UNIVERSITY OF A ARHUS

Department of MAthematics

ISSN: 1397-4076

Hypersurfaces in P^{n} WITH 1-PARAMETER SYMMETRY GROUPS II

by A. A. du Plessis and C. T. C. Wall

Hypersurfaces in P^{n} with 1-parameter symmetry groups II

A. A. du Plessis and C. T. C. Wall

Introduction

We are interested in hypersurfaces $V \subset P^{n}(\mathbb{C})$ defined by homogeneous equations $f\left(x_{0}, \ldots, x_{n}\right)=0$ of degree d. We say that V is quasi-smooth if V has isolated singularities and is not a cone. If V admits a subgroup G of PGL_{n+1} of symmetries with $r=\operatorname{dim} G \geq 1$, we call $V r$-symmetric.

In [4] we gave a detailed discussion of 1-symmetric quasi-smooth hypersurfaces in the case when G is semi-simple. The main object of this paper is to give a corresponding analysis when G is unipotent.

Our first main result Theorem 2.4 lists the possible cases. Let G be a unipotent group of type given by the sequence $R=\left\{r_{1} \geq r_{2} \geq \ldots\right\}$ (i.e. the Jordan blocks have sizes $r_{i}+1$; we omit zeros in writing R). Then we have one of the following:

$$
\begin{array}{ll}
\text { Case 2: } & d \geq 3, R=\{2\}, \\
\text { Case 4: } \quad d=3, R=\{4\}, & \text { Case 3: 21: } d=3, R=\{3\}, \\
\text { Case }=\{2,1\} .
\end{array}
$$

We find that Case 21 splits into two: one a subcase of Case 2 ; the other we rename Case 5 .

Our second main conclusion is the calculation of the total Milnor number $\mu(V)$ (the sum of the Milnor numbers $\mu_{P_{i}}(V)$ at all singular points P_{i} of V). The result is, where the V_{i} are auxiliary varieties defined ad hoc in each case:

Case	$\mu(V)$
2	$\frac{1}{2}(d-2)(2 d-1)(d-1)^{m}+\mu\left(V_{2}\right)+\mu\left(V_{3}\right)$
3	22.3^{m}
4	$11.2^{m}+\mu\left(V_{3}\right)$
5	$25.2^{m}+\mu\left(V_{3}\right)$

There is a 'main' singular point P. Provided in Case 2 that V_{2} is non-singular and in Case 5 that V_{3} is, the Milnor number $\mu_{P}(V)$ is the first term of the sum and the singularity of V at P is semi-quasi-homogeneous.

The first two sections are devoted to preparation and the proof of Theorem 2.4. We then pause for a brief review of some important background results, holding for all quasi-smooth 1 -symmetric hypersurfaces; in particular, we recall that $\tau(V) \leq(d-1)^{n-2}\left(d^{2}-3 d+3\right)$, and attains this value if and only if f is annihilated
by vector fields ξ of degree 1 and η of degree $d-2$, not a multiple of ξ. We will call V oversymmetric in this case. Moreover, f is 2 -symmetric if and only if it is oversymmetric with $d=3$, and is never 3 -symmetric. We briefly recall the enumeration of oversymmetric hypersurfaces in the semi-simple case. We also give a number of auxiliary methods of calculation of Milnor numbers, so as not to interrupt the main discussion.

After a brief recall of the invariant theory of the nilpotent actions we discuss Cases 2-5 in successive sections; in each case we discuss the geometry of the action, show how to reduce f to a convenient normal form, analyse the conditions on f for V to be quasi-smooth, find the singular points, and study the total Milnor number $\mu(V)$ and the nature of the singularities presented. We proceed to discussion of the Tjurina number $\tau(V)$, and show that V is always oversymmetric in Cases 3 and 21, never in Case 4, while in Case 2 by Theorem 5.7 it occurs if and only if either (a) V_{3} is a cone, or (b) after change of co-ordinates if necessary, $\partial \phi / \partial B$ and $\partial \phi / \partial X$ both vanish along $X=B=0$.

In a final section we recapitulate the complete list of the five 2-symmetric cases in more detail.

1 Unipotent actions on vector spaces and algebras

If N is a nilpotent endomorphism of a finite dimensional vector space K, we can choose co-ordinates to put N into Jordan canonical form, and count the sizes of the blocks. If the block sizes are $\lambda_{1}, \ldots, \lambda_{t}$, arranged in non-increasing order, then $n=\sum_{i} \lambda_{i}$. If we write $\nu_{k}:=\operatorname{rank} N^{k-1}-\operatorname{rank} N^{k}$, then ν is the partition conjugate to λ, so both partitions are independent of the choice of co-ordinates. Our usual notation will be to set $r_{i}:=\lambda_{i}-1$ and let R be the sequence of r_{i}, with zeroes omitted.

We recall the representation theory of the Lie algebra $s l_{2}$. Denote the canonical basis vectors of $s l_{2}$ by

$$
e:=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad f:=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad h:=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

These satisfy $[e, f]=h,[h, e]=2 e,[h, f]=-2 f$. Every (finite dimensional) $s l_{2}-$ module M is a direct sum of irreducible modules, and any irreducible module of rank $s+1(s=0,1,2, \ldots)$ is isomorphic to the module K_{s} with basis $x_{-s}, x_{2-s}, \ldots, x_{s-2}, x_{s}$ and action given by

$$
e . x_{r}=\frac{s-r}{2} x_{r+2}, \quad \text { f. } x_{r}=\frac{s+r}{2} x_{r-2}, \quad \text { h. } x_{r}=r x_{r} .
$$

Thus the eigenvalues of h on M are all integers, and we can define a grading on M by assigning weight r to the eigenspace belonging to the eigenvalue r. Then for any $r \geq 0, e^{r}$ gives an isomorphism of M_{-r} on M_{r} and f^{r} gives an isomorphism of M_{r} on M_{-r}.

Lemma 1.1. For any $\operatorname{sl}_{2}-$ module M,
(i) if $r \geq 0, f^{r}$ gives an isomorphism from the weight space M_{r} to M_{-r},
(ii) if $r>0$, then $\operatorname{Ker}\left(f \mid M_{r}\right)=0$,
(iii) if $r<0$, then $\operatorname{dim} \operatorname{Ker}\left(f \mid M_{r}\right)=\operatorname{dim} M_{r}-\operatorname{dim} M_{r-2}$,
(iv) if $x \in M$ and $f . x=h . x=0$, then $e . x=0$.
(i)-(iii) follow by inspection from the remarks above. It suffices to prove (iv) for each K_{s}. But if $s>0$ then $f . x=h . x=0$ for $x \in K_{s}$ implies $x=0$, while if $s=0$ then $e . x=h . x=f . x=0$ for any $x \in K_{0}$.

Lemma 1.2. The action of a nilpotent endomorphism N on a (finite dimensional) vector space K can be extended to an sl l_{2} action, with N acting as f.

Proof. Express K as the direct sum of monogenic modules: say K_{s}^{\prime} has basis $x, N . x, N^{2} . x, \ldots, N^{s} . x$ with $N^{s+1} . x=0$. If we set, for $0 \leq i \leq s, N^{i} x=: \frac{s!}{(s-i)!} x_{s-2 i}$, then we have $N x_{s-2 i}=(s-i) x_{s-2 i-2}$ or, writing $r=s-2 i, N x_{r}=\frac{s+r}{2} x_{r-2}$. We can now set, for each r, e. $x_{r}=\frac{s-r}{2} x_{r+2}, h . x_{r}=r x_{r}$.

The action, and the grading it defines, are not determined solely by the nilpotent action. However, if we define the weight filtration by letting $F_{v} K$ be the sum of the eigenspaces of h belonging to eigenvalues $\leq v$, we have

$$
F_{v} K=\sum_{p \in \mathbb{Z}} \operatorname{Ker} N^{p} \cap \operatorname{Im} N^{p-v-1} .
$$

It suffices to check this on the modules K_{s}^{\prime}. Then Ker N^{p} has basis $\left\{N^{i} x \mid i \geq\right.$ $s+1-p\}$ and $\operatorname{Im} N^{p-v-1}$ has basis $\left\{N^{i} x \mid i \geq p-v-1\right\}$. Thus $N^{i} x \in F_{v} K$ if and only if, for some $p, i \geq \max (s+1-p, p-v-1)$, i.e. $i+v+1 \geq p \geq s+1-i$, thus if and only if $s-2 i \leq v$.

A linear operator $L\left(x_{i}\right)=\sum a_{i, j} x_{j}$ on a vector space K defines a linear differential operator $D_{L}:=\sum a_{i, j} x_{j} \partial / \partial x_{i}$, which acts on the symmetric algebra $S(K)$ of K, and induces the action of L on K. We also regard D_{L} as a vector field on K, and then denote it by ξ_{L}.

Over a field of characteristic zero, we can also form the 1-parameter group $\{\operatorname{Exp}(t L)\}$ of automorphisms of K, which inherits an action on $S(K)$. If we have a Lie algebra \mathfrak{g} of linear automorphisms of K, the exponentials generate a group G of automorphisms of K, and hence of $S(K)$, and the induced action of an element L of the Lie algebra is that of D_{L}.

We have seen how to extend a nilpotent operator N on K to an action of $s l_{2}$: this now extends to an action of $s l_{2}$ on the symmetric algebra $S(K)$ of K, which in turn we can restrict to the homogeneous part $M:=S_{d}(K)$ of degree d.

If further K splits as a direct sum $K^{\prime} \oplus K^{\prime \prime}$ with each of $K^{\prime}, K^{\prime \prime}$ invariant under N, extending as above to an $s l_{2}$-action leaves each summand $s l_{2}$-invariant. The induced actions of $S L_{2}$ and $s l_{2}$ on $S(K)$ now preserve each of the subspaces $M=S_{d^{\prime}}\left(K^{\prime}\right) \otimes S_{d^{\prime \prime}}\left(K^{\prime \prime}\right)$. Corresponding remarks apply to a direct sum of three or more summands.

Applying Lemma 1.1 to M, we find

Theorem 1.3. Let N be a nilpotent endomorphism of K. Then
(i) for any $r \geq 0, D_{N}^{r}$ gives an isomorphism from the weight space M_{r} to M_{-r},
(ii) if $w>0$, then $\operatorname{Ker}\left(D_{N} \mid M_{w}\right)=0$.
(iii) if $w<0$, then $\operatorname{dim} \operatorname{Ker}\left(D_{N} \mid M_{w}\right)=\operatorname{dim} M_{w}-\operatorname{dim} M_{w-2}$.
(iv) $\operatorname{Ker}\left(D_{N} \mid M_{0}\right)$ is the space of invariants of $S L_{2}$ acting on M.

2 Restrictions on unipotent actions

Let K be a finite dimensional vector space over \mathbb{C} with a nilpotent endomorphism N, of type given by the sequence $R=\left\{r_{1} \geq r_{2} \geq \cdots\right\}$. We consider homogeneous functions f on K, of degree d, annihilated by D_{N}, or equivalently, invariant under the 1-parameter group $G_{N}=\{\operatorname{Exp}(t N)\}$. We seek the conditions under which the hypersurface V in $P(K)$ defined by f is quasi-smooth. In this section we will enumerate the possibilities for $(d ; R)$.

Let $\left\{x_{i}\right\}(1 \leq i \leq n)$ be variables with assigned weights $w\left(x_{i}\right)=w_{i}$, arranged in non-decreasing order. Define a filtration of the polynomial ring $\mathbb{C}[x]$ by letting $f \in F(v)$ if f is a linear combination of monomials of weights $\leq v$.

Lemma 2.1. Let $f_{j}, j=1, \ldots, m$ be polynomials of degree D in the x_{i} with $f_{j} \in$ $F\left(W_{j}\right)$; we suppose $W_{1} \leq \cdots \leq W_{m}$. Suppose that the set Z of common zeroes of the f_{j} in affine n-space has dimension $\leq k$. Then $D w_{i} \leq W_{i+m+k-n}$ for $i=1, \ldots, n-k$.

Proof. If all the f_{j} vanish on $\left\{x_{1}=\cdots=x_{n-k-1}=0\right\}$ then $\operatorname{dim} Z \geq k+1$; so one of the f_{j}, say $f_{j_{1}}$, contains a monomial in x_{n-k}, \ldots, x_{n} alone, and so $D w_{n-k} \leq W_{j_{1}}$. If all but $f_{j_{1}}$ vanish on $\left\{x_{1}=\cdots=x_{n-k-2}\right\}$ then $\operatorname{dim} Z \geq k+1$; so another of the f_{j}, say $f_{j_{2}}$, contains a monomial in x_{n-k-1}, \ldots, x_{n}, and so $D w_{n-k-1} \leq W_{j_{2}}$. Continuing in this way we find distinct $j_{1}, j_{2}, \ldots, j_{n-k} \in\{1, \ldots, m\}$ s.t. $D w_{n-k+1-i} \leq W_{j_{i}}$.

Since the numbers j_{s} for $1 \leq s \leq n-k-i+1$ are all distinct, at least one of them, say j_{ℓ}, is $\leq m-n+k+i$, by the pigeonhole principle. Hence $D w_{i} \leq$ $D w_{n-k+1-\ell} \leq W_{j_{\ell}} \leq W_{m-n+k+i}$.

Corollary 2.2. Let f be homogeneous of degree d in the variables x_{i}; suppose $f \in$ $F(W)$ and that the singular set of the variety V has dimension $\leq k-1$. Then $(d-1) w_{i} \leq W-w_{n+1-i-k}$ for $1 \leq i \leq n-k$. In particular, if $W=0$ and the set of weights w_{i} is symmetric about 0 , we have $(d-1) w_{i} \leq w_{i+k}$.

For set $f_{i}:=\partial f / \partial x_{i}$. Then f_{i} has degree $d-1$ and $f_{i} \in F\left(W-w_{i}\right)$. Rearranging these numbers in increasing order gives $W_{j}=W-w_{n+1-j}$. The singular set of V has dimension $\leq k-1$ if and only if the locus of common zeros of the f_{i} in affine space has dimension at most k. Applying the lemma shows that in this case, $(d-1) w_{i} \leq W_{i+k}$ for $i=1, \ldots, n-k$, i.e. $(d-1) w_{i} \leq W-w_{n+1-i-k}$.

Lemma 2.3. Let f be homogeneous of degree d in the variables p_{i}; suppose that each monomial occurring in f has weight ≤ 0; suppose also that the hypersurface $f=0$ is quasi-smooth. Then
(i) f contains a monomial of degree $d-1$ in the two variables of highest weight,
(ii) f contains two monomials, each of degree $d-1$ in the three variables of highest weight, with the other factors different.

Proof. (i) Write \mathfrak{m}_{2} for the ideal generated by all variables other than the two of highest weight. If $f \in \mathfrak{m}_{2}^{2}$, the hypersurface $f=0$ is singular along the line corresponding to these two co-ordinates. Otherwise, f must contain a monomial of degree $d-1$ in them and containing just one other co-ordinate.
(ii) Write \mathfrak{m}_{3} for the ideal generated by all variables other than the three of highest weight. Each term in f not belonging to \mathfrak{m}_{3}^{2} has degree $d-1$ in these and contains just one other co-ordinate. If this other co-ordinate is the same in all cases, say X, we can write $f=X \phi_{d-1}\left(p_{1}, p_{2}, p_{3}\right)+R$, with $R \in \mathfrak{m}_{3}^{2}$. But then the hypersurface $f=0$ is singular along the curve $\phi_{d-1}\left(p_{1}, p_{2}, p_{3}\right)=0$ in the plane defined by \mathfrak{m}_{3}.

We now apply these results to the problem of hypersurfaces invariant by a unipotent group.

Theorem 2.4. Let $V: f=0$ be a quasi-smooth hypersurface of degree $d>2$ in projective space, which is invariant under the action of a unipotent group of type given by the sequence $R=\left\{r_{1} \geq r_{2} \geq \ldots\right\}$. Then we have one of the the following:

$$
\begin{array}{llll}
\text { Case 2: } & d \geq 3, R=\{2\}, & \text { Case 3: } & d=4, R=\{3\}, \\
\text { Case 4: } & d=3, R=\{4\}, & \text { Case 21: } & d=3, R=\{2,1\} .
\end{array}
$$

Proof. For each i we have basis elements of weights $-r_{i}, 2-r_{i}, \ldots, r_{i}$, and by Theorem 1.3, f is a linear combination of monomials of weight ≤ 0. Thus the hypotheses of the special case of Corollary 2.2 are satisfied.

If there is just one generator of positive weight, r_{1} is 1 or 2 , and other $r_{i}=0$. If $r_{1}=1$, the ring of invariants is polynomial in the generators of weight ≤ 0, so is independent of x_{n}, and defines a cone. If $r_{1}=2$, we have Case 2 of the theorem.

By Corollary 2.2 , we have $(d-1) w_{n-1} \leq w_{n}$. Now if $r_{2}=r_{1}$, we have $w_{n-1}=$ $w_{n}=r_{1}$, so $r_{1} \geq r_{1}(d-1)$, a contradiction. If $r_{2}=r_{1}-1$, we have $w_{n}=r_{1}, w_{n-1}=$ $r_{1}-1$, so $r_{1} \geq\left(r_{1}-1\right)(d-1)$ and $r_{1} \leq \frac{d-1}{d-2}$. If $d>3$ this implies $r_{1}=1$, a possibility we excluded above; if $d=3$ we may also have $r_{1}=2$. If now $r_{3}=1$, we have $w_{n-2}=1$, contradicting $(d-1) w_{n-2} \leq w_{n-1}$. Thus $r_{3}=0$, and we have Case 21 of the Theorem.

Otherwise we necessarily have $w_{n}=r_{1}$ and $w_{n-1}=r_{1}-2$, whence $r_{1} \geq$ $\left(r_{1}-2\right)(d-1)$ and $r_{1} \leq \frac{2(d-1)}{d-2}$. This gives $r_{1} \leq 4$ if $d=3, r_{1} \leq 3$ if $d=4$ and $r_{1} \leq 2$ if $d>4$.

The cases $r_{1}=2$ were considered above. If $d=4$, the remaining possibility is $r_{1}=3$, so that $w_{n}=3, w_{n-1}=1$. Since $3 w_{n-2} \leq w_{n-1}$, we have $w_{n-2}=0$, and Case 3 of the Theorem. It remains to consider the cases $d=3$ and r_{1} equal to 3 or 4 .

If $r_{1}=3$, then $w_{1}=3, w_{2}=1$, so again $w_{3}=0$ and $r_{2}=0$. There is just one non-trivial Jordan block, which has size 4 and weights $-3,-1,1,3$: denote the corresponding variables by $x_{0}, x_{1}, x_{2}, x_{3}$, and write M for the space of homogeneous cubics in them. By Lemma $2.3, f$ must contain a term $x_{0} x_{2}^{2}$, which has weight -1 . Now apply Theorem 1.3 to M. Since $\operatorname{dim} M_{-3}=\operatorname{dim} M_{-1}=3, \operatorname{Ker}\left(D \mid M_{-1}\right)=0$. We thus have a contradiction. In fact the ring of invariants $\operatorname{Ker}(D)$ is given explicitly in Lemma 4.1, and the homogeneous invariants of degree 3 are linear in both the variables of positive weight.

If $d=3$ and $r_{1}=4$, then $w_{n}=4, w_{n-1}=2$, so $2 w_{n-2} \leq w_{n-1}=2$, hence $r_{2} \leq 1$. If $r_{2}=0$, we have Case 4 of the theorem.

If $\left(d, r_{1}, r_{2}\right)=(3,4,1)$, we have co-ordinates of positive weights $4,2,1$, so by Corollary 2.2 no others, so $r_{3}=0$. Write $K=K_{1} \oplus K_{2} \oplus K_{3}$, where K_{1} is the Jordan block of N of size 5 , with co-ordinates of respective weights $-4,-2,0,2,4$, which we denote $x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, K_{2}$ the Jordan block of size 2 , with co-ordinates y_{0}, y_{1} of weights $-1,1$; all the rest have weight 0 .

By Lemma 2.3, f must contain the monomial $x_{0} x_{3}^{2}$ and the monomial $x_{1} y_{1}^{2}$. Write N_{w} for the vector space spanned by monomials of weight w of degree 1 on K_{1} and degree 2 on K_{2}. Since each monomial of degree 2 in K_{2} has weight 2,0 or -2 , there is a unique co-ordinate on K_{1} with which we can multiply to attain weight 0 ; likewise to attain weight -2 . Thus $\operatorname{dim} \operatorname{Ker}\left(D \mid N_{0}\right)=\operatorname{dim} N_{0}-\operatorname{dim} N_{-2}=0$, so no appropriate invariant function exists.

It also follows from Lemma 2.3 that
Corollary 2.5. If $r_{1}=3$ (Case 3), f must contain the monomial $x_{2}^{3} x_{0}$; if $r_{1}=4$ (Case 4), f must contain the monomial $x_{3}^{2} x_{0}$; and if $r_{1}=2, r_{2}=1$ (Case 21), f must contain the monomial $y_{1}^{2} x_{0}$.

3 Toolkit

Before we start detailed investigation of the cases listed above, we first recall some general results, and then collect some methods of calculation of Milnor numbers, so as not to break the thread of exposition in the following sections .

Let V be quasi-smooth, with equation $f=0$ of degree $d>2$ in P^{n}. Recall that we call f, and the hypersurface V, oversymmetric if f is annihilated by vector fields ξ of degree 1 and η of degree $d-2$ which is not a multiple of ξ. When $d=3$ this is equivalent to requiring V to be 2 -symmetric. We recall the important result

Theorem 3.1. Suppose V quasi-smooth of degree d and ξ a vector field of degree $r \leq d-2$ with $\xi(f)=0$. Then $\tau(V) \leq(d-1)^{n}-r(d-1-r)(d-1)^{n-2}$, and equality holds if and only if there is a vector field η of degree $d-1-r$ with $\eta(f)=0$ and independent of ξ. Moreover when this holds, any vector field annihilating f is a linear combination of ξ, η and Hamiltonian vector fields.

This is the content of [6, Theorems 4.7, 4.9] when expressed in geometrical terms. Taking $r=1$, we obtain

Theorem 3.2. Suppose V quasi-smooth and 1-symmetric of degree d with $\xi(f)=0$. Then $\tau(V) \leq(d-1)^{n-2}\left(d^{2}-3 d+3\right)$, and equality holds if and only if V is oversymmetric, with a second vector field η. When this holds, any vector field annihilating f is a linear combination of ξ, η and Hamiltonian vector fields.

This gives the maximal value of τ for 1-symmetric, and conjecturally for all quasi-smooth hypersurfaces.

Corollary 3.3. The hypersurface V cannot be 3-symmetric; it is 2-symmetric if and only if it is oversymmetric and $d=3$.

For by [6, Lemma 5.2], if f is annihilated by vector fields ξ, ξ^{\prime} with $\xi \wedge \xi^{\prime} \neq 0$, of degrees r, r^{\prime} we must have $r+r^{\prime} \geq d-1$. If V is 2-symmetric, we have $r=r^{\prime}=1$, hence $d=3$ and V is oversymmetric; the converse is immediate. It follows from the theorem that now any vector field annihilating f is a linear combination of ξ, ξ^{\prime} and Hamiltonian vector fields; hence if linear, is a linear combination of ξ and ξ^{\prime}.

The vector field ξ is the infinitesimal generator of a linear group G. The cases when G is semi-simple were discussed in our earlier paper [4], and the complete list of the oversymmetric cases was given in $[6, \S 5.3]$, and more fully in our survey article [5]. The symmetry group may be taken to act diagonally, so is determined by its weights. Either the only two non-zero weights are ± 1, and the intersection of V with the zero weight space is a cone; or there are just three non-zero weights, and the set of weights is obtained by adding zeros to a set of four weights; these must admit the monomials x_{1}^{d}, either (B) $x_{0} x_{2}^{d-1}$ or (C) $x_{0} x_{2}^{d-2} x_{3}$, and either $\left(\lambda_{r}\right) x_{0}^{r} x_{3}^{d-r}$, $\left(\mu_{r}\right) x_{0}^{r} x_{2} x_{3}^{d-r-1}$, or $\left(\nu_{r}\right) x_{0}^{r} x_{1} x_{3}^{d-r-1}$ for some r.

In this article we complete the list by determining all the cases when G is unipotent.

We turn to calculations of Milnor numbers. We begin with Thom's splitting theorem (alias the Morse lemma with parameters). As we will need a precise version, we outline a proof.

Lemma 3.4. (a) Let $f\left(x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{k}\right)$ have 2-jet a non-degenerate quadratic form in x_{1}, \ldots, x_{r}. Suppose that (locally) the solution of the equations $\partial f / \partial x_{i}=0$ $(1 \leq i \leq r)$ is given by $x_{i}=\alpha_{i}\left(y_{1}, \ldots, y_{k}\right)(1 \leq i \leq r)$. Then f is right-equivalent to $g(y)+\sum_{1}^{r} \pm z_{i}^{\prime 2}$, where $g(y)=f\left(\alpha_{1}(y), \ldots, \alpha_{r}(y), y_{1}, \ldots, y_{k}\right)$.
(b) Suppose $f\left(t, x, y_{1}, \ldots, y_{k}\right)$ is singular at the origin, with non-zero coefficient of $t x$ and that $\partial f / \partial t$ vanishes along $x=0$. Then f is right-equivalent to $t x+$ $f\left(0,0, y_{1}, \ldots, y_{k}\right)$.
Proof. (a) It follows from our hypothesis that the hypersurfaces $\partial f / \partial x_{i}=0$ intersect transversely at O, so there is a solution of the form given. Substitute $x_{i}=z_{i}+\alpha_{i}(y)$ giving $f(x, y)=F(z, y)$, say. Then $\partial F / \partial z_{i}=\partial f / \partial x_{i}$ vanishes along $z_{1}=\cdots=$ $z_{r}=0$, and $F(0, y)=g(y)$. Hence $F(z, y)-g(y) \in\left\langle z_{1}, \ldots, z_{r}\right\rangle^{2}$. It follows in turn that we can write it as $\sum_{1}^{r} z_{i} h_{i}(y, z)$ with $h_{i} \in\left\langle z_{1}, \ldots, z_{r}\right\rangle$, and as $\sum_{i, j=1}^{r} z_{i} z_{j} k_{i, j}(y, z)$, where it follows from our hypothesis that the matrix $k_{i, j}(0)$ is non-singular. Now by 'completing the square' r times we can write this in the form $\sum_{1}^{r} \pm z_{i}^{\prime 2}$, where $\left(z_{1}^{\prime}, \ldots, z_{r}^{\prime}, y_{1}, \ldots, y_{k}\right)$ can be taken as local co-ordinates at O.
(b) Since $\partial f / \partial t$ vanishes along $x=0$, we can write $\partial f / \partial t=x a(t, x, y)$ for some C^{∞}-function a. Hence $f(t, x, y)-f(0, x, y)=\int_{0}^{t} x a(t, x, y) d t$, hence has the form $x b(t, x, y)$ for some C^{∞}-function b. As also $f(0, x, y)-f(0,0, y)$ is divisible by x, we can write $f(t, x, y)=x c(t, x, y)+f(0,0, y)$. Now c vanishes at the origin and has non-zero coefficient of t; thus the co-ordinate change $t^{\prime}=c(t, x, y)$ gives the desired equivalence.

Write $\chi_{n}(d)$ for the Euler characteristic of a smooth hypersurface of degree d in P^{n+1} : then (see e.g. [1, p. 152])

$$
\begin{equation*}
\chi_{n}(d)=n+2+\frac{(-1)^{n}}{d}\left((d-1)^{n+2}-(-1)^{n}\right) . \tag{1}
\end{equation*}
$$

When $n=-2,-1,0$ this formula gives $0,0, d$ respectively, so remains correct. The cone over such a hypersurface in P^{n+2} admits a \mathbb{C}^{*}-action which is free except at the fixed points, which consist of the hypersurface itself and an isolated point. Thus this cone has Euler characteristic $\chi_{n}(d)+1$. If V is a hypersurface of degree d in P^{n+1} with isolated singularities, then (see e.g. [1, p. 162]) $\chi(V)=\chi_{n}(d)+(-1)^{n-1} \mu(V)$.

In weighted projective space, suppose f, of degree d with respect to weights w_{i} $(0 \leq i \leq n+1)$ with sum W, defines a smooth hypersurface V, so $\operatorname{dim} V=n$. We have the following theorem of Steenbrink.

Theorem 3.5. (see [1, Theorem B34] and [8]). The mixed Hodge numbers of the primitive cohomology of V are given by $h_{0}^{i, n-i}(V)=\operatorname{dim} M(f)_{d(i+1)-W}$, where $M(f)$ is the Milnor algebra

$$
M(f)=\mathbb{C}\left[x_{0}, \ldots, x_{n+1}\right] /\left\langle\partial f / \partial x_{0}, \ldots, \partial f / \partial x_{n+1}\right\rangle
$$

$M(f)$ has Euler-Poincaré polynomial $p(t)=\prod_{i=0}^{n+1}\left(1-t^{d-w_{i}}\right) /\left(1-t^{w_{i}}\right)$. Thus the primitive Betti number $h_{0}^{n}(V)$, which is the sum of the Hodge numbers $h_{0}^{i, n-i}(V)$, is equal to the sum of the coefficients of $p(t)$ in degrees congruent to $-W$ modulo d. This sum is given by $\frac{1}{d} \sum \epsilon^{W} p(\epsilon)$, where ϵ runs through the $d^{t h}$ roots of unity. It follows that

$$
\begin{equation*}
\chi(V)=n+1+\frac{(-1)^{n}}{d} \sum_{\epsilon^{d}=1} \epsilon^{W} p(\epsilon) \tag{2}
\end{equation*}
$$

We now evaluate this in the two cases we will need.
Corollary 3.6. A non-singular hypersurface V of degree d in weighted projective space with weights $w_{0}=2$ and $w_{i}=1$ for $1 \leq i \leq n+1$ has

$$
\chi(V)=n+2+\frac{(-1)^{n}}{d}\left\{\frac{d-2}{2}(d-1)^{n+1}+(-1)^{n+1}\right\}
$$

if d is odd, and is $\frac{1}{2}$ less than this if d is even. In particular, if $d=3$ we have $n+2+\frac{(-1)^{n}}{3}\left\{2^{n}-(-1)^{n}\right\}$.

In this case $W=n+3$, so $p(t)=\left(1-t^{d-2}\right)\left(1-t^{d-1}\right)^{n+1} /\left(1-t^{2}\right)(1-t)^{n+1}$. If $\epsilon=1$ we evaluate p by l'Hôpital's rule, obtaining $p(1)=\frac{1}{2}(d-2)(d-1)^{n+1}$. If $\epsilon=-1$, which is only possible if d is odd, we have $\left(1-\epsilon^{d-1}\right) /(1-\epsilon)=1$, so $p(-1)=(-1)^{n+1} \frac{1}{2}(d-2)$. Otherwise we have $\left(1-\epsilon^{d-1}\right) /(1-\epsilon)=-\epsilon^{-1}$ and $\left(1-\epsilon^{d-2}\right) /\left(1-\epsilon^{2}\right)=-\epsilon^{-2}$, so $p(\epsilon)=\epsilon^{W}\left(-\epsilon^{-2}\right)\left(-\epsilon^{-1}\right)^{n+1}$, which reduces to $(-1)^{n}$. We thus obtain $n+1+(-1)^{n} \frac{1}{d}\left\{\frac{1}{2}(d-2)(d-1)^{n+1}+(-1)^{n}(d-1)\right\}$ if d is odd, and $n+1+(-1)^{n} \frac{1}{d}\left\{\frac{1}{2}(d-2)(d-1)^{n+1}+(-1)^{n+1} \frac{1}{2}(d-2)+(-1)^{n}(d-2)\right\}$ if d is even, which reduces to the values stated.

If V has isolated singularities then, as above, we must add $(-1)^{n-1} \mu(V)$ to this expression. If the singularities occur at smooth points of the ambient weighted projective space, this is proved as before, using the additive nature of χ; at other points, we may take it as the definition of μ.

Corollary 3.7. A non-singular hypersurface V of degree 6 in weighted projective space with weights $w_{0}=w_{1}=1$ and $w_{i}=2$ for $1<i \leq n+1$ has

$$
\chi(V)=n+1+\frac{1}{6}(-1)^{n}\left(26 \cdot 2^{n}+4(-1)^{n}\right)
$$

In this case, $W=2 n+4$ and $M(\phi)$ has Euler-Poincaré polynomial

$$
p(t)=\left(1-t^{5}\right)^{2}\left(1-t^{4}\right)^{n} /(1-t)^{2}\left(1-t^{2}\right)^{n}=\left(1+t+t^{2}+t^{3}+t^{4}\right)^{2}\left(1+t^{2}\right)^{n} .
$$

We have $p(1)=5^{2} .2^{n}$ and $p(-1)=2^{n}$. If $\epsilon^{6}=1$ and $\epsilon^{2} \neq 1,\left(1-\epsilon^{5}\right) /(1-\epsilon)=-\epsilon^{-1}$ and $\left(1-\epsilon^{4}\right) /\left(1-\epsilon^{2}\right)=-\epsilon^{-2}$, so $p(\epsilon)=(-1)^{n} \epsilon^{-2-2 n}$. Hence $\sum \epsilon^{2 n-4} p(\epsilon)=26.2^{n}+$ $2^{n}+4(-1)^{n}$.

4 Invariants of unipotent actions

Now consider a nilpotent endomorphism N of a vector space K; we adopt as our standard notation $\xi_{N}=\sum_{i=1}^{k} x_{i-1} \partial / \partial x_{i}$. We write G_{N} for the Lie group obtained by exponentiating, $E_{t}=\operatorname{Exp}(t N)$, then $t . \mathbf{x}=E_{t} \mathbf{x}$; thus a polynomial f on K is annihilated by ξ_{N} if and only if it is invariant under G_{N}. Write \mathcal{I}_{k} for the ring of invariants of the group G_{N} (a subring of $\mathbb{C}\left[x_{0}, \ldots, x_{k}\right]$). If we have a second Jordan block, denote the variables y_{0}, \ldots, y_{l}, set $\xi=\sum_{i=1}^{k} x_{i-1} \partial / \partial x_{i}+\sum_{i=1}^{l} y_{i-1} \partial / \partial y_{i}$, and write $\mathcal{I}_{k, l}$ for the ring of invariants.

It is a classical theorem of Weitzenbock [11] that the ring of invariants is finitely generated. Weitzenbock also determined the localisation at x_{0} of the ring of invariants. Indeed, if $x_{0} \neq 0$, there is a unique choice $t_{0}=-\frac{x_{1}}{x_{0}}$ of the parameter t such that $(t . \mathbf{x})_{1}=0$. Then all the $X_{i}=\left(t_{0} \cdot x\right)_{i}$ for $2 \leq i \leq k$ are invariants, and clearly $\mathcal{I}_{k}\left[x_{0}^{-1}\right]=\mathbb{C}\left[x_{0}, X_{2}, \ldots, X_{k}, x_{0}^{-1}\right]$. The argument also applies if N has several Jordan blocks.

This remark can be used to compute the structure of the ring of invariants. Weitzenbock himself did this for $\operatorname{dim} K \leq 4$; a general algorithm was given by Tan [9], and a fuller account is in the book of Nowicki [7]. The results we need can be stated as follows.

Lemma 4.1. We have rings of invariants

$$
\begin{aligned}
\mathcal{I}_{2} & \cong \mathbb{C}[X, B] \\
\mathcal{I}_{3} & \cong \mathbb{C}\left[X, B, C, \Delta / X^{2} \Delta+C^{2}+B^{3}=0\right] \\
\mathcal{I}_{4} & \cong \mathbb{C}\left[X, B, U, C, E / X^{3} E=3 X^{2} B U-B^{3}-C^{2}\right] \\
\mathcal{I}_{2,1} & \cong \mathbb{C}\left[X, Y, T, B, S / X S=Y^{2} B+T^{2}\right]
\end{aligned}
$$

where $X:=x_{0}, Y:=y_{0}$, and

$$
\begin{aligned}
B & :=T_{x, x}^{2}=2 x_{0} x_{2}-x_{1}^{2}, \\
C & :=3 x_{0}^{2} x_{3}-3 x_{0} x_{1} x_{2}+x_{1}^{3}, \\
\Delta & :=-9 x_{0}^{2} x_{3}^{2}+18 x_{0} x_{1} x_{2} x_{3}-8 x_{0} x_{2}^{3}+3 x_{1}^{2} x_{2}^{2}-6 x_{1}^{3} x_{3}, \\
U & :=T_{x, x}^{4}=2 x_{0} x_{4}-2 x_{1} x_{3}+x_{2}^{2}, \\
E & :=12 x_{0} x_{2} x_{4}-9 x_{0} x_{3}^{2}+6 x_{1} x_{2} x_{3}-2 x_{2}^{3}-6 x_{1}^{2} x_{4}, \\
T & :=T_{x, y}^{1}=x_{0} y_{1}-x_{1} y_{0}, \\
S & :=x_{0} y_{1}^{2}-2 x_{1} y_{0} y_{1}+2 x_{2} y_{0}^{2} .
\end{aligned}
$$

Here \mathcal{I}_{3} was given in [11], \mathcal{I}_{4} in [9] and $\mathcal{I}_{2,1}$ in [7]. For Cases 2 and 3 we follow the notation of [4].

For the geometric problem, we have additional variables $w=\left(w_{1}, \ldots, w_{m}\right)$, all invariant. Thus the dimension $n=m+2, m+3, m+4$ or $m+4$ in our 4 cases respectively. Denote the corresponding elements of the ring of invariants by W := $\left(W_{1}, \ldots, W_{m}\right)$.

We can use changes of co-ordinates that are compatible with N to simplify our formulae.

Lemma 4.2. In Case 4, the co-ordinate changes compatible with N are: $x_{4}^{\prime}=$ $\sum_{0}^{4} a_{i} x_{4-i}+\sum e_{j} w_{j}, x_{3}^{\prime}=\sum_{0}^{3} a_{i} x_{3-i}, x_{2}^{\prime}=\sum_{0}^{2} a_{i} x_{2-i}, x_{1}^{\prime}=\sum_{0}^{1} a_{i} x_{1-i}, x_{0}^{\prime}=a_{0} x_{0}$, $w_{i}^{\prime}=\sum p_{i, j} w_{j}+q_{i} x_{0}$, where $a_{0} \neq 0$ and $\left(p_{i, j}\right)$ is non-singular.

For we have taken an arbitrary element of K for x_{4}^{\prime}; then $x_{3}^{\prime}=N x_{4}^{\prime}, x_{2}^{\prime}, x_{1}^{\prime}$ and x_{0}^{\prime} are determined. Since our change of co-ordinates must respect the filtration, w_{i}^{\prime} must be as stated. For the formulae to define a co-ordinate change we must have $a_{0} \neq 0$ and ($p_{i, j}$) non-singular.

The results in Cases 2 and 3 are almost the same, and Case 21 is very similar.
In the next four sections we give detailed discussions of the four cases of Theorem 2.4 in turn.

5 Case 2

We define a map $\pi: K \rightarrow L$ taking as target co-ordinates (W, X, B). This induces a map $\bar{\pi}: P(K) \rightarrow P(L)$, where $P(L)$ is the weighted projective space with all weights 1 except $w(B)=2$. The map $\bar{\pi}$ is defined except on the set \mathcal{E} where all co-ordinates other than x_{2} vanish. Thus \mathcal{E} is a point, which we also denote P. The space $P(L)$ has just one singular point, where all co-ordinates except B vanish: we denote it by Q.

As is usual for moduli spaces, we have a natural stratification. We define strata \mathcal{S}_{i} in K and $\overline{\mathcal{S}}_{i}$ in L, compatible with each other under π and with passage to projective space.

$$
\begin{array}{ll}
\mathcal{S}_{0}: x_{0} \neq 0 ; & \overline{\mathcal{S}}_{0}: X \neq 0 \\
\mathcal{S}_{1}: x_{0}=0, x_{1} \neq 0 ; & \overline{\mathcal{S}}_{1}: X=0, B \neq 0 \\
\mathcal{S}_{2}: x_{0}=x_{1}=0 ; & \overline{\mathcal{S}}_{2}: X=B=0 .
\end{array}
$$

The set \mathcal{F} of fixed points is defined by the vanishing of x_{0}, x_{1}, so coincides with \mathcal{S}_{2}. Each orbit of the action of G_{N} on K or on $P(K)$ outside \mathcal{F} is isomorphic to an affine line; their degrees are 2,1 for $\mathcal{S}_{0}, \mathcal{S}_{1}$ respectively.

For any $(W, X, B) \in L$, we calculate $\pi^{-1}(W, X, B)$.
In each case, we have uniquely $w=W, x_{0}=X$.
If $X \neq 0, x_{1}$ is free (i.e. can be chosen arbitrarily), and $x_{2}=\left(B+x_{1}^{2}\right) / 2 X$: we have one orbit.

If $X=0, x_{1}= \pm \sqrt{ }(-B)$, and x_{2} is free. If $B \neq 0$, this gives two orbits, but if $B=0$, a line of fixed points.

From this we infer (with some care) pre-images under $\bar{\pi}$; in each case, we tabulate the Euler characteristic of the pre-image.
Lemma 5.1. [4, Lemma 6.4] The preimage $\bar{\pi}^{-1}(W, X, B)$ is as follows:
$\overline{\mathcal{S}}_{0}$) one orbit, $\chi=1$,
$\left(\overline{\mathcal{S}}_{1}\right)$ if $W \neq 0$, two orbits, $\chi=2$; if $W=0$ (the point Q), one orbit, $\chi=1$,
$\overline{\mathcal{S}}_{2}$) infinitely many point orbits, $\chi=1$.
Since the ring of invariants is a polynomial ring, any invariant function f is of the form $f=\phi \circ \pi$, where $\phi=\phi(W, X, B)$ is a polynomial function on L. Set $\phi_{B}:=\frac{\partial \phi}{\partial B}$, $\phi_{X}:=\frac{\partial \phi}{\partial X}$.

Denote by V the hypersurface in $P(K)$ defined by f, by V_{1} the hypersurface in the weighted projective space $P(L)$ defined by ϕ, and by V_{2} and V_{3} the intersections of V_{1} with $X=0$ and with $X=B=0$ respectively. As in similar cases below, our notation is chosen so that each V_{r} (also V_{r}^{*}, etc.) has dimension $m+1-r$.
Lemma 5.2. (compare [4, Lemma 5.5]) V has isolated singular points if and only if V_{1} has no singular points and V_{3} has isolated singular points. The singular points of f are P and points P_{i} corresponding to the singular points Q_{i} of V_{3} at which $\phi_{B} \neq 0$.
Proof. At a critical point of f, the following vanish:

$$
\frac{\partial f}{\partial w_{i}}=\frac{\partial \phi}{\partial W_{i}}, \quad \frac{\partial f}{\partial x_{0}}=\phi_{X}-2 x_{2} \phi_{B}, \quad \frac{\partial f}{\partial x_{1}}=2 x_{1} \phi_{B}, \quad \text { and } \quad \frac{\partial f}{\partial x_{2}}=-2 x_{0} \phi_{B} .
$$

If $\phi_{B}=0$, we have a critical point of ϕ. If $W=X=B=0$, the only corresponding point in $P(K)$ is P. Otherwise we have a singular point of V_{1}. Conversely, if we have a singular point of V_{1}, all the points in its pre-image are singular on V, so are non-isolated singular points of V.

For a critical point of f with $\phi_{B} \neq 0$, we have $x_{0}=x_{1}=0$, hence $X=B=0$, and a critical point of the restriction of ϕ to $X=B=0$. If $W=0$, we again have the point P. Otherwise we have a singular point of V_{3}. Conversely, if we have a singular point of V_{3} at which $\phi_{B} \neq 0$, there is a unique corresponding value of x_{2} giving a critical point of f, hence a unique corresponding singular point of V.

However, if we have a singular point of V_{3} at which $\phi_{B}=0$, then $\phi_{X} \neq 0$ as otherwise we would have a singular point of V_{1}; and as $\phi_{X} \neq 0$, there is no corresponding critical point of f.

It also follows that if V has isolated singular points, so also has V_{2}. For if the singular locus of V_{2} had positive dimension, it would have to intersect the hypersurface $\phi_{X}=0$, and any point of intersection gives a singular point of V_{1}. Observe also that if d is even, $Q \notin V_{2}$, for otherwise Q would be a singular point of V_{1}. If d is odd, then there can be no term $B^{d / 2}$, so $Q \in V_{2}$.

We can easily describe the singularities of V at points other than P.
Proposition 5.3. The singularity at P_{i} of V corresponding to a singularity at Q_{i} of V_{3} at which $\phi_{B} \neq 0$ is right-equivalent to a suspension of that singularity.
Proof. We may suppose, after an allowable co-ordinate change, that at the singular point P_{i} we have $0=x_{2}=\phi_{X}$. Apply Lemma 3.4(a) to f with the variables $\left(x_{0}, x_{1}, x_{2}\right)$. We observe that $\partial f / \partial x_{0}, \partial f / \partial x_{1}, \partial f / \partial x_{2}$ all vanish when $x_{0}=x_{1}=0$ and $x_{2}=\phi_{X} / 2 \phi_{B}$. Substituting these values gives $g(w)=f(w, 0,0,0)$. The result follows.

We are now ready to calculate $\mu(V)$.
Theorem 5.4. We have $\mu(V)=\frac{1}{2}(d-2)(2 d-1)(d-1)^{m}+\mu\left(V_{2}\right)+\mu\left(V_{3}\right)$.
Proof. First suppose d odd. Then as $Q \in V_{1}$, by Lemma 5.1 we have
$\chi(V)=\chi(\mathcal{E})+\chi\left(V_{1} \backslash V_{2}\right)+2 \chi\left(V_{2} \backslash V_{3}\right)-1+\chi\left(V_{3}\right)=\chi\left(V_{1}\right)+\chi\left(V_{2}\right)-\chi\left(V_{3}\right)$. For V and V_{3} we apply (1); for V_{1} we apply Corollary 3.6 with $n=m$; for V_{2} the same, but with $n=m-1$, and amended for singularities. Thus

$$
\begin{aligned}
& \chi(V)=\frac{(-1)^{m+1}}{d}\left\{(d-1)^{m+3}-(-1)^{m+1}\right\}+m+3+(-1)^{m} \mu(V), \\
& \chi\left(V_{1}\right)=\frac{(-1)^{m}}{d}\left\{\frac{d-2}{2}(d-1)^{m+1}+(-1)^{m+1}\right\}+m+2, \\
& \chi\left(V_{2}\right)=\frac{(-1)^{m-1}}{d}\left\{\frac{d-2}{2}(d-1)^{m}+(-1)^{m}\right\}+m+1+(-1)^{m} \mu\left(V_{2}\right), \\
& \chi\left(V_{3}\right)=\frac{(-1)^{m}}{d}\left\{(d-1)^{m}-(-1)^{m}\right\}+m+(-1)^{m-3} \mu\left(V_{3}\right) .
\end{aligned}
$$

Since $\chi(V)-\chi\left(V_{1}\right)-\chi\left(V_{2}\right)+\chi\left(V_{3}\right)$ vanishes, we find that $\mu(V)-\mu\left(V_{2}\right)-\mu\left(V_{3}\right)$ is equal to $d^{-1}\left\{(d-1)^{m+3}+\frac{d-2}{2}(d-1)^{m+1}-\frac{d-2}{2}(d-1)^{m}-(d-1)^{m}\right\}$, which reduces to $\frac{1}{2}(d-2)(2 d-1)(d-1)^{m}$.

In the case d even, as $Q \notin V_{1}$, we obtain $\chi(V)=\chi\left(V_{1}\right)+\chi\left(V_{2}\right)-\chi\left(V_{3}\right)+1$, but the values of each of $\chi\left(V_{1}\right)$ and $\chi\left(V_{2}\right)$ are $\frac{1}{2}$ less than those above. Hence the formula in terms of d is the same as before.

If $m=0$, the value of $\mu(V)$ is given by [2, Proposition 3.1]: the value $\frac{1}{2}(d-$ $2)(2 d-1)$ is correct if d is even; we must add $\frac{1}{2}$ if d is odd. Here if d is odd V_{2} is necessarily singular: indeed, ϕ vanishes identically on $\overline{\mathcal{S}}_{1}$.

For the case $m=1,\left[4\right.$, Prop 6.6] gives $\mu(V)=\frac{1}{2}(d-2)(2 d-1)(d-1)+k-N$, where $k=\left\lfloor\frac{d}{2}\right\rfloor$ and N is the number of distinct points of $V_{2} \backslash V_{3}$ with $W \neq 0$. In this case, V_{2} has dimension 0 , so $\chi\left(V_{2}\right)=\# V_{2}$; by Corollary 3.6, if V_{2} is smooth, $\chi\left(V_{2}\right)=\left\lfloor\frac{1}{2}(d+1)\right\rfloor$. To reconcile these we need to interpret $\mu\left(V_{3}\right)$ as 1 if $V_{3} \neq \emptyset$, i.e. if the coefficient of W^{d} in ϕ is non-zero.

When does $\mu(V)$ take its maximal value? We expect this to occur if $\mu\left(V_{2}\right)$ and $\mu\left(V_{3}\right)$ are both as large as possible, hence when V_{2} and V_{3} are both cones. Geometry imposes restrictions as follows.

As already observed, $Q \in V_{2}$ if and only if d is odd.
If V_{2} is a cone with vertex not in V_{3}, then it is a cone on V_{3}. Since it must have isolated singularities, V_{3} must be non-singular.

If V_{2} is a cone with vertex different from Q, then $Q \notin V_{2}$ (since the local geometry at Q differs from that elsewhere).

Thus if d is even, while $Q \notin V_{2}$, we cannot exclude the possibility that V_{2} is a cone with vertex Q^{*} in V_{3}. When this holds, V_{3} also is a cone, so indeed we expect $\mu(V)$ to be maximal. The singularity of V_{2} at Q^{*} is equisingular to a sum of $(m-1) d^{t h}$ powers and a $\frac{1}{2} d^{t h}$ power, so $\mu\left(V_{2}\right)=\frac{1}{2}(d-1)^{m-1}(d-2)$; that of V_{3} at Q^{*} is equisingular to a sum of $d^{t h}$ powers, so $\mu\left(V_{3}\right)=(d-1)^{m-1}$ and $\mu(V)=\frac{1}{2}(d-1)^{m-1}\left(2 d^{3}-7 d^{2}+8 d-2\right)$. Since $\phi_{B}\left(Q^{*}\right)=0$, the only singular point of V is P.

This case does indeed occur for all $m \geq 1$ and even $d \geq 4$: we can take $\phi=$ $X^{d}+X W_{1}^{d-1}+B^{d / 2}+\sum_{2}^{m} W_{i}^{d}$. Then each of V_{2} and V_{3} is a cone, smooth except at the point Q^{*} where all co-ordinates except W_{1} vanish; and V_{1} is non-singular.

We believe these to give the maximal values of $\mu(V)$ for all even $d \geq 4, m \geq 1$: for $m=1$ this follows from [4, Proposition 6.6].

If d is odd and V_{2} is a cone, then the vertex of the cone is Q and V_{3} is nonsingular. In affine co-ordinates $B=1, \phi$ is equisingular to a sum of $m d^{t h}$ powers, which suggests $\mu_{Q}\left(V_{2}\right)=(d-1)^{m}$, but since we must factor out the antipodal map on affine space we actually have $\mu_{Q}\left(V_{2}\right)=\frac{1}{2}(d-1)^{m}$, thus $\mu(V)=\frac{1}{2}(d-1)^{m+1}(2 d-3)$. This case occurs for all $d=2 k+1$: we can take $\phi=X B^{k}+X^{d}+\sum_{1}^{m} W_{i}^{d}$. Again this gives the maximum value for μ if $m=1$: we cannot show that this holds in general.

We now treat the case $d=3$ in more detail. Here $f=a_{1} B+a_{3}$, where a_{1}, a_{3} are homogeneous functions of $x_{0}, w_{1}, \ldots, w_{m}$. If a_{1} is not a multiple of x_{0}, we can make a change of co-ordinates to write $a_{1}=w_{1}$; otherwise we can take $a_{1}=x_{0}$ (if $a_{1} \equiv 0$, V has non-isolated singularities). Denote by V_{3}^{*} the variety $w_{1}=a_{3}=0$ in P^{m} and set $V_{4}:=V_{3} \cap V_{3}^{*}$.
Lemma 5.5. (i) If $a_{1}=x_{0}, V$ is quasi-smooth if and only if V_{3} is non-singular. In this case, the only singular point is P.
(ii) If $a_{1}=w_{1}$, there is a bijection between singular points of V_{2} and V_{4}; the singularity of the former is isomorphic to the suspension of the latter.
(iii) If $a_{1}=w_{1}, V_{1}$ is non-singular if and only if V_{3}^{*} is non-singular.

Proof. (i) In this case, V_{2} is a cone with vertex Q, so the result follows as above.
(ii) At a singular point $(W, 0, B)$ of V_{2} we have $0=\phi_{B}=W_{1}$ and $0=\partial \phi / \partial W_{i}$ for $i \geq 2$, so $(W, 0,0)$ is a singular point of V_{4} (note that $(0,0, B)$ is not a singular point of V_{2} since $\partial \phi / \partial W_{1}$ does not vanish there).

Conversely, if $(W, 0,0)$ is a singular point of V_{4}, the point $(W, 0, B)$ is singular on V_{2} if and only if $B=-\partial a_{3} / \partial W_{1}$.

Now apply Lemma 3.4(a), taking B and W_{1} as the preferred co-ordinates. The equations $\phi_{B}=\partial \phi / \partial W_{1}=0$ are solved by $W_{1}=0, B=-\partial a_{3} / \partial W_{1}$: substituting these in $\phi=w_{1} B+a_{3}$ gives the restriction of a_{3} to $W_{1}=0$.
(iii) The same argument as for (ii) applies here.

If $a_{1}=x_{0}, V_{2}$ is a cone with vertex Q, so $\mu(V)=3.2^{m}$ as above. If $a_{1}=w_{1}$, it follows that $\mu\left(V_{2}\right)=\mu\left(V_{4}\right)$, so by Theorem 5.4, $\mu(V)=5.2^{m-1}+\mu\left(V_{3}\right)+\mu\left(V_{4}\right)$.

In some cases, we can determine the nature of the singularities.
Proposition 5.6. Suppose V in Case 2 with V_{2} non-singular. Then the singularity of V at P is semi-quasi-homogeneous with degree $2 d$ and variables of weights 1,4 and 2 (m times).

Proof. We first give a direct argument, then an indirect method, which only determines the μ-constant stratum, but will be usable in other cases below.

As in [4, Proposition 6.6], take local affine co-ordinates $x_{2}=1$ at P, and substitute $x_{0}=\frac{1}{2}\left(B+x_{1}^{2}\right)$, so that f becomes $\phi\left(w, B, \frac{1}{2}\left(B+x_{1}^{2}\right)\right)$. Now assign weights 4 to $B, 1$ to x_{1} and 2 to the w_{i}. The terms of least weight $2 d$ give $\phi\left(w, B, \frac{1}{2} x_{1}^{2}\right)$. We must check that this has an isolated critical point. At a singular point, $\partial \phi / \partial w_{i}, \phi_{B}$ and $x_{1} \phi_{X}$ vanish. Since V_{1} is non-singular, $x_{1}=0$, so $(W, 0, B)$ is a singular point of V_{2}, contradicting our hypothesis.

For our second argument, we note that by Theorem 5.4, $\mu(V)-\mu\left(V_{3}\right)$ takes the same value for all these cases (with d and m fixed). Now $\mu(V)=\mu_{P}(V)+\sum_{i} \mu_{P_{i}}(V)$, and by Proposition 5.3, the values $\mu_{P_{i}}(V)=\mu_{Q_{i}}\left(V_{3}\right)$. Hence $\mu_{P}(V)$ is the same for all these cases, so all belong to the same μ-constant stratum.

To determine this, first observe that we can adjoin a new variable w_{m+1}; then $f^{\prime}:=f+w_{m+1}^{d}$ again satisfies the conditions of Lemma 5.2, and the new singularity is obtained from the old one also by adjoining a new variable and adding its $d^{\text {th }}$ power. Hence the μ-constant type of the singularity can be deduced from the case with m decreased by 1 .

If $m=0$, as observed above, if d is odd, V_{2} is necessarily singular; if d is even, the result holds. However the case $m=1$ was analysed in [4, Proposition 6.6], where we showed directly that the singularity has the type stated. The result thus follows in general.

The second method can also be applied to the case when V_{2} is a cone with vertex Q. We see that the singularity is equisingular to a sum of $m d^{t h}$ powers and the curve singularity occurring in the case $m=0$, which can be taken to be $\prod_{1}^{k}\left(y^{2}-2 x+4 c_{i} x^{2}\right)$ if $d=2 k$ and $x \prod_{1}^{k}\left(y^{2}-2 x+4 c_{i} x^{2}\right)$ if $d=2 k+1$ (with the c_{i} all distinct in each case). If $d \geq 5$, it is not quasi-homogeneous.

If $d=3$, the cases arising when $a_{1}=w_{1}$ can be enumerated in low dimensions by considering the varieties $V_{4} \subset V_{3}$. We can determine the μ-constant strata of the critical points of f using the fact that the terms of lowest weight are $\phi\left(w, B, \frac{1}{2} x_{1}^{2}\right)$, which reduces by splitting to $\phi\left(0, w_{2}, \ldots, w_{m}, 0, x_{1}^{2}\right)$, together with our calculation of μ.

For $m=1$, we have A_{5} at P, perhaps a further A_{1}.
For $m=2$, we have the cubic curve $a_{3}\left(w_{1}, w_{2}, x_{0}\right)=0$ meeting $x_{0}=0$ in V_{3} and the point Q^{*} where $w_{1}=x_{0}=0$ in V_{4}. Let w_{1}^{r} be the highest power of w_{1} dividing $a_{3}\left(w_{1}, w_{2}, 0\right)$. If $r=0, V_{4}=\emptyset, V_{2}$ is non-singular and V has a $T_{2,3,6}$ at P and a further A_{1} (or A_{2}) if V_{3} has a repeated point (a 3 -fold point). If $r \geq 1$, we apply the same substitution, but must now use the 2 -jet $B w_{1}$ and obtain the splitting by direct calculation. The first substitution gives the 4 -jet $w_{2}^{2} x_{1}^{2}+\alpha w_{2}^{4}$, where $\alpha=0$ if $r>1$. Thus if $r=1$ the singularity has $\mu=11$, hence type $T_{2,4,6}$, and the other two points on V_{3} could coincide, giving a further A_{1}. If $r=2$ we have a singularity $T_{2, p, q}$ with $p, q \geq 5$ and $\mu=12$, hence $p+q=11$ so $(p, q)=(5,6)$. In the case $r=3$ we have $p+q=12$, and need a further calculation to obtain the 5 -jet, leading to $p=q=6$. Thus in each case, we have $T_{2,3+r, 6}$ at P.

For $m=3$, if V_{4} is non-singular (i.e. 3 points), $U T_{0,0,0}^{1}$ (in the notation of [10, p. 475]) together with $-, A_{1}, A_{2}, 2 A_{1}, A_{3}, 3 A_{1}$ or D_{4}. If V_{4} is singular, we have non-reduced 3 -jet (V or V^{\prime} series) and the singularities do not have accepted names.

* * *

We turn to calculation of τ : here our results are much more partial. According to Lemma 3.2, τ takes its maximal value when f is oversymmetric. To find when this is applicable, we use the method of $[4, \S 6]$.

Theorem 5.7. A function in Case 2 is oversymmetric if and only if either (a) V_{3} is a cone, or (b) after change of co-ordinates if necessary, ϕ_{B} and ϕ_{X} both vanish along $X=B=0$.

Proof. Since V_{1} is non-singular, the sequence $\left\{\partial \phi / \partial W_{1}, \ldots, \partial \phi / \partial W_{m}, \phi_{X}, \phi_{B}\right\}$ is regular, and any vector field annihilating ϕ is a linear combination of the Hamiltonian fields $\partial(\phi, *) / \partial\left(W_{i}, W_{j}\right), \partial(\phi, *) / \partial\left(W_{i}, X\right), \partial(\phi, *) / \partial\left(W_{i}, B\right)$ and $\partial(\phi, *) / \partial(X, B)$. We seek a vector field η which is a lift of a linear combination of these. We are only interested in η modulo Hamiltonian fields: removing the corresponding linear combination of the $\partial(f, *) / \partial\left(w_{i}, w_{j}\right)$ and $\partial(f, *) / \partial\left(w_{i}, x_{0}\right)$, we can take $\sum C_{i} \partial(\phi, *) / \partial\left(W_{i}, B\right)$ $+D \partial(\phi, *) / \partial(X, B)$. Since we seek η of degree $d-2$, we want the C_{i} and D to be constants. We now have

$$
\eta=\sum_{1}^{m} p_{i} \partial / \partial w_{i}+\sum_{0}^{2} q_{j} \partial / \partial x_{j}
$$

where $p_{i}=-C_{i} \phi_{B}, q_{0}=-D \phi_{B}$ and

$$
2\left(x_{2} q_{0}-x_{1} q_{1}+x_{0} q_{2}\right)=\sum C_{i} \partial \phi / \partial W_{i}+D \phi_{X} .
$$

Thus

$$
\begin{equation*}
2\left(x_{0} q_{2}-x_{1} q_{1}\right)=\sum C_{i} \partial \phi / \partial W_{i}+D \phi_{X}+2 x_{2} D \phi_{B} \tag{3}
\end{equation*}
$$

The right hand side of this equation must thus vanish identically along $X=B=0$.
First suppose $D=0$. Changing the w co-ordinates, we may suppose the vector field is $\partial / \partial W_{1}$. If we set $a_{d}(W):=\phi(W, X, B)$, we need $\partial a_{d} / \partial W_{1} \equiv 0$, i.e. a_{d} is independent of W_{1}. Expressing the condition geometrically, it holds if and only if V_{3} is a cone.

If $D \neq 0$, a suitable substitution $W_{i}^{\prime}:=W_{i}+\lambda_{i} X, X^{\prime}:=X$ reduces the C_{i} to zero, so it suffices to consider the vector field $\partial(\phi, *) / \partial(X, B)$. Here the condition reduces to requiring both ϕ_{B} and ϕ_{X} to vanish along $X=B=0$.

We could reformulate (b) as: there exist constants c_{i} such that ϕ_{B} and $\phi_{X}+$ $\sum c_{i} \partial \phi / \partial W_{i}$ both vanish along $X=B=0$.

This proof shows more generally that any vector field $\eta=\sum_{1}^{m} p_{i} \partial / \partial w_{i}+$ $\sum_{0}^{2} q_{j} \partial / \partial x_{j}$ annihilating f can be reduced modulo Hamiltonian vector fields to the lift of $\sum C_{i} \partial(\phi, *) / \partial\left(W_{i}, B\right)+D \partial(\phi, *) / \partial(X, B)$, where $p_{i}=-C_{i} \phi_{B}, q_{0}=-D \phi_{B}$ and (3) holds. Moreover, we may suppose D and the C_{i} independent of x_{0} and x_{1}. This can be used as the starting point for further calculations of τ. However, since the cases arising are diverse, we only consider $m=0, m=1$ and certain cases with $d=3$.

In the case of curves $(m=0)$, the condition frequently holds, and then $\tau=$ $d^{2}-3 d+3$ (see [2, Proposition 3.1]): otherwise, $\tau=d^{2}-3 d+2$.

The case of surfaces $(m=1)$ was treated in [4]. By Theorem 6.7 loc.cit., $\tau_{\text {tot }}(V)=(d-1)\left(d^{2}-3 d+3\right)$ if $\alpha=0$ or $\gamma=0$, and $(d-1)\left(d^{2}-3 d+3\right)-1$ otherwise; where α, γ are the coefficients of W^{d} and $B W^{d-2}$ in ϕ. Moreover (Lemma 6.5 loc.cit.) P is the only singular point unless $\alpha=0 \neq \gamma$, when there is one further singular point, of type A_{1}. The case $\alpha=0$ corresponds to clause (a) of the Theorem; the case $\gamma=0$ to clause (b) (here we appear to require $\beta=\gamma=0$: the difference arises because of the above normalisation of co-ordinates).

We can calculate $\tau(V)$ ad hoc in further low dimensional cases. When $d=3$, if $a_{1}=w_{1}$ the values can be inferred from the above list of μ-constant strata: we have $\tau=\mu$ for $T_{2,3,6}$ and $\tau=\mu-1$ for $T_{2, p, q}$ with $\frac{1}{p}+\frac{1}{q}<\frac{1}{2}$. If $a_{1}=x_{0}$ we have

Lemma 5.8. If V is in Case 2, with $d=3$ and $a_{1}=x_{0}$, then

$$
\tau(V)=2^{m+1}+\operatorname{dim}\left(\mathbb{C}\left[x_{0}, w_{1}, \ldots, w_{m}\right] /\left\langle x_{0}, \partial a_{3} / \partial x_{0}, \partial a_{3} / \partial w_{1}, \ldots, \partial a_{3} / \partial w_{n}\right\rangle\right)
$$

Proof. Here $\phi=X B+a_{3}(W, X)$, so (3) reduces to

$$
\sum_{i} C_{i} \partial a_{3} / \partial W_{i}+D \partial a_{3} / \partial X \in\langle X\rangle
$$

By Lemma 5.5(i), in this case V_{3} is non-singular. Hence the restrictions of the $\partial a_{3} / \partial W_{i}$ to $X=0$ form a regular sequence in $\mathbb{C}[W]$, spanning an ideal J. The class of η modulo Hamiltonian fields and multiples of ξ is determined by the class of $\left.D\right|_{X=0}$ modulo J.

The algebra $\mathbb{C}[W] / J$ is Gorenstein of dimension 2^{m}, with $\binom{m}{r}$ basis elements in degree r. If the ideal in it generated by the class of $\partial a_{3} /\left.\partial X\right|_{X=0}$ has dimension e, its annihilator has dimension $2^{m}-e$. Since the space of multiples of ξ modulo Hamiltonian vector fields has dimension 2^{m+1}, we obtain $\tau(V)=3.2^{m}-e$.

But $\mathbb{C}\left[x_{0}, w_{1}, \ldots, w_{m}\right] /\left\langle x_{0}, \partial a_{3} / \partial x_{0}, J\right\rangle \cong \mathbb{C}[W] /\left(J+\left\langle\partial a_{3} /\left.\partial X\right|_{X=0}\right\rangle\right)$, so has dimension $2^{m}-e$. The result follows.

If $m=2$ we can take $a_{3}\left(W_{1}, W_{2}, 0\right)=W_{1}^{3}+W_{2}^{3}$ and see easily that if the coefficient of $W_{1} W_{2} X$ in a_{3} is non-zero, $e=0$ and $\tau=12$: otherwise $e=1$ and $\tau=11$. If $m=3$ we take $W_{1}^{3}+W_{2}^{3}+W_{3}^{3}+3 \alpha W_{1} W_{2} W_{3}$: here either $e=0$ or $e=2$. For $m \geq 4$, cases are more numerous.

We observe that while there are numerous cases where $\tau(V)$ takes its maximal value (for given dimension n and degree d) but $\mu(V)$ does not, we do not know an example in the reverse direction. Indeed, μ maximal implies τ maximal for curves, surfaces of degree 4 or odd, and for cubic 3 -folds. If V_{2} is a cone with vertex in V_{3} then τ is maximal; but if it is a cone with vertex Q, while ϕ_{B} vanishes along $X=B=0$ we have no control on ϕ_{X}.

We now give a more detailed discussion of the 2 -symmetric case $d=3$, following the notation of the above proof.

Proposition 5.9. In Case 2, f is 2-symmetric only in the following 3 cases:
Case (b): we have $a_{1}=X . V_{2}$ is a cone with vertex Q and V_{3} is non-singular. After a suitable substitution $x_{2}^{\prime}:=x_{2}+\frac{1}{2} b\left(w, x_{0}\right), a_{3}$ is independent of x_{0}, and we may take $\eta=-2 x_{0} \partial / \partial x_{0}+x_{1} \partial / \partial x_{1}+4 x_{2} \partial / \partial x_{2}$. The singularity has $\mu=3.2^{m}$ and is quasi-homogeneous of degree 12 with respect to weights 3,6 and 4 (m times).

Case (a1): we have $a_{1}=W_{1}, V_{3}$ is a cone with vertex not on $W_{1}=0$ and V_{4} non-singular. After a further substitution $x_{2}^{\prime}:=x_{2}+\frac{1}{2} b\left(w, x_{0}\right)$, may suppose a_{3} independent of w_{1}. Then f is invariant by $\eta=x_{1} \partial / \partial x_{1}+2 x_{2} \partial / \partial x_{2}-2 w_{1} \partial / \partial w_{1}$. There are two singularities, with Milnor numbers 5.2^{m-1} and 2^{m-1}; both quasi-homogeneous of degree 6, the first with respect to weights 1 and 2 ($m-1$ times); the second with respect to weights 3 and 2 ($m-1$ times).

Case (a2): we have $a_{1}=W_{1} ; V_{3}, V_{4}$ are cones with vertex on $W_{1}=0$. After a further substitution $w_{2}^{\prime}:=b\left(w, x_{0}\right)$, we may suppose $a_{3}-x_{0} w_{2}^{2}$ independent of w_{2}. Then f is invariant by $\eta=w_{2} \partial / \partial x_{2}-w_{1} \partial / \partial w_{2}$. The singularity has $\mu=13.2^{m-2}$, and is in the same μ-constant stratum as $x^{6}+x^{2} y^{2}+y^{6}+\sum_{2}^{m} w_{i}^{3}$.

Proof. The enumeration is given in Theorem 5.7. For Case (b), we must have $a_{1}=$ X; it follows that V_{2} is a cone with vertex Q, V_{3} is non-singular and the singularity was determined above. Now write $a_{3}\left(w, x_{0}\right)=x_{0}^{2} b_{1}\left(w, x_{0}\right)+x_{0} b_{2}(w)+b_{3}(w)$. Since ϕ_{X} vanishes along $X=B=0, b_{2}$ vanishes identically, so the substitution $x_{2}^{\prime}=$ $x_{2}+\frac{1}{2} b_{1}\left(w, x_{0}\right)$ reduces a_{3} to b_{3}, independent of x_{0}. That f is now invariant under η (so we can take $D=2$ and all $C_{i}=0$) follows by inspection. We could also infer the singularities from the semi-simple group action.

If Case (a) (V_{3} is a cone) occurs, a_{1} cannot be x_{0} (else V_{3} would be non-singular), so can be taken as w_{1}. We must distinguish according as the vertex of the cone does or does not lie on $w_{1}=0$.

In Case (a1) it does not, so the intersection V_{4} of the cone with $w_{1}=0$ is non-singular, hence so is V_{2}. The description of the singularities now follows from Propositions 5.3 and 5.6, or again from the group action.

After adjusting the w co-ordinates, we may suppose $a_{3}(w, 0)$ independent of w_{1}. Then we can write $a_{3}=b_{3}+x_{0} w_{1} b_{1}\left(w, x_{0}\right)$, with b_{3} independent of w_{1}. Again the substitution $x_{2}^{\prime}=x_{2}+\frac{1}{2} b_{1}\left(w, x_{0}\right)$ reduces a_{3} to b_{3}. Now by inspection, $\eta f=0$ (so we may take $C_{1}=2, C_{i}=0$ for $i \neq 1$).

In case (a2), we may suppose $a_{3}(w, 0)$ independent of w_{2}, and hence that $a_{3}=$ $b_{3}+x_{0} w_{2} b_{1}\left(w, x_{0}\right)$, with b_{3} independent of w_{2}. Now if the coefficient of w_{2} in b_{1} were zero, the point where all co-ordinates except w_{2} vanish would be singular on V_{3}^{*}. Hence we can write $b_{1}=c^{2} w_{2}+c_{1}$, and substitute $w_{2}^{\prime}=c w_{2}+\frac{1}{2} c^{-1} c_{1}$, which reduces a_{3} to the form $b_{3}^{\prime}+x_{0} w_{2}^{2}$, with b_{3}^{\prime} independent of w_{2}. Thus $\eta f=0$, where $\eta=w_{2} \partial / \partial x_{2}-w_{1} \partial / \partial w_{2}$ (so we may take $C_{2}=2, C_{i}=0$ for $i \neq 2$).

To describe the singularity, as in Proposition 5.6, it suffices to consider the case $m=2$. Here since V_{2} and V_{3} are cones with the same vertex, we must select $T_{2,6,6}$ from the above list.

6 Case 3

We define the map $\pi: K \rightarrow L$ by $\pi\left(w, x_{0}, x_{1}, x_{2}, x_{3}\right)=(W, X, B, \Delta)$ in the notation of Lemma 4.1. This induces $\bar{\pi}: P(K) \rightarrow P(L)$, where $P(L)$ is the weighted projective space with all weights 1 except $w(B)=2, w(\Delta)=4$; the map $\bar{\pi}$ is defined except on the set \mathcal{E} where all co-ordinates except x_{2} and x_{3} vanish: thus \mathcal{E} is a projective line and $\chi(\mathcal{E})=2$; it contains the point P where all co-ordinates except x_{3} vanish. We define strata by

$$
\begin{array}{ll}
\mathcal{S}_{0}: x_{0} \neq 0 ; & \overline{\mathcal{S}}_{0}: X \neq 0 \\
\mathcal{S}_{1}: & x_{0}=0, x_{1} \neq 0 ; \\
\overline{\mathcal{S}}_{1}: X=0, B \neq 0 \\
\mathcal{S}_{2}: & x_{0}=x_{1}=0 ;
\end{array} \overline{\mathcal{S}}_{2}: X=B=0 . ~ l
$$

The set \mathcal{F} of fixed points is given by the vanishing of x_{0}, x_{1}, x_{2}. Each orbit of the action of G_{N} on $K \backslash \mathcal{F}$ (or on $P(K) \backslash \mathcal{F}$) is isomorphic to an affine line; their degrees are $3,2,1$ for $\mathcal{S}_{0}, \mathcal{S}_{1}, \mathcal{S}_{2} \backslash \mathcal{F}$ respectively.

We now describe the pre-image under π of any $(W, X, B, \Delta) \in L$. In each case, $w=W$.
$\left(\mathcal{S}_{0}\right)$ if $X \neq 0, x_{0}=X, x_{1}$ is free, $x_{2}=\left(B+x_{1}^{2}\right) / 2 X, x_{3}=\left(C+3 X x_{1} x_{2}-x_{1}^{3}\right) / 3 X^{2}$ where $C= \pm \sqrt{ }\left(-X^{2} \Delta-B^{3}\right)$.
$\left(\mathcal{S}_{1}\right)$ if $X=0, B \neq 0, x_{1}= \pm \sqrt{ }(-B), x_{2}$ is free, and $x_{3}=\left(3 x_{1}^{2} x_{2}^{2}-\Delta\right) / 6 x_{1}^{3}$.
$\left(\mathcal{S}_{2}\right)$ if $X=B=0$: if $\Delta \neq 0$, the pre-image is empty; if $\Delta=0, x_{1}=0$ and x_{2}, x_{3} are arbitrary. If $x_{2} \neq 0$ we have a non-trivial orbit; if $x_{2}=0$ we have fixed points.

From this we infer (again with some care)
Lemma 6.1. The preimage $\bar{\pi}^{-1}(W, X, B, \Delta)$ is as follows:
$\left(\mathcal{S}_{0}\right)$ if $B^{3}+X^{2} \Delta=0$, one orbit, $\chi=1$, if not, two orbits, $\chi=2$,
$\left(\mathcal{S}_{1}\right)$ if $W=0$, one orbit, $\chi=1$, if not, two orbits, $\chi=2$,
$\left(\mathcal{S}_{2}\right)$ if $\Delta=0$, a plane, $\chi=1$, if not, the empty set, $\chi=0$.
A priori the map f need not factor through π. However, we have
Lemma 6.2. There is an allowable change of co-ordinates which puts f in the form $f=\phi \circ \pi$. More precisely, we may take $\phi=\Delta+a_{0} B^{2}+a_{2} B+a_{4}$, where a_{i} is homogeneous of degree i in W, X.

Proof. Since $d=4$, we can write $f=a_{0}^{\prime} \Delta+a_{0} B^{2}+a_{1} C+a_{2} B+a_{4}$, where a_{i} is homogeneous of degree i in the invariant co-ordinates $w_{1}, \ldots, w_{m}, x_{0}$.

By Corollary 2.5 , for V to be quasi-smooth, f must contain the monomial $x_{2}^{3} x_{0}$; so we must have $a_{0}^{\prime} \neq 0$. We may thus suppose $a_{0}^{\prime}=1$. Substituting $x_{3}^{\prime}:=x_{3}-\frac{1}{6} a_{1}(w, x)$ gives an expression of the same form but with $a_{1}=0$. This gives $f=\Delta+a_{0} B^{2}+$ $a_{2} B+a_{4}$, which is indeed of the form $\phi \circ \pi$.

Denote by V the hypersurface $f=0$ in $P(K)$, by V_{0} the hypersurface $\phi=0$ in $P(L)$, by V_{1} its intersection with $X=0$, and by V_{3} its intersection with $X=$ $B=\Delta=0$. Write also V_{1}^{*} and V_{2}^{*} for the respective intersections of V_{0} and V_{1} with $B^{3}+X^{2} \Delta=0$. Write L^{\prime} for the vector space with co-ordinates W, X, Z (all of degree 1), $P\left(L^{\prime}\right)$ for the corresponding projective space, $\psi_{1}(W, X, Z):=-X Z^{3}+$ $a_{0} X^{2} Z^{2}+a_{2} X Z+a_{4}=0, V_{1}^{\prime}$ for the hypersurface defined by ψ_{1} in $P\left(L^{\prime}\right)$, and V_{2}^{\prime} for its intersection with $X=0$.

Lemma 6.3. The singular points of V are isolated iff the hypersurfaces V_{1}^{\prime}, V_{3} are both non-singular; and then the only singular point of V is P.

Proof. By Lemma 6.2, we can take $f=\Delta+a_{0} B^{2}+a_{2} B+a_{4}$. Since $\partial f / \partial x_{3}=$ $\partial \Delta / \partial x_{3}=-6 C, C$ vanishes at all critical points of f.

First consider critical points of f in $x_{0} \neq 0$. Since each such point lies in a nontrivial orbit, and f is invariant, it follows that if f has isolated critical points, there can be none with $x_{0} \neq 0$. Now in this region, the critical points of f are the same as those of $x_{0}^{2} f$, which is equal to $-C^{2}-B^{3}+x_{0}^{2}\left(a_{0} B^{2}+a_{2} B+a_{4}\right)$. These coincide with the critical points of $\phi_{0}:=-B^{3}+x_{0}^{2}\left(a_{0} B^{2}+a_{2} B+a_{4}\right)$ lying in $C=0$. Now regard ϕ_{0} as a function ψ_{0} of the variables W, X, B. If this has a critical point with $X \neq 0$, we certainly have a critical point of ϕ_{0}. Conversely, if we have a critical point of ϕ_{0}, we have $0=\partial \phi_{0} / \partial x_{2}=2 x_{0} \partial \psi_{0} / \partial B$, so $0=\partial \psi_{0} / \partial B$, and in view of this, $\partial \psi_{0} / \partial X=\partial \phi_{0} / \partial x_{0}$ vanishes, and so do the $\partial \psi_{0} / \partial W_{i}$; so we have a critical point of ψ_{0}. Finally, in $X \neq 0$ we may make the substitution $Z:=X^{-1} B$. The critical points correspond, and since $\psi_{0}(W, X, X Z)=X^{2} \psi_{1}(W, X, Z)$, they correspond to
those of ψ_{1}. Thus f has no critical points in $x_{0} \neq 0$ if and only if ψ_{1} has none in $X \neq 0$.

Now consider critical points of f with $x_{0}=0$. As $\partial f / \partial x_{3}=-6 C$, and C reduces to $-x_{1}^{3}$, we must also have $x_{1}=0$, hence $B=C=\Delta=0$. It follows that $\partial f / \partial x_{2}=\partial f / \partial x_{1}=0$. There remain the conditions

$$
0=\partial f / \partial w_{i}=\partial a_{4} / \partial w_{i}, \quad 0=\partial f / \partial x_{0}=\partial a_{4} / \partial x_{0}+2 x_{2} a_{2}-8 x_{2}^{3}
$$

If we have a singular point of V_{3}, there is only one further equation to determine both x_{2} and x_{3} so we have a non-isolated singularity of $f=0$. Thus (ii) is a necessary condition for f to have isolated singularities. If it holds, then for any critical points in $x_{0}=x_{1}=0$ we have $w=0$, and now the remaining equation implies $x_{2}=0$, giving the unique critical point P.

It remains to consider singular points of V_{1}^{\prime} lying in $X=0$. Here $\partial \psi_{1} / \partial Z$ vanishes, $\partial \psi_{1} / \partial X=-Z^{3}+a_{2} Z+\partial a_{4} / \partial X$, and $\partial \psi_{1} / \partial W_{i}=\partial a_{4} / \partial W_{i}$. Since we are now assuming that V_{3} has no singular points, the vanishing of the $\partial \psi_{1} / \partial W_{i}$ implies $W=0$ and that of $\partial \psi_{1} / \partial X$ then gives $Z=0$, showing that there are indeed no such singular points.

Theorem 6.4. For V quasi-smooth in Case 3, $\mu(V)=22.3^{m}$.
Proof. As before, we calculate $\chi(V)$ by decomposing $\bar{\pi}(V)$ according to the stratification, calculating the Euler characteristic of each piece, inferring those of the pre-images, and adding up.

In $\overline{\mathcal{S}}_{2}, \Delta$ vanishes on the image of π and f reduces to $a_{4}(W, 0)$. The zero locus is thus the hypersurface V_{3}. Hence $\chi\left(V \cap \mathcal{S}_{2}\right)=\chi\left(V_{3}\right)+\chi(\mathcal{E})=\chi_{m-2}(4)+2$.

In $\overline{\mathcal{S}}_{1}$, we can assign W and B and solve $\Delta=-\left(a_{0} B^{2}+a_{2} B+a_{4}\right)$. The set where $W=0$ is a single point, so contributes $\chi=1$, and the set $W \neq 0$ is the product of the punctured B-plane and the punctured W space, so has $\chi=0$. Hence $\chi\left(V \cap \mathcal{S}_{1}\right)=1$.

In $\overline{\mathcal{S}}_{0}$, we can normalise co-ordinates by $X:=1$. Projecting $V_{0} \backslash V_{1}$ onto (W, B) space is an isomorphism, since $\Delta=-\left(a_{0} B^{2}+a_{2} B+a_{4}\right)$ on V_{0}. Thus $\chi\left(V_{0} \backslash V_{1}\right)=1$. Restricting to the subset where $B^{3}+\Delta=0$ we obtain an isomorphism of $V_{1}^{*} \backslash V_{2}^{*}$ onto the set of (W, B) where $B^{3}=a_{0} B^{2}+a_{2} B+a_{4}$, which we can identify in turn (replacing B by Z) with the subset $V_{1}^{\prime} \backslash V_{2}^{\prime}$ of V_{1}^{\prime} with $X=1$. Thus $\chi\left(V_{1}^{*}\right)-\chi\left(V_{2}^{*}\right)=$ $\chi\left(V_{1}^{\prime}\right)-\chi\left(V_{2}^{\prime}\right)$. But V_{1}^{\prime} is non-singular, so $\chi\left(V_{1}^{\prime}\right)=\chi_{m}(4)$, and V_{2}^{\prime} is the cone on V_{3}, so $\chi\left(V_{2}^{\prime}\right)$ is equal to $\chi\left(V_{3}\right)+1=\chi_{m-2}(4)+1$. We thus have

$$
\chi\left(V_{1}^{*} \backslash V_{2}^{*}\right)=\chi_{m}(4)-\chi_{m-2}(4)-1
$$

and hence $\chi\left(V \cap \mathcal{S}_{0}\right)$ is twice $\chi\left(V_{0} \backslash V_{1}\right)$ minus this, i.e. $3-\chi_{m}(4)+\chi_{m-2}(4)$.
Adding these up, we find $\chi(V)=-\chi_{m}(4)+2 \chi_{m-2}(4)+6$. Now V has just one singular point and $\operatorname{dim} V=m+2$, so $\chi(V)=\chi_{m+2}(4)+(-1)^{m-1} \mu(V)$. Thus finally $\mu(V)=(-1)^{m}\left\{\chi_{m+2}(4)+\chi_{m}(4)-2 \chi_{m-2}(4)-6\right\}$, which reduces to 22.3^{m}.

We can also calculate τ.
Proposition 6.5. Any f in Case 3 is oversymmetric. Hence $\tau_{\text {tot }}(V)=3^{m+1} .7$.

Proof. We can use essentially the same formula as in [4, Proposition 6.3]. We have $f=\Delta+a_{0} B^{2}+a_{2} B+a_{4}$, with a_{i} homogeneous of degree i in x_{0} and the w_{i}. Set $\eta^{\prime}:=x_{1}^{2} \partial / \partial x_{1}+\left(3 x_{1} x_{2}-3 x_{0} x_{3}\right) \partial / \partial x_{2}+\left(4 x_{2}^{2}-3 x_{1} x_{3}\right) \partial / \partial x_{3}$. Then $\eta^{\prime} \Delta=0$ and $\partial \Delta / \partial x_{3}=3 \eta^{\prime} B$. Hence f is annihilated by $\eta^{\prime}-\frac{1}{3}\left(2 a_{0} B+a_{2}\right) \partial / \partial x_{3}$.

We contrast $\mu(V)=22.3^{m}$ with $\tau(V)=7.3^{m+1}=21.3^{m}$. The values $\mu=22, \tau=$ 21 were obtained in [4, Prop 6.3] for the case $m=0$.

Lemma 6.6. Suppose V in Case 3. Then the singularity of V is semi-quasi-homogeneous of degree 12 in variables of weights $1,4,6$ and 3 (m times).

Proof. Recall that $\Delta:=-9 x_{0}^{2} x_{3}^{2}+18 x_{0} x_{1} x_{2} x_{3}-8 x_{0} x_{2}^{3}+3 x_{1}^{2} x_{2}^{2}-6 x_{1}^{3} x_{3}$. When $x_{3}=1$, we can rewrite this as $\Delta=-\left(3 x_{0}-3 x_{1} x_{2}+\frac{4}{3} x_{2}^{3}\right)^{2}+6\left(\frac{2}{3} x_{2}^{2}-x_{1}\right)^{3}$. This suggests setting $q:=x_{0}-x_{1} x_{2}+\frac{4}{9} x_{2}^{3}, p:=x_{1}-\frac{2}{3} x_{2}^{2}$, so we substitute $x_{2}:=3 y$, $x_{1}:=p+6 y^{2}, x_{0}:=q+3 p y+6 y^{3}$. This gives $\Delta=-9 q^{2}-6 p^{3}, B=6 q y-p^{2}+6 p y^{2}$ and so $f=-9 q^{2}-6 p^{3}+a_{0}\left(6 q y-p^{2}+6 p y^{2}\right)^{2}+a_{2}\left(6 q y-p^{2}+6 p y^{2}\right)+a_{4}$, where a_{i} is homogeneous of degree i in $w_{1}, \ldots, w_{r}, q+3 p y+6 y^{3}$.

Now assign weight 1 to $y, 3$ to each $w_{i}, 4$ to p and 6 to q. The term of least weight in x_{0} is $6 y^{3}$, of weight 3 ; the term of least weight in B is $6 p y^{2}$, of weight 6 . Hence each term in f has weight at least 12, and the terms of degree 12 give the sum of a term $-9 q^{2}$, which we can ignore, and $g:=-6 p^{3}+36 a_{0} p^{2} y^{4}+6 a_{2} p y^{2}+a_{4}$, where a_{i} is homogeneous of degree i in $w_{1}, \ldots, w_{r}, 6 y^{3}$. It remains to show that g has an isolated singularity.

We compare g with the function $\psi_{1}(W, X, Z):=-X Z^{3}+a_{0} X^{2} Z^{2}+a_{2} X Z+a_{4}$, and observe that formally $g(w, p, y)=\psi_{1}\left(w, 6 y^{3}, p y^{-1}\right)$. Since by Lemma 6.3, the hypersurface V_{1}^{\prime} defined by $\psi_{1}=0$ is non-singular, g has no singular points with $y \neq 0$. But if $y=0$, the condition $\partial g / \partial p=0$ forces $p=0$; and the restriction to $p=y=0$ defines the hypersurface V_{3} which, by the same result, is also non-singular. Hence indeed g has an isolated singularity, and the result follows.

$7 \quad$ Case 4

Here we define $\pi: K \rightarrow L$ by $\pi\left(w, x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)=(W, X, B, U, E)$ in the notation of Lemma 4.1. The induced map $\bar{\pi}: P(K) \rightarrow P(L)$ is defined except on the set \mathcal{E} where all co-ordinates except x_{3} and x_{4} vanish: \mathcal{E} is a projective line containing the point P where all co-ordinates except x_{4} vanish and one other orbit, and $\chi(\mathcal{E})=2$. We define strata by

i	0	1	2	3
\mathcal{S}_{i}	$x_{0} \neq 0$	$x_{0}=0, x_{1} \neq 0$	$x_{0}=x_{1}=0, x_{2} \neq 0$	$x_{0}=x_{1}=x_{2}=0$
$\overline{\mathcal{S}}_{i}$	$X \neq 0$	$X=0, B \neq 0$	$X=B=0, U \neq 0$	$X=B=U=0$.

The set \mathcal{F} of fixed points is given by the vanishing of $x_{0}, x_{1}, x_{2}, x_{3}$. Each orbit of the action of G_{N} on $K \backslash \mathcal{F}$ (or on $P(K) \backslash \mathcal{F}$) is isomorphic to an affine line; their degrees are $4,3,2,1$ for $\mathcal{S}_{0}, \mathcal{S}_{1}, \mathcal{S}_{2}, \mathcal{S}_{3} \backslash \mathcal{F}$ respectively. The closure of each orbit in $P(K) \backslash \mathcal{F}$ is obtained by adjoining the point P.

We now describe the pre-image under π of any $(W, X, B, U, E) \in L$. In each case, $w=W$ and $x_{0}=X$.
$\left(\mathcal{S}_{0}\right) x_{1}$ is free, $x_{2}=\left(B+x_{1}^{2}\right) / 2 X, x_{3}=\left(C+3 X x_{1} x_{2}-x_{1}^{3}\right) / 3 X^{2}$ where $C=$ $\pm \sqrt{ }\left(3 X^{2} B U-X^{3} E-B^{3}\right)$, and $x_{4}=\left(U+2 x_{1} x_{3}-2 x_{2}^{2}\right) / 2 X$;
$\left(\mathcal{S}_{1}\right) x_{1}= \pm \sqrt{ }(-B), x_{2}$ is free, $x_{3}=\left(x_{2}^{2}-U\right) / 2 x_{1}$, and $x_{4}=\left(6 x_{1} x_{2} x_{3}-\right.$ $\left.2 x_{2}^{3}-E\right) / 6 x_{1}^{2}$;
$\left(\mathcal{S}_{2}\right)$ if $E^{2} \neq 4 U^{3}$ the pre-image is empty; otherwise, $x_{1}=0, x_{2}=-E / 2 U, x_{3}$ and x_{4} are free;
$\left(\mathcal{S}_{3}\right)$ if $E \neq 0$ the pre-image is empty; otherwise, $x_{1}=x_{2}=0, x_{3}$ and x_{4} are free (if $x_{3} \neq 0$ we have a non-trivial orbit but if $x_{3}=0$ we have fixed points).

From this we infer pre-images under $\bar{\pi}$.
Lemma 7.1. For $(W, X, B, U, E) \in \overline{\mathcal{S}}_{i}$, the value $\chi\left(\bar{\pi}^{-1}(W, X, B, U, E)\right)$ is given by:

i	Condition	ψ_{i}	$\chi\left(\right.$ if $\left.\psi_{i}=0\right)$	$\chi\left(\right.$ if $\left.\psi_{i} \neq 0\right)$
0	$X \neq 0$	$B^{3}+X^{3} E-3 X^{2} B U$	1	2
1	$X=0, B \neq 0$	W	1	2
2	$X, B=0, U \neq 0$	$4 U^{3}-E^{2}$	1	0
3	$X, B, U=0$	E	1	0

Lemma 7.2. Suppose f, invariant under the group, defines a hypersurface V with isolated singularities. Then there is an allowable change of co-ordinates which puts f in the form $f=E+3 a_{1} U+a_{3}$, where a_{i} is homogeneous of degree i in the invariant co-ordinates.

Proof. We have $d=3$, and so can write $f=b_{0} C+a_{0} E+b_{1} B+3 a_{1} U+a_{3}$, where a_{i}, b_{i} are homogeneous of degree i in w, x_{0}. By Corollary 2.5, for V to be quasi-smooth, f must contain the monomial $x_{3}^{2} x_{0}$, so we must have $a_{0} \neq 0$. We may thus take $a_{0}=1$. Now substitute $x_{4}=x_{4}^{\prime}+\frac{b_{0}}{6} x_{1}-\frac{b_{1}}{6}$ and $x_{4}=x_{3}^{\prime}+\frac{b_{0}}{6} x_{0}$. This reduces b_{0} and b_{1} to 0 at the expense of adding terms to a_{3}. We thus have $f=E+3 a_{1} U+a_{3}$, of the desired form.

It will be convenient to write a_{3}^{*} for $a_{1}^{3}+a_{3}$, and to give names to varieties as follows. We define $V_{2} \subset P^{m}$ by $a_{3}(W, X)=0, V_{2}^{*}$ by $a_{3}^{*}(W, X)=0$, their respective intersections with $X=0$ by V_{3}, V_{3}^{*}, and $V_{3} \cap V_{3}^{*}$ by V_{4}. In weighted projective space with coordinates (W, X, Z, U) (where U has weight 2) write $\psi_{1}:=$ $-Z^{3}+3 U Z+3 a_{1}(W, X) U+a_{3}(W, X)$; denote the hypersurface $\psi_{1}=0$ by V_{0}, and its intersection with $X=0$ by V_{1}.

Lemma 7.3. Suppose $f=E+3 a_{1} U+a_{3}$ as above. Then the singular points of V are isolated iff
(i) V_{0}, or equivalently V_{2}^{*} is non-singular,
(ii) V_{1}, or equivalently V_{3}^{*} is non-singular, and
(iii) V_{3} has isolated singular points.

The singular points of f are then P and points P_{i} corresponding to the singular points Q_{i} of V_{3}.

Proof. Since $x_{1} \partial f / \partial x_{4}+x_{0} \partial f / \partial x_{3}=x_{1} \partial E / \partial x_{4}+x_{0} \partial E / \partial x_{3}=-6 C, C$ again vanishes at all critical points of f.

Each singular point of V in $x_{0} \neq 0$ lies in a non-trivial orbit, and V is invariant, so V can have no singular point, and f can have no critical point with $x_{0} \neq 0$. In this region, the critical points of f are the same as those of $x_{0}^{3} f$, which is equal to $3 x_{0}^{2} B U-B^{3}-C^{2}+x_{0}^{3}\left(3 a_{1} U+a_{3}\right)$. These coincide with the critical points of $\phi_{0}:=3 x_{0}^{2} B U-B^{3}+x_{0}^{3}\left(3 a_{1} U+a_{3}\right)$ lying in $C=0$. Now regard ϕ_{0} as a function ψ_{0} of the variables W, X, B, U. If ψ_{0} has a critical point with $X \neq 0$, we certainly have a critical point of ϕ_{0}. Conversely, if we have a critical point of ϕ_{0}, set

$$
\begin{gathered}
w_{i}:=W_{i}, \quad x_{0}:=X, \quad x_{1}:=t, \quad x_{2}:=\left(B+t^{2}\right) / 2 X, \\
x_{3}:=\left(3 x_{0} x_{1} x_{2}-x_{1}^{3}\right) / 3 x_{0}^{2}, \quad x_{4}:=\left(U+2 x_{1} x_{3}-x_{2}^{2}\right) / 2 x_{0},
\end{gathered}
$$

(so $C=0$). Then $0=\partial \phi_{0} / \partial x_{4}=2 x_{0} \partial \psi_{0} / \partial U$, so $0=\partial \psi_{0} / \partial U$, and $0=\partial \phi_{0} / \partial x_{2}=$ $2 x_{0} \partial \psi_{0} / \partial B+2 x_{2} \partial \psi_{0} / \partial U$, so $0=\partial \psi_{0} / \partial B$, and hence again, $\partial \psi_{0} / \partial X=\partial \phi_{0} / \partial x_{0}$ and the $\partial \psi_{0} / \partial W_{i}$ all vanish; so we have a critical point of ψ_{0}.

In $X \neq 0$ we may make the substitution $Z:=X^{-1} B$, then $\psi_{0}(W, X, X Z)=$ $X^{3} \psi_{1}(W, X, Z)$. Then the critical points of ψ_{0} correspond to those of ψ_{1}. Thus f has no critical points in $x_{0} \neq 0$ if and only if ψ_{1} has none in $X \neq 0$; equivalently, $V_{0} \backslash V_{1}$ is non-singular.

For a critical point of $\psi_{1}, 0=\partial \psi_{1} / \partial U=3\left(Z+a_{1}\right)$, so $Z=-a_{1}$ and $0=$ $\partial \psi_{1} / \partial Z=3 U-3 Z^{2}$, so $U=Z^{2}=a_{1}^{2}$. With this value of U, the partial derivatives of ψ_{1} with respect to X and the W_{i} coincide with those of $a_{1}^{3}+a_{3}$. Thus f has no critical point in $x_{0} \neq 0$ if and only if a_{3}^{*} has none in $X \neq 0$.

For singular points on $x_{0}=0$, we have $0=\partial f / \partial x_{4}=-6 x_{1}^{2}$, so $x_{1}=0$ also, and hence $U=x_{2}^{2}, E=-2 x_{2}^{3}$, so f reduces to $-2 x_{2}^{3}+3 x_{2}^{2} a_{1}(w, 0)+a_{3}(w, 0)$. We now have $\partial f / \partial x_{4}=\partial f / \partial x_{3}=0$, and

$$
\begin{gathered}
\partial f / \partial x_{2}=6 x_{2}\left(a_{1}(w, 0)-x_{2}\right), \quad \partial f / \partial x_{1}=-6 x_{3}\left(a_{1}(w, 0)-x_{2}\right) \\
\partial f / \partial x_{0}=12 x_{2} x_{4}-9 x_{3}^{2}+6 x_{4} a_{1}(w, 0)+3 x_{2}^{2} \partial a_{1} / \partial x_{0}+\partial a_{3} / \partial x_{0}(w, 0) .
\end{gathered}
$$

If $x_{2}=a_{1}$, then $\partial f / \partial w_{i}=\partial\left(a_{1}^{3}+a_{3}\right) / \partial w_{i}=\partial a_{3}^{*} / \partial w_{i}$. If the restriction of a_{3}^{*} to $x_{0}=0$ has a critical point, we can assign this value to the w_{i}, set $x_{2}=a_{1}$, and then only have one further equation in x_{3} and x_{4} : thus f has non-isolated critical points. Thus condition (ii) is necessary. If it holds, then if $x_{2}=a_{1}$ we have $w=0$, hence in turn $x_{2}=x_{3}=0$ and we have the unique critical point P_{4}. Note also that (ii) implies that a_{3}^{*} has no critical point on $X=0$, thus completing the proof of the necessity of (i).

For a critical point of f with $x_{2} \neq a_{1}$, we must have $x_{2}=x_{3}=0$. Then $\partial f / \partial w_{i}$ reduces to $\partial a_{3} / \partial w_{i}$ and $\partial f / \partial x_{0}$ to $6 x_{4} a_{1}+\partial a_{3} / \partial x_{0}$. Thus we have a critical point of the restriction of a_{3} to $x_{0}=0$; since $a_{1} \neq x_{2}=0$, each such critical point yields a unique value of x_{4} and hence critical point of f.

Theorem 7.4. For V quasi-smooth in Case 4, we have $\mu(V)=11.2^{m}+\mu\left(V_{3}\right)$.
Proof. As before, we calculate the $\chi\left(V \cap \mathcal{S}_{i}\right)$ using Lemma 7.1.
For \mathcal{S}_{3} we only have to consider $a_{3}(w, 0)=0$, which defines V_{3}. Hence $\chi\left(V \cap \mathcal{S}_{3}\right)=$ $\chi\left(V_{3}\right)+\chi(\mathcal{E})$.

We know that $\chi\left(V \cap \mathcal{S}_{2}\right)$ is equal to the Euler characteristic of the set of (W, U, E) with $\phi(W, 0,0, U, E)=0,4 U^{3}=E^{2}$ and $U \neq 0$. Since we can solve $\phi=0$ for E, it suffices to consider the set of (W, U) where $4 U^{3}=\left(3 a_{1} U+a_{3}\right)^{2}$ and $U \neq 0$. We cannot have $W=0$ here, as this would imply $U=0$. We can thus project on the space P^{m-1} with co-ordinates W. The fibre consists of the roots of the cubic equation in U, which has discriminant $16 a_{3}^{3} a_{3}^{*}$.

In the following table, the first column defines the subset of P^{m-1}, the second gives its Euler characteristic, the third is the number of points in the fibre with $U \neq 0$, and the fourth the contribution to

$$
\chi\left(\left\{(W, U) \mid 4 U^{3}=\left(3 a_{1} U+a_{3}\right)^{2}, U \neq 0\right\} .\right.
$$

$P^{m-1} \backslash\left(V_{3} \cup V_{3}^{*}\right)$	$m-\chi\left(V_{3}\right)-\chi\left(V_{3}^{*}\right)+\chi\left(V_{4}\right)$	3	$3 m-3 \chi\left(V_{3}\right)-3 \chi\left(V_{3}^{*}\right)+3 \chi\left(V_{4}\right)$
$V_{3} \backslash V_{3}^{*}$	$\chi\left(V_{3}\right)-\chi\left(V_{4}\right)$	1	$\chi\left(V_{3}\right)-\chi\left(V_{4}\right)$
$V_{3}^{*} \backslash V_{3}$	$\chi\left(V_{3}^{*}\right)-\chi\left(V_{4}\right)$	2	$2 \chi\left(V_{3}^{*}\right)-2 \chi\left(V_{4}\right)$
V_{4}	$\chi\left(V_{4}\right)$	0	0

Hence $\chi\left(V \cap \mathcal{S}_{2}\right)=3 m-2 \chi\left(V_{3}\right)-\chi\left(V_{3}^{*}\right)$.
In $\mathcal{S}_{1}(X=0, B \neq 0)$ we can again assign W, B and U and solve for E. Since the other conditions are independent of B, which runs through \mathbb{C}^{*}, we have $\chi=0$ in each case, except when $W=U=0$ which leads to the unique point with $E=0$ also, and hence to $\chi\left(V \cap \mathcal{S}_{1}\right)=1$.

Finally, for \mathcal{S}_{0}, while we again solve uniquely for E, so that $\chi\left(\phi^{-1}(0) \cap \overline{\mathcal{S}}_{0}\right)=1$, we have to distinguish according as $B^{3}+X^{3} E-3 X^{2} B U=0$ or not, hence according as $0=B^{3}-3 X^{2} B U-X^{3}\left(3 a_{1} U+a_{3}\right)$. As before, since here X is non-zero, we can replace B by $Z=B / X$, so obtain $0=Z^{3}-3 Z U-\left(3 a_{1} U+a_{3}\right)$, giving V_{0}. By Lemma 7.3, both V_{0} and its intersection V_{1} with $X=0$ are non-singular. Applying again Lemma 7.1, we obtain, since $\chi\left(\overline{\mathcal{S}}_{0}\right)=1$,

$$
\chi\left(V \cap \mathcal{S}_{0}\right)=\left(\chi\left(V_{0}\right)-\chi\left(V_{1}\right)\right)+2\left(1-\chi\left(V_{0}\right)+\chi\left(V_{1}\right)\right)=2-\chi\left(V_{0}\right)+\chi\left(V_{1}\right)
$$

Recall that by Corollary 4.4, if H^{n} is a smooth hypersurface of dimension n where one of the weights is 2 , then $\chi\left(H^{n}\right)=n+2+\frac{1}{3}\left\{(-2)^{n}-1\right\}$. Since V_{0}, V_{1} have respective dimensions $m+1, m$,

$$
\chi\left(V_{0}\right)-\chi\left(V_{1}\right)=1+\frac{1}{3}\left\{(-2)^{m+1}-(-2)^{m}\right\}=1-(-2)^{m}
$$

Adding up, $\chi(V)$ is equal to

$$
\chi\left(V_{3}\right)+\chi(\mathcal{E})+3 m-2 \chi\left(V_{3}\right)-\chi\left(V_{3}^{*}\right)+1+2-\left(1-(-2)^{m}\right),
$$

and to $\chi_{m+3}(3)+(-1)^{m} \mu(V)$. We can substitute $\chi(\mathcal{E})=2, \chi\left(V_{3}^{*}\right)=\chi_{m-2}(3)$ and $\chi\left(V_{3}\right)=\chi_{m-2}(3)+(-1)^{m-1} \mu\left(V_{3}\right)$, so that

$$
\mu(V)-\mu\left(V_{3}\right)=(-1)^{m-1}\left(\chi_{m+3}(3)+2 \chi_{m-2}(3)-3 m-5\right)+\left(2^{m}-(-1)^{m}\right)
$$

Substituting $\chi_{n}(3)=\frac{(-1)^{n}}{3}\left(2^{n+2}-(-1)^{n+2}\right)+n+2$, this reduces to 11.2^{m}.
As before, we can determine the singularities.

Proposition 7.5. Suppose V in Case 4. Then the singularity of V corresponding to a singularity of V_{3} is right-equivalent to a suspension of that singularity.

Proof. Suppose Q_{i} a singular point of V_{3}. Then a_{1} cannot be a multiple of x_{0}, for otherwise $V_{3}=V_{3}^{*}$ would be non-singular. We may thus set $w_{1}=a_{1}$. By the arguments above, a_{1} does not vanish at Q_{i}. We may thus work in affine co-ordinates $w_{1}=1$.

Now apply Lemma 3.4(a) to f with the variables $\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)$. We observe that $\partial f / \partial x_{0}, \partial f / \partial x_{1}, \partial f / \partial x_{2}, \partial f / \partial x_{3}, \partial f / \partial x_{4}$ all vanish when $x_{0}=x_{1}=x_{2}=$ $x_{3}=0$ and $x_{4}=-\frac{1}{2} \partial a_{3} / \partial x_{0}$. Substituting these values gives $g(w)=a_{3}(w, 0,0,0)$. The result follows.

Lemma 7.6. Suppose V in Case 4. Then the singularity of V at P is semi-quasihomogeneous of degree 12 in variables of weights $1,6,6,6$ and 4 (m times).

Proof. If we substitute $x_{4}=1, x_{3}=2 z, x_{2}=y+3 z^{2}$, and $x_{1}=x+3 y z+3 z^{3}$, we obtain $E=6 U y-8 y^{3}-6 x^{2}$; thus $f=-6 x^{2}+6 U y-8 y^{3}+3 U a_{1}+a_{3}$.

We also obtain $U=2 x_{0}-4 x z-6 y z^{2}-3 z^{4}+y^{2}$. Substitute $x_{0}=\frac{1}{2} U+2 x z-$ $\frac{1}{2} y^{2}+3 y z^{2}+\frac{3}{2} z^{4}$ in f, and assign weights 1 to $z, 4$ to y and to the $w_{i}, 6$ to x and 8 to U. Then in the expression for x_{0}, all terms have weight >4 except for $\frac{3}{2} z^{4}$, of weight 4. Hence all terms in f have weight at least 12, and those of exactly this weight are obtained by substituting $\frac{3}{2} z^{4}$ for x_{0} in a_{1} and a_{3}.

It thus remains only to show that the result of this substitution has an isolated singularity. Here we can ignore the summand $-6 x^{2}$; the rest is obtained from $\psi_{1}(W, X, Z, U)$ by the substitution $Z=2 y, X=\frac{3}{2} z^{4}$. But by Lemma 7.3, the hypersurface V_{0} given by $\psi_{1}=0$ is non-singular. The result follows.

We observe that we also have $f=-6 x^{2}+\left(U-\frac{4}{3} y^{2}+\frac{2}{3} a_{1} y-a_{1}^{2}\right)\left(2 y+a_{1}\right)+a_{1}^{3}+a_{3}$, which we can write as $-6 x^{2}+6 U^{\prime} y^{\prime}+a_{3}^{*}\left(w, x_{0}\right)$, though in view of the substitution $x_{0}=\frac{1}{2} U^{\prime}+2 z x+3 z^{2} y^{\prime}-\frac{3}{2} z^{2} a_{1}+\frac{3}{2} z^{4}+\frac{1}{6} y^{\prime 2}-\frac{1}{2} y^{\prime} a_{1}+\frac{3}{8} a_{1}^{2}$ we must make for x_{0}, the simplicity of this form is misleading.

In certain cases, we can also determine τ.
Proposition 7.7. Suppose f, in the normal form for Case 4, satisfies also
(i) a_{1} is a multiple of x_{0}, and
(ii) $\partial a_{3} / \partial x_{0}$ vanishes when $x_{0}=0$.

Then the singularity of f at P is quasi-homogeneous, so $\tau_{P}(V)=\mu_{P}(V)=11.2^{m}$.
Proof. Write f as $f=E+a x_{0} U+u x_{0}^{2}+c x_{0}^{3}+C(w)$, where u is a non-zero linear combination of the w_{i}. We now define a number of vector fields. In the table, the left column gives the name, the next defines the field, and the last gives its effect on f. Here ∂_{i} denotes $\partial / \partial x_{i}$ and $R=\left(\partial_{4} E \partial_{0}-\partial_{3} E \partial_{1}+\partial_{2} E \partial_{2}-\partial_{1} E \partial_{3}+\partial_{0} E \partial_{4}\right) / 6$.

H	$-2 x_{0} \partial_{0}-x_{1} \partial_{1}+x_{3} \partial_{3}+2 x_{4} \partial_{4}$	$-2 a x_{0} U-2 x_{0}^{2}\left(2 u+3 c x_{0}\right)$
M	$x_{1} \partial_{1}+(3 / 2) x_{2} \partial_{2}+(3 / 2) x_{3} \partial_{3}+x_{4} \partial_{4}$	$a x_{1} U+2 x_{0} x_{1}\left(2 u+3 c x_{0}\right)$
P	$x_{0} \partial_{0}+x_{1} \partial_{1}+x_{2} \partial_{2}+x_{3} \partial_{3}+x_{4} \partial_{4}$	$3 E+3 a x_{0} U+x_{0}^{2}\left(2 u+3 c x_{0}\right)$
Q	$x_{0} \partial_{2}+x_{1} \partial_{3}+x_{2} \partial_{4}$	$2 x_{0}(3 U+a B)$
R		$6 U^{2}+a\left(x_{0} E+B U\right)+x_{0} B\left(2 u+3 c x_{0}\right)$
S	$\left(\partial_{4} E \partial_{2}-\partial_{3} E \partial_{3}+\partial_{2} E \partial_{4}\right) / 12$	$3 x_{0} E-3 B U+a x_{0}^{2} U$

Linear combinations of these give

Y_{1}	$2 x_{4} H+x_{3} M$	$-\left(4 x_{0} x_{4}-x_{1} x_{3}\right)\left(a U+x_{0}\left(2 u+3 c x_{0}\right)\right)$
Y_{2}	$-x_{1} M+U \partial_{2}+R$	$a x_{0} E+6\left(4 x_{0} x_{4}-x_{1} x_{3}\right) U$
		$+2 a B U+2 x_{0}\left(x_{0} x_{2}-x_{1}^{2}\right)\left(2 u+3 c x_{0}\right)$
Y_{3}	$-5 S+4 x_{0} P-\frac{7}{2} U \partial_{4}$	$-3 x_{0} E-6 B U+4 x_{0}^{3}\left(2 u+3 c x_{0}\right)$
Y_{4}	$3 Q+3 x_{0} \partial_{2}-2 a x_{0} \partial_{4}$	$18 x_{0}\left(4 x_{0} x_{4}-x_{1} x_{3}\right)-6 a x_{0}\left(x_{0} x_{2}-x_{1}^{2}\right)-4 a^{2} x_{0}^{3}$

Thus the vector field $Z=Y_{1}+\frac{a}{6} Y_{2}+\frac{a^{2}}{18} Y_{3}+\frac{2 b u+3 c x_{0}}{18} Y_{4}$ kills f, and at the point P, Z reduces to $2 \partial / \partial x_{4}$. The result now follows by Saito's criterion.

Condition (i) is invariant under allowed changes of co-ordinates. An invariant version of (ii) is that substituting $x_{0}=0$ in $\partial a_{3} / \partial x_{0}$ gives a function in the Jacobian ideal of $a_{3}(w, 0)$. We believe both these conditions to be necessary for the result.

Since $\tau(V) \leq \mu(V)=11.2^{m}<12.2^{m}$, no function in Case 4 can be oversymmetric.

8 Case 21

First we normalise co-ordinates.
Lemma 8.1. There is an allowable change of co-ordinates which puts f in the form $f=S+a_{1} B+a_{3}$, where a_{i} is homogeneous of degree i in w, x_{0}, y_{0}. Moreover, we may suppose that either $a_{1}=x_{0}$ or $a_{1}=w_{1}$.

Proof. Here $d=3$ and f has the form $a_{0} S+a_{1} B+b_{1} T+a_{3}$, where a_{i} (and b_{i}) denotes a homogeneous function of degree i in w, x_{0}, y_{0}. It follows from Corollary 2.5 that f must contain the monomial $y_{1}^{2} x_{0}$. Hence we must have $a_{0} \neq 0$, and can take $a_{0}=1$. Now substitute $y_{1}^{\prime}:=y_{1}+\frac{1}{2} b_{1}$ to reduce b_{1} to 0 (the extra terms introduced can be absorbed in a_{3}), and so f to $S+a_{1} B+a_{3}$.

If a_{1} involves any of the w co-ordinates, we can make a linear substitution among the w 's to reduce a_{1} to the form $q x_{0}+p y_{0}+w_{1}$, and then change again to achieve $a_{1} \equiv w_{1}$. Otherwise, we can write $a_{1}=2 p y_{0}+q x_{0}$ and use the substitution $y_{1}^{\prime}=$ $y_{1}-p x_{1}, y_{0}^{\prime}=y_{0}-p x_{0}$. This transforms S to $S+\left(p^{2} x_{0}-2 p y_{0}\right) B$, so a_{1} is changed to $\left(q-p^{2}\right) x_{0}$. We may thus suppose that either $a_{1} \equiv x_{0}$ or $a_{1} \equiv 0$. However, if $a_{1} \equiv 0, V$ is singular along the plane $w=y_{0}=y_{1}=0$.

Proposition 8.2. In Case 21, V is always 2-symmetric.
Proof. The function f is annihilated by the vector fields $\xi=x_{0} \partial / \partial x_{1}+x_{1} \partial / \partial x_{2}+$ $y_{0} \partial / \partial y_{1}$ and $\xi^{\prime}:=y_{0} \partial / \partial x_{1}+y_{1} \partial / \partial x_{2}-a_{1} \partial / \partial y_{1}$.

There are significant differences between the two cases. We now rename the case with $a_{1}=x_{0}$ as 21_{0}, and the case $a_{1}=w_{1}$ as Case 5 .

In Case 21_{0}, the operators $D \pm D^{\prime}$ each fall into Case 2 (other linear combinations are all in Case 21_{0}). To see this, substitute

$$
x_{0}=u_{0}+v_{0}, \quad y_{0}=u_{0}-v_{0}, \quad x_{1}=u_{1}+v_{1}, \quad y_{1}=u_{1}-v_{1},
$$

Then f reduces to $-8 x_{2} u_{0} v_{0}+4 u_{0} v_{1}^{2}+4 v_{0} u_{1}^{2}+a_{3}$, which we can write as $4 u_{0}\left(v_{1}^{2}-2 v_{0} x_{2}\right)$ added to a cubic in w, u_{0}, v_{0} and v_{1}. Conversely, this is essentially the normal form for Case 2 where the cubic has the form $4 v_{0} u_{1}^{2}$ added to a cubic in w, u_{0}, v_{0}, and thus can be identified with Case (a2) of Proposition 5.9.

For the remainder of this section we consider only Case 5; here all non-zero linear combinations of D and D^{\prime} are in Case 5 . We re-name a_{1} as z_{0}. In this notation, co-ordinates are $\left(w_{1}, \ldots, w_{m}, x_{0}, y_{0}, z_{0}, x_{1}, y_{1}, x_{2}\right)$, and we re-group the terms in f as $J+a_{3}\left(x_{0}, y_{0}, z_{0}, w\right)$, where

$$
J:=2 x_{2}\left(y_{0}^{2}-x_{0} z_{0}\right)+x_{1}^{2} z_{0}-2 x_{1} y_{1} y_{0}+y_{1}^{2} x_{0}
$$

It is now more natural to treat all the differential operators on the same footing, and consider f as invariant under the 2-dimensional group G whose Lie algebra is spanned by D and D^{\prime}. We see that J is invariant under G, and it seems very likely that the ring of invariants coincides with the polynomial ring $\mathbb{C}\left[w, x_{0}, y_{0}, z_{0}, J\right]$ (clearly it contains this, and we can show that the localisation at $\left\langle x_{0}\right\rangle$ is correct), but we will not use the precise assertion.

We define a new stratification,
$\mathcal{S}_{0}: y_{0}^{2}-x_{0} z_{0} \neq 0$,
$\mathcal{S}_{1}: y_{0}^{2}-x_{0} z_{0}=0$ but $\left(x_{0}, y_{0}, z_{0}\right) \neq(0,0,0)$,
$\mathcal{S}_{2}:\left(x_{0}, y_{0}, z_{0}\right)=(0,0,0)$.
Lemma 8.3. A point in \mathcal{S}_{2} is fixed under G; otherwise the dimension of the orbit is equal to the rank of $\left(\begin{array}{ccc}x_{0} & y_{0} & x_{1} \\ y_{0} & z_{0} & y_{1}\end{array}\right)$.

For the fixed points of $A \xi_{0}+B \xi_{1}=\left(A x_{0}+B y_{0}\right) \partial / \partial x_{1}+\left(A y_{0}+B z_{0}\right) \partial / \partial y_{1}+$ $\left(A x_{1}+B y_{1}\right) \partial / \partial x_{2}$ are those where the three coefficients vanish; this holds for some $(A, B) \neq(0,0)$ if and only if the rank of the matrix drops.

We define a projection $\pi: K \rightarrow L$ by $\pi\left(w, x_{0}, y_{0}, z_{0}, x_{1}, y_{1}, x_{2}\right)=\left(w, x_{0}, y_{0}, z_{0}\right)$, and again write $\bar{\pi}: P(K) \rightarrow P(L)$ for the induced map of projective spaces. The exceptional set where $\bar{\pi}$ is undefined is the projective plane where $w=x_{0}=y_{0}=$ $z_{0}=0$, and the pre-image of any point in the target is isomorphic to affine 3 -space. Write $\bar{\pi}_{0}$ for the restriction of $\bar{\pi}$ to the hypersurface V defined by $f=0$.

Lemma 8.4. The fibres of $\bar{\pi}_{0}$ are as follows:
in $\overline{\mathcal{S}}_{0}$ each fibre is a quadric isomorphic to an affine plane,
in $\overline{\mathcal{S}}_{1}$, one or two affine planes according as $a_{3}\left(w, x_{0}, y_{0}, z_{0}\right)=0$ or $\neq 0$,
in $\overline{\mathcal{S}}_{2}$, affine 3 -space or the empty set according as $a_{3}(w, 0,0,0)=0$ or $\neq 0$.
Proof. The assertions are trivial except for $\overline{\mathcal{S}}_{1}$. Here we may write $\left(x_{0}, y_{0}, z_{0}\right)=$ $\left(t^{2}, t u, u^{2}\right)$ for some t, u not both zero. Then J reduces to $x_{1}^{2} z_{0}-2 x_{1} y_{1} y_{0}+y_{1}^{2} x_{0}=$ $\left(u x_{1}-t y_{1}\right)^{2}$. Thus we have the plane(s) given by $u x_{1}-t y_{1}= \pm \sqrt{ }\left(-a_{3}\right)$.

We have two hypersurfaces in $P(L)$: the cone $\overline{\mathcal{S}}_{1} \cup \overline{\mathcal{S}}_{2}=C: y_{0}^{2}-x_{0} z_{0}=$ 0 and the variety V_{0} defined by $a_{3}\left(w, x_{0}, y_{0}, z_{0}\right)=0$. Write $V_{1}:=V_{0} \cap C$, and $V_{3}:=V_{0} \cap \overline{\mathcal{S}}_{2}$ for the variety $a_{3}(w, 0,0,0)=0$. Also define V_{1}^{*} as the variety $\phi(w, t, u):=a_{3}\left(w, t^{2}, t u, u^{2}\right)=0$ in weighted projective space $P\left(2^{m} 1^{2}\right)$.

It follows from the lemma that

$$
\begin{equation*}
\chi(V)=3+\chi\left(\overline{\mathcal{S}}_{0}\right)+2 \chi\left(\overline{\mathcal{S}}_{1}\right)-\chi\left(\overline{\mathcal{S}}_{1} \cap V_{0}\right)+\chi\left(\overline{\mathcal{S}}_{2} \cap V_{0}\right) . \tag{4}
\end{equation*}
$$

Proposition 8.5. The variety V has isolated singularities if and only if
(i) for no $\left(w, x_{0}, y_{0}, z_{0}\right)$ in \mathcal{S}_{1} do we have $\partial a_{3} / \partial w_{i}=0$ for each i, and the matrix A of rank 1, where

$$
A:=\left(\begin{array}{ccc}
\partial a_{3} / \partial x_{0} & \partial a_{3} / \partial y_{0} & \partial a_{3} / \partial z_{0} \\
z_{0} & -2 y_{0} & x_{0}
\end{array}\right)
$$

(ii) for any singular point of V_{3} we have

$$
\left(\partial a_{3} / \partial y_{0}\right)^{2} \neq 4\left(\partial a_{3} / \partial x_{0}\right)\left(\partial a_{3} / \partial z_{0}\right) .
$$

In particular, singular points of V_{3} are isolated.
When this holds, P is the only singular point of V.
Proof. Since $\partial f / \partial x_{2}=2\left(y_{0}^{2}-x_{0} z_{0}\right)$, there are no singularities in \mathcal{S}_{0}.
In \mathcal{S}_{1}, again write $\left(x_{0}, y_{0}, z_{0}\right)=\left(t^{2}, t u, u^{2}\right)$ for t, u not both zero. Then

$$
\partial f / \partial x_{1}=2 u\left(u x_{1}-t y_{1}\right), \quad \partial f / \partial y_{1}=-2 t\left(u x_{1}-t y_{1}\right),
$$

$\partial f / \partial x_{0}=y_{1}^{2}+\partial a_{3} / \partial x_{0}, \partial f / \partial y_{0}=-2 x_{1} y_{1}+\partial a_{3} / \partial y_{0}, \partial f / \partial z_{0}=x_{1}^{2}+\partial a_{3} / \partial z_{0}$, and $\partial f / \partial w_{i}=\partial a_{3} / \partial w_{i}$. It follows that for a critical point of $f, u x_{1}=t y_{1}$, and hence that the matrix A has rank 1 .

Conversely, given $\left(w, x_{0}, y_{0}, z_{0}\right)$ in \mathcal{S}_{1} such that $\partial a_{3} / \partial w_{i}=0$ for each i, and A has rank 1 , we can take $\left(x_{0}, y_{0}, z_{0}\right)=\left(t^{2}, t u, u^{2}\right)$, and let the upper row of A equal $-v^{2}$ times the lower. Then if $x_{1}=t v, y_{1}=u v$ and x_{2} is arbitrary, we have a critical point of f : none of these critical points is isolated.

In \mathcal{S}_{2} we have identically $\partial f / \partial x_{2}=\partial f / \partial x_{1}=\partial f / \partial y_{1}=0$. For a critical point of f we have a critical point of a_{3}, and 3 further equations, for $x_{1}^{2}, x_{1} y_{1}$ and y_{1}^{2}, which are inconsistent unless also $\left(\partial a_{3} / \partial y_{0}\right)^{2}=4\left(\partial a_{3} / \partial x_{0}\right)\left(\partial a_{3} / \partial z_{0}\right)$.

Conversely, if there is a critical point of a_{3} at which this identity holds, we can solve for x_{1} and y_{1} and take an arbitrary value for x_{2}, again obtaining a non-isolated singularity of f.

It remains to consider the case $w=x_{0}=y_{0}=z_{0}=0$. Here the only critical point is $x_{1}=y_{1}=0$, which is indeed isolated.

For a singular point of the intersection $V_{1}:=V_{0} \cap C$, Lagrange's multiplier rule tells us that the $\partial a_{3} / \partial w_{i}$ vanish and the matrix A has rank at most 1: for singular points with $\left(x_{0}, y_{0}, z_{0}\right) \neq(0,0,0)$, this condition is necessary and sufficient. Thus (i) is equivalent to the condition that $V_{1} \cap \overline{\mathcal{S}}_{1}$, or equivalently the open set of V_{1}^{*} where $(t, u) \neq(0,0)$, be non-singular.

Now V_{1} is always singular along $V_{1} \cap \overline{\mathcal{S}}_{2}$. For V_{1}^{*} on the other hand, it is singular at a point on $t=u=0$ only if $\partial a_{3} / \partial w_{i}=0$ for each i, i.e. at a singular point of V_{3}. Thus V_{1}^{*} is non-singular if and only if V_{3} is.

The singularities of V_{1}^{*} and V_{3} are related as follows. If we expand ϕ as a Taylor series, the second order terms in t and u are $2\left(\left(\partial a_{3} / \partial x_{0}\right) t^{2}+\left(\partial a_{3} / \partial y_{0}\right) t u+\right.$ $\left.\left(\partial a_{3} / \partial z_{0}\right) u^{2}\right)$, a form which is non-singular if and only if (ii) holds. However, since the ambient weighted projective space is singular at this point, we cannot say that one singularity is the suspension of the other.

Theorem 8.6. If V_{3} is non-singular, $\mu(V)=25.2^{m}$. Moreover, the singularity of V is semi-quasi-homogeneous of degree 6 in variables of weights $1,1,3,3,3$ and 2 (m times).

Proof. Although the first assertion follows from the second, we give an independent proof.

For the stratification of $P(L)$ we have $\chi\left(\overline{\mathcal{S}}_{2}\right)=m, \chi\left(\overline{\mathcal{S}}_{1}\right)=2$ and $\chi\left(\overline{\mathcal{S}}_{0}\right)=1$, since $\overline{\mathcal{S}}_{2}$ is a projective space, and forgetting the w_{i} defines a projection of the others to the projective plane on x_{0}, y_{0}, z_{0} with contractible fibres. Substituting in (4), and using the notations V_{i} thus gives $\chi(V)=8-\chi\left(V_{1}\right)+2 \chi\left(V_{3}\right)$.

Now $\chi(V)=\chi_{m+4}(3)+(-1)^{m-1} \mu(V)$ and since V_{3} is non-singular, $\chi\left(V_{3}\right)=$ $\chi_{m-2}(3)$. Since the natural projection $V_{1}^{*} \rightarrow V_{1}$ is bijective, $\chi\left(V_{1}\right)=\chi\left(V_{1}^{*}\right)$, while by Corollary 3.7, $\chi\left(V_{1}^{*}\right)=m+1+\frac{1}{6}(-1)^{m}\left(26.2^{m}+4(-1)^{m}\right)$.

Putting the above results together, we obtain

$$
\begin{aligned}
\mu(V)= & \frac{1}{3}\left(2^{m+6}-(-1)^{m}\right)+(-1)^{m}(m+6) \\
& +\frac{1}{6}\left(26.2^{m}+4(-1)^{m}\right)+(-1)^{m}(m+1) \\
& -\frac{2}{3}\left((2)^{m}-(-1)^{m}\right)+(-1)^{m-1} 2 m+8(-1)^{m-1} \\
= & 25.2^{m} .
\end{aligned}
$$

Set $x_{2}=1 / 2$ and rewrite J as $\left(y_{0}-x_{1} y_{1}\right)^{2}-\left(x_{0}-x_{1}^{2}\right)\left(z_{0}-y_{1}^{2}\right)$. Substitute $x^{\prime}:=x_{0}-x_{1}^{2}$, $y^{\prime}:=y_{0}-x_{1} y_{1}$ and $z^{\prime}:=z_{0}-y_{1}^{2}$: then $f=\left(y^{\prime 2}-x^{\prime} z^{\prime}\right)+a_{3}\left(x^{\prime}+x_{1}^{2}, y^{\prime}+x_{1} y_{1}, z^{\prime}+y_{1}^{2}, w\right)$. Now assign weights 1 to $x_{1}, y_{1}, 2$ to the w_{i} and 3 to $x^{\prime}, y^{\prime}, z^{\prime}$. Then the terms of weight 6 give $g=\left(y^{\prime 2}-x^{\prime} z^{\prime}\right)+a_{3}\left(x_{1}^{2}, x_{1} y_{1}, y_{1}^{2}, w\right)$. Since V_{3} is non-singular, so is V_{1}^{*}, so g has an isolated singularity, and the result follows.

If V_{1}^{*} is singular, we do not have a formula for its Euler characteristic, so must proceed differently: in fact, we resolve the singularity of C. Define \widehat{P} as the subvariety of $P^{1} \times P(L)$, where P^{1} has co-ordinates $\left(t_{0}: t_{1}\right)$, given by $t_{1} x_{0}=t_{0} y_{0}, t_{1} y_{0}=$ $t_{0} z_{0}$. If $L_{0}:=\mathcal{S}_{2}$ denotes the subspace $x_{0}=y_{0}=z_{0}=0$ of L, then the projection $\widehat{P} \rightarrow P(L)$ has image C; it is bijective over $C \backslash P\left(L_{0}\right)$, but over $P\left(L_{0}\right)$ is the projection $P^{1} \times P\left(L_{0}\right) \rightarrow P\left(L_{0}\right)$.

Define $\widehat{V} \subset \widehat{P}$ to be the subvariety given by $a_{3}\left(w, x_{0}, y_{0}, z_{0}\right)=0$: thus it is a complete intersection of multi-degree $(1,1),(1,1),(0,3)$. The natural projection $\pi: \widehat{V} \rightarrow V_{1}$ is an isomorphism outside V_{3}, but a product $P^{1} \times V_{3}$ over it. In particular, $\chi(\widehat{V})=\chi\left(V_{1}\right)+\chi\left(V_{3}\right)$. By Proposition $8.5(\mathrm{i}), V_{1} \backslash V_{3}$, hence its preimage, is non-singular. Also, any singularity of \widehat{V} projects to a singular point P_{i} of V_{3}.

Lemma 8.7. Above each singular point P_{i} of V_{3} there are just two singular points of \widehat{V}, and the singularity at each is isomorphic to a suspension of the singularity of V_{3} at P_{i}.

Proof. To study a neighbourhood of P_{i}, it is convenient to make a linear change of the co-ordinates $\left(x_{0}, y_{0}, z_{0}\right)$, preserving the quadratic $y_{0}^{2}-x_{0} z_{0}$, so that $\partial a_{3} / \partial x_{0}=$ $\partial a_{3} / \partial z_{0}=0, \partial a_{3} / \partial y_{0} \neq 0$ at P_{i} (here we use Proposition 8.5(ii)). Then \widehat{V} is nonsingular at all points of $\pi^{-1}\left(P_{i}\right)$ except those where $\left(t_{0}: t_{1}\right)$ is $(0: 1)$ or $(1: 0)$: it suffices to consider the first.

Take affine co-ordinates in \widehat{V} with $t_{1}=1$ and $w_{1}=1$. Then $y_{0}=t_{0} z_{0}, x_{0}=$ $t_{0} y_{0}=t_{0}^{2} z_{0}$. Thus a_{3} lifts to $\alpha_{3}:=a_{3}\left(1, w_{2}, \ldots, w_{r}, t_{0}^{2} z_{0}, t_{0} z_{0}, z_{0}\right)$. At the point $t_{0}=z_{0}=0$, the 2 -jet has a non-zero coefficient of $t_{0} z_{0}$. We now apply Lemma 3.4(b): this we can do since $\partial \alpha_{3} / \partial t_{0}$ is divisible by z_{0}. It thus follows that we have a suspension of the restriction to $t_{0}=z_{0}=0$, which is just the intersection with V_{3}.

We can now show
Theorem 8.8. If V is quasi-smooth in Case 5, then $\mu(V)=25.2^{m}+\mu\left(V_{3}\right)$.
Proof. Since \widehat{V} is a complete intersection with isolated singularities, its Euler characteristic is obtained from that of a smooth complete intersection of the same multidegrees by adding $(-1)^{m-1}$ times the sum of the Milnor numbers.

While we could calculate the default value of $\chi(\widehat{V})$ directly, we can also obtain it from the above calculations in the case when V_{3} is non-singular. In the proof of Theorem 8.6 we calculated values of $\chi\left(V_{1}\right)$ and $\chi\left(V_{3}\right)$: denote them for now by c_{1} and c_{3}. Thus $c_{1}=m+1+\frac{1}{6}(-1)^{m}\left(26.2^{m}+4(-1)^{m}\right)$ and $c_{3}==\chi_{m-2}(3)$. In the case V_{3} non-singular, we have $\chi(\widehat{V})=c_{1}+c_{3}$ and $\chi(V)=8-c_{1}+2 c_{3}$, whereas $\chi(V)=\chi_{m+4}(3)+(-1)^{m-1} \mu(V)$, leading to $\mu(V)=25.2^{m}$.

In the general case, by Lemma 8.7 there are two singular points of \widehat{V} in $\pi^{-1}\left(P_{i}\right)$, each a suspension of the singularity of V_{3} at P_{i}; hence $\mu(\widehat{V})=2 \mu\left(V_{3}\right)$. Now $\chi\left(V_{3}\right)=$ $c_{3}+(-1)^{m-1} \mu\left(V_{3}\right)$. Also, by the remark just made,
$\chi(\widehat{V})=c_{1}+c_{3}+(-1)^{m-1} 2 \mu\left(V_{3}\right)$. As before, we have $\chi(V)=8-\chi\left(V_{1}\right)+$ $2 \chi\left(V_{3}\right)=8-\chi(\widehat{V})+3 \chi\left(V_{3}\right)$, which now equals $8-\left[c_{1}+c_{3}+(-1)^{m-1} 2 \mu\left(V_{3}\right)\right]+$ $3\left[c_{3}+(-1)^{m-1} \mu\left(V_{3}\right)\right]$, i.e. $8-c_{1}+2 c_{3}+(-1)^{m-1} \mu\left(V_{3}\right)$. Substituting this value in $\chi(V)=\chi_{m+4}(3)+(-1)^{m-1} \mu(V)$ gives $\mu(V)=25.2^{m}+\mu\left(V_{3}\right)$ as desired.

Observe, however, that unlike the other cases, here there is just one singular point P, and the values $\tau=25.2^{m}$ and $\mu=25.2^{m}+\mu\left(V_{3}\right)$ both hold for the singularity at this point.

$9 \quad 2$-symmetric cases

Finally we list 2 -symmetric hypersurfaces. This is just the subcase $d=3$ of the list of oversymmetric cases: in the semisimple case, the weights are obtained from one of $[-1,0,1],[-2,1,2]$ and $[-2,1,4]$ by adding zeros; in the unipotent case, the subcases of Case 2 when an additional action exists were analysed in Proposition 5.9: we had three cases (a1), (a2), (b); and Case 21 splits into two subcases: Case 21_{0} and Case 5. Since some cases arise more than once by using different 1-parameter subgroups, it is better to give the list separately.

Theorem 9.1. If f, of degree ≥ 3, such that $f=0$ is quasi-smooth, is 2-symmetric, then f belongs to one of the following 5 cases (A)-(E).
(A) $f=x_{0} x_{1} x_{2}+a_{3}\left(x_{3}, \ldots, x_{n}\right)(n \geq 2)$, where $a_{3}=0$ is non-singular, with the 2-parameter action $(\lambda, \mu) \cdot\left(x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\lambda^{-1} x_{0}, \mu^{-1} x_{1}, \lambda \mu x_{2}, \ldots, x_{n}\right)$, and 3 singular points, mutually isomorphic. We have 1 -parameter subgroups with weights
$[-a,-b, a+b]$ for any a and b. There are 3 singularities, all isomorphic, each with $\mu=2^{n-2}$ and homogeneous of degree 3 with respect to weights $1(n-1$ times) and 2 .
(B) $f=x_{0} x_{1}^{2}+x_{0} x_{2} x_{3}+a_{3}\left(x_{3}, \ldots, x_{n}\right)(n \geq 3)$, where $a_{3}=0$ is non-singular, and has non-singular intersection with $x_{3}=0$. This is annihilated by $-2 x_{0} \partial_{0}+$ $x_{1} \partial_{1}+2 x_{2} \partial_{2}$ with non-zero weights $[-2,1,2]$, and by $x_{3} \partial / \partial x_{1}-2 x_{1} \partial / \partial x_{2}$, which is in case (a1) of Proposition 5.9. There are two singularities, with Milnor numbers 5.2^{n-3} and 2^{n-3}; both homogeneous of degree 6 , the first with respect to weights 1 and 2 ($n-3$ times); the second with respect to weights 3 and $2(n-3$ times).
(C) $f=x_{0}\left(2 x_{0} x_{2}-x_{1}^{2}\right)+a_{3}\left(x_{3}, \ldots, x_{n}\right)(n \geq 2)$, where $a_{3}=0$ is non-singular. This is annihilated by $-2 x_{0} \partial_{0}+x_{1} \partial_{1}+4 x_{2} \partial_{2}$ with non-zero weights $[-2,1,4]$, and by $x_{0} \partial / \partial x_{1}+x_{1} \partial / \partial x_{2}$, which is in case (b) of Proposition 5.9. The singularity has $\mu=3.2^{n-2}$ and is homogeneous of degree 12 with respect to weights 3,6 and 4 ($n-2$ times).
(D) $f=x_{3}\left(2 x_{0} x_{2}-x_{1}^{2}\right)+x_{0} x_{4}^{2}+a_{3}\left(x_{0}, x_{3}, x_{5}, \ldots, x_{n}\right)(n \geq 4)$, with a_{3} nonsingular. We have vector fields $x_{0} \partial / \partial x_{1}+x_{1} \partial / \partial x_{2}$ in case (a2) of Proposition 5.9 and $x_{4} \partial / \partial x_{2}-x_{3} \partial / \partial x_{4}$ in Case 21_{0}. The singularity has $\mu=13.2^{n-4}$, and is in the same μ-constant stratum as $x^{6}+x^{2} y^{2}+y^{6}+\sum_{2}^{n-4} w_{i}^{3}$.
(E) $f=2 x_{2}\left(y_{0}^{2}-x_{0} z_{0}\right)+x_{1}^{2} z_{0}-2 x_{1} y_{1} y_{0}+y_{1}^{2} x_{0}+a_{3}\left(x_{0}, y_{0}, z_{0}, w_{1}, \ldots, w_{m}\right)(n \geq 5)$, satisfying the conditions of Proposition 8.5. This is invariant by $x_{0} \partial / \partial x_{1}+x_{1} \partial / \partial x_{2}+$ $y_{0} \partial / \partial y_{1}$ and $y_{0} \partial / \partial x_{1}+y_{1} \partial / \partial x_{2}+a_{1} \partial / \partial y_{1}$; any non-zero linear combination of these is in Case 5. If V_{3} is non-singular, $\mu(V)=25.2^{n-5}$ and the singularity of V is semi-quasi-homogeneous of degree 6 in variables of weights $1,1,3,3,3$ and $2(n-5$ times). In general, we have $\mu(V)=25.2^{n-5}+\mu\left(V_{3}\right)$.

References

[1] Dimca, A., Singularities and topology of hypersurfaces, Springer-Verlag, 1992.
[2] du Plessis, A. A. and C. T. C. Wall, Curves in $P^{2}(\mathbb{C})$ with 1-dimensional symmetry, Revista Mat Complutense 12 (1999) 117-132.
[3] du Plessis, A. A. and C. T. C. Wall, Applications of discriminant matrices, in Aspects des Singularités, Proc. of Lille singularities semester, online at http: //www-gat.univ-lille1.fr/~tibar/Aspects/index.htm
[4] du Plessis, A. A. and C. T. C. Wall, Hypersurfaces in P^{n} with 1-parameter symmetry groups, Proc. Roy Soc. London A 456 (2000) 2515-2541.
[5] du Plessis, A. A. and C. T. C. Wall, Hypersurfaces with isolated singularities with symmetry, to appear in Proceedings of 2006 Sao Carlos conference.
[6] du Plessis, A. A. and C. T. C. Wall, Discriminants, vector fields and singular hypersurfaces, pp 351-377 in New developments in singularity theory (eds. D. Siersma, C. T. C. Wall and V. Zakalyukin), Kluwer Acad. Publ. 2001.
[7] Nowicki, A., Polynomial derivations and their rings of constants, Uniwersytet Nikolaja Kopernika, Turun 1994.
[8] Steenbrink, J. H. M., Intersection form for quasi-homogeneous singularities, Compositio Math. 34 (1977) 211-223.
[9] Tan, L., An algorithm for explicit generators of the invariants of the basic G_{a}-actions, Comm. in Algebra 17 (1989), 565-572.
[10] Wall, C. T. C., Notes on the classification of singularities, Proc. London Math. Soc. 48 (1984), 461-513.
[11] Weitzenbock, R., Ueber die invarianten von lineare Gruppen, Acta Math. 58 (1932), 231-293.

