
U N I V E R S I T Y OF A A R H U S
D E P A R T M E N T OF M A T H E M A T I C S

ISSN: 1397–4076

HYPERSURFACES IN Pn WITH 1-PARAMETER

SYMMETRY GROUPS II

by A. A. du Plessis and C. T. C. Wall

Preprint Series No.: 10 November 2007
2007/11/08

Ny Munkegade, Bldg. 1530 http://www.imf.au.dk
DK-8000 Aarhus C, Denmark institut@imf.au.dk





Hypersurfaces in P n with 1-parameter symmetry
groups II

A. A. du Plessis and C. T. C. Wall

Introduction

We are interested in hypersurfaces V ⊂ P n(C) defined by homogeneous equations
f(x0, . . . , xn) = 0 of degree d. We say that V is quasi-smooth if V has isolated
singularities and is not a cone. If V admits a subgroup G of PGLn+1 of symmetries
with r = dimG ≥ 1, we call V r−symmetric.

In [4] we gave a detailed discussion of 1-symmetric quasi-smooth hypersurfaces
in the case when G is semi-simple. The main object of this paper is to give a
corresponding analysis when G is unipotent.

Our first main result Theorem 2.4 lists the possible cases. Let G be a unipotent
group of type given by the sequence R = {r1 ≥ r2 ≥ . . .} (i.e. the Jordan blocks
have sizes ri + 1; we omit zeros in writing R). Then we have one of the following:

Case 2: d ≥ 3, R = {2}, Case 3: d = 4, R = {3},
Case 4: d = 3, R = {4}, Case 21: d = 3, R = {2, 1}.

We find that Case 21 splits into two: one a subcase of Case 2; the other we rename
Case 5.

Our second main conclusion is the calculation of the total Milnor number µ(V )
(the sum of the Milnor numbers µPi

(V ) at all singular points Pi of V ). The result
is, where the Vi are auxiliary varieties defined ad hoc in each case:

Case µ(V )

2 1
2
(d− 2)(2d− 1)(d− 1)m + µ(V2) + µ(V3)

3 22.3m

4 11.2m + µ(V3)
5 25.2m + µ(V3)

There is a ‘main’ singular point P . Provided in Case 2 that V2 is non-singular and
in Case 5 that V3 is, the Milnor number µP (V ) is the first term of the sum and the
singularity of V at P is semi-quasi-homogeneous.

The first two sections are devoted to preparation and the proof of Theorem 2.4.
We then pause for a brief review of some important background results, hold-
ing for all quasi-smooth 1-symmetric hypersurfaces; in particular, we recall that
τ(V ) ≤ (d− 1)n−2(d2− 3d+ 3), and attains this value if and only if f is annihilated
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by vector fields ξ of degree 1 and η of degree d− 2, not a multiple of ξ. We will call
V oversymmetric in this case. Moreover, f is 2-symmetric if and only if it is over-
symmetric with d = 3, and is never 3-symmetric. We briefly recall the enumeration
of oversymmetric hypersurfaces in the semi-simple case. We also give a number of
auxiliary methods of calculation of Milnor numbers, so as not to interrupt the main
discussion.

After a brief recall of the invariant theory of the nilpotent actions we discuss
Cases 2-5 in successive sections; in each case we discuss the geometry of the action,
show how to reduce f to a convenient normal form, analyse the conditions on f for
V to be quasi-smooth, find the singular points, and study the total Milnor number
µ(V ) and the nature of the singularities presented. We proceed to discussion of the
Tjurina number τ(V ), and show that V is always oversymmetric in Cases 3 and 21,
never in Case 4, while in Case 2 by Theorem 5.7 it occurs if and only if either (a) V3

is a cone, or (b) after change of co-ordinates if necessary, ∂φ/∂B and ∂φ/∂X both
vanish along X = B = 0.

In a final section we recapitulate the complete list of the five 2-symmetric cases
in more detail.

1 Unipotent actions on vector spaces and

algebras

If N is a nilpotent endomorphism of a finite dimensional vector space K, we can
choose co-ordinates to put N into Jordan canonical form, and count the sizes of
the blocks. If the block sizes are λ1, . . . , λt, arranged in non-increasing order, then
n =

∑
i λi. If we write νk := rankNk−1− rankNk, then ν is the partition conjugate

to λ, so both partitions are independent of the choice of co-ordinates. Our usual
notation will be to set ri := λi − 1 and let R be the sequence of ri, with zeroes
omitted.

We recall the representation theory of the Lie algebra sl2. Denote the canonical
basis vectors of sl2 by

e :=

(
0 1
0 0

)
, f :=

(
0 0
1 0

)
, h :=

(
1 0
0 −1

)
.

These satisfy [e, f ] = h, [h, e] = 2e, [h, f ] = −2f . Every (finite dimensional)
sl2−module M is a direct sum of irreducible modules, and any irreducible mod-
ule of rank s + 1 (s = 0, 1, 2, . . .) is isomorphic to the module Ks with basis
x−s, x2−s, . . . , xs−2, xs and action given by

e.xr = s−r
2
xr+2, f.xr = s+r

2
xr−2, h.xr = rxr.

Thus the eigenvalues of h on M are all integers, and we can define a grading on M
by assigning weight r to the eigenspace belonging to the eigenvalue r. Then for any
r ≥ 0, er gives an isomorphism of M−r on Mr and f r gives an isomorphism of Mr

on M−r.
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Lemma 1.1. For any sl2−module M ,
(i) if r ≥ 0, f r gives an isomorphism from the weight space Mr to M−r,
(ii) if r > 0, then Ker(f |Mr) = 0,
(iii) if r < 0, then dim Ker(f |Mr) = dimMr − dimMr−2,
(iv) if x ∈M and f.x = h.x = 0, then e.x = 0.

(i)–(iii) follow by inspection from the remarks above. It suffices to prove (iv) for
each Ks. But if s > 0 then f.x = h.x = 0 for x ∈ Ks implies x = 0, while if s = 0
then e.x = h.x = f.x = 0 for any x ∈ K0.

Lemma 1.2. The action of a nilpotent endomorphism N on a (finite dimensional)
vector space K can be extended to an sl2−action, with N acting as f .

Proof. Express K as the direct sum of monogenic modules: say K ′s has basis
x,N.x,N2.x, . . . , N s.x with N s+1.x = 0. If we set, for 0 ≤ i ≤ s, N ix =: s!

(s−i)!xs−2i,
then we have Nxs−2i = (s − i)xs−2i−2 or, writing r = s − 2i, Nxr = s+r

2
xr−2. We

can now set, for each r, e.xr = s−r
2
xr+2, h.xr = rxr.

The action, and the grading it defines, are not determined solely by the nilpotent
action. However, if we define the weight filtration by letting FvK be the sum of the
eigenspaces of h belonging to eigenvalues ≤ v, we have

FvK =
∑
p∈Z

KerNp ∩ ImNp−v−1.

It suffices to check this on the modules K ′s. Then Ker Np has basis {N ix | i ≥
s+ 1− p} and Im Np−v−1 has basis {N ix | i ≥ p− v − 1}. Thus N ix ∈ FvK if and
only if, for some p, i ≥ max(s+ 1− p, p− v− 1), i.e. i+ v+ 1 ≥ p ≥ s+ 1− i, thus
if and only if s− 2i ≤ v.

A linear operator L(xi) =
∑
ai,jxj on a vector spaceK defines a linear differential

operator DL :=
∑
ai,jxj∂/∂xi, which acts on the symmetric algebra S(K) of K, and

induces the action of L on K. We also regard DL as a vector field on K, and then
denote it by ξL.

Over a field of characteristic zero, we can also form the 1-parameter group
{Exp(tL)} of automorphisms of K, which inherits an action on S(K). If we have a
Lie algebra g of linear automorphisms of K, the exponentials generate a group G of
automorphisms of K, and hence of S(K), and the induced action of an element L
of the Lie algebra is that of DL.

We have seen how to extend a nilpotent operator N on K to an action of sl2:
this now extends to an action of sl2 on the symmetric algebra S(K) of K, which in
turn we can restrict to the homogeneous part M := Sd(K) of degree d.

If further K splits as a direct sum K ′ ⊕ K ′′ with each of K ′, K ′′ invariant
under N , extending as above to an sl2−action leaves each summand sl2−invariant.
The induced actions of SL2 and sl2 on S(K) now preserve each of the subspaces
M = Sd′(K

′) ⊗ Sd′′(K ′′). Corresponding remarks apply to a direct sum of three or
more summands.

Applying Lemma 1.1 to M , we find
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Theorem 1.3. Let N be a nilpotent endomorphism of K. Then
(i) for any r ≥ 0, Dr

N gives an isomorphism from the weight space Mr to M−r,
(ii) if w > 0, then Ker(DN |Mw) = 0.
(iii) if w < 0, then dim Ker(DN |Mw) = dimMw − dimMw−2.
(iv) Ker(DN |M0) is the space of invariants of SL2 acting on M .

2 Restrictions on unipotent actions

Let K be a finite dimensional vector space over C with a nilpotent endomorphism N ,
of type given by the sequence R = {r1 ≥ r2 ≥ · · · }. We consider homogeneous
functions f on K, of degree d, annihilated by DN , or equivalently, invariant under
the 1-parameter group GN = {Exp(tN)}. We seek the conditions under which
the hypersurface V in P (K) defined by f is quasi-smooth. In this section we will
enumerate the possibilities for (d;R).

Let {xi} (1 ≤ i ≤ n) be variables with assigned weights w(xi) = wi, arranged
in non-decreasing order. Define a filtration of the polynomial ring C[x] by letting
f ∈ F (v) if f is a linear combination of monomials of weights ≤ v.

Lemma 2.1. Let fj, j = 1, . . . ,m be polynomials of degree D in the xi with fj ∈
F (Wj); we suppose W1 ≤ · · · ≤ Wm. Suppose that the set Z of common zeroes of the
fj in affine n-space has dimension ≤ k. Then Dwi ≤ Wi+m+k−n for i = 1, . . . , n−k.

Proof. If all the fj vanish on {x1 = · · · = xn−k−1 = 0} then dimZ ≥ k+ 1; so one of
the fj, say fj1 , contains a monomial in xn−k, . . . , xn alone, and so Dwn−k ≤ Wj1 . If
all but fj1 vanish on {x1 = · · · = xn−k−2} then dimZ ≥ k + 1; so another of the fj,
say fj2 , contains a monomial in xn−k−1, . . . , xn, and so Dwn−k−1 ≤ Wj2 . Continuing
in this way we find distinct j1, j2, . . . , jn−k ∈ {1, . . . ,m} s.t. Dwn−k+1−i ≤ Wji .

Since the numbers js for 1 ≤ s ≤ n − k − i + 1 are all distinct, at least one
of them, say j`, is ≤ m − n + k + i, by the pigeonhole principle. Hence Dwi ≤
Dwn−k+1−` ≤ Wj` ≤ Wm−n+k+i.

Corollary 2.2. Let f be homogeneous of degree d in the variables xi; suppose f ∈
F (W ) and that the singular set of the variety V has dimension ≤ k − 1. Then
(d − 1)wi ≤ W − wn+1−i−k for 1 ≤ i ≤ n − k. In particular, if W = 0 and the set
of weights wi is symmetric about 0, we have (d− 1)wi ≤ wi+k.

For set fi := ∂f/∂xi. Then fi has degree d−1 and fi ∈ F (W −wi). Rearranging
these numbers in increasing order gives Wj = W−wn+1−j. The singular set of V has
dimension ≤ k−1 if and only if the locus of common zeros of the fi in affine space has
dimension at most k. Applying the lemma shows that in this case, (d−1)wi ≤ Wi+k

for i = 1, . . . , n− k, i.e. (d− 1)wi ≤ W − wn+1−i−k.

Lemma 2.3. Let f be homogeneous of degree d in the variables pi; suppose that
each monomial occurring in f has weight ≤ 0; suppose also that the hypersurface
f = 0 is quasi-smooth. Then

(i) f contains a monomial of degree d− 1 in the two variables of highest weight,
(ii) f contains two monomials, each of degree d − 1 in the three variables of

highest weight, with the other factors different.
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Proof. (i) Write m2 for the ideal generated by all variables other than the two
of highest weight. If f ∈ m2

2, the hypersurface f = 0 is singular along the line
corresponding to these two co-ordinates. Otherwise, f must contain a monomial of
degree d− 1 in them and containing just one other co-ordinate.

(ii) Write m3 for the ideal generated by all variables other than the three of
highest weight. Each term in f not belonging to m2

3 has degree d − 1 in these
and contains just one other co-ordinate. If this other co-ordinate is the same in
all cases, say X, we can write f = Xφd−1(p1, p2, p3) + R, with R ∈ m2

3. But then
the hypersurface f = 0 is singular along the curve φd−1(p1, p2, p3) = 0 in the plane
defined by m3.

We now apply these results to the problem of hypersurfaces invariant by a unipo-
tent group.

Theorem 2.4. Let V : f = 0 be a quasi-smooth hypersurface of degree d > 2 in
projective space, which is invariant under the action of a unipotent group of type
given by the sequence R = {r1 ≥ r2 ≥ . . .}. Then we have one of the the following:

Case 2: d ≥ 3, R = {2}, Case 3: d = 4, R = {3},
Case 4: d = 3, R = {4}, Case 21: d = 3, R = {2, 1}.

Proof. For each i we have basis elements of weights −ri, 2− ri, . . . , ri, and by Theo-
rem 1.3, f is a linear combination of monomials of weight ≤ 0. Thus the hypotheses
of the special case of Corollary 2.2 are satisfied.

If there is just one generator of positive weight, r1 is 1 or 2, and other ri = 0.
If r1 = 1, the ring of invariants is polynomial in the generators of weight ≤ 0, so is
independent of xn, and defines a cone. If r1 = 2, we have Case 2 of the theorem.

By Corollary 2.2, we have (d − 1)wn−1 ≤ wn. Now if r2 = r1, we have wn−1 =
wn = r1, so r1 ≥ r1(d− 1), a contradiction. If r2 = r1 − 1, we have wn = r1, wn−1 =
r1−1, so r1 ≥ (r1−1)(d−1) and r1 ≤ d−1

d−2
. If d > 3 this implies r1 = 1, a possibility

we excluded above; if d = 3 we may also have r1 = 2. If now r3 = 1, we have
wn−2 = 1, contradicting (d− 1)wn−2 ≤ wn−1. Thus r3 = 0, and we have Case 21 of
the Theorem.

Otherwise we necessarily have wn = r1 and wn−1 = r1 − 2, whence r1 ≥
(r1 − 2)(d − 1) and r1 ≤ 2(d−1)

d−2
. This gives r1 ≤ 4 if d = 3, r1 ≤ 3 if d = 4

and r1 ≤ 2 if d > 4.
The cases r1 = 2 were considered above. If d = 4, the remaining possibility is

r1 = 3, so that wn = 3, wn−1 = 1. Since 3wn−2 ≤ wn−1, we have wn−2 = 0, and Case
3 of the Theorem. It remains to consider the cases d = 3 and r1 equal to 3 or 4.

If r1 = 3, then w1 = 3, w2 = 1, so again w3 = 0 and r2 = 0. There is just
one non-trivial Jordan block, which has size 4 and weights −3,−1, 1, 3: denote the
corresponding variables by x0, x1, x2, x3, and write M for the space of homogeneous
cubics in them. By Lemma 2.3, f must contain a term x0x

2
2, which has weight −1.

Now apply Theorem 1.3 to M . Since dimM−3 = dimM−1 = 3, Ker(D|M−1) = 0.
We thus have a contradiction. In fact the ring of invariantsKer(D) is given explicitly
in Lemma 4.1, and the homogeneous invariants of degree 3 are linear in both the
variables of positive weight.
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If d = 3 and r1 = 4, then wn = 4, wn−1 = 2, so 2wn−2 ≤ wn−1 = 2, hence r2 ≤ 1.
If r2 = 0, we have Case 4 of the theorem.

If (d, r1, r2) = (3, 4, 1), we have co-ordinates of positive weights 4, 2, 1, so by
Corollary 2.2 no others, so r3 = 0. Write K = K1 ⊕ K2 ⊕ K3, where K1 is the
Jordan block of N of size 5, with co-ordinates of respective weights −4,−2, 0, 2, 4,
which we denote x0, x1, x2, x3, x4, K2 the Jordan block of size 2, with co-ordinates
y0, y1 of weights −1, 1; all the rest have weight 0.

By Lemma 2.3, f must contain the monomial x0x
2
3 and the monomial x1y

2
1. Write

Nw for the vector space spanned by monomials of weight w of degree 1 on K1 and
degree 2 on K2. Since each monomial of degree 2 in K2 has weight 2, 0 or −2,
there is a unique co-ordinate on K1 with which we can multiply to attain weight 0;
likewise to attain weight −2. Thus dim Ker(D|N0) = dimN0 − dimN−2 = 0, so no
appropriate invariant function exists.

It also follows from Lemma 2.3 that

Corollary 2.5. If r1 = 3 (Case 3), f must contain the monomial x3
2x0; if r1 = 4

(Case 4), f must contain the monomial x2
3x0; and if r1 = 2, r2 = 1 (Case 21), f

must contain the monomial y2
1x0.

3 Toolkit

Before we start detailed investigation of the cases listed above, we first recall some
general results, and then collect some methods of calculation of Milnor numbers, so
as not to break the thread of exposition in the following sections .

Let V be quasi-smooth, with equation f = 0 of degree d > 2 in P n. Recall that
we call f , and the hypersurface V , oversymmetric if f is annihilated by vector fields
ξ of degree 1 and η of degree d− 2 which is not a multiple of ξ. When d = 3 this is
equivalent to requiring V to be 2-symmetric. We recall the important result

Theorem 3.1. Suppose V quasi-smooth of degree d and ξ a vector field of degree
r ≤ d − 2 with ξ(f) = 0. Then τ(V ) ≤ (d − 1)n − r(d − 1 − r)(d − 1)n−2, and
equality holds if and only if there is a vector field η of degree d− 1− r with η(f) = 0
and independent of ξ. Moreover when this holds, any vector field annihilating f is
a linear combination of ξ, η and Hamiltonian vector fields.

This is the content of [6, Theorems 4.7, 4.9] when expressed in geometrical terms.
Taking r = 1, we obtain

Theorem 3.2. Suppose V quasi-smooth and 1-symmetric of degree d with ξ(f) = 0.
Then τ(V ) ≤ (d−1)n−2(d2−3d+ 3), and equality holds if and only if V is oversym-
metric, with a second vector field η. When this holds, any vector field annihilating
f is a linear combination of ξ, η and Hamiltonian vector fields.

This gives the maximal value of τ for 1-symmetric, and conjecturally for all
quasi-smooth hypersurfaces.

Corollary 3.3. The hypersurface V cannot be 3-symmetric; it is 2-symmetric if
and only if it is oversymmetric and d = 3.
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For by [6, Lemma 5.2], if f is annihilated by vector fields ξ, ξ′ with ξ ∧ ξ′ 6= 0, of
degrees r, r′ we must have r + r′ ≥ d− 1. If V is 2-symmetric, we have r = r′ = 1,
hence d = 3 and V is oversymmetric; the converse is immediate. It follows from the
theorem that now any vector field annihilating f is a linear combination of ξ, ξ′ and
Hamiltonian vector fields; hence if linear, is a linear combination of ξ and ξ′.

The vector field ξ is the infinitesimal generator of a linear group G. The cases
when G is semi-simple were discussed in our earlier paper [4], and the complete list
of the oversymmetric cases was given in [6, §5.3], and more fully in our survey article
[5]. The symmetry group may be taken to act diagonally, so is determined by its
weights. Either the only two non-zero weights are ±1, and the intersection of V
with the zero weight space is a cone; or there are just three non-zero weights, and
the set of weights is obtained by adding zeros to a set of four weights; these must
admit the monomials xd1, either (B) x0x

d−1
2 or (C) x0x

d−2
2 x3, and either (λr) x

r
0x

d−r
3 ,

(µr) x
r
0x2x

d−r−1
3 , or (νr) x

r
0x1x

d−r−1
3 for some r.

In this article we complete the list by determining all the cases when G is unipo-
tent.

∗ ∗ ∗
We turn to calculations of Milnor numbers. We begin with Thom’s splitting theorem
(alias the Morse lemma with parameters). As we will need a precise version, we
outline a proof.

Lemma 3.4. (a) Let f(x1, . . . , xr, y1, . . . , yk) have 2-jet a non-degenerate quadratic
form in x1, . . . , xr. Suppose that (locally) the solution of the equations ∂f/∂xi = 0
(1 ≤ i ≤ r) is given by xi = αi(y1, . . . , yk) (1 ≤ i ≤ r). Then f is right-equivalent
to g(y) +

∑r
1±z′i2, where g(y) = f(α1(y), . . . , αr(y), y1, . . . , yk).

(b) Suppose f(t, x, y1, . . . , yk) is singular at the origin, with non-zero coefficient
of tx and that ∂f/∂t vanishes along x = 0. Then f is right-equivalent to tx +
f(0, 0, y1, . . . , yk).

Proof. (a) It follows from our hypothesis that the hypersurfaces ∂f/∂xi = 0 intersect
transversely at O, so there is a solution of the form given. Substitute xi = zi+αi(y)
giving f(x, y) = F (z, y), say. Then ∂F/∂zi = ∂f/∂xi vanishes along z1 = · · · =
zr = 0, and F (0, y) = g(y). Hence F (z, y) − g(y) ∈ 〈z1, . . . , zr〉2. It follows in turn
that we can write it as

∑r
1 zihi(y, z) with hi ∈ 〈z1, . . . , zr〉, and as

∑r
i,j=1 zizjki,j(y, z),

where it follows from our hypothesis that the matrix ki,j(0) is non-singular. Now
by ‘completing the square’ r times we can write this in the form

∑r
1±z′i2, where

(z′1, . . . , z
′
r, y1, . . . , yk) can be taken as local co-ordinates at O.

(b) Since ∂f/∂t vanishes along x = 0, we can write ∂f/∂t = xa(t, x, y) for some
C∞−function a. Hence f(t, x, y) − f(0, x, y) =

∫ t
0
xa(t, x, y)dt, hence has the form

xb(t, x, y) for some C∞−function b. As also f(0, x, y) − f(0, 0, y) is divisible by x,
we can write f(t, x, y) = xc(t, x, y)+f(0, 0, y). Now c vanishes at the origin and has
non-zero coefficient of t; thus the co-ordinate change t′ = c(t, x, y) gives the desired
equivalence.

Write χn(d) for the Euler characteristic of a smooth hypersurface of degree d in
P n+1: then (see e.g. [1, p. 152])

χn(d) = n+ 2 +
(−1)n

d
((d− 1)n+2 − (−1)n). (1)
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When n = −2,−1, 0 this formula gives 0, 0, d respectively, so remains correct. The
cone over such a hypersurface in P n+2 admits a C∗−action which is free except at
the fixed points, which consist of the hypersurface itself and an isolated point. Thus
this cone has Euler characteristic χn(d)+1. If V is a hypersurface of degree d in P n+1

with isolated singularities, then (see e.g. [1, p. 162]) χ(V ) = χn(d) + (−1)n−1µ(V ).
In weighted projective space, suppose f , of degree d with respect to weights wi

(0 ≤ i ≤ n + 1) with sum W , defines a smooth hypersurface V , so dimV = n. We
have the following theorem of Steenbrink.

Theorem 3.5. (see [1, Theorem B34] and [8]). The mixed Hodge numbers of the
primitive cohomology of V are given by hi,n−i0 (V ) = dimM(f)d(i+1)−W , where M(f)
is the Milnor algebra

M(f) = C[x0, . . . , xn+1]/〈∂f/∂x0, . . . , ∂f/∂xn+1〉.
M(f) has Euler-Poincaré polynomial p(t) =

∏n+1
i=0 (1− td−wi)/(1− twi). Thus the

primitive Betti number hn0 (V ), which is the sum of the Hodge numbers hi,n−i0 (V ), is
equal to the sum of the coefficients of p(t) in degrees congruent to −W modulo d.
This sum is given by 1

d

∑
εWp(ε), where ε runs through the dth roots of unity. It

follows that

χ(V ) = n+ 1 +
(−1)n

d

∑
εd=1

εWp(ε). (2)

We now evaluate this in the two cases we will need.

Corollary 3.6. A non-singular hypersurface V of degree d in weighted projective
space with weights w0 = 2 and wi = 1 for 1 ≤ i ≤ n+ 1 has

χ(V ) = n+ 2 + (−1)n

d
{d−2

2
(d− 1)n+1 + (−1)n+1}

if d is odd, and is 1
2

less than this if d is even. In particular, if d = 3 we have

n+ 2 + (−1)n

3
{2n − (−1)n}.

In this case W = n + 3, so p(t) = (1 − td−2)(1 − td−1)n+1/(1 − t2)(1 − t)n+1.
If ε = 1 we evaluate p by l’Hôpital’s rule, obtaining p(1) = 1

2
(d − 2)(d − 1)n+1.

If ε = −1, which is only possible if d is odd, we have (1 − εd−1)/(1 − ε) = 1,
so p(−1) = (−1)n+1 1

2
(d − 2). Otherwise we have (1 − εd−1)/(1 − ε) = −ε−1 and

(1− εd−2)/(1− ε2) = −ε−2, so p(ε) = εW (−ε−2)(−ε−1)n+1, which reduces to (−1)n.
We thus obtain n+ 1 + (−1)n 1

d
{1

2
(d− 2)(d− 1)n+1 + (−1)n(d− 1)} if d is odd, and

n+ 1 + (−1)n 1
d
{1

2
(d− 2)(d− 1)n+1 + (−1)n+1 1

2
(d− 2) + (−1)n(d− 2)} if d is even,

which reduces to the values stated.
If V has isolated singularities then, as above, we must add (−1)n−1µ(V ) to this

expression. If the singularities occur at smooth points of the ambient weighted
projective space, this is proved as before, using the additive nature of χ; at other
points, we may take it as the definition of µ.

Corollary 3.7. A non-singular hypersurface V of degree 6 in weighted projective
space with weights w0 = w1 = 1 and wi = 2 for 1 < i ≤ n+ 1 has

χ(V ) = n+ 1 + 1
6
(−1)n(26.2n + 4(−1)n).
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In this case, W = 2n+ 4 and M(φ) has Euler-Poincaré polynomial

p(t) = (1− t5)2(1− t4)n/(1− t)2(1− t2)n = (1 + t+ t2 + t3 + t4)2(1 + t2)n.

We have p(1) = 52.2n and p(−1) = 2n. If ε6 = 1 and ε2 6= 1, (1− ε5)/(1− ε) = −ε−1

and (1− ε4)/(1− ε2) = −ε−2, so p(ε) = (−1)nε−2−2n. Hence
∑
ε2n−4p(ε) = 26.2n +

2n + 4(−1)n.

4 Invariants of unipotent actions

Now consider a nilpotent endomorphism N of a vector space K; we adopt as our
standard notation ξN =

∑k
i=1 xi−1∂/∂xi. We write GN for the Lie group obtained

by exponentiating, Et = Exp(tN), then t.x = Etx; thus a polynomial f on K is
annihilated by ξN if and only if it is invariant under GN . Write Ik for the ring of
invariants of the group GN (a subring of C[x0, . . . , xk]). If we have a second Jordan
block, denote the variables y0, . . . , yl, set ξ =

∑k
i=1 xi−1∂/∂xi +

∑l
i=1 yi−1∂/∂yi, and

write Ik,l for the ring of invariants.
It is a classical theorem of Weitzenbock [11] that the ring of invariants is finitely

generated. Weitzenbock also determined the localisation at x0 of the ring of invari-
ants. Indeed, if x0 6= 0, there is a unique choice t0 = −x1

x0
of the parameter t such

that (t.x)1 = 0. Then all the Xi = (t0.x)i for 2 ≤ i ≤ k are invariants, and clearly
Ik[x−1

0 ] = C[x0, X2, . . . , Xk, x
−1
0 ]. The argument also applies if N has several Jordan

blocks.
This remark can be used to compute the structure of the ring of invariants.

Weitzenbock himself did this for dimK ≤ 4; a general algorithm was given by Tan
[9], and a fuller account is in the book of Nowicki [7]. The results we need can be
stated as follows.

Lemma 4.1. We have rings of invariants

I2 ∼= C[X,B],

I3 ∼= C[X,B,C,∆/X2∆ + C2 +B3 = 0],

I4 ∼= C[X,B,U,C,E/X3E = 3X2BU −B3 − C2],

I2,1 ∼= C[X, Y, T,B, S/XS = Y 2B + T 2],

where X := x0, Y := y0, and

B := T 2
x,x = 2x0x2 − x2

1,

C := 3x2
0x3 − 3x0x1x2 + x3

1,

∆ := −9x2
0x

2
3 + 18x0x1x2x3 − 8x0x

3
2 + 3x2

1x
2
2 − 6x3

1x3,

U := T 4
x,x = 2x0x4 − 2x1x3 + x2

2,

E := 12x0x2x4 − 9x0x
2
3 + 6x1x2x3 − 2x3

2 − 6x2
1x4,

T := T 1
x,y = x0y1 − x1y0,

S := x0y
2
1 − 2x1y0y1 + 2x2y

2
0.

9



Here I3 was given in [11], I4 in [9] and I2,1 in [7]. For Cases 2 and 3 we follow
the notation of [4].

For the geometric problem, we have additional variables w = (w1, . . . , wm), all
invariant. Thus the dimension n = m + 2, m + 3, m + 4 or m + 4 in our 4 cases
respectively. Denote the corresponding elements of the ring of invariants by W :=
(W1, . . . ,Wm).

We can use changes of co-ordinates that are compatible with N to simplify our
formulae.

Lemma 4.2. In Case 4, the co-ordinate changes compatible with N are: x′4 =∑4
0 aix4−i +

∑
ejwj, x

′
3 =

∑3
0 aix3−i, x′2 =

∑2
0 aix2−i, x′1 =

∑1
0 aix1−i, x′0 = a0x0,

w′i =
∑
pi,jwj + qix0, where a0 6= 0 and (pi,j) is non-singular.

For we have taken an arbitrary element of K for x′4; then x′3 = Nx′4, x
′
2, x
′
1 and

x′0 are determined. Since our change of co-ordinates must respect the filtration, w′i
must be as stated. For the formulae to define a co-ordinate change we must have
a0 6= 0 and (pi,j) non-singular.

The results in Cases 2 and 3 are almost the same, and Case 21 is very similar.
In the next four sections we give detailed discussions of the four cases of Theo-

rem 2.4 in turn.

5 Case 2

We define a map π : K → L taking as target co-ordinates (W,X,B). This induces
a map π : P (K) → P (L), where P (L) is the weighted projective space with all
weights 1 except w(B) = 2. The map π is defined except on the set E where all
co-ordinates other than x2 vanish. Thus E is a point, which we also denote P . The
space P (L) has just one singular point, where all co-ordinates except B vanish: we
denote it by Q.

As is usual for moduli spaces, we have a natural stratification. We define strata
Si in K and S i in L, compatible with each other under π and with passage to
projective space.

S0 : x0 6= 0; S0 : X 6= 0

S1 : x0 = 0, x1 6= 0; S1 : X = 0, B 6= 0

S2 : x0 = x1 = 0; S2 : X = B = 0.

The set F of fixed points is defined by the vanishing of x0, x1, so coincides with S2.
Each orbit of the action of GN on K or on P (K) outside F is isomorphic to an
affine line; their degrees are 2,1 for S0,S1 respectively.

For any (W,X,B) ∈ L, we calculate π−1(W,X,B).
In each case, we have uniquely w = W , x0 = X.
If X 6= 0, x1 is free (i.e. can be chosen arbitrarily), and x2 = (B + x2

1)/2X: we
have one orbit.

If X = 0, x1 = ±√(−B), and x2 is free. If B 6= 0, this gives two orbits, but if
B = 0, a line of fixed points.

10



From this we infer (with some care) pre-images under π; in each case, we tabulate
the Euler characteristic of the pre-image.

Lemma 5.1. [4, Lemma 6.4] The preimage π−1(W,X,B) is as follows:
(S0) one orbit, χ = 1,
(S1) if W 6= 0, two orbits, χ = 2; if W = 0 (the point Q), one orbit, χ = 1,
(S2) infinitely many point orbits, χ = 1.

Since the ring of invariants is a polynomial ring, any invariant function f is of the
form f = φ◦π, where φ = φ(W,X,B) is a polynomial function on L. Set φB := ∂φ

∂B
,

φX := ∂φ
∂X

.
Denote by V the hypersurface in P (K) defined by f , by V1 the hypersurface in

the weighted projective space P (L) defined by φ, and by V2 and V3 the intersections
of V1 with X = 0 and with X = B = 0 respectively. As in similar cases below, our
notation is chosen so that each Vr (also V ∗r , etc.) has dimension m+ 1− r.
Lemma 5.2. (compare [4, Lemma 5.5]) V has isolated singular points if and only if
V1 has no singular points and V3 has isolated singular points. The singular points of
f are P and points Pi corresponding to the singular points Qi of V3 at which φB 6= 0.

Proof. At a critical point of f , the following vanish:

∂f
∂wi

= ∂φ
∂Wi

, ∂f
∂x0

= φX − 2x2φB,
∂f
∂x1

= 2x1φB, and ∂f
∂x2

= −2x0φB.

If φB = 0, we have a critical point of φ. If W = X = B = 0, the only corresponding
point in P (K) is P . Otherwise we have a singular point of V1. Conversely, if we
have a singular point of V1, all the points in its pre-image are singular on V , so are
non-isolated singular points of V .

For a critical point of f with φB 6= 0, we have x0 = x1 = 0, hence X = B = 0,
and a critical point of the restriction of φ to X = B = 0. If W = 0, we again have
the point P . Otherwise we have a singular point of V3. Conversely, if we have a
singular point of V3 at which φB 6= 0, there is a unique corresponding value of x2

giving a critical point of f , hence a unique corresponding singular point of V .
However, if we have a singular point of V3 at which φB = 0, then φX 6= 0

as otherwise we would have a singular point of V1; and as φX 6= 0, there is no
corresponding critical point of f .

It also follows that if V has isolated singular points, so also has V2. For if the
singular locus of V2 had positive dimension, it would have to intersect the hyper-
surface φX = 0, and any point of intersection gives a singular point of V1. Observe
also that if d is even, Q 6∈ V2, for otherwise Q would be a singular point of V1. If d
is odd, then there can be no term Bd/2, so Q ∈ V2.

We can easily describe the singularities of V at points other than P .

Proposition 5.3. The singularity at Pi of V corresponding to a singularity at Qi

of V3 at which φB 6= 0 is right-equivalent to a suspension of that singularity.

Proof. We may suppose, after an allowable co-ordinate change, that at the singular
point Pi we have 0 = x2 = φX . Apply Lemma 3.4(a) to f with the variables
(x0, x1, x2). We observe that ∂f/∂x0, ∂f/∂x1, ∂f/∂x2 all vanish when x0 = x1 = 0
and x2 = φX/2φB. Substituting these values gives g(w) = f(w, 0, 0, 0). The result
follows.
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We are now ready to calculate µ(V ).

Theorem 5.4. We have µ(V ) = 1
2
(d− 2)(2d− 1)(d− 1)m + µ(V2) + µ(V3).

Proof. First suppose d odd. Then as Q ∈ V1, by Lemma 5.1 we have
χ(V ) = χ(E) + χ(V1 \ V2) + 2χ(V2 \ V3) − 1 + χ(V3) = χ(V1) + χ(V2) − χ(V3). For
V and V3 we apply (1); for V1 we apply Corollary 3.6 with n = m; for V2 the same,
but with n = m− 1, and amended for singularities. Thus

χ(V ) = (−1)m+1

d
{(d− 1)m+3 − (−1)m+1}+m+ 3 + (−1)mµ(V ),

χ(V1) = (−1)m

d
{d−2

2
(d− 1)m+1 + (−1)m+1}+m+ 2,

χ(V2) = (−1)m−1

d
{d−2

2
(d− 1)m + (−1)m}+m+ 1 + (−1)mµ(V2),

χ(V3) = (−1)m

d
{(d− 1)m − (−1)m}+m+ (−1)m−3µ(V3).

Since χ(V )− χ(V1)− χ(V2) + χ(V3) vanishes, we find that µ(V )− µ(V2)− µ(V3)
is equal to d−1{(d− 1)m+3 + d−2

2
(d− 1)m+1− d−2

2
(d− 1)m− (d− 1)m}, which reduces

to 1
2
(d− 2)(2d− 1)(d− 1)m.

In the case d even, as Q 6∈ V1, we obtain χ(V ) = χ(V1) + χ(V2) − χ(V3) + 1,
but the values of each of χ(V1) and χ(V2) are 1

2
less than those above. Hence the

formula in terms of d is the same as before.

If m = 0, the value of µ(V ) is given by [2, Proposition 3.1]: the value 1
2
(d −

2)(2d − 1) is correct if d is even; we must add 1
2

if d is odd. Here if d is odd V2 is

necessarily singular: indeed, φ vanishes identically on S1.
For the case m = 1, [4, Prop 6.6] gives µ(V ) = 1

2
(d− 2)(2d− 1)(d− 1) + k −N ,

where k = bd
2
c and N is the number of distinct points of V2 \ V3 with W 6= 0. In

this case, V2 has dimension 0, so χ(V2) = #V2; by Corollary 3.6, if V2 is smooth,
χ(V2) = b1

2
(d+ 1)c. To reconcile these we need to interpret µ(V3) as 1 if V3 6= ∅, i.e.

if the coefficient of W d in φ is non-zero.
∗ ∗ ∗

When does µ(V ) take its maximal value? We expect this to occur if µ(V2) and
µ(V3) are both as large as possible, hence when V2 and V3 are both cones. Geometry
imposes restrictions as follows.

As already observed, Q ∈ V2 if and only if d is odd.
If V2 is a cone with vertex not in V3, then it is a cone on V3. Since it must have

isolated singularities, V3 must be non-singular.
If V2 is a cone with vertex different from Q, then Q 6∈ V2 (since the local geometry

at Q differs from that elsewhere).
Thus if d is even, while Q 6∈ V2, we cannot exclude the possibility that V2 is a cone

with vertex Q∗ in V3. When this holds, V3 also is a cone, so indeed we expect µ(V ) to
be maximal. The singularity of V2 at Q∗ is equisingular to a sum of (m−1) dth powers
and a 1

2
dth power, so µ(V2) = 1

2
(d−1)m−1(d−2); that of V3 at Q∗ is equisingular to a

sum of dth powers, so µ(V3) = (d−1)m−1 and µ(V ) = 1
2
(d−1)m−1(2d3−7d2+8d−2).

Since φB(Q∗) = 0, the only singular point of V is P .
This case does indeed occur for all m ≥ 1 and even d ≥ 4: we can take φ =

Xd + XW d−1
1 + Bd/2 +

∑m
2 W

d
i . Then each of V2 and V3 is a cone, smooth except

at the point Q∗ where all co-ordinates except W1 vanish; and V1 is non-singular.
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We believe these to give the maximal values of µ(V ) for all even d ≥ 4,m ≥ 1: for
m = 1 this follows from [4, Proposition 6.6].

If d is odd and V2 is a cone, then the vertex of the cone is Q and V3 is non-
singular. In affine co-ordinates B = 1, φ is equisingular to a sum of m dth powers,
which suggests µQ(V2) = (d−1)m, but since we must factor out the antipodal map on
affine space we actually have µQ(V2) = 1

2
(d− 1)m, thus µ(V ) = 1

2
(d− 1)m+1(2d− 3).

This case occurs for all d = 2k + 1: we can take φ = XBk + Xd +
∑m

1 W
d
i . Again

this gives the maximum value for µ if m = 1: we cannot show that this holds in
general.

∗ ∗ ∗
We now treat the case d = 3 in more detail. Here f = a1B + a3, where a1, a3 are
homogeneous functions of x0, w1, . . . , wm. If a1 is not a multiple of x0, we can make
a change of co-ordinates to write a1 = w1; otherwise we can take a1 = x0 (if a1 ≡ 0,
V has non-isolated singularities). Denote by V ∗3 the variety w1 = a3 = 0 in Pm and
set V4 := V3 ∩ V ∗3 .

Lemma 5.5. (i) If a1 = x0, V is quasi-smooth if and only if V3 is non-singular. In
this case, the only singular point is P .

(ii) If a1 = w1, there is a bijection between singular points of V2 and V4; the
singularity of the former is isomorphic to the suspension of the latter.

(iii) If a1 = w1, V1 is non-singular if and only if V ∗3 is non-singular.

Proof. (i) In this case, V2 is a cone with vertex Q, so the result follows as above.
(ii) At a singular point (W, 0, B) of V2 we have 0 = φB = W1 and 0 = ∂φ/∂Wi

for i ≥ 2, so (W, 0, 0) is a singular point of V4 (note that (0, 0, B) is not a singular
point of V2 since ∂φ/∂W1 does not vanish there).

Conversely, if (W, 0, 0) is a singular point of V4, the point (W, 0, B) is singular
on V2 if and only if B = −∂a3/∂W1.

Now apply Lemma 3.4(a), taking B and W1 as the preferred co-ordinates. The
equations φB = ∂φ/∂W1 = 0 are solved by W1 = 0, B = −∂a3/∂W1: substituting
these in φ = w1B + a3 gives the restriction of a3 to W1 = 0.

(iii) The same argument as for (ii) applies here.

If a1 = x0, V2 is a cone with vertex Q, so µ(V ) = 3.2m as above. If a1 = w1, it
follows that µ(V2) = µ(V4), so by Theorem 5.4, µ(V ) = 5.2m−1 + µ(V3) + µ(V4).

In some cases, we can determine the nature of the singularities.

Proposition 5.6. Suppose V in Case 2 with V2 non-singular. Then the singularity
of V at P is semi-quasi-homogeneous with degree 2d and variables of weights 1, 4
and 2 (m times).

Proof. We first give a direct argument, then an indirect method, which only deter-
mines the µ−constant stratum, but will be usable in other cases below.

As in [4, Proposition 6.6], take local affine co-ordinates x2 = 1 at P , and substi-
tute x0 = 1

2
(B + x2

1), so that f becomes φ(w,B, 1
2
(B + x2

1)). Now assign weights 4
to B, 1 to x1 and 2 to the wi. The terms of least weight 2d give φ(w,B, 1

2
x2

1). We
must check that this has an isolated critical point. At a singular point, ∂φ/∂wi, φB
and x1φX vanish. Since V1 is non-singular, x1 = 0, so (W, 0, B) is a singular point
of V2, contradicting our hypothesis.
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For our second argument, we note that by Theorem 5.4, µ(V )− µ(V3) takes the
same value for all these cases (with d and m fixed). Now µ(V ) = µP (V )+

∑
i µPi

(V ),
and by Proposition 5.3, the values µPi

(V ) = µQi
(V3). Hence µP (V ) is the same for

all these cases, so all belong to the same µ−constant stratum.
To determine this, first observe that we can adjoin a new variable wm+1; then

f ′ := f +wdm+1 again satisfies the conditions of Lemma 5.2, and the new singularity
is obtained from the old one also by adjoining a new variable and adding its dth

power. Hence the µ−constant type of the singularity can be deduced from the case
with m decreased by 1.

If m = 0, as observed above, if d is odd, V2 is necessarily singular; if d is even,
the result holds. However the case m = 1 was analysed in [4, Proposition 6.6], where
we showed directly that the singularity has the type stated. The result thus follows
in general.

The second method can also be applied to the case when V2 is a cone with vertex
Q. We see that the singularity is equisingular to a sum of m dth powers and the curve
singularity occurring in the case m = 0, which can be taken to be

∏k
1(y2−2x+4cix

2)

if d = 2k and x
∏k

1(y2 − 2x + 4cix
2) if d = 2k + 1 (with the ci all distinct in each

case). If d ≥ 5, it is not quasi-homogeneous.
If d = 3, the cases arising when a1 = w1 can be enumerated in low dimensions by

considering the varieties V4 ⊂ V3. We can determine the µ−constant strata of the
critical points of f using the fact that the terms of lowest weight are φ(w,B, 1

2
x2

1),
which reduces by splitting to φ(0, w2, . . . , wm, 0, x

2
1), together with our calculation

of µ.
For m = 1, we have A5 at P , perhaps a further A1.
For m = 2, we have the cubic curve a3(w1, w2, x0) = 0 meeting x0 = 0 in V3 and

the point Q∗ where w1 = x0 = 0 in V4. Let wr1 be the highest power of w1 dividing
a3(w1, w2, 0). If r = 0, V4 = ∅, V2 is non-singular and V has a T2,3,6 at P and a
further A1 (or A2) if V3 has a repeated point (a 3-fold point). If r ≥ 1, we apply
the same substitution, but must now use the 2-jet Bw1 and obtain the splitting by
direct calculation. The first substitution gives the 4-jet w2

2x
2
1 + αw4

2, where α = 0
if r > 1. Thus if r = 1 the singularity has µ = 11, hence type T2,4,6, and the other
two points on V3 could coincide, giving a further A1. If r = 2 we have a singularity
T2,p,q with p, q ≥ 5 and µ = 12, hence p+ q = 11 so (p, q) = (5, 6). In the case r = 3
we have p + q = 12, and need a further calculation to obtain the 5-jet, leading to
p = q = 6. Thus in each case, we have T2,3+r,6 at P .

For m = 3, if V4 is non-singular (i.e. 3 points), UT 1
0,0,0 (in the notation of [10,

p. 475]) together with −, A1, A2, 2A1, A3, 3A1 or D4. If V4 is singular, we have
non-reduced 3-jet (V or V ′ series) and the singularities do not have accepted names.

∗ ∗ ∗
We turn to calculation of τ : here our results are much more partial. According to
Lemma 3.2, τ takes its maximal value when f is oversymmetric. To find when this
is applicable, we use the method of [4, §6].

Theorem 5.7. A function in Case 2 is oversymmetric if and only if either (a) V3

is a cone, or (b) after change of co-ordinates if necessary, φB and φX both vanish
along X = B = 0.
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Proof. Since V1 is non-singular, the sequence {∂φ/∂W1, . . . , ∂φ/∂Wm, φX , φB} is reg-
ular, and any vector field annihilating φ is a linear combination of the Hamiltonian
fields ∂(φ, ∗)/∂(Wi,Wj), ∂(φ, ∗)/∂(Wi, X), ∂(φ, ∗)/∂(Wi, B) and ∂(φ, ∗)/∂(X,B).
We seek a vector field η which is a lift of a linear combination of these. We are only in-
terested in η modulo Hamiltonian fields: removing the corresponding linear combina-
tion of the ∂(f, ∗)/∂(wi, wj) and ∂(f, ∗)/∂(wi, x0), we can take

∑
Ci∂(φ, ∗)/∂(Wi, B)

+ D∂(φ, ∗)/∂(X,B). Since we seek η of degree d− 2, we want the Ci and D to be
constants. We now have

η =
∑m

1 pi∂/∂wi +
∑2

0 qj∂/∂xj,

where pi = −CiφB, q0 = −DφB and

2(x2q0 − x1q1 + x0q2) =
∑
Ci∂φ/∂Wi +DφX .

Thus
2(x0q2 − x1q1) =

∑
Ci∂φ/∂Wi +DφX + 2x2DφB. (3)

The right hand side of this equation must thus vanish identically along X = B = 0.
First suppose D = 0. Changing the w co-ordinates, we may suppose the vector

field is ∂/∂W1. If we set ad(W ) := φ(W,X,B), we need ∂ad/∂W1 ≡ 0, i.e. ad is
independent of W1. Expressing the condition geometrically, it holds if and only if
V3 is a cone.

If D 6= 0, a suitable substitution W ′
i := Wi + λiX, X ′ := X reduces the Ci to

zero, so it suffices to consider the vector field ∂(φ, ∗)/∂(X,B). Here the condition
reduces to requiring both φB and φX to vanish along X = B = 0.

We could reformulate (b) as: there exist constants ci such that φB and φX +∑
ci∂φ/∂Wi both vanish along X = B = 0.
This proof shows more generally that any vector field η =

∑m
1 pi∂/∂wi +∑2

0 qj∂/∂xj annihilating f can be reduced modulo Hamiltonian vector fields to the
lift of

∑
Ci∂(φ, ∗)/∂(Wi, B) + D∂(φ, ∗)/∂(X,B), where pi = −CiφB, q0 = −DφB

and (3) holds. Moreover, we may suppose D and the Ci independent of x0 and x1.
This can be used as the starting point for further calculations of τ . However, since
the cases arising are diverse, we only consider m = 0, m = 1 and certain cases with
d = 3.

In the case of curves (m = 0), the condition frequently holds, and then τ =
d2 − 3d+ 3 (see [2, Proposition 3.1]): otherwise, τ = d2 − 3d+ 2.

The case of surfaces (m = 1) was treated in [4]. By Theorem 6.7 loc.cit.,
τtot(V ) = (d − 1)(d2 − 3d + 3) if α = 0 or γ = 0, and (d − 1)(d2 − 3d + 3) − 1
otherwise; where α, γ are the coefficients of W d and BW d−2 in φ. Moreover (Lemma
6.5 loc.cit.) P is the only singular point unless α = 0 6= γ, when there is one further
singular point, of type A1. The case α = 0 corresponds to clause (a) of the Theorem;
the case γ = 0 to clause (b) (here we appear to require β = γ = 0: the difference
arises because of the above normalisation of co-ordinates).

We can calculate τ(V ) ad hoc in further low dimensional cases. When d = 3,
if a1 = w1 the values can be inferred from the above list of µ−constant strata: we
have τ = µ for T2,3,6 and τ = µ− 1 for T2,p,q with 1

p
+ 1

q
< 1

2
. If a1 = x0 we have
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Lemma 5.8. If V is in Case 2, with d = 3 and a1 = x0, then

τ(V ) = 2m+1 + dim(C[x0, w1, . . . , wm]/〈x0, ∂a3/∂x0, ∂a3/∂w1, . . . , ∂a3/∂wn〉).

Proof. Here φ = XB + a3(W,X), so (3) reduces to∑
iCi∂a3/∂Wi +D∂a3/∂X ∈ 〈X〉.

By Lemma 5.5(i), in this case V3 is non-singular. Hence the restrictions of the
∂a3/∂Wi to X = 0 form a regular sequence in C[W ], spanning an ideal J . The
class of η modulo Hamiltonian fields and multiples of ξ is determined by the class
of D|X=0 modulo J .

The algebra C[W ]/J is Gorenstein of dimension 2m, with
(
m
r

)
basis elements in

degree r. If the ideal in it generated by the class of ∂a3/∂X|X=0 has dimension
e, its annihilator has dimension 2m − e. Since the space of multiples of ξ modulo
Hamiltonian vector fields has dimension 2m+1, we obtain τ(V ) = 3.2m − e.

But C[x0, w1, . . . , wm]/〈x0, ∂a3/∂x0, J〉 ∼= C[W ]/(J + 〈∂a3/∂X|X=0〉), so has di-
mension 2m − e. The result follows.

If m = 2 we can take a3(W1,W2, 0) = W 3
1 + W 3

2 and see easily that if the
coefficient of W1W2X in a3 is non-zero, e = 0 and τ = 12: otherwise e = 1 and
τ = 11. If m = 3 we take W 3

1 +W 3
2 +W 3

3 + 3αW1W2W3: here either e = 0 or e = 2.
For m ≥ 4, cases are more numerous.

We observe that while there are numerous cases where τ(V ) takes its maximal
value (for given dimension n and degree d) but µ(V ) does not, we do not know an
example in the reverse direction. Indeed, µ maximal implies τ maximal for curves,
surfaces of degree 4 or odd, and for cubic 3-folds. If V2 is a cone with vertex in
V3 then τ is maximal; but if it is a cone with vertex Q, while φB vanishes along
X = B = 0 we have no control on φX .

We now give a more detailed discussion of the 2-symmetric case d = 3, following
the notation of the above proof.

Proposition 5.9. In Case 2, f is 2-symmetric only in the following 3 cases:
Case (b): we have a1 = X. V2 is a cone with vertex Q and V3 is non-singular.

After a suitable substitution x′2 := x2 + 1
2
b(w, x0), a3 is independent of x0, and we

may take η = −2x0∂/∂x0 + x1∂/∂x1 + 4x2∂/∂x2. The singularity has µ = 3.2m and
is quasi-homogeneous of degree 12 with respect to weights 3,6 and 4 (m times).

Case (a1): we have a1 = W1, V3 is a cone with vertex not on W1 = 0 and V4

non-singular. After a further substitution x′2 := x2+ 1
2
b(w, x0), may suppose a3 inde-

pendent of w1. Then f is invariant by η = x1∂/∂x1 + 2x2∂/∂x2− 2w1∂/∂w1. There
are two singularities, with Milnor numbers 5.2m−1 and 2m−1; both quasi-homogeneous
of degree 6, the first with respect to weights 1 and 2 (m− 1 times); the second with
respect to weights 3 and 2 (m− 1 times).

Case (a2): we have a1 = W1; V3, V4 are cones with vertex on W1 = 0. After a
further substitution w′2 := b(w, x0), we may suppose a3 − x0w

2
2 independent of w2.

Then f is invariant by η = w2∂/∂x2 − w1∂/∂w2. The singularity has µ = 13.2m−2,
and is in the same µ−constant stratum as x6 + x2y2 + y6 +

∑m
2 w

3
i .
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Proof. The enumeration is given in Theorem 5.7. For Case (b), we must have a1 =
X; it follows that V2 is a cone with vertex Q, V3 is non-singular and the singularity
was determined above. Now write a3(w, x0) = x2

0b1(w, x0) + x0b2(w) + b3(w). Since
φX vanishes along X = B = 0, b2 vanishes identically, so the substitution x′2 =
x2 + 1

2
b1(w, x0) reduces a3 to b3, independent of x0. That f is now invariant under

η (so we can take D = 2 and all Ci = 0) follows by inspection. We could also infer
the singularities from the semi-simple group action.

If Case (a) (V3 is a cone) occurs, a1 cannot be x0 (else V3 would be non-singular),
so can be taken as w1. We must distinguish according as the vertex of the cone does
or does not lie on w1 = 0.

In Case (a1) it does not, so the intersection V4 of the cone with w1 = 0 is
non-singular, hence so is V2. The description of the singularities now follows from
Propositions 5.3 and 5.6, or again from the group action.

After adjusting the w co-ordinates, we may suppose a3(w, 0) independent of w1.
Then we can write a3 = b3 + x0w1b1(w, x0), with b3 independent of w1. Again the
substitution x′2 = x2 + 1

2
b1(w, x0) reduces a3 to b3. Now by inspection, ηf = 0 (so

we may take C1 = 2, Ci = 0 for i 6= 1).
In case (a2), we may suppose a3(w, 0) independent of w2, and hence that a3 =

b3 +x0w2b1(w, x0), with b3 independent of w2. Now if the coefficient of w2 in b1 were
zero, the point where all co-ordinates except w2 vanish would be singular on V ∗3 .
Hence we can write b1 = c2w2 + c1, and substitute w′2 = cw2 + 1

2
c−1c1, which

reduces a3 to the form b′3 + x0w
2
2, with b′3 independent of w2. Thus ηf = 0, where

η = w2∂/∂x2 − w1∂/∂w2 (so we may take C2 = 2, Ci = 0 for i 6= 2).
To describe the singularity, as in Proposition 5.6, it suffices to consider the case

m = 2. Here since V2 and V3 are cones with the same vertex, we must select T2,6,6

from the above list.

6 Case 3

We define the map π : K → L by π(w, x0, x1, x2, x3) = (W,X,B,∆) in the notation
of Lemma 4.1. This induces π : P (K) → P (L), where P (L) is the weighted pro-
jective space with all weights 1 except w(B) = 2, w(∆) = 4; the map π is defined
except on the set E where all co-ordinates except x2 and x3 vanish: thus E is a
projective line and χ(E) = 2; it contains the point P where all co-ordinates except
x3 vanish. We define strata by

S0 : x0 6= 0; S0 : X 6= 0

S1 : x0 = 0, x1 6= 0; S1 : X = 0, B 6= 0

S2 : x0 = x1 = 0; S2 : X = B = 0.

The set F of fixed points is given by the vanishing of x0, x1, x2. Each orbit of the
action of GN on K \F (or on P (K)\F) is isomorphic to an affine line; their degrees
are 3,2,1 for S0,S1,S2 \ F respectively.

We now describe the pre-image under π of any (W,X,B,∆) ∈ L. In each case,
w = W .
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(S0) if X 6= 0, x0 = X, x1 is free, x2 = (B+x2
1)/2X, x3 = (C+3Xx1x2−x3

1)/3X
2

where C = ±√(−X2∆−B3).
(S1) if X = 0, B 6= 0, x1 = ±√(−B), x2 is free, and x3 = (3x2

1x
2
2 −∆)/6x3

1.
(S2) if X = B = 0: if ∆ 6= 0, the pre-image is empty; if ∆ = 0, x1 = 0 and x2, x3

are arbitrary. If x2 6= 0 we have a non-trivial orbit; if x2 = 0 we have fixed points.
From this we infer (again with some care)

Lemma 6.1. The preimage π−1(W,X,B,∆) is as follows:
(S0) if B3 +X2∆ = 0, one orbit, χ = 1, if not, two orbits, χ = 2,
(S1) if W = 0, one orbit, χ = 1, if not, two orbits, χ = 2,
(S2) if ∆ = 0, a plane, χ = 1, if not, the empty set, χ = 0.

A priori the map f need not factor through π. However, we have

Lemma 6.2. There is an allowable change of co-ordinates which puts f in the form
f = φ ◦ π. More precisely, we may take φ = ∆ + a0B

2 + a2B + a4, where ai is
homogeneous of degree i in W,X.

Proof. Since d = 4, we can write f = a′0∆ + a0B
2 + a1C + a2B + a4, where ai is

homogeneous of degree i in the invariant co-ordinates w1, . . . , wm, x0.
By Corollary 2.5, for V to be quasi-smooth, f must contain the monomial x3

2x0; so
we must have a′0 6= 0. We may thus suppose a′0 = 1. Substituting x′3 := x3− 1

6
a1(w, x)

gives an expression of the same form but with a1 = 0. This gives f = ∆ + a0B
2 +

a2B + a4, which is indeed of the form φ ◦ π.

Denote by V the hypersurface f = 0 in P (K), by V0 the hypersurface φ = 0
in P (L), by V1 its intersection with X = 0, and by V3 its intersection with X =
B = ∆ = 0. Write also V ∗1 and V ∗2 for the respective intersections of V0 and V1

with B3 +X2∆ = 0. Write L′ for the vector space with co-ordinates W,X,Z (all of
degree 1), P (L′) for the corresponding projective space, ψ1(W,X,Z) := −XZ3 +
a0X

2Z2 + a2XZ + a4 = 0, V ′1 for the hypersurface defined by ψ1 in P (L′), and V ′2
for its intersection with X = 0.

Lemma 6.3. The singular points of V are isolated iff the hypersurfaces V ′1 , V3 are
both non-singular; and then the only singular point of V is P .

Proof. By Lemma 6.2, we can take f = ∆ + a0B
2 + a2B + a4. Since ∂f/∂x3 =

∂∆/∂x3 = −6C, C vanishes at all critical points of f .
First consider critical points of f in x0 6= 0. Since each such point lies in a non-

trivial orbit, and f is invariant, it follows that if f has isolated critical points, there
can be none with x0 6= 0. Now in this region, the critical points of f are the same
as those of x2

0f , which is equal to −C2−B3 + x2
0(a0B

2 + a2B + a4). These coincide
with the critical points of φ0 := −B3 + x2

0(a0B
2 + a2B + a4) lying in C = 0. Now

regard φ0 as a function ψ0 of the variables W,X,B. If this has a critical point with
X 6= 0, we certainly have a critical point of φ0. Conversely, if we have a critical point
of φ0, we have 0 = ∂φ0/∂x2 = 2x0∂ψ0/∂B, so 0 = ∂ψ0/∂B, and in view of this,
∂ψ0/∂X = ∂φ0/∂x0 vanishes, and so do the ∂ψ0/∂Wi; so we have a critical point
of ψ0. Finally, in X 6= 0 we may make the substitution Z := X−1B. The critical
points correspond, and since ψ0(W,X,XZ) = X2ψ1(W,X,Z), they correspond to
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those of ψ1. Thus f has no critical points in x0 6= 0 if and only if ψ1 has none in
X 6= 0.

Now consider critical points of f with x0 = 0. As ∂f/∂x3 = −6C, and C
reduces to −x3

1, we must also have x1 = 0, hence B = C = ∆ = 0. It follows that
∂f/∂x2 = ∂f/∂x1 = 0. There remain the conditions

0 = ∂f/∂wi = ∂a4/∂wi, 0 = ∂f/∂x0 = ∂a4/∂x0 + 2x2a2 − 8x3
2.

If we have a singular point of V3, there is only one further equation to determine both
x2 and x3 so we have a non-isolated singularity of f = 0. Thus (ii) is a necessary
condition for f to have isolated singularities. If it holds, then for any critical points
in x0 = x1 = 0 we have w = 0, and now the remaining equation implies x2 = 0,
giving the unique critical point P .

It remains to consider singular points of V ′1 lying in X = 0. Here ∂ψ1/∂Z
vanishes, ∂ψ1/∂X = −Z3 + a2Z + ∂a4/∂X, and ∂ψ1/∂Wi = ∂a4/∂Wi. Since we are
now assuming that V3 has no singular points, the vanishing of the ∂ψ1/∂Wi implies
W = 0 and that of ∂ψ1/∂X then gives Z = 0, showing that there are indeed no
such singular points.

Theorem 6.4. For V quasi-smooth in Case 3, µ(V ) = 22.3m.

Proof. As before, we calculate χ(V ) by decomposing π(V ) according to the strat-
ification, calculating the Euler characteristic of each piece, inferring those of the
pre-images, and adding up.

In S2, ∆ vanishes on the image of π and f reduces to a4(W, 0). The zero locus
is thus the hypersurface V3. Hence χ(V ∩ S2) = χ(V3) + χ(E) = χm−2(4) + 2.

In S1, we can assign W and B and solve ∆ = −(a0B
2 + a2B + a4). The set

where W = 0 is a single point, so contributes χ = 1, and the set W 6= 0 is the
product of the punctured B-plane and the punctured W space, so has χ = 0. Hence
χ(V ∩ S1) = 1.

In S0, we can normalise co-ordinates by X := 1. Projecting V0 \ V1 onto (W,B)
space is an isomorphism, since ∆ = −(a0B

2 +a2B+a4) on V0. Thus χ(V0 \V1) = 1.
Restricting to the subset where B3 + ∆ = 0 we obtain an isomorphism of V ∗1 \ V ∗2
onto the set of (W,B) where B3 = a0B

2 + a2B + a4, which we can identify in turn
(replacing B by Z) with the subset V ′1 \V ′2 of V ′1 with X = 1. Thus χ(V ∗1 )−χ(V ∗2 ) =
χ(V ′1)− χ(V ′2). But V ′1 is non-singular, so χ(V ′1) = χm(4), and V ′2 is the cone on V3,
so χ(V ′2) is equal to χ(V3) + 1 = χm−2(4) + 1. We thus have

χ(V ∗1 \ V ∗2 ) = χm(4)− χm−2(4)− 1

and hence χ(V ∩ S0) is twice χ(V0 \ V1) minus this, i.e. 3− χm(4) + χm−2(4).
Adding these up, we find χ(V ) = −χm(4) + 2χm−2(4) + 6. Now V has just one

singular point and dimV = m+ 2, so χ(V ) = χm+2(4) + (−1)m−1µ(V ). Thus finally
µ(V ) = (−1)m{χm+2(4) + χm(4)− 2χm−2(4)− 6}, which reduces to 22.3m.

We can also calculate τ .

Proposition 6.5. Any f in Case 3 is oversymmetric. Hence τtot(V ) = 3m+1.7.
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Proof. We can use essentially the same formula as in [4, Proposition 6.3]. We have
f = ∆ + a0B

2 + a2B + a4, with ai homogeneous of degree i in x0 and the wi. Set
η′ := x2

1∂/∂x1 + (3x1x2 − 3x0x3)∂/∂x2 + (4x2
2 − 3x1x3)∂/∂x3. Then η′∆ = 0 and

∂∆/∂x3 = 3η′B. Hence f is annihilated by η′ − 1
3
(2a0B + a2)∂/∂x3.

We contrast µ(V ) = 22.3m with τ(V ) = 7.3m+1 = 21.3m. The values µ = 22, τ =
21 were obtained in [4, Prop 6.3] for the case m = 0.

Lemma 6.6. Suppose V in Case 3. Then the singularity of V is semi-quasi-homo-
geneous of degree 12 in variables of weights 1, 4, 6 and 3 (m times).

Proof. Recall that ∆ := −9x2
0x

2
3 + 18x0x1x2x3 − 8x0x

3
2 + 3x2

1x
2
2 − 6x3

1x3. When
x3 = 1, we can rewrite this as ∆ = −(3x0 − 3x1x2 + 4

3
x3

2)
2 + 6(2

3
x2

2 − x1)
3. This

suggests setting q := x0 − x1x2 + 4
9
x3

2, p := x1 − 2
3
x2

2, so we substitute x2 := 3y,
x1 := p+ 6y2, x0 := q+ 3py+ 6y3. This gives ∆ = −9q2− 6p3, B = 6qy− p2 + 6py2

and so f = −9q2 − 6p3 + a0(6qy − p2 + 6py2)2 + a2(6qy − p2 + 6py2) + a4, where ai
is homogeneous of degree i in w1, . . . , wr, q + 3py + 6y3.

Now assign weight 1 to y, 3 to each wi, 4 to p and 6 to q. The term of least
weight in x0 is 6y3, of weight 3; the term of least weight in B is 6py2, of weight 6.
Hence each term in f has weight at least 12, and the terms of degree 12 give the
sum of a term −9q2, which we can ignore, and g := −6p3 + 36a0p

2y4 + 6a2py
2 + a4,

where ai is homogeneous of degree i in w1, . . . , wr, 6y
3. It remains to show that g

has an isolated singularity.
We compare g with the function ψ1(W,X,Z) := −XZ3 + a0X

2Z2 + a2XZ + a4,
and observe that formally g(w, p, y) = ψ1(w, 6y

3, py−1). Since by Lemma 6.3, the
hypersurface V ′1 defined by ψ1 = 0 is non-singular, g has no singular points with
y 6= 0. But if y = 0, the condition ∂g/∂p = 0 forces p = 0; and the restriction to
p = y = 0 defines the hypersurface V3 which, by the same result, is also non-singular.
Hence indeed g has an isolated singularity, and the result follows.

7 Case 4

Here we define π : K → L by π(w, x0, x1, x2, x3, x4) = (W,X,B,U,E) in the notation
of Lemma 4.1. The induced map π : P (K) → P (L) is defined except on the set E
where all co-ordinates except x3 and x4 vanish: E is a projective line containing the
point P where all co-ordinates except x4 vanish and one other orbit, and χ(E) = 2.
We define strata by

i 0 1 2 3

Si x0 6= 0 x0 = 0, x1 6= 0 x0 = x1 = 0, x2 6= 0 x0 = x1 = x2 = 0
S i X 6= 0 X = 0, B 6= 0 X = B = 0, U 6= 0 X = B = U = 0.

The set F of fixed points is given by the vanishing of x0, x1, x2, x3. Each orbit of
the action of GN on K \ F (or on P (K) \ F) is isomorphic to an affine line; their
degrees are 4,3,2,1 for S0,S1,S2,S3 \ F respectively. The closure of each orbit in
P (K) \ F is obtained by adjoining the point P .
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We now describe the pre-image under π of any (W,X,B,U,E) ∈ L. In each
case, w = W and x0 = X.

(S0) x1 is free, x2 = (B + x2
1)/2X, x3 = (C + 3Xx1x2 − x3

1)/3X
2 where C =

±√(3X2BU −X3E −B3), and x4 = (U + 2x1x3 − 2x2
2)/2X;

(S1) x1 = ±√(−B), x2 is free, x3 = (x2
2 − U)/2x1, and x4 = (6x1x2x3 −

2x3
2 − E)/6x2

1;

(S2) if E2 6= 4U3 the pre-image is empty; otherwise, x1 = 0, x2 = −E/2U , x3

and x4 are free;
(S3) if E 6= 0 the pre-image is empty; otherwise, x1 = x2 = 0, x3 and x4 are free

(if x3 6= 0 we have a non-trivial orbit but if x3 = 0 we have fixed points).

From this we infer pre-images under π.

Lemma 7.1. For (W,X,B,U,E) ∈ S i, the value χ(π−1(W,X,B,U,E)) is given by:

i Condition ψi χ(if ψi = 0) χ(if ψi 6= 0)

0 X 6= 0 B3 +X3E − 3X2BU 1 2
1 X = 0, B 6= 0 W 1 2
2 X,B = 0, U 6= 0 4U3 − E2 1 0
3 X, B, U = 0 E 1 0

Lemma 7.2. Suppose f , invariant under the group, defines a hypersurface V with
isolated singularities. Then there is an allowable change of co-ordinates which puts f
in the form f = E+ 3a1U +a3, where ai is homogeneous of degree i in the invariant
co-ordinates.

Proof. We have d = 3, and so can write f = b0C+a0E+b1B+3a1U+a3, where ai, bi
are homogeneous of degree i in w, x0. By Corollary 2.5, for V to be quasi-smooth,
f must contain the monomial x2

3x0, so we must have a0 6= 0. We may thus take
a0 = 1. Now substitute x4 = x′4 + b0

6
x1− b1

6
and x4 = x′3 + b0

6
x0. This reduces b0 and

b1 to 0 at the expense of adding terms to a3. We thus have f = E + 3a1U + a3, of
the desired form.

It will be convenient to write a∗3 for a3
1 + a3, and to give names to varieties

as follows. We define V2 ⊂ Pm by a3(W,X) = 0, V ∗2 by a∗3(W,X) = 0, their
respective intersections with X = 0 by V3, V

∗
3 , and V3 ∩ V ∗3 by V4. In weighted

projective space with coordinates (W,X,Z, U) (where U has weight 2) write ψ1 :=
−Z3 + 3UZ + 3a1(W,X)U + a3(W,X); denote the hypersurface ψ1 = 0 by V0, and
its intersection with X = 0 by V1.

Lemma 7.3. Suppose f = E + 3a1U + a3 as above. Then the singular points of V
are isolated iff

(i) V0, or equivalently V ∗2 is non-singular,

(ii) V1, or equivalently V ∗3 is non-singular, and
(iii) V3 has isolated singular points.

The singular points of f are then P and points Pi corresponding to the singular
points Qi of V3.
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Proof. Since x1∂f/∂x4 + x0∂f/∂x3 = x1∂E/∂x4 + x0∂E/∂x3 = −6C, C again
vanishes at all critical points of f .

Each singular point of V in x0 6= 0 lies in a non-trivial orbit, and V is invariant,
so V can have no singular point, and f can have no critical point with x0 6= 0. In
this region, the critical points of f are the same as those of x3

0f , which is equal
to 3x2

0BU − B3 − C2 + x3
0(3a1U + a3). These coincide with the critical points of

φ0 := 3x2
0BU −B3 + x3

0(3a1U + a3) lying in C = 0. Now regard φ0 as a function ψ0

of the variables W,X,B,U . If ψ0 has a critical point with X 6= 0, we certainly have
a critical point of φ0. Conversely, if we have a critical point of φ0, set

wi := Wi, x0 := X, x1 := t, x2 := (B + t2)/2X,

x3 := (3x0x1x2 − x3
1)/3x

2
0, x4 := (U + 2x1x3 − x2

2)/2x0,

(so C = 0). Then 0 = ∂φ0/∂x4 = 2x0∂ψ0/∂U , so 0 = ∂ψ0/∂U , and 0 = ∂φ0/∂x2 =
2x0∂ψ0/∂B + 2x2∂ψ0/∂U , so 0 = ∂ψ0/∂B, and hence again, ∂ψ0/∂X = ∂φ0/∂x0

and the ∂ψ0/∂Wi all vanish; so we have a critical point of ψ0.
In X 6= 0 we may make the substitution Z := X−1B, then ψ0(W,X,XZ) =

X3ψ1(W,X,Z). Then the critical points of ψ0 correspond to those of ψ1. Thus f
has no critical points in x0 6= 0 if and only if ψ1 has none in X 6= 0; equivalently,
V0 \ V1 is non-singular.

For a critical point of ψ1, 0 = ∂ψ1/∂U = 3(Z + a1), so Z = −a1 and 0 =
∂ψ1/∂Z = 3U − 3Z2, so U = Z2 = a2

1. With this value of U , the partial derivatives
of ψ1 with respect to X and the Wi coincide with those of a3

1 + a3. Thus f has no
critical point in x0 6= 0 if and only if a∗3 has none in X 6= 0.

For singular points on x0 = 0, we have 0 = ∂f/∂x4 = −6x2
1, so x1 = 0 also, and

hence U = x2
2, E = −2x3

2, so f reduces to −2x3
2 + 3x2

2a1(w, 0) + a3(w, 0). We now
have ∂f/∂x4 = ∂f/∂x3 = 0, and

∂f/∂x2 = 6x2(a1(w, 0)− x2), ∂f/∂x1 = −6x3(a1(w, 0)− x2),

∂f/∂x0 = 12x2x4 − 9x2
3 + 6x4a1(w, 0) + 3x2

2∂a1/∂x0 + ∂a3/∂x0(w, 0).

If x2 = a1, then ∂f/∂wi = ∂(a3
1 + a3)/∂wi = ∂a∗3/∂wi. If the restriction of a∗3 to

x0 = 0 has a critical point, we can assign this value to the wi, set x2 = a1, and
then only have one further equation in x3 and x4: thus f has non-isolated critical
points. Thus condition (ii) is necessary. If it holds, then if x2 = a1 we have w = 0,
hence in turn x2 = x3 = 0 and we have the unique critical point P4. Note also that
(ii) implies that a∗3 has no critical point on X = 0, thus completing the proof of the
necessity of (i).

For a critical point of f with x2 6= a1, we must have x2 = x3 = 0. Then ∂f/∂wi
reduces to ∂a3/∂wi and ∂f/∂x0 to 6x4a1 + ∂a3/∂x0. Thus we have a critical point
of the restriction of a3 to x0 = 0; since a1 6= x2 = 0, each such critical point yields
a unique value of x4 and hence critical point of f .

Theorem 7.4. For V quasi-smooth in Case 4, we have µ(V ) = 11.2m + µ(V3).

Proof. As before, we calculate the χ(V ∩ Si) using Lemma 7.1.
For S3 we only have to consider a3(w, 0) = 0, which defines V3. Hence χ(V ∩S3) =

χ(V3) + χ(E).
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We know that χ(V ∩S2) is equal to the Euler characteristic of the set of (W,U,E)
with φ(W, 0, 0, U, E) = 0, 4U3 = E2 and U 6= 0. Since we can solve φ = 0 for E,
it suffices to consider the set of (W,U) where 4U3 = (3a1U + a3)

2 and U 6= 0. We
cannot have W = 0 here, as this would imply U = 0. We can thus project on
the space Pm−1 with co-ordinates W . The fibre consists of the roots of the cubic
equation in U , which has discriminant 16a3

3a
∗
3.

In the following table, the first column defines the subset of Pm−1, the second
gives its Euler characteristic, the third is the number of points in the fibre with
U 6= 0, and the fourth the contribution to

χ({(W,U) | 4U3 = (3a1U + a3)
2, U 6= 0}.

Pm−1 \ (V3 ∪ V ∗
3 ) m− χ(V3)− χ(V ∗

3 ) + χ(V4) 3 3m− 3χ(V3)− 3χ(V ∗
3 ) + 3χ(V4)

V3 \ V ∗
3 χ(V3)− χ(V4) 1 χ(V3)− χ(V4)

V ∗
3 \ V3 χ(V ∗

3 )− χ(V4) 2 2χ(V ∗
3 )− 2χ(V4)

V4 χ(V4) 0 0

Hence χ(V ∩ S2) = 3m− 2χ(V3)− χ(V ∗3 ).
In S1 (X = 0, B 6= 0) we can again assign W,B and U and solve for E. Since

the other conditions are independent of B, which runs through C∗, we have χ = 0
in each case, except when W = U = 0 which leads to the unique point with E = 0
also, and hence to χ(V ∩ S1) = 1.

Finally, for S0, while we again solve uniquely for E, so that χ(φ−1(0) ∩ S0) = 1,
we have to distinguish according as B3 +X3E−3X2BU = 0 or not, hence according
as 0 = B3 − 3X2BU −X3(3a1U + a3). As before, since here X is non-zero, we can
replace B by Z = B/X, so obtain 0 = Z3 − 3ZU − (3a1U + a3), giving V0. By
Lemma 7.3, both V0 and its intersection V1 with X = 0 are non-singular. Applying
again Lemma 7.1, we obtain, since χ(S0) = 1,

χ(V ∩ S0) = (χ(V0)− χ(V1)) + 2(1− χ(V0) + χ(V1)) = 2− χ(V0) + χ(V1).

Recall that by Corollary 4.4, if Hn is a smooth hypersurface of dimension n where
one of the weights is 2, then χ(Hn) = n + 2 + 1

3
{(−2)n − 1}. Since V0, V1 have

respective dimensions m+ 1,m,

χ(V0)− χ(V1) = 1 + 1
3
{(−2)m+1 − (−2)m} = 1− (−2)m.

Adding up, χ(V ) is equal to

χ(V3) + χ(E) + 3m− 2χ(V3)− χ(V ∗3 ) + 1 + 2− (1− (−2)m),

and to χm+3(3) + (−1)mµ(V ). We can substitute χ(E) = 2, χ(V ∗3 ) = χm−2(3) and
χ(V3) = χm−2(3) + (−1)m−1µ(V3), so that

µ(V )− µ(V3) = (−1)m−1(χm+3(3) + 2χm−2(3)− 3m− 5) + (2m − (−1)m).

Substituting χn(3) = (−1)n

3
(2n+2 − (−1)n+2) + n+ 2, this reduces to 11.2m.

As before, we can determine the singularities.
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Proposition 7.5. Suppose V in Case 4. Then the singularity of V corresponding
to a singularity of V3 is right-equivalent to a suspension of that singularity.

Proof. Suppose Qi a singular point of V3. Then a1 cannot be a multiple of x0, for
otherwise V3 = V ∗3 would be non-singular. We may thus set w1 = a1. By the
arguments above, a1 does not vanish at Qi. We may thus work in affine co-ordinates
w1 = 1.

Now apply Lemma 3.4(a) to f with the variables (x0, x1, x2, x3, x4). We observe
that ∂f/∂x0, ∂f/∂x1, ∂f/∂x2, ∂f/∂x3, ∂f/∂x4 all vanish when x0 = x1 = x2 =
x3 = 0 and x4 = −1

2
∂a3/∂x0. Substituting these values gives g(w) = a3(w, 0, 0, 0).

The result follows.

Lemma 7.6. Suppose V in Case 4. Then the singularity of V at P is semi-quasi-
homogeneous of degree 12 in variables of weights 1, 6, 6, 6 and 4 (m times).

Proof. If we substitute x4 = 1, x3 = 2z, x2 = y + 3z2, and x1 = x + 3yz + 3z3, we
obtain E = 6Uy − 8y3 − 6x2; thus f = −6x2 + 6Uy − 8y3 + 3Ua1 + a3.

We also obtain U = 2x0 − 4xz − 6yz2 − 3z4 + y2. Substitute x0 = 1
2
U + 2xz −

1
2
y2 + 3yz2 + 3

2
z4 in f , and assign weights 1 to z, 4 to y and to the wi, 6 to x and

8 to U . Then in the expression for x0, all terms have weight > 4 except for 3
2
z4, of

weight 4. Hence all terms in f have weight at least 12, and those of exactly this
weight are obtained by substituting 3

2
z4 for x0 in a1 and a3.

It thus remains only to show that the result of this substitution has an isolated
singularity. Here we can ignore the summand −6x2; the rest is obtained from
ψ1(W,X,Z, U) by the substitution Z = 2y, X = 3

2
z4. But by Lemma 7.3, the

hypersurface V0 given by ψ1 = 0 is non-singular. The result follows.

We observe that we also have f = −6x2 +(U− 4
3
y2 + 2

3
a1y−a2

1)(2y+a1)+a3
1 +a3,

which we can write as −6x2 + 6U ′y′ + a∗3(w, x0), though in view of the substitution
x0 = 1

2
U ′+ 2zx+ 3z2y′− 3

2
z2a1 + 3

2
z4 + 1

6
y′2− 1

2
y′a1 + 3

8
a2

1 we must make for x0, the
simplicity of this form is misleading.

In certain cases, we can also determine τ .

Proposition 7.7. Suppose f , in the normal form for Case 4, satisfies also
(i) a1 is a multiple of x0, and
(ii) ∂a3/∂x0 vanishes when x0 = 0.
Then the singularity of f at P is quasi-homogeneous, so τP (V ) = µP (V ) = 11.2m.

Proof. Write f as f = E + ax0U + ux2
0 + cx3

0 + C(w), where u is a non-zero linear
combination of the wi. We now define a number of vector fields. In the table, the
left column gives the name, the next defines the field, and the last gives its effect
on f . Here ∂i denotes ∂/∂xi and R = (∂4E∂0−∂3E∂1 +∂2E∂2−∂1E∂3 +∂0E∂4)/6.

H −2x0∂0 − x1∂1 + x3∂3 + 2x4∂4 −2ax0U − 2x2
0(2u+ 3cx0)

M x1∂1 + (3/2)x2∂2 + (3/2)x3∂3 + x4∂4 ax1U + 2x0x1(2u+ 3cx0)
P x0∂0 + x1∂1 + x2∂2 + x3∂3 + x4∂4 3E + 3ax0U + x2

0(2u+ 3cx0)
Q x0∂2 + x1∂3 + x2∂4 2x0(3U + aB)
R 6U2 + a(x0E +BU) + x0B(2u+ 3cx0)
S (∂4E∂2 − ∂3E∂3 + ∂2E∂4)/12 3x0E − 3BU + ax2

0U
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Linear combinations of these give

Y1 2x4H + x3M −(4x0x4 − x1x3)(aU + x0(2u+ 3cx0))
Y2 −x1M + U∂2 +R ax0E + 6(4x0x4 − x1x3)U

+ 2aBU + 2x0(x0x2 − x2
1)(2u+ 3cx0)

Y3 −5S + 4x0P − 7
2U∂4 −3x0E − 6BU + 4x3

0(2u+ 3cx0)
Y4 3Q+ 3x0∂2 − 2ax0∂4 18x0(4x0x4 − x1x3)− 6ax0(x0x2 − x2

1)− 4a2x3
0

Thus the vector field Z = Y1 + a
6
Y2 + a2

18
Y3 + 2bu+3cx0

18
Y4 kills f , and at the point P ,

Z reduces to 2∂/∂x4. The result now follows by Saito’s criterion.

Condition (i) is invariant under allowed changes of co-ordinates. An invariant
version of (ii) is that substituting x0 = 0 in ∂a3/∂x0 gives a function in the Jacobian
ideal of a3(w, 0). We believe both these conditions to be necessary for the result.

Since τ(V ) ≤ µ(V ) = 11.2m < 12.2m, no function in Case 4 can be oversymmet-
ric.

8 Case 21

First we normalise co-ordinates.

Lemma 8.1. There is an allowable change of co-ordinates which puts f in the form
f = S + a1B + a3, where ai is homogeneous of degree i in w, x0, y0. Moreover, we
may suppose that either a1 = x0 or a1 = w1.

Proof. Here d = 3 and f has the form a0S+a1B+b1T+a3, where ai (and bi) denotes
a homogeneous function of degree i in w, x0, y0. It follows from Corollary 2.5 that f
must contain the monomial y2

1x0. Hence we must have a0 6= 0, and can take a0 = 1.
Now substitute y′1 := y1 + 1

2
b1 to reduce b1 to 0 (the extra terms introduced can be

absorbed in a3), and so f to S + a1B + a3.
If a1 involves any of the w co-ordinates, we can make a linear substitution among

the w’s to reduce a1 to the form qx0 + py0 + w1, and then change again to achieve
a1 ≡ w1. Otherwise, we can write a1 = 2py0 + qx0 and use the substitution y′1 =
y1 − px1, y

′
0 = y0 − px0. This transforms S to S + (p2x0 − 2py0)B, so a1 is changed

to (q − p2)x0. We may thus suppose that either a1 ≡ x0 or a1 ≡ 0. However, if
a1 ≡ 0, V is singular along the plane w = y0 = y1 = 0.

Proposition 8.2. In Case 21, V is always 2-symmetric.

Proof. The function f is annihilated by the vector fields ξ = x0∂/∂x1 + x1∂/∂x2 +
y0∂/∂y1 and ξ′ := y0∂/∂x1 + y1∂/∂x2 − a1∂/∂y1.

There are significant differences between the two cases. We now rename the case
with a1 = x0 as 210, and the case a1 = w1 as Case 5.

In Case 210, the operators D±D′ each fall into Case 2 (other linear combinations
are all in Case 210). To see this, substitute

x0 = u0 + v0, y0 = u0 − v0, x1 = u1 + v1, y1 = u1 − v1,
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Then f reduces to−8x2u0v0+4u0v
2
1+4v0u

2
1+a3, which we can write as 4u0(v

2
1−2v0x2)

added to a cubic in w, u0, v0 and v1. Conversely, this is essentially the normal form
for Case 2 where the cubic has the form 4v0u

2
1 added to a cubic in w, u0, v0, and

thus can be identified with Case (a2) of Proposition 5.9.
For the remainder of this section we consider only Case 5; here all non-zero linear

combinations of D and D′ are in Case 5. We re-name a1 as z0. In this notation,
co-ordinates are (w1, . . . , wm, x0, y0, z0, x1, y1, x2), and we re-group the terms in f as
J + a3(x0, y0, z0, w), where

J := 2x2(y
2
0 − x0z0) + x2

1z0 − 2x1y1y0 + y2
1x0.

It is now more natural to treat all the differential operators on the same footing,
and consider f as invariant under the 2-dimensional group G whose Lie algebra
is spanned by D and D′. We see that J is invariant under G, and it seems very
likely that the ring of invariants coincides with the polynomial ring C[w, x0, y0, z0, J ]
(clearly it contains this, and we can show that the localisation at 〈x0〉 is correct),
but we will not use the precise assertion.

We define a new stratification,
S0: y

2
0 − x0z0 6= 0,

S1: y
2
0 − x0z0 = 0 but (x0, y0, z0) 6= (0, 0, 0),

S2: (x0, y0, z0) = (0, 0, 0).

Lemma 8.3. A point in S2 is fixed under G; otherwise the dimension of the orbit
is equal to the rank of ( x0 y0 x1

y0 z0 y1 ).

For the fixed points of Aξ0 + Bξ1 = (Ax0 + By0)∂/∂x1 + (Ay0 + Bz0)∂/∂y1 +
(Ax1 +By1)∂/∂x2 are those where the three coefficients vanish; this holds for some
(A,B) 6= (0, 0) if and only if the rank of the matrix drops.

We define a projection π : K → L by π(w, x0, y0, z0, x1, y1, x2) = (w, x0, y0, z0),
and again write π : P (K) → P (L) for the induced map of projective spaces. The
exceptional set where π is undefined is the projective plane where w = x0 = y0 =
z0 = 0, and the pre-image of any point in the target is isomorphic to affine 3-space.
Write π0 for the restriction of π to the hypersurface V defined by f = 0.

Lemma 8.4. The fibres of π0 are as follows:
in S0 each fibre is a quadric isomorphic to an affine plane,
in S1, one or two affine planes according as a3(w, x0, y0, z0) = 0 or 6= 0,
in S2, affine 3-space or the empty set according as a3(w, 0, 0, 0) = 0 or 6= 0.

Proof. The assertions are trivial except for S1. Here we may write (x0, y0, z0) =
(t2, tu, u2) for some t, u not both zero. Then J reduces to x2

1z0 − 2x1y1y0 + y2
1x0 =

(ux1 − ty1)
2. Thus we have the plane(s) given by ux1 − ty1 = ±√(−a3).

We have two hypersurfaces in P (L): the cone S1 ∪ S2 = C : y2
0 − x0z0 =

0 and the variety V0 defined by a3(w, x0, y0, z0) = 0. Write V1 := V0 ∩ C, and
V3 := V0 ∩ S2 for the variety a3(w, 0, 0, 0) = 0. Also define V ∗1 as the variety
φ(w, t, u) := a3(w, t

2, tu, u2) = 0 in weighted projective space P (2m12).
It follows from the lemma that

χ(V ) = 3 + χ(S0) + 2χ(S1)− χ(S1 ∩ V0) + χ(S2 ∩ V0). (4)
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Proposition 8.5. The variety V has isolated singularities if and only if
(i) for no (w, x0, y0, z0) in S1 do we have ∂a3/∂wi = 0 for each i, and the matrix

A of rank 1, where

A :=

(
∂a3/∂x0 ∂a3/∂y0 ∂a3/∂z0

z0 −2y0 x0

)
,

(ii) for any singular point of V3 we have

(∂a3/∂y0)
2 6= 4(∂a3/∂x0)(∂a3/∂z0).

In particular, singular points of V3 are isolated.
When this holds, P is the only singular point of V .

Proof. Since ∂f/∂x2 = 2(y2
0 − x0z0), there are no singularities in S0.

In S1, again write (x0, y0, z0) = (t2, tu, u2) for t, u not both zero. Then

∂f/∂x1 = 2u(ux1 − ty1), ∂f/∂y1 = −2t(ux1 − ty1),

∂f/∂x0 = y2
1 + ∂a3/∂x0, ∂f/∂y0 = −2x1y1 + ∂a3/∂y0, ∂f/∂z0 = x2

1 + ∂a3/∂z0, and
∂f/∂wi = ∂a3/∂wi. It follows that for a critical point of f , ux1 = ty1, and hence
that the matrix A has rank 1.

Conversely, given (w, x0, y0, z0) in S1 such that ∂a3/∂wi = 0 for each i, and A
has rank 1, we can take (x0, y0, z0) = (t2, tu, u2), and let the upper row of A equal
−v2 times the lower. Then if x1 = tv, y1 = uv and x2 is arbitrary, we have a critical
point of f : none of these critical points is isolated.

In S2 we have identically ∂f/∂x2 = ∂f/∂x1 = ∂f/∂y1 = 0. For a critical point
of f we have a critical point of a3, and 3 further equations, for x2

1, x1y1 and y2
1, which

are inconsistent unless also (∂a3/∂y0)
2 = 4(∂a3/∂x0)(∂a3/∂z0).

Conversely, if there is a critical point of a3 at which this identity holds, we can
solve for x1 and y1 and take an arbitrary value for x2, again obtaining a non-isolated
singularity of f .

It remains to consider the case w = x0 = y0 = z0 = 0. Here the only critical
point is x1 = y1 = 0, which is indeed isolated.

For a singular point of the intersection V1 := V0 ∩ C, Lagrange’s multiplier rule
tells us that the ∂a3/∂wi vanish and the matrix A has rank at most 1: for singular
points with (x0, y0, z0) 6= (0, 0, 0), this condition is necessary and sufficient. Thus (i)
is equivalent to the condition that V1 ∩S1, or equivalently the open set of V ∗1 where
(t, u) 6= (0, 0), be non-singular.

Now V1 is always singular along V1∩S2. For V ∗1 on the other hand, it is singular
at a point on t = u = 0 only if ∂a3/∂wi = 0 for each i, i.e. at a singular point of V3.
Thus V ∗1 is non-singular if and only if V3 is.

The singularities of V ∗1 and V3 are related as follows. If we expand φ as a
Taylor series, the second order terms in t and u are 2((∂a3/∂x0)t

2 + (∂a3/∂y0)tu+
(∂a3/∂z0)u

2), a form which is non-singular if and only if (ii) holds. However, since
the ambient weighted projective space is singular at this point, we cannot say that
one singularity is the suspension of the other.
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Theorem 8.6. If V3 is non-singular, µ(V ) = 25.2m. Moreover, the singularity of
V is semi-quasi-homogeneous of degree 6 in variables of weights 1, 1, 3, 3, 3 and 2
(m times).

Proof. Although the first assertion follows from the second, we give an independent
proof.

For the stratification of P (L) we have χ(S2) = m, χ(S1) = 2 and χ(S0) = 1,
since S2 is a projective space, and forgetting the wi defines a projection of the others
to the projective plane on x0, y0, z0 with contractible fibres. Substituting in (4), and
using the notations Vi thus gives χ(V ) = 8− χ(V1) + 2χ(V3).

Now χ(V ) = χm+4(3) + (−1)m−1µ(V ) and since V3 is non-singular, χ(V3) =
χm−2(3). Since the natural projection V ∗1 → V1 is bijective, χ(V1) = χ(V ∗1 ), while
by Corollary 3.7, χ(V ∗1 ) = m+ 1 + 1

6
(−1)m(26.2m + 4(−1)m).

Putting the above results together, we obtain

µ(V ) = 1
3
(2m+6 − (−1)m) + (−1)m(m+ 6)

+ 1
6
(26.2m + 4(−1)m) + (−1)m(m+ 1)

− 2
3
((2)m − (−1)m) + (−1)m−12m+ 8(−1)m−1

= 25.2m.

Set x2 = 1/2 and rewrite J as (y0−x1y1)
2−(x0−x2

1)(z0−y2
1). Substitute x′ := x0−x2

1,
y′ := y0−x1y1 and z′ := z0−y2

1: then f = (y′2−x′z′)+a3(x
′+x2

1, y
′+x1y1, z

′+y2
1, w).

Now assign weights 1 to x1, y1, 2 to the wi and 3 to x′, y′, z′. Then the terms of
weight 6 give g = (y′2− x′z′) + a3(x

2
1, x1y1, y

2
1, w). Since V3 is non-singular, so is V ∗1 ,

so g has an isolated singularity, and the result follows.

If V ∗1 is singular, we do not have a formula for its Euler characteristic, so must

proceed differently: in fact, we resolve the singularity of C. Define P̂ as the subva-
riety of P 1 × P (L), where P 1 has co-ordinates (t0 : t1), given by t1x0 = t0y0, t1y0 =
t0z0. If L0 := S2 denotes the subspace x0 = y0 = z0 = 0 of L, then the projec-
tion P̂ → P (L) has image C; it is bijective over C \ P (L0), but over P (L0) is the
projection P 1 × P (L0)→ P (L0).

Define V̂ ⊂ P̂ to be the subvariety given by a3(w, x0, y0, z0) = 0: thus it is
a complete intersection of multi-degree (1,1), (1,1), (0,3). The natural projection

π : V̂ → V1 is an isomorphism outside V3, but a product P 1 × V3 over it. In
particular, χ(V̂ ) = χ(V1) + χ(V3). By Proposition 8.5(i), V1 \ V3, hence its pre-

image, is non-singular. Also, any singularity of V̂ projects to a singular point Pi
of V3.

Lemma 8.7. Above each singular point Pi of V3 there are just two singular points
of V̂ , and the singularity at each is isomorphic to a suspension of the singularity of
V3 at Pi.

Proof. To study a neighbourhood of Pi, it is convenient to make a linear change of
the co-ordinates (x0, y0, z0), preserving the quadratic y2

0 − x0z0, so that ∂a3/∂x0 =

∂a3/∂z0 = 0, ∂a3/∂y0 6= 0 at Pi (here we use Proposition 8.5(ii)). Then V̂ is non-
singular at all points of π−1(Pi) except those where (t0 : t1) is (0 : 1) or (1 : 0): it
suffices to consider the first.

28



Take affine co-ordinates in V̂ with t1 = 1 and w1 = 1. Then y0 = t0z0, x0 =
t0y0 = t20z0. Thus a3 lifts to α3 := a3(1, w2, . . . , wr, t

2
0z0, t0z0, z0). At the point

t0 = z0 = 0, the 2-jet has a non-zero coefficient of t0z0. We now apply Lemma 3.4(b):
this we can do since ∂α3/∂t0 is divisible by z0. It thus follows that we have a
suspension of the restriction to t0 = z0 = 0, which is just the intersection with V3.

We can now show

Theorem 8.8. If V is quasi-smooth in Case 5, then µ(V ) = 25.2m + µ(V3).

Proof. Since V̂ is a complete intersection with isolated singularities, its Euler char-
acteristic is obtained from that of a smooth complete intersection of the same multi-
degrees by adding (−1)m−1 times the sum of the Milnor numbers.

While we could calculate the default value of χ(V̂ ) directly, we can also obtain
it from the above calculations in the case when V3 is non-singular. In the proof of
Theorem 8.6 we calculated values of χ(V1) and χ(V3): denote them for now by c1
and c3. Thus c1 = m + 1 + 1

6
(−1)m(26.2m + 4(−1)m) and c3 == χm−2(3). In the

case V3 non-singular, we have χ(V̂ ) = c1 + c3 and χ(V ) = 8 − c1 + 2c3, whereas
χ(V ) = χm+4(3) + (−1)m−1µ(V ), leading to µ(V ) = 25.2m.

In the general case, by Lemma 8.7 there are two singular points of V̂ in π−1(Pi),

each a suspension of the singularity of V3 at Pi; hence µ(V̂ ) = 2µ(V3). Now χ(V3) =
c3 + (−1)m−1µ(V3). Also, by the remark just made,

χ(V̂ ) = c1 + c3 + (−1)m−12µ(V3). As before, we have χ(V ) = 8 − χ(V1) +

2χ(V3) = 8 − χ(V̂ ) + 3χ(V3), which now equals 8 − [c1 + c3 + (−1)m−12µ(V3)] +
3[c3 + (−1)m−1µ(V3)], i.e. 8 − c1 + 2c3 + (−1)m−1µ(V3). Substituting this value in
χ(V ) = χm+4(3) + (−1)m−1µ(V ) gives µ(V ) = 25.2m + µ(V3) as desired.

Observe, however, that unlike the other cases, here there is just one singular point
P , and the values τ = 25.2m and µ = 25.2m + µ(V3) both hold for the singularity at
this point.

9 2-symmetric cases

Finally we list 2-symmetric hypersurfaces. This is just the subcase d = 3 of the list
of oversymmetric cases: in the semisimple case, the weights are obtained from one of
[−1, 0, 1], [−2, 1, 2] and [−2, 1, 4] by adding zeros; in the unipotent case, the subcases
of Case 2 when an additional action exists were analysed in Proposition 5.9: we had
three cases (a1), (a2), (b); and Case 21 splits into two subcases: Case 210 and Case
5. Since some cases arise more than once by using different 1-parameter subgroups,
it is better to give the list separately.

Theorem 9.1. If f , of degree ≥ 3, such that f = 0 is quasi-smooth, is 2-symmetric,
then f belongs to one of the following 5 cases (A)–(E).

(A) f = x0x1x2 + a3(x3, . . . , xn) (n ≥ 2), where a3 = 0 is non-singular, with the
2-parameter action (λ, µ).(x0, x1, x2, . . . , xn) = (λ−1x0, µ

−1x1, λµx2, . . . , xn), and 3
singular points, mutually isomorphic. We have 1-parameter subgroups with weights
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[−a,−b, a + b] for any a and b. There are 3 singularities, all isomorphic, each with
µ = 2n−2 and homogeneous of degree 3 with respect to weights 1 (n−1 times) and 2.

(B) f = x0x
2
1 + x0x2x3 + a3(x3, . . . , xn) (n ≥ 3), where a3 = 0 is non-singular,

and has non-singular intersection with x3 = 0. This is annihilated by −2x0∂0 +
x1∂1 + 2x2∂2 with non-zero weights [−2, 1, 2], and by x3∂/∂x1 − 2x1∂/∂x2, which is
in case (a1) of Proposition 5.9. There are two singularities, with Milnor numbers
5.2n−3 and 2n−3; both homogeneous of degree 6, the first with respect to weights 1
and 2 (n− 3 times); the second with respect to weights 3 and 2 (n− 3 times).

(C) f = x0(2x0x2 − x2
1) + a3(x3, . . . , xn) (n ≥ 2), where a3 = 0 is non-singular.

This is annihilated by −2x0∂0 + x1∂1 + 4x2∂2 with non-zero weights [−2, 1, 4], and
by x0∂/∂x1 + x1∂/∂x2, which is in case (b) of Proposition 5.9. The singularity
has µ = 3.2n−2 and is homogeneous of degree 12 with respect to weights 3,6 and 4
(n− 2 times).

(D) f = x3(2x0x2 − x2
1) + x0x

2
4 + a3(x0, x3, x5, . . . , xn) (n ≥ 4), with a3 non-

singular. We have vector fields x0∂/∂x1 + x1∂/∂x2 in case (a2) of Proposition 5.9
and x4∂/∂x2 − x3∂/∂x4 in Case 210. The singularity has µ = 13.2n−4, and is in the
same µ−constant stratum as x6 + x2y2 + y6 +

∑n−4
2 w3

i .
(E) f = 2x2(y

2
0−x0z0)+x2

1z0−2x1y1y0 +y2
1x0 +a3(x0, y0, z0, w1, . . . , wm) (n ≥ 5),

satisfying the conditions of Proposition 8.5. This is invariant by x0∂/∂x1+x1∂/∂x2+
y0∂/∂y1 and y0∂/∂x1 +y1∂/∂x2 +a1∂/∂y1; any non-zero linear combination of these
is in Case 5. If V3 is non-singular, µ(V ) = 25.2n−5 and the singularity of V is
semi-quasi-homogeneous of degree 6 in variables of weights 1, 1, 3, 3, 3 and 2 (n−5
times). In general, we have µ(V ) = 25.2n−5 + µ(V3).
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