. This follows from the preceding observations since Cy (W Pg) 1, PA, o~
Cr(PA, x Weg,,), cf. [Rel] or [Phl]. O

To clarify the structure of B,(G) further we observe that there is a homomor-
phism I' : PW¢, — Per G such that I' (W*(p)) = {p}. Set PerG =T (PA,) so
that

Per,G = {p € Per G : W"(p)NW?(e) # 0},

where W#(e) = {g € G: lim, . d(¢"(9),e) = 0}. Then Per. G is a normal sub-
group of Per GG, and it follows from Lemma 6.4 that two elements z,y € Wg , only
can be locally conjugate when I'(x)~'T'(y) € Per. G. Hence

B%"<G) = A(p (G, WG,Q@) = @XEPerG/Pere GAQD (G7 WX) ’

where W, = Upex W*(p). For each x € Per G/ Per. G, fix a representative p, €
Per G of x. It follows from Corollary 2.14 that A, (G, W, ) is strongly Morita equiv-
alent to A, (G, W*" (py)). Since I'"! (e) N PA, = A, where

A, = {g €G: lim d(¢"(9).€) = 0}
is the homoclinic group of ¢, it follows that
Ry, (G, W™ (py)) = Ay x W (py) -

Since A, X W (py) ~ A, x W¥(e) under the map (h, x) — (h,zp; '), we find that
A, (G, W,) is stably isomorphic to Cy (W"(e)) %, A,. Hence

THEOREM 6.6. Let G be a locally compact group with subinvariant metric d, and
let ¢ : G — G be an automorphism of G which s locally expansive on post-periodic
points. Then the heteroclinic algebra B,(G) is stably isomorphic to

EBPerG/ PereGCO (Wu<€)) A, A<p.
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REMARK 6.7. T have not found an example of a non-expansive automorphism of
a locally compact group for which the heteroclinic algebra is defined and simple. But
it can certainly happen that Cy (W*(e)) %, A, is simple although ¢ is not expansive.

By using Lemma 3.29-Lemma 3.31 it is easy to construc matrices @ € M, (Z) such

that this happens for the shift on the corresponding solenoid Sg. @ = (39) is such

an example. 0

6.2. The heteroclinic algebra of an expansive automorphism of a
compact group

Let G be a compact group and ¢ : G — G an expansive automorphism of G.
It follows from Lemma 4.3 that ¢ is locally expansive on post-periodic points. It is

the purpose of this section to investigate the structure of the heteroclinic C*-algebra
B,(G) is this case.

6.2.1. The shift of a solenoid. Let @ € GI,(Q) and consider the correspond-
ing solenoid Sg, cf. (3.10). We seek first to determine the unstable manifold of 0,
i.e. W*(0), for the shift og acting on Sg; not only as a set, but as a locally compact
space in the Wagoner topology. Let

Ko = {<2z)§il €@ a+Q ' nt-+Qz5 el Vi€ N}
and
n\N
Do = (Z")" | Kq.
To make Dg into a compact group, set
Dgy = (Z2")" /| Kg,
where
Ky ={(z)", € (@Z)": @21 +Q 2o+ +Qz € Z"Vj € {1,2,...,m}}.

Then Dgj is a finite group; indeed, D is a quotient of Z"™/L™Z"™ when L € N is
so large that L() has integer entries. The map

(Zl, 29y e ey Zm) — (21, 29y vy mel)
induces a homomorphism py,—1 : D¢y — Dg’l. The inverse limit group
proj lim (D, )

of the sequence

1 P1 2 P2 3 b3 4 P4
Dg Dg Dg Dg

is then a compact group in the topology inherited from the product topology of
[[;Z, D3 The maps (zM)N — Dy arising from the projection to the first m coordi-
nates fit together to give an isomorphism

DQ - pI'Oj lim (Dg7pm—1) ;

and we equip Dg with the topology coming from this identification. Define T :
(zN — (Z™)" such that

T(Zl,ZQ,Zg,...):<O,Zl,22,23,...).
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This is an injection and since Tz € K¢ if and only if z € Ko we obtain from it an
embedding 7' : Dy — Dg. Note that 7' is continuous on D¢ and that T'(Dg) is
open in Dg. It follows that the inductive limit group

Dq = h_H>1 (DQ7 T)
of the stationary system

Do —1+Dg—1+ Dy~

is a locally compact topological group in the inductive limit topology.
Let R = U & N & S be the decomposition obtained by applying Lemma 3.17
to Q. Let ¢ € Z and define a homomorphism ¥; : U x Dy — S such that

\Ili (U, (2’1, 294,23, . - ) + KQ)

p(Qu), j<i
PQu+Q "+ Q" o+ +Qz), J=i+ 1

The infinite commuting diagram

id, id, id,
Ux Do Tt x Do —“ Ty x Dy —4%
\p_ll T2
L)
50

gives rise to a homomorphism
LU X DQ — SQ.

LEMMA 6.8. ¢ is an isomorphism of topological groups from U x Dg onto W*(0)
equipped with the Wagoner topology.

PRrROOF. Clearly, ¢ (U x Dg) € W*(0) and it follows then from Lemma 3.18 that
L (U x Dg) = W*(0).

Injectivity of ¢: If (u, (21, 22,...) + Kg) € U X Dg is send to 0 under V; for
some i < 0, we have in particular that p (Q’u) = 0, i.e. that Q’u € U NZ", for
all j <. Since ||Q’ul| converges to 0 as j goes to —oo there is a j < i such that
|Q7u|| < 1, forcing the conclusion that u = 0. Once this is established it is clear
that (21, 22,...) € Kg.

To show that ¢ is continuous it suffices to establish the continuity of each WU,
i <0. Let Q C W*(0) be an open subset, and (u, (21, 22,...) + Kg) € U x Dg an
element of U; ! (Q). Set & = U, ((u, (21, 22,...) + Kg)). It follows from Lemma 4.6
and Lemma 4.3 that there is an € > 0 and an /N € N such that

{(2),e5 € Sa + do (03,0 (Q7w)) <& j <, and do (2,6) < e, =N < j < N}

is a subset of Q. By Lemma 3.17 there is a § > 0 such that ||Q'u — Q'u'|| < € for
all j < N when v’ € U and ||u — «'|| < §. Then the set V' consisting of the elements
(W, (21, 2h,...) + Kg) € U x Dg such that |Ju — u'|] < ¢ and

/ / / N—i
(zl — 21,22 — Zy, ..., AN—i — szi) € Kg

is open in U x Dg and £ € V C ¥ 1 (Q).
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To complete the proof it suffices to show that ¢ is open, and hence that each
U;,i <0, is open. To this end consider (u, (21, 29,...)+ Kg) € U X Dg, an € > 0
and an m € N. Set U = Uy x Uy, where Uy = {u' €U : |Ju — /| < €} and

UQZ{(Zi,z;,...)—i_KQEDQ:(21_21,22_2;7...72771_2:,:71)GK’rQn}.

Such sets U form a base for the topology of U x Dg so it suffices to show that
U, (U) is open in W*(0). Let v’ € Uy and (z21,25,...) + Kg € Us. If x € W*(0)
is sufficiently close to U, (v, (21, 25,...) + Kg) in W*(0), it follows from Lemma
3.18 and Lemma 4.6 that there is an element v € U such that ||u' +v —u|| < €
and xp = p (Qku+ ka) for all £ < 7. If we assume that x is sufficiently close
to W, (v, (21, 25, ...) + Kg) we get that z;11 = p(Q" ' + Qv + Qz7) for some
2 € Z" and that Q"™'u' + Qv + Q2] + z is very close to Q"'u' + Qz] for
some z € Z". If this approximation is close enough, so that also v is small
enough, we conclude that Qz] + z = Qz], i.e. that Q (2] —z1) € Z". If only x
is sufficiently close to U, (v/, (2], 25,...) + Kg) in W*(0) we can repeat this ar-

gument m times to conclude that there are elements z{, 2, ... 2 € Z" such

that 24, = p(Q™u + Qv+ Q2 + Q12 4+ +Qz)) and Q7 (2] — z}) +
QN =)+ +Q(z) —2) € Z" for all j = 1,2,...,m. This shows that
z €V, (U) if x is sufficiently close to ¥, (v/, (21, 25, ...) + Kg) in W*(0). O

REMARK 6.9. We are now in position to show that the homoclinic group of the
shift of a solenoid can contain torsion. Let Tiy be the subgroup of

ONL" = {(zl) e (Z"" : z =0 for all except finitely many z}

consisting of the elements with the property that.

Z Qk+1_izi c7n
i=1
for all large k. Then W (0, z) € A,, and it follows from Lemma 6.8 that the map
z— Wy (0, 2) puts a copy of T/ K¢ into A,,. Note that T()/ K is a torsiongroup.
To give an example where this group is non-trivial, let

2 4
°=(53)

Set 2y = (0,1) € Z*. Then (2,0,0,0,...) € Ty and its image in T/Kg has
order two. O

LEMMA 6.10. Assume that Q) is hyperbolic. Then PA,, is dense in W, 4,

PROOF. Let p € Per Sy and let ¢; € R™ be vectors such that p; = p(g;) for
all j € Z. Let u € U and consider an element © € Wy, ,, such that z; =
p(gi+Qu),j < 0. By Lemma 3.18 an arbitrary element y of W"(p) has the
form ag (x) for some k € N and some x of this form. Since o¢ restricts to a home-
omorphism of Wg, ,, by Lemma 4.8 it suffices to approximate such an element x
of Ws, 0, by an element from PA,,. Let d € N and € > 0 be given. Let m € N
be such that m@Q) € M, (Z). Since Sg is divisible by Lemma 3.21 there is an ele-
ment y € Sg such that m?y = x. Then yo = p(bo),y1 = p(Qby + Q21),...,ys =
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p (Q%o + Q21 + QT 2 + Q4225 + - - - + Qzy) for some by € R™ and some 21, 2o,
..., 24 €Z". Set b = mfb, and note that

Go+u=b+v (6.1)

for some v € Z". Furthermore,
zj=p(Q0),j=0,1,2,....d. (6.2)

As argued in the proof of Lemma 3.23 the group PU(<Uj<—d Q7 (Z"))) is dense
in U, and hence so is the set -

rf((U @ @) +v—am)=R({ U @ @)+ Bulo—a).

Since Py + Ps = 1 it follows that there is an element £ € |J;._,@Q’ (Z") and an
element s € S such that ||u — «/|| is as small as we like, where v’ = s+ v — gy + &.
To begin to define the desired approximating element, set @, = p(¢; + Q') when
J < 0. Tt follows from Lemma 3.17 that sup;,do (xj, x;) can be made arbitrarily
small if only [Ju —u/[| is small enough. We set z = p(Qqo + Qv — Q’v),j =
1,2,...,d. It follows from (6.1) and (6.2) that sup,.;<,do (2;,2}) can be made
arbitrarily small if only [lu — «[| is small enough. To define 2, j > d, note that there
are N € N and elements 21, 2o, . .., 2n € Z" such that Q% = 21+Q 129+ - +Q N2y
and that Q%qo+Q%/ — Q% = Q%s+q —qo+ Q% = Qs+ 2 +Q 2o+ - +Q Vay.
Hence
2y =p(Qs+Q '+ Q s+ +Q Vay)

and we set
Ty =P Qs+ Q7 200 + QP2 + -+ Q Vay)

J=12,...,N,and 2, y,; = p(Qd+N+js) ,J > 0. Then we have 2’ € PA,, and
sup;< g do (2, x;) is as small as we need if only [lu — «/|| is chosen small enough.
By Lemma 4.6 this shows that we have obtained the desired approximation of x

in W (0). O

LEMMA 6.11. Assume that Q is hyperbolic. Then B,, (Sq) is simple, stable
and has a lower-semicontinuous densely defined trace which is unique up to scalar
multiplication.

PrOOF. This follows by combining Theorem 6.5 and Lemma 6.10 with Corollary
B.11 from Appendix B. O

REMARK 6.12. We have based the proof of Lemma 6.11 on the crossed product
description of B, (Sq), but it seems appropriate to point out that there is another
proof which uses work of Brenken, Putnam and Spielberg: (Sg, 0¢) is a mixing Smale
space by [Bre] and it follows then from [PS] that its stable algebra is simple. Thus
By, (Sq) is simple and stable by Theorem 4.17. That B,, (Sg) has an essentially
unique lower-semicontinuous densely defined trace can be deduced from Theorem 3.1
of [Pul] and the uniqueness of the trace state of the homoclinic algebra A, (Sg),
which follows from Corollary 3.9. U

Foreach: € N, set H; = (\ILZ-)f1 (AUQ) CUxDg. Note that idy xT (H;) C H;y1.
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LEMMA 6.13. There is a sequence A1 C Ay C As C ... of hereditary C*-
subalgebras of Ag,, (Sq, W"(0)) and x-isomorphisms v, : A, — Co (U X Dq) % H,
such that

An v C() (L{ X DQ) X Hn

L

T;Z)’VH»I

Apy1 —=Co (U X DQ) Xr Hp

commutes, and Ag, (Sg, W*(0)) = U, An.

PRrOOF. It follows from Lemma 6.8 that W_; (U x Dg) is open in W*(0) and that
W (0) = U;en Y=i (U x Dg). By Lemma 1.24 there is a sequence A; € Ay € A3 C
- of hereditary C*-subalgebras of A,, (Sq, W*(0)) such that A,, (Sq, W"(0)) =

U, An and A, ~ A,, (Sg,¥_, (U x Dq)). It follows from Lemma 6.4 that there
are commuting diagrams

RO‘Q (SQa v_, (Z/{ X DQ)) — H, X (u X DQ)
id(/{ xT \[ld(/{ xT
RUQ (SQ, ‘I/,n,1 (Z/{ X DQ)) — Hpy1 X (L{ X DQ)

of étale equivalence relations such that the horizontal arrows represent topologi-
cal groupoid isomorphisms. By combining this diagram with the diagram from
Lemmal.24 we obtain the diagram (6.3). 0

Let py, : U X Do — U x Dgy be the map
Pm (u, (21, 29, 23, ... ) + K@) = (u, (21722,...,zm)+Kg).

Let m; < my < mg < ... be asequence in N. There is then a commuting diagram
CO (Z/{ X Dgl) Nfopml H; g OO (L{ X DQ) X, Hy

CO (Z/{ X Dgw) Nroﬁw@ H2 g— O() (L{ X DQ) A, H2

CO (Z/{ X DS?’) NTOpmg H3 g O() (Z/{ X DQ) XA, H3

Here the vertical maps are induced by idy X7 in the natural way, by use of
Lemma B.1, while the horizontal maps, the j,,,’s, are induced by the p,,’s. It
follows from Lemma 6.13 that the inductive limit of the right column in (6.4) is a
copy of Ag,, (Sq, W*(0)). Note that j : Cy (L[ X Dg) Xrop, Hn — Co (U x Do) », H,
is injective for each k,n, and that

Co (U x Dq) »- Hy = | ji (Co (U x D5) %75, Hy,)

k=1
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for each n. Since Hj is a countable abelian group it is the union of an increasing
sequence of finitely generated abelian groups. In fact, by Lemma 3.20 each H; is
the union of an increasing sequence of finitely generated abelian groups of rank no
more than n. Therefore we can choose finitely generated subgroups H;, of Hg, all or
rank < n, such that Ay, = J;co Wi (H;) = U;<o Wi (H;). By using the separability
of Ay, (Sq, W*(0)), we see that if the sequences (m;),, and Hj,i € N, increase fast
enough the diagram (6.4) will give us an isomorphism

Aoy (Sg,W*(0)) = lim Co (U x DE*) Hrep,, Hi. (6.5)
k

LEMMA 6.14. Assume that Q is hyperbolic. It follows that B, (Sq) is *-isomor-
phic to an inductive limit hLQk Ay, where each Ay has the form

A~ K Cr e A,
and A is a special non-commutative torus of rank (ny, my) with ng +my < n.

PROOF. Let x € W"(p). It follows from Lemma 6.10 and Corollary 2.14 that
By, (Sq) is stably isomorphic to A,, (S, W*(0)). Hence

By, (Sg) ~ K ® Ay, (So, W(0)) (6.6)

by Lemma 6.11. We seek an inductive limit decomposition of A, (Sq, W*(0)), and
the point of departure for this is (6.5).

Let ¢ : U x Dg — U be the projection. It follows from Lemma 6.10 and
Lemma 6.8 that |J;2, ¢ (H}) is dense in . Hence, for some ko, U = Spang (H,;O).
Let L € N be such that L@ has integer entries only. Then

Liq(H;,) C{ucU: (u,0)€p; (Hy,)}
for all 7 € N. Hence
U=Span{uecl: (u0)ep;(H,)} (6.7)
for all j and all k > ky. Let k > ky. It follows from Lemma B.3 that
[Co (U x DF*) Xrep,, Hi] @K =~ [Co (U x DG*) X7 pm, (H)] @ C* @ C(T™) @K
for some I, ny, € N with ny + Rank p,,,, (H},) < Rank H;, <n. By Lemma B.8,
Co (U x DF*) 2z pm, (Hy) = C' @ [Coy (U) »- H

where H' C U is the image of p,, (Hj) under the projection U x Dy* — U and
< #Dg”“. Note that H' spans U by (6.7). By Theorem B.12 of Appendix B,
Co(U) x; H ~ K® A, where A) is a special non-commutative torus of rank
(n},, m}.), where nj, = dim¥ < n and mj, = Rankp,,, (H})— dimU. Hence

Co (U X D3*) Arop,, Hy ~ K@ C* @ A, (6.8)

where j, = [;l;,. Since C (T™) ® A}, is a special non-commutative torus of rank
(ng + nj, m;) the conclusion of the lemma follows from (6.5), (6.6) and (6.8). O

THEOREM 6.15. Assume that Q is hyperbolic. Then B, (Sq) is a simple stable
AT-algebra of real rank zero with a densely defined lower semi-continuous trace which
18 unique up to scalar multiplication.
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Proor. It follows from Lemma 6.14 that there is a sequence B; of special non-
commutative tori of ranks (n;,m;), where n; + m; < n, sequences k;,l; € N and
projections p; € My, ((Cli ® Bi) such that B,, (Sg) is the limit of the sequence

p1 My, (Cll ® Bil) p1 —= p2 M, (Cl2 ® B’iz) p2——=""" (6.9)

To show that By, (Sg) is approximately divisible and has real rank zero we can use
[BKR] and [G] in combination with (6.9) in the same way as in the proof of Propo-
sition 3.27: Either infinitely many of the B;’s are non-rational non-commutative
tori in which case B, (S¢) is approximately divisible with real rank zero by [BKR]
or else infinitely many of the B; are x-isomorphic to C (TY) for some j; < n and
then Corollary 6.7 of [G] shows that B, (Sg) is an AT-algebra. Being simple and
stable by Lemma 6.11 it is then *-isomorphic to K ® B, where B is a unital simple
AT-algebra. B is approximately divisible by [Ell1]. Since the lower semi-continuous
trace of By, (S¢) is essentially unique by Lemma 6.11 B has exactly one trace state
and it follows then from Theorem 1.4 of [BKR] that B has real rank zero.

All in all we conclude that B, (Sq) is approximately divisible with real rank
zero in all cases. Let p € By, (Sg) be a projection. Then pB,,, (Sg) p is unital and
approximately divisible with real rank zero by [BKR]. It follows that pB,, (Sq) p
has all the properties 1)-7) which were stated for A, (Sg) in Proposition 3.27. By
Lemma 6.14 and Proposition B.7 of Appendix B B,,, (Sg) is locally AH in the sense
of [Lin] and then the same is the case of pB,, (Sq)p. By using the work of Lin
and Phillips as in the proof of Theorem 3.28 we conclude that pB,,, (Sg)p is AT. It

follows that By, (Sq) ~ K ® (pB,, (Sq)p) is AT. O

By using Theorem 3.35 we can extend Theorem 6.15 to cover general expansive
group automorphisms. For this we need the following

PROPOSITION 6.16. Let (X, d, ) and (X', d',¢") be locally expansive on the post-
periodic points. Let D be the metric on X x X' such that D ((z,2'),(y,vy")) =
max {d(z,y),d (',y)}. Then (X x X', D, p x ¢') is locally expansive on post-peri-
odic points and

Boxw (X x X') ~ B,(X)® By (X'). (6.10)

PROOF. Let p € Per X, p’ € Per X’. Then
w ((pupl) , Iin {Gpa Ep/}) cwe (p7 Ep) x W (pI7 Ep/) :

Since W ((p,p’) , min{ep, €, }) is closed in X x X" it follows from this inclusion that
it is in fact compact, and it is then clear that (X x X', D, ¢ x ¢') is expansive on
post-periodic points. It follows easily from Lemma 4.6 that the obvious identification

WXXX’#’XSO' = WX,sO X WX’,so’

is a homeomorphism and then the isomorphism (6.10) follows from Proposition 1.23.

U

THEOREM 6.17. Let v : G — G be an expansive automorphism of the compact
group G. Assume that ¢ is mizing. It follows that the heteroclinic algebra By(G)
1s a simple stable AT-algebra of real rank zero with a lower-semicontinuous densely
defined trace which is unique up to scalar multiplication.
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PrOOF. It follows from Theorem 3.35 that (G, ) is conjugate to
(X, X Sg,0 X 0g),

where (X,,,0) is the full m-shift and (Sg,0q) is a solenoid corresponding to an
hyperbolic matrix @ € M, (Q). The finite group factor in Theorem 3.35 is trivial
because we assume that v is mixing. It follows then from Proposition 6.16 that
By(G) ~ By (¥) ® By, (Sg). It follows straightforwardly from Proposition 4.13
that B, (X,,) is a copy of the UHF-algebra of Glimm-type m> tensored with K.
The tensor product of an AT-algebra of real rank zero with a UHF-algebra is clearly
again AT of real rank zero, and hence By, (G) is AT of real rank zero. The remaining
properties of By (G) can also be deduced from this tensor-product decomposition,
but they follow also from Corollary B.11 in Appendix B. O

For a general expansive automorphism of a compact group the heteroclinic al-
gebra is a finite direct sum of the same simple stable AT-algebra of real rank zero
with a essentially unique lower semi-continuous trace.

6.2.2. The heteroclinic algebra of a torus automorphism. In the special
case where the hyperbolic matrix () has integer entries, the shift oo of Sg is the
natural invertible extension of the endomorphism of T" induced by (). The structure
of the heteroclinic algebra B, (Sg) simplifies quite a bit in this case. In fact, it
follows from Lemma 6.10, Theorem 6.6, Lemma 3.29 and Lemma 3.31 that B, (Sg)
is stably isomorphic to the crossed product

Co (U) PU(U Q7 (Z")).

In fact, since Sq is a Smale space by [Bre], it follows from Lemma 4.15 that B,,, (Sg)
is actually isomorphic to this crossed product. If we specialize further to the case

where @ € Gl,,(Z) we find that
BJQ (S@) ~ C() (U) X, PM (Zn) .

Note that Py (Z™) ~ Z™ since Z" NS = {0}. We obtain therefore the following
conclusion from Theorem B.12:

THEOREM 6.18. Let QQ € Gl,(Z) be hyperbolic. It follows that the hetero-
clinic algebra of the corresponding automorphism of T™ is a stabilized special non-
commutative torus of rank (k,n— k), where k = Dim {z € R" : lim;_,_. @z = 0}.

In general a non-commutative torus of rank n is defined from an anti-symmetric
real matrix 6 = (6, ;) € M, (R) as the universal C*-algebra generated by n unitaries
Uy, Us, . . ., Uy, satisfying the relation

for all i, 7. For a special non-commutative torus of rank (k,n — k) the matrix 6 has

the from
- 0 6
= (5 %)

where 6 is a real k x (n — k)-matrix. For a hyperbolic @ € GI,(Z) the matrix 6,
depends on the position of the subspace {z € R" : lim;_,_,, @’z = 0} in R" relative
to Z™ C R".
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To illustrate how our results can be used we shall now apply them to give ex-
amples of hyperbolic automorphisms of the two-torus with the property that the
corresponding heteroclinic algebras are not isomorphic to the heteroclinic algebra of
the inverse automorphism.

6.2.3. Expansive automorphisms of the two-torus. Let () = (‘C‘g 3‘;) €
Gl5(Z) be hyperbolic, and let g be the corresponding expanding automorphism of
the two-torus T? = R?/Z?. There are then real numbers «, 3 € R such that (1,«)
is an eigenvector for () corresponding to the eigenvalue of absolute value > 1 while
(1, ) is an eigenvector for @) corresponding to the eigenvalue of absolute value < 1.
Then

p

(170):m

(1,a) +

«
50,

and

(07 1) =

so it follows from Theorem 6.18 and its proof that B,, (T?) is *-isomorphic to
Co(R) %422, where oy o) is translation by 1 and 1) is translatlon by ( a)_lﬁ =
-3 Thus, by Theorem B.12, B, (T?) ~ K®R_g-1, where R_g-1 is the irrational
rotation C*-algebra obtained from rotation by e2™(~5"") Now we recall the result

of M. Rieffel, [Ri2], on stable isomorphism of irrational rotation C*-algebras:

THEOREM 6.19. (Rieffel) Let o, € R\Q. Then the corresponding irrational
rotation C*-algebras R, and Rg are stably isomorphic if and only if there is a

<‘Z Z) € Gl(Z)

Now this result can of course also be deduced from the more general results of
Phillips, [Ph2]. It follows, in particular, that R_g-1 is stably isomorphic to Rg.
Thus we see that

aatb __
such that 25 = 4.

By, (T?) ~ K® Rg. (6.11)

Furthermore, it follows from Theorem 6.19 that when @' € Gl»Z) is another hyper-
bolic automorphism then

aB+b , a b
Grd = [ for some <c d> € Gly(7),

when (1, 3) and (1, 3’) are eigenvectors of @) and @)’, respectively, corresponding to
the eigenvalue of smallest numerical value.
Calculations of 3: Let xq(t) = t* + Bt + C be the characteristic polynomium of

Q. Set D = B? — 4C. The roots of xg are Bi*/_ It follows that

—B—+D
2 9

—B — /D —2a
2by '

Byg (T7) = By (T°) &

ap +boﬁ:

and hence that

0=



6.2. EXPANSIVE AUTOMORPHISMS OF A COMPACT GROUP 81

(If by = 0, the roots of x¢ are both integers which is not possible since ) is hyper-
bolic.) Similarly, we find that

B —-B++VD — 2ag

N 2bg '

(Note that v/D must be irrational since otherwise the image of (1, ) in T? will be
periodic under ¢g. But it is also asymptotic to 0 under the iteration of g, and
hence it must be 0 in T2, i.e. o € Z. For the same reason we have that 3 € Z, which
is not possible since @ is hyperbolic.) By using Theorem 6.19 we see that B, (T?)
and B, (T?)=B (T?) are isomorphic if and only there is

(‘C‘ Z) € Gl(Z)

aa—l—b_
ca+d

«

Po-1

such that

g (6.12)
Now (6.12) is equivalent to
ac +b = f(ca+d),

or

—-B -2 v D B+2ay)2 =D —B —2a9— VD
a Go + +b= (B+ a02) c+ il d.
20, Ap2 2bq

Since v/D is irrational this equation holds if and only if

a=—d (6.13)
and ( ¢
—B — 2@0 B + 2(10 - D
i U
T 102
Since B = —ag — dy this can also be written
(do — CLQ)2 — D ag — do
b= . 14
I c+a b (6.14)

Now note that xo(t) = (t — ao)(t — do) — cobg = t* — (ap + do)t + aody — coby =
t* — (ap + do)t + Det A. Hence

D = 32 —4C = (ao +d0)2 —4DetQ
Thus (6.14) becomes

—boco ag — do ag — do Co
b= = — —cC.
bg ct+a bo a b boc

Hence we see that B,, (T*) and B oo (T?) are isomorphic if and only there are

integers a, b, ¢ such that
—a® —bc =41, byb = (ag — dg)a — coc. (6.15)
By Proposition 17 of [BR1] there are integer solutions a, b, ¢ to (6.15) if and only
of the elements of the projective group PGly(Z) = Gla(Z)/ {£1} represented by @
and Q™! are conjugate in PGly(Z). This should be compared with the fact that ¢

and @g-1 are conjugate dynamical systems if and only if @ and Q™' are conjugate
in Gly(Z). There are many cases where it is easy to find integer solutions to (6.15).
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For example when ay = dj, there is always the solution a = ag, b = —cy,c = by,
and when c¢plag — dy, we have the solution a = 1,b = 0,c = @—do  Gimjlarly, when
bolag — dy we have the solution a = 1,b = 2=% dy and ¢ = 0, and when by = +cy,
we have the solution a = 0,0 =1,c = :Fl Thus in all these cases the two algebras
B, (T?) and B%l (T?) are isomorphlc. But in fact there are many cases where

there are no integer solutions to the equations (6.15). To see this note that there
is a systematic way of deciding whether or not there are integer solutions to (6.15)
which is a based on results going back to Gauss and described in Section 3.1.2 of
[BR2]. By using this it can be seen that there are no integer solutions to (6.15)
when @ is, for example, any of the following elements of Gly(Z):

11 4 10 3 17 6 4 9
3 1) \7 27 \3 1) \7 16)°
According to [BR2] the last of these matrices has the the least possible absolute

value of the trace among the elements @ of Sly(Z) for which B, (T?) and B (T?)

are not isomorphic. The interested reader can easily find more examples by combin-
ing the method described in [BR2] with an effective calculator to solve quadratic
diophantine equations which may by found at

http://www.alpertron.com.ar/QUAD.HTM



CHAPTER 7

A dimension group for certain countable state Markov shifts

7.1. Markov shifts with finitely many edge-disjoint doublepaths

We shall now consider a countable state Markov shift coming from a countable
oriented graph G as described in Section 4.3. If G has both finite out-degree and
finite in-degree, the space

X(G = {(ei)iEZ € EZ : i(€i+1) =1 (61) Vi € Z}

will be locally compact in the product topology. The shift ¢ acts as a uniformly
continuous homeomorphism of X¢ and it is obviously expansive with respect to the
metric (4.16). Thus it gives rise to a relatively expansive system and we can de-
fine the corresponding homoclinic algebra A, (Xg) which can be shown to be an
AF-algebra in essentially the same way it was done for shift spaces in Section 3.1.
Likewise the heteroclinic algebra B, (Xg) can be defined, even when G only has
finite out-degree, as described in Section 4.3. Both constructions provides us with a
dimension group, namely the Ky-group of the resulting AF-algebra. Furthermore,
the group Ky (B, (Xg)) generalizes the dimension-group which plays a prominent
role in the study of shifts of finite type, see e.g. [LM], [K|. However, since the
dimension group is particularly important and powerfull for the study of the au-
tomorphism group of a shift of finite type it is annoying that a shift-commuting
homeomorphism of X¢ only gives rise to an automorphism of the homoclinic alge-
bra or the heteroclinic algebra when it is uniformly continuous with respect to the
metric (4.16). As we shall now show this problem can be resolved for a class of
graphs introduced by Michael Schraudner in [Sch)].

Recall that a path v in G is an ordered tuple v = (ej,e2,...,6,) (or v =
erey...e,) of edges in G such that i(exr1) = t(ex) for all k£ = 1,2,...,n — 1.
The number of edges, n, in v is the length of « which we denote by |v|, and we
set i(y) = i(e1), t(y) = t(en). A doublepath, [Sch], is an unordered tuple (v,7)
of different paths, v and 7/, of the same length in G such that i (y) = i (y/) and
t(y) =t (7). A pair of doublepaths, (v,7') and (i, p’), are edge-disjoint when the
set of edges making up v and +/ is disjoint from the set of edges making up p and p'.
Following [Sch] we say that G has finitely many pairwise edge-disjoint doublepaths
when every collection of pairwise edge-disjoint doublepaths in G is finite. At first
sight this condition may seem artificial, but as shown by Schraudner in Theorem 2.3
of [Sch] the property reflects an important intrinsic property of the countable state
Markov shift defined by the graph. Specifically, it follows from Theorem 2.3 of
[Sch] that G has finitely many pairwise edge-disjoint doublepaths if and only if the
automorphism group of (Xg, o) is countable.

83
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We shall impose the following conditions on G:

i) G has both finite in-degree and finite out-degree at each vertex,
ii) G is strongly connected in the sense that for every pair v, w of vertices in
G there is a path v in G with i(y) = v and ¢(y) = w, and
iii) G has finitely many pairwise edge-disjoint doublepaths.
Since E is countable there is an injection h : E — N\{0} and we define a metric
dg on Xg such that

de ((ei)iez ) (eg)iez) = Z 21" ‘h (en)il —h (621)71|-
nez

This metric is known as the Gurevich metric, and it is characterized, up to equiva-
lence, by the fact that it is the restriction to Xg of a metric for the topology of the
one-point compactification XZ of Xg. As in Section 4.3 we consider now the topo-
logical space W, , of post-periodic points in the Wagoner topology. To simplify the
notation we denote this space by Wg in the following. With respect to the Gurevich
metric the shift is no longer locally expansive on W, but we shall nonetheless now
construct a relatively expansive system in this setup. This is where condition iii)
comes in. Let W2 denote the set of post-periodic points that are forward transitive;
that is

Wog={xeWs: VyeXeVe>03j eN: dg(y,07(z)) <e}.

Note that W@ is dense in X as well as in Wy since G is countable and strongly
connected.

LEMMA 7.1. For each p € Per X¢ there is 6, > 0 such that
z,y € W(p), y € Wg, supdg (0/(x),07(y)) <6, = z==1y.
JET

PROOF. We simply mimic a part of the proof of Theorem 3.4 of [Sch]. Let F be
the set consisting of the edges from a maximal collection of pair-wise edge-disjoint
doublepaths in G. By assumption this is a finite set. Set

1 . 1 1
(5p—§m1n{h(e) — TOE eEF},
where & is the injection used to define dg. Assume that x,y € W*(p),y € W and
that dg (07(x),07(y)) < §, for all j € Z. Note first of all that z_; = y_; for all
sufficiently large j since x,y € W"(p). Assume to get a contradiction that z;, # y;,
for some jy € Z. Since y is forward transitive there is a j > jo such that y; € F. By
definition of d,, this implies that y; = x;. It follows that both

a=max{i < jo: z; =y}
and

b=min{i > jo: z; = y;}
exist. Then the pair (v,~’), where

V= (xa—f—l; Tat2y - - - axb—l)
and

’7, = (ya-i-l’ Ya+2, - - - ayb—l) 3
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is a doublepath which does not contain any edge from F. In particular, (v,') is
edge-disjoint from any doublepath used to define F'. This contradicts the maximality
of that collection. It follows that x = y. O

It follows from Lemma 7.1 that (Xg,dg, Z, 0, Wg, W) is a relatively expansive
system. In the following we denote the resulting Ruelle algebra A, (Xg, W) by Bg.

Let Aut Xg be the group of shift-commuting homeomorphisms of X¢g. Elements
of Aut Xg can fail to be uniformly continuous with respect to the metric d, but
they are all uniformly continuous with respect to the Gurevich-metric and this is
the reason that we can prove the following

THEOREM 7.2. For every a € Aut Xg there is a unique x-automorphism o® of
Bg such that
a*(f)(x,y) = f (a7 (z), a7 (),
when f € C. (Ry (X, Wg)).-

PROOF. « induces a homeomorphism of Wg by Lemma 4.9. Since o and ™!
are uniformly continuous with respect to the Gurevich-metric dg it follows that we
can apply Corollary 2.5. O

Let a, be the automorphism of Ky (Bg) induced by «®. It follows from Theo-
rem 7.2 that the map

Aut X¢g 3 a— a, € Aut Ky (Bg)

is a homomorphism of groups. Furthermore, it follows from Section 4.3 that Ky (Bg)
is isomorphic, as an ordered group, to the dimension group of Xg when G is finite.
In this case a +— a, agrees with the dimension group representation of Aut Xg.

In the following we seek to determine the structure of Bg. Let z,y € Wg. A
conjugacy (U, V, x) from x to y in W is normal when there is an iy € Z such that
Tig =Yig, U={2€EWs: zi=a;,1 <o}, V={2€Ws: z=y,;,i <ip} and

( ) Yk, k S iOa
z =
A I A

We say that an element x = (z;),., € Xg tends to infinity when lim; . h (x;) = oo.

LEMMA 7.3. Let z,y € Wg, and let (U, V, x) be a conjugacy from x to y in Wg.
Assume that x does not tend to infinity. It follows that y does not tend to infinity
and that there is a normal conjugacy (Uy, Vo, Xo) from x to y such that Uy C U and
X|Uo = Xo-

PROOF. Since x does not tend to infinity, there is a finite collection F' of edges
in G such that x; € F' for infinitely many ¢. Since

i) o Lol o
de (o (x),a(y))§2m1n{h<€) OEER eEF}

for infinitely many j, we conclude that z; = y; € F for infinitely many j. In
particular, y does not tend to infinity. Let Fj be the set of edges occuring in a
maximal collection of pairwise edge-disjoint doublepaths in G. Let i € N be so
large that x;, = v;, and

da (o'j(flj), o'j(y)) < %mln { h

1 —
(e)  he)+1

: eEFUFO}
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for all j > 7y. It follows that z; = y; for all + > 7y and we can define a normal
conjugacy (U], Vy, xo) from z to y such that Uj = {z € W : z; = z;,7 <o} and

( ) Yk, k S Z.O
ya =
Xo F Zky k Z io.

By Lemma 1.4 there is a jo > ip such that Uy = {z € W5 : z; =x;, j<jo} CU
and xo(z) = x(z) for all z € Uy. Set Vi = xo (Up) and note that (Uy, Vo, xo) is a
normal conjugacy from x to y. O

We are now faced with a new kind of local conjugacies. If, for example, G is the
graph

o

oat

NN -
a,W/

"

sy

there is a local conjugacy between any pair x,y € Wg with x; = a;,7 > 1, and
Yi = a_;,1 > 1. Such non-normal conjugacies complicate the analysis of the structure
of Bg and we have very little to say about the structure of Bg in full generality, but
the following observation will be usefull.

LEMMA 7.4. Bg is stable.

Proor. If G is finite Xg is a Smale space and it follows in this case from
Lemma 4.15 that Bg is stable. Assume then that G is infinite. We use the work
of Hjelmborg and Rgrdam in the same way as in the proof of Lemma 4.15. Thus
it suffices to consider an element f € C. (R, (Xg, Wg)) and construct an element
v € Bg such that vo*f = f and fv* = 0. To this end note that there is a finite set
of periodic points py,po,...,py in Xg and a finite set of edges ey, es,...,ep in G
such that

r(supp f) Uss (supp f) € | J{(2:);cz € W" (pr) : w0 =€, } .
Y

Let g be a periodic point in X whose orbit is disjoint from {p1,ps,...,pn}. Since
G is strongly connected there is for each (k,j) € {1,2,...,N} x {1,2,..., M} a
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normal conjugacy (Uy.;, Vi ;, Xk,;) in Wg such that
Urj = {2 = (2i)icz, € W" (p) + 20 = ¢}

and Vi ; € Uiey W™ (6'(q)). Let {gr;} be a partition of unity on r (supp f) subor-
dinate to {Uy ;}. Define gi; € C. (R, (Xg, Wg)) such that

gni(z,y) = grj(x)  when (x,y) € {(2,xx;(2)) : 2z € Uy},
I 0 otherwise.

Then v = Zk’j Grj € Cc (R, (X, Wg)) does the job. O

To handle local conjugacies that are not normal we make in the following an
additional assumption:

iv) There is a finite set, I, of edges in G such that for every edge ¢y € G there

is at most one right-infinite ray r = epejeses... in G with e; ¢ F for all
i > 1 and at most one left-infinite ray [ = ...e_se_je¢ in G with e; ¢ F for
all 7 < —1.

In the presence of conditions i)-iii) this additional assumption is equivalent to the
condition that the canonical extension of the shift to the one-point compactification
of X¢ is expansive and, therefore, is a compact shift space, cf. [Sch], [F]. Hence,
when condition iv) holds, (Xg,0) is actually expansive with the respect to the
Gurevich-metric dg on the entire space Xg, and not only on the doubly transitive
points.

We assume now that conditions i), ii), iii) and iv) all hold.

Let FF C V be a finite subset. An out-going ray in G is a right-infinite path
v = epe1ez¢e3 ... in G such that t(e;) ¢ F for all i = 0,1,2,.... ~ is a mazimal
out-going ray when i (ey) € F. Likewise an incoming ray in G is a left-infinite path
...e_3e_9e_169 =7 in G such that i(e;) ¢ F for all i =0,—1,-2,-3,..., and v/
is a mazimal incoming ray when t (eg) € F. A finite path v = eperes ... e, in G is
said to avoid F when t (e;) ¢ F,1=0,1,2,...,n— 1.

It follows from condition iii) and iv) that there is a finite set F' C V of vertices
such that

ty)=t(y) = v=9 (7.2)
when 7,7’ are maximal incoming rays,
i(y)=i(y) = =79 (7.3)
when ~v,~ are maximal outgoing rays, and
i) =i(), t) =t(y) = v=+ (7.4)
when 7,7’ are finite paths of the same length that both avoid F.
Note that if v = ejeses... is an out-going ray and t(e;) = t(e;4x) for some

i,k € N, it follows from condition iv) that e; = e;iy for all j > i+ 1, ie. v is
eventually k-periodic. If we add to F' the vertices of all eventually periodic out-
going rays we still have a finite set of vertices and (7.2), (7.3) and (7.4) hold for the
larger set. Thus, by enlarging F' if necessary, we can assume that no outgoing ray
is pre-periodic, i.e. that

i£7 = t(e)#t(e) (7.5)
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when v = ejegey ... is an outgoing ray. A finite set F' C V such that (7.2), (7.3),
(7.4) and (7.5) all hold will be called a core for G. Note that if we add a finite set
of vertices to a core the union is still a core.

Let v € V. In the following a shortcut from F to v is a finite path v which avoids
F such that i (y) € F and ¢ () = v. Similarly, a shortcut from v to F is a finite
path v which avoids F' such that i (7) = v and ¢ () € F.

The following lemma should be compared with Lemma 3.3 of [Sch].

LEMMA 7.5. Let ' CV be a core. Let (v;),., € Xg. Thent(x;) € F for some
jez.

PROOF. Assumet (z;) ¢ F forall j. Then 24Tj4+12k42 - . . is the tail of a maximal
out-going ray for each k, and hence

because no out-going ray is eventually periodic, cf. (7.5). Since G is strongly con-
nected there is for each & € Z a shortcut 7, from F' to i (zg). But F is finite so
there is a sequence m; > msy > mg > ... in Z and a vertex v € F' such that there
is, for each k, a shortcut from F to i (z,,, ) which starts at v. Choose k such that

my —my > |7l (7.7)
Then VT, Trmp+1Tmy+2 - - - ANA V1T, Ty 41T m, 42 - - - are out-going rays starting at
the same vertex. By condition iv) these rays must be identical, which is impossible
by (7.7) and (7.6). O

Let F C V be a core for G. We let F* = {e€ E: t(e) € F'} and set A =
FEU{1}. Define Xg 3 x — 7 € A% such that

. x;  whent(x;) € F
" 11 whent(z;) ¢ F.

We define d} : Xg x Xg — [0, 00) such that

(7.8)

icZ
where
h p—
5 (a,b) 0 whena=5»
1 when a # b.

LEMMA 7.6. d} is a metric on Xg equivalent to dg.

PROOF. Let XZ be the one-point compactification of Xg. Even without condi-
tion iv) the map = +— T extends to a continuous shift-commuting map ¢ : X& —
AZ such that (+) =1, cf. Proposition 3.5 of [Sch]. The crucial point is that
Y Xg — AP\ {1°°} is continuous and proper, which is easy to check. It remains to
check that v is injective in our case. This follows from (7.2), (7.3), (7.4), (7.5) and
Lemma 7.5. Il

LEMMA 7.7. Assume that F is a core. Let v € V be a vertex which does not
belong to any out-going ray. There is then an N € N such that |y| < N for every
shortcut v from v to F.
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PROOF. If no such N exists it would follow from condition i) that there is an
out-going ray epeies ... in G such that i(ey) = v, contradicting the assumption
on v. U

LEMMA 7.8. Let egeies... be an out-going ray in G. For each pair n,N € N
such that n < N there is an L € N with the property that every shortcut v of length
|v| > L from t(e,) to F' contains ey.

PROOF. An edge starting at ¢ (e;) which is not e;; can not terminate in a vertex
which belongs to an out-going ray. This follows from condition iv). It follows then
from condition i) and Lemma 7.7 that for each i € {n,n+1,..., N — 1} there is an
L; € N such that all shortcuts from ¢ (e;) to F' which does not contain e;;; must
have length < L;. Set

L= max (L;+7j).

n<j<N-1

g

Let v = egereses ... and v = fofifafs... be out-going rays in G, belonging to
different maximal out-going rays. In the following we shall consider the condition
that there are numbers n < N < M in N such that the following holds for each
k € N and each v € F:

A) If there is a shortcut of length k from ¢ (ey) to F' ending at v, there is also
a (necessarily unique) shortcut of length k + N —n from ¢ (f,) to F' ending
at v.

B) If there is a shortcut of length & from ¢ (fy/) to F' ending at v, there is also
a (necessarily unique) shortcut of length k+ M — N from ¢ (ey) to F ending
at v.

Let v = ejeges ... be an out-going ray in G. In the following we shall consider
the condition that there are N, k, L € N, k # 0, such that the following hold for
each v € F and each [ > L:

C) There is a shortcut of length [ from ¢ (ey) to F' which terminates at v if and
only if there is a shortcut from ¢ (eyyx) to F' of length [ which terminates
at v, and

D) every shortcut of length [ from ¢ (ey) to F' contains ex .

LEMMA 7.9. Let G be a graph satisfying conditions i) through iv). When z,y €
Wg are conjugate, either

a) x; =y, for all large i, or

b) there are different out-going rays v and ~' for which A) and B) hold such
that x; € v and y; € v for all large i, or

c) there is a mazximal outgoing ray ~y for which C) and D) hold, and z;,y; €
for all large 1.

PROOF. a) holds if and only if there is a normal conjugacy between x and y.
Assume therefore that there is no normal conjugacy from x to y and let (U, V] )
be a non-normal conjugacy in Wg from z to y. It follows from Lemma 7.3 that z
and y both tend to infinity. Furthermore, x and y can not be asymptotically equal.
There are out-going rays, v = eperez ... and v = fofifo... in G and K € N such
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that ok o) = 7 and y(x,c) = 7'. Choose L > K such that

) ; 1 (1 1
ilelgd(; (07 (x(2)),07(2)) < §m1n{h(e) ThoF1 e € F} (7.9)

and

(-1 j L. 1 1 .
ig‘gdg(aj (x (z)),a(z))Simm{h(e)—h(e)_i_l. eeF}

for all j > L. For each I € Z and each u € W, set
Ul ={zeWs: zi=w;, i <I}.

There is an n > K such that UY C V and U; C U. There is an N; € N such that
Ny > n and

X (U%,) CUY ik (7.10)
Let i be a shortcut of length & from ¢ (xy,41) to F. There is then a z € Ug, |, such
that 2,141,842+ 1u) = #- 1t follows from (7.10) that x(z) € UY, ,, x and from

(7.9) that z; € F < x(2); € F'Vj > L so we conclude that x(2)pn4x+1,N+L+K+u]
is a shortcut of length L + Ny + |u| — n from ¢ (y,+ k) to F. Set N =L+ Ny — K.
Then A) holds. By exchanging the roles of  and y the same argument applies to
find M > N such that also B) holds. Hence b) holds, unless v and «' are contained
in the same maximal outgoing ray. In the case where 7 and +' are contained in
the same maximal out-going ray epejes ... we observe first that there are D € N
and k € Z such that v = epepyiepia... and ¥ = epirepiri1€pikio-... Note
that & = 0 is impossible because there is no normal conjugacy from x to y. By
exchanging the roles of x and y if needed, we can assume that £ > 1. By combining
Lemma 7.8 with A) and B) we find that there are numbers N, L € N such that the
triple N, k, L satisfy both C) and D). O

7.1.1. Grafting. Throughout this section we assume that conditions i), ii), iii)
and iv) are all satisfied. Let Fy C V be a core for G.

LEMMA 7.10. There is then a core F' C'V for G containing Fy such that different
maximal out-going rays are pair-wise vertex disjoint, i.e.
{i(ex): k=0,1,2,... 0 {i(fr): £k=0,1,2,...} =0.
when egereses ... and fofifo... are different outgoing rays in G, and such that F

1s the vertex set of a finite strongly connected subgraph of G.

PRrOOF. Let ' be the finite set of maximal out-going rays from Fy. If two
different elements v = ejeges... and v = fifafs... of I are not vertex disjoint,
there are numbers n, m € N such that t (e,) = ¢ (f,,) and

{i(el)7i(€2)7"'7i<€n)}m{i(f1)7i<f2)7"'7i(fm)}:@'

It follows from condition iv) that f,,+x = e,k for all £ € N. Set

F%’Y’ = {Z (61) 1 (62) yeeesl (en-l-l)} U {Z (fl) 1 (fQ) poeesd (fm—l—l)} :
Let
F=FRulJT,,
(v
where we take the union over all pairs 7,~’ from I' that are not vertex disjoint. F”
is clearly a finite set, and it is easy to check that F” is a core such that all different
maximal out-going rays are pair-wise vertex disjoint. Since G is strongly connected
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there is a strongly connected finite subgraph of G which contains F’. The vertices
of such a finite subgraph form a core F' with the desired additional properties. [J

Consider then a core F© C V with the two additional properties described in
Lemma 7.10. If G is the graph (7.1) F' could be the vertices of the subgraph

S
a_1 ¢ ]

Assume that there are out-going rays v and 7’ such that A) and B) hold. It
follows that when + is a shortcut from ¢ (ex) to F' there is a unique shortcut i, of
length |y| + N —n from ¢ (f,) to F with ¢ (y) =t (u,). Let A be the set of shortcuts
from ey to F' such that fys ¢ p..

Let G” be the subgraph of G containing the following edges from G:

e all edges e € G with i(e),t(e) € F,

e all edges contained in some path vy which starts at a vertex in F', ends in a
vertex in F' and avoids F' and ey in between, and

e all edges of the paths ege; ...en7y, where v € A.

(7.11)

Then G” satisfies conditions i) through iv) and F remains a core for G”. When G
is the graph (7.1), F' the vertices from the subgraph (7.11) and v = a_sa_3... we
can take f, = as and ey = a_3 and fj; = a4. The resulting graph G” is then

%
4

}
, (7.12)
o

¢?A - e e
?/
!
We add now to G” a new path, finey, of length M — N from ¢ (ey) to t (far).
Denote the resulting graph by G’. Then G’ satisfies conditions i) through iv) and F

is a core for G', although different maximal outgoing rays can have common vertices
: /
in G'.
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In the example (7.12) the graph G’ becomes

) (7.13)
4§

v
v

In order to relate Xg to Xg we need some lemmas.

LEMMA T7.11. Let egejes ... be a mazximal out-going ray in G. Then t(e;) has
in-degree 1 for all i, i.e.

#H{ecE: tle)=t(e)} =1
forallt=0,1,2,3,....

Proor. This follows because different maximal out-going rays are pair-wise ver-
tex disjoint. O

LEMMA 7.12. Let v,w € F.

a) There is a bijection between the set of mazimal incoming rays in G that
terminate at v and the set of maximal incoming rays in G’ that terminate
at v.

b) For each n € N there is a bijection between the paths in G of length n that
start at v, end at w and avoid F', and the corresponding set of paths in G'.

c) There is a bijection between the set of mazimal outgoing rays in G that start
at v and the set of maximal outgoing rays in G’ that start at v.

PROOF. a) By condition iv) it suffices to show that v is the terminal vertex of a
maximal incoming ray in G if and only if it is in G'. It follows from Lemma 7.11 that
an incoming ray in Xg can not contain fi,e,. It must therefore be an incoming ray
in G” and hence in G. Let v be a maximal incoming ray in G which terminates at
v. If every vertex in v can be reached from F by a finite path which avoids ey, ¥
will be a maximal incoming ray in G’ by construction of G'. Otherwise, v will be the
terminal vertex of arbitrarily long shortcuts from ¢ (ey) to F' in G. By condition A)
v will then also be the terminal vertex of arbitrarily long shortcuts from ¢ (f,,) to F.
It follows from Lemma 7.11 that none of these shortcuts contains ey, so they all
proceed in G”. If follows that v is also the terminal vertex of a maximal incoming
rays in G'.

b) Let v be a path in G which avoids F' such that i(y) = v and t(y) = w. If
ent1 ¢ 7, v is also a path in G'. If eyy1 € v, ¥ = 7172, where 75 is a shortcut from
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t(en) to F. If 75 € A, vy is also a path in G'. If v, ¢ A, fiy € p, which means that
Py = frt1fnta .. farpd for some shorteut p' from ¢ (far). Then vypinewpt is a path
in G’ with the same length as «v which avoids F, starts at v and ends at w.

Let then p be a path in G’ which avoids F, starts at v and ends at w. If ppe, € g,
1 is also a path in G, so assume that pi,e, C p. It follows that g = g finewpte, where
1 is the unique shortcut from F to t (ey) and ps is the unique shortcut from ¢ (fa)
to F' of length |u| — |p1| — M + N. By condition B) there is then a unique shortcut
v of length |u| — |p1| in G from ¢ (ey) to F such that t(v) = w. It follows that p,v
is a path in G with the same length as p which avoids F', starts at v and ends at w.

¢) Since condition iv) is satisfied by both G’ and G it suffices to show that v is
the start vertex of a maximal outgoing ray in G if and only if it is in G’. So let §
be a maximal outgoing ray in G with i(§) = v. If v € 4, § will also be a maximal
outgoing ray in G'. If not ¢’ = p1tnew frre1farae - - - is a maximal outgoing ray in G’
such that i (0") = v, where p; is the unique shortcut from F' to ¢ (ey). Conversely,
let &' be a maximal outgoing ray in G’ with i (0') = v. If piyen € &, 0’ is also a
maximal outgoing ray in G. On the otherhand, if i,,¢,, € ¢ we find that ¢ (6") = i(9)
where ¢ is the maximal outgoing ray in G containing ~. U

LEMMA 7.13. The dynamical systems, (Xg,0) and (Xg/,0) are conjugate.

PROOF. We define a map ¢ : Xg — Xg as follows. Let z = (z;);~ € Xg.
We will then define ¢(z) € Xg as follows. When ¢ (x;) € F, set p(z); = z;. When
t(x;) ¢ F, we consider the possibilities

2) t(0) ¢ F. j <1,

b) t(z,) ¢ F. j > i, and

c) there are i; < ¢ and i < iy such that ¢ (z;,),t (z,) € F.
In case a), set ig = min {k > i : t(x) € F}, cf. Lemma 7.5. Then ...xz;,_ox;,_17;, is
a maximal incoming ray in G and by a) of Lemma 7.12 there is a unique maximal in-
coming ray 7 in G" such that ¢ () =t (ip). We set ()]0 4o] = 7- In particular, this
determines p(x);. In case b) we set ig = max{k <i: t(xx) € F'}. Then 241,00 is
a maximal out-going ray in G and by c¢) of Lemma 7.12 there is a unique maximal
outgoing ray ¢ in G’ such that i(6) = t (x;,). We set ¢(2)y+1,00f = 0 in this case. In
particular, this determines ¢(x);. In case c) we set io = min {k > i : ¢ (x}) € F'} and
iy = max{k <i: t(xy) € F}. Then x, 41, is path in G which avoids F'. By b) of
Lemma 7.12 there is a unique path p in G’ of the same length as w(;, 41, and with
the same initial and terminal vertex. We set ¢(2)};,41,,] = - In particular, this
determines ¢(x); in case ¢). Note that ¢ commutes with the shift. Since ¢ does not
change F-coordinates it follows ¢ is isometric with respect to the metric d. Hence,
by Lemma 7.6 and the bijective correspondances of Lemma 7.12 we conclude that
 is a conjugacy. U

COROLLARY 7.14. There is a *-isomorphism 1 : Bg — Bg: such that 0® o) =
Yoo

Proor. It follows from Lemma 7.13 that we can apply Corollary 2.5. O

By successive repetition of the process described we obtain from G a new graph
H — with the same essential properties — such that (Xg, o) and (Xpg, o) are conjugate

via a shiftcommuting homeomorhism ¢ with both ¢ and ¢ =1 uniformly continuous
with respect to the Gurevich metrics, and, as a result, Bg and By are x-isomorphic
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via a *-isomorphism which intertwines the automorphisms induced by the shift.
What is true for H is that A) and B) do not hold for any pair of rays belonging
to different maximal outgoing rays. We say that H is totally grafted when this is
the case. That is, repeated application of Lemma 7.13 and Corollary 7.14 yields the
following

LEMMA 7.15. Let G be a graph satisfying i) through ). There is then a totally
grafted graph H satisfying conditions i) through i) such that (Xg, o) and (Xg, o)
are conjugate.

7.1.2. Pruning. We still assume that G satisfies conditions i) through iv) and
that F' is a core in G having the additional properties desribed in Lemma 7.10.
Assume now that there is an out-going ray v = ejeges - - - in G such that C) and D)

hold.
This is for example the case in the graph

\ | (7.14)

When C) and D) hold for some N, L,k € N we call k an asymptotic period of
the ray 7.

LEMMA 7.16. Assume that C) and D) hold. It follows that when j > N, there
is an Lj € N such that for each v € F' and each | > L;,

e there is a shortcut of length | from t (e;) to F which terminates at v if and
only if there is a shortcut from t (ej1y) to F' of length | — k which terminates
at v, and

o cvery shortcut of length | > L; from t (e;) to F' contains e;jiy.

PRrRooF. This follows from Lemma 7.8. O

Let
p=min{k : k is an asymptotic period for v} .
We call p the minimal asymptotic period of .

LEMMA 7.17. A natural number m € N is an asymptotic period of v if and only
if m € Np.

PROOF. Left to the reader. O
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By increasing L if necessary we may assume that there is in fact a shortcut of
length L from t (ey) to F'. We construct first a new graph G” as follows:
Let Gg be the subgraph of G consisting of

e all edges e € G with i(e),t(e) € F,

e all edges contained in some path v which starts at a vertex in F', ends in a
vertex in F' and avoids e; in between, and

e all edges of the paths e; ...eyn7, where 7 is a shortcut from ¢ (ey) to F of
length |y| > L.

For each shortcut p from ¢ (e;) to F' which is not of the form es...en7y, where
v is a shortcut from ¢ (ey) to F of length |y| > L, we add to Gy a new path p/
of length |u| + 1 from s(ey) to ¢ (u). All these new paths must be mutually edge
disjoint and contain no edges from Gy. The resulting graph G satisfies condition
i)-iv) and the set F'is a core for G"” and enjoys the extra properties described in
Lemma 7.10. Furthermore, G” and G have exactly the same outgoing and incoming
rays with respect to F. Finally C) and D) still hold in Gy. What we have achieved
is that in G"”

|7| > L when + is a shortcut from t (ey) to F. (7.15)

Note now that Lemma 7.12 holds with G’ replaced by G"” and we can prove the
following lemma by the method used to prove Lemma 7.13.

LEMMA 7.18. The dynamical systems (Xg, o) and (Xgn, o) are conjugate.

If G is the graph (7.14) and we let F' be the vertices indicated by fat dots, and
N =1,k=1and L = 3, the graph G becomes

AN
AN
N

(7.16)

N
N\

Let G” be the subgraph of G” containing the following edges from G:

e all edges e € G with i(e),t(e) € F,

e all edges contained in some path v which starts at a vertex in F', ends in a
vertex in F' and avoids F' and ey in between, and

e the edges e, e9,...,¢en.
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Add to G” a loop v of length p (the asymptotic period of ) at ¢ (ey) which is edge
disjoint from G”. For each shortcut p in G” of length [ € {L, L+ 1,...,L+p—1}
from ¢ (ey) to F' we add to G” a path ¢, of length [ from ¢ (ey) to F' such that
t(9,) = t(p). These paths are mutually edge-disjoint and edge-disjoint from G”
and v. The resulting graph will de denoted by G'.

By applying this recipe in the appropriate way to the graph (7.16) the graph G’

i

N

e

PR

(7.17)

We have only added finitely many new edges to G” to obtain G’, and it follows
therefore that G’ satisfies condition i) through iv) since G and G” do. Observe
that there is one less maximal out-going ray in G’ than there is in G.

In the following we let > denote the set of periodic elements y of Xg with the
property that y; € v for all i € Z. Thus v*° is a p-periodic orbit.

LEMMA 7.19. Let v,w € F.

a) There is a bijection between the set of maximal incoming rays in G" that
terminate at v and the set of mazximal incoming rays in G’ that terminate
at v.

b) For each n € N there is a bijection between the paths in G" of length n that
start at v, end at w and avoid F', and the corresponding set of paths in G'.

c) There is a bijection between the set of mazimal outgoing rays in G that
start at v and the set of maximal outgoing rays in G’ that start at v.

PROOF. The proof is quite analogous to the proof of Lemma 7.12. We omit the
details. O

LEMMA 7.20. There is a unique shiftcommuting map ¢ : Xgn — Xg such that
Y(z), € F & x; € F foralli € Z.

Proor. This follows from Lemma 7.19 in the same way as Lemma 7.13 follows
from Lemma 7.12. U

LEMMA 7.21. F Ut (ey) is a core for G'.

PROOF. Note that a maximal incoming (outgoing) ray in G’ relative to F'Ut (ey)
is also a maximal incoming (outgoing) ray in G” relative to F'. Therefore conditions
(7.2), (7.3) and (7.5) follow from the corresponding conditions for F' in G".

Consider then two finite paths v and «' of the same length in G’ which both avoid
F Ut (ey) and have the property that i(y) =i (7)), t(v) =t (7). If t(y) = t(en)
and i () # t (ex) we must have that v =+ = ejea...en. If t(y) =i (y) =t (en) we
have that v =+ =v. If i(y) =t (ex) and t(y) # t (en), we find that v =+ = 4,
where p is the unique shortcut in G” from ¢ (ey) to F' of length |y|. All in all we
conclude that F'Ut (ex) also satisfies condition (7.4) in G'. O
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Set F = FUt(GN).
LEMMA 7.22. The metric d induces the same topology on Xe/\v> as dp.

PRrROOF. Since dj < d}, it suffices to show that a df,-open subset of Xg/\v>
is also dz-open. Let therefore U be a non-empty d-open subset of Xg \v>. To
prove that U is also d-open, let A = FEU{1}, where F® = {e € E: t(e¢) € F} and
define for each r € X¢' the element 7 € A% as in (7.8). There is an N € N with the
property that when x,y € Xg/, ¢ € Z, k € N, we have the implication

T =Y €F, Tl k-Nithk+N] = Yi—k—Nitk+tN] = Tlivkitk] = Yli—k,ith]- (7.18)

This follows from Lemma 7.7 and the correponding statement for incoming rays,
in combination with Lemma 7.19. Let then x € U. Since U is d},-open there
is an M € N such that y € U when y_y ) = @—am,n). Since x ¢ v*° there is
an ¢ € Z such that z; € F. Choose k > |i| + M. There is an ¢ > 0 such that
Tl k—Nitk+N] = Yli—k—N,i+k+n] When dp(z,y) < e. It follows then from (7.18) that
{yGXG/: d};(y,x)<e}§U Il

LEMMA 7.23. ¢ : (Xgm,0) — (Xg/\v™,0) is a conjugacy.
PRroOOF. This follows from Lemma 7.20 and Lemma 7.22. O

LEMMA 7.24. There is a factor map 7 : X& — (Xe\v™)" =~ X, and, if G'
is finite, a factor map 7 : Xgr — X

PROOF. It follows from Lemma 7.22 that there is an embedding x : (Xg\v>®)" —
(FEU{1})™ such that u(+) =7*°. Similarly, by Lemma 7.6, there is an embedding
p XE — (FEU{en}U{T})™ such that p/(+) =1 Let 7 : (FEU{ex} U{1})"
— (F]E U {T})OO be the one-block factor map sending ey to 7. The diagram

X((;/\l/oo( X@/

! :
(FEU{1})” < (FFu{entu{1})™

commutes so we conclude that 7oy (X&) = p ((X((;/\VOO)+). When G’ is finite we
find that o p/ (Xg/) = ((XG/\I/OO)+). This proves the lemma. g

LEMMA 7.25. Assume that G is totally grafted. There is a *-isomorphism ¢ :
BGIN — BG’ such that Px O 0% = 04 O Py ON K* (BG”’)-

Proor. It follows from Lemma 7.23 and Lemma 4.8 that ¢ restricts to a home-
omorphism from Wgm onto Wx_,\,e 5. Set

W@/ = U WU(Q),
q€Per X/ \v>°
which is an open and closed subset of Wg/. Note that there is an identiﬁcation
Wx v, = We which we use in the following. We will check that ¢ : W — W

and ¥~ : Wg — G” both satisfy conditions 1,2 and 3 of Section 2.1 relative to
(Xgr, dy, Wem) and (Xgr, dp, Wer). (Recall that F' = F U {t (ey)}.) Condition 2
is clearly satisfied by both maps. To check the other two note first that

w (V(@),¥(y) = dp (2,y) 2 dip(z,y)
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for all z,y € Wgw. Tt follows that (=1 (U"), 4= (V') ;0" o x' 0 ) is a local conju-
gacy in Wgw from z to y when (U, V', x’) is a conjugacy in Wg from ¢(z) to ¢(y). In
order to have established condition 1 and 3 for both ¢ and v ~! it suffices now to es-
tablish the following: When (U, V, x) is a local conjugacy in Wgw from x to y, there is
an open set U’ such that x € U’ C U and such that (¢ (U’), ¢ (x (U")), v oxoyp™t)
is a local conjugacy from t(z) to 1(y) in Wgr. If there is a normal conjugacy from
x to y we have that x; = y; for all large ¢ and it follows that ¢ (x); = 1(y); for all
large 7. In this case we can use

UI:{ZEWG///i Zi = X, igio},

provided iy is so large that U’ C U, x;, = yi,, ¥(2)i, = ¥(y)i, and x agrees with
the normal conjugacy xo : U — {z € Wgm: 2z =1y;, i <ig} defined such that
Xo(2)k = 2k, k > ip+ 1. Assume therefore that there is no normal conjugacy from z
to y. Since G" is totally grafted we conclude from Lemma 7.9 that x and y must,
eventually, stay on the same maximal outgoing ray v'. If v/ = ~, there are N, M € N
and a k € Z such that z; = epryy, y; = eprairx for all ¢ > N. The assumed conjugacy
between x and y then yields the conclusion that £ must an asymptotic period of
v and it follows then from Lemma 7.17 that ¢ (x); = ¢ (y); for all large enough i.
There is then a normal conjugacy (U”, V", x") from ¢ (z) to ¢ (y) in this case. Since

di (07 0 47 0 X" 00(2), 07(2)) < d (07 0 X" 0 1h(2), 07 0 15(2))

tends to zero uniformly on ¢~ (U”) we conclude that (¢~ (U”), ¢~ (V"), ¢ o

X" o ¢) is a conjugacy from x to y in Wgw. The existence of the desired set U’
follows then from Lemma 1.4 in this case.
Assume then that 7' # 7. There is an N € N such that

dp (67 (x(2)),07(2)) < %min { h(le) — h(e)l—l— [ €€ FE}
for all j > N and all z € U. Choose M > N such that x;,y; € 7/ for all i > M. Set
U=Un{zeWgn: zi=x5 i <MYNx " ({z€Wgm: 2=y i <M)})
and V' = x (U’). Then
{i=M: P()ie '} ={i=M: ¢(x(2), € F'}
for all z € U’, and it follows that
lim di (0" (¥(2)), 0" (¥ (x(2)))) = 0,

uniformly on U’. Then (¢ (U’),4 (V') ,9 o xo1™!) is a local conjugacy between
b(x) and (y).

Having established that both ¢» and 1 ~! satisfy condition 1, 2 and 3 of Section 2.1
it follows from Theorem 2.4 that 1 induces a *-isomorphism * : A, (XG/, WG/) —
A, (Xgm, Wgm) such that 9°* o 0®* = o® o ¢)*. The existence of the desired x-
isomorphism ¢ : Bgnw — Bg follows now from Corollary 2.14 and Lemma 7.4.
On the level of K-theory the isomorphism ¢ : Bgw — Bg induces the same map as
the composition

o\ —1 -
Ag (X, Wen) S 4, (Xer, Wer ) = A, (Xer, Wer),

which is equivariant. Hence ¢, o 0, = 0, 0 ¢,. U
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7.2. The structure of the heteroclinic algebra

Let G be a graph satisfying conditions i) through iv). By Lemma 7.15 there
is a totally grafted graph G” which satisfies conditions i) through iv) and an o-
equivariant isomorphism Bg ~ Bgr. We can then use the procedure of Section 7.1.2,
called pruning, to remove, one by one, the maximal outgoing rays of G” for which
C) and D) hold. The resulting graph, G', will still satisfy conditions i) through iv),
and it follows from Lemma 7.25 that there is a x-isomorphism Bg ~ Bgr which is
o.-equivariant on K-theory. We will say that G’ is obtained from G by grafting and
pruning.

THEOREM 7.26. Assume that G satisfies conditions i), ii), i) and iv). It follows
that there is a graph G’ such that
o G’ satisfies conditions i), i), iii) and ).
o G’ is obtained from G by grafting and pruning.
o There 1s a x-isomorphism ¢ : Bg — Bg such that g, 0 0, = 0,0 @, on
Ky (Bg).
e The dimension group Ko (Bg) is isomorphic, as a partially ordered group,

to the dimension group Ko (Xa) of [Wa] corresponding to the adjacency
matriz A of G'.

PROOF. At this point only the last assertion requieres a proof. For this note
that by Lemma 7.9 every local conjugacy in Wg is normal, at least after a shrinking
of its domain. It is then clear that Bg is identical with the AF-algebra B, (Xg/)
of Section 4.3. As pointed out in Section 4.3, Ky (B, (Xg/)) is isomorphic, as a
partially ordered group, to the dimension group Ky, (X4) of [Wal. O

In has been shown by D. Fiebig and U. Fiebig that XZ is always a synchronized
system when conditions i) through iv) hold. See Lemma 4.5 of [F]. The process of
grafting and pruning can be used to describe necessary and sufficient conditions for
X to be sofic and of finite type.

THEOREM 7.27. Let G be a graph satisfying conditions i) through w). Then X
1s sofic if and only if G can be made finite by grafting and pruning.

PRrooOF. It follows from Lemma 7.15 and Lemma 7.24 that there is a factor map
X& — X¢, and if G’ is finite, a factor map Xg — X . It follows that X is sofic
in the latter case, cf. Theorem 3.2.1 of [LM]. Conversely, assume that X is sofic.
By Lemma 7.15 there is a totally grafted graph H, obtained from G by grafting,
such that X is conjugate to X}. Hence Xj is sofic. We claim that all outgoing
rays in H are asymptotically periodic in the sense that conditions C) and D) hold
for some N, k, L. To see this we identify X; with a subshift of A% as described in
the proof of Lemma 7.6. Let v = egejes ... be a maximal outgoing ray in H which
is not asymptotically periodic, and choose e € E such that t(e) = i(eg). For each
n €N,

is a word X, and since v is not asymptotically periodic it follows that w, and w,,
have different follower-sets in X when n # m, i.e. the sets

{ueW (XE): wueW (X))}
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are different for different n. This contradicts that Xy is sofic, cf. Theorem 3.2.10 of
[LM]. Thus all outgoing rays in H are asymptotically periodic and they can then
be pruned off one by one to get a finite graph. O

The necessary and sufficient condition for X to be sofic is neatly reflected in
the structure of the heteroclinic algebra Bg:

THEOREM 7.28. In the setting of Theorem 7.26, Bg is simple if and only if G’
1s finite and aperiodic.

PrOOF. When G’ is finite the heteroclinic algebra Bg: is *-isomorphic to the
stabilized AF-algebra whose Bratteli diagram is stationary with the connecting map
given by the adjacency matrix of G’. This is a simple algebra if and only if G’ is
aperiodic. By Theorem 7.26 this implies that Bg is simple.

For the converse it suffices to show that Bg is not simple when G’ is infinite.
To see this, note first that when G’ is infinite there has to be an outgoing ray in G'.
Let then v = egejes ... be such a ray. Let 2z € W be an element such that zg = ey,
and x € Wg an element such that xg.) = ejezes.... It is then easy to see that
there is no normal conjugacy in W/ from x to any element of

U:{yGW@,/Z yZ:Z“ZSO}

It follows then from Lemma 7.9 that there is no conjugacy at all from x to an element
of U, and then Bg is not simple by Proposition 4.6 of [Rel]. O

For completeness we observe the following consequence of our methods:

THEOREM 7.29. Let G be an infinite graph satisfying conditions i) through iv).
Then the one-point compactification X¢ is of finite type if and only if every totally
grafted graph H, obtained from G by grafting, only has one mazimal outgoing ray
and that ray has asymptotic period 1.

PROOF. X is conjugate to X, cf. Lemma 7.13. Let F be a core for H and
represent Xi& as a subshift of {F Ey {T})oo, cf. Lemma 7.6. If H has two different
maximal outgoing rays, conditions A) and B) can not hold for them since H is totally
grafted. It is then not difficult to show that there are infinitely many n € N for which
1™ is a word in X which is not synchronizing. Hence X is not of finite type when
there is more than one maximal outgoing ray in H. Note that the single remaining
outgoing ray in H must be asymptotically periodic, in the sense that conditions B)
and C) must hold, if X! is to be sofic or even of finite type by Theorem 7.27. If the
asymptotic period is not one it is easy to show that there are also infinitely n for
which 1™ is not synchronizing for X when this shiftspace is realized as a subshift
of (FEU {ex}U{1})™, in the notation from the proof of Lemma 7.24. In this way
we obtain the necessity of the stated condition for XZ to be of finite type.

To prove the converse it suffices to prove that the factor map 7 : X¢r — X2,
of Lemma 7.24 is injective when > only contains one point. We leave this to the
reader. O

There are other conclusions one can draw from the methods developed in this
chapter. For example that only very special sofic shift spaces can be the one-point
compactification of a countable state Markov chain coming from a locallly finite
strongly connected countable graph. Specifically, in the terminology of [Th5] they
must have depth one and the derived shift space must consist entirely of periodic
orbits. To reach this conclusion one must also use work by D. Fiebig and M. Schraud-
ner, [Sch].



APPENDIX A

Etale equivalence relations from abelian C*-subalgebras
with the extension property

The material in this appendix is to some extend build on ideas from work of
Kumjian and Renault from the first half of the 80’s. See [Ku| and [Re2]. The main
results, however, are new. This is probably only because we are here interested in
the passage from étale equivalence relations to C*-algebras and back, rather than
from C*-algebras to groupoids and back.

Let A be a C*-algebra and D C A an abelian C*-subalgebra. Let P(A) and
P(D) be the pure state spaces of A and D, respectively, considered as topological
spaces in their respective weak*-topologies.

LEMMA A.l. Let w € P(D), and let © € A* be a state extension of w. Then
o(ad) = w(a)w(d) for alla € A,d € D.

PRrROOF.
@(ad) — S(a)w(d)[* = [& (a (d — w(d)))[’
< w(aa")w ((d — w(d))" (d —w(d))) =0
since w is a character on D. O

We assume that D has the extension property in A, i.e. that every pure state of
D has a unique (pure) state extension to A. Given w € P(D) we let & denote the
unique pure state @ € P(A) extending w.

LEMMA A.2. The map P(D) 3> w+— @ € P(A) is continuous.

ProoOF. By Corollary 2.7 (c) and Remark 2.6 (iii) of [ABG] there is a conditional
expectation 0 : A — D such that @(z) = w (6(z)) for all x € A. O

Set
N(D)={a€ A: aD = Da, aa* € D, a*a € D}.

Note that when w € P(D) and v € N(D) we can define a functional on D such
that D 3 d — w (vdv*) for all d € D. We denote this functional by w (v — v*) in the
following. In fact, we will sligthly extend this notation to similar cases when the
meaning is clear.

DEFINITION A.3. Let w,u € P(D). A local A-conjugacy from w to p is a pair
(U,v,V) where U and V are neighborhoods in P(D) of w and p, respectively, and
v € N(D) is an element such that w (v —v*) =pand V={v(v—2v*): v e U}.

LEMMA A4, Let (U,v, V) be a local A-conjugacy from w to p. Then
i) v(vv*) =1 forallv e U,
ii) v(v'v) =1 forallv €V, and
iii) (V,v*,U) is a local A-conjugacy from p to w.

101
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PROOF. i) follow from the fact that v (v —v*) is a state for all v € U. iii):

Let v/ € V. Then vV = v(v—0*) for some v € U and hence v/ (v* —v) =
v (vv* —vv*) = v by i) and Lemma A.1.This shows that {¢/ (v* —v): vV € V} C
U. Conversely, when v € U, vV = v(v—v*) € V and v = v/ (v* —v). Hence
UC{V/ (v —v): vV eV}, and iii) follows. ii) follows from i) and iii). O

LEMMA A.5. Let (U,v,V) be a local A-congugacy from w to p and (U, w, V') a
local A-congugacy from p to v. Then (U,vw, V") is a local A-conjugacy from w to v.

ProoF. Note that w (vw —w*v*) = p(w —w*) = v. When k € V' there is a
k' € U’ such that k = k' (w — w*) and a k" € U such that " (v — v*) = k’. Then
K" (vw — w*v*) = K, proving that V' C {x (vw —w*v*): kK € U}. The reversed
inclusion is also trivial. i

We say that w, u € P(D) are locally conjugate and write w ~ p when there is a
local A-conjugacy from w to pu.

LEMMA A.6. Local conjugacy is an equivalence relation on P(D).

PROOF. Symmetry is iii) of Lemma A.4 and transitivity is Lemma A.5. To see
that w € P(D) is locally conjugate to itself it suffices to pick an element d € D
such that v (dd*) = 1 for all v in a neighborhood U of w. Then (U,d,U) is local
A-conjugacy from w to itself. O

Set
R(A,D) = {(w,n) € P(D) x P(D): w~ pi}.
We go on to make R(A, D) an étale equivalence relation, and for this we proceed in

complete analogy with the construction from Section 1.2. The topology of R(A, D)
is given by the subbase consisting of the sets of the form

{(v,v(v—2"): veU} (A.1)
for some local A-conjugacy (U, v, V).

LEMMA A.7. Let (U,v,V) be a local A-conjugacy from w to p. Let Uy C U be
an open subset containing w. It follows that Vo = {v (v —v*): v € Uy} is open in
P(D) and that (Uy, v, Vo) is a local A-conjugacy from w to .

PrOOF. Let v/ € V. Then v/ = v (v —v*) for some v € U. Note that v =
V' (v* —v) by Lemma A.4 and Lemma A.1. Furthermore, it follows from Lemma A.2
that w (v* — v) is close to V' (v* —v) = v in P(D) when w is close to v/. There is
therefore an open neighborhood V{ of v such that Vj C V and w (v* — v) € Uy when
w € Vj. Since w (v*v —v*v) = w when w € V by Lemma A.4 and Lemma A.1, we
conclude that Vi C V4, proving that 1} is open. The rest is trivial. O

For every state 7 of A we denote by (H.,m,,&;) the GNS-representation of A,
i.e. H, is a Hilbert space, 7, : A — L¢ (H,) is a x-homomorphism, and &, is a
unit vector in H, such that 7(a) = (&, 7, (a)&,) for all a € A, and 7, (A)E, is dense
in H..

LEMMA A.8. Letw € P(D).
1) W&,(d)g@ = w(d)&;, w € P(D), deD.
ii) Forbe N(D) and d € D, m;(d)m;(b)és € Cmz(b)és.
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PROOF. i) |[m5(d)&; — w(d)&s||” = w ((d — w(d))" (d — w(d))) = 0.
ii) Since b € N(D) there is an element d’ € D such that db = bd’. Then

7o (d) 77 (b)Ee = 7z (b) e (d)€s = w(d')mz(b)Ez by 1). O
LEMMA A9. Let w € P(D),a,b € N(D). Assume that w (a*b) # 0. It follows
that there @s a A € T such that
w(a*a) % ms(a)és = Aw (b°b) 7 75 (b)és.

PROOF. Since |w (a*D)]> < w (a*a) w (b*b), we can set a’ = w (a*a)_% aand b =
1
w (b*b) "2 b. Then 75 (a’)é; and 75 (b')€; unit vectors and
(mp(a')és, ma(b)Es) # 0. (A.2)
It follows from ii) of Lemma A.8 that there are characters p,, p, of D such that
W@(d)ﬂ@(a,)fa, = ,ua(d)mg(a’)f@ and W@(d)ﬂ'@(b/)fa} = ,ub(d)ﬂ'a,(b/)fg, foralld e D. It
follows from (A.2) that u, = up, and hence that
(T ()8, 15 (=) ma(a')&a) = (ma(V)&s, mo (=) 7 (V)Ea)
on D. It follows from the extension property that this equality holds on A also, and

then the irreducibility of 7 implies that m;(a'){; = Az (V)& for some A € T, cf.
e.g. Proposition 3.3.7 of [Pe]. O

LEMMA A.10. Let (U,v,V) and (U',w, V') be local A-conjugacies from w to p.
It follows that there is an open neighborhood @ C U NU’" of w such that

v (vdv*) = v (wdw*) Vd € D
when v € 2.

PROOF. Since w (v —v*) = w (w — w*) it follows from the extension property

that

(Mo (v°) &oy Mo (—)ma (V1) &a) = (7 (0") &, o (=) 7o (w7) &2)
on A. Since 7 is irreducible and 7 (v*) &z, Ty (W*) & are both unit vectors, we
conclude that there is a X' € T such that

™ (U)*) 5@ = /\'m;, (U*) f@, (AS)
cf. e.g. Proposition 3.3.7 of [Pe]. In particular, © (wv*) = (7 (w*) &z, 75 (v*) &z) # 0.
It follows then from Lemma A.2 that # (w*v) # 0 for all v in an open neighborhood

Q of w with Q C UNU’. By Lemma A.9 this implies that 7 (w*)§; and 7 (v*) &5
are proportional when v € ). Hence

v(v—2v") = (m (v*) &, mo (=) (v7) 5)
= (5 (w") &, T (=) 75 (W*) &) = v (w — w")
when v € Q. |

COROLLARY A.11. A base for the topology of R(A, D) is given by the sets of the
form (A.1).

The following generalizes the second proposition on page 437 of [Re2].
THEOREM A.12. R(A, D) is an étale equivalence relation.

Proor. With Lemma A.10 replacing Lemma 1.4 the proof of Theorem 1.7 can
be adopted with only the obvious changes. O
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Consider now an étale equivalence relation R on the locally compact Hausdorff
space X. Let r: R — X and s : R — X be the range and source map, respectively.
By a graph in R we shall mean an open subset U C R such that r(U) and s(U)
are open in X and r: U — r(U), s : U — s(U) are homeomorphisms. An element
f € C.(R) is localized when there is a graph U C R such that supp f C R. Every
element of C(R) is a finite linear combination of localized functions. In particular
the localized functions span a dense subspace in C}(R).

LEMMA A.13. Co(X) has the extension property in CF(R).

PROOF. Let w be a pure state of Cy(X), and let @ be a state extension of w to
C*(R). Let g € X be the point such that w(h) = h (xg) for all h € Cy(X). Tt suffices
to show that o(f) = f (z0,2z0) when f € C.(R). Since supp f N X€ is a compact
subset of R we can find functions k;, h; in C.(X) and ¢; € C.(R), i = 1,2,..., N,

such that h;k; = 0 for all 4, 23:1 Y;(z,y) =1 for all (z,y) € supp f N X*, and
Vi(w,y) = ki(x)vi(@, y)hi(y) (A.4)
for all (z,y) € Rand all i =1,2,..., N. It follows from Lemma A.1 and (A.4) that
w (wz’f) =w (kz : Wif) “hi) = k; (330) h; (330) w (%‘f) .

Since k; (o) hi (z0) = 0 we conclude that & (¢;f) = 0 for all 4. Since f — SN o f
is supported in X C R, we find that

:w(f—i@/}ﬁ)z( sz ) 0, T9) = [ (0, To) -
O

By Lemma A.13 and Theorem A.12 we can consider the étale equivalence relation

R (C(R), Co(X)).
LEMMA A.14. Let f € C.(R) be localized. Then f € N (Co(X)).

PROOF. Let U C R be a graph with supp f C U. Let v : s(U) — r(U) be
the homeomorphism such that (y(¢),t) € U for all t € s(U). When d € Cy(X)
there is a h € C.(r(U)) such that d- f = (dh) - f = f - ((dh) o~y). This show that
Co(X) - f=f-Co(X). Since f- f*, f*- f € C.(X) this completes the proof. O

THEOREM A.15. There is an isomorphism R — R (C¥(R), Co(X)) of étale equiv-
alence relations given by
R> (z,y) — (evy,evy), (A.5)

where ev, € Co(X)* is the functional which evaluates functions at x.
PROOF. Set ®(x,y) = (ev,,ev,). When (z,y) € R there is a localized function
f € C.(R) such that f(2',y") =1 for all (2/,y’) in a neighborhood 2 of (z,y) in R.

Then f € N (Co(X)) by Lemma A.14. Let p : 7 (Q2) — s (©2) be the homeomorphism
such that Q = {(¢,u(t)) : t € r(2)}. Then

fehefot,t) = tha (a,0) F(b,1) = R (u(1), (1))

for all t € r(Q2) and all h € CC(R). It follows that ¥, (f — f*) = evyy for all
t € r(Q). This show that (U, f,V) is a local C}(R)-conjugacy from ev, to ev,.
We conclude that (ev,,ev,) € R(C}(R),Cy(X)), and we have therefore proved that
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®(R) C R(CF(R),Cy(X)). It remains to show that & : R — R (C!(R),Co(X)) is a
homeomorphism.

Let (w,u) € R(CH(R),Co(X)) and let (U,v,V) be a C*(R)-conjugacy from w
to p. There are points xz,y € X such that w = ev, and u = ev,. The functional
@ (—v*) is non-zero and hence @ (gv*) # 0 for some localized function g € C.(R).
Since g € N (Cy(X)) it follows from Lemma A.9 that 75 (¢%) & = Amg (v*) & for
some A € C\{0}. Then

w (_g*) <§wv 7Tw( )ﬂ-& )§w> =A <§w7 7Tw( )7ch (U*) 5&1) = A\w (_U*) : (AG)

(9
Since ), g(z,a)g(a,z) = @ (g - g*) = A (gv*) # 0 there is an element z € X such
that (z,2) € R and g(x,2) 7é 0. Note that z is unique because ¢ is localized.
Assume to obtain a contradiction that z # y. Choose h € C.(X) such that h(z) =0
and h(y) = 1. Let 1, € [*[x] be the characteristic function at 2 and note that

w (=) = (Lo h(-)1a)
on Cy(X). The extension property of Cy(X) in C*(R) and Proposition 3.3.7 of [Pe]
imply that there is a unitary U : H; — [*[z] such that U&; = 1, and kpy(—) =
Uny(—)U*. Tt follows that
w(—g") = <1x, ﬁ[x}(—)ﬁ[x}(g*)1x> =g(z,x) <1x, ﬁm(—)lz>.
Inserting vh we find that
@ (vhg*) = g(z,2) (14, Ky (v) K (R)1.) = 0
since kg (h)1, = h(2)1. = 0. In contrast,
@ (vho*) = p(h) = h(y) =1
contradicting (A.6). It follows that (z,y) € R and that ® is a bijection.

Let (z,y) € R, and let (U,v,V) be a local C}(R)-conjugacy from ev, to ev,.
There is a localized function f € C.(R) such that f(z/,y') = 1 for all (2/,7/) in a
graph 2 C R containing (z, y) Note that

ev,y f f <1 H[I/] x/] > = <1 /ﬂ‘/[l_/ > = eﬁy/
when (2/,y") € Q. It follows that v, f, ’) is a local C;‘(R)—conjugacy from ev, to
evy, where U' = {ev,: z€r(Q)} and V' = {ev,: z € s(Q)}. By Lemma A.10 this
implies that ev, (f — f*) = eV (v — v*) for all 2/ in an open neighborhood Uy of x
such that Uy C U’. This shows that
o (QNr (Up)) = {(evi,eve (v —0")) : t € Up}.

It follows that ® is both open and continuous, and hence a homeomorphism. O

The following theorem is a straightforward consequence of Theorem A.15.

THEOREM A.16. Two étale equivalence relations, R on X and R on X', are
isomorphic if and only if there is a x-isomorphism ¢ : C*(R) — C*(R') such that
¥ (Co(X)) = Co(X).

At this point it is natural to ask if we get the pair D C A back when we construct
the reduced groupoid C*-algebra from R(A, D), and the answer is 'not in general’.
This can be seen from the fact that while the set of normalizers N (Cy(X)) of Co(X)
in C*(R) always span a dense subspace of C*(R) this may not be the case of N(D)
in A. See [Ku] and [Re2] for more on this issue.






APPENDIX B

On certain crossed product C*-algebras

This appendix contains the results about crossed products which are used in the
main body of the text. Most must be known to experts, but I haven’t been able to
locate the statements in the litterature.

B.1. Translations on tori

In this section we have gathered some technical observations on the structure of
crossed products arising from translations in groups, primarily tori.

LEMMA B.1. Let 8 : H — AutB and ' : H — Aut B’ be actions of the
discrete amenable groups H and H' on the C*-algebras B and B’, respectively. Let
m: B — B’ be a x-homomorphism and ¢ : H — H' a homomorphism such that

Bomy (m(a)) = 7 (Bu(a)) (B.1)
for alla € B and all h € H. There is then a x-homomorphism Il ) : B xg H —
B’ g H' such that 11 ,) (aup) = m(a)uymy for alla € B and all h € H. 15 is
injective if ™ and @ both are.

PrOOF. By (B.1) the pair (W,uw(.)) is a covariant representation of (B, 3) and
as such it gives rise to a *-homomorphism between the full crossed products which
takes buy, to m(b)uyn). Since we assume that H is amenable the reduced and the
full crossed products agree, cf. [Pe]. It follows from the general theory of crossed
product that I, ) is injective when 7 and ¢ both are. O

LEMMA B.2. Let G1+—Go+——G3+— ... be a sequence of compact abelian groups
and continuous surjective group homomorphisms. Let G = projlim, Gy be the cor-
responding inverse limit group, and H C G a countable subgroup. Let p* : G — G
be the canonical projections and let Hy C Hy C H3z C ... be a sequence of subgroups
of H such that H =J, H;.

It follows that C(G) %, H is x-isomorphic to the inductive limit

lim (C(G) X ropr Hi, r)
k

where each 1y, is a unital x-homomorphism and the action T o p* of Hy, on C (G})
s given by

(rop"), (N)@) = f (z—p"(h)), (B.2)
feC(Gy),h e Hy.

PRrROOF. It follows from Lemma B.1 that there is an infinite commuting diagram

C (Gl) AN ropl H1 —C (Gg) AN rop2 H2 —C (Gg) XN rop3 H3 —_—

— | s

C(G)x H

107
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of injective *-homomorphisms. The actions 7 o p* are here defined such that (B.2)
holds. By commutativity of the diagram (B.3) there is a *-homomorphism

o im O (Gy) Xpope Hy — C(G) 2, H.
k

Note that 4 is injective. By using that C'(G) is isomorphic to lim;C (G;) it follows
that the canonical copy of C'(G) is in the range of pu. By construction the same is
the case of uy for each h € H since H = {J; H;. Since {fuy: f € C(G), h € H}

generates C'(G) X, H, this proves that u is surjective. O

LEMMA B.3. Let o : H — AutA be an action of the countable discrete abelian
group H on the separable C*-algebra A. It follows that A X, H is stably isomorphic

to (A % (H/ kera)) @ C (kera).

PROOF. Let s: H/ ker« — H be a section for the quotient map H — H/ ker a.
Then w(xz,y) = s(x) + s(y) — s(z +y) is a ker a-cocycle which we can consider as
a 2-cocycle with values in the unitary group of C' (ker a). It follows from The-
orem 4.1 of [PR] that A x, H is *isomorphic to the twisted crossed product
A @ C(ker a) X agideger lasw (H/kera). The 2-cocycle w @ 1y, which takes val-

ues in the unitary group of L = ILC (k/er\a) (l2 (H/ ker a, C(lgr\&))) is a co-boundary;
specifically, w(z,y) ® 1, = VpUyV; ., Where
v (y) = w(z, y)d(z +y).
It follows therefore that
(A ® C’(@) X awide e Lasw (H/ ker a)) @ K (I* (H/ ker o))

is *-isomorphic to (A®C(@) Xagidegas, (H/ kera)) @K (12 (H/ ker a)), cf. Lem-
ma 3.3 of [PR]. This yields the lemma since
A® C(ker @) Masidpm, (H/ kera) = (A x, (H/kera)) © C (kera).
U

LEMMA B.4. Let H be a finitely generated subgroup of the n-torus T™ and k the
rank of the torsion-free part of H. It follows that there is a subgroup K C T™ such
that K ~Z% and such that C (T™) x, H is stably isomorphic to C (T") x, Z*.

PROOF. Note that H ~ F@®Z" for some finite abelian group F. Then C (T") %,
H =~ (C(T") x, F) x Z*. Let

1
p= —Zuk e C(T") %, F.
#F keF
A simple calculation shows that p is a projection such that

P(C(T) %, F)p={Y_ fur: f€C(G), flg—k) = flg). Vg€ G, ke F|

keK

~ C(T"/F).
By using that T"/F ~ T" we find that
p((C(T") x, F)xZF) p~ C(T") . Z".
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Since the action of H is free, there is bijective correspondance between the ideals
of (C'(T") x, F) x Z* and the H-invariant ideals of C' (T™). It is therefore clear
that p is a full projection in (C (T") x, F') x Z* and we conclude from [Br| that
(C'(T™) %, F) x Z* is stably isomorphic that C (T") x, Z. O

The same proof yields also the following, which is a special case of a result of
Rieffel, [Ril].

LEMMA B.5. Let G be a compact group, F' a finite normal subgroup of G. It
follows that C (G) x, F' is stably isomorphic to C' (G/F).

LEMMA B.6. Let H be finitely generated abelian group and ¢ : H — T" a
homomorphism and m the rank of the torsion-free part of H. Let To ¢ : H —
Aut C (T™) be the action given by

(Tow), (f)(x) = f(z—¢h)).
Then either

i) there is a natural number | € N such that C (T™) X o, Z™ is stably isomor-
phic to C' @ C (T"™™), or

ii) there are natural numbersl,r,d, k and a non-degenerate special non-commu-
tative torus B of rank (d, k) such that r+d+k = n+m and C (T") X0, Z™
is stably isomorphic to C' @ C' (T") ® B.

PROOF. Let I be the order of the torsion subgroup of ker . It follows from
Lemma B.3 that C'(T") X0, H is stably *-isomorphic to

C' ® C (T @ (C(T") x, (H/ ker ¢))

where a is the rank of the torsion-free part of kerp. Write H/ kerp ~ F & Z*
where F' is a finite group. If & = 0 we are in case i) by Lemma B.5. Assume
therefore that & > 1. It follows from Lemma B.4 that C' (T™) %, (H/ ker ¢) is stably
isomorphic to C' (T") x, Z*. Let ¢ : Z"™ — T* be the dual of the embedding Z* C T"
and set p(xr) = ¢(z)~*. Then u has dense range since ¢ has and C (T") x, Z* ~
C (Tk) Xrop Z". We are now essentially back where we started, but with the crucial
difference that p has dense range. When we repeat the preceding arguments we get
therefore that C' (T’“) Xrou " is stably isomorphic to C"®C (T“,) ® (C (Tk) X, Zm'),
where Z™ is now a dense subgroup of TF, " is the order of the torsion part of ker ¢
while a’ is the rank of the torsion-free part of kervy. Then B = C (']I‘k) X, Z™ s
a non-degenerate noncommutative torus and we have shown that C' (T") X, H is
stably *-isomorphic to C'"" @ C (T“*a') ® B. Since a’' +a+ k+m' = n+ m this
completes the proof. Il

ProPoOSITION B.7. Let H be finitely generated abelian group and ¢ : H — T"
a homomorphism and m the rank of the torsion-free part of H. Let Top : H —
Aut C (T™) be the action given by

(Tow), (@) = f(x—ph).

There are then a sequence F;,1 € N, of finite dimensional C*-algebras, a natural
number k < n +m + 1, projections p; € C (']Tk) ® F; and a sequence

Al C A CA3C -
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of unital C*-subalgebras of C (T") X0, H such that

C(T") %oy H = |_J A

i=k
and
A >~ p; (C’ (Tk) & Fz) Di
for all 1.
Proor. This follows straightforwardly by combining Lemma B.6 with the main
result of [Ph2]. O

LEMMA B.8. Let H be a locally compact abelian group, F a finite abelian group
and G C H x F a countable subgroup. Let p : H x F' — F the projection. Set
Fo=p(G) and Gy =kerpNG.

Then Co (H x F) x; G is stably isomorphic to ®p/p,Co(H) X Go.

PRroor. It follows from Theorem 4.1 of [PR] that there is a twisted action
(a,v) on Co(H) X, Gy such that Cy (H x F) x. G is *-isomorphic to the twisted
crossed product ((Co(H) 3, Go) @ C(F)) Xagr.v@iep Fo- By using Theorem 3.4 and
Lemma 3.3 of [PR] we see that there is a genuine action (3 of Fy on K®(Co(H) %, Gp)
such that ((Co(H) %, Go) @ C(F)) Nagrweiep Fo is stably s-isomorphic to

(K ® (C()(H) X Go) & C(F)) N Ber Fo.
It is straightforward to see that (K ® (Co(H) %, Go) @ C(F)) X g, Foy decomposes
as a direct sum
Dr/r, (K@ (Co(H) %- Go) ® C(Fp)) Xer Fo.
But
(K ® (Co(H) %, Go) ® C(Fo)) Xper Fo ~ K ® (Co(H) %, Go) x5 Fy x5 F,

cf. Lemma 7.9.2 of [Pe], and K® (Co(H) %, Go) X5 Fy Ngﬁ ~K® (Co(H) % Go)
by Takai-duality, cf. Theorem 7.9.3 of [Pe]. O

B.2. On crossed products of abelian (*-algebras by discrete groups

Let X be a locally compact second countable space. Let H be a countable
discrete group and (3, h € H, an action of H by homeomorphisms of X. Let 5 be
the corresponding action of H by automorphisms of Cy(X), i.e. Bg( f) = fopBs,
f e Co(X).

THEOREM B.9. Assume that for all compact subsets K of X there is a g € H
such that By,(K) N K = 0.
It follows that Co(X) x5 H is stable.

PROOF. We use Proposition 2.2 and Theorem 2.1 of [HR] in the same way as
in the proof of Lemma 4.15. Let F* C H be a finite subset, and f, € Cy(X),g € F,
functions of compact supports. Since elements of the form ) ger Jgtlg are dense in
Co(X) x5 H it suffices to find an element v € Cy(X) x5 H such that

v*v(Z fgug> = ngug (B.4)

geFr geF
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(Z fgug>v = 0. (B.5)

and

geF
To this end, let
K= |J Bg(U suppfh>-
geF—1u{e} heF

Since K is compact there is by assumption an element k € G such that g (K) N
K =10. Let h € C.(X) be a non-negative function such that h(x) = 1,2 € K, and
supp h N B (K) = 0. Set v = uy—1Vh. It is straightforward to check that (B.4) and
(B.5) hold. O

Let 7 be a densely defined lower-semicontinuous trace on the crossed product
Co(X) x5 H. Then 7 is finite on the Pedersen ideal of Cy(X) x5 H, cf. 5.6 of [Pe],
and since the Pedersen ideal contains all positive elements a of Co(X) x5 H for
which there is another positive element b such that ba = a, we see that 7 restricts to
a positive linear functional on C.(X) C Cy(X) x5 H. By the Riesz representation
theorem there is therefore a positive measure . on X such that

r(f) = /X F(t) dus ()

for all f € C.(X). Note that u, is finite on compact subsets of X and invariant
under [ in the sense that ., (6,(A)) = p,(A) for all g € H and all Borel sets A C X.

THEOREM B.10. Assume that B is a free action, i.e. that B,(z) # x when
x € X, g€ H\{e}. It follows that the map T — p, is a bijection from the densely
defined lower-semicontinuous traces on Co(X) x5 H onto the positive (3-invariant
Borel measures on X that are finite on compact subsets.

PROOF. Surjectivity: Let v be a positive -invariant Borel measure on X, finite
on compact subsets. When a € Cy(X) x5 H is positive set

r(a) = /X Pla)(t) du)

where P : Co(X) x5 H — Cy(X) be the canonical conditional expectation. Since P
is continuous it follows from Fatou’s lemma that 7 is lower semi-continuous. Since
v is finite on compact subsets we have that 7 is finite on every positive element of
C.(X) and since this set of elements contains an approximate unit for Cy(X) x s H
it follows that 7 is densely defined. To see that 7 is trace, i.e. that 7 (uau*) = 7(a)
when u is a unitary from the unitezation (C’O(X) X3 H)+, note that there is a von

Neumann algebra M with a semi-finite faithful trace ¢ and a *-homomorphism
7 Co(X)" x5 H — M such that the diagram

Co(X)* %3 H "5 M
[OTl ]/

commutes on positive elements, cf. pp. 148-149 of [Di]. The trace property follows
from this because (Co(X) x5 H)Jr C Co(X)*™ x5 H. Since y1, = v by construction
this proves the surjectivity part.
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Injectivity: Let 7,75 be two densely defined lower-semicontinuous traces on
Co(X) x5 H. Assume that pi,, = fir,, and represent Co(X) on L* (X, i, ) as mul-
tiplication operators. Then Cy(X) x5 H can be considered as a strongly dense
C*-subalgebra of von Neumann algebra crossed product L* (X, u,,) x H. It fol-
lows from Proposition 5.6.7 of [Pe| that 7y and 7, both extend to normal semi-finite
traces, 71 and 7o, on L (X, u,,) ¥ H. Note that 7; and 75 agree on L™ (X, i, )
since [y, = fir,. Since [ is a free action it follows therefore from Theorem 7.11.13
of [Pe] that 7 = 75. In particular, 7 = 7. O

COROLLARY B.11. Let G be a locally compact second countable group and
H C G a countable dense subgroup. Assume that G is not compact. It follows that
Co(G) %, H s stable, simple and and has a densely defined lower semi-continuous
trace which is unique up to scalar multiplication.

PRrOOF. The simplicity of the (reduced) crossed product Cy(G) x, H follows
from [Z] (or Proposition 4.6 of [Rel]), the stability from Theorem B.9 and the
existence and essential uniqueness of the trace from Theorem B.10 by using the
essential uniqueness of the Haar-measure. O

B.3. Translations in RF.

In this section we study the structure of the crossed products arising from vector
translations in Euclidian space.

Let n,k € N, n > k. Let vq,vs,...,v, be a collection of vectors in R*. Define
an action « of Z™ on Cj (Rk) such that

a(f)(x) = f(x + Zzivi>.
i=1
We are interested in the structure of the crossed product C*-algebra
Co (R*) % Z"

under the assumption that the v;’s span RF.

Assume that vy, vs, ..., v, are linearly independent. Let o be the action of Z*
on Cj (Rk) obtained by restricting o to Z¥ C Z", and let o’ be the action of Z"*
on Cy (Rk) Xo ZF obtained from «. Then

Co (R*) %10 Z" = (Co (RY) Xor ZF) 300 27,
Set

k
L= {Zzivi © (21,22, 0,21) € Zk}.
i=1

For f € Cy (R¥) and z € R, define f* € Cy (L) such that f(I) = f(z +1). Let 8
be the action of Z* on Cy(L) given by

k
B(o) (1) = g1+ 3 =)
i—1
We get in this way a *-homomorphism II : Cy (R*) x4 ZF — Cy, (R¥, Co(L) x5 ZF)

defined such that
0> S ) @) = 3 f)u.

2€ZF 2E€ZF
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when f € C, (Z*,Cy (R¥)). Forevery | € L define an automorphism ; of Co(L) » 3Z*

such that
w( Y ge)) = Y g(2)'ws,

2€ZF z€ZF
where h!(I') = h(l +1'), h € Co(L),l € L. Then II is a *-isomorphism mapping
C(] (Rk) Aot Zk onto
A={geCy(R"Co(L) x5 Z") : gz +1) = (g(x)),z €R" I e L}.

Define an action i of Z" % on A such that

n

i=k+1
Since Il o o = p, oIl for all z € Z"* we conclude that
Co (R¥) x4 Z" = (Co (R*) Mo ZF) Mo "% = A %, 27"

Represent Cy(L) as multiplication operators on /(L) in the natural way and
define U, € L (I?(L)) such that (U.1) (1) = ¥ (I + S, zv;). Then Co(L) xg Z*
is generated, as a C*-algebra, by {fU.: f € Co(L),z € Z*}, and Cy(L) x5 ZF =
L (1*(L)) = K. The Fourier transformation W : (*(L) — L? ([0, 1]¥) is a unitary
such that

(WUW* ) (t1, ta, ... 1) = €2 2017500 (b, . 1) -

For s € R¥, define V; € L¢ (L? ([0, 1]¥)) such that

(Vo) (t1, ta, - . 1) = 2™ 20=15350) (¢ 4o, .. 1y) .

Then U, = W*V,W is a strictly continuous representation such that Ad U; = ;.
We can then define a x-isomorphism ¥ from A onto

B={g€C,(R"Co(L) xgZ*) : glz+1)=g(z),zeR" 1 €L}
such that
U(f)(x) =U; f(z)U,.
This shows that

Co (R¥) x4 ZF =~ C (R*/L,Cy(L) x5 Z*) = C (R*/L) ® K. (B.6)

Let wgi1, Whio, ..., w, € R¥/L be the image of vy 1, Vrto, ..., v, € R*. Define
actions k and k' of Z" % on C (Rk/L) and K such that

(5.f) (x) = f(ﬂf + i ziwi>a

i=k+1
and
k, =AdU_,,
respectively. It is now clear that the isomorphism (B.6) turns the action o’ on
Co (R¥) x4 ZF into the diagonal action £ ® &’ on C' (R¥/L) @ K. Thus

Co (R¥) x4 Z" =~ (C (R*/L) @ K) Xy Z" "
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Now the formula
Z f(2)u, — Z f(z) (1 U,)u,
Play/al z€Zn—Fk
gives rise to a x-isomorphism
(C(R*/L) @ K) Xpgw Z" " =~ (C (R*/L) @ K) Xugiq Z" "
= (C(R*/L) %, 2" *) @K,
and we can summarize the result as follows:

Let e;,i = 1,2,...,k, be the standard basis in R*. Let V € My (R) be the matrix
such that Ve; = v;. Set aj = p (V" v;44),5 =1,2,...,n — k, where p: RF — TF =
R¥/ZF is the quotient map. Let 3 be the action of Z"™* on C (T*) obtained from
rotation by the q;’s, i.e.

B(f)(@) = f (aia3 ... a7 ).
THEOREM B.12. Assume that the v;’s span R¥. Then
Co (R¥) %o Z" ~ K ® (C (T*) x5 Z"7").

COROLLARY B.13. Assume that {Z?Zl 20 (21, 22,...,2,) € Z"} is dense in
R*. It follows that Co(R¥) x4, Z" is a stable AT-algebra of real rank zero with a lower
semi-continuous densely defined trace which is unique up to scalar multiplication.

PROOF. Under the present assumption Cp(R*) %, Z" is simple and hence the
crossed product C' (Tk) X3 Z" % is a (special) nondegenerate non-commutative torus.
Therefore the corollary follows by combining Theorem B.12 with the main result
of [Ph2]. O



APPENDIX C

On an example of Bratteli, Jorgensen, Kim and Roush

The purpose of this Appendix is to supply the details of the argument which
shows that the stationary dimension groups corresponding to the matrix

65 7
<24 67) (C.1)
and its transpose are not isomorphic, even when we ignore the orderings. Compare
with Example 3.6 of [BJKR]. I am grateful to Kim and Roush for explaining me
the part of the argument which is missing in [BJKRJ.
Let A be an 2 x 2 matrices with entries from N. The inductive limit group of
the sequences
A

A A

Z2 Z2 Z2 Z2 A .. (02)
will be denoted by G 4. Since the entries of A are non-negative, G4 is a partially

ordered group in a natural way, cf. e.g. [BJKR]. Assume that A is invertible in
M, (Q), i.e. assume that Det A # 0. Then the commuting diagram

72—t gr A g2 AL g2 A
Nl
id

Q2

gives rise to an embedding G4 C Q? which identifies G4 with
{26@2: Arz e 72 forsomek’GN}.

LEMMA C.1. Assume that the eigenvalues, n and m, of A are positive natural
numbers, different and relatively prime. Choose v € Z*\{(0,0)} such that Av = nv.
It follows that

1
{ZEGA: RZGGA forallkGN}:QvﬂGA. (C.3)

If, furthermore, v = (a,b) is chosen such that a and b are mutually prime, we have
that

k )
QuNGa = {71): k.l e€Z, ln' forsomeieN}. (C4)

PROOF. Let w € QuNG 4 and consider some k& € N. Then A" (nikw) =A"w e
72 for some r € N since w € G 4. It follows that nikw € Gy.

Conversely, assume that z € G4 and that nikz € G4 for all k € N. Let u € N?
be an eigenvector for A corresponding to the eigenvalue m. Then z = quv + ¢'u for
some ¢, ¢ € Q, and we aim to show that ¢ = 0. Let N € N be so large that p = Ngq

115
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and p’ = N¢' are both integers. Then Nz = pv+ p'u. If ¢ # 0 we can choose k € N

so large that
1
—nkp’u ¢ 7°. (C.5)

Since n—lsz € (G4 there must be an r € N, r > k, such that

T

m
u.
nk

1
72> A" (ﬁNz) = pn" P 4+ pf

Since pn"*v € Z* this implies that p'”-u € Z2. This contradicts (C.5) since n and
m are mutually prime. Hence ¢’ = 0 and we conclude that z € Qv N G4. (C.3) is
established.

To prove (C.4) note first that one inclusion, namely D, is trivial. Let §U € Gy,

where p, q € Z are relatively prime. Then Ai(gv) = %n"v € Z? for some i € N and
it follows then that q|n’ since (p,q) and (a,b) are relatively prime. O

For the following lemma recall that a non-negative matrix is primitive when
some power of it has all entries strictly positive.

LEMMA C.2. Let A and B be primitive 2 X 2 matrices with entries from N.
Assume that A and B have the same distinct and mutually prime eigenvalues
from N\ {0}. Assume that G4 and Gp are isomorphic as groups.

It follows that A and B are shift equivalent, i.e. there are matrices U,V € My (Z)
with non-negative entries such that UA = BU, VB = AV, UV = B! and VU = Al
for some | € N.

PROOF. Let n,m be the two common eigenvalues for A and B. Choose v, u, ',
u’ € Z? be non-zero vectors such that Av = nv, Au = mu, Bv' = nv’ and Bu' = ma/'.
Let ¢ : G4 — Gp be an isomorphism. It follows from Lemma C.1 that ¢ (v) € Qv
and ¢(u) € Qu’, which in turn implies that
poA=Boop. (C.6)
Let X € M, (Q) be the matrix determined by the condition that Xu = ¢(u) and
Xv = ¢(v). It follows from (C.6) that
XA = BX. (C.7)
Similarly, we construct a matrix Y € M, (Q) such that Yu' = ¢~ (v/), Yo' =
e~ (v') and
YB = AY. (C.8)
Let e; = (1,0),e2 = (0,1). There is then a natural number k such that
B¢ (er), B'p(e2), A% (er), A" (e2)
are all in Z?. Define U,V € M, (Z) such that Ue; = Bfg (e1), Ues = By (ey),

Ve, = AFp=1(e1) and Veey = A%~ (e5). Since there are integers k;, [;, n; such that
kie; = l;v + n;u,i = 1,2, it is easy to check that

B*U =X (C.9)
and
ATV =Y. (C.10)

It follows from (C.7) through (C.10) that UA = BU and VB = AV. Finally, since
XY =YX =1, we find that UV = B*XA*Y = B? and VU = A*Y B*X = A%,
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U and V have the required properties, except that they may contain negative
entries. Since both A and B are primitive, this can be remedied by Perron-Frobenius
theory, cf. Lemma 2.2.8 of [K]. O

Since the matrix (C.1) is primitive, we can now complete our task by appealing
to the reasoning from Example 3.6 of [BJKR]. For completeness we include the
argument here. So let now A be the matrix (C.1). The common eigenvalues for A
and A" are the primes n = 53 and m = 79. Choose vectors

(3). (5), ), (%)

in Z? such that

A(5)=n(5),
A(y) =m (%),
A'(5) =n(3).

and
t (' _ z’
A (y/) _m(y/)'
We 'normalize’ these vectors such that the pairs (o, 8), (o/,3'), (z,y) and (2/,y')
are all relatively prime. Assume to get a contradiction that G4 and G4¢ are iso-
morphic as groups. By Lemma C.2 there are then matrices U,V € My(Z) such

that UA = AU, VA' = AV, UV = (A") and VU = A! for some | € N. Then
UG 4 = G 4+ and it follows from the Lemma C.1 that
o k. o K
U(3)= j(y% U(y)= l_/(y’)
for some k, k',1,1" € Z such that I|n’ and I'|m' for some i € N. Then
UA' () =d(3), UA'(3) =d (}))

where d = %n’ €Zand d = 'l‘:—,/mi € Z. Since UA" : G4 — G 4t is an isomorphism of
groups, it follows from Lemma C.1 that there must be some k,[ € Z such that l|n"
for some r € N and

This implies that d% = 1 and hence that d|n" since [|n". By using the same argument
with (3) replaced by (gf) and by increasing r, if necessary, we conclude that d|n”

and d'|m”. Since ‘
vA (5%) = (50) (62)

(22)(L9)(55)  =UA € My(2). (C.11)

vy
Now, it is elementary to check that

aa\7V 71y 7%%
(ﬁﬂ/) 7(122) - 6 7 |

we conclude that

while

The (1,1) entry in the product (
2d n 72d’
13 13
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As noted above d|n” and d’'|m” for some r € N. Since n and m are primes and both
congruent to —1 modulo 13, we conclude that d and d' are both congruent to 41
modulo 13. That is, we can write d = ¢; + n; - 13 and d' = €3 + no - 13 for some
e; € {1,—1} and some n; € Z, i = 1,2. It follows that

2d 72d/ . 261 662

BT3B B
modulo 1. This is not an integer, contradicting (C.11).
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