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SECOND ORDER PERTURBATION THEORY FOR EMBEDDED
EIGENVALUES

J. FAUPIN, J.S. MØLLER, AND E. SKIBSTED

Abstract. We study second order perturbation theory for embedded eigenvalues
of an abstract class of self-adjoint operators. Using an extension of the Mourre
theory, under assumptions on the regularity of bound states with respect to a
conjugate operator, we prove upper semicontinuity of the point spectrum and
establish the Fermi Golden Rule criterion. Our results apply to massless Pauli-
Fierz Hamiltonians for arbitrary coupling.
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1. Introduction

In this second of a series of papers, we study second order perturbation theory for
embedded eigenvalues of an abstract class of self-adjoint operators. Perturbation
theory for isolated eigenvalues of finite multiplicity is well-understood, at least if
the family of operators under consideration is analytic in the sense of Kato (see
[Ka, RS]). The question is more subtle when dealing with unperturbed eigenvalues
embedded in the continuous spectrum. A method to tackle this problem, which we
shall not develop here, is based on analytic deformation techniques and gives rise
to a notion of resonances. It appeared in [AC, BC] and was further extended by
many authors in different contexts (let us mention [Si, RS, JP, BFS] among many
other contributions). As shown in [AHS], another way of studying the behaviour of
embedded eigenvalues under perturbation is based on Mourre’s commutator method
([Mo]). We shall develop this second approach from an abstract point of view in
this paper.
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2 J. FAUPIN, J.S. MØLLER, AND E. SKIBSTED

We mainly require two conditions: The first one corresponds to a set of assump-
tions needed in order to use the Mourre method (see Conditions 1.3 below). We shall
work with an extension of the Mourre theory which we call singular Mourre the-
ory, and which is closely related to the ones developed in [Sk, MS, GGM1]. Singular
Mourre theory refers to the situation where the commutator of the Hamiltonian with
the chosen “conjugate operator” is not controlled by the Hamiltonian itself. The
regular Mourre theory, studied for instance in [Mo, ABG, HüSp, HuSi, Ca, CGH], is
a particular case of the theory considered here. A feature of singular Mourre theory
is to allow one to derive spectral properties of so-called Pauli-Fierz Hamiltonians.
This shall be discussed in Section 2.

Our second set of assumptions concerns the regularity of bound states with respect
to a conjugate operator (see Conditions 1.7, 1.9 and 1.10 below). Related questions
are discussed in details, in an abstract framework, in the companion paper [FMS]
(see also [Ca, CGH]).

Our main concerns are to study upper semicontinuity of point spectrum (Theo-
rem 1.14) and to show that the Fermi Golden Rule criterion (Theorem 1.15) holds.
If the Fermi Golden Rule condition is not fulfilled we shall still obtain an expansion
to second order of perturbed eigenvalues. Before precisely stating our results and
comparing them to the literature, we introduce the abstract framework in which we
shall work.

1.1. Assumptions. Let H be a complex Hilbert space. Suppose that H and M are
self-adjoint operators on H, with M ≥ 0, and suppose that a symmetric operator R
is given such that D(R) ⊇ D(H). Let H ′ := M +R defined on D := D(M) ∩ D(H).
Let G := D(|H|1/2) ∩ D(M1/2) equipped with the intersection topology. Let A
be a closed, densely defined, maximal symmetric operator on H. In particular,
introducing deficiency indices n∓ = dim Ker(A∗ ± i), either n+ = 0 or n− = 0. If
n+ = 0 (or n− = 0) B := A (or B := −A) generates a C0-semigroup of isometries
{Wt}t≥0 (see [RS, ABG]). We recall that a map R+ ∋ t 7→ Wt ∈ B(H) is called a C0-
semigroup if W0 = I, WtWs = Wt+s for t, s ≥ 0, and w- limt→0+ Wt = I. Here B(H)
denotes the set of bounded operators on H. The generator B of a C0-semigroup
{Wt}t≥0 is defined by

D(B) := {u ∈ H, Bu := lim
t→0+

(it)−1(Wtu− u) exists}. (1.1)

We write Wt = eitB.
For any Hilbert spaces H1 and H2, we denote by B(H1; H2) the set of bounded

operators from H1 to H2. We use the notation 〈B〉 := (1 + B∗B)1/2 for any closed
operator B. Throughout the paper, Cj , j = 1, 2, . . . , will denote positive constants
that may differ from one proof to another. Let us recall the following definition from
[GGM1]:

Definition 1.1. Let {W1,t}, {W2,t} be two C0-semigroups on Hilbert spaces H1, H2
with generators A1, A2 respectively. A bounded operator B ∈ B(H1; H2) is said to
be in C1(A1;A2) if

‖W2,tB −BW1,t‖B(H1;H2) ≤ Ct, 0 ≤ t ≤ 1, (1.2)

for some positive constant C.
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Remarks 1.2. 1) By [GGM1, Proposition 2.29], we have that B ∈ B(H1; H2)
is of class C1(A1;A2) if and only if the sesquilinear form 2[B, iA]1 defined
on D(A∗

2) × D(A1) by 〈φ, 2[B, iA]1ψ〉 = i〈B∗φ,A1ψ〉 − i〈A∗
2φ,Bψ〉 is bounded

relatively to the topology of H2 × H1. The associated bounded operator in
B(H1; H2) is denoted by [B, iA]0 and we have

[B, iA]0 = s- lim
t→0+

t−1[BW1,t −W2,tB]. (1.3)

2) We recall (see [ABG]) that if A and B are self-adjoint operators on a Hilbert
space H, B is said to be in C1(A) if there exists z ∈ C\R such that (B−z)−1 ∈
C1(A;A) (meaning here that Hj = H and Aj = A, j = 1, 2). In that case in
fact (B − z)−1 ∈ C1(A;A) for all z ∈ ρ(B) (ρ(B) is the resolvent set of B).

3) The standard Mourre class, cf. [Mo], is a subset of C1(A) given as follows:
Notice that for any B ∈ C1(A) the commutator form [B, iA] defined on D(B)∩
D(A) extends uniquely (by continuity) to a bounded form [B, iA]0 on D(B).
We shall say that B is Mourre-C1(A) if [B, iA]0 is a B-bounded operator on
H. The subclass of Mourre-C1(A) operators in C1(A) is in this paper denoted
by C1

Mo(A).
Let us now state our first set of conditions:

Conditions 1.3.
(1) H ∈ C1

Mo(M).
(2) There is an interval I ⊆ R such that for all η ∈ I, there exist c0 > 0, C1 ∈ R,

fη ∈ C∞
0 (R), 0 ≤ fη ≤ 1 and fη = 1 in a neighbourhood of η, and a compact

operator K0 on H such that, in the sense of quadratic forms on D,
M +R ≥ c0I − C1f

⊥
η (H)2〈H〉 −K0, (1.4)

where f⊥
η (H) = 1 − fη(H).

(3) G is “boundedly-stable” under {Wt} and {W ∗
t } i.e. WtG ⊆ G, W ∗

t G ⊆ G, t > 0,
and for all φ ∈ G,

sup
0<t<1

‖Wtφ‖G < ∞, sup
0<t<1

‖W ∗
t φ‖G < ∞. (1.5)

Let AG denote the generator of the C0-semigroup Wt|G (see
[GGM1, Lemma 2.33] for justification). Let AG∗ denote the generator of the
C0-semigroup given as the extension of Wt to G∗.

(4) H ∈ C1(AG;AG∗) and the operator H ′ = M + R satisfies H ′ = [H, iA]0 ∈
C1(AG;AG∗) (see Remark 1.4 1) for justification of notation). We set H ′′ :=
[H ′, iA]0.

Remarks 1.4. 1) It follows from Condition 1.3 (1) that D is a core for H as
well as for M , cf. [ABG, GG]. This condition is transcribed from [Sk] and is
stronger than [GGM1, (M1)], cf. [GGM1, Lemma 2.26]. Another consequence
of Condition 1.3 (1) is the following alternative description of the space G: Let
G be the Friedrichs extension of the operatorM+〈H〉 on D. Then D(

√
G) = G;

this follows from [GGM1, Proposition 3.8]. (For the readers convenience we
remark that the statement actually can be proved directly by using elementary
interpolation, cf. [FMS, (3.14)].) In particular D is dense in G, and we can
consider H ′ as a bounded operator in the sense used in Condition 1.3 (4):
H ′ ∈ B(G; G∗).
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2) Suppose Conditions 1.3. Then the following identity holds for all φ1 ∈ D ∩
D(A∗) and φ2 ∈ D ∩ D(A):

〈φ1, (M +R)φ2〉 = i〈Hφ1, Aφ2〉 − i〈A∗φ1, Hφ2〉. (1.6)

This is a consequence of (1.3). Another (related) consequence of (1.3) is the
following version of the so-called virial theorem: For any eigenstate, (H−λ)ψ =
0, with ψ ∈ D(M1/2)

〈ψ, (M +R)ψ〉 = 0. (1.7)
3) The conditions of the regular Mourre theory considered for instance in [Mo,

ABG, HüSp, HuSi, Ca, CGH] constitute a particular case of Conditions 1.3
assuming that M = 0. In [Mo, ABG, HuSi, Ca, CGH], the conjugate operator
A is supposed to be self-adjoint, whereas in [HüSp] the weaker assumption that
A is the generator of a C0-semigroup of isometries is required. Notice that in
the case where M = 0 and A is self-adjoint Condition 1.3 (3) appears replaced
by the stronger condition: sup|t|<1 ‖eitAφ‖D(H) < ∞ for any φ ∈ D(H). By
[HP, Lemma 10.2.1] if D(H) is a separable Hilbert space the latter condition
is a consequence of the fact that eitAD(H) ⊆ D(H) for all t ∈ R. It should also
be noticed that the boundedness of H ′′ with respect to H is often required in
the regular Mourre theory. Condition 1.3 (4) leads to the weaker assumption
that 〈H〉−1/2H ′′〈H〉−1/2 is bounded.

4) The idea of splitting the formal commutator i[H,A] into an H-unbounded
piece, M , and a H-bounded piece, R, appeared first in [Sk]. As it was shown
in [Sk], and later in [GGM2], this extension of the Mourre theory allows one
to study spectral properties of N -body systems coupled to bosonic fields (see
also [MS] for the use of related assumptions in a different context). This will
be discussed more precisely in the next section.

5) We notice that Conditions 1.3 (with K0 = 0 in (2)) are stronger than Hy-
potheses (M1)–(M5) used in [GGM1] (the operator H ′ in [GGM1] is supposed
to be closed; it corresponds to the closure of the operator H ′ considered in
this paper). Therefore, in particular, the results proved in [GGM1] hold under
Conditions 1.3.

Throughout the discussion below we impose (mostly tacitly) Conditions 1.3. We
introduce the following classes of operators (to be considered as classes of “pertur-
bations”):

Definition 1.5. We say that a symmetric operator V with D(V ) ⊇ D(H), ǫ-
bounded relatively to H , is in V1 if V ∈ C1(AG;AG∗) and V ′ := [V, iA]0 is given as
an H-bounded operator. For any V ∈ V1, we set

‖V ‖1 := ‖V (H − i)−1‖ + ‖V ′(H − i)−1‖. (1.8)

It follows from the Kato-Rellich Theorem that for any V ∈ V1 the operator H+V
is self-adjoint with D(H + V ) = D(H).

Definition 1.6. We say that V ∈ V1 is in V2 if V ′ ∈ C1(AG;AG∗), and we set

‖V ‖2 := ‖V ‖1 + ‖V ′′‖B(G;G∗), (1.9)

where V ′′ := [V ′, iA]0.
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Our main assumptions on the unperturbed eigenstates are stated in Condition 1.7
and in its stronger version Condition 1.9.
Condition 1.7. If λ ∈ I is an eigenvalue of H , any eigenstate ψ associated to λ,
Hψ = λψ, satisfies ψ ∈ D(A) ∩ D(M).
Remark 1.8. Under Condition 1.7 and with ψ given as there, one verifies using (1.3)
and the fact that D is dense in D(H) that ψ ∈ D(HA) := {φ ∈ D(A)|Aφ ∈ D(H)},
cf. Remark 1.4 2).
Condition 1.9. If λ ∈ I is an eigenvalue of H , any eigenstate ψ associated to λ,
Hψ = λψ, satisfies ψ ∈ D(A2) ∩ D(M).

The (possibly existing) perturbed eigenstates may fulfil the following condition:
Condition 1.10. For any compact interval J ⊆ I there exist γ > 0 and a subset
B1,γ of the ball centered at 0 with radius γ in V1,

B1,γ ⊆ {V ∈ V1, ‖V ‖1 ≤ γ}, (1.10)
such that 0 ∈ B1,γ , B1,γ is star-shaped and symmetric with respect to 0, and the
following holds: There exists C > 0 such that, if V ∈ B1,γ and (H + V − λ)ψ = 0
with λ ∈ J , then ψ ∈ D(A) ∩ D(M) and

‖Aψ‖ ≤ C‖ψ‖. (1.11)
The following two conditions are needed for our version of the so-called Fermi

Golden Rule criterion. The first condition is a technical addition to Conditions 1.3:
Condition 1.11. D(M1/2) ∩ D(H) ∩ D(A∗) is dense in D(A∗).
Remarks 1.12. 1) Suppose the following modification of the part of Condition

1.3 (3) concerning the adjoint semigroup: D is boundedly-stable under {W ∗
t }

i.e. W ∗
t D ⊆ D, t > 0, and for all φ ∈ D,

sup
0<t<1

‖W ∗
t φ‖D < ∞. (1.12)

Then D ∩ D(A∗) is dense in D(A∗), cf. [GGM1, Remark 2.35]. This statement
is of course stronger than Condition 1.11.

2) In our applications Condition 1.11 can be avoided upon changing the definition
of V1. Explicitly this modification is given by imposing in Definition 1.5 the
following additional condition (replacing ǫ-boundedness with respect to H): V
is 〈H〉1/2-bounded. (See Remark 5.2 1).)

Our second condition is the so-called Fermi Golden Rule condition.
Condition 1.13. Suppose Conditions 1.7 and 1.11. Suppose λ ∈ σpp(H) and let P
denote the eigenprojection P = EH({λ}) and P̄ = I − P . For given V ∈ V1 there
exists c > 0 such that

PV Im
(
(H − λ− i0)−1P̄

)
V P ≥ cP. (1.13)

We shall see in Section 3 that the left-hand-side of (1.13) defines a bounded
operator for any V ∈ V1 (see Remark 5.2 1) for details). This point might be
surprising for the reader due to the low degree of regularity imposed by Condition 1.7
(for example P may not map into D(A2) under the stated conditions, see the end
of the next subsection for a further discussion).
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1.2. Main results. We have the following result on upper semicontinuity of the
point spectrum of H , showing, in other words, that the total multiplicity of the
perturbed eigenvalues near an unperturbed one, λ, cannot exceed the multiplicity
of λ.

Theorem 1.14. Assume that Conditions 1.3 and Condition 1.10 hold. Let λ ∈ I
and J ⊆ I be a compact interval including λ such that σpp(H) ∩ J = {λ}. Fix
γ > 0 and B1,γ as in Condition 1.10. There exists 0 < γ′ ≤ γ such that if V ∈ B1,γ
and ‖V ‖1 ≤ γ′, the total multiplicity of the eigenvalues of H + V in J is at most
dim Ker(H − λ).

Notice that the appearing quantity dim Ker(H − λ) is finite. This is in fact a
consequence of Conditions 1.3 and Condition 1.7, cf. Remark 1.4 2). We remark
that Theorem 1.14 is an abstract version of [AHS, Theorem 2.5] where upper semi-
continuity of the point spectrum of N -body Schrödinger operators is established.
The proof is essentially the same.

In the case where H does not have eigenvalues in J , we do not need Condition 1.10
to establish upper semicontinuity of point spectrum. More precisely, we will prove
that σpp(H + σV ) ∩ J = ∅ for |σ| small enough under the condition that V ∈ V2
(see Corollary 4.1). If it is only required that V ∈ V1, the result still holds true
provided we assume in addition that any eigenstate of H + σV belongs to D(M1/2)
(see Corollary 4.2).

One might suspect that there is a similar semistability result as the one stated
in Theorem 1.14 given upon replacing Condition 1.10 by Condition 1.9 (assuming
now smallness of ‖V ‖2). Although there is a formal argument, Conditions 1.3 are
insufficient for a rigorous proof. Nevertheless the analogous assertion is true in the
special case where H does not have eigenvalues in the interval J , cf. Corollary 4.1.
Notice also that another special case, although treated under additional conditions,
is part of Theorem 1.15 stated below.

For any V ∈ V1 and σ ∈ R we set Hσ := H + σV . A main result of this paper is
the following assertion on absence of eigenvalues of Hσ for small non-vanishing |σ|
and for a V fulfilling (1.13):

Theorem 1.15. Assume that Conditions 1.3, Condition 1.7 and Condition 1.11
hold. Assume that Condition 1.13 holds for some V ∈ V1. Let J ⊆ I be any
compact interval such that σpp(H) ∩ J = {λ}. Suppose one of the following two
conditions:

i) Condition 1.9 and V ∈ V2.
ii) Condition 1.10 and V ∈ B1,γ.

There exists σ0 > 0 such that for all σ ∈] − σ0, σ0[ \{0},
σpp(Hσ) ∩ J = ∅. (1.14)

This type of theorem is usually referred to as the Fermi Golden Rule criterion (or in
short just Fermi Golden Rule). In the framework of regular Mourre theory (that is in
particular if M = 0, see Remark 1.4 3) above), if A is self-adjoint, Fermi Golden Rule
is well-known. It was first proved in [AHS] for N -body Schrödinger operators, under
an assumption of the type V ∈ V2 and using exponential bounds for eigenstates
(yielding in particular an analogue of Condition 1.9). In [HuSi], Theorem 1.15 is
proved in an abstract setting assuming Condition 1.9 and the H-boundedness of V ′′.
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In [Ca, CGH], still in the framework of regular Mourre theory and with A self-adjoint,
it is shown that an assumption of the type H ∈ C4(A) implies Condition 1.9. A
similar result also appears in [GJ] under slightly weaker (“local”) assumptions, still
requiring, however, the boundedness of four commutators.

Theorem 1.15 improves the previous results for the following two reasons: First,
as mentioned above, Conditions 1.3 do not require that A be self-adjoint neither
that the formal commutator i[H,A] be H-bounded, which can be important in
applications (see in particular Section 2 on Pauli-Fierz Hamiltonians). Second, we
prove that the Fermi Golden Rule criterion also holds under Condition 1.10 and
the hypothesis V ∈ B1,γ (that is under condition ii) of Theorem 1.15), which to
our knowledge constitutes a new result even in the framework of regular Mourre
theory. Let us emphasize that Condition 1.10 does not contain the assumption that
the eigenstates are in the domain of A2, but only in the domain of A. The price we
have to pay lies in the fact that Condition 1.10 involves information on the possibly
existing perturbed eigenstates, which in concrete models might (at a first glance)
seem rather difficult to obtain.

Nevertheless in a separate paper, [FMS] we provide abstract hypotheses under
which Condition 1.10 is indeed satisfied. As a consequence, we obtain that Theorem
1.15 applies for a class of Quantum Field Theory models provided that the Hamil-
tonian only has two bounded commutators with A (defined in a suitable sense), see
Section 2. We emphasize that from an abstract point of view, working with C2(A)
conditions, in fact verifying Condition 1.10 is doable while Condition 1.9 might be
false, see [FMS, Example 1.4] for a counterexample.

Recently Rasmussen together with one us ([MR]) studied the essential energy-
momentum spectrum of the translation invariant massive Nelson Hamiltonian H .
In particular the authors construct, for a given total momentum P and non-threshold
energy E, a conjugate operator A with respect to which the fiber Hamiltonian H(P )
satisfies a Mourre estimate, locally uniformly in E and P . From the point of view
of the present paper this model is of interest because H(P ) is of class C2(A) but
(presumably) not of class C3(A). This means that, even though the context of
[MR] is regular Mourre theory, the improvements of this paper and its companion
[FMS] are both essential to conclude anything about the structure of embedded
non-threshold eigenvalue bands.

We shall use different methods to prove Theorem 1.15 depending on whether we
assume i) or ii). In the first case, we shall obtain an expansion to second order of any
possibly existing perturbed eigenvalue near the unperturbed one λ. In the second
case, ii), this will also be done under the further hypothesis dim Ran(P ) = 1, but we
shall proceed differently if the unperturbed eigenvalue is degenerate. In both cases,
a key ingredient of the proof consists in obtaining a “reduced Limiting Absorption
Principle” at an eigenvalue (see Theorems 3.3 and 3.4 below).

The paper is organized as follows: In the next section, we consider Pauli-Fierz
Hamiltonians which constitute our main example of a model satisfying the abstract
conditions stated above. Section 3 concerns reduced Limiting Absorption Principles
at an eigenvalue λ of H . In Section 4, we study upper semicontinuity of point
spectrum and prove Theorem 1.14. Finally in Section 5, we study second order
perturbation theory assuming either Condition 1.9 or Condition 1.10, and we prove
Theorem 1.15.



8 J. FAUPIN, J.S. MØLLER, AND E. SKIBSTED

2. Application to the spectral theory of Pauli-Fierz models

2.1. Massless Pauli-Fierz Hamiltonians. The main example we have in mind
fitting into the framework of Section 1 consists of an abstract class of Quantum
Field Theory models, sometimes called massless Pauli-Fierz models (see for instance
[DG, DJ, GGM2, FMS]). The latter describe a “small” quantum system linearly
coupled to a massless quantized radiation field. The corresponding Hamiltonians
HPF
v acts on the Hilbert space HPF := K⊗Γ(h), where K is the Hilbert space for the

small quantum system, and Γ(h) is the symmetric Fock space over h := L2(Rd, dk).
The latter describes a field of massless scalar bosons and is defined by

Γ(h) := C ⊕
+∞⊕

n=1
⊗n
sh, (2.1)

where ⊗n
s denotes the symmetric nth tensor product of h. The operatorHPF

v depends
on the form factor v and is written as

HPF
v := K ⊗ 1Γ(h) + 1K ⊗ dΓ(|k|) + φ(v), (2.2)

where K is a bounded below operator on K describing the dynamics of the small
system, dΓ(|k|) is the second quantization of the operator of multiplication by |k|,
and φ(v) := (a∗(v) + a(v))/

√
2. The form factor v is a linear operator from K to

K ⊗ h, and a∗(v), a(v) are the usual creation and annihilation operators associated
with v (see [BD, GGM2]). For convenience, we assume that

K ≥ 0. (2.3)
The hypotheses we make are slightly stronger than the ones considered in [GGM2].
The first one, Hypothesis (H0), is related to the fact that the small system is
assumed to be confined:
(H0) (K + 1)−1 is compact on K.

Let 0 ≤ τ < 1/2 be fixed. Let Oτ ⊆ B(D(Kτ ); K ⊗ h) be the set of operators which
extend by continuity from D(Kτ ) to an element of B(K; D(Kτ )∗ ⊗ h), that is

Oτ :=
{
v ∈ B(D(Kτ ); K ⊗ h),

∃C > 0, ∀ψ ∈ D(Kτ ),
∥∥∥[(K + 1)−τ ⊗ 1h]vψ

∥∥∥
K⊗h

≤ C‖ψ‖K
}
. (2.4)

Our first assumption on the form factor is the following:
(I1) v and [1K ⊗ |k|−1/2]v belong to Oτ .

It follows from [GGM2, Proposition 4.6] that, if [1K ⊗ |k|−1/2]v ∈ Oτ , then HPF
v is

self-adjoint with domain
D(HPF

v ) = D(HPF
0 ) = D(K) ⊗ Γ(h) ∩ K ⊗ D(dΓ(|k|)). (2.5)

We consider the unitary operator
T : L2(Rd) → L2(R+) ⊗ L2(Sd−1) =: h̃ (2.6)

defined by (Tu)(ω, θ) = ω(d−1)/2u(ωθ). Lifting it to the full Hilbert space HPF by
setting T := 1K ⊗Γ(T ) (recall that Γ(T ) is defined by its restriction to the n-bosons
Hilbert space as Γ(T )|⊗s

nh = T ⊗ · · · ⊗ T for n ≥ 1, and Γ(T )|C = 1ÊC for n = 0),
we get a unitary map

T : HPF → H̃PF := K ⊗ Γ(h̃). (2.7)
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This allows us to write the Hamiltonian in polar coordinates in the following way:
H̃PF
v := T HPF

v T −1 = K ⊗ 1Γ(h̃) + 1K ⊗ dΓ(ω) + φ(ṽ), (2.8)

on H̃PF, where
ṽ := [1K ⊗ T ]v (2.9)

is a linear operator from K to K ⊗ h̃, and dΓ(ω) denotes the second quantization of
the operator of multiplication by ω ∈ R+.

Let us consider a function d ∈ C∞((0,∞)) satisfying d′(ω) < 0, |d′(ω)| ≤
Cω−1d(ω) for some positive constant C, d(ω) = 1 if ω ≥ 1, and limω→0 d(ω) = +∞
(see Figure 1).d ( ω )

110 ω
Figure 1. The map ω 7→ d(ω)

Let
Õτ := [1K ⊗ T ]Oτ . (2.10)

The following further assumptions on the interaction are made:
(I2) The following holds:

[
1K ⊗ (1 + ω−1/2)ω−1d(ω) ⊗ 1L2(Sd−1)

]
ṽ ∈ Õτ

[
1K ⊗ (1 + ω−1/2)d(ω)∂ω ⊗ 1L2(Sd−1)

]
ṽ ∈ Õτ ,

(I3)
[
1K ⊗ ∂2

ω ⊗ 1L2(Sd−1)
]
ṽ ∈ B(D(K 1

2 ); K ⊗ h̃).
Let us recall the definition of the conjugate operator used in [GGM2]. Let χ ∈

C∞
0 ([0,∞)) be such that χ(ω) = 0 if ω ≥ 1 and χ(ω) = 1 if ω ≤ 1/2. For 0 < δ ≤

1/2, the function mδ ∈ C∞([0,∞)) is defined by

mδ(ω) = χ(ω
δ

)d(δ) + (1 − χ)(ω
δ

)d(ω), (2.11)

(see Figure 2).
Consider the following operator ãδ acting on h̃:

ãδ := imδ(ω) ∂
∂ω

+ i
2

dmδ

dω (ω), D(ãδ) = H1
0(R+) ⊗ L2(Sd−1), (2.12)

where H1
0 (R+) denotes the closure of C∞

0 (R+) in H1(R+) and C∞
0 (R+) is the set

of smooth compactly supported functions on R+. Then the operator Ãδ on H̃PF is
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1

d ( δ )
1 ω

m δ ( ω )

0
Figure 2. The map ω 7→ mδ(ω)

defined by Ãδ := 1K ⊗ dΓ(ãδ). It is proved in [GGM2] that Ãδ is closed, densely
defined and maximal symmetric.

Let Mδ := 1K ⊗ dΓ(mδ) and Rδ(ṽ) := −φ(iãδ ṽ). Then Mδ is self-adjoint, Mδ ≥ 0,
and if v satisfies Hypotheses (I1) and (I2), then, by [GGM2, Lemma 6.4 i)], Rδ(ṽ)
is symmetric and H̃PF

v -bounded.

2.2. Checking the abstract assumptions. In this subsection, we verify that, on
the Hilbert space H = H̃PF, the operators H = H̃PF

v , M = Mδ, R = Rδ(ṽ), A = Ãδ
fulfil Conditions 1.3, 1.10 and 1.11 stated in Section 1 (provided that v satisfies, in
particular, the hypotheses stated above). The following lemma shows that Condition
1.3 (1) is satisfied.

Lemma 2.1. Assume that v satisfies Hypothesis (I1). Then for all δ > 0,

H̃PF
v ∈ C1

Mo(Mδ). (2.13)

Proof. The fact that H̃PF
v ∈ C1(Mδ) follows from [GGM2, Lemma 6.4 i)]. Moreover,

since mδ is bounded and [ω,mδ] = 0, we have that [H̃PF
v , iMδ]0 = −φ(imδṽ) by

[GGM2, Corollary 4.13]. Using again that mδ is bounded, we then conclude from
Hypothesis (I1) and [GGM2, Proposition 4.6] that [H̃PF

v , iMδ]0 is H̃PF
0 -bounded,

and hence H̃PF
v -bounded (with relative bound 0). �

Lemma 2.1 together with [GGM2] imply:

Proposition 2.2. Assume Hypothesis (H0) and that v satisfies Hypotheses (I1),
(I2) and (I3). Then for all E0 ∈ R, there exists δ0 > 0 such that for all 0 < δ ≤ δ0,
the operators H = H̃PF

v , M = Mδ, R = Rδ(ṽ), A = Ãδ fulfil Conditions 1.3 with
I = (−∞, E0).

Remark 2.3. We remark that the formulation of the Mourre estimate stated in
[GGM2, Theorem 7.12] is not the same as the one considered in Condition 1.3
(2). However, one can verify that the latter is indeed a consequence of [GGM2,
Theorem 7.12].

In order to verify Condition 1.10, we need to impose a further condition on v:
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(I4) The form (K ⊗ 1h̃)ṽ − ṽK extends by continuity from D(K ⊗ 1Ễh
) × D(K)

to an element of ÕÊ 1
2
.

Here ÕÊ 1
2

is defined as ÕÊτ (see (2.4) and (2.10)). Notice that, assuming (I1), the
statement above is meaningful.

We have to identify the set B1,γ used in Condition 1.10. To this end, let us first
introduce some definitions. Let IPF(d) be defined by:

IPF(d) :=
{
v ∈ L(K; K ⊗ h), v satisfies (I1), (I2), (I3), (I4)

}
. (2.14)

Observe that IPF(d) can be equipped with a norm, ‖ · ‖PF, matching the four con-
ditions (I1), (I2), (I3), (I4) (see [FMS, Subsection 5.1]).

Let v ∈ IPF(d). Let Wδ,t denote the C0-semigroup generated by Ãδ. We set

GPF
δ := D(|H̃PF

v | 1
2 ) ∩ D(M

1
2
δ ). (2.15)

By Proposition 2.2, we have that H = H̃PF
v , M = Mδ, A = Ãδ fulfil Condi-

tion 1.3 (3), and hence Wδ,t|GPF
δ

is a C0-semigroup. Its generator is denoted by
ÃGPF

δ
. Likewise, the extension of Wδ,t to (GPF

δ )∗ is a C0-semigroup whose generator
is denoted by Ã(GPF

δ
)∗ .

Let VPF
1 denote the set of symmetric operators V , ǫ-bounded relatively to H̃PF

v ,
such that V ∈ C1(ÃGPF

δ
; Ã(GPF

δ
)∗) and [V, iÃδ]0 is H̃PF

v -bounded. It is equipped with
the norm

‖V ‖PF
1 = ‖V (H̃PF

v − i)−1‖ + ‖[V, iÃδ]0(H̃PF
v − i)−1‖. (2.16)

By [GGM2, Proposition 4.6], if w satisfies Hypothesis (I1), then φ(w̃) is ǫ-bounded
relatively to H̃PF

v , and, by [GGM2, Lemma 6.4 i)], if in addition w satisfies Hypoth-
esis (I2), then, for any δ > 0, [φ(w̃), iÃδ]0 = −φ(iãδw̃) is H̃PF

v -bounded. Moreover,
one can verify that the map

IPF(d) ∋ w 7→ φ(w̃) ∈ VPF
1 (2.17)

is continuous (see [FMS, Lemma 5.8]).
In a separate paper, [FMS], we prove (see [FMS, Theorem 5.2]):

Proposition 2.4. Assume Hypothesis (H0) and let v ∈ IPF(d). For all E0 ∈ R,
there exists δ0 > 0 such that for all 0 < δ ≤ δ0, the operators H = H̃PF

v , M = Mδ,
R = Rδ(ṽ), A = Ãδ fulfil Condition 1.10. Here I = (−∞, E0) and B1,γ is given by

B1,γ = {φ(w̃), w ∈ IPF(d), ‖w‖PF ≤ γ̃}, (2.18)
where γ̃ > 0 is fixed sufficiently small.

Remarks 2.5. 1) Since the map (2.17) is continuous, for any γ > 0, the set B1,γ
is included in {V ∈ VPF

1 , ‖V ‖PF
1 ≤ γ} provided that γ̃ is chosen small enough.

Moreover, B1,γ is clearly star-shaped and symmetric with respect to 0. Hence
the requirements of Condition 1.10 are satisfied.

2) Under the conditions of Proposition 2.4, we do not expect Condition 1.9 to be
satisfied in general. Indeed, the assumption that v ∈ IPF(d) in the statement
of Proposition 2.4 allows us to control two commutators of H̃PF

v with Ãδ. In
order to be able to conclude that Condition 1.9 is satisfied using the method
of [FMS], one would need to control three commutators of H̃PF

v with Ãδ (see
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[FMS]). This would require a stronger restriction on the infrared behavior of
the form factor v than the one imposed by Hypotheses (I1)–(I2)–(I3).

In order to apply Theorems 1.14 and 1.15, it remains to verify Condition 1.11.
Let

S = D(K) ⊗ Γfin(C∞
0 (R+) ⊗ L2(Sd−1)), (2.19)

where for E ⊆ L2(R+) ⊗ L2(Sd−1),

Γfin(E) :=
{
Φ = (Φ(0),Φ(1),Φ(2), . . . ) ∈ Γ(E), ∃n0,Φ(n) = 0 for n ≥ n0

}
. (2.20)

For any δ > 0, S is included in D(H̃PF
v ) ∩ D(Mδ) ∩ D(Ãδ). Moreover, S is a core

for Ã∗
δ. Therefore we get:

Proposition 2.6. Assume that v satisfies Hypothesis (I1). Then, for all δ > 0, the
operators H = H̃PF

v , M = Mδ, A = Ãδ fulfil Condition 1.11.

Let us finally mention the particular case for which the unperturbed Hamiltonian
under consideration is the non-interacting one, H̃PF

0 , given by

H̃PF
0 := K ⊗ 1Γ(h̃) + 1K ⊗ dΓ(ω). (2.21)

In this case, one can choose M = 1K ⊗ N , where N := dΓ(1h̃ ) is the number
operator, andA = 1K⊗dΓ(i∂ω). Then one can easily check the following proposition:

Proposition 2.7. Assume Hypothesis (H0). Then the operators H = H̃PF
0 ,M =

1K ⊗ N , R = 0, A = 1K ⊗ dΓ(i∂ω) fulfil Conditions 1.3 (with I = R) and Condition
1.9.

Remark 2.8. The fact that Condition 1.9 is fulfilled under the conditions of Propo-
sition 2.7 is obvious, since the unperturbed eigenstates are of the form φ⊗ Ω, where
φ is an eigenstate of K, and Ω denotes the vacuum in Γ(h̃).

2.3. Results. As a consequence of Propositions 2.2, 2.4 and 2.6, applying Theo-
rems 1.14 and 1.15, we obtain:

Theorem 2.9. Assume Hypothesis (H0). Let v0, v ∈ IPF(d). Let J be a compact
interval such that σpp(HPF

v0 ) ∩ J = {λ}. Let Pv0 denote the eigenprojection Pv0 =
EHPF

v0
({λ}) and P̄v0 = I − Pv0. Then the following holds:
i) There exists σ0 > 0 such that for all 0 ≤ |σ| ≤ σ0, the total multiplicity of

the eigenvalues of HPF
v0 + σφ(v) in J is at most dim Ran(Pv0).

ii) Suppose in addition that

Pv0φ(v)Im
(
(HPF

v0 − λ− i0)−1P̄v0

)
φ(v)Pv0 ≥ cPv0 , (2.22)

for some c > 0. Then there exists σ0 > 0 such that for all 0 < |σ| ≤ σ0,

σpp
(
HPF
v0 + σφ(v)

)
∩ J = ∅. (2.23)

Remarks 2.10. 1) In view of Propositions 2.2, 2.4 and 2.6, Theorems 1.14
and 1.15 imply Theorem 2.9 with H̃PF

v0 replacing HPF
v0 and φ(ṽ) replacing φ(v).

However, using the unitary transformation mapping HPF to H̃PF, the state-
ment of Theorem 2.9 clearly follows.
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2) In the case where the unperturbed Hamiltonian is the non-interacting one, that
is HPF

v0 = HPF
0 with HPF

0 = K ⊗ 1Γ(h) + 1K ⊗ dΓ(|k|), one can use Proposition
2.7 instead of Proposition 2.4 in order to conclude Theorem 2.9 ii). Indeed, it
follows from [GGM2] that if v satisfies (I1)–(I2)–(I3), then φ(ṽ) ∈ V2 (in the
sense of Definition 1.6). Hence, since Condition 1.9 is satisfied by Proposition
2.7, we can apply Theorem 1.15 with Condition i) instead of Condition ii). For
a general v0 ∈ IPF(d), however, we have to apply Theorem 1.15 with Condition
i) (see Remark 2.5 2) above).

The latter result (the absence of eigenvalues of HPF
0 + σφ(v) for sufficiently small

σ 6= 0 according to Fermi Golden Rule) already appears in [DJ] assuming in par-
ticular that 〈∂ω〉ν ṽ ∈ B(K; K ⊗ h̃) for some ν > 1. Let us also mention [Go] where
a similar result with different assumptions on the form factor is obtained, still for
sufficiently small values of the coupling constant. Besides, in [DJ], upper semiconti-
nuity of the point spectrum of HPF

0 +σφ(v) (in the sense stated in Theorem 2.9 i)) is
obtained for sufficiently small σ, assuming that 〈∂ω〉ν ṽ ∈ B(K; K⊗h̃) for some ν > 2.
The main achievement of our paper, as far as massless Pauli-Fierz models are con-
cerned, is to provide a method which allows us to consider HPF

v0 as the unperturbed
Hamiltonian, for any v0 belonging to IPF(d).

A model sharing several properties with the one considered in this subsection is the
so-called “standard model of non-relativistic QED”. For results on spectral theory in
this context involving the Mourre method, we refer to [Sk, BFS, BFSS, DJ, FGS].

2.4. Example: The massless Nelson model. An example of a model satisfying
the hypotheses of Subsection 2.1 is the Nelson model of confined non-relativistic
quantum particles interacting with massless scalar bosons. The Hilbert space is
given by

HN := L2(R3P ) ⊗ F , (2.24)
where F := Γ(L2(R3)) is the symmetric Fock space over L2(R3) (see (2.1)). The
Nelson Hamiltonian acts on HN and is defined by

HN
ρ := K ⊗ 1F + 1L2(R3P ) ⊗ dΓ(|k|) + Iρ(x). (2.25)

Here x = (x1, . . . , xP ), and K is a Schrödinger operator on L2(R3P ) describing the
dynamics of P non-relativistic particles. We suppose that K is given by

K :=
P∑

i=1

1
2mi

∆i +
∑

i<j

Vij(xi − xj) +W (x1, . . . , xp), (2.26)

where the masses mi are positive, the confining potential W satisfies
(W0) W ∈ L2

loc(R3P ) and there exist positive constants c0, c1 > 0 and α > 2 such
that W (x) ≥ c0|x|2α − c1,

and the pair potentials Vij satisfy
(V0) The Vij’s are ∆-bounded with relative bound 0.

Without loss of generality, we can assume that K ≥ 0. Note that (W0) implies
that Hypothesis (H0) of Subsection 2.1 is satisfied.

The coupling Iρ(x) in (2.25) is of the form

Iρ(x) :=
P∑

i=1
Φρ(xi), (2.27)
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where, for y ∈ R3, Φρ(y) is the field operator defined by

Φρ(y) := 1√
2

∫

R3

(
ρ(k)e−ik·ya∗(k) + ρ̄(k)eik·xa(k)

)
dk. (2.28)

In particular, Iρ(x) can be written under the form Iρ(x) = φ(ΨN(ρ)), where

ΨN(ρ) ∈ B(L2(R3P ); L2(R3P ) ⊗ L2(R3)) = B(L2(R3P ); L2(R3; L2(R3P )))
is defined by

(ΨN(ρ)ψ)(k)(x1, . . . , xP ) =
P∑

j=1
e−ik·xjρ(k)ψ(x1, . . . , xP ). (2.29)

Hence HN
ρ is a Pauli-Fierz Hamiltonian in the sense of Subsection 2.1, with K =

L2(R3P ) and h = L2(R3).
For simplicity, we assume that ρ only depends on k through its norm, |k|, and,

going to polar coordinates, we introduce
ρ̃(ω) = ωρ(ω, 0, 0), ω ∈ R+. (2.30)

Our set of conditions on ρ̃ is the following:

(ρ1)
∫ ∞

0
(1 + ω−1)|ρ̃(ω)|2dω < ∞,

(ρ2)
∫ ∞

0
(1 + ω−1)d(ω)2

[
ω−2|ρ̃(ω)|2 +

∣∣∣
dρ̃
dω (ω)

∣∣∣
2]

dω < ∞,

(ρ3)
∫ ∞

0

∣∣∣
d2ρ̃

dω2 (ω)
∣∣∣
2
dω < ∞,

(ρ4)
∫ ∞

0
ω4
∣∣∣ρ̃(ω)

∣∣∣
2
dω < ∞,

where d denotes the function considered in Subsection 2.1. Note that (ρ1)–(ρ2)–(ρ3)
are the assumptions made in [GGM2]. The further assumption (ρ4) is made in or-
der that Hypothesis (I4) of Subsection 2.2 is satisfied. We observe that (ρ2) and
(ρ4) imply (ρ1).

The set of functions ρ satisfying (ρ1)–(ρ2)–(ρ3)–(ρ4) is denoted by IN(d). The
following proposition is proven in [FMS, Subsection 5.2]:

Proposition 2.11. Let ρ ∈ IN(d). Then ΨN(ρ) defined as in (2.29) belongs to
IPFÊ(d).

An example of ρ, and hence ρ̃, satisfying (ρ1)–(ρ2)–(ρ3)–(ρ4) is

ρ(k) = e− |k|2
2Λ2 |k|− 1

2 +ǫ, ρ̃(ω) = e− ω2
2Λ2 ω

1
2 +ǫ, (2.31)

with 0 < Λ < ∞ and ǫ > 1.
From Proposition 2.11 and Theorem 2.9, we obtain:

Theorem 2.12. Assume that Hypotheses (W0) and (V0) hold. Let ρ0, ρ ∈ IN(d).
Let J be a compact interval such that σpp(HN

ρ0) ∩ J = {λ}. Let Pρ0 denote the
eigenprojection Pρ0 = EHN

ρ0
({λ}) and P̄ρ0 = I − Pρ0. Then the following holds:

i) There exists σ0 > 0 such that for all 0 ≤ |σ| ≤ σ0, the total multiplicity of
the eigenvalues of HN

ρ0 + σIρ(x) in J is at most dim Ran(Pρ0).



SECOND ORDER PERTURBATION THEORY 15

ii) Suppose in addition that

Pρ0Iρ(x)Im
(
(HN

ρ0 − λ− i0)−1P̄ρ0

)
Iρ(x)Pρ0 ≥ cPρ0 , (2.32)

for some c > 0. Then there exists σ0 > 0 such that for all 0 < |σ| ≤ σ0,

σpp
(
HN
ρ0 + σIρ(x)

)
∩ J = ∅. (2.33)

In fact, the confinement assumption (W0) allows one to make use of a unitary
dressing transformation (see e.g. [GGM2, FMS]) in order to “improve” the infrared
behavior of the form factor in the Hamiltonian HN

ρ0 . More precisely, let (ρ1’) denote
the following condition:

(ρ1’)
∫ ∞

0
(1 + ω−2)|ρ̃(ω)|2dω < ∞.

Assuming that ρ0 satisfies this condition, the unitary operator
Uρ0 := e−iPΦiρ0/|·| (2.34)

is well-defined and we can consider the Hamiltonian
HN′
ρ0 :=(1K ⊗ Uρ0)HN

Êρ0
(1K ⊗ U∗

ρ0)
=KÊρ0 ⊗ 1F + 1ÊK ⊗ dΓ(|k|) + IÊρ0(x) − IÊρ0(0), (2.35)

where

Kρ0 :=K + P 2

Ê2

∫

ÊR3

|ρ0(k)|2
|k| dk − P

P∑

j=1

∫

ÊR3

|ρ0(k)|2
|k| cos(k · xj)dk. (2.36)

In the same way as in (2.29), we observe that Iρ0(x) − Iρ0(0) = φ(Ψ′
N(ρ0)), where

Ψ′
N(ρ0) is defined by

(Ψ′
N(ρ0)ψ)(k)(x1, . . . , xP ) =

P∑

j=1
(e−ik·xj − 1)ρ0(k)ψ(x1, . . . , xP ). (2.37)

In particular, HN′
ρ0 is a Pauli-Fierz Hamiltonian in the sense of Subsection 2.1.

We consider the following further conditions:

(ρ2’)
∫ ∞

0

∣∣∣
dρ̃
dω (ω)

∣∣∣
2
dω < ∞,

(ρ3’)
∫ ∞

0
(1 + ω2)−1ω2

∣∣∣
d2ρ̃

dω2 (ω)
∣∣∣
2
dω < ∞,

and we denote by I ′
N(d) the set of functions ρ satisfying (ρ1’)–(ρ2’)–(ρ3’)–(ρ4).

In [FMS, Subsection 5.2], we verify that if ρ0 ∈ I ′
N(d), then Ψ′

N(ρ0) defined as in
(2.37) belongs to IPFÊ(d). Notice that for any 0 < Λ < ∞ and ǫ > 0, the function
given in (2.31) belongs to I ′

N(d).
As in the statement of Theorem 2.12, we consider a perturbation of the Hamil-

tonian HN
ρ0 of the form σIρ(x). After the dressing transformation, the perturbation

becomes
σIρ0,ρ(x) := σ(1K ⊗ Uρ0)Iρ(x)(1K ⊗ U∗

ρ0)

= Iρ(x) − P
P∑

j=1
Re

∫

R3

ρ̄0(k)ρ(k)
|k| e−ik·xj dk. (2.38)
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Notice that σIρ0,ρ(x) is not a field operator in the sense of Subsection 2.1. Hence
it does not belong to the class of perturbations considered in Theorem 2.9. Nev-
ertheless, proceeding in the same way as what we did in Subsection 2.2 to deduce
Theorem 2.9 (see in particular [FMS, Theorem 1.2 2)] for the verification of Condi-
tion 1.10 in the present context), we obtain:

Theorem 2.13. Assume that Hypotheses (W0) and (V0) are satisfied and let
ρ0 ∈ I ′

N(d) and ρ ∈ IN(d). Let J be a compact interval such that σpp(HN
ρ0)∩J = {λ}.

Let Pρ0 denote the eigenprojection Pρ0 = EHN
ρ0

({λ}) and P̄ρ0 = I − Pρ0. Then the
conclusions i) and ii) of Theorem 2.12 hold.

Observe that, thanks to the unitary dressing transformation Uρ0 , the Fermi golden
rule condition (2.32) is equivalent to the following one:

P ′
ρ0Iρ0,ρ(x)Im

(
(HN′

ρ0 − λ− i0)−1P̄ ′
ρ0

)
Iρ0,ρ(x)P ′

ρ0 ≥ cP ′
ρ0 , (2.39)

where
P ′
ρ0 := EHN′

ρ0
({λ}). (2.40)

Hence the conclusions of Theorem 2.13 for HN
ρ0 follows from the corresponding state-

ments for HN′
ρ0 .

In Theorem 2.13, ρ0 and ρ do not belong to the same class of form factors (as
far as the infrared singularity is concerned, ρ0 is allowed to have a more singular
infrared behavior than ρ). This is due to the fact that the unitary transformation
Uρ0 is ρ0-dependent, so that the Hamiltonian obtained after the transformation,
HN′
ρ0 , does not depend linearly on ρ0. Thus, a perturbation of the form HN′

ρ0+σρ−HN′
ρ0

does not belong to the class of linear perturbations considered in this paper (at least
as far as the Fermi Golden Rule criterion is concerned). Nevertheless, since the non-
linear terms in σ in the expression of HN′

ρ0+σρ −HN′
ρ0 act only on the particle Hilbert

space L2(R3P ) (and hence, in particular, commute with the conjugate operator Ãδ of
Subsection 2.1), we expect that the method of this paper can be extended to cover
the case where both ρ0 and ρ belong to I ′

N(d).

3. Reduced Limiting Absorption Principle at an eigenvalue

In this section we prove two different “reduced Limiting Absorption Principles”.
Assuming Conditions 1.3 and 1.7, we shall prove a Limiting Absorption Principle for
the reduced unperturbed Hamiltonian HP̄ (where P = EH({λ}) and P̄ = I − P ).
If the stronger Condition 1.9 is satisfied, we shall obtain a Limiting Absorption
Principle for the reduced perturbed Hamiltonian H + αP + σV (for some α > 0),
provided that V ∈ V2 and that σ is sufficiently small.

Let us first recall from [GGM1]:

Theorem 3.1. Assume that Conditions 1.3 hold. Suppose J ⊆ I is a compact
interval such that σpp(H) ∩ J = ∅. Let S = {z ∈ C,Re z ∈ J, 0 < |Im z| ≤ 1}. For
any 1/2 < s ≤ 1,

sup
z∈S

‖〈A〉−s(H − z)−1〈A〉−s‖ < ∞. (3.1)

Moreover the function S ∋ z → 〈A〉−s(H − z)−1〈A〉−s ∈ B(H) is uniformly Hölder
continuous of order s − 1/2.
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Remarks 3.2. 1) Strictly speaking, the Mourre estimate formulated in Condi-
tion 1.3 (2) together with [GGM1] yield that, for any η ∈ J , there is a neigh-
bourhood Iη such that, for any compact interval Jη ⊆ Iη, the Limiting Absorp-
tion Principle (3.1) holds with Jη replacing J . The statement of Theorem 3.1
then follows from the compactness of J and a covering argument (see Step II
in the proof of Theorem 3.4 below for the use of the same argument).

2) The result [GGM1, Theorem 3.3] is stronger in that the bound (3.1) holds in
a stronger operator topology (given in terms of the Hilbert spaces G and G∗).
For our purposes (3.1) suffices. A similar remark is due for the bounds (3.2)
and (3.21) given below.

We shall now obtain a result similar to Theorem 3.1 for a reduced resolvent.

Theorem 3.3. Assume that Conditions 1.3 and Condition 1.7 hold. Suppose J ⊆ I
is a compact interval such that σpp(H) ∩ J = {λ}. Let P denote the eigenprojection
P = EH({λ}) and let P̄ = I − P . Let S = {z ∈ C,Re z ∈ J, 0 < |Im z| ≤ 1}. For
any 1/2 < s ≤ 1,

sup
z∈S

‖〈A〉−s(H − z)−1P̄ 〈A〉−s‖ < ∞. (3.2)

Moreover there exists C > 0 such that for all z, z′ ∈ S,
∥∥∥〈A〉−s

(
(H − z)−1 − (H − z′)−1

)
P̄ 〈A〉−s

∥∥∥ ≤ C|z − z′|s− 1
2 . (3.3)

Proof. It follows from Conditions 1.3 and Condition 1.7 that σpp(H) is finite in a
neighbourhood of λ. Hence, possibly by considering a bigger compact interval, we
can assume without loss of generality that λ is included in the interior of J .

Consider Condition 1.3 (2) with η = λ. Let Jλ ⊆ J be a compact neighbourhood of
λ such that fλ = 1 on a neighbourhood of Jλ. Applying Theorem 3.1 on [inf J, inf Jλ]
and using that P + P̄ = I, we obtain that

sup
z∈C,Re z∈[inf J,inf Jλ],0<|Im z|≤1

‖〈A〉−s(H − z)−1P̄ 〈A〉−s‖ < ∞, (3.4)

and that z 7→ 〈A〉−s(H − z)−1P̄ 〈A〉−s is Hölder continuous of order s − 1/2 on
{z ∈ C,Re z ∈ [inf J, inf Jλ], 0 < |Im z| ≤ 1}. The same holds with [sup Jλ, sup J ]
replacing [inf J, inf Jλ]. Therefore, to conclude the proof, one can verify that it is
sufficient to establish the statement of Theorem 3.3 with J replaced by Jλ. We
can follow the proof of [GGM1, Theorem 3.3]. We emphasize the differences with
[GGM1] and refer the reader to that paper for more details.

We obtain from (1.4) with η = λ that
M +R ≥ 2−1c0I − C2f

⊥
λ (H)2〈H〉 − fλ(H)Kfλ(H). (3.5)

Since fλ(H) goes strongly to P as λ → 0, we obtain
M +R ≥ 3−1c0I − C2f

⊥
λ (H)2〈H〉 − C3P, (3.6)

which is valid if the support of fλ is sufficiently close to λ. Applying P̄ from the left
and from the right in (3.6) yields

P̄ (M +R)P̄ ≥ 3−1c0P̄ − C2P̄ f
⊥
λ (H)2〈H〉P̄ . (3.7)

Next, we can mimic the proof of [GGM1, Theorem 3.3] using (3.7) and the fol-
lowing slightly different constructions: In Subsection 3.4 of [GGM1] the operator Hǫ

(related to the one from the seminal paper [Mo]) is taken as Hǫ = H − iǫH ′. Notice
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that here and henceforth we can assume without loss that H ′ is closed (possibly by
taking the closure).

We propose to take
H̄ǫ := H − iǫP̄H ′P̄ , (3.8)

with domain D(H̄ǫ) := D(H) ∩ D(M) ∩ Ran(P̄ ) on the Hilbert space H̄ := P̄H. It
follows from the assumption Ran(P ) ⊆ D(M) that H̄ǫ is well-defined and commutes
with P̄ . Similarly, denoting HP̄ := H|D(H)∩Ran(P̄ ) and MP̄ := (P̄MP̄ )|D(M)∩Ran(P̄ ),
the assumption that Ran(P ) ⊆ D(M) implies that HP̄ and MP̄ are self-adjoint.
Moreover HP̄ ∈ C1(MP̄ ), D(HP̄ )∩D(MP̄ ) is a core for MP̄ , and P̄H ′P̄ coincides with
the closure of MP̄ +RP̄ defined on D(MP̄ )∩D(HP̄ ), where RP̄ := (P̄RP̄ )|D(H)∩Ran(P̄ ).
Therefore the assumptions of [GGM1, Theorem 2.25] are satisfied (see [GGM1,
Lemma 2.26]), which implies that H̄ǫ is closed, densely defined, and H̄∗

ǫ = H̄−ǫ.
Let Ḡ := G ∩ Ran(P̄ ). By Conditions 1.3 and the fact that Ran(P ) ⊆ D(M), H̄ǫ

extends to a bounded operator: H̄ǫ ∈ B(Ḡ; Ḡ∗). Mimicking [GGM1, Subsection 3.4]
(replacing u ∈ D(Hǫ) in Lemmata 3.9 and 3.10 by u ∈ D(H̄ǫ), and using (3.7)), one
can show that there exists ǫ0 such that for all 0 < |ǫ| ≤ ǫ0, for all z = η + iµ with
η ∈ Jλ and ǫµ > 0, H̄ǫ − z is invertible with bounded inverse R̄ǫ(z) ∈ B(H̄; D(H̄ǫ)).
Furthermore R̄ǫ(z) extends to a bounded operator in B(Ḡ∗; Ḡ) which coincides with
the inverse of (H̄ǫ − z) ∈ B(Ḡ; Ḡ∗), and which satisfies

‖R̄ǫ(z)‖B(Ḡ;Ḡ∗) ≤ C

|ǫ| , (3.9a)

‖R̄ǫ(z)v‖Ḡ ≤ C

|ǫ| 1
2

(∣∣∣(v, R̄ǫ(z)v)
∣∣∣

1
2 + ‖v‖

)
for all v ∈ H̄, (3.9b)

s- lim
ǫ→0±

R̄ǫ(z) = (HP̄ − z)−1 ∈ B(H̄), (3.9c)

(see [GGM1, Proposition 3.11 and Lemma 3.12]).
Let ρǫ := 〈ǫA〉s−1〈A〉−s, with 1/2 < s ≤ 1. Instead of looking at the expectation of

the resolvent Rǫ(z) := (Hǫ−z)−1, ǫ 6= 0, we propose to show a differential inequality
for the quantity

Fǫ(z) :=
〈
ρǫu, P̄ R̄ǫ(z)P̄ ρǫu

〉
; (3.10)

here u ∈ H, so that ρǫu ∈ D(A) ⊆ D(A∗). Note that the assumption Ran(P ) ⊆
D(A) implies that P̄ leaves D(A) invariant.

In the same way as in [GGM1], one can verify that
d
dǫFǫ(z) =

〈( d
dǫρǫ

)
u, R̄ǫ(z)P̄ ρǫu

〉
+
〈
ρǫu, R̄ǫ(z)P̄

(
d
dǫρǫ

)
u
〉

+ 〈R̄∗
ǫ (z)P̄ ρǫu,Aρǫu〉 − 〈Aρǫu, R̄ǫ(z)P̄ ρǫu〉

+ ǫ〈R̄∗
ǫ (z)P̄ ρǫu, (H ′PA− APH ′ −H ′′) R̄ǫ(z)P̄ ρǫu〉, (3.11)

where dρǫ/dǫ = (s− 1)ǫ|A|2〈ǫA〉s−3〈A〉−s. In particular
‖dρǫ/dǫ‖ ≤ C|ǫ|s−1 and ‖Aρǫ‖ ≤ C|ǫ|s−1. (3.12)

Next it follows from Conditions 1.3 and Condition 1.7 that
H ′PA−APH ′ −H ′′ ∈ B(G; G∗).
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This implies
∣∣∣∣Ê

d
dǫFǫ(z)

∣∣∣∣ ≤ C1|ǫ|s−1‖u‖
(
‖R̄ǫ(z)P̄ ρǫu‖ + ‖R̄∗

ǫ (z)P̄ ρǫu‖
)

+ C2|ǫ|‖R̄ǫ(z)P̄ ρǫu‖G‖R̄∗
ǫ (z)P̄ ρǫu‖G. (3.13)

By (3.9b), we obtain
∣∣∣∣

d
dǫFǫ(z)

∣∣∣∣ ≤ C3|ǫ|s−1‖u‖|ǫ|− 1
2
(
|Fǫ(z)|

1
2 + ‖P̄ ρǫu‖

)

+ C4|ǫ|
(

|ǫ|− 1
2
(
|Fǫ(z)|

1
2 + ‖P̄ ρǫu‖

))2

≤ C5|ǫ|s−
3
2
(
|Fǫ(z)| + ‖u‖2

)
, (3.14)

for 0 < |ǫ| ≤ ǫ0. Applying Gronwall’s lemma, this yields

|Fǫ(z)| ≤ C6‖u‖2, (3.15)

which combined with (3.9c) gives

sup
z∈C

Re z∈Jλ
0<|Im z|≤1

‖〈A〉−s(H − z)−1P̄ 〈A〉−s‖ < ∞. (3.16)

In order to prove the Hölder continuity in z, we use that, for 0 < ǫ1 < ǫ0,

F0(z) − F0(z′) = −
∫ ǫ1

0

d
dǫ(Fǫ(z) − Fǫ(z′))dǫ

−
∫ ǫ0

ǫ1

d
dǫ(Fǫ(z) − Fǫ(z′))dǫ+ (Fǫ0(z) − Fǫ0(z′)). (3.17)

It follows from (3.14) and (3.15) that
∣∣∣∣
∫ ǫ1

0

d
dǫ(Fǫ(z) − Fǫ(z′))dǫ

∣∣∣∣ ≤ C7ǫ
s− 1

2
1 ‖u‖2. (3.18)

Moreover, using the first resolvent equation together with (3.11), (3.9a), (3.9b),
(3.12) and (3.15), we obtain

∣∣∣∣
d
dǫ(Fǫ(z) − Fǫ(z′))

∣∣∣∣ ≤ C8|ǫ|s− 5
2 |z − z′|‖u‖2,

which implies
∣∣∣∣
∫ ǫ0

ǫ1

d
dǫ(Fǫ(z) − Fǫ(z′))dǫ

∣∣∣∣ ≤ C9ǫ
s− 3

2
1 |z − z′|‖u‖2. (3.19)

Finally, the first resolvent equation and (3.9a) give
∣∣∣(Fǫ0(z) − Fǫ0(z′))

∣∣∣ ≤ C(ǫ0)|z − z′|‖u‖2, (3.20)

for some positive constant C(ǫ0) depending on ǫ0. Taking ǫ1 = |z−z′|, Equation (3.3)
follows from (3.17)–(3.20). �

We have the following stronger result if Condition 1.9 is further assumed.
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Theorem 3.4. Assume that Conditions 1.3 and Condition 1.9 hold. Suppose J ⊆ I
is a compact interval such that σpp(H) ∩ J ⊆ {λ}. Let P = EH({λ}) and V ∈ V2.
For σ ∈ R, define Hσ := H + σV and H̄σ := Hσ + αJP , where αJ ∈ R is fixed
such that αJ > sup J − inf J . Let S = {z ∈ C,Re z ∈ J, 0 < |Im z| ≤ 1}. For all
1/2 < s ≤ 1, there exists σ0 > 0 such that for all |σ| ≤ σ0,

sup
z∈S

‖〈A〉−s(H̄σ − z)−1〈A〉−s‖ < ∞. (3.21)

Moreover there exists C > 0 such that for all σ, σ′ ∈ [−σ0, σ0], for all z, z′ ∈ S,
∥∥∥〈A〉−s

(
(H̄σ − z)−1 − (H̄σ′ − z′)−1

)
〈A〉−s

∥∥∥ ≤ C
(
|σ − σ′|s− 1

2 + |z − z′|s− 1
2
)
.

(3.22)

Remarks 3.5. 1) In the case σpp(H)∩J = ∅, we have P = 0 and hence H̄σ = Hσ.
Of course, Condition 1.9 is not required in this case.

2) The assumption that αJ > sup J − inf J implies that H + αJP does not have
eigenvalues in J .

3) Equations (3.21)–(3.22) with σ = σ′ = 0 yield that

sup
z∈S

‖〈A〉−s(H − z)−1P̄ 〈A〉−s‖ < ∞, (3.23)

and that z 7→ 〈A〉−s(H − z)−1P̄ 〈A〉−s is Hölder continuous of order s − 1/2
on S. Hence we recover the Limiting Absorption Principles of Theorems 3.1
and 3.3.

Proof of Theorem 3.4. Considering the Mourre estimate, Condition 1.3 (2), for any
η ∈ J , we denote by Jη ⊆ I a compact neighbourhood of η such that fη = 1 on a
neighbourhood of Jη.

Step 1 Let us prove that, for any η ∈ J , there exists ση > 0 such that for all
|σ| ≤ ση,

sup
z∈C,Re z∈Jη,0<|Im z|≤1

‖〈A〉−s(H̄σ − z)−1〈A〉−s‖ < ∞, (3.24)

and that the function (σ, z) 7→ 〈A〉−s(H̄σ − z)−1〈A〉−s is Hölder continuous of order
s− 1/2 in σ and z on [−ση, ση] × {z ∈ C,Re z ∈ Jη, 0 < |Im z| ≤ 1}.

Let H̄ := H + αJP . Condition 1.7 implies that [P, iA]0 extends to a compact
operator. Since HP = λP and HP̄ = H̄P̄ , we have

f⊥
η (H)2〈H〉 =f⊥

η (H̄)2〈H̄〉 + f⊥
η (λ)2〈λ〉P − f⊥

η (λ+ αJ)2〈λ+ αJ〉P. (3.25)

Using that the second and third terms in the right-hand-side of (3.25) are compact,
the Mourre estimate (1.4) yields

M +
(
R + αJ [P, iA]0

)
≥ c0I − C0f

⊥
η (H̄)2〈H̄〉 −K ′

0, (3.26)

where K ′
0 is compact. Since η /∈ σpp(H̄) (see Remark 3.5 2)), we can put K ′

0 = 0
provided we choose the function fη supported in a sufficiently small interval con-
taining η. We get

M +
(
R + αJ [P, iA]0

)
≥ 2−1c0I − C1f

⊥
η (H̄)2〈H̄〉. (3.27)
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The estimate (3.27) is stable under perturbation from the class V1. In particular
(and more precisely) there exists ση > 0 such that if |σ| ≤ ση, then

M +
(
R + σV ′ + αJ [P, iA]0

)
≥ 3−1c0I − C2f

⊥
η (H̄σ)2〈H̄σ〉. (3.28)

Indeed, since V ∈ V1, we have that
±V ′ ≤ C3〈H〉 + C4 ≤ C5 + C6f

⊥
η (H̄)〈H̄〉f⊥

η (H̄), (3.29)
and

f⊥
η (H̄)〈H̄〉f⊥

η (H̄) ≤ C7f
⊥
η (H̄)〈H̄σ〉f⊥

η (H̄)
≤ C7f

⊥
η (H̄σ)〈H̄σ〉f⊥

η (H̄σ) + C8|σ|. (3.30)
The first inequality in (3.30) follows from elementary interpolation while the second
inequality follows, for instance, from the Helffer-Sjöstrand functional calculus.

We set for shortness H ′
σ := H ′ + σV ′, H ′′

σ := H ′′ + σV ′′, P ′ := [P, iA]0 and
P ′′ := [P ′, iA]0. Remark that Conditions 1.3, Condition 1.9 and the assumption
V ∈ V2 imply that

H ′′
σ , P

′′, H ′′
σ + αJP

′′ ∈ B(G; G∗).
Note that equation (3.28) can be written

H ′
σ + αJP

′ ≥ 3−1c0I − C2f
⊥
η (H̄σ)2〈H̄σ〉. (3.31)

We emphasize that the constant C2 is independent of z and σ.
To prove (3.24), we can proceed as in the proof of Theorem 3.3, using (3.31)

instead of (3.7), and replacing H̄ǫ and Fǫ(z) in (3.8) and (3.10) respectively by
H̄σ,ǫ := H̄σ − iǫ(H ′

σ + αJP
′), (3.32)

and
Fσ,ǫ(z) := 〈ρǫu, R̄σ,ǫ(z)ρǫu〉. (3.33)

Here we have set
R̄σ,ǫ(z) := (H̄σ,ǫ − z)−1 (3.34)

and, as before, ρǫ = 〈ǫA〉s−1〈A〉−s. Notice that, by [GGM1, Theorem 2.25 and
Lemma 2.26], H̄σ,ǫ is closed, densely defined and satisfies H̄∗

σ,ǫ = H̄σ,−ǫ. Moreover,
following [GGM1, Subsection 3.4], one can indeed verify that there exists ǫ0 such
that for all 0 < |ǫ| ≤ ǫ0 and z = η′ +iµ with η′ ∈ Jη and ǫµ > 0, H̄σ,ǫ−z is invertible
with bounded inverse R̄σ,ǫ(z) satisfying properties similar to (3.9a)–(3.9c). We can
compute:

d
dǫFσ,ǫ(z) =

〈( d
dǫρǫ

)
u, R̄σ,ǫ(z)ρǫu

〉
+
〈
ρǫu, R̄σ,ǫ(z)

(
d
dǫρǫ

)
u
〉

+ 〈R̄∗
σ,ǫ(z)ρǫu,Aρǫu〉 − 〈Aρǫu, R̄σ,ǫ(z)ρǫu〉

− ǫ〈R̄∗
σ,ǫ(z)ρǫu, (H ′′

σ + αJP
′′) R̄σ,ǫ(z)ρǫu〉. (3.35)

We obtain as in (3.14) that
∣∣∣∣

d
dǫFσ,ǫ(z)

∣∣∣∣ ≤ C9|ǫ|s−
3
2 ‖u‖2. (3.36)

Estimate (3.21) (with Jλ in place of J) and the Hölder continuity in z then follow
as in the proof of Theorem 3.3.
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It remains to prove the Hölder continuity in σ. We follow again the proof of
Theorem 3.3. For 0 < ǫ1 < ǫ0, we have

Fσ,0(z) − Fσ′,0(z) = −
∫ ǫ1

0

d
dǫ(Fσ,ǫ(z) − Fσ′,ǫ(z))dǫ

−
∫ ǫ0

ǫ1

d
dǫ(Fσ,ǫ(z) − Fσ′,ǫ(z))dǫ + (Fσ,ǫ0(z) − Fσ′,ǫ0(z)). (3.37)

The first term in the right-hand-side of (3.37) is estimated thanks to (3.36), which
gives

∣∣∣∣
∫ ǫ1

0

d
dǫ(Fσ,ǫ(z) − Fσ′,ǫ(z))dǫ

∣∣∣∣ ≤ C10ǫ
s− 1

2
1 ‖u‖2. (3.38)

As for the second and third terms on the right-hand-side of (3.37), we use that, by
the second resolvent equation,

R̄σ,ǫ(z) − R̄σ′,ǫ(z) = −(σ − σ′)R̄σ,ǫ(z)(V − iǫV ′)R̄σ′,ǫ(z).

Since V and V ′ are H-bounded by assumption, this implies in the same way as in
the proof of (3.19) and (3.20) that

∣∣∣∣
∫ ǫ0

ǫ1

d
dǫ(Fσ,ǫ(z) − Fσ′,ǫ(z))dǫ

∣∣∣∣ ≤ C11ǫ
s− 3

2
1 |σ − σ′|‖u‖2, (3.39)

and ∣∣∣(Fσ,ǫ0(z) − Fσ′,ǫ0(z))
∣∣∣ ≤ C(ǫ0)|σ − σ′|‖u‖2. (3.40)

The Hölder continuity in σ follows from (3.37)–(3.40) by choosing ǫ1 = |σ − σ′|.
Step 2 Since J is compact, it follows from Step 1 and a covering argument that
there exist η1, . . . , ηl (with l < ∞) such that J ⊆ Jη1 ∪ · · · ∪ Jηl

. Taking σ0 =
min(ση1 , . . . , σηl

), Equation (3.21) and the Hölder continuity in σ follow. The Hölder
continuity in z is a straightforward consequence of the fact that

l∑

n=1
(an)s− 1

2 ≤ l
3
2 −s

( l∑

n=1
an

)s− 1
2
, (3.41)

for any sequence of positive numbers (an)n=1,...,l, and 1/2 < s ≤ 1. �

4. Upper semicontinuity of point spectrum

In this section we study upper semicontinuity of the point spectrum of H . The
main result is Theorem 1.14 proven below.

Let us begin with stating a consequence of Theorem 3.4, which shows that if the
unperturbed Hamiltonian do not have eigenvalues in a compact interval, the same
holds for the perturbed Hamiltonian (provided that the perturbation V belongs
to V2).

Corollary 4.1. Assume that Conditions 1.3 hold. Let J ⊆ I be a compact interval
such that σpp(H) ∩ J = ∅. Let V ∈ V2. There exists σ0 > 0 such that for any
|σ| ≤ σ0,

σpp(H + σV ) ∩ J = ∅. (4.1)
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The statement of Corollary 4.1 remains true under the weaker assumption that
V ∈ V1, provided that a priori eigenstates of H + σV belong to D(M1/2). This
is a consequence of the Mourre estimate established in the proof of Theorem 3.4
(see (3.28)), together with the virial property that 〈ψ, (H ′ + σV ′)ψ〉 = 0 which
holds for any eigenstate ψ of H + σV satisfying ψ ∈ D(M1/2). Hence we have the
following:

Corollary 4.2. Assume that Conditions 1.3 hold. Let J ⊆ I be a compact interval
such that σpp(H) ∩ J = ∅. Let V ∈ V1. There exists σ0 > 0 such that for any
|σ| ≤ σ0, the following holds: Suppose that any eigenstate ψ of H + σV associated
to an eigenvalue λ ∈ J satisfies ψ ∈ D(M1/2), then

σpp(H + σV ) ∩ J = ∅. (4.2)

We now turn to the proof of Theorem 1.14. Here we need Condition 1.10 and
that V ∈ B1,γ in addition to Conditions 1.3.
Proof of Theorem 1.14. Let λ ∈ I and J ⊆ I as in the statement of the theorem.
Step 1 Let us prove that, for any η ∈ J , there exist βη > 0 and γη > 0 such that,
for ‖V ‖1 ≤ γη, the total multiplicity of the eigenvalues of H + V in (η − βη, η + βη)
is at most dim Ker(H − η).

If η is an eigenvalue, we proceed as in [AHS, Section 2] introducing the (finite
rank) eigenprojection, say P , corresponding to this eigenvalue and the auxiliary
operator H̄ = H + αJP . Here αJ > sup J − inf J as in Theorem 3.4. Then in the
same way as in (3.28), for ‖V ‖1 ≤ γη with γη > 0 small enough, we have that

M +
(
R + αJ [P, iA]0 + [V, iA]0

)
≥ 3−1c0I − C1f

⊥
η (H̄ + V )2〈H̄ + V 〉, (4.3)

where fη ∈ C∞
0 (R) is such that 0 ≤ fη ≤ 1 and fη = 1 in a neighbourhood of η. Let

us in the following agree on the convention that P = 0 and H̄ = H if η /∈ σpp(H).
Then (4.3) holds no matter whether η is an eigenvalue or not (provided ‖V ‖1 is
sufficiently small and that the support of fη is chosen sufficiently close to η).

Now, it suffices to follow the proof of [AHS, Theorem 2.5], combining Condi-
tion 1.10 and (4.3). More precisely, let m be the multiplicity of η and let us assume
that H+V has eigenvalues (ηj), j = 1, . . . , m1, of total multiplicity m1 > m, located
in (η − βη, η + βη) ⊆ I. Let (ψj), j = 1, . . . , m1, be an orthonormal set of eigen-
vectors, ψj being associated with ηj. Consider a linear combination ψ = ∑

j ajψj
such that ‖ψ‖ = 1 and Pψ = 0. Since V ∈ B1,γ , it follows from Condition 1.10 that
ψ ∈ D ∩D(A), whence (4.3) together with Remark 1.4 2) yields

3−1c0 ≤
〈
ψ, (M +R + αJ [P, iA]0 + [V, iA]0)ψ

〉
+ C1

∥∥∥∥f
⊥
η (H̄ + V )〈H̄ + V 〉1/2ψ

∥∥∥∥
2

= i
〈
(H̄ + V − η)ψ,Aψ

〉
− i

〈
Aψ, (H̄ + V − η)ψ

〉

+ C1

∥∥∥∥f
⊥
η (H̄ + V )〈H̄ + V 〉1/2ψ

∥∥∥∥
2

≤ βη (2‖Aψ‖ + C2βη) . (4.4)
In the second inequality, we used that

∥∥∥(H̄ + V − η)ψ
∥∥∥ =

∥∥∥∥
∑

j

aj(ηj − η)ψj
∥∥∥∥ ≤ βη, (4.5)
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and hence also that that
∥∥∥f⊥

η (H̄ + V )〈H̄ + V 〉1/2ψ
∥∥∥ ≤ C3βη by the Spectral Theo-

rem, where the constant C3 depends on supp(fη). By Condition 1.10, we obtain a
contradiction provided that βη is chosen sufficiently small.
Step 2 Let us prove that the total multiplicity of the eigenvalues of H + V in J is
at most dim Ker(H − λ).

It follows from Step 1 that, for any η ∈ [inf J, λ− βλ] ∪ [λ+ βλ, sup J ], there exist
βη > 0 and γη > 0 such that, for ‖V ‖1 ≤ γη, H + V does not have eigenvalues in
(η − βη, η + βη). Since [inf J, λ − βλ] ∪ [λ + βλ, sup J ] is compact, it follows from a
covering argument that there exist η1, . . . , ηl such that

[inf J, λ− βλ] ∪ [λ+ βλ, sup J ] ⊂
l⋃

j=1
(ηj − βηj

, ηj + βηj
). (4.6)

Hence, for ‖V ‖1 ≤ min(γη1 , . . . , γηl
), H + V does not have eigenvalues in [inf J, λ−

βλ]∪ [λ+βλ, sup J ]. Applying Step 1 again with η = λ, this concludes the proof. �

The next proposition is a consequence of Theorem 1.14. It will be used in Sec-
tion 5.

Proposition 4.3. Assume that Conditions 1.3 and Condition 1.10 hold. Suppose
λ ∈ σpp(H) and that J ⊆ I is a compact interval such that σpp(H) ∩ J = {λ}. Let
P = EH({λ}), P̄ = I −P and PV,J = E(H+V )pp(J) for any V ∈ V1 (with sufficiently
small norm). Then for any sequence V (n) ∈ B1,γ such that ‖V (n)‖1 → 0,

‖P̄PV (n),J‖ → 0. (4.7)
One of the following two alternatives i) or ii) holds:

i) There exists 0 < γ′ ≤ γ such that if V ∈ B1,γ and 0 6= ‖V ‖1 ≤ γ′, then the
operator H + V does not have eigenvalues in J .

ii) There exists a sequence of operators Vn ∈ B1,γ with 0 6= ‖Vn‖1 → 0 and a
sequence of normalized eigenstates, (H + Vn − λn)ψn = 0, with eigenvalues
λn → λ, such that for some ψ∞ ∈ Ran(P ) we have ‖ψn − ψ∞‖ → 0.

Proof. If (4.7) fails there exist an ǫ > 0, a sequence of elements V (n) ∈ B1,γ with
0 6= ‖V (n)‖1 → 0, a linear combination of eigenstates of H + V (n), viz. ψ(n) =
∑
j≤m(n) a

(n)
j ψ

(n)
j , such that

‖ψ(n)‖ ≤ 1 and ‖P̄ψ(n)‖ > ǫ. (4.8)
Here m(n) ≤ dim Ran(P ) specifies the dimension of the range of PV (n),J .

Due to Theorem 1.14 the corresponding eigenvalues, say λ
(n)
j , concentrate at λ.

More precisely
max
j≤m(n)

|λ(n)
j − λ| → 0 for n → ∞. (4.9)

In particular we have

max
j≤m(n)

‖(H − λ)ψ(n)
j ‖ → 0, and max

j≤m(n)
‖f⊥

λ (H)ψ(n)
j ‖ → 0, (4.10)

and therefore also
‖(H − λ)ψ(n)‖ → 0, and ‖f⊥

λ (H)ψ(n)‖ → 0. (4.11)
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Next by the Banach-Alaoglu Theorem [Yo, Theorem 1 on p. 126] we can assume
that there exists the weak limit ψ∞ := w − limψ(n) (by passing to a subsequence
and change notation). From the first identity of (4.11) we learn that ψ∞ ∈ Ran(P ).
Consequently

w − lim P̄ψ(n) = P̄ψ∞ = 0. (4.12)
Now we apply a similar argument as the one for proving Theorem 1.14 now based

on (1.4) rather than (4.3): Looking at the expectation of both sides of (1.4) in the
states φn := P̄ψ(n), using Remark 1.4 2), we obtain

c0‖φn‖2 ≤2‖(H − λ)φn‖‖Aφn‖ + C‖〈H〉1/2f⊥
λ (H)φn‖2 + 〈φn, K0φn〉. (4.13)

Since K0 is compact we obtain from (4.12) that 〈φn, K0φn〉 → 0. By (1.11), ‖Aφn‖
is uniformly bounded, and therefore we conclude in combination with (4.11) that
‖φn‖ → 0. This contradicts (4.8).

Let us now prove that either i) of ii) holds. If i) fails indeed there exists a sequence
of normalized eigenstates, (H + Vn − λn)ψn = 0, with eigenvalues λn → λ and with
Vn ∈ B1,γ, 0 6= ‖Vn‖1 → 0. Due to (4.7) ‖P̄ψn‖ → 0. By compactness there exists
ψ ∈ Ran(P ) such that along some subsequence Pψnk

→ ψ. Whence

‖ψnk
− ψ‖ ≤ ‖P̄ψnk

‖ + ‖Pψnk
− ψ‖ → 0 for k → ∞, (4.14)

and we conclude ii). �

There is a different version of the second part of Proposition 4.3 given by first
fixing V ∈ B1,γ (but otherwise given under the same conditions). Now we look at
the eigenvalue problem in I of the family of perturbed Hamiltonians Hσ = H + σV
with σ ∈ R and |σ| > 0 sufficiently small. In this framework there is a similar
dichotomy (it can be shown by applying Proposition 4.3 under the same conditions,
replacing B1,γ by the subset {σV, |σ| ≤ σ0} ⊆ B1,γ).

Corollary 4.4. Assume that Conditions 1.3 and Condition 1.10 hold. Suppose
λ ∈ σpp(H) and that J ⊆ I is a compact interval such that σpp(H) ∩ J = {λ}. Let
P = EH({λ}) and let V ∈ B1,γ. One of the following two alternatives i) or ii) holds:

i) For some sufficiently small σ0 > 0 there are no eigenvalues of Hσ := H + σV
in J for all σ ∈] − σ0, σ0[ \{0}.

ii) For some sequence of coupling constants , 0 6= σn → 0, and some sequence of
normalized eigenstates ψn, (H + σnV − λn)ψn = 0 with λn → λ, there exists
ψ∞ ∈ Ran(P ) such that ‖ψn − ψ∞‖ → 0.

5. Second order perturbation theory

In this section we shall study second order perturbation theory. Our main in-
terest is the Fermi Golden Rule, which indeed we shall show is a consequence of
having an expansion to second order of any possible existing perturbed eigenvalue
near an unperturbed one. This is done in Subsection 5.1 under Conditions 1.3 and
Condition 1.10, in the case where the unperturbed eigenvalue is simple. In the de-
generate case, this is done in Subsection 5.2 assuming Condition 1.9 rather than
Condition 1.10. We do not obtain an expansion to second order of the perturbed
eigenvalues assuming Condition 1.10 only. Nevertheless we shall show a similar
version of the Fermi Golden Rule in this case also (done in Subsection 5.2).
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5.1. Second order perturbation theory – simple case.

Theorem 5.1. Assume that Conditions 1.3, Condition 1.10 and Condition 1.11
hold. Suppose λ ∈ σpp(H) and that J ⊆ I is a compact interval such that σpp(H) ∩
J = {λ}. Let P = EH({λ}), P̄ = I − P . Let V ∈ B1,γ. Suppose

dim Ran(P ) = 1, viz. P = |ψ〉〈ψ|. (5.1)
For all 1/2 < s ≤ 1 and ǫ > 0, there exists σ0 > 0 such that if |σ| ≤ σ0 and λσ ∈ J
is an eigenvalue of Hσ, then

∣∣∣λσ − λ− σ〈ψ, V ψ〉 + σ2〈V ψ, (H − λ− i0)−1P̄V ψ〉
∣∣∣ ≤ ǫσ2, (5.2)

and there exists a normalized eigenstate ψσ, Hσψσ = λσψσ, such that
∥∥∥ψσ − ψ + σ(H − λ− i0)−1P̄V ψ

∥∥∥
D(〈A〉s)∗ ≤ ǫ|σ|. (5.3)

Remarks 5.2. 1) It is a consequence of Conditions 1.3, Condition 1.7, Remark 1.8
and Condition 1.11 that

Ran(V P ) ⊆ D(A) for all V ∈ V1. (5.4)

Notice that we can compute the commutator form [V, iA] on
(
D(M1/2)∩D(H)∩

D(A∗)
)

×
(
D(M1/2)∩D(H)∩D(A)

)
by a formula similar to (1.3). Whence this

form is given by V ′, cf. (1.6), which by assumption is an H-bounded operator.
In combination with Theorem 3.3 (5.4) implies that indeed the operator

PV (H − λ− i0)−1P̄ V P ∈ B(H). (5.5)
2) Due to Theorem 1.14 there is at most one eigenvalue λσ of Hσ near λ, and if

it exists it is simple.

Corollary 5.3. Under the conditions of Theorem 5.1 and the condition
Im 〈V ψ, (H − λ− i0)−1P̄V ψ〉 > 0, (5.6)

there exists σ0 > 0 such that for all σ ∈] − σ0, σ0[ \{0}
σpp(Hσ) ∩ J = ∅. (5.7)

Proof of Theorem 5.1. Assume by contradiction that (5.2) does not hold. Then
there exist ǫ > 0 and a sequence σn → 0 such that Hσn has an eigenvalue λn in J
satisfying, for all n and for some ψ ∈ Ran(P ), ‖ψ‖ = 1,

∣∣∣λn − λ− σn〈ψ, V ψ〉 + σ2
n〈V ψ, (H − λ− i0)−1P̄ V ψ〉

∣∣∣ ≥ ǫσ2
n. (5.8)

Since dim Ran(P ) = 1, (5.8) actually holds for any ψ ∈ Ran(P ) such that ‖ψ‖ = 1.
Let ψn be a normalized eigenstate of Hn := Hσn associated to λn, Hnψn = λnψn.
Arguing as in the proof of Proposition 4.3 we can assume that there exists ψ̃ ∈
Ran(P ) such that ‖ψn − ψ̃‖ → 0. Henceforth we set ψ = ψ̃. Let Pn := EHn({λn}).
It follows from the fact that dim Ran(P ) = 1 together with Theorem 1.14 that
dim Ran(Pn) = 1. Hence Pn = |ψn〉〈ψn|. The equation (Hn−λn)Pn = 0 is equivalent
to the following system of equations:




P
(
σnV + λ− λn

)
Pn = 0,

σnP̄V Pn + (λ− λn)P̄Pn + (H − λ)P̄Pn = 0.
(5.9)
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Since ‖ψn − ψ‖ → 0, we have ‖P̄Pn‖ → 0 and ‖PPn‖ → 1. Hence the first
equation of (5.9) yields

λ− λn = O(|σn|). (5.10)
Now, using the second equation of (5.9), we can write, for any φ ∈ H such that
‖φ‖ = 1, and any 1/2 < s ≤ 1,

‖P̄Pnφ‖2 =
∣∣∣〈P̄Pnφ, P̄Pnφ〉

∣∣∣

=
∣∣∣〈P̄Pnφ, (H − λ− i0)−1

(
σnP̄ V Pn + (λ− λn + i0)P̄Pn

)
φ〉
∣∣∣

≤ C|σn|
∥∥∥〈A〉−s(H − λ− i0)−1P̄ 〈A〉−s

∥∥∥

× ‖〈A〉sP̄Pn‖
(
‖〈A〉P̄Pn‖ + ‖〈A〉P̄V Pn‖

)
. (5.11)

Using Condition 1.10 and the assumption that V ∈ B1,γ, one can prove that
‖〈A〉P̄Pn‖ and ‖〈A〉P̄V Pn‖ are uniformly bounded in n. In addition we claim
that for s < 1, ‖〈A〉sP̄Pn‖ → 0 as n → ∞. To prove this, it suffices to use
that ‖〈A〉s(〈A〉 + ik)−1‖ → 0 as k → ∞, together with ‖〈A〉P̄Pn‖ being uniformly
bounded in n and ‖P̄Pn‖ → 0 as n → ∞. Therefore by Theorem 3.3,

‖P̄Pn‖2 = o(|σn|). (5.12)
Since dim Ran(P ) = dim Ran(Pn) = 1, Equation (5.12) implies

‖P̄ψn‖2 = ‖P̄nψ‖2 = o(|σn|), (5.13)
and in particular also

‖P̄nP‖2 = o(|σn|), (5.14)
where we have set P̄n = I−Pn. Taking the expectation of the first equation of (5.9)
in the state ψ gives

λ− λn = −σn〈ψ, V ψ〉 + (λ− λn)(1 − ‖Pnψ‖2) − σn〈ψ, V (Pn − P )ψ〉
= −σn〈ψ, V ψ〉 + σn〈ψ, V P̄nψ〉 + o(σ2

n), (5.15)
where we used (5.10) and (5.13) in the second equality. Let us write

P̄nψ = PP̄nψ − P̄Pnψ. (5.16)
Estimate (5.14) yields ‖PP̄nψ‖ = o(|σn|). Inserting (5.16) and the second equation
of (5.9) into (5.15), we obtain

λ− λn = − σn〈ψ, V ψ〉 + σ2
n〈V ψ, (H − λ− i0)−1P̄ V Pnψ〉

+ σn(λ− λn)〈V ψ, (H − λ− i0)−1P̄Pnψ〉 + o(σ2
n). (5.17)

As above we can use λ−λn = O(|σn|) together with the fact that ‖Ê〈A〉sP̄Pn‖ → 0
for s < 1 and Theorem 3.3 to obtain

σn(λ− λn)〈V ψ, (H − λ− i0)−1P̄Pnψ〉 = o(σ2
n). (5.18)

Finally, it follows from Condition 1.10 and the assumption V ∈ B1,γ that ‖〈A〉sV (Pn−
P )ψ‖ → 0 for s < 1. This leads to

λ− λn = −σn〈ψ, V ψ〉 + σ2
n〈V ψ, (H − λ− i0)−1P̄V ψ〉 + o(σ2

n), (5.19)
which contradicts (5.8), and hence proves (5.2).

It remains to prove (5.3). Assume, again by contradiction, that (5.3) does not
hold. Then there exist ǫ > 0 and a sequence σn → 0 such that Hn = Hσn has



28 J. FAUPIN, J.S. MØLLER, AND E. SKIBSTED

an eigenvalue λn ∈ J associated to a normalized eigenstate ψn satisfying, for any
ψ ∈ Ran(P ), ‖ψ‖ = 1,

∥∥∥ψn − ψ + σn(H − λ− i0)−1P̄ V ψ
∥∥∥

(D(〈A〉s))∗ ≥ ǫ|σn|. (5.20)

As above we can assume that there exists ψ ∈ Ran(P ) such that ‖ψn−ψ‖ → 0. Let
ψ̃ := eiθnψ, where θn ∈ R is defined by the equation 〈ψ, ψn〉 = eiθn|〈ψ, ψn〉|. Using
the second equation of (5.9), we can write

ψn = Pψn + P̄ψn

= 〈ψ, ψn〉ψ − (λ− λn)(H − λ− i0)−1P̄ψn − σn(H − λ− i0)−1P̄V ψn

= ψ̃ − σn(H − λ− i0)−1P̄ V ψ̃ +Rn, (5.21)
where

Rn =
(
‖Pψn‖ − 1)ψ̃ − (λ− λn)(H − λ− i0)−1P̄ψn

− σn(H − λ− i0)−1P̄V (ψn − ψ̃
)
. (5.22)

By arguments similar to the ones used to prove (5.2), one can see that ‖Rn‖D(〈A〉s)∗ =
o(|σn|) for any fixed 1/2 < s < 1, which contradicts (5.20), and hence proves (5.3).

�
5.2. Fermi Golden Rule criterion – general case. We begin this section with
a result similar to Theorem 5.1 that we shall obtain without requiring an hypothesis
of simplicity. Here we need Condition 1.9 rather than Condition 1.10.
Theorem 5.4. Suppose Conditions 1.3, Condition 1.9 and Condition 1.11. Let
V ∈ V2. Suppose λ ∈ σpp(H) and that J ⊆ I is a compact interval such that
σpp(H) ∩ J = {λ}. Let P = EH({λ}), P̄ = I − P .

There exist C ≥ 0 and σ0 > 0 such that if |σ| ≤ σ0 and λσ ∈ J is an eigenvalue
of Hσ = H + σV , then there exists ψ ∈ Ran(P ), ‖ψ‖ = 1, such that

∣∣∣λσ − λ− σ〈ψ, V ψ〉 + σ2〈V ψ, (H − λ− i0)−1P̄V ψ〉
∣∣∣ ≤ C|σ|5/2. (5.23)

Remarks 5.5. 1) In the simple case, P = |ψ〉〈ψ|, (5.23) is stronger than (5.2).
2) We do not have an analogue of (5.3) under the conditions of Theorem 5.4, even

if we assume in addition dim Ran(P ) = 1. Similarly, cf. Remark 5.2 2), we do
not have upper semicontinuity of point spectrum at λ even if dim Ran(P ) = 1.

Proof of Theorem 5.4. We can argue in a way similar to the proofs of Proposition 5.2
and Lemma 5.3 in [AHS]. For σ = 0, there is nothing to prove. Let σ 6= 0.

As in the proof of Theorem 3.4, we set H̄ = H+αJP with αJ > sup J− inf J , and
H̄σ = H̄+σV . Assume that λσ ∈ σpp(Hσ) and let φσ be such that (Hσ −λσ)φσ = 0,
‖φσ‖ = 1. Hence

(H̄σ − λσ)φσ = αJPφσ. (5.24)
By Theorem 3.4, λσ /∈ σpp(H̄σ), and hence in particular Pφσ 6= 0. Moreover, it
follows from (5.24) that, for any ǫ > 0,

Pφσ = αJP
(
H̄σ − λσ − iǫ

)−1
Pφσ − iǫαJP

(
H̄σ − λσ − iǫ

)−1
φσ. (5.25)

Letting ǫ → 0, since λσ /∈ σpp(H̄σ), we obtain

Pφσ = αJP
(
H̄σ − λσ − i0

)−1
Pφσ. (5.26)
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Note that the right-hand-side of (5.26) is well-defined by Theorem 3.4 since, by
Condition 1.9, Ran(P ) ⊆ D(A).

Let β := αJ +λ−λσ. Hence P
(
H̄−λσ

)
P = βP . Using twice the second resolvent

equation, one easily verifies that, for any ǫ > 0,

P
(
H̄σ − λσ − iǫ

)−1
P

= (β − iǫ)−1P − (β − iǫ)−2σPV P + (β − iǫ)−2σ2PV
(
H̄σ − λσ − iǫ

)−1
V P.

(5.27)
Letting ǫ → 0 and using Theorem 3.4 with s = 1, this yields

P
(
H̄σ − λσ − i0

)−1
P

= β−1P − β−2σPV P + β−2σ2PV
(
H̄ − λσ − i0

)−1
V P +R1, (5.28)

where R1 is a bounded operator on Ran(P ) satisfying ‖R1‖ ≤ C1|σ|5/2. Note that
the right-hand-side of (5.28) is well-defined by Theorem 3.4 and Remark 5.2 2).

Now let ψ := ‖Pφσ‖−1Pφσ. Multiplying (5.28) by αJβ and taking the expectation
in ψ, we obtain thanks to (5.26):

λ− λσ = − αJβ
−1σ〈ψ, V ψ〉

+ αJβ
−1σ2〈V ψ,

(
H̄ − λσ − i0

)−1
V ψ〉 + 〈ψ,R1ψ〉. (5.29)

Using again Theorem 3.4 with s = 1, this implies
λ− λσ = − αJβ

−1σ〈ψ, V ψ〉
+ αJβ

−1σ2〈V ψ,
(
H̄ − λ− i0

)−1
V ψ〉 + 〈ψ,R2ψ〉, (5.30)

where R2 is a bounded operator on Ran(P ) satisfying ‖R2‖ ≤ C2|σ|5/2. In particular,
|λ− λσ| ≤ C3|σ|. We then obtain from (5.26) and (5.28) that

λ− λσ
σ

ψ = −αJβ−1PV Pψ + αJβ
−1σPV

(
H̄ − λ− i0

)−1
V Pψ + σ−1R2ψ

= (−PV P + σR3)ψ, (5.31)

where R3 is an operator on the finite dimensional space Ran(P ) uniformly bounded
in σ. It follows from the usual perturbation theory (see [Ka]) that ψ can be written
as ψ = ψ1 + σψ2 where ψ1 is an eigenstate of −PV P and ψ2 ∈ Ran(P ). Now,
multiplying (5.30) by α−1

J β gives
(λ− λσ)α−1

J β = − σ〈ψ, V ψ〉 + σ2〈V ψ, (H̄ − λ− i0)−1V ψ〉 + α−1
J β〈ψ,R2ψ〉

= − σ〈ψ, V ψ〉 + α−1
J σ2〈V ψ, PV ψ〉 + σ2〈V ψ, (H − λ− i0)−1P̄V ψ〉

+ α−1
J β〈ψ,R2ψ〉. (5.32)

By (5.30), we can write
λ− λσ = −σ〈ψ, V ψ〉 + 〈ψ,R4ψ〉, (5.33)

with ‖R4‖ ≤ C4σ
2, and hence

(λ− λσ)α−1
J β = (λ− λσ) + α−1

J (λ− λσ)2

= (λ− λσ) + α−1
J σ2〈ψ, V ψ〉2 +O(|σ|3). (5.34)



30 J. FAUPIN, J.S. MØLLER, AND E. SKIBSTED

Since ψ = ψ1 + σψ2 where ψ1 is an eigenstate of −PV P , we have
〈ψ, V ψ〉2 − ‖PV ψ‖2 = O(|σ|). (5.35)

Therefore,
α−1
J σ2〈V ψ, PV ψ〉 − α−1

J σ2〈ψ, V ψ〉2 = O(|σ|3). (5.36)
Combining Equations (5.32), (5.34) and (5.36), the statement of the theorem follows.

�
We come now to the proof of Theorem 1.15 on the absence of eigenvalues of the

perturbed Hamiltonian Hσ = H + σV , generalizing Corollary 5.3:
Proof of Theorem 1.15. Suppose first that Condition 1.9 holds and that V ∈ V2. By
Theorem 5.4, there exists σ0 > 0 such that if λσ is an eigenvalue of Hσ with |σ| ≤ σ0,
then (5.23) is satisfied. Taking the imaginary part of (5.23) contradicts (1.13).

Suppose now Condition 1.10 and that V ∈ B1,γ . Assume by contradiction that
(1.14) is false. Then the second alternative ii) of Corollary 4.4 holds. Hence we
consider a sequence of normalized eigenstates ψn → ψ∞ ∈ Ran(P ) of a sequence of
Hamiltonians Hn := Hσn given in terms of a certain sequence of coupling constants
σn → 0, σn 6= 0. Let Pn = |ψn〉〈ψn|. As in the proof of Theorem 5.1, the equation
(Hn − λn)Pn = 0 is equivalent to (5.9). We notice that

Im
(
PnV P̄Pn

)
= −Im

(
PnV PPn

)
= λ−λn

σn
Im

(
PnPPn

)
= 0, (5.37)

due to the first equation of (5.9). Next we apply PnV (H − λ− i0)−1P̄ from the left
in the second equation of (5.9), take the imaginary part and use (5.37) yielding

σnPnV Im
(
(H − λ− i0)−1P̄

)
V Pn

= (λn − λ)Im
(
PnV (H − λ− i0)−1P̄Pn

)
. (5.38)

Now we take the expectation of (5.38) in the state ψ∞, use the first equation of
(5.9) and divide by σn yielding

Im 〈(H − λ− i0)−1P̄ 〉V Pnψ∞

= Im 〈PnV (H − λ− i0)−1P̄PnV 〉ψ∞. (5.39)

Again, using Condition 1.10, we have that ‖〈A〉sP̄Pn‖ → 0 for 1/2 < s < 1. We
then conclude by letting n → ∞ in the above identity, using Theorem 3.3, which
yields

Im 〈(H − λ− i0)−1P̄ 〉V ψ∞ = 0. (5.40)
Clearly (5.40) contradicts (1.13). �
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[DJ] J. Dereziński, V. Jakšić, Spectral theory of Pauli-Fierz operators, J. Funct. Anal., 180,
(2001), 243–327.

[FMS] J. Faupin, J.S. Møller, E. Skibsted, Regularity of embedded bound states, Preprint,
arXiv:1006.5871.

[FGS] J. Fröhlich, M. Griesemer, I.M. Sigal, Spectral Theory for the Standard Model of Non-
Relativistic QED, Comm. Math. Phys., 283, (2008), 613–646.

[GG] V. Georgescu, C. Gérard, On the virial theorem in quantum mechanics, Comm. Math.
Phys., 208, (1999), 275–281.

[GGM1] V. Georgescu, C. Gérard, J.S. Møller, Commutators, C0–semigroups and resolvent esti-
mates, J. Funct. Anal., 216, (2004), 303–361.

[GGM2] V. Georgescu, C. Gérard, J.S. Møller, Spectral theory of massless Pauli-Fierz models,
Comm. Math. Phys., 249, (2004), 29–78.

[Go] S. Golénia, Positive commutators, Fermi Golden Rule and the spectrum of 0 temperature
Pauli-Fierz Hamiltonians, J. Funct. Anal., 256, (2009), 2587–2620.

[GJ] S. Golénia and T. Jecko, A New Look at Mourre’s Commutator Theory, Compl. anal.
oper. theory, 1, (2007), 399–422.

[HP] E. Hille and R.S. Phillips, Functional Analysis and Semigroups, American Mathematical
Society, Providence, RI, 1957.

[HuSi] W. Hunziker and I.M. Sigal, The quantum N -body problem, J. Math. Phys., 41, (2000),
3448–3510.

[HüSp] M. Hübner, H. Spohn, Spectral properties of the spin-boson Hamiltonian, Ann. Inst. Henri
Poincaré, 62, (1995), 289–323.
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