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Abstract

We provide an elementary way to compute continuous solutions of the 2-
cocycle functional equation on solvable locally compact groups. Examples are
given for certain linear groups. By “elementary” we mean that nothing is used
from differential geometry, theory of Lie groups, or group cohomology.

1 Introduction

In an earlier paper [3], the first author introduced an elementary method of finding
the general solution of the 2-cocycle equation on solvable groups. The 2-cocycle
functional equation on a group G with values in an abelian group K (abbreviated
the cocycle equation) is

F (x, y) + F (xy, z) = F (x, yz) + F (y, z), x, y, z ∈ G. (1.1)

A solution of (1.1), i.e. a map F : G×G→ K such that (1.1) holds for all x, y, z ∈
G, is called a 2-cocycle. In this paper we present an elementary way to compute
the continuous solutions of this equation on locally compact solvable groups. The
problem of computing continuous solutions is of particular interest for the linear
groups that play important roles in quantum theory. Our main goal is to give
continuous analogues of the results presented in [3]. Subsequent work will extend
these results to other Lie groups. (In fact, it is on solvable groups where the most
technical difficulties lie.)
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Historically, the 2-cocycle functional equation plays a central role in the theory of
projective representations (also known as ray representations) of groups in quantum
mechanics, going back to the seminal paper of Bargmann [2] in 1954. Since all of
our cocycles will be 2-cocycles, we shall omit the prefix 2. Cocycles are known by
various other names in the quantum physics literature. For example, Bargmann [2]
working with a Lie group G terms a continuous solution F : G × G → R of (1.1)
an exponent if it also satisfies the normalizing condition F (1, 1) = 0. Varadarajan
[10] calls such a map a multiplier (or a K-multiplier if F takes values in an abelian
locally compact group K).

Definition 1.1. Let G be a topological groups and K a topological abelian group.
If F : G × G → K is a continuous solution of (1.1), then we say that F is a
continuous cocycle on G into K. The set of continuous cocycles on G into K is
denoted Z2

C(G,K).

There are two existing standard methods of finding continuous (normalized) co-
cycles in the quantum theory context. One method uses the cohomology theory of
Lie groups and Lie algebras (see [2], [9]); the other uses the powerful coordinate-
independent techniques of modern differential geometry (see [7]). Krause [8] in-
troduced a simpler, coordinate-dependent version of the latter method. The new
approach we introduce in this paper is much more elementary than any of those.
Our approach uses only some basic elements from the theory of topological groups,
combined with functional equations techniques. We present the main results in
sections 4 and 5 and some examples in section 6.

To finish setting the stage, we introduce some further terminology and notation.

Definition 1.2. Given a group G, an abelian group K and a map f : G → K, we
shall call the map δ[f ] : G×G→ K defined by

δ[f ](x, y) := f(x) + f(y)− f(xy) (1.2)

the coboundary generated by f . If G and K are topological groups then we define
B2
C(G,K) := {δ[f ] | f ∈ C(G,K)}.
It is easy to see that any coboundary is a cocycle, so that B2

C(G,K) is a subset
of Z2

C(G,K). Note however that a continuous coboundary may be generated by a
discontinuous function. Indeed, if f : R → R is any discontinuous solution of the
Cauchy functional equation f(x+ y) = f(x) + f(y), then δ[f ] = 0. Using Gajda [5]
we derive in subsection 3.1 a condition under which any continuous coboundary is
known to have a continuous generator.

We are mainly interested in the case of K = X, where X is a complex Banach
space. In that case Z2

C(G,X) is a complex vector space and B2
C(G,X) is a sub-

space of it. The primary objective of this research is to determine explicit forms
of continuous cocycles. A secondary objective is to find a basis of the vector space
H2
C(G,X) := Z2

C(G,X)/B2
C(G,X) for given G and X. That motivates the following

definition.

Definition 1.3. Given two continuous cocycles F1, F2 on a group G into a complex
Banach space X, we say that F1 is equivalent to F2, denoted F1 ' F2, if there exists
a map f ∈ C(G,X) such that F1 = F2 + δ[f ].
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In other words, two continuous cocycles F1 and F2 are equivalent if and only
if they belong to the same coset determined by B2

C(G,X). Our goal is to use this
equivalence to exhibit the simplest possible form for a continuous cocycle F on G
into X.

As mentioned above the first author [3] studied the general solution of the co-
cycle equation on solvable groups. However, that was done without any regularity
assumptions, and it is not obvious how to obtain formulas for the continuous cocy-
cles from the results of [3]. According to the theory of [3] a cocycle F can be written
in a special form F = Ψ1 + · · ·+ Ψr. But knowing that F is continuous does not tell
us that the individual terms Ψ1, . . . ,Ψr are continuous. To infer continuity of them
requires a separate investigation of the terms that we do in the present paper. We
incorporate continuity in the set up from the beginning, so the present paper does
not presuppose [3].

2 Notation and definitions

R and C denote the real and complex fields, respectively. We let (z, w) 7→ 〈z, w〉 or
just z · w denote the canonical bilinear form on Cn: If z = (z1, . . . , zn)t ∈ Cn and
w = (w1, . . . , wn)t ∈ Cn, then 〈z, w〉 = z · w = z1w1 + · · ·+ znwn.

Group operations will be written multiplicatively, unless the group is abelian,
in which case we often use +. Throughout the paper G will denote a group with
neutral element 1 (in the abelian case 0).

Definition 2.1. Given two groups G,K, with K abelian, a map ψ : G×G→ K is
called a bi-morphism from G into K if ψ(xy, z) = ψ(x, z) + ψ(y, z) and ψ(x, yz) =
ψ(x, y) + ψ(x, z); it is called skew-symmetric if ψ(x, y) = −ψ(y, x).

Definition 2.2. Let G be a group. If g, n ∈ G then ng := gng−1 is called the
conjugate of n by g.

Throughout this article, such exponent notation will always denote conjugation.
Without explicit mentioning, we will make subgroups of topological groups into

topological groups by equipping them with the inherited topology.
By a locally compact group we mean a locally compact, Hausdorff topological

group.
If A and B are topological spaces we let C(A,B) denote the set of continuous

functions from A to B, and we let C(A) := C(A,C). If A is a manifold we let
C∞(A) denote the smooth complex-valued functions on A and C∞c (A) the compactly
supported functions in C∞(A).

3 On continuity

3.1 The question of continuous generators

We need conditions under which any continuous coboundary has a continuous gen-
erator. That is, if δ[f ] is continuous, we wish to know whether there is a continuous
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generating function g for this coboundary. An answer can be deduced from the
following theorem of Gajda [5].

Proposition 3.1. Let G be a locally compact group, and let X be a complex Banach
space. If f : G → X is such that for each y ∈ G the function x 7→ f(xy) − f(x)
is continuous on G and the function x 7→ f(yx) − f(x) is Borel measurable on G,
then f = h + g, where h : G → X is a group homomorphism and g : G → X is
continuous.

From this we immediately get the following consequence.

Corollary 3.2. Let G be a locally compact group, and let X be a complex Banach
space. If f : G→ X is such that the coboundary δ[f ] is continuous on G×G, then
there exists a continuous g : G→ X such that δ[f ] = δ[g].

We shall not treat cocycles that take values in a general abelian topological group
K as discussed in the introduction, because that leads to technical complications,
but shall restrict ourselves to the case of K being a complex Banach space. Here
Corollary 3.2 allows us to get by.

If G is a Lie group we even get differentiability. We use Lemma 3.3 in the special
case of Example 6.6.

Lemma 3.3. Let G be a Lie group. If f ∈ C(G) is such that δ[f ] ∈ C∞(G × G),
then f ∈ C∞(G).

Proof. Choose a function φ ∈ C∞c (G) such that
∫

G
φ(y) dλ(y) = 1, where λ denotes

a left Haar measure on G. Let F := δ[f ]. Multiplying the identity F (x, y) =
f(x) + f(y) − f(xy), x, y ∈ G, by φ(y) and integrating the result with respect to
dλ(y) we get that

f(x) =

∫
G

F (x, y)φ(y) dλ(y)−
∫

G

f(y)φ(y) dλ(y) +

∫
G

φ(x−1y)f(y) dλ(y)

from which the differentiability follows, because both F and (x, y) 7→ φ(x−1y) are
smooth functions of two variables.

3.2 On semidirect products of groups

A group G is the semidirect product of a normal subgroup N by another subgroup Q
if G = NQ and N

⋂
Q = {1}. In such a situation we use the notation G = NsQ.

Any x ∈ G = NsQ can be written uniquely in the form x = n(x)q(x), where
n(x) ∈ N and q(x) ∈ Q.

In contrast to [3] we write the normal subgroup on the left because of the sim-
plification this lends our treatment of examples in Section 6.

We shall need the connection between the algebraic structure and the topological
one which is embodied in the next definition:

Definition 3.4. A semidirect product G = NsQ is a topological semidirect product,
if G is a topological group such that the canonical maps x 7→ n(x) and x 7→ q(x)
are continuous maps of G into G.
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If G = NsQ is a topological semidirect product, and F is a continuous function
on N then the function defined by nq 7→ F (n), n ∈ N , q ∈ Q, is continuous on G.
Indeed, it is the function x→ F (n(x)) which is composed of two continuous maps.
Similarly for a continuous function on Q instead of on N . It is indispensable for
us that continuous functions on N or Q define continuous functions on G. That
is the reason why we need to work with topological semidirect products instead of
(algebraic) semidirect products.

According to Lemma 3.5 below a semidirect product under certain natural con-
ditions is a topological semidirect product. The semidirect products in our examples
are all of this type, so they are topological semidirect products.

Lemma 3.5. Let G be a σ-compact, locally compact group which is the semidirect
product G = N ×sQ of a closed normal subgroup N and a closed subgroup Q. Then
G = NsQ is a topological semidirect product.

Lemma 3.5 is the case r = 2 of the following result that we need in the proof of
Theorem 5.2.

Lemma 3.6. Let G be a σ-compact, locally compact group. Let Q1, Q2, . . . , Qr be
closed subgroups of G such that the product Q1Q2 · · ·Qj is a normal subgroup of G
for j = 1, 2, . . . r. Assume furthermore that each element x ∈ G can be decomposed
in exactly one way as a product x = q1(x)q2(x) · · · qr(x), where qj(x) ∈ Qj for
j = 1, 2, . . . , r.

Then

(a) The maps x→ qj(x), j = 1, 2, . . . r, are continuous from G to Qj.

(b) The product Qi1Qi2 · · ·Qis is closed in G for any 1 ≤ i1 < i2 < · · · < is ≤ r.

Proof of Lemma 3.6. The subgroups Q1, Q2, . . . , Qr are closed subgroups of G, so
they, too, are σ-compact, locally compact groups. We equip the product G0 :=
Q1×Q2×· · ·×Qr with the product topology so that it becomes a σ-compact, locally
compact space. The map i : G0 → G, defined by i(q1, q2, . . . , qr) := q1q2 · · · qr, is
continuous: If qj is close to q(0)

j for each j = 1, 2, . . . r then q1q2 · · · qr is close to
q
(0)
1 q

(0)
2 · · · q(0)

r because the group operation in G is continuous.
By hypothesis i is a bijection, so we can make G0 into a group by requiring

i : G0 → G to be an isomorphism. The essential point for the proof is that G0

with this group structure is a topological group. The following result [4, Theorem 2]
allows us to make a shortcut in the proof of this point:

Proposition. Let X be a locally compact Hausdorff space with a group structure
such that the maps x 7→ yx and x 7→ xy of X into X are continuous for all y ∈ X.
Then X is a topological group.

So it suffices to prove that the product map G0 ×G0 → G0 is continuous. This
means that if we write

(q1q2 · · · qr)(p1p2 · · · pr) = s1s2 · · · sr
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then sj = sj(q, p) depends continuously on (q, p) ∈ G0 ×G0 for each j = 1, 2, . . . , r.
Now,

(q1q2 · · · qr−1qr)(p1p2 · · · pr) = (q1q2 · · · qr−1)(qrp1p2 · · · pr−1q
−1
r )(qrpr)

= (q1q2 · · · qr−1)(p
qr

1 p
qr

2 · · · pqr

r−1)(qrpr).

Note that pqr

j ∈ Qj, so that pqr

1 p
qr

2 · · · pqr

r−1 ∈ Q1 · · ·Qr−1. In the same way as we
moved qr past p1p2 · · · pr−1 we now move qr−1 past pqr

1 p
qr

2 · · · pqr

r−2 and up to pqr

r−1 and
get

(q1q2 · · · qr−1qr)(p1p2 · · · pr)

= (q1q2 · · · qr−2)((p
qr

1 )qr−1(pqr

2 )qr−1 · · · (pqr

r−1)
qr−1)(qr−1p

qr

r−1)(qrpr).

Continuing in this way we get that each sj(q, p) is a product of q1, q2, . . . , qr, p1, p2,
. . . , pr and their inverses. Since the group operations in G are continuous we see
that sj : G0 ×G0 → G is a continuous map. But sj(G0 ×G0) ⊆ Qj and Qj has the
topology from G, so sj : G0×G0 → Qj is a continuous map. This proves the claim,
so G0 is a topological group.

It follows from the open mapping theorem for groups ([6, Theorem 5.29]) that
i : G0 → G is an open map, and consequently that i−1 is continuous.

(a) The projection πj : G0 → Qj on the jth component is continuous for each
j = 1, 2, . . . r by the definition of the product topology. We see from the formula
qj = (πj ◦ i−1)(q1q2 · · · qr) that qj depends continuously on q1q2 · · · qr.

(b) follows from i : Q1 ×Q2 · · · ×Qr → G being a homeomorphism.

4 Continuous cocycles on semidirect products

4.1 Two auxiliary lemmas

In this subsection we prove two auxiliary lemmas that are used in our derivation of
Theorem 4.3. In both lemmas we let G be a topological group such that G = NsQ
is the topological semidirect product of a normal subgroup N by a subgroup Q.
K is an abelian topological group. F ∈ C(G × G,K) is a cocycle, and we put
κ := F (1, 1) ∈ K. Then F (1, x) = F (x, 1) = κ for all x ∈ G, as follows from (1.1)
by simple substitutions.

We define the function f0 ∈ C(G,K) by f0(x) := κ − F (n(x), q(x)), x ∈ G. So
f0(nq) = κ− F (n, q) for all n ∈ N and q ∈ Q.

Lemma 4.1. (a) f0(n) = f0(q) = 0 for all n ∈ N and q ∈ Q.
(b) f0(mx)− f0(x) = F (m,n(x))− F (m,x) for all m ∈ N and x ∈ G.
Proof. (a) follows immediately from the definition of f0.
(b) Applying (1.1) at the fourth equality sign below (with x = m, y = n(x) and
z = q(x)) we get for any m ∈ N and x ∈ G:

f0(x)− f0(mx) = {κ− F (n(x), q(x))} − {κ− F (n(mx), q(mx))}
= F (n(mx), q(mx))− F (n(x), q(x)) = F (mn(x), q(x))− F (n(x), q(x))

= F (m,x)− F (m,n(x)).
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The existence of an f satisfying Lemma 4.1(b) was proved in [3, Lemma 1]. The
procedure here is much simpler.

We define C ∈ C(G×G,K) by

C(x, y) := F (x, y)− F (n(x), n(y)q(x))− δ[f0](x, y), x, y ∈ G. (4.1)

C was introduced in the proof of [3, Theorem 2]. Lemma 4.2 notes some of the
properties of C that follow from F being a cocycle.

Lemma 4.2. (a) C(x, y) = C(q(x), y) for all x, y ∈ G.
(b) If n ∈ N and q ∈ Q, then C(q, n) = F (q, n)− F (nq, q).

(c) C|Q×Q = F |Q×Q − κ.
(d) C(x, y) = C(x, n(y)) + C(x, q(y)) for all x, y ∈ G.
(e) If q1, q2 ∈ Q and n ∈ N , then

C(q1q2, n) = C(q1, n
q2) + C(q2, n). (4.2)

(f) If q ∈ Q and n1, n2 ∈ N , then

C(q, n1n2)− C(q, n1)− C(q, n2) = F (nq
1, n

q
2)− F (n1, n2). (4.3)

Proof. (a) We shall prove that C(nq, y) = C(q, y) for all n ∈ N , q ∈ Q and y ∈ G.
First observe that

C(nq, y)− C(q, y) = F (nq, y)− F (n, n(y)q)− δ[f0](nq, y)

− F (q, y) + F (1, n(y)q) + δ[f0](q, y)

= F (nq, y)− F (n, n(y)q)− F (q, y) + κ− f0(nq) + f0(nqy)− f0(qy),

where f0(q) = 0 by Lemma 4.1(a). Here we use Lemma 4.1(b) on f0(nqy)− f0(qy)
to continue the computations:

= F (nq, y)− F (n, n(y)q)− F (q, y) + F (n, q) + F (n, n(qy))− F (n, qy)

= F (nq, y)− F (n, n(y)q)− F (q, y) + F (n, q)− F (n, qy) + F (n, n(y)q)

= F (nq, y)− F (q, y) + F (n, q)− F (n, qy),

which vanishes, F being a cocycle.
(b) For any q ∈ Q, n ∈ N,

C(q, n) = F (q, n)− F (n(q), nq)− δ[f0](q, n)

= F (q, n)− F (1, nq)− 0− 0 + f0(n
qq)

= F (q, n)− κ+ [κ− F (nq, q)] = F (q, n)− F (nq, q).

(c) If q1, q2 ∈ Q then

C(q1, q2) = F (q1, q2)− F (n(q1), n(q2)
q1)− δ[f0](q1, q2)

= F (q1, q2)− κ− 0− 0 + 0 = F (q1, q2)− κ.
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(d) We first compute C(q, y) for q ∈ Q and y ∈ G:

κ+ C(q, y) = κ+ F (q, y)− F (n(q), n(y)q)− δ[f0](q, y)

= κ+ F (q, y)− κ− [0 + f0(y)− f0(qy)]

= F (q, y)− [κ− F (n(y), q(y))] + [κ− F (n(qy), q(qy))]

= F (q, y) + F (n(y), q(y))− F (n(y)q, qq(y))

= F (q, y) + F (n(y), q(y))− [−F (q, q(y)) + F (n(y)q, q) + F (n(y)qq, q(y))]

= F (q, y) + F (n(y), q(y)) + F (q, q(y))− F (n(y)q, q)− F (qn(y), q(y))

= F (q, y) + F (n(y), q(y)) + F (q, q(y))− F (n(y)q, q)

− [−F (q, n(y)) + F (q, y) + F (n(y), q(y))]

= F (q, q(y))− F (n(y)q, q) + F (q, n(y)).

When we replace y first by n(y) and then by q(y) in this formula for C(q, y), we
find that C(q, n(y)) = F (q, n(y))−F (n(y)q, q) and C(q, q(y)) = F (q, q(y))−κ, from
which it follows that C(q, y)− C(q, n(y))− C(q, q(y)) = 0.

We finally get the desired result from the formula C(x, y) = C(q(x), y), derived
in (a).

(e) Applying first the formula C(q, n) = F (q, n) − F (nq, q) from (b) and then
(1.1) we find that

C(q1q2, n)− C(q1, n
q2)− C(q2, n)

= F (q1q2, n)− F (nq1q2 , q1q2)− F (q1, n
q2) + F (nq1q2 , q1)− F (q2, n) + F (nq2 , q2)

= [−F (q1, q2) + F (q1, q2n) + F (q2, n)]

− [−F (q1, q2) + F (nq1q2 , q1) + F (nq1q2q1, q2)]

− F (q1, n
q2) + F (nq1q2 , q1)− F (q2, n) + F (nq2 , q2)

= F (q1, q2n)− F (q1n
q2 , q2)− F (q1, n

q2) + F (nq2 , q2),

which vanishes by (1.1), because F (q1, q2n) = F (q1, n
q2q2).

(f) We first compute C(q, n1n2) = F (q, n1n2)− F (nq
1n

q
2, q) using (1.1):

F (q, n1n2)− F (nq
1n

q
2, q) = −F (n1, n2) + F (q, n1) + F (qn1, n2)

− [−F (nq
1, n

q
2) + F (nq

1, n
q
2q) + F (nq

2, q)]

= − F (n1, n2) + F (q, n1) + F (qn1, n2) + F (nq
1, n

q
2)− F (nq

1, n
q
2q)− F (nq

2, q)

= − F (n1, n2) + F (q, n1) + F (qn1, n2) + F (nq
1, n

q
2)− F (nq

1, qn2)− F (nq
2, q)

= − F (n1, n2) + F (q, n1) + F (qn1, n2) + F (nq
1, n

q
2)

− [−F (q, n2) + F (nq
1, q) + F (qn1, n2)]− F (nq

2, q)

= − F (n1, n2) + F (q, n1) + F (nq
1, n

q
2) + F (q, n2)− F (nq

1, q)− F (nq
2, q),

from which it follows that

C(q, n1n2)− [F (nq
1, n

q
2)− F (n1, n2)]

= F (q, n1) + F (q, n2)− F (nq
1, q)− F (nq

2, q) = C(q, n1) + C(q, n2).
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4.2 The structure of continuous cocycles on semidirect
products

Theorem 4.3. Let G = NsQ be the topological semidirect product of a normal
subgroup N by a subgroup Q. Let K be an abelian topological group. Let finally
F ∈ C(G×G,K). Then

(a) F is a cocycle on G if and only if there exist cocycles FN ∈ C(N × N,K),
FQ ∈ C(Q×Q,K), a map f ∈ C(G,K) and a map Φ ∈ C(Q×N,K) such that
for all x, y ∈ G, q, q1, q2 ∈ Q, n, n1, n2 ∈ N :

F (x, y) = δ[f ](x, y) + FN(n(x), n(y)q(x)) + Φ(q(x), n(y)) + FQ(q(x), q(y)).
(4.4)

Φ(q1q2, n) = Φ(q1, n
q2) + Φ(q2, n). (4.5)

Φ(q, n1n2)− Φ(q, n1)− Φ(q, n2) = FN(nq
1, n

q
2)− FN(n1, n2). (4.6)

(b) Given a cocycle F ∈ C(G×G,K) we may choose the functions FN , FQ, f and
Φ from (a) as follows:

f(x) := −F (n(x), q(x)), x ∈ G, (4.7)
FN := F |N×N , (4.8)

Φ(q, n) := F (q, n)− F (nq, q), q ∈ Q, n ∈ N, (4.9)
FQ := F |Q×Q. (4.10)

Proof. (a) and (b) To verify that a function F , defined by (4.4) and satisfying (4.5)
and (4.6), is a cocycle for any cocycles FN ∈ C(N ×N,K), FQ ∈ C(Q×Q,K) and
maps f ∈ C(G,K), Φ ∈ C(Q × N,K), is a simple verification that we skip. We
use the fact that G is a topological semidirect product to deduce that the individual
terms of F in (4.4), and hence also F , are continuous functions on G×G.

It is left to prove the converse, i.e. that any cocycle F ∈ C(G × G,K) can be
written in this form. It suffices to prove that the functions defined in (b) work.
Clearly, these functions are continuous, and FN and FQ are cocycles, being restric-
tions of the cocycle F to subgroups. In the proof we use the results of Lemma 4.2
without explicit mentioning. In particular note that Φ = C|Q×N , where C is defined
by (4.1).

We begin by proving (4.4):

F (x, y)− δ[f ](x, y)− FN(n(x), n(y)q(x))− Φ(q(x), n(y))− FQ(q(x), q(y))

= F (x, y)− δ[f0 − κ](x, y)− F (n(x), n(y)q(x))

− C(q(x), n(y))− F (q(x), q(y))

= C(x, y)− C(q(x), n(y))− C(q(x), q(y))

= C(x, y)− C(x, n(y))− C(x, q(y)) = 0.

The formulas (4.5) and (4.6) follow from (4.2) and (4.3).

The next result specializes the previous theorem to the case where either one or
both of N,Q are abelian.
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Theorem 4.4. Let G = NsQ be as in Theorem 4.3, let X be a complex Banach
space, and suppose the map F : G×G→ X is a continuous cocycle on G into X.

1. If N is abelian, then F has the form

F (n1q1, n2q2) = δ[f ](n1q1, n2q2)

+ ΨN(n1, n
q1

2 ) + φ(q1, n2) + FQ(q1, q2), (4.11)

for a continuous map f : G→ X, a continuous, skew-symmetric bi-morphism
ΨN on N into X such that

ΨN(nq
1, n

q
2) = ΨN(n1, n2), q ∈ Q, (4.12)

a continuous function φ : Q×N → X satisfying (4.5) and

φ(q, n1n2) = φ(q, n1) + φ(q, n2), (4.13)

and a continuous cocycle FQ on Q into X.

2. If Q is abelian, then F has the form

F (n1q1, n2q2) = δ[f ](n1q1, n2q2)

+ FN(n1, n
q1

2 ) + Φ(q1, n2) + ΨQ(q1, q2), (4.14)

for a continuous map f : G → X, a continuous cocycle FN on N into X, a
continuous function Φ : Q × N → X satisfying and (4.5) and (4.6), and a
continuous, skew-symmetric bi-morphism ΨQ on Q into X.

3. If both N and Q are abelian, then F has the form

F (n1q1, n2q2) = δ[f ](n1q1, n2q2)

+ ΨN(n1, n
q1

2 ) + φ(q1, n2) + ΨQ(q1, q2), (4.15)

where f,ΨN , φ are as in part 1 and ΨQ is as in part 2.

Proof. Our starting point is the decomposition

F (n1q1, n2q2) = δ[g](n1q1, n2q2) + FN(n1, n
q1

2 ) + FQ(q1, q2) + Φ(q1, n2),

provided by Theorem 4.3. If N is abelian, then it is by now classical (see, e.g. [1])
that FN = δ[fN ] + ΨN for some map fN : N → X and a skew-symmetric bi-
morphism ΨN on N into X. Moreover, since FN is continuous, both its symmetric
and skew-symmetric parts are continuous. Hence δ[fN ] and ΨN are continuous on
N×N . It follows from Corollary 3.2 that we may take fN continuous. Now inserting
this form of FN into (4.6) gives

Φ(q, n1n2)− Φ(q, n1)− Φ(q, n2)

= (δ[fN ] + ΨN)(nq
1, n

q
2)− (δ[fN ] + ΨN)(n1, n2),

which upon defining φ by

φ(q, n) := Φ(q, n) + fN(nq)− fN(n) (4.16)

10



reduces to φ(q, n1n2)− φ(q, n1)− φ(q, n2) = ΨN(nq
1, n

q
2)−ΨN(n1, n2). Since the left

side of this equation is symmetric in n1, n2 while the right side is skew-symmetric,
both sides are zero. Thus we get (4.12) and (4.13). Also (4.16) and (4.5) for Φ yield
(4.5) for φ. Defining f by f(nq) := g(nq) + fN(n), we have the desired result in
part 1.

If Q is abelian, we apply the same procedure to FQ that we just applied to FN .
If N and Q are both abelian, then we get part 3 by combining the results of parts
1 and 2.

Remark 4.5. The converse of Theorem 4.4 holds: If F : G × G → X satisfies the
conditions of part 1, then F is a continuous cocycle. Similarly for the parts 2 and 3.
This can be proved by elementary computations.

Note that we could summarize (4.15) in the form

F (n1q1, n2q2) ' ΨN(n1, n
q1

2 ) + φ(q1, n2) + ΨQ(q1, q2).

That is the case r = 2 of Theorem 5.2, which is the topological analogue of [3,
Theorem 5]. The case r = 1 of Theorem 5.2 is the classical result that F (x, y) '
Ψ(x, y) if G is abelian.

5 Continuous cocycles on solvable groups

Assuming that G is solvable, it must have an invariant normal series. That means
each subgroup in the series is not only normal in the preceding subgroup of the
series but also normal in G. The assumptions of the next theorem guarantee that
we can view G as being built up through a sequence of semidirect products. To
get a result in a convenient form for solvable groups of rank r ≥ 3 we need to
assume a bit more about the subgroup structure. If the factor groups determined
by the invariant series do not satisfy the additional conditions postulated in the next
lemma, then one has to proceed step-by-step using Theorem 4.4 repeatedly and the
job is more difficult and involved. The additional conditions are satisfied by any
semidirect product (which is the case of r = 2) and by all our examples in Section 6.

Lemma 5.1. Suppose a group G can be written as G = Q1Q2 · · ·Qr where each Qj

is a subgroup of G. Assume that

Q
Qj+1···Qr

j ⊆ Qj for all j = 1, . . . , r − 1. (5.1)

Then

(a) QjQj+1 · · ·Qr is a subgroup of G for each j = 1, 2, . . . , r.

(b) Q1Q2 · · ·Qj is a normal subgroup of G for each j = 1, 2, . . . , r.

(c) If Qj is abelian for each j = 1, 2, . . . , r, then G is solvable.
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Proof. (a) Let pj · · · pr, qj · · · qr ∈ QjQj+1 · · ·Qr for some j. Then

(pj · · · pr)(qj · · · qr) = (pjq
pj+1···pr

j ) · · · (pr−1q
pr

r−1)(prqr)

shows that QjQj+1 · · ·Qr is closed under multiplication. QjQj+1 · · ·Qr is closed
under inversion since each Qj is a group and QrQr−1 · · ·Qj ⊆ QjQj+1 · · ·Qr. To see
this, observe that

qrqr−1 · · · qj+1qj = ((· · · (qqj+1

j )qj+2 · · · )qr) · · · (qqr

r−1)qr.

(b) is proved by induction on j.

(c) Clearly [G,G] = [Q1 · · ·Qr−1Qr, Q1 · · ·Qr−1Qr] ⊆ Q1 · · ·Qr−1, and the statement
follows by downwards induction on r. Alternatively, if we define Gj := Q1Q2 · · ·Qj

for j = 1, 2, . . . r, then G = Gr �Gr−1 � · · ·�G1 � {1} is a normal series for G.

Theorem 5.2. Let G be a σ-compact, locally compact group, let Q1, Q2, . . . , Qr be
closed abelian subgroups of G, and let X be a complex Banach space. Suppose that
any element g ∈ G can be written uniquely as

g = q1 · · · qr, where qj ∈ Qj for j = 1, ..., r,

and that condition (5.1) is satisfied.
Then a map F : G × G → X is a continuous cocycle on G into X if and

only if there exist continuous skew-symmetric bi-morphisms Ψi on Qi into X and
continuous maps φj : (Qj+1 · · ·Qr)×Qj → X such that

F (q1 · · · qr, p1 · · · pr) '
r∑

i=1

Ψi(qi, p
qi+1···qr

i ) +
r−1∑
j=1

φj(qj+1 · · · qr, pj), (5.2)

Ψi(q
k
i , p

k
i ) = Ψi(qi, pi), (5.3)

φi(k, qipi) = φi(k, qi) + φi(k, pi), (5.4)
φi(kl, qi) = φi(k, q

l
i) + φi(l, qi), (5.5)

for all qi, pi ∈ Qi; k, l ∈ Qi+1 · · ·Qr.

Proof. The case r = 1 is classical (F ' Ψ1) and the case r = 2 is covered by
Theorem 4.4. We proceed by induction on r. Assume the statement is true for some
positive integer r ≥ 1, and let G be solvable of rank r+ 1. Observe that Q2 · · ·Qr+1

is a group by condition (5.1) and Lemma 5.1. Observe also that it is closed in G by
Lemma 3.6(b) so that it, too, is a σ-compact and locally compact group. Each g ∈ G
can be written uniquely as g = q1 · · · qr+1 with qi ∈ Qi, where each Qi is abelian and
Q1 is normal in G. For any x, y ∈ G, write x = q1(q2 · · · qr+1), y = p1(p2 · · · pr+1).
Applying part 1 of Theorem 4.4 we have

F (x, y) = δ[f1](q1(q2 · · · qr+1), p1(p2 · · · pr+1)) + Ψ1(q1, p
q2···qr+1

1 )

+ φ1(q2 · · · qr+1, p1) + FQ(q2 · · · qr+1, p2 · · · pr+1),

12



where Ψ1, φ1 are as desired and FQ is a continuous cocycle on the subgroup Q :=
Q2 · · ·Qr+1 into X. By the induction hypothesis, FQ has the form

FQ(q2 · · · qr+1, p2 · · · pr+1) = δ[fQ](q2 · · · qr+1, p2 · · · pr+1)

+
r+1∑
i=2

Ψi(qi, p
qi+1···qr+1

i ) +
r∑

j=2

φj(qj+1 · · · qr+1, pj).

Inserting this into the equation above and defining f : G→ X by

f(q1q2 · · · qr+1) := f1(q1q2 · · · qr+1) + fQ(q2 · · · qr+1),

we obtain the desired form for F .
The proof of the converse consists of direct computations to verify that F = Ψi

and F = φi satisfy (1.1).

Remark 5.3. If G has the discrete topology then the assumption in Theorem 5.2
aboutG being σ-compact can be deleted. The assumption is only used via Lemma 3.6
to ensure that certain maps are continuous. And any map on a discrete group is
continuous.

6 Some examples

In this section we illustrate Theorem 5.2 with some examples. We give detailed
expositions of them, because our results, which are very explicit, apparently cannot
be found in the literature.

We begin with two very simple, but useful lemmas about continuous skew-
symmetric bi-additive functions.

Lemma 6.1. (a) Let n be a positive integer and suppose Ψ : Rn × Rn → C is a
continuous skew-symmetric bi-additive function. Then there exists a complex
skew-symmetric n× n-matrix A such that Ψ(x, y) = 〈x,Ay〉 for all x, y ∈ Rn.

(b) In particular, if Ψ : R2 × R2 → C is a continuous skew-symmetric bi-additive
function, then there exists a constant c ∈ C such that

Ψ((x1, x2), (y1, y2)) = c(x1y2 − y1x2) for all (x1, x2), (y1, y2) ∈ R2.

Proof. Since Ψ is continuous and additive in each component it is a bilinear form, so
there exists a complex n×n-matrix A such that Ψ(x, y) = 〈x,Ay〉 for all x, y ∈ Rn.
The skew-symmetry of Ψ implies that of A.

Lemma 6.2. Let X be a Hausdorff topological vector space over R or C.

(a) The only separately continuous, skew-symmetric bi-additive function Ψ : R ×
R→ X is 0.

(b) The only separately continuous, skew-symmetric bi-morphism Ψ : R+×R+ → X
is 0.
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Proof. (a) By the additivity we get that Ψ(q, y) = qΨ(1, y) for all q ∈ Q and
y ∈ R. By the continuity in the first variable we then get that Ψ(x, y) = xΨ(1, y)
for all x, y ∈ R. Arguing in the same way on the second variable we get that
Ψ(x, y) = xyΨ(1, 1) for all x, y ∈ R. This expression shows that Ψ is symmetric.
But it is also by assumption skew-symmetric. Hence Ψ = 0.
(b) follows immediately from (a) when you apply (a) to the map (x, y) 7→ Ψ(ex, ey)
from R+ ×R+ to X.

Example 6.3. We consider the (ax+ b)-group

G :=
{(a b

0 1

)
| a ∈ R+, b ∈ R

}
,

and a complex Banach space X. We claim that any continuous cocycle F : G×G→
X has the form F = δ[f ], where f ∈ C(G,X).

To prove this claim we start by noting that G is the semidirect product G =
NsQ, where

N :=
{(1 b

0 1

)
| b ∈ R

}
, and Q :=

{(a 0
0 1

)
| a ∈ R+

}
.

Below we identify N with (R,+) and Q with (R+, ·) in the obvious way.
From part 3 of Theorem 4.4 we get

F (n1q1, n2q2) = δ[f ](n1q1, n2q2) + ΨN(n1, n
q1

2 ) + φ(q1, n2) + ΨQ(q1, q2),

where f ∈ C(G,X), ΨN : N × N → X and ΨQ : Q × Q → X are continuous,
skew-symmetric bi-morphisms, and φ : R+×R→ X is a continuous map such that

φ(q, n1 + n2) = φ(q, n1) + φ(q, n2), and (6.1)
φ(q1q2, n) = φ(q1, q2n) + φ(q2, n) (6.2)

for all q, q1, q2 ∈ R+ and n, n1, n2 ∈ R. According to Lemma 6.2 ΨN = 0 and
ΨQ = 0, so it just remains to produce a function h ∈ C(G,X) such that

δ[h](n1q1, n2q2) = φ(q1, n2) for all n1, n2 ∈ N, q1, q2 ∈ Q.
The function h(nq) := −φ(2, n), n ∈ N , q ∈ Q, may be used. To see this we observe
that the left hand side of (6.2) is symmetric in q1 and q2 so that

φ(q2, q1n) + φ(q1, n) = φ(q1, q2n) + φ(q2, n).

Here we replace q2 by 2 and n by n2 to get

φ(2, q1n2) + φ(q1, n2) = φ(q1, 2n2) + φ(2, n2) = 2φ(q1, n2) + φ(2, n2),

which means that φ(2, q1n2)−φ(2, n2) = φ(q1, n2). Using this to get the last equality
sign below we find

δ[h](n1q1, n2q2) = h(n1q1) + h(n2q2)− h(n1q1n2q2)

= −φ(2, n1)− φ(2, n2) + φ(2, n1 + q1n2)

= −φ(2, n1)− φ(2, n2) + φ(2, n1) + φ(2, q1n2)

= φ(2, q1n2)− φ(2, n2) = φ(q1, n2).
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Example 6.4. Let H1 be the Heisenberg group (in polarized form) with elements
represented as matrices  1 x t

0 1 y
0 0 1


or as elements of R3 with multiplication

(x1, y1, t1)(x2, y2, t2) = (x1 + x2, y1 + y2, t1 + t2 + x1y2)

Then the equivalence classes of the two maps B1 : H1 × H1 → C and B2 :
H1 ×H1 → C, defined by

B1((x1, y1, t1), (x2, y2, t2)) := y1(t2 + x1y2)− t1y2,

B2((x1, y1, t1), (x2, y2, t2)) := x1(t2 + x1y2/2),

form a basis for H2
C(H1,C).

Proof. H1 is the semidirect product NsQ, where N = {(0, y, t)} and Q = {(x, 0, 0)}
are closed abelian subgroups of H1 with N normal. Observe that conjugation takes
the form

nq = (0, y, t)(x,0,0) = (0, y, t+ xy).

Below we identify N with R2 and Q with R whenever convenient.
In the notation of Theorem 4.4, part 3 any continuous cocycle F : H1×H1 → C

has the form

F ((x1, y1, t1), (x2, y2, t2))

' Ψ1((y1, t1), (y2, t2 + x1y2)) + Ψ2(x1, x2) + φ((x1, 0, 0), (0, y2, t2)).

We find the first term on the right by Lemma 6.1(b) and note that the second
term on the right vanishes by Lemma 6.2(a). This gives us that

F ((x1, y1, t1), (x2, y2, t2)) ' c1[y1(t2 + x1y2)− t1y2] + φ(x1, (y2, t2)),

where c1 ∈ C is a constant and where φ : R × R2 → C is a continuous function
which is additive in its second (vector) component and satisfies

φ(x1 + x2, (y2, t2)) = φ(x1, (y2, t2 + x2y2)) + φ(x2, (y2, t2)).

The continuity and additivity yield the existence of continuous maps φ1, φ2 such
that

φ(x1, (y2, t2)) = φ1(x1)y2 + φ2(x1)t2,

and substituting this into the previous equation we get

φ1(x1 + x2)y2 + φ2(x1 + x2)t2

= φ1(x1)y2 + φ2(x1)(t2 + x2y2) + φ1(x2)y2 + φ2(x2)t2.

Comparing coefficients of t2 we see that φ2 is additive, hence linear. With φ2(x) =
c2x, we now have

φ1(x1 + x2)− φ1(x1)− φ1(x2) = c2x1x2,

15



which implies φ1(x) = bx+ c2x
2/2. In conclusion, we have

F ((x1, y1, t1), (x2, y2, t2))

' c1[y1(t2 + x1y2)− t1y2] + [bx1 + c2x
2
1/2]y2 + c2x1t2.

Observe also that the map ((x1, y1, t1), (x2, y2, t2)) 7→ bx1y2 is a continuous cobound-
ary with generator g(x, y, t) := −bt, therefore F has the asserted form.

On the other hand, elementary calculations (or a reference to the general theory)
show B1 and B2 are cocycles.

We shall finally show that if c1B1 + c2B2 = δ[h], where c1, c2 ∈ C and where
h : H1 → C, then c1 = c2 = 0. To do so we note the general fact that if A is
an abelian group then δ[h](a1, a2) = δ[h](a2, a1) for all a1, a2 ∈ A. Thus we get
here for any elements a1 and a2 of an abelian subgroup A of H1 that c1B1(a1, a2) +
c2B2(a1, a2) = c1B1(a2, a1) + c2B2(a2, a1). Taking A = N we get c1 = 0. Taking
A := {(x, 0, t) | x, t ∈ R} we get c2 = 0.

The next two examples generalize the previous one in different directions. The
first illustrates the need for Theorem 5.2, because the group in it is not a semidirect
product of two abelian groups. So we cannot refer to the simpler case of Theorem 4.4.

Example 6.5. Let UT4 be the group of upper triangular 4× 4 matrices
1 x t s
0 1 y u
0 0 1 z
0 0 0 1

 ,
over R with ones on the main diagonal.

The vector space H2
C(UT4,C) is five-dimensional with the set of equivalence

classes of the following five functions T1, T2, T3, T4, T5 as a basis.
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T1




1 x1 t1 s1

0 1 y1 u1

0 0 1 z1

0 0 0 1

 ,


1 x2 t2 s2

0 1 y2 u2

0 0 1 z2

0 0 0 1


 := u1z2 − z1(u2 + y1z2),

T2




1 x1 t1 s1

0 1 y1 u1

0 0 1 z1

0 0 0 1

 ,


1 x2 t2 s2

0 1 y2 u2

0 0 1 z2

0 0 0 1


 := t1y2 − y1(t2 + x1y2),

T3




1 x1 t1 s1

0 1 y1 u1

0 0 1 z1

0 0 0 1

 ,


1 x2 t2 s2

0 1 y2 u2

0 0 1 z2

0 0 0 1


 := y1(u2 + y1z2/2),

T4




1 x1 t1 s1

0 1 y1 u1

0 0 1 z1

0 0 0 1

 ,


1 x2 t2 s2

0 1 y2 u2

0 0 1 z2

0 0 0 1


 := x1(t2 + x1y2/2),

T5




1 x1 t1 s1

0 1 y1 u1

0 0 1 z1

0 0 0 1

 ,


1 x2 t2 s2

0 1 y2 u2

0 0 1 z2

0 0 0 1


 := x1z2.

Proof. Straightforward computations show that T1, . . . , T5 are continuous cocycles.
That they are linearly independent modulo B2

C(UT4,C) can be proved using the
same idea as in Example 6.4. It is left to show that any continuous cocycle F is
equivalent to a linear combination of T1, . . . , T5.

UT4 is solvable of rank r = 3, and each element q can be decomposed uniquely
as q = q1q2q3 with qi ∈ Qi, where

Q1 =




1 0 0 s
0 1 0 u
0 0 1 z
0 0 0 1

 : z, u, s ∈ R

 ,

Q2 =




1 0 t 0
0 1 y 0
0 0 1 0
0 0 0 1

 : t, y ∈ R

 ,

Q3 =




1 x 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 : x ∈ R

 .

Specifically, we write two arbitrary elements of UT4 as q = q1q2q3 and p = p1p2p3,
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with decompositions (i = 1 corresponding to q, i = 2 to p)
1 xi ti si

0 1 yi ui

0 0 1 zi

0 0 0 1

 =


1 0 0 si

0 1 0 ui

0 0 1 zi

0 0 0 1




1 0 ti 0
0 1 yi 0
0 0 1 0
0 0 0 1




1 xi 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
We shall for i = 1, 2, 3 identify Qi with (R4−i,+) in the obvious way.

It is easy to check that UT4 satisfies the conditions of Lemma 5.1. Applying
Theorem 5.2 we obtain from (5.2) that

F (q1q2q3, p1p2p3) '
3∑

i=1

Ψi(qi, p
qi+1···q3

i ) +
2∑

j=1

φj(qj+1 · · · q3, pj),

where each Ψi is a continuous skew-symmetric bi-morphism satisfying additionally
(5.3) and each φj fulfills (5.4) and (5.5). In detail, by Lemma 6.1 we have

Ψ1(q1, p1) = a1[s1u2 − s2u1] + a2[s1z2 − s2z1] + a3[u1z2 − u2z1],

Ψ2(q2, p2) = a4[t1y2 − t2y1], Ψ3(q3, p3) = 0,

for arbitrary constants a1, ..., a4 ∈ C. Moreover, taking into account the additional
condition (5.3) we find after some calculations that a1 = a2 = 0. Thus we have

3∑
i=1

Ψi(qi, p
qi+1···q3

i ) = a3T1(q, p) + a4T2(q, p).

Turning to the φ terms, first by (5.4) we see that there exist continuous maps
φ11, φ12, φ13, φ21, φ22 such that

φ1(q2q3, p1) = φ11(q2q3)s2 + φ12(q2q3)u2 + φ13(q2q3)z2,

φ2(q3, p2) = φ21(q3)t2 + φ22(q3)y2.

Next, by (5.5) we have also

φ1(kl, p1) = φ1(k, p
l
1) + φ1(l, p1),

φ2(mn, p2) = φ2(m, p
n
2 ) + φ2(n, p2),

for all k, l ∈ Q2Q3 and m,n ∈ Q3. Letting

k =


1 x3 t3 0
0 1 y3 0
0 0 1 0
0 0 0 1

 , l =


1 x4 t4 0
0 1 y4 0
0 0 1 0
0 0 0 1

 ,

m =


1 x3 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , n =


1 x4 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,
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we calculate that

φ11(kl)s2 + φ12(kl)u2 + φ13(kl)z2

= φ11(k)(s2 + x4u2 + t4z2) + φ12(k)(u2 + y4z2) + φ13(k)z2

+ φ11(l)s2 + φ12(l)u2 + φ13(l)z2,

φ21(mn)t2 + φ22(mn)y2

= φ21(m)(t2 + x4y2) + φ22(m)y2 + φ21(n)t2 + φ22(n)y2.

Comparing coefficients of s2, u2, z2, t2, y2 yields respectively

φ11(kl) = φ11(k) + φ11(l),

φ12(kl) = φ11(k)x4 + φ12(k) + φ12(l),

φ13(kl) = φ11(k)t4 + φ12(k)y4 + φ13(k) + φ13(l),

φ21(mn) = φ21(m) + φ21(n),

φ22(mn) = φ21(m)x4 + φ22(m) + φ22(n).

The continuous solution of this system of equations is, by a lengthy but elementary
computation, given by

φ11(k̂) = 0, φ12(k̂) = b3x+ b4y,

φ13(k̂) = b5x+ b6y + b3t+ b4y
2/2,

φ21(m̂) = c1x, φ22(m̂) = c2x+ c1x
2/2,

for arbitrary constants b3, ..., b6, c1, c2 ∈ C, where

k̂ =


1 x t 0
0 1 y 0
0 0 1 0
0 0 0 1

 , m̂ =


1 x 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
Thus we have

φ1(q2q3, p1) = b3(x1u2 + t1z2) + b4T3(q, p) + b5T5(q, p) + b6y1z2,

φ2(q3, p2) = c1T4(q, p) + c2x1y2.

Observe now that the maps (q, p) 7→ x1u2+t1z2, y1z2, x1y2 are continuous cobound-
aries with respective generators

1 x t s
0 1 y u
0 0 1 z
0 0 0 1

 7→ −s, −u, −t.
Therefore we conclude that

2∑
j=1

φj(qj+1 · · · q3, pj) ' b4T3(q, p) + b5T5(q, p) + c1T4(q, p),

yielding the required form for F .
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The next example generalizes Example 6.4 to higher-dimensional Heisenberg
groups.

Example 6.6. Let n ≥ 2 and let Hn = Rn ×Rn ×R be the (2n + 1)-dimensional
Heisenberg group with the group composition

(x1, y1, t1)(x2, y2, t2) := (x1 + x2, y1 + y2, t1 + t2 + x1 · y2),

for (x1, y1, t1), (x2, y2, t2) ∈ Hn.

(a) For each continuous cocycle F : Hn × Hn → C there exist complex skew-
symmetric n×n matrices S1 and S2 and a complex n×n matrix A with trA = 0
such that

F ((x1, y1, t1), (x2, y2, t2)) ' 〈x1, S1x2〉+ 〈y1, S2y2〉+ 〈x1, Ay2〉 (6.3)

for all (x1, y1, t1), (x2, y2, t2) ∈ Hn.

(b) Conversely, any function F of the form (6.3) is a continuous cocycle.

(c) The functions of the form (6.3) form a basis of H2
C(Hn,C) : If F = δ[h] for some

h ∈ C(Hn), then S1 = S2 = A = 0.

In particular dimH2
C(Hn,C) = 2n2 − n− 1.

Proof. (a) Hn is the semidirect product NsQ, where N = {(0, y, t)} and Q =
{(x, 0, 0)} are closed abelian subgroups with N normal. Conjugation takes the form

nq = (0, y, t)(x,0,0) = (0, y, t+ x · y).

Below we will identify N with (Rn+1,+), and Q with (Rn,+), whenever convenient.
Any continuous cocycle F has according to Theorem 4.4, part 3, the form

F ((x1, y1, t1), (x2, y2, t2)) ' ΨN((y1, t1), (y2, t2 + x1 · y2)) + ΨQ(x1, x2)

+ φ(x1, (y2, t2)),

where ΨN : Rn+1×Rn+1 → C, ΨQ : Rn×Rn → C are continuous, skew-symmetric,
bi-additive maps, with

ΨN((y1, t1 + x · y1), (y2, t2 + x · y2)) = ΨN((y1, t1), (y2, t2)), (6.4)

and where φ : Rn×Rn+1 → C is continuous, additive in its second component, and
satisfies

φ(x1 + x2, (y2, t2)) = φ(x1, (y2, t2 + x2 · y2)) + φ(x2, (y2, t2)). (6.5)

By Lemma 6.1 we get

ΨN((y1, t1), (y2, t2)) = 〈y1, S2y2〉+ c · [t1y2 − t2y1],

ΨQ(x1, x2) = 〈x1, S1x2〉,
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for skew-symmetric matrices S1, S2 and a constant vector c ∈ Cn. Now (6.4) requires
that also

c · [(x · y1)y2 − (x · y2)y1] = 0.

Since n ≥ 2 this is impossible unless c = 0, hence

ΨN((y1, t1), (y2, t2 + x1 · y2)) + ΨQ(x1, x2) = 〈x1, S1x2〉+ 〈y1, S2y2〉.
Next, the continuity and additivity of φ in its second component yield the existence
of continuous maps V : Rn → Cn, d : Rn → C such that

φ(x, (y, t)) = V (x) · y + d(x)t,

and substituting this into (6.5) we find that

V (x1 + x2) · y2 + d(x1 + x2)t2

= V (x1) · y2 + d(x1)(t2 + x2 · y2) + V (x2) · y2 + d(x2)t2.

Comparing coefficients of t2 we see that d is additive, hence d(x) = d · x for some
constant vector d ∈ Cn. Now the preceding equation becomes

[V (x1 + x2)− V (x1)− V (x2)] · y2 = (d · x1)(x2 · y2).

Since the left hand side is symmetric in x1 and x2, so is the right hand side. Again,
since n ≥ 2 this cannot happen unless d = 0, and we arrive at the conclusion that V
is additive. Being continuous it is linear. Hence we have V (x) · y = 〈x,Ay〉 for some
matrix A. Therefore φ(x, (y, t)) = 〈x,Ay〉, giving F the claimed form, except for the
fact that A may be chosen with zero trace. To see this consider α ∈ C and define
h(x, y, t) := −αt. We find that δ[h]((x1, y1, t1), (x2, y2, t2)) = α〈x1, y2〉 = 〈x1, αIy2〉
which implies that modulo coboundaries we may replace A by A−αI for any α ∈ C.
In particular by the traceless matrix A− n−1(trA)I.

(b) The verification consists of simple computations that we skip.
(c) Assume that F = δ[h] for some h ∈ C(Hn) where F has the form (6.3).

Proceeding as at the end of Example 6.4 we infer that S1 = S2 = 0, so what remains
is that

h(x1, y1, t1) + h(x2, y2, t2)− h(x1 + x2, y1 + y2, t1 + t2 + x1 · y2) = 〈x1, Ay2〉
for all (x1, y1, t1), (x2, y2, t2) ∈ Rn ×Rn ×R. (6.6)

Since the right hand side of (6.6) is C∞(Hn × Hn) we get by Lemma 3.3 that
h ∈ C∞(Hn).

A differentiation of (6.6) with respect to t1 yields

∂h

∂t
(x1, y1, t1) =

∂h

∂t
(x1 + x2, y1 + y2, t1 + t2 + x1 · y2).

Choosing x2, y2 and t2 judiciously we get

∂h

∂t
(x1, y1, t1) =

∂h

∂t
(0, 0, 0)
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which implies that

h(x, y, t) = αt+H(x, y) for all (x, y, t) ∈ Hn,

where α := ∂h/∂t(0, 0, 0) ∈ C is a constant, and H ∈ C∞(Rn ×Rn). Substituting
this result back into (6.6) gives us that

H(x1, y1) +H(x2, y2)−H(x1 + x2, y1 + y2) = x1 · (A+ αI)y2

for all x1, y1, x2, y2 ∈ Rn. Differentiating this with respect to y1 and then choosing
x2 and y2 suitably we get H(x, y) = β · y +K(x) for all x, y ∈ Rn, where β ∈ Cn is
a constant and K ∈ C∞(Rn). Substituting this back into the identity for H yields

K(x1) +K(x2)−K(x1 + x2) = x1 · (A+ αI)y2 for all x1, x2, y2 ∈ Rn.

The left hand side is independent of y2, hence so is the right hand side:

x1 · (A+ αI)y2 = x1 · (A+ αI)0 = 0.

This holds for all x1, y2 ∈ Rn, so A+ αI = 0, i.e. A = −αI. But trA = 0, so α = 0
and hence A = 0.

The results are quite different in the Examples 6.4 and 6.6. We used in an essen-
tial way during our discussion of Example 6.6 that n ≥ 2. If we nevertheless take n =
1 in the conclusion of Example 6.6 we get from (6.3) that F ((x1, y1, t1), (x2, y2, t2)) =
x1Ay2. During our discussion of Example 6.4 we found that this function is a
coboundary on H1. So the solutions we get by taking n = 1 in Example 6.6 are
all ' 0. That does not fit with Example 6.4 in which the cohomology space has
dimension 2.
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