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Hypersurfaces with isolated singularities with
symmetry

A. A. du Plessis and C. T. C. Wall

Abstract

Those hypersurfaces admitting a 1-parameter symmetry group are charac-
terised by failure of versality of a certain unfolding of their set of singularities,
which in the simplest cases (sextic curves, quartic surfaces and cubic 4-folds)
is the unfolding by hypersurfaces of the same degree. We give a classification
of these hypersurfaces, and calculate their total Milnor and Tjurina numbers.
The maximal Tjurina number occurs if and only if the equation (of degree d)
is annihilated by a vector field of degree (d − 2) independent of that given
by the action; in these cases the enumeration is more explicit, and when also
d = 3 we have a 2-parameter group. It is conjectured, and proved in low
dimensions, that any hypersurface with maximal Tjurina number admits a
1-parameter symmetry group.

Mathematics Subject Classification 14E09 (14B07, 14J70, 14N05)

Keywords Hypersurface, isolated singularity, 1-symmetric, Milnor number,
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Introduction

We will assume throughout that V ⊂ P n(C) is given by a homogeneous equation
f(x0, . . . , xn) = 0 of degree d, and that V has isolated singularities and is not a cone
(e.g. we exclude equations with f independent of x0). Write µ (resp. τ) for the
sum of the Milnor numbers (resp. Tjurina numbers) of all singularities of V . We
say that V is r-symmetric if there is an r-parameter subgroup G ⊂ PGLn+1 leaving
V invariant. In this article, which collects results of several earlier papers of the
authors, we study the cases when V is 1-symmetric.

By way of introduction we state (without proofs) results on characterisation,
enumeration, calculation of µ and τ , moduli, and higher symmetry for the case
n = 2 when V is a curve: thus V is reduced, i.e. has no repeated component.
Nearly all the proofs can be found in [6].

In the remaining sections we show (with outlines of most proofs) how far these
generalise to the general hypersurface case. The second section contains the main
theoretical results, culled from various papers. In particular, we give outline proofs
for the characterisation of 1-symmetry by versality, that in most case topological
versality holds anyway, for bounds on τ , and for the equivalence of τ attaining its
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maximum (for 1-symmetric hypersurfaces) with annihilation of f by a vector field,
independent of the first, of degree d− 2: in these cases we call V oversymmetric.

We then discuss in detail geometry and enumeration and show how to calculate
µ and τ ; in the next section in the semi-simple case, mostly following [8]; and in
the following section in the unipotent case, following a manuscript, work on which
is still in progress. We conclude with detailed lists of 1-symmetric cubic 3-folds, of
oversymmetric hypersurfaces, and of all 2-symmetric cases.

1 The curve case

Characterisation: The following are equivalent:

• V is 1-symmetric;

• there is a 1-parameter subgroup G̃ ⊂ GL3 leaving f invariant;

• there is a vector field ξ =
∑2

0 ai∂/∂xi with the ai linear and ξ(f) = 0;

• (if the line x0 = 0 passes through no singular point and is transverse to V ) the
unfolding of f(1, x1, x2) by all functions of degree ≤ 2d− 6 does NOT induce
a simultaneous versal deformation of all singularities of V .

• If V is 1-symmetric, τ ≥ d2 − 3d + 2. If τ > d2 − 4d + 7, V is 1-symmetric.
Thus if d ≥ 6, V is 1-symmetric if and only if τ ≥ d2 − 3d+ 2.

Enumeration: If G (and hence G̃) is isomorphic to the multiplicative group C∗
(semi-simple case), it is conjugate to a diagonal subgroup t → diag(tw0 , tw1 , tw2).
Thus if the coefficient of xr00 x

r1
1 x

r2
2 in f is non-zero, the exponents lie on the line

segment
∑
ri = d,

∑
wiri = 0, ri ≥ 0. Since x2

i is not a factor of f , there is a
solution with ri equal to 0 or 1. Thus one end of the line segment must have two
of the ri ≤ 1. Permuting the xi, we may take one end of the segment as one of
A = (0, d, 0), B = (1, d − 1, 0), C = (1, d − 2, 1) and the other as λr = (r, 0, d − r)
(1 ≤ r ≤ d − 1) or νr = (r, 1, d − r − 1) (1 ≤ r ≤ d − 2). Using the symmetry
interchanging x0 and x2 we may suppose r ≤ d/2 for the A, C cases.

If G (and hence G̃) is isomorphic to the additive group C+ (unipotent case), we
can take ξ = x0∂/∂x1 +x1∂/∂x2. The ring of invariants is then generated by x0 and
B := 2x0x2 − x2

1. Thus f has the form
∏k

0(B + aix
2
0) (d = 2k) or x0

∏k
0(B + aix

2
0)

(d = 2k + 1), with the ai distinct.

Calculation of µ and τ : In the semi-simple case, µ = τ = d2 − 3d + 3 in the
B, C cases and µ = τ = d2 − 3d+ 2 in the A cases.

In the unipotent case, τ = d2 − 3d+ 3 and µ = b1
2
(2d2 − 5d+ 3)c.

Moduli: The K-class of the singularities determines the 1-symmetric curve V up
to projective equivalence, except if f depends only on x1 and x0x2, and the coefficient
of xd1 is non-zero, when we have a 1-parameter family of curves.
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Higher symmetry: There are no 3-symmetric curves. If V is 2-symmetric, then
d = 3. If d = 3, then V is 2-symmetric if and only if τ = 3. There are two cases:

(A) we can take f = x0x1x2, singularities 3A1, vector fields

ξ = x0∂/∂x0 − x1∂/∂x1, η = x0∂/∂x0 − x2∂/∂x2;

(C) we can take f = x0(x2
1 − 2x0x2), singularities A3, vector fields

ξ = −2x0∂/∂x0 + x1∂/∂x1 + 4x2∂/∂x2, η = x0∂/∂x1 + x1∂/∂x2.

2 Vector fields and Koszul complexes

We choose co-ordinates so that the intersection V0 of V with the hyperplane x0 = 0
is non-singular: thus f0(x1, . . . , xn) := f(0, x1, . . . , xn) has an isolated singularity
at the origin, with Milnor number τ0 = (d − 1)n. Set R := C[x0, . . . , xn] and
R := R/〈x0〉 = C[x1, . . . , xn]. Denote by Jf0 the Jacobian ideal of f0. Choose
monomials {φi | 0 ≤ i < τ0} (with φ0 = 1) mapping to a basis of R/Jf0, and write F
for the versal unfolding F (x, u) = (f(x, u), u), where f(x, u) = f0(x)+

∑τ0−1
1 uiφi(x):

this is a stable map. Denote the target coordinates y and vi; we will also write
v0 = −y.

There exist relations

f0(x, u)φi(x) =
∑
j

aij(u)φj(x) +
∑
k

bik(x, u)∂f(x, u)/∂xk.

Thus the vector field ηi =
∑

j(aij(v) − yδij)∂/∂vj on the target of F lifts to the
vector field ξi =

∑
k bik(x, u)∂/∂xk +

∑
j(aij(u) − f(x, u)δij)∂/∂uj on the source;

indeed, the ηi form a free basis over C{v0, . . . , vτ0−1} of the module of liftable vector
fields. We call the matrix (aij(v)− yδij) the discriminant matrix.

The unfolding F consists of the functions fv(x) := f(x, v) + v0, among which is
f(1, x1, . . . , xn). By inspection, a linear relation

∑
ci(aij − yδij) = 0 between the

columns of the discriminant matrix holds at a point v of the target if and only if
g =

∑
i ciφi satisfies gfv ∈ Jfv, i.e. g ∈ (Jfv : fv), where for I an ideal in a ring R

and S ⊂ R, (I : S) denotes {r ∈ R | rS ⊆ I}.
The following properties of the discriminant (i.e. locus of critical values of F )

appear in Looijenga [11]; a detailed exposition was also given in [4]. Let us say that
two points v, v′ of the target are equivalent if the germs of F at ΣF ∩ F−1(v) and
ΣF ∩ F−1(v′) are K−, (hence A−) equivalent; we will call the equivalence classes
leaves.

(i) A vector field is liftable if and only if it is tangent to the discriminant.
(ii) Each leaf is smooth; the tangent space at v is spanned by values at v of

liftable vector fields.
(iii) The codimension of the leaf through v is equal to

∑
x∈(ΣF∩F−1(v)) τx(fv).

Since
∑

i ciηi vanishes at v if and only if g =
∑

i ciφi satisfies gfv ∈ Jfv, the
codimension of the leaf is equal to the codimension in the space Φ of linear combi-
nations g =

∑
i ciφi of those g ∈ (Jfv : fv). Since by definition Φ + Jf0 = R, and

hence Φ + Jfv = R, this is equal to dim(R/(Jfv : fv)). The equality of this with
τ0 − τ(fv) = (d− 1)n − τ(fv) is the basis of all our calculations of τ .
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For our account of the necessary algebra we follow the version of [10], which
evolved through several earlier of our joint papers.

It follows from our standing hypothesis that ∂f/∂x1, . . . , ∂f/∂xn is a regular
sequence, generating the ideal J0f , say; to use this we introduce the Koszul complex.
Write Λ for the exterior algebra over R on n generators θ1, . . . , θn. There is a unique
differential on Λ such that dθi = ∂f/∂xi; denote this differential algebra Λf . This is
bi-graded: if we define θi to have grade 1 and degree 0, the differential lowers grade
by 1 and raises degree by d− 1.

There is an exact sequence 0→ R
x0−→ R→ R→ 0; tensoring with Λf gives an

exact sequence 0 → Λf
x0−→ Λf → Λf → 0 of chain complexes. Since the ∂f/∂xi

form a regular sequence, these chain complexes are acyclic. Thus H0(Λf) ∼= R/J0f
and since multiplying by x0 is injective, this is a free module over C[x0], of rank τ0.

If we add a further generator θ0, with dθ0 = ∂f/∂x0, we obtain a Koszul complex

Λ+f , say, an exact sequence 0 → Λf → Λ+f
[−1]−→ Λf → 0 of chain complexes,

and hence an exact sequence of homology, whose only non-zero terms are 0 →
H1(Λ+f) → R/J0f

∂f/∂x0−→ R/J0f → H0(Λ+f) → 0. Again all except the last term
are free over C[x0]. It follows that H1(Λ+f) ∼= (J0f : ∂f/∂x0)/J0f , and the image
of the middle map is ∼= R/(J0f : ∂f/∂x0).

It is not hard to show (see [10, Lemma 3.3]) that (J0f : ∂f/∂x0) = (Jf : f), so
this image has rank τ0−τ ; it follows that H1(Λ+f) is a free C[x0]−module of rank τ .
The simplest argument for this is to go via the affine case, factoring out x0 − 1.

We can interpret the abstract symbols θi as differential operators ∂/∂xi. Then
the terms of grade 1 in Λ+f are the first order differential operators, i.e. vector
fields ξ, and the differential in Λ+f is given by dξ = ξf , so its kernel consists of the
R−module Ann(f) of vector fields annihilating f . The terms of grade 2 have basis
∂/∂xi ∧ ∂/∂xj, and the differential operator maps this to the basic Hamiltonian
vector field ηij = ∂f

∂xi

∂
∂xj
− ∂f

∂xj

∂
∂xi

. Thus H1(Λ+f) is isomorphic to the quotient of

Ann(f) by the R−submodule Ham(f) of Hamiltonian vector fields. More precisely,
if ξ =

∑
i αi∂/∂xi ∈ Ann(f), then α0 ∈ (Jf : ∂f/∂x0), while in this case, ξ ∈

Ham(f)⇔ α0 ∈ Jf .
The quotient Ann(f)/Ham(f) is infinite dimensional but is graded; the dimen-

sion of a subspace of fixed large enough degree is τ ; and this statement is independent
of co-ordinates.

The singularities of V can be simultaneously versally deformed by perturbing the
equation f by the addition of all homogeneous functions of sufficiently high degree r;
since F is versal, r ≥ n(d− 2) suffices. Conversely, if the addition of homogeneous
functions of degree n(d− 2)− 1− a, a ≥ 0, fails to simultaneously versally deform
the singularities of V , then we will say that V or f is a-non-versal.

Theorem 2.1. The hypersurface V is a-non-versal if and only if there is a vector
field of degree a in Ann(f) \ Ham(f).

The idea of the proof comes from [3]; the proof appears in [2]; the argument
below is closer to the version in [10].

The unfolding of f0 or fv by all monomials of degree ≤ k is a trivial unfolding of
the unfolding F k by those φi of degree ≤ k. These φi are the τ0−c(k) (say) unfolding
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monomials of least degree. We seek to characterise the set of points where stability
of F k fails. Now for F itself the vanishing of θ(F )/tF (θn) + ωF (θp) is guaranteed
by the fact that the images of the vector fields ηi span θF/tFθn as a module over
the ring of functions on the target. The map F k is obtained from F by setting the
last c(k) source and target variables equal to 0. We thus lose the last c(k) of the
vectors ηi, i.e. the last c(k) rows of the discriminant matrix; stability fails at the
points where the rank of the matrix drops below τ0 − c(k).

By a result of Mond and Pellikaan [12] we may suppose that the discriminant
matrix is symmetric. Thus the last c(k) rows correspond to the last c(k) columns;
we can interpret ‘last’ as ‘of least degree’. Stability fails at v if and only if there
is a linear combination of the τ0 − c(k) rows of least degree which vanishes at
v, i.e. if there is a linear combination g =

∑
i ciφi of the φi of degree ≤ k with

g ∈ (Jfv : fv). Now stability of F k means the same as versality of the corresponding
unfolding of fv. In view of the above identifications (Jf : f) = (J0f : ∂f/∂x0),
(J0f : ∂f/∂x0)/J0f ∼= H1(Λ+f) ∼= Ann(f)/Ham(f), the result follows.

Taking a = 1 we deduce that V is 1-symmetric if and only if it is 1-non-versal.
This result is particularly attractive if d = n(d − 2) − 2, so the unfolding is by all
monomials of degree d and we get a direct tie-up between deformations of hypersur-
faces of degree d and those of the set of singularities. This occurs in just three cases:
d = 3, n = 5 (cubic 4-folds), d = 4, n = 3 (quartic surfaces), and d = 6, n = 2
(sextic curves).

Although the 1-symmetric case is characterised by a certain failure of transver-
sality, topological transversality usually holds even here. First we have

Theorem 2.2. [2] Suppose the vector field ξ generates the degree k part of
Ann(f)/Ham(f). If there exists a non-simple singular point P of X at which ξ
does not vanish, then V is topologically k-versal.

The idea of the proof is that versality only fails by a single dimension, and that for
a weighted homogeneous non-simple singularity, the deformation omitting only the
unfolding monomial of highest weight from the versal deformation is topologically
versal.

Eliminating the cases when only simple singularities appear, we obtain

Theorem 2.3. [8, Theorem 3.8] Every 1-symmetric hypersurface V of degree d in
P n is topologically 1-versal provided either d = 3, n ≥ 5 and V is not 2-symmetric;
d ≥ 4, n ≥ 3; or d ≥ 6, n = 2.

We turn to estimates of τ . Write r for the least degree of a non-zero homogeneous
element of (Jf : f), or equivalently, of a vector field ξ with ξf = 0. As V is not a
cone, r > 0; we can show r ≤ d− 1. The first estimate (see [5, Theorem 3.2] for the
curve case and [10, Theorem 4.4] in general) is

r(d− 1)n−1 ≥ τ0 − τ ≥ r(d− 1− r)(d− 1)n−2. (1)

In the case n = 2 we succeeded in [5] in improving the right hand side from τ ≤
(d− 1)(d− r − 1) + r2, when 2r + 1 > d, to

τ ≤ (d− 1)(d− r − 1) + r2 − 1
2
(2r + 1− d)(2r + 2− d),
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and it is this result which leads to the algebraic characterisation cited in §1. In
general, the estimates we have been able to obtain are not so good.

Conjecture 2.4. We have τ0 − τ ≤ (d− 1)n−1 if and only if r = 1.

This would imply a characterisation of 1-symmetry. We have succeeded in prov-
ing the conjecture if r < d− 2 or if n ≤ 4. We abstain here from further details of
such estimates: see [7] and [10].

The case of equality in the second part of (1) is of particular interest.

Theorem 2.5. [10, Theorems 4.7, 4.9] (i) If ξ ∈ Ann(f) has degree r, and τ0− τ =
r(d−1−r)(d−1)n−2, there exists ξ′ ∈ Ann(f) of degree d−r−1 with α, α′ coprime.

(ii) Let ξ, ξ′ ∈ Ann(f) have degrees r, r′. If ξ ∧ ξ′ 6= 0, e.g. if α0 and α′0 are
coprime, r + r′ ≥ d− 1.

(iii) If (ii) applies and r + r′ = d − 1, then α and α′ generate (Jf : f)/Jf ;
Ann(f) = Ham(f) +Rξ +Rξ′, and τ0 − τ = rr′(d− 1)n−2.

This is the content of [10, Theorems 4.7, 4.9] when expressed in geometrical
terms. (Or see [9, Lemma 4.3, Theorem 4.5].)

The idea of the proof of (1) is to start with the relation
∑n

i=0 ai∂f/∂xi = 0 and
adjust co-ordinates till {a0, ∂f/∂x2, . . . , ∂f/∂xn} is a regular sequence; then work
on estimates.

As to 2.5, for (i) we deduce from the hypothesis and further care about co-
ordinates that ∂f/∂x2 ∈ 〈a0, a1, ∂f/∂x3, . . . , ∂f/∂xn〉, so there is a relation 0 =
λ0a0 + λ1a1 +

∑n
3 ci∂f/∂xi with c2 = 1, and then show that we can take α =

a0, α
′ = λ1.

For (ii) it now suffices to note that ξ ∧ ξ′ is a cycle, hence a boundary in the
Koszul complex, and that any non-zero boundary has degree at least 3d− 3 (or we
can argue that α′ξ − αξ′ is a boundary, since the coefficient of ∂/∂x0 vanishes and
Λf is acyclic). For (iii) we take a further ξ′′ ∈ Ann(f) and form η′′ = αξ′ − α′ξ and
similarly for other permutations of ξ, ξ′, ξ′′. Since the coefficients of ∂/∂x0 vanish,
these are cycles in Λ+f , say η = dω etc. By inspection, αω + α′ω′ + α′′ω′′ is again
a cycle, hence a boundary. Here we can pick out one coefficient which must be a
non-zero constant; eventually this shows that ξ′′ is a linear combination of ξ and ξ′.

Taking r = 1 we obtain

Corollary 2.6. Suppose V quasi-smooth and 1-symmetric of degree d with ξ(f) = 0.
Then τ(V ) ≤ (d−1)n−2(d2−3d+ 3), and equality holds if and only if V is oversym-
metric, with a second vector field η. When this holds, any vector field annihilating
f is a linear combination of ξ, η and Hamiltonian vector fields.

This gives the maximal value of τ for 1-symmetric, and conjecturally for all
quasi-smooth hypersurfaces.

Corollary 2.7. The hypersurface V cannot be 3-symmetric; it is 2-symmetric if
and only if it is oversymmetric and d = 3.

For by [10, Lemma 5.2], if f is annihilated by vector fields ξ, ξ′ with ξ ∧ ξ′ 6= 0,
of degrees r, r′ we must have r+ r′ ≥ d−1. If V is 2-symmetric, we have r = r′ = 1,
hence d = 3 and V is oversymmetric; the converse is immediate. It follows from the
theorem that now any vector field annihilating f is a linear combination of ξ, ξ′ and
Hamiltonian vector fields; hence if linear, is a linear combination of ξ and ξ′.
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∗ ∗ ∗
For V a hypersurface, write Σ(V ) for the set of singularities of V , O(V ) for the orbit
of V under PGLn+1(C). Given a finite list Σ of singularities, write V an(Σ), V es(Σ)
for the set of hypersurfaces W of degree d in P n(C) such that Σ(W ) is analytically
(K−) equivalent, resp. equisingular (µ-equivalent) to Σ.

As our estimates relate mainly to τ , but equisingularity to µ, we can only expect
general results about the former. Indeed, it is not in general the case that if V an(Σ)
contains a 1-symmetric manifold, then all its hypersurfaces are 1-symmetric (we
abstain here from giving examples about these V es(Σ) in low dimensions), but it is
possible to say something.

Lemma 2.8. [10, Proposition 5.7] (or [9, Proposition 5.3]) Suppose V is 1-sym-
metric and d ≥ 3: then dimV an(Σ(V ))− dimO(V ) ≤ (n

2

)
; if d = 3, we can replace

the bound by 1+
(
n−1

2

)
.

If moreover V is oversymmetric, the dimensions are equal.

Thus in the oversymmetric case, the isomorphism class of the singularities de-
termines V up to projective equivalence (up to a possible finite ambiguity, which is
eliminated by a glance at the enumerations to follow).

3 The semi-simple case

As in the curve case, very different patterns present themselves in the semi-simple
and unipotent cases. In this section we discuss the semi-simple case.

We diagonalise the group G, say t.(x0, . . . , xn) = (tw0x0, . . . , t
wnxn). If f = 0 is

invariant, then f(t.x) = tDf(x) for someD, so for each monomial
∏

i x
ai
i appearing in

f we must have
∑

i aiwi = D, as well as
∑

i ai = d. In particular,
∑

i ai(dwi−D) = 0:
this gives a 1-parameter group (denoted G̃ in §1) leaving f invariant, and we consider
such a group from now on. Also, we see that the G−invariant functions f are linear
combinations of a fixed set R(W ) of monomials. For enumeration we have to decide
for which actions we can find a linear combination of R(W ) defining a V with
isolated singularities.

Let CI the vector space with coordinates xi corresponding to i ∈ I (I an in-
dex set); x denotes the vector {xi}. For A ⊂ I, we set CA := {x | i 6∈ A⇒ xi = 0}.
Let R be a set of monomials mr = xα(r) in the xi, and ur coordinates on CR. Linear
combinations of the monomials in R, or R-functions, are sections fu of the evaluation
map F : CR × CI → C defined by F (u,x) = fu(x) =

∑
r∈R urx

α(r).
Write V := F−1(0) for the zero locus and ΣV = V ∩ΣF for its singular set. For

A ⊂ I, set

MA := {i ∈ I − A | ∃r ∈ R such that mr = xim with m | CA 6≡ 0}.
Theorem 3.1. [14, 5-7], [8, Theorem 4.1] The following conditions on R are equiv-
alent:
(a) there exists an R-function with isolated singularities on CI ;
(b) a generic R-function has isolated singularities on CI ;
(e) dim ΣV ≤ #R;
(f) for all non-empty A ∈ A, either for some r ∈ R, mr | CA 6≡ 0, or #MA ≥ #A.
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This is not difficult: the main idea is that if (e) holds, the genericity of regular
values of a smooth map implies (b). Translating this to the projective setting yields

Theorem 3.2. [8, Theorem 4.2] A generic linear combination of monomials in R
defines a hypersurface with isolated singularities in P (CI) if and only if, for each
A ⊆ I with #A ≥ 2, we have
CA: either for some r ∈ R, mr|CA 6≡ 0, or #MA ≥ #A− 1.

Taking R to be the set R(W ) of monomials
∏n

0 x
ai
i such that

∑
ai = d and∑

wiai = 0 now gives the desired criterion. Unfortunately, there is no simple con-
dition on the weights equivalent to this.

We can deduce, however, that if W is a system of weights with R(W ) satisfy-
ing 3.2, the same holds for the system W ∗ obtained by adding a zero weight to W (al-
ternatively, if f admits W and has isolated singularities, so has f(x0, . . . , xn)+xdn+1).
In some cases this implication can be reversed.

Lemma 3.3. [9, Prop 7.4] Suppose W is a system of weights containing 0 at least
once; form W ∗ by adding a further zero weight. If R(W ∗) satisfies the conditions
of 3.2, so does R(W ).

Proof. Suppose not: then CA fails for some set A of coordinates. Choose such an A
with the minimum number #A of elements. Since CA fails, there is no monomial of
degree d and weight 0 formed from the variables in A.

Since CA holds in the system W ∗, there are at least #A − 1 variables xi 6∈ A
such that for some monomial mi in the variables in A, ximi has degree d and
weight 0. Now x∗ must appear among these variables, otherwise CA would hold.
Thus A cannot include a variable of weight 0, since if x0 were one such, x0m∗ would
contradict the conclusion of the preceding paragraph. By hypothesis there is at least
one other variable, y say, of weight 0, and as ym∗ has weight 0, y ∈ NA.

Partition A = A+ ∪ A− according to the signs of the weights of the variables.
Neither can be empty since if, for example, A = A+ then x∗m∗ would have positive
weight, a contradiction. So by inductive hypothesis, CA+ and CA− both hold. But
now NA contains NA+ , with at least #A+− 1 elements (all of negative weight), and
NA− , with at least #A−− 1 elements (all of positive weight), as well as at least one
variable y of weight zero. It thus has at least #A − 1 elements, and CA holds, a
contradiction.

If f , homogeneous of degree d, is invariant under the action with weights wi
(0 ≤ i ≤ n), then substituting x0 = 1 gives a function f̃ on affine space, homogeneous
of weight −dw0 if xi is assigned weight wi −w0. In general, several of these weights
are negative. This is not inconsistent with having an isolated singularity and occurs,
for example, for

∑r
1 xiyi+g(z1, . . . , zs) if g has an isolated singularity and the weights

of xi and yi can be arbitrary provided they sum to −dw0. It is not hard to show
that this is the general picture.

Lemma 3.4. [8, Lemma 2.2] Let C× act as a group of symmetries of a function f
with an isolated singularity. Then
(i) if the action on the target has weight v > 0, those weights on Cn which do not
satisfy 0 < w < v fall into pairs (w, v − w)

8



(ii) if the action on the target has weight 0, all non-zero weights on Cn fall into
pairs (w,−w).

We call a system of weights as in (ii) 0-symmetric.
Next we analyse the singularities of V . Write Fλ for the eigenspace corresponding

to the weight λ and for its image in projective space. The fixed point set F of the
action of C∗ on projective space is the union of the Fλ; as V has isolated singular
points, each of these lies in F . Also, if λ 6= 0, then Fλ ⊂ V .

Lemma 3.5. [8, Lemma 3.4] If the zero weight space F0 contains a singular point,
the set of weights is 0-symmetric. The type of each singular point of V lying in F0

is the suspension of its type as singular point of V ∩F0. The hypersurface V ∩F0 of
degree d in F0 may be chosen arbitrarily (subject to having isolated singularities).

The first two assertions are immediate consequences of lemma 3.4. The proof of
the third uses Bertini’s theorem.

If λ 6= 0, we have a fairly complete description of the singularities of V in Vλ:
see [8, Proposition 3.3]. Denote by mλ the multiplicity with which λ appears as a
weight. It follows from Theorem 3.1 that if mλ > 1, then m(1−d)λ ≥ mλ − 1. If
P ∈ Fλ is a singular point of V , then in local coordinates at P , V is invariant by an
action of C∗ with weights wi − λ and degree −dλ 6= 0. It follows by lemma 3.4 that
the weights not between 0 and −dλ fall into pairs (−w,w − dλ). Thus the weights
equal to λ (with one removed) correspond to weights 0, and are paired with weights
−dλ and hence weights (1 − d)λ, so m(1−d)λ = mλ − 1. Thus if m(1−d)λ > mλ − 1
there are no singular points in Fλ.

If m(1−d)λ = mλ − 1, further analysis shows that there are (d − 1)mλ−1 singular
points of f on Fλ, each one weighted homogeneous, and a suspension of a singularity
with weights wi − λ, where the above 2mλ − 1 values of i are removed.

∗ ∗ ∗
Next we calculate µ(V ) and τ(V ), following [8, Proposition 3.5]. Write sn(d) :=
{(d − 1)n+1 − (−1)n+1}/d. Then for any hypersurface V of degree d in P n with
isolated singularities,

µ(V )− sn(d) = (−1)n(χ(V )− (n+ 1)), (2)

where χ(V ) denotes the Euler characteristic. Thus it suffices to calculate χ(V ).

Proposition 3.6. If 0 is not a weight, µ(V ) = sn(d). In all cases,

−sm0−1(d) ≤ (−1)n−m0−1(µ(V )− sn(d)) ≤ sm0−2(d),

where the left hand equality holds if V0 is smooth, e.g. if the set of weights is not
0-symmetric; the right hand equality holds if V0 is a cone. The same assertions hold
for τ(V ).

In the semi-simple case, each non-trivial orbit has χ = 0. Hence χ(V ) = χ(V ∩F ).
We have F =

⋃
Fλ, and Fλ ⊂ V if λ 6= 0: set V0 := V ∩F0. Now as λ has multiplicity

mλ, Fλ is a projective space of dimension mλ − 1, so χ(Fλ) = mλ. Thus if 0 does
not occur as a weight, χ(V ) = n + 1, so µ(V ) = sn(d); in general, χ(V ) − χ(V0) =

9



n+1−m0. Since each singularity outside V0 is weighted homogeneous, τ(V )−τ(V0) =
µ(V )− µ(V0).

Now µ(V0) ≥ 0, with equality only if V0 is smooth, e.g. if the set of weights is
not 0-symmetric. Since V0 has isolated singularities, its Milnor number is greatest
when it is a cone over a non-singular variety, and then τ(V0) = µ(V0) = (d− 1)m0−1.
The result follows.

Corollary 3.7. For fixed n,m0 and d, µ (and hence τ) is greatest when either
m0 = n − 1, V0 is a cone, and so the non-zero weights are ±1 or m0 = n − 2
and V0 is smooth. In both cases we have τ(V ) = (d2 − 3d + 3)(d − 1)n−2, so V is
oversymmetric.

For if n−m0 is odd, the right hand inequality must be an equality: V0 is a cone
and τ(V ) = sn(d) + sm0−2(d) is greatest when m0 = n − 1. Thus there are two
non-zero weights; as the zero weight space contains a singularity, these are ±1.

If n −m0 is even, we need equality on the left hand: V0 is smooth and τ(V ) =
sn(d) + sm0−1(d) is greatest when m0 = n − 2. Thus the set of weights is obtained
from a set of 4 weights, which includes one zero, by adding further zeros.

∗ ∗ ∗
We thus next enumerate the 1-symmetric surfaces in P 3(C). Condition C0,1,2 states
that R must contain some xa0

0 x
a1
1 x

a2
2 , and C0,1 that there must be a monomial of the

form xa0
0 x

a1
1 , xa0

0 x
a1
1 x2 or xa0

0 x
a1
1 x3 in R.

First suppose two weights are equal: say w2 = w3. It is then sufficient to
consider monomials in x0, x1, x2 only; we may consider them as functions on the
plane. Then C2,3 states that we have a term xd2 or xd−1

2 x0 or xd−1
2 x1. This already

implies C0,2 = C0,3 and C1,2 = C1,3. C0,1 gives an invariant monomial of the form
xr0x

d−r
1 or xr0x

d−r−1
1 x2.Now conditions C0,1,2 and C0,1,3 are automatic, and C1,2,3, C0,2,3

demand monomials not involving x0 and x1 respectively. Taking all cases, and
rearranging the list of weights in increasing order gives [w0, w1, w2, w3] equal to one of
the following: [r−d, 0, 0, r], [r+1−d, 0, 0, r], [−1,−1, 0, d−1] or [1−d, 1−d, 1, (d−1)2].

If w0 < w1 < w2 < w3 then since by C0,1,2 some a0w0 + a1w1 + a2w2 = 0 we
have w0 ≤ 0 (so by symmetry w3 ≥ 0); and by C2,3 some w0 + a2w2 + a3w3 or
w1 + a2w2 + a3w3 or a2w2 + a3w3 is 0, so w0 + (d − 1)w2 ≤ 0 (hence by symmetry
(d − 1)w1 + w3 ≥ 0). Now setting x1 = 1 and applying Lemma 3.4 gives a list of
possibilities from which we see that one of the following must be the case:

(α) w1 = 0 (β) (d− 1)w1 + w2 = 0
(γ) (d− 1)w1 + w3 = 0 (δ) w0 + (d− 2)w1 + w3 = 0.

By symmetry, one of the following must also hold:

(α′) w2 = 0 (β′) w1 + (d− 1)w2 = 0
(γ′) w0 + (d− 1)w2 = 0 (δ′) w0 + (d− 2)w2 + w3 = 0.

These imply all conditions Ci,j except C0,3, which implies that one of the following
holds:

(λr) rw0 + (d− r)w3 = 0 (0 ≤ r ≤ d)
(µr) rw0 + w1 + (d− r − 1)w3 = 0 (0 ≤ r ≤ d− 1)
(νr) rw0 + w2 + (d− r − 1)w3 = 0 (0 ≤ r ≤ d− 1).
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Starting from this point we gave in [8, §5] a complete enumeration.
We saw in Lemma 3.3 that to list oversymmetric cases we need systems with

one weight zero. We may suppose w1 = 0 (case α); as we have already considered
cases with two equal weights, w2 6= 0, so we do not have (α′) or (β′). Each of the
remaining combinations determines the ratios of all wi. If we change the names
of γ′, δ′ to B, C, we recognise the cases Bλr, Bνr, Cλr, Cνr as obtained from the
enumeration of curves by adjoining a zero weight, while Aλr, Aνr give the cases with
two equal (zero) weights. The cases Bµr, Cµr are new. So if just one weight is non-
zero, we have Bλr, Bµr, Bνr, Cλr, Cµr, Cνr. In these cases, ∂f/∂x2 and ∂f/∂x3

are both divisible by x0 and we can take the second vector field as x−1
0 η2,3(f).

4 The unipotent case

The unipotent case is perhaps more interesting. We first focus on enumeration.
Begin with a vector field

∑
ij aijxi∂/∂xj whose matrix (aij) is nilpotent. We put

this matrix in Jordan normal form. This is determined by the sizes of the Jordan
blocks, which we denote by r1 +1 ≥ r2 +1 ≥ . . .. Our standard notation for a vector
field with a single block is ξ =

∑r
i=0 xi−1∂/∂xi (when we need a second block we

use yi). Write R for the sequence of ri, where zeros are omitted.

Theorem 4.1. We have one of the following four cases: R = (2), d ≥ 3; R = (3),
d = 4; R = (4), d = 3; R = (2, 1), d = 3.

The proof involves several steps. First we can extend the action of any nilpotent
endomorphism on a finite dimensional vector space K to an action of the Lie group
sl2 (with basis e, f, h and [e, f ] = h, [h, e] = 2e, [h, f ] = −2f) where the given
endomorphism is f . The eigenvalues of h are integers, and hence define a grading.
For each r, f r gives an isomorphism of Kr on K−r.

The action of sl2 extends to an action on the symmetric algebra on K; also if we
have actions on K,K ′ we get one on SrK ⊗ Sr′K ′.
Lemma 4.2. Let f be a polynomial of degree d and weight W in variables xi, with
weights wi (in increasing order) which defines an affine variety V with dim(Sing V )
≤ k. Then (d− 1)wi ≤ W − wn+1−i−k for 1 ≤ i ≤ n− k.

For if all ∂f/∂xj vanish on {x1 = . . . = xn−k−1 = 0} then this subspace is
singular on V , and dim(Sing V ) ≥ k + 1. Hence some ∂f/∂xj depends only on
xn−k, . . . , xn, so (d− 1)wn−k ≤ W − wj ≤ W − w1. Now repeat the argument.

In the case of interest here, k = 1, W = 0 and wn+1−i = −wi. Thus (d− 1)wi ≤
wi+1 for 1 ≤ i ≤ n− 1.

In the situation of Theorem 4.1, for each i we have basis elements of weights
−ri, 2− ri, . . . , ri − 2, ri; and f contains only monomials of weight ≤ 0.

If r2 = r1, we have wn−1 = wn = r1, so r1 ≥ r1(d− 1), a contradiction.
If r2 = r1 − 1, we have wn = r1, wn−1 = r1 − 1, so r1 ≥ (r1 − 1)(d − 1) and

r1 ≤ d−1
d−2

. If d > 3 this implies r1 = 1, which implies that V is a cone, so is excluded.
If d = 3 we may also have r1 = 2. If now r3 = 1, we have wn−2 = 1, contradicting
(d− 1)wn−2 ≤ wn−1. Thus r3 = 0, and we have Case 21 of the Theorem.
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Otherwise wn = r1 and wn−1 = r1−2, whence r1 ≥ (r1−2)(d−1) and r1 ≤ 2(d−1)
d−2

.
This gives r1 ≤ 4 if d = 3, r1 ≤ 3 if d = 4 and r1 ≤ 2 if d > 4.

If r1 = 2, we have Case 2 of the theorem. If d = 4, the remaining possibility is
r1 = 3, so that wn = 3, wn−1 = 1. Since 3wn−2 ≤ wn−1, we have wn−2 = 0, and Case
3 of the Theorem. The cases d = 3 and r1 equal to 3 or 4 are dealt with by the same
methods, but require a little more care.

To find equations we need the (known: see e.g. [15]) calculation of invariant
rings.

Lemma 4.3. We have rings of invariants

Case 2: C[W,X,B],

Case 3: C[W,X,B,C,∆/X2∆ + C2 +B3 = 0],

Case 4: C[W,X,B,U,C,E/X3E = 3X2BU −B3 − C2],

Case 21: C[W,X, Y, T,B, S/XS = Y 2B + T 2],

where W := w, X := x0, Y := y0, and

B := T 2
x,x = 2x0x2 − x2

1,

C := 3x2
0x3 − 3x0x1x2 + x3

1,

∆ := −9x2
0x

2
3 + 18x0x1x2x3 − 8x0x

3
2 + 3x2

1x
2
2 − 6x3

1x3,

U := T 4
x,x = 2x0x4 − 2x1x3 + x2

2,

E := 12x0x2x4 − 9x0x
2
3 + 6x1x2x3 − 2x3

2 − 6x2
1x4,

T := T 1
x,y = x0y1 − x1y0,

S := x0y
2
1 − 2x1y0y1 + 2x2y

2
0.

Although the latter three rings are not polynomial, we can simplify as follows.
Define a projection π : K → L by the invariant functions (Case 2) (W,X,B),
(Case 3) (W,X,B,∆), (Case 4) (W,X,U,E), (Case 21) (W,X, Y,B, S).

Lemma 4.4. Suppose f , invariant under the group, defines a hypersurface V with
isolated singularities. Then there is an allowable change of co-ordinates which puts
f in the form f = φ ◦ π, where the polynomial φ is

Case 3 ∆ + a0B
2 + a2B + a4,

Case 4 E + 3a1U + a3,
Case 21 S + a1B + a3.

In each case, ai is homogeneous of degree i in the invariant co-ordinates W,X and
(for a3 in Case 21) Y .

For it follows from the proof of the previous result that the coefficient in f
of (Case 3) x3

2x0, (Case 4) x2
3x0, (Case 21) y2

1x0 is non-zero, and hence that the
expression of f by the invariants contains ∆, E or S respectively. It is now easy to
write down co-ordinate changes which eliminate C, B and C, or T respectively.

In Case 2 with d = 3, we can write φ = a1B + a3. Here, and in Cases 4 and 21,
if the coefficient of any Wi in a1 is non-zero, we can take new co-ordinates with
a1 = W1. Otherwise, a1 is a multiple of X which in Cases 2 and 21 cannot be
identically 0, so we can take a1 = X.
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In Case 21 there is a further linear vector field that annihilates f , viz. ξ1 =
y0∂/∂x1 + y1∂/∂x2 − a1∂/∂y1. If a1 = X, the vector fields ξ0 ± ξ1 both fall into
Case 2: we will now call this Case 210. We rename the case a1 = W1 as Case 5, and
also rename w1 as z0. Then f = J + a3(w, x0, y0, z0) where

J := 2x2(y2
0 − x0z0) + x2

1z0 − 2x1y1y0 + y2
1x0.

We next consider criteria for isolated singularities. In each case, the main sin-
gularity occurs at the point P where all co-ordinates except the last vanish. We
define a number of auxiliary hypersurfaces, mostly sections of φ = 0. Our notation
is chosen so that each Vr (also V ∗r , etc.) has dimension m + 1 − r, where m is the
number of variables wi; the variable Z below has weight 1 and arises as BX−1.

(Case 2) V1 is defined by φ = 0, and V2 and V3 are its intersections with X = 0
and with X = B = 0 respectively.

(Case 3) V0 is φ = 0, V1 its intersection with X = 0, and V3 its intersection with
X = B = ∆ = 0. Write ψ(W,X,Z) := −XZ3 + a0X

2Z2 + a2XZ + a4 = 0, V ′1 for
the hypersurface ψ = 0, and V ′2 for its intersection with X = 0.

(Case 4) Write a∗3 := a3
1+a3. We define V2 by a3(W,X) = 0, V ∗2 by a∗3(W,X) = 0,

and their respective intersections with X = 0 by V3, V
∗

3 .

Lemma 4.5. V has isolated singular points if and only if
(Case 2) V1 has no singular points and V3 has isolated singular points;
(Case 3) V ′1 , V3 are both non-singular;
(Case 4) V ∗2 and V ∗3 are non-singular and V3 has isolated singular points.
The singular points of f are then P and (in Cases 2, 4) points Pi corresponding

to the singular points Qi of V3 which (Case 2) are not also singular on V2. Moreover,
the singularity at Pi is a suspension of that of V3 at Qi.

Proof. We discuss Case 2 only; the other arguments are similar but more involved.
At a critical point of f , the following vanish:

∂f

∂wi
=

∂φ

∂Wi

,
∂f

∂x0

=
∂φ

∂X
− 2x2

∂φ

∂B
,
∂f

∂x1

= 2x1
∂φ

∂B
,
∂f

∂x2

= −2x0
∂φ

∂B
.

If ∂φ/∂B = 0, we have a critical point of φ. If W = X = B = 0, the only corre-
sponding point in P (K) is P . Otherwise we have a singular point of V1. Conversely,
if we have a singular point of V1, all the points in its pre-image are singular on V ,
so are non-isolated singular points of V .

If ∂φ/∂B 6= 0, then x0 = x1 = 0, hence B = 0. We thus have a critical point of
the restriction of φ to X = B = 0. If W = 0, we again have the point P . Otherwise
we have a singular point of V3. Conversely, if we have such a singular point with
∂φ/∂B(W, 0, 0) 6= 0, there is a unique corresponding value of x2 giving a critical
point of f , hence a unique corresponding singular point of V . However, if we have a
singular point of V3 at which ∂φ/∂B(W, 0, 0) = 0, then as above we have a singular
point of V1.

The final assertion follows from a sharp version of the splitting theorem.

The structure in Case 5 is somewhat different. We have two hypersurfaces in
(w, x0, y0, z0) space: the cone C : y2

0−x0z0 = 0 and the variety V0 defined by a3 = 0.
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Write V1 := V0 ∩ C, and V3 for the variety a3(w, 0, 0, 0) = 0. Also define V ∗1 as the
variety φ(w, t, u) := a3(w, t2, tu, u2) = 0 in weighted projective space P (2m12).

Proposition 4.6. The variety V has isolated singularities if and only if
(i) for no (w, x0, y0, z0) in C with (x0, y0, z0) 6= (0, 0, 0) do we have ∂a3/∂wi = 0

for each i, and the matrix A of rank 1, where

A :=

(
∂f/∂x0 ∂f/∂y0 ∂f/∂z0

z0 −2y0 x0

)
, and

(ii) for any singular point of V3 we have (∂a3/∂y0)2 6= 4(∂a3/∂x0)(∂a3/∂z0). In
particular, singular points of V3 are isolated.

When this holds, P is the only singular point of V .

Theorem 4.7. The values of µ are given by

Case µ

2 1
2
(d− 2)(2d− 1)(d− 1)n−2 + µ(V2) + µ(V3)

3 22.3n−3

4 11.2n−4 + µ(V3)
5 25.2n−5 + µ(V3)

We find µ by decomposing V into pieces whose Euler characteristics we can
determine directly, and infer µ from (2). We illustrate with Case 2. The quotient
map π : K → L induces a map π : P (K) → P (L) of (weighted) projective spaces.
We stratify these by

S0 : x0 6= 0; S0 : X 6= 0

S1 : x0 = 0, x1 6= 0; S1 : X = 0, B 6= 0

S2 : x0 = x1 = 0; S2 : X = B = 0.

By direct calculation of pre-images under π in the affine case and taking some care
we infer the Euler characteristics of pre-images under π in the projective case: note
that π also has an exceptional set E which is a point.

The preimage π−1(W,X,B) is as follows:
(S0) one orbit, χ = 1,
(S1) if W 6= 0, two orbits, χ = 2; if W = 0, one orbit, χ = 1,
(S2) infinitely many point orbits, χ = 1.
Note that V1 meets the respective strata in V1 \ V2, V2 \ V3 and V3.
First suppose d odd. Then V1 necessarily contains the pointQ whereW = X = 0,

B 6= 0, so we have

χ(V ) = χ(E) + χ(V1 \ V2) + 2χ(V2 \ V3)− 1 + χ(V3) = χ(V1) + χ(V2)− χ(V3).

Now V1 is non-singular, and V3 has isolated singularities. Thus we can apply
(2) to V3. A formula due to Steenbrink (see [1], [13]) gives the value of χ for a
non-singular hypersurface V ∗ of degree d in weighted projective space with weights
wi. Set p(t) =

∏n+1
i=0 (1− td−wi)/(1− twi): note that this is a polynomial. Then

χ(V ∗) = n+ 1 + (−1)n 1
d

∑
εd=1 ε

Wp(ε).

In particular,
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Lemma 4.8. A non-singular hypersurface V ∗ of dimension n and degree d with
respect to weights w0 = 2 and wi = 1 for 1 ≤ i ≤ n+ 1 has

χ(V ∗) = n+ 2 + (−1)n

d
{d−2

2
(d− 1)n+1 + (−1)n+1}

if d is odd, and is 1
2

less than this if d is even. In particular, if d = 3 we have

n+ 2 + (−1)n

3
{2n − (−1)n}.

We can apply this with n = m to V1, and with n = m−1 to V2. If V2 is singular, its
singularities must be isolated, and we can show that (as for hypersurfaces in ordinary
projective space) the above formula must be adjusted by µ(V2). Substituting in, and
performing cancellations, this gives the result stated.

In the case d even, the point Q 6∈ V1; otherwise it would be a singular point.
Thus in the above formula for χ(V ) we must add 1 (corresponding to this point)
and subtract 1

2
for each of χ(V1) and χ(V2). Hence the formula in terms of d is the

same as before.
When Theorem 4.7 gives a precise value for the Milnor number of the singularity

at P , these are all in the same µ−constant stratum as the parameters vary. Adding
an extra variable wi has the effect of adding a term wdi to the local equation; this
is why the value of µ for the singularity at P is multiplied by d − 1. We can then
easily identify the stratum by taking n small. Thus provided in Case 2 that V2

non-singular and in Case 5 that V3 is, the µ−constant stratum at P is that of a
semi-quasi-homogeneous singularity with degree and weights given by the table (3).

In fact, in each case a suitable substitution shows that the singularity is itself
semi-quasi-homogeneous. We illustrate with Case 2. Take local affine co-ordinates
at P with x2 = 1, and substitute x0 := 1

2
(y + x2

1). Now assign weights 1 to x1, 4 to
y and 2 to the wi. All terms have weight at least 2d: the sum of those of exactly
this weight is φ(w, y, 1

2
x2

1). Using the fact that V1 is non-singular, it follows easily
that this has an isolated singular point.

Case Degree Weights

2 2d 1, 4, 2 (m times)
3 12 1, 4, 6, 3 (m times)
4 12 1, 6, 6, 6, 4 (m times)
5 6 1, 1, 3, 3, 3, 2 (m times)

(3)

We turn to calculation of τ . For Case 21, we have already seen that there is a
second linear vector field annihilating f , so by Theorem 2.5 we have τ = 3.2n−2.

For Case 3, we set η′ := x2
1∂/∂x1 + (3x1x2− 3x0x3)∂/∂x2 + (4x2

2− 3x1x3)∂/∂x3.
Then η′∆ = 0 and ∂∆/∂x3 = 3η′B. Hence f is annihilated by η′−1

3
(2a0B+a2)∂/∂x3,

of degree 2 and independent of ξ. Thus again V is oversymmetric; by Theorem 2.5
we have τ = 7.3n−2.

In Case 4, since τ ≤ µ = 11.2n−4 < 3.2n−2, V cannot be oversymmetric. In fact
this bound for τ is achieved in some cases. Suppose f = E+a0x0U +a1x

2
0 +a3 with

a3 independent of x0. Then we can construct a vector field ζ =
∑4

0 φi∂/∂xi with
ζ(f) = 0 and φ4 non-vanishing at the singular point P . Thus by Saito’s criterion
the singularity is weighted homogeneous, and τP = µP .
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Case 2 has numerous subcases, and we do not know the generic value of τ . The
maximal value is characterised by

Theorem 4.9. A function in Case 2 is oversymmetric if and only if either: (a) V3

is a cone, or (b) after change of co-ordinates if necessary, ∂φ/∂B and ∂φ/∂X both
vanish along X = B = 0.

Proof. Since V1 is non-singular, the sequence {∂φ/∂W1, . . . , ∂φ/∂Wm, ∂φ/∂X,
∂φ/∂B} is regular, and any vector field annihilating φ is a linear combination of
the Hamiltonian fields ∂(φ, ∗)/∂(Wi,Wj), ∂(φ, ∗)/∂(Wi, X), ∂(φ, ∗)/∂(Wi, B) and
∂(φ, ∗)/∂(X,B). We seek a vector field η which is a lift of a linear combination of
these. We are only interested in η modulo Hamiltonian fields: removing the corre-
sponding linear combination of the ∂(f, ∗)/∂(wi, wj) and ∂(f, ∗)/∂(wi, x0), we can
take

∑
Ci∂(φ, ∗)/∂(Wi, B) +D∂(φ, ∗)/∂(X,B). Since we seek η of degree d− 2, we

want the Ci and D to be constants. We now have

η =
∑m

1 pi∂/∂wi +
∑2

0 qj∂/∂xj,

where pi = −Ci∂φ/∂B, q0 = −D∂φ/∂B and

2(x2q0 − x1q1 + x0q2) =
∑
Ci∂φ/∂Wi +D∂φ/∂X.

Thus
2(x0q2 − x1q1) =

∑
Ci∂φ/∂Wi +D∂φ/∂X + 2x2D∂φ/∂B.

The right hand side of this equation must vanish identically along X = B = 0.
If D = 0, changing co-ordinates, we may suppose η = ∂(φ, ∗)/∂(W1, B). If we

set ad(W ) := φ(W, 0, 0), we need ∂ad/∂W1 ≡ 0, i.e. ad independent of W1. This
holds if and only if V3 is a cone.

If D 6= 0, a suitable substitution W ′
i := Wi + λiX, X ′ := X reduces the Ci to

zero, so it suffices to consider η = ∂(φ, ∗)/∂(X,B). Here the condition is that both
∂φ/∂B and ∂φ/∂X vanish along X = B = 0.

In practice, (a) breaks up into subcases according as the vertex of the cone V3

(a1) is not, or (a2) is also singular on V2.
The method of proof can be applied to obtain calculations of τ in some other

cases: for the case n = 3 see [8].

5 Lists

To illustrate the enumerations, we offer three new lists: 1-symmetric cubic 3-
folds (surfaces with d ≤ 5 were listed in [8]), oversymmetric hypersurfaces and
2-symmetric hypersurfaces.

1-symmetric cubic 3-folds

In the semi-simple case, the weights may be enumerated by the methods of [8, §5];
the singularities are determined by the rules in [8, §3], except in the 0-symmetric
cases (denoted *), when there may be additional singularities: A1 for [-2,-1,0,1,2]
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and A1, A2, 2A1 A3, 3A1 or D4 for [−1, 0, 0, 0, 1]. In particular, µ(V ) is 11, 10, 12
or 8 according as the number of zero weights is 0, 1, 2 or 3.

µ Weights Singularities µ Weights Singularities

11 [−8,−2, 1, 4, 16] S11 11 [−10,−4, 2, 5, 8] A7A4

11 [−8,−2, 1, 4, 4] D52A3 11 [−8,−2, 1, 4, 7] D8A3

11 [−5,−2, 1, 1, 4] D6A32A1 11 [−2,−2, 1, 1, 4] Ẽ72A1

10 [−4,−1, 0, 2, 8] Q10 10 [−4,−1, 0, 2, 5] E8A2

10 [−4,−1, 0, 2, 4] D7A3 10 [−2,−2, 0, 1, 4] E62A2

10 [−2,−1, 0, 1, 3] E7A2A1 10∗ [−2,−1, 0, 1, 2] 2A5

12 [−2, 0, 0, 1, 4] U12 12 [−2, 0, 0, 1, 2] Ẽ8A2

8 [−1, 0, 0, 0, 2] Ẽ6 8∗ [−1, 0, 0, 0, 1] 2D4

The unipotent cases are enumerated in §4: only Case 4 and Case 2 of that enumer-
ation appear with d = 3 and n = 4.

f = 12x0x2x4− 9x0x
2
3 + 6x1x2x3− 2x3

2− 6x2
1x4 + 3ax0(2x0x4− 2x1x3 +x2

2) + bx3
0,

with a3 + b 6= 0. A11 singularity.
f = x0(2x0x2 − x2

1) + a3(x0, x3, x4), where a3(0, x3, x4) has distinct roots; U12

singularity; τ = 12 if ∂a3/∂x0 ∈ 〈x0, ∂a3/∂x3, . . . , ∂a3/∂x4〉, τ = 11 otherwise.
f = x3(2x0x2 − x2

1) + a3(x0, x3, x4), where a3(x0, 0, x4) has distinct roots and
a3(0, x3, x4) 6≡ 0. The singularity at P has type T2,3+r,6 if the highest power of
x3 dividing a3(0, x3, x4) is xr3; there is an additional singularity As where s = 1 if
a3(0, x3, x4) has a repeated factor (so r = 0 or 1), s = 2 if a 3-fold factor, distinct
from x3 (so r = 0). Thus µ(V ) = 10 + r+s, τ(V ) = 10 +s if r = 0, τ(V ) = 9+ r+s
if r > 0.

Oversymmetric hypersurfaces

In the semi-simple case, the weights are given by adding zeros to one of [−1, 0, 1],
Bλr, Bµr, Bνr, Cλr, Cµr or Cνr.

In the unipotent case we have all hypersurfaces in Cases 3 and 5 and those in
Case 2 given by Theorem 4.9.

2-symmetric hypersurfaces

By Theorem 2.5, higher symmetry occurs only if d = 3, and then a 1-symmetric V is
2-symmetric if and only if it is oversymmetric. Thus in the semi-simple case, the set
of weights is obtained from [−1, 0, 0, 1], [−2, 0, 1, 2], or [−2, 0, 1, 4] by adding zeros.
In the unipotent case, we have the V in Case 2 given by Theorem 4.9 with d = 3,
and those in Case 5. However as several cases occur twice in this list in virtue of the
two vector fields, it is better to give the list explicitly. In each case we begin with a
convenient normal form and conclude with an example of a singularity equisingular
(ES) to that presented.

(A) f = x0x1x2 + a3(x3, . . . , xn), where a3 = 0 is non-singular. This admits the
action (λ, µ).(x0, x1, x2, . . . , xn) = (λ−1x0, µ

−1x1, λµx2, . . . , xn): the weights wi = 0
for i > 2 but we can take any w0, w1, w2 with w0 +w1 +w2 = 0. There are 3 singular
points, mutually isomorphic, each ES to x1x2 +

∑n
3 x

3
i .
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(B) f = x0x
2
1 + x0x2x3 + a3(x3, . . . , xn), where a3 = 0 is non-singular, and has

non-singular intersection with x3 = 0. This admits weights [−2, 1, 2, 0, . . .] and is
also annihilated by x3∂/∂x1 − 2x1∂/∂x2, which is nilpotent in Case 2; conversely, a
Case 2 cubic w1(2x0x2− x2

1) + a3(x0, w) can be put in this form if a3 is independent
of w1 (Case (a1) of Theorem 4.9). Two singularities, ES to x1x2 + x2

3 +
∑n

4 x
3
i and

x1x2 + x6
3 +

∑n
4 x

3
i .

(C) f = x0(2x0x2 − x2
1) + a3(x3, . . . , xn), where a3 = 0 is non-singular. This

admits weights [−2, 1, 4, 0, . . .] and the vector field x0∂/∂x1 + x1/pd/∂x2 in Case 2:
the special case of our normal form where a1 = x0 and a3 is independent of x0 (Case
(b) of Theorem 4.9). Singularity ES to x2

1 + x4
2 +

∑n
3 x

3
i .

(D) f = x3(2x0x2 − x2
1) + x0x

2
4 + a3(x0, x3, x5, . . . , xn) (n ≥ 4), with a3 = 0

non-singular. We have vector fields x0∂/∂x1 +x1∂/∂x2 in Case (a2) of Theorem 4.9
and x4∂/∂x2 − x3∂/∂x4 in Case 210. The singularity has µ = 13.2n−4, and is ES to
x1x2 + x6

3 + x2
3x

2
4 + x6

4 +
∑n

5 x
3
i (it is not semi-quasi-homogeneous.)

(E) f = 2x2(y2
0−x0z0)+x2

1z0−2x1y1y0 +y2
1x0 +a3(x0, y0, z0, w1, . . . , wm) (n ≥ 5),

satisfying the conditions of Proposition 4.6. This is invariant by x0∂/∂x1+x1∂/∂x2+
y0∂/∂y1 and y0∂/∂x1 +y1∂/∂x2 +a1∂/∂y1; any non-zero linear combination of these
is in Case 5. If V3 is non-singular, the singularity is ES to x1x2 +x2

3 +x6
4 +x6

5 +
∑n

6 x
3
i ;

otherwise, µ is larger.
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